UA-Net | | | 99.42 42 | 99.29 50 | 99.80 43 | 99.62 135 | 99.55 80 | 99.50 140 | 99.70 15 | 98.79 57 | 99.77 38 | 99.96 1 | 97.45 123 | 99.96 20 | 98.92 81 | 99.90 25 | 99.89 2 |
|
DeepC-MVS | | 98.35 2 | 99.30 59 | 99.19 66 | 99.64 80 | 99.82 39 | 99.23 121 | 99.62 76 | 99.55 67 | 98.94 41 | 99.63 84 | 99.95 2 | 95.82 182 | 99.94 58 | 99.37 29 | 99.97 5 | 99.73 90 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
OurMVSNet-221017-0 | | | 97.88 228 | 97.77 221 | 98.19 281 | 98.71 326 | 96.53 301 | 99.88 4 | 99.00 312 | 97.79 163 | 98.78 262 | 99.94 3 | 91.68 306 | 99.35 271 | 97.21 257 | 96.99 274 | 98.69 262 |
|
test_low_dy_conf_001 | | | 98.76 144 | 98.71 130 | 98.92 192 | 98.92 296 | 98.71 188 | 99.87 9 | 99.41 210 | 97.81 162 | 99.35 155 | 99.93 4 | 96.63 153 | 99.28 284 | 99.03 67 | 97.44 257 | 98.78 235 |
|
test2506 | | | 96.81 297 | 96.65 295 | 97.29 325 | 99.74 76 | 92.21 365 | 99.60 83 | 85.06 384 | 99.13 8 | 99.77 38 | 99.93 4 | 87.82 354 | 99.85 136 | 99.38 27 | 99.38 144 | 99.80 56 |
|
test1111 | | | 98.04 206 | 98.11 182 | 97.83 305 | 99.74 76 | 93.82 352 | 99.58 98 | 95.40 374 | 99.12 10 | 99.65 79 | 99.93 4 | 90.73 321 | 99.84 142 | 99.43 25 | 99.38 144 | 99.82 40 |
|
ECVR-MVS |  | | 98.04 206 | 98.05 191 | 98.00 295 | 99.74 76 | 94.37 347 | 99.59 90 | 94.98 375 | 99.13 8 | 99.66 73 | 99.93 4 | 90.67 322 | 99.84 142 | 99.40 26 | 99.38 144 | 99.80 56 |
|
SixPastTwentyTwo | | | 97.50 279 | 97.33 275 | 98.03 290 | 98.65 331 | 96.23 311 | 99.77 32 | 98.68 346 | 97.14 227 | 97.90 323 | 99.93 4 | 90.45 323 | 99.18 304 | 97.00 271 | 96.43 282 | 98.67 274 |
|
RRT_MVS | | | 98.70 148 | 98.66 138 | 98.83 219 | 98.90 298 | 98.45 216 | 99.89 2 | 99.28 278 | 97.76 166 | 98.94 238 | 99.92 9 | 96.98 141 | 99.25 290 | 99.28 43 | 97.00 273 | 98.80 233 |
|
SD-MVS | | | 99.41 46 | 99.52 8 | 99.05 171 | 99.74 76 | 99.68 54 | 99.46 163 | 99.52 93 | 99.11 11 | 99.88 6 | 99.91 10 | 99.43 1 | 97.70 362 | 98.72 115 | 99.93 12 | 99.77 72 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
bld_raw_conf005 | | | 98.62 159 | 98.50 158 | 98.95 186 | 99.02 283 | 98.79 182 | 99.66 57 | 99.55 67 | 98.14 119 | 98.95 235 | 99.91 10 | 94.54 234 | 99.33 274 | 99.36 30 | 97.39 262 | 98.74 247 |
|
ACMH | | 97.28 8 | 98.10 196 | 97.99 197 | 98.44 260 | 99.41 193 | 96.96 287 | 99.60 83 | 99.56 58 | 98.09 127 | 98.15 314 | 99.91 10 | 90.87 320 | 99.70 209 | 98.88 85 | 97.45 254 | 98.67 274 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
patch_mono-2 | | | 99.26 66 | 99.62 1 | 98.16 283 | 99.81 42 | 94.59 344 | 99.52 129 | 99.64 33 | 99.33 2 | 99.73 49 | 99.90 13 | 99.00 25 | 99.99 1 | 99.69 1 | 99.98 2 | 99.89 2 |
|
VDDNet | | | 97.55 274 | 97.02 290 | 99.16 161 | 99.49 173 | 98.12 232 | 99.38 200 | 99.30 271 | 95.35 322 | 99.68 62 | 99.90 13 | 82.62 367 | 99.93 73 | 99.31 38 | 98.13 224 | 99.42 182 |
|
QAPM | | | 98.67 154 | 98.30 172 | 99.80 43 | 99.20 246 | 99.67 57 | 99.77 32 | 99.72 11 | 94.74 333 | 98.73 266 | 99.90 13 | 95.78 183 | 99.98 7 | 96.96 275 | 99.88 38 | 99.76 77 |
|
3Dnovator | | 97.25 9 | 99.24 70 | 99.05 79 | 99.81 41 | 99.12 264 | 99.66 59 | 99.84 14 | 99.74 10 | 99.09 15 | 98.92 241 | 99.90 13 | 95.94 176 | 99.98 7 | 98.95 76 | 99.92 13 | 99.79 62 |
|
Anonymous20240529 | | | 98.09 197 | 97.68 231 | 99.34 133 | 99.66 119 | 98.44 217 | 99.40 191 | 99.43 205 | 93.67 343 | 99.22 185 | 99.89 17 | 90.23 328 | 99.93 73 | 99.26 47 | 98.33 209 | 99.66 118 |
|
mvsmamba | | | 98.92 119 | 98.87 109 | 99.08 166 | 99.07 274 | 99.16 128 | 99.88 4 | 99.51 107 | 98.15 116 | 99.40 139 | 99.89 17 | 97.12 134 | 99.33 274 | 99.38 27 | 97.40 260 | 98.73 250 |
|
CHOSEN 1792x2688 | | | 99.19 74 | 99.10 74 | 99.45 122 | 99.89 9 | 98.52 208 | 99.39 195 | 99.94 1 | 98.73 61 | 99.11 206 | 99.89 17 | 95.50 192 | 99.94 58 | 99.50 13 | 99.97 5 | 99.89 2 |
|
RPSCF | | | 98.22 182 | 98.62 146 | 96.99 330 | 99.82 39 | 91.58 367 | 99.72 41 | 99.44 197 | 96.61 270 | 99.66 73 | 99.89 17 | 95.92 177 | 99.82 160 | 97.46 244 | 99.10 169 | 99.57 148 |
|
3Dnovator+ | | 97.12 13 | 99.18 76 | 98.97 96 | 99.82 38 | 99.17 257 | 99.68 54 | 99.81 20 | 99.51 107 | 99.20 5 | 98.72 267 | 99.89 17 | 95.68 188 | 99.97 12 | 98.86 94 | 99.86 53 | 99.81 46 |
|
COLMAP_ROB |  | 97.56 6 | 98.86 125 | 98.75 127 | 99.17 160 | 99.88 12 | 98.53 204 | 99.34 216 | 99.59 44 | 97.55 187 | 98.70 274 | 99.89 17 | 95.83 181 | 99.90 111 | 98.10 183 | 99.90 25 | 99.08 207 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
dcpmvs_2 | | | 99.23 71 | 99.58 2 | 98.16 283 | 99.83 37 | 94.68 343 | 99.76 35 | 99.52 93 | 99.07 18 | 99.98 1 | 99.88 23 | 98.56 77 | 99.93 73 | 99.67 3 | 99.98 2 | 99.87 13 |
|
test_djsdf | | | 98.67 154 | 98.57 155 | 98.98 181 | 98.70 327 | 98.91 168 | 99.88 4 | 99.46 176 | 97.55 187 | 99.22 185 | 99.88 23 | 95.73 185 | 99.28 284 | 99.03 67 | 97.62 236 | 98.75 244 |
|
DP-MVS | | | 99.16 80 | 98.95 100 | 99.78 48 | 99.77 54 | 99.53 85 | 99.41 183 | 99.50 128 | 97.03 241 | 99.04 221 | 99.88 23 | 97.39 124 | 99.92 85 | 98.66 125 | 99.90 25 | 99.87 13 |
|
TDRefinement | | | 95.42 318 | 94.57 324 | 97.97 297 | 89.83 377 | 96.11 314 | 99.48 155 | 98.75 335 | 96.74 259 | 96.68 346 | 99.88 23 | 88.65 343 | 99.71 203 | 98.37 163 | 82.74 366 | 98.09 343 |
|
EPP-MVSNet | | | 99.13 84 | 98.99 92 | 99.53 104 | 99.65 124 | 99.06 143 | 99.81 20 | 99.33 254 | 97.43 202 | 99.60 94 | 99.88 23 | 97.14 133 | 99.84 142 | 99.13 58 | 98.94 181 | 99.69 108 |
|
OpenMVS |  | 96.50 16 | 98.47 163 | 98.12 181 | 99.52 110 | 99.04 281 | 99.53 85 | 99.82 18 | 99.72 11 | 94.56 336 | 98.08 316 | 99.88 23 | 94.73 224 | 99.98 7 | 97.47 243 | 99.76 104 | 99.06 213 |
|
bld_raw_dy_0_64 | | | 98.69 151 | 98.58 154 | 98.99 179 | 98.88 301 | 98.96 157 | 99.80 24 | 99.41 210 | 97.91 148 | 99.32 161 | 99.87 29 | 95.70 187 | 99.31 281 | 99.09 62 | 97.27 266 | 98.71 253 |
|
lessismore_v0 | | | | | 97.79 309 | 98.69 328 | 95.44 329 | | 94.75 376 | | 95.71 355 | 99.87 29 | 88.69 342 | 99.32 278 | 95.89 305 | 94.93 319 | 98.62 297 |
|
Vis-MVSNet |  | | 99.12 90 | 98.97 96 | 99.56 94 | 99.78 48 | 99.10 138 | 99.68 51 | 99.66 27 | 98.49 77 | 99.86 13 | 99.87 29 | 94.77 221 | 99.84 142 | 99.19 51 | 99.41 143 | 99.74 83 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
ACMH+ | | 97.24 10 | 97.92 225 | 97.78 219 | 98.32 271 | 99.46 183 | 96.68 297 | 99.56 110 | 99.54 76 | 98.41 85 | 97.79 328 | 99.87 29 | 90.18 329 | 99.66 218 | 98.05 192 | 97.18 270 | 98.62 297 |
|
ACMMP_NAP | | | 99.47 25 | 99.34 32 | 99.88 6 | 99.87 16 | 99.86 13 | 99.47 160 | 99.48 148 | 98.05 137 | 99.76 43 | 99.86 33 | 98.82 48 | 99.93 73 | 98.82 106 | 99.91 18 | 99.84 22 |
|
casdiffmvs | | | 99.13 84 | 98.98 95 | 99.56 94 | 99.65 124 | 99.16 128 | 99.56 110 | 99.50 128 | 98.33 96 | 99.41 134 | 99.86 33 | 95.92 177 | 99.83 153 | 99.45 22 | 99.16 161 | 99.70 105 |
|
PVSNet_Blended_VisFu | | | 99.36 53 | 99.28 54 | 99.61 85 | 99.86 22 | 99.07 142 | 99.47 160 | 99.93 2 | 97.66 178 | 99.71 55 | 99.86 33 | 97.73 118 | 99.96 20 | 99.47 20 | 99.82 83 | 99.79 62 |
|
IS-MVSNet | | | 99.05 105 | 98.87 109 | 99.57 92 | 99.73 84 | 99.32 108 | 99.75 37 | 99.20 291 | 98.02 141 | 99.56 102 | 99.86 33 | 96.54 157 | 99.67 215 | 98.09 184 | 99.13 165 | 99.73 90 |
|
USDC | | | 97.34 286 | 97.20 284 | 97.75 310 | 99.07 274 | 95.20 333 | 98.51 348 | 99.04 310 | 97.99 142 | 98.31 307 | 99.86 33 | 89.02 338 | 99.55 238 | 95.67 312 | 97.36 264 | 98.49 317 |
|
TSAR-MVS + MP. | | | 99.58 5 | 99.50 10 | 99.81 41 | 99.91 1 | 99.66 59 | 99.63 70 | 99.39 223 | 98.91 46 | 99.78 35 | 99.85 38 | 99.36 2 | 99.94 58 | 98.84 99 | 99.88 38 | 99.82 40 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
tmp_tt | | | 82.80 338 | 81.52 341 | 86.66 354 | 66.61 384 | 68.44 382 | 92.79 373 | 97.92 358 | 68.96 372 | 80.04 375 | 99.85 38 | 85.77 359 | 96.15 372 | 97.86 203 | 43.89 377 | 95.39 368 |
|
AllTest | | | 98.87 122 | 98.72 128 | 99.31 139 | 99.86 22 | 98.48 214 | 99.56 110 | 99.61 36 | 97.85 153 | 99.36 152 | 99.85 38 | 95.95 174 | 99.85 136 | 96.66 292 | 99.83 77 | 99.59 143 |
|
TestCases | | | | | 99.31 139 | 99.86 22 | 98.48 214 | | 99.61 36 | 97.85 153 | 99.36 152 | 99.85 38 | 95.95 174 | 99.85 136 | 96.66 292 | 99.83 77 | 99.59 143 |
|
VDD-MVS | | | 97.73 256 | 97.35 270 | 98.88 205 | 99.47 182 | 97.12 269 | 99.34 216 | 98.85 330 | 98.19 110 | 99.67 68 | 99.85 38 | 82.98 365 | 99.92 85 | 99.49 17 | 98.32 213 | 99.60 139 |
|
APDe-MVS | | | 99.66 1 | 99.57 3 | 99.92 1 | 99.77 54 | 99.89 4 | 99.75 37 | 99.56 58 | 99.02 21 | 99.88 6 | 99.85 38 | 99.18 10 | 99.96 20 | 99.22 49 | 99.92 13 | 99.90 1 |
|
DeepPCF-MVS | | 98.18 3 | 98.81 137 | 99.37 25 | 97.12 329 | 99.60 143 | 91.75 366 | 98.61 341 | 99.44 197 | 99.35 1 | 99.83 20 | 99.85 38 | 98.70 66 | 99.81 165 | 99.02 70 | 99.91 18 | 99.81 46 |
|
ACMM | | 97.58 5 | 98.37 173 | 98.34 168 | 98.48 251 | 99.41 193 | 97.10 270 | 99.56 110 | 99.45 188 | 98.53 74 | 99.04 221 | 99.85 38 | 93.00 269 | 99.71 203 | 98.74 111 | 97.45 254 | 98.64 286 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
LS3D | | | 99.27 64 | 99.12 72 | 99.74 59 | 99.18 251 | 99.75 43 | 99.56 110 | 99.57 53 | 98.45 81 | 99.49 117 | 99.85 38 | 97.77 117 | 99.94 58 | 98.33 167 | 99.84 68 | 99.52 158 |
|
DPE-MVS |  | | 99.46 27 | 99.32 36 | 99.91 2 | 99.78 48 | 99.88 8 | 99.36 207 | 99.51 107 | 98.73 61 | 99.88 6 | 99.84 47 | 98.72 64 | 99.96 20 | 98.16 181 | 99.87 42 | 99.88 8 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
XVG-OURS | | | 98.73 146 | 98.68 134 | 98.88 205 | 99.70 102 | 97.73 251 | 98.92 313 | 99.55 67 | 98.52 75 | 99.45 122 | 99.84 47 | 95.27 199 | 99.91 96 | 98.08 188 | 98.84 189 | 99.00 218 |
|
baseline | | | 99.15 81 | 99.02 87 | 99.53 104 | 99.66 119 | 99.14 134 | 99.72 41 | 99.48 148 | 98.35 92 | 99.42 130 | 99.84 47 | 96.07 170 | 99.79 173 | 99.51 12 | 99.14 164 | 99.67 115 |
|
ACMMP |  | | 99.45 29 | 99.32 36 | 99.82 38 | 99.89 9 | 99.67 57 | 99.62 76 | 99.69 18 | 98.12 122 | 99.63 84 | 99.84 47 | 98.73 63 | 99.96 20 | 98.55 146 | 99.83 77 | 99.81 46 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
EI-MVSNet-UG-set | | | 99.58 5 | 99.57 3 | 99.64 80 | 99.78 48 | 99.14 134 | 99.60 83 | 99.45 188 | 99.01 24 | 99.90 4 | 99.83 51 | 98.98 27 | 99.93 73 | 99.59 6 | 99.95 8 | 99.86 15 |
|
EI-MVSNet | | | 98.67 154 | 98.67 135 | 98.68 233 | 99.35 207 | 97.97 237 | 99.50 140 | 99.38 229 | 96.93 250 | 99.20 191 | 99.83 51 | 97.87 113 | 99.36 268 | 98.38 161 | 97.56 241 | 98.71 253 |
|
CVMVSNet | | | 98.57 160 | 98.67 135 | 98.30 273 | 99.35 207 | 95.59 322 | 99.50 140 | 99.55 67 | 98.60 69 | 99.39 142 | 99.83 51 | 94.48 236 | 99.45 245 | 98.75 110 | 98.56 202 | 99.85 18 |
|
LPG-MVS_test | | | 98.22 182 | 98.13 180 | 98.49 249 | 99.33 213 | 97.05 276 | 99.58 98 | 99.55 67 | 97.46 195 | 99.24 180 | 99.83 51 | 92.58 285 | 99.72 197 | 98.09 184 | 97.51 246 | 98.68 267 |
|
LGP-MVS_train | | | | | 98.49 249 | 99.33 213 | 97.05 276 | | 99.55 67 | 97.46 195 | 99.24 180 | 99.83 51 | 92.58 285 | 99.72 197 | 98.09 184 | 97.51 246 | 98.68 267 |
|
SteuartSystems-ACMMP | | | 99.54 10 | 99.42 18 | 99.87 12 | 99.82 39 | 99.81 27 | 99.59 90 | 99.51 107 | 98.62 67 | 99.79 30 | 99.83 51 | 99.28 4 | 99.97 12 | 98.48 151 | 99.90 25 | 99.84 22 |
Skip Steuart: Steuart Systems R&D Blog. |
XXY-MVS | | | 98.38 172 | 98.09 186 | 99.24 154 | 99.26 233 | 99.32 108 | 99.56 110 | 99.55 67 | 97.45 198 | 98.71 268 | 99.83 51 | 93.23 265 | 99.63 230 | 98.88 85 | 96.32 285 | 98.76 242 |
|
SR-MVS-dyc-post | | | 99.45 29 | 99.31 43 | 99.85 28 | 99.76 57 | 99.82 23 | 99.63 70 | 99.52 93 | 98.38 87 | 99.76 43 | 99.82 58 | 98.53 79 | 99.95 47 | 98.61 132 | 99.81 86 | 99.77 72 |
|
RE-MVS-def | | | | 99.34 32 | | 99.76 57 | 99.82 23 | 99.63 70 | 99.52 93 | 98.38 87 | 99.76 43 | 99.82 58 | 98.75 60 | | 98.61 132 | 99.81 86 | 99.77 72 |
|
test0726 | | | | | | 99.85 26 | 99.89 4 | 99.62 76 | 99.50 128 | 99.10 12 | 99.86 13 | 99.82 58 | 98.94 35 | | | | |
|
SMA-MVS |  | | 99.44 33 | 99.30 46 | 99.85 28 | 99.73 84 | 99.83 17 | 99.56 110 | 99.47 166 | 97.45 198 | 99.78 35 | 99.82 58 | 99.18 10 | 99.91 96 | 98.79 107 | 99.89 35 | 99.81 46 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
nrg030 | | | 98.64 157 | 98.42 163 | 99.28 149 | 99.05 280 | 99.69 52 | 99.81 20 | 99.46 176 | 98.04 138 | 99.01 224 | 99.82 58 | 96.69 152 | 99.38 259 | 99.34 35 | 94.59 323 | 98.78 235 |
|
FC-MVSNet-test | | | 98.75 145 | 98.62 146 | 99.15 163 | 99.08 273 | 99.45 97 | 99.86 13 | 99.60 41 | 98.23 105 | 98.70 274 | 99.82 58 | 96.80 146 | 99.22 296 | 99.07 65 | 96.38 283 | 98.79 234 |
|
EI-MVSNet-Vis-set | | | 99.58 5 | 99.56 5 | 99.64 80 | 99.78 48 | 99.15 133 | 99.61 82 | 99.45 188 | 99.01 24 | 99.89 5 | 99.82 58 | 99.01 19 | 99.92 85 | 99.56 9 | 99.95 8 | 99.85 18 |
|
APD-MVS_3200maxsize | | | 99.48 22 | 99.35 30 | 99.85 28 | 99.76 57 | 99.83 17 | 99.63 70 | 99.54 76 | 98.36 91 | 99.79 30 | 99.82 58 | 98.86 44 | 99.95 47 | 98.62 129 | 99.81 86 | 99.78 70 |
|
EU-MVSNet | | | 97.98 217 | 98.03 193 | 97.81 308 | 98.72 324 | 96.65 298 | 99.66 57 | 99.66 27 | 98.09 127 | 98.35 305 | 99.82 58 | 95.25 202 | 98.01 355 | 97.41 249 | 95.30 310 | 98.78 235 |
|
APD-MVS |  | | 99.27 64 | 99.08 77 | 99.84 35 | 99.75 68 | 99.79 33 | 99.50 140 | 99.50 128 | 97.16 226 | 99.77 38 | 99.82 58 | 98.78 52 | 99.94 58 | 97.56 234 | 99.86 53 | 99.80 56 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
TAMVS | | | 99.12 90 | 99.08 77 | 99.24 154 | 99.46 183 | 98.55 202 | 99.51 134 | 99.46 176 | 98.09 127 | 99.45 122 | 99.82 58 | 98.34 96 | 99.51 240 | 98.70 117 | 98.93 182 | 99.67 115 |
|
DeepC-MVS_fast | | 98.69 1 | 99.49 17 | 99.39 22 | 99.77 50 | 99.63 129 | 99.59 73 | 99.36 207 | 99.46 176 | 99.07 18 | 99.79 30 | 99.82 58 | 98.85 45 | 99.92 85 | 98.68 122 | 99.87 42 | 99.82 40 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MG-MVS | | | 99.13 84 | 99.02 87 | 99.45 122 | 99.57 149 | 98.63 195 | 99.07 277 | 99.34 247 | 98.99 31 | 99.61 90 | 99.82 58 | 97.98 112 | 99.87 127 | 97.00 271 | 99.80 90 | 99.85 18 |
|
DVP-MVS++ | | | 99.59 3 | 99.50 10 | 99.88 6 | 99.51 161 | 99.88 8 | 99.87 9 | 99.51 107 | 98.99 31 | 99.88 6 | 99.81 71 | 99.27 5 | 99.96 20 | 98.85 96 | 99.80 90 | 99.81 46 |
|
test_one_0601 | | | | | | 99.81 42 | 99.88 8 | | 99.49 136 | 98.97 37 | 99.65 79 | 99.81 71 | 99.09 14 | | | | |
|
SED-MVS | | | 99.61 2 | 99.52 8 | 99.88 6 | 99.84 33 | 99.90 2 | 99.60 83 | 99.48 148 | 99.08 16 | 99.91 2 | 99.81 71 | 99.20 7 | 99.96 20 | 98.91 82 | 99.85 60 | 99.79 62 |
|
test_241102_TWO | | | | | | | | | 99.48 148 | 99.08 16 | 99.88 6 | 99.81 71 | 98.94 35 | 99.96 20 | 98.91 82 | 99.84 68 | 99.88 8 |
|
OPM-MVS | | | 98.19 186 | 98.10 183 | 98.45 257 | 98.88 301 | 97.07 274 | 99.28 229 | 99.38 229 | 98.57 70 | 99.22 185 | 99.81 71 | 92.12 296 | 99.66 218 | 98.08 188 | 97.54 243 | 98.61 306 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
zzz-MVS | | | 99.49 17 | 99.36 27 | 99.89 4 | 99.90 4 | 99.86 13 | 99.36 207 | 99.47 166 | 98.79 57 | 99.68 62 | 99.81 71 | 98.43 88 | 99.97 12 | 98.88 85 | 99.90 25 | 99.83 33 |
|
MTAPA | | | 99.52 14 | 99.39 22 | 99.89 4 | 99.90 4 | 99.86 13 | 99.66 57 | 99.47 166 | 98.79 57 | 99.68 62 | 99.81 71 | 98.43 88 | 99.97 12 | 98.88 85 | 99.90 25 | 99.83 33 |
|
FIs | | | 98.78 141 | 98.63 141 | 99.23 156 | 99.18 251 | 99.54 82 | 99.83 17 | 99.59 44 | 98.28 99 | 98.79 261 | 99.81 71 | 96.75 150 | 99.37 264 | 99.08 64 | 96.38 283 | 98.78 235 |
|
mvs_tets | | | 98.40 171 | 98.23 175 | 98.91 197 | 98.67 330 | 98.51 210 | 99.66 57 | 99.53 87 | 98.19 110 | 98.65 283 | 99.81 71 | 92.75 275 | 99.44 250 | 99.31 38 | 97.48 252 | 98.77 240 |
|
mvs_anonymous | | | 99.03 108 | 98.99 92 | 99.16 161 | 99.38 202 | 98.52 208 | 99.51 134 | 99.38 229 | 97.79 163 | 99.38 146 | 99.81 71 | 97.30 129 | 99.45 245 | 99.35 31 | 98.99 179 | 99.51 164 |
|
TSAR-MVS + GP. | | | 99.36 53 | 99.36 27 | 99.36 132 | 99.67 110 | 98.61 198 | 99.07 277 | 99.33 254 | 99.00 28 | 99.82 23 | 99.81 71 | 99.06 16 | 99.84 142 | 99.09 62 | 99.42 142 | 99.65 122 |
|
abl_6 | | | 99.44 33 | 99.31 43 | 99.83 36 | 99.85 26 | 99.75 43 | 99.66 57 | 99.59 44 | 98.13 120 | 99.82 23 | 99.81 71 | 98.60 74 | 99.96 20 | 98.46 155 | 99.88 38 | 99.79 62 |
|
EPNet | | | 98.86 125 | 98.71 130 | 99.30 143 | 97.20 362 | 98.18 227 | 99.62 76 | 98.91 324 | 99.28 3 | 98.63 285 | 99.81 71 | 95.96 173 | 99.99 1 | 99.24 48 | 99.72 112 | 99.73 90 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
ab-mvs | | | 98.86 125 | 98.63 141 | 99.54 96 | 99.64 126 | 99.19 123 | 99.44 168 | 99.54 76 | 97.77 165 | 99.30 165 | 99.81 71 | 94.20 244 | 99.93 73 | 99.17 54 | 98.82 190 | 99.49 168 |
|
OMC-MVS | | | 99.08 101 | 99.04 82 | 99.20 157 | 99.67 110 | 98.22 226 | 99.28 229 | 99.52 93 | 98.07 132 | 99.66 73 | 99.81 71 | 97.79 116 | 99.78 178 | 97.79 209 | 99.81 86 | 99.60 139 |
|
xxxxxxxxxxxxxcwj | | | 99.43 37 | 99.32 36 | 99.75 54 | 99.76 57 | 99.59 73 | 99.14 265 | 99.53 87 | 99.00 28 | 99.71 55 | 99.80 86 | 98.95 32 | 99.93 73 | 98.19 176 | 99.84 68 | 99.74 83 |
|
SF-MVS | | | 99.38 51 | 99.24 61 | 99.79 46 | 99.79 46 | 99.68 54 | 99.57 104 | 99.54 76 | 97.82 161 | 99.71 55 | 99.80 86 | 98.95 32 | 99.93 73 | 98.19 176 | 99.84 68 | 99.74 83 |
|
DVP-MVS |  | | 99.57 8 | 99.47 14 | 99.88 6 | 99.85 26 | 99.89 4 | 99.57 104 | 99.37 237 | 99.10 12 | 99.81 25 | 99.80 86 | 98.94 35 | 99.96 20 | 98.93 79 | 99.86 53 | 99.81 46 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_THIRD | | | | | | | | | | 98.99 31 | 99.81 25 | 99.80 86 | 99.09 14 | 99.96 20 | 98.85 96 | 99.90 25 | 99.88 8 |
|
jajsoiax | | | 98.43 166 | 98.28 173 | 98.88 205 | 98.60 337 | 98.43 218 | 99.82 18 | 99.53 87 | 98.19 110 | 98.63 285 | 99.80 86 | 93.22 267 | 99.44 250 | 99.22 49 | 97.50 248 | 98.77 240 |
|
Regformer-3 | | | 99.57 8 | 99.53 7 | 99.68 68 | 99.76 57 | 99.29 114 | 99.58 98 | 99.44 197 | 99.01 24 | 99.87 12 | 99.80 86 | 98.97 28 | 99.91 96 | 99.44 24 | 99.92 13 | 99.83 33 |
|
Regformer-4 | | | 99.59 3 | 99.54 6 | 99.73 61 | 99.76 57 | 99.41 102 | 99.58 98 | 99.49 136 | 99.02 21 | 99.88 6 | 99.80 86 | 99.00 25 | 99.94 58 | 99.45 22 | 99.92 13 | 99.84 22 |
|
PGM-MVS | | | 99.45 29 | 99.31 43 | 99.86 21 | 99.87 16 | 99.78 40 | 99.58 98 | 99.65 32 | 97.84 155 | 99.71 55 | 99.80 86 | 99.12 13 | 99.97 12 | 98.33 167 | 99.87 42 | 99.83 33 |
|
TransMVSNet (Re) | | | 97.15 291 | 96.58 296 | 98.86 213 | 99.12 264 | 98.85 174 | 99.49 150 | 98.91 324 | 95.48 320 | 97.16 340 | 99.80 86 | 93.38 263 | 99.11 314 | 94.16 335 | 91.73 351 | 98.62 297 |
|
K. test v3 | | | 97.10 293 | 96.79 294 | 98.01 293 | 98.72 324 | 96.33 308 | 99.87 9 | 97.05 366 | 97.59 182 | 96.16 351 | 99.80 86 | 88.71 341 | 99.04 320 | 96.69 290 | 96.55 280 | 98.65 284 |
|
DELS-MVS | | | 99.48 22 | 99.42 18 | 99.65 75 | 99.72 89 | 99.40 104 | 99.05 282 | 99.66 27 | 99.14 7 | 99.57 101 | 99.80 86 | 98.46 86 | 99.94 58 | 99.57 8 | 99.84 68 | 99.60 139 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
CSCG | | | 99.32 57 | 99.32 36 | 99.32 138 | 99.85 26 | 98.29 223 | 99.71 43 | 99.66 27 | 98.11 124 | 99.41 134 | 99.80 86 | 98.37 95 | 99.96 20 | 98.99 72 | 99.96 7 | 99.72 96 |
|
test1172 | | | 99.43 37 | 99.29 50 | 99.85 28 | 99.75 68 | 99.82 23 | 99.60 83 | 99.56 58 | 98.28 99 | 99.74 47 | 99.79 98 | 98.53 79 | 99.95 47 | 98.55 146 | 99.78 97 | 99.79 62 |
|
SR-MVS | | | 99.43 37 | 99.29 50 | 99.86 21 | 99.75 68 | 99.83 17 | 99.59 90 | 99.62 34 | 98.21 108 | 99.73 49 | 99.79 98 | 98.68 67 | 99.96 20 | 98.44 157 | 99.77 101 | 99.79 62 |
|
MP-MVS-pluss | | | 99.37 52 | 99.20 65 | 99.88 6 | 99.90 4 | 99.87 12 | 99.30 223 | 99.52 93 | 97.18 224 | 99.60 94 | 99.79 98 | 98.79 51 | 99.95 47 | 98.83 102 | 99.91 18 | 99.83 33 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
pm-mvs1 | | | 97.68 265 | 97.28 279 | 98.88 205 | 99.06 277 | 98.62 196 | 99.50 140 | 99.45 188 | 96.32 290 | 97.87 324 | 99.79 98 | 92.47 289 | 99.35 271 | 97.54 236 | 93.54 338 | 98.67 274 |
|
LFMVS | | | 97.90 227 | 97.35 270 | 99.54 96 | 99.52 159 | 99.01 148 | 99.39 195 | 98.24 353 | 97.10 234 | 99.65 79 | 99.79 98 | 84.79 362 | 99.91 96 | 99.28 43 | 98.38 208 | 99.69 108 |
|
TinyColmap | | | 97.12 292 | 96.89 292 | 97.83 305 | 99.07 274 | 95.52 326 | 98.57 344 | 98.74 338 | 97.58 184 | 97.81 327 | 99.79 98 | 88.16 349 | 99.56 236 | 95.10 322 | 97.21 268 | 98.39 331 |
|
ACMP | | 97.20 11 | 98.06 200 | 97.94 204 | 98.45 257 | 99.37 204 | 97.01 281 | 99.44 168 | 99.49 136 | 97.54 190 | 98.45 298 | 99.79 98 | 91.95 299 | 99.72 197 | 97.91 199 | 97.49 251 | 98.62 297 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
GeoE | | | 98.85 133 | 98.62 146 | 99.53 104 | 99.61 139 | 99.08 140 | 99.80 24 | 99.51 107 | 97.10 234 | 99.31 163 | 99.78 105 | 95.23 203 | 99.77 180 | 98.21 174 | 99.03 175 | 99.75 78 |
|
9.14 | | | | 99.10 74 | | 99.72 89 | | 99.40 191 | 99.51 107 | 97.53 191 | 99.64 83 | 99.78 105 | 98.84 46 | 99.91 96 | 97.63 225 | 99.82 83 | |
|
pmmvs6 | | | 96.53 302 | 96.09 305 | 97.82 307 | 98.69 328 | 95.47 327 | 99.37 203 | 99.47 166 | 93.46 347 | 97.41 333 | 99.78 105 | 87.06 356 | 99.33 274 | 96.92 280 | 92.70 348 | 98.65 284 |
|
MSLP-MVS++ | | | 99.46 27 | 99.47 14 | 99.44 126 | 99.60 143 | 99.16 128 | 99.41 183 | 99.71 13 | 98.98 34 | 99.45 122 | 99.78 105 | 99.19 9 | 99.54 239 | 99.28 43 | 99.84 68 | 99.63 133 |
|
VNet | | | 99.11 95 | 98.90 105 | 99.73 61 | 99.52 159 | 99.56 78 | 99.41 183 | 99.39 223 | 99.01 24 | 99.74 47 | 99.78 105 | 95.56 190 | 99.92 85 | 99.52 11 | 98.18 220 | 99.72 96 |
|
114514_t | | | 98.93 118 | 98.67 135 | 99.72 64 | 99.85 26 | 99.53 85 | 99.62 76 | 99.59 44 | 92.65 352 | 99.71 55 | 99.78 105 | 98.06 110 | 99.90 111 | 98.84 99 | 99.91 18 | 99.74 83 |
|
Vis-MVSNet (Re-imp) | | | 98.87 122 | 98.72 128 | 99.31 139 | 99.71 95 | 98.88 170 | 99.80 24 | 99.44 197 | 97.91 148 | 99.36 152 | 99.78 105 | 95.49 193 | 99.43 254 | 97.91 199 | 99.11 166 | 99.62 135 |
|
iter_conf_final | | | 98.71 147 | 98.61 152 | 98.99 179 | 99.49 173 | 98.96 157 | 99.63 70 | 99.41 210 | 98.19 110 | 99.39 142 | 99.77 112 | 94.82 214 | 99.38 259 | 99.30 41 | 97.52 244 | 98.64 286 |
|
UniMVSNet_ETH3D | | | 97.32 287 | 96.81 293 | 98.87 209 | 99.40 198 | 97.46 258 | 99.51 134 | 99.53 87 | 95.86 317 | 98.54 293 | 99.77 112 | 82.44 368 | 99.66 218 | 98.68 122 | 97.52 244 | 99.50 167 |
|
anonymousdsp | | | 98.44 165 | 98.28 173 | 98.94 188 | 98.50 342 | 98.96 157 | 99.77 32 | 99.50 128 | 97.07 236 | 98.87 249 | 99.77 112 | 94.76 222 | 99.28 284 | 98.66 125 | 97.60 237 | 98.57 312 |
|
iter_conf05 | | | 98.55 161 | 98.44 161 | 98.87 209 | 99.34 211 | 98.60 199 | 99.55 119 | 99.42 207 | 98.21 108 | 99.37 148 | 99.77 112 | 93.55 261 | 99.38 259 | 99.30 41 | 97.48 252 | 98.63 294 |
|
CDS-MVSNet | | | 99.09 99 | 99.03 84 | 99.25 152 | 99.42 190 | 98.73 186 | 99.45 164 | 99.46 176 | 98.11 124 | 99.46 121 | 99.77 112 | 98.01 111 | 99.37 264 | 98.70 117 | 98.92 184 | 99.66 118 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
MSDG | | | 98.98 114 | 98.80 121 | 99.53 104 | 99.76 57 | 99.19 123 | 98.75 330 | 99.55 67 | 97.25 218 | 99.47 119 | 99.77 112 | 97.82 115 | 99.87 127 | 96.93 278 | 99.90 25 | 99.54 152 |
|
CHOSEN 280x420 | | | 99.12 90 | 99.13 71 | 99.08 166 | 99.66 119 | 97.89 243 | 98.43 351 | 99.71 13 | 98.88 47 | 99.62 88 | 99.76 118 | 96.63 153 | 99.70 209 | 99.46 21 | 99.99 1 | 99.66 118 |
|
PS-MVSNAJss | | | 98.92 119 | 98.92 102 | 98.90 199 | 98.78 316 | 98.53 204 | 99.78 30 | 99.54 76 | 98.07 132 | 99.00 229 | 99.76 118 | 99.01 19 | 99.37 264 | 99.13 58 | 97.23 267 | 98.81 232 |
|
Regformer-1 | | | 99.53 12 | 99.47 14 | 99.72 64 | 99.71 95 | 99.44 98 | 99.49 150 | 99.46 176 | 98.95 40 | 99.83 20 | 99.76 118 | 99.01 19 | 99.93 73 | 99.17 54 | 99.87 42 | 99.80 56 |
|
Regformer-2 | | | 99.54 10 | 99.47 14 | 99.75 54 | 99.71 95 | 99.52 88 | 99.49 150 | 99.49 136 | 98.94 41 | 99.83 20 | 99.76 118 | 99.01 19 | 99.94 58 | 99.15 57 | 99.87 42 | 99.80 56 |
|
MVS_Test | | | 99.10 98 | 98.97 96 | 99.48 116 | 99.49 173 | 99.14 134 | 99.67 53 | 99.34 247 | 97.31 212 | 99.58 99 | 99.76 118 | 97.65 120 | 99.82 160 | 98.87 89 | 99.07 172 | 99.46 177 |
|
ETH3D-3000-0.1 | | | 99.21 72 | 99.02 87 | 99.77 50 | 99.73 84 | 99.69 52 | 99.38 200 | 99.51 107 | 97.45 198 | 99.61 90 | 99.75 123 | 98.51 82 | 99.91 96 | 97.45 246 | 99.83 77 | 99.71 103 |
|
CANet_DTU | | | 98.97 116 | 98.87 109 | 99.25 152 | 99.33 213 | 98.42 220 | 99.08 276 | 99.30 271 | 99.16 6 | 99.43 127 | 99.75 123 | 95.27 199 | 99.97 12 | 98.56 143 | 99.95 8 | 99.36 188 |
|
mPP-MVS | | | 99.44 33 | 99.30 46 | 99.86 21 | 99.88 12 | 99.79 33 | 99.69 46 | 99.48 148 | 98.12 122 | 99.50 114 | 99.75 123 | 98.78 52 | 99.97 12 | 98.57 140 | 99.89 35 | 99.83 33 |
|
HPM-MVS_fast | | | 99.51 15 | 99.40 21 | 99.85 28 | 99.91 1 | 99.79 33 | 99.76 35 | 99.56 58 | 97.72 171 | 99.76 43 | 99.75 123 | 99.13 12 | 99.92 85 | 99.07 65 | 99.92 13 | 99.85 18 |
|
HyFIR lowres test | | | 99.11 95 | 98.92 102 | 99.65 75 | 99.90 4 | 99.37 105 | 99.02 291 | 99.91 3 | 97.67 177 | 99.59 97 | 99.75 123 | 95.90 179 | 99.73 193 | 99.53 10 | 99.02 177 | 99.86 15 |
|
ITE_SJBPF | | | | | 98.08 288 | 99.29 226 | 96.37 306 | | 98.92 321 | 98.34 93 | 98.83 255 | 99.75 123 | 91.09 317 | 99.62 231 | 95.82 306 | 97.40 260 | 98.25 338 |
|
test_241102_ONE | | | | | | 99.84 33 | 99.90 2 | | 99.48 148 | 99.07 18 | 99.91 2 | 99.74 129 | 99.20 7 | 99.76 184 | | | |
|
testtj | | | 99.12 90 | 98.87 109 | 99.86 21 | 99.72 89 | 99.79 33 | 99.44 168 | 99.51 107 | 97.29 214 | 99.59 97 | 99.74 129 | 98.15 107 | 99.96 20 | 96.74 286 | 99.69 118 | 99.81 46 |
|
Anonymous202405211 | | | 98.30 178 | 97.98 198 | 99.26 151 | 99.57 149 | 98.16 228 | 99.41 183 | 98.55 349 | 96.03 315 | 99.19 194 | 99.74 129 | 91.87 300 | 99.92 85 | 99.16 56 | 98.29 214 | 99.70 105 |
|
tttt0517 | | | 98.42 167 | 98.14 179 | 99.28 149 | 99.66 119 | 98.38 221 | 99.74 40 | 96.85 367 | 97.68 175 | 99.79 30 | 99.74 129 | 91.39 313 | 99.89 119 | 98.83 102 | 99.56 135 | 99.57 148 |
|
XVS | | | 99.53 12 | 99.42 18 | 99.87 12 | 99.85 26 | 99.83 17 | 99.69 46 | 99.68 19 | 98.98 34 | 99.37 148 | 99.74 129 | 98.81 49 | 99.94 58 | 98.79 107 | 99.86 53 | 99.84 22 |
|
MP-MVS |  | | 99.33 56 | 99.15 69 | 99.87 12 | 99.88 12 | 99.82 23 | 99.66 57 | 99.46 176 | 98.09 127 | 99.48 118 | 99.74 129 | 98.29 99 | 99.96 20 | 97.93 198 | 99.87 42 | 99.82 40 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
MVS_111021_LR | | | 99.41 46 | 99.33 34 | 99.65 75 | 99.77 54 | 99.51 90 | 98.94 312 | 99.85 6 | 98.82 52 | 99.65 79 | 99.74 129 | 98.51 82 | 99.80 170 | 98.83 102 | 99.89 35 | 99.64 129 |
|
VPNet | | | 97.84 236 | 97.44 259 | 99.01 175 | 99.21 244 | 98.94 164 | 99.48 155 | 99.57 53 | 98.38 87 | 99.28 169 | 99.73 136 | 88.89 340 | 99.39 257 | 99.19 51 | 93.27 341 | 98.71 253 |
|
MVSTER | | | 98.49 162 | 98.32 170 | 99.00 177 | 99.35 207 | 99.02 146 | 99.54 123 | 99.38 229 | 97.41 205 | 99.20 191 | 99.73 136 | 93.86 256 | 99.36 268 | 98.87 89 | 97.56 241 | 98.62 297 |
|
MVS_111021_HR | | | 99.41 46 | 99.32 36 | 99.66 71 | 99.72 89 | 99.47 95 | 98.95 310 | 99.85 6 | 98.82 52 | 99.54 107 | 99.73 136 | 98.51 82 | 99.74 187 | 98.91 82 | 99.88 38 | 99.77 72 |
|
PHI-MVS | | | 99.30 59 | 99.17 68 | 99.70 67 | 99.56 153 | 99.52 88 | 99.58 98 | 99.80 8 | 97.12 230 | 99.62 88 | 99.73 136 | 98.58 75 | 99.90 111 | 98.61 132 | 99.91 18 | 99.68 112 |
|
IterMVS-SCA-FT | | | 97.82 241 | 97.75 225 | 98.06 289 | 99.57 149 | 96.36 307 | 99.02 291 | 99.49 136 | 97.18 224 | 98.71 268 | 99.72 140 | 92.72 278 | 99.14 306 | 97.44 247 | 95.86 297 | 98.67 274 |
|
diffmvs | | | 99.14 82 | 99.02 87 | 99.51 112 | 99.61 139 | 98.96 157 | 99.28 229 | 99.49 136 | 98.46 80 | 99.72 54 | 99.71 141 | 96.50 158 | 99.88 124 | 99.31 38 | 99.11 166 | 99.67 115 |
|
XVG-OURS-SEG-HR | | | 98.69 151 | 98.62 146 | 98.89 202 | 99.71 95 | 97.74 250 | 99.12 267 | 99.54 76 | 98.44 84 | 99.42 130 | 99.71 141 | 94.20 244 | 99.92 85 | 98.54 148 | 98.90 186 | 99.00 218 |
|
EPNet_dtu | | | 98.03 208 | 97.96 200 | 98.23 279 | 98.27 346 | 95.54 325 | 99.23 248 | 98.75 335 | 99.02 21 | 97.82 326 | 99.71 141 | 96.11 169 | 99.48 241 | 93.04 346 | 99.65 128 | 99.69 108 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CNVR-MVS | | | 99.42 42 | 99.30 46 | 99.78 48 | 99.62 135 | 99.71 49 | 99.26 243 | 99.52 93 | 98.82 52 | 99.39 142 | 99.71 141 | 98.96 29 | 99.85 136 | 98.59 137 | 99.80 90 | 99.77 72 |
|
PC_three_1452 | | | | | | | | | | 98.18 114 | 99.84 15 | 99.70 145 | 99.31 3 | 98.52 347 | 98.30 171 | 99.80 90 | 99.81 46 |
|
OPU-MVS | | | | | 99.64 80 | 99.56 153 | 99.72 47 | 99.60 83 | | | | 99.70 145 | 99.27 5 | 99.42 255 | 98.24 173 | 99.80 90 | 99.79 62 |
|
CS-MVS | | | 99.50 16 | 99.48 12 | 99.54 96 | 99.76 57 | 99.42 100 | 99.90 1 | 99.55 67 | 98.56 71 | 99.78 35 | 99.70 145 | 98.65 72 | 99.79 173 | 99.65 4 | 99.78 97 | 99.41 184 |
|
tfpnnormal | | | 97.84 236 | 97.47 251 | 98.98 181 | 99.20 246 | 99.22 122 | 99.64 68 | 99.61 36 | 96.32 290 | 98.27 310 | 99.70 145 | 93.35 264 | 99.44 250 | 95.69 310 | 95.40 308 | 98.27 336 |
|
v7n | | | 97.87 230 | 97.52 245 | 98.92 192 | 98.76 320 | 98.58 200 | 99.84 14 | 99.46 176 | 96.20 300 | 98.91 242 | 99.70 145 | 94.89 212 | 99.44 250 | 96.03 303 | 93.89 334 | 98.75 244 |
|
testdata | | | | | 99.54 96 | 99.75 68 | 98.95 161 | | 99.51 107 | 97.07 236 | 99.43 127 | 99.70 145 | 98.87 43 | 99.94 58 | 97.76 212 | 99.64 129 | 99.72 96 |
|
IterMVS | | | 97.83 238 | 97.77 221 | 98.02 292 | 99.58 147 | 96.27 310 | 99.02 291 | 99.48 148 | 97.22 222 | 98.71 268 | 99.70 145 | 92.75 275 | 99.13 309 | 97.46 244 | 96.00 291 | 98.67 274 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
PCF-MVS | | 97.08 14 | 97.66 269 | 97.06 289 | 99.47 119 | 99.61 139 | 99.09 139 | 98.04 364 | 99.25 283 | 91.24 357 | 98.51 294 | 99.70 145 | 94.55 233 | 99.91 96 | 92.76 350 | 99.85 60 | 99.42 182 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
LTVRE_ROB | | 97.16 12 | 98.02 210 | 97.90 207 | 98.40 264 | 99.23 239 | 96.80 293 | 99.70 44 | 99.60 41 | 97.12 230 | 98.18 313 | 99.70 145 | 91.73 305 | 99.72 197 | 98.39 159 | 97.45 254 | 98.68 267 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
test_part1 | | | 97.75 252 | 97.24 283 | 99.29 146 | 99.59 145 | 99.63 65 | 99.65 65 | 99.49 136 | 96.17 303 | 98.44 299 | 99.69 154 | 89.80 332 | 99.47 242 | 98.68 122 | 93.66 336 | 98.78 235 |
|
CS-MVS-test | | | 99.49 17 | 99.48 12 | 99.54 96 | 99.78 48 | 99.30 112 | 99.89 2 | 99.58 50 | 98.56 71 | 99.73 49 | 99.69 154 | 98.55 78 | 99.82 160 | 99.69 1 | 99.85 60 | 99.48 169 |
|
HFP-MVS | | | 99.49 17 | 99.37 25 | 99.86 21 | 99.87 16 | 99.80 29 | 99.66 57 | 99.67 22 | 98.15 116 | 99.68 62 | 99.69 154 | 99.06 16 | 99.96 20 | 98.69 120 | 99.87 42 | 99.84 22 |
|
#test# | | | 99.43 37 | 99.29 50 | 99.86 21 | 99.87 16 | 99.80 29 | 99.55 119 | 99.67 22 | 97.83 156 | 99.68 62 | 99.69 154 | 99.06 16 | 99.96 20 | 98.39 159 | 99.87 42 | 99.84 22 |
|
旧先验1 | | | | | | 99.74 76 | 99.59 73 | | 99.54 76 | | | 99.69 154 | 98.47 85 | | | 99.68 123 | 99.73 90 |
|
ACMMPR | | | 99.49 17 | 99.36 27 | 99.86 21 | 99.87 16 | 99.79 33 | 99.66 57 | 99.67 22 | 98.15 116 | 99.67 68 | 99.69 154 | 98.95 32 | 99.96 20 | 98.69 120 | 99.87 42 | 99.84 22 |
|
CPTT-MVS | | | 99.11 95 | 98.90 105 | 99.74 59 | 99.80 45 | 99.46 96 | 99.59 90 | 99.49 136 | 97.03 241 | 99.63 84 | 99.69 154 | 97.27 131 | 99.96 20 | 97.82 207 | 99.84 68 | 99.81 46 |
|
DROMVSNet | | | 99.44 33 | 99.39 22 | 99.58 90 | 99.56 153 | 99.49 91 | 99.88 4 | 99.58 50 | 98.38 87 | 99.73 49 | 99.69 154 | 98.20 103 | 99.70 209 | 99.64 5 | 99.82 83 | 99.54 152 |
|
GST-MVS | | | 99.40 49 | 99.24 61 | 99.85 28 | 99.86 22 | 99.79 33 | 99.60 83 | 99.67 22 | 97.97 143 | 99.63 84 | 99.68 162 | 98.52 81 | 99.95 47 | 98.38 161 | 99.86 53 | 99.81 46 |
|
Anonymous20231211 | | | 97.88 228 | 97.54 244 | 98.90 199 | 99.71 95 | 98.53 204 | 99.48 155 | 99.57 53 | 94.16 339 | 98.81 257 | 99.68 162 | 93.23 265 | 99.42 255 | 98.84 99 | 94.42 326 | 98.76 242 |
|
region2R | | | 99.48 22 | 99.35 30 | 99.87 12 | 99.88 12 | 99.80 29 | 99.65 65 | 99.66 27 | 98.13 120 | 99.66 73 | 99.68 162 | 98.96 29 | 99.96 20 | 98.62 129 | 99.87 42 | 99.84 22 |
|
PS-CasMVS | | | 97.93 222 | 97.59 240 | 98.95 186 | 98.99 287 | 99.06 143 | 99.68 51 | 99.52 93 | 97.13 228 | 98.31 307 | 99.68 162 | 92.44 293 | 99.05 319 | 98.51 149 | 94.08 332 | 98.75 244 |
|
HY-MVS | | 97.30 7 | 98.85 133 | 98.64 140 | 99.47 119 | 99.42 190 | 99.08 140 | 99.62 76 | 99.36 238 | 97.39 207 | 99.28 169 | 99.68 162 | 96.44 161 | 99.92 85 | 98.37 163 | 98.22 215 | 99.40 186 |
|
DP-MVS Recon | | | 99.12 90 | 98.95 100 | 99.65 75 | 99.74 76 | 99.70 51 | 99.27 234 | 99.57 53 | 96.40 288 | 99.42 130 | 99.68 162 | 98.75 60 | 99.80 170 | 97.98 194 | 99.72 112 | 99.44 180 |
|
ETH3D cwj APD-0.16 | | | 99.06 103 | 98.84 116 | 99.72 64 | 99.51 161 | 99.60 70 | 99.23 248 | 99.44 197 | 97.04 239 | 99.39 142 | 99.67 168 | 98.30 98 | 99.92 85 | 97.27 253 | 99.69 118 | 99.64 129 |
|
ADS-MVSNet2 | | | 98.02 210 | 98.07 190 | 97.87 302 | 99.33 213 | 95.19 334 | 99.23 248 | 99.08 305 | 96.24 297 | 99.10 209 | 99.67 168 | 94.11 248 | 98.93 339 | 96.81 283 | 99.05 173 | 99.48 169 |
|
ADS-MVSNet | | | 98.20 185 | 98.08 187 | 98.56 243 | 99.33 213 | 96.48 303 | 99.23 248 | 99.15 297 | 96.24 297 | 99.10 209 | 99.67 168 | 94.11 248 | 99.71 203 | 96.81 283 | 99.05 173 | 99.48 169 |
|
DTE-MVSNet | | | 97.51 278 | 97.19 285 | 98.46 256 | 98.63 333 | 98.13 231 | 99.84 14 | 99.48 148 | 96.68 263 | 97.97 322 | 99.67 168 | 92.92 271 | 98.56 346 | 96.88 282 | 92.60 349 | 98.70 258 |
|
Baseline_NR-MVSNet | | | 97.76 248 | 97.45 254 | 98.68 233 | 99.09 271 | 98.29 223 | 99.41 183 | 98.85 330 | 95.65 319 | 98.63 285 | 99.67 168 | 94.82 214 | 99.10 316 | 98.07 191 | 92.89 345 | 98.64 286 |
|
CMPMVS |  | 69.68 23 | 94.13 329 | 94.90 321 | 91.84 350 | 97.24 361 | 80.01 375 | 98.52 347 | 99.48 148 | 89.01 361 | 91.99 365 | 99.67 168 | 85.67 360 | 99.13 309 | 95.44 315 | 97.03 272 | 96.39 366 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
原ACMM1 | | | | | 99.65 75 | 99.73 84 | 99.33 107 | | 99.47 166 | 97.46 195 | 99.12 204 | 99.66 174 | 98.67 70 | 99.91 96 | 97.70 221 | 99.69 118 | 99.71 103 |
|
thisisatest0530 | | | 98.35 174 | 98.03 193 | 99.31 139 | 99.63 129 | 98.56 201 | 99.54 123 | 96.75 369 | 97.53 191 | 99.73 49 | 99.65 175 | 91.25 316 | 99.89 119 | 98.62 129 | 99.56 135 | 99.48 169 |
|
test222 | | | | | | 99.75 68 | 99.49 91 | 98.91 315 | 99.49 136 | 96.42 286 | 99.34 159 | 99.65 175 | 98.28 100 | | | 99.69 118 | 99.72 96 |
|
1121 | | | 99.09 99 | 98.87 109 | 99.75 54 | 99.74 76 | 99.60 70 | 99.27 234 | 99.48 148 | 96.82 257 | 99.25 179 | 99.65 175 | 98.38 93 | 99.93 73 | 97.53 237 | 99.67 125 | 99.73 90 |
|
MVSFormer | | | 99.17 78 | 99.12 72 | 99.29 146 | 99.51 161 | 98.94 164 | 99.88 4 | 99.46 176 | 97.55 187 | 99.80 28 | 99.65 175 | 97.39 124 | 99.28 284 | 99.03 67 | 99.85 60 | 99.65 122 |
|
jason | | | 99.13 84 | 99.03 84 | 99.45 122 | 99.46 183 | 98.87 171 | 99.12 267 | 99.26 281 | 98.03 140 | 99.79 30 | 99.65 175 | 97.02 139 | 99.85 136 | 99.02 70 | 99.90 25 | 99.65 122 |
jason: jason. |
BH-RMVSNet | | | 98.41 169 | 98.08 187 | 99.40 128 | 99.41 193 | 98.83 178 | 99.30 223 | 98.77 334 | 97.70 173 | 98.94 238 | 99.65 175 | 92.91 273 | 99.74 187 | 96.52 294 | 99.55 137 | 99.64 129 |
|
sss | | | 99.17 78 | 99.05 79 | 99.53 104 | 99.62 135 | 98.97 153 | 99.36 207 | 99.62 34 | 97.83 156 | 99.67 68 | 99.65 175 | 97.37 128 | 99.95 47 | 99.19 51 | 99.19 160 | 99.68 112 |
|
h-mvs33 | | | 97.70 262 | 97.28 279 | 98.97 183 | 99.70 102 | 97.27 263 | 99.36 207 | 99.45 188 | 98.94 41 | 99.66 73 | 99.64 182 | 94.93 208 | 99.99 1 | 99.48 18 | 84.36 363 | 99.65 122 |
|
ZNCC-MVS | | | 99.47 25 | 99.33 34 | 99.87 12 | 99.87 16 | 99.81 27 | 99.64 68 | 99.67 22 | 98.08 131 | 99.55 106 | 99.64 182 | 98.91 40 | 99.96 20 | 98.72 115 | 99.90 25 | 99.82 40 |
|
æ–°å‡ ä½•1 | | | | | 99.75 54 | 99.75 68 | 99.59 73 | | 99.54 76 | 96.76 258 | 99.29 168 | 99.64 182 | 98.43 88 | 99.94 58 | 96.92 280 | 99.66 126 | 99.72 96 |
|
PEN-MVS | | | 97.76 248 | 97.44 259 | 98.72 230 | 98.77 319 | 98.54 203 | 99.78 30 | 99.51 107 | 97.06 238 | 98.29 309 | 99.64 182 | 92.63 284 | 98.89 342 | 98.09 184 | 93.16 342 | 98.72 251 |
|
CP-MVSNet | | | 98.09 197 | 97.78 219 | 99.01 175 | 98.97 292 | 99.24 120 | 99.67 53 | 99.46 176 | 97.25 218 | 98.48 297 | 99.64 182 | 93.79 257 | 99.06 318 | 98.63 128 | 94.10 331 | 98.74 247 |
|
LF4IMVS | | | 97.52 276 | 97.46 253 | 97.70 313 | 98.98 290 | 95.55 323 | 99.29 227 | 98.82 333 | 98.07 132 | 98.66 277 | 99.64 182 | 89.97 330 | 99.61 232 | 97.01 270 | 96.68 275 | 97.94 354 |
|
HPM-MVS |  | | 99.42 42 | 99.28 54 | 99.83 36 | 99.90 4 | 99.72 47 | 99.81 20 | 99.54 76 | 97.59 182 | 99.68 62 | 99.63 188 | 98.91 40 | 99.94 58 | 98.58 138 | 99.91 18 | 99.84 22 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
NCCC | | | 99.34 55 | 99.19 66 | 99.79 46 | 99.61 139 | 99.65 62 | 99.30 223 | 99.48 148 | 98.86 48 | 99.21 188 | 99.63 188 | 98.72 64 | 99.90 111 | 98.25 172 | 99.63 131 | 99.80 56 |
|
CP-MVS | | | 99.45 29 | 99.32 36 | 99.85 28 | 99.83 37 | 99.75 43 | 99.69 46 | 99.52 93 | 98.07 132 | 99.53 109 | 99.63 188 | 98.93 39 | 99.97 12 | 98.74 111 | 99.91 18 | 99.83 33 |
|
AdaColmap |  | | 99.01 112 | 98.80 121 | 99.66 71 | 99.56 153 | 99.54 82 | 99.18 257 | 99.70 15 | 98.18 114 | 99.35 155 | 99.63 188 | 96.32 164 | 99.90 111 | 97.48 241 | 99.77 101 | 99.55 150 |
|
TAPA-MVS | | 97.07 15 | 97.74 255 | 97.34 273 | 98.94 188 | 99.70 102 | 97.53 256 | 99.25 245 | 99.51 107 | 91.90 354 | 99.30 165 | 99.63 188 | 98.78 52 | 99.64 225 | 88.09 366 | 99.87 42 | 99.65 122 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
ppachtmachnet_test | | | 97.49 282 | 97.45 254 | 97.61 315 | 98.62 334 | 95.24 332 | 98.80 325 | 99.46 176 | 96.11 310 | 98.22 311 | 99.62 193 | 96.45 160 | 98.97 336 | 93.77 337 | 95.97 295 | 98.61 306 |
|
MCST-MVS | | | 99.43 37 | 99.30 46 | 99.82 38 | 99.79 46 | 99.74 46 | 99.29 227 | 99.40 219 | 98.79 57 | 99.52 111 | 99.62 193 | 98.91 40 | 99.90 111 | 98.64 127 | 99.75 105 | 99.82 40 |
|
WTY-MVS | | | 99.06 103 | 98.88 108 | 99.61 85 | 99.62 135 | 99.16 128 | 99.37 203 | 99.56 58 | 98.04 138 | 99.53 109 | 99.62 193 | 96.84 145 | 99.94 58 | 98.85 96 | 98.49 206 | 99.72 96 |
|
MDTV_nov1_ep13 | | | | 98.32 170 | | 99.11 266 | 94.44 346 | 99.27 234 | 98.74 338 | 97.51 193 | 99.40 139 | 99.62 193 | 94.78 218 | 99.76 184 | 97.59 228 | 98.81 192 | |
|
CANet | | | 99.25 69 | 99.14 70 | 99.59 87 | 99.41 193 | 99.16 128 | 99.35 213 | 99.57 53 | 98.82 52 | 99.51 113 | 99.61 197 | 96.46 159 | 99.95 47 | 99.59 6 | 99.98 2 | 99.65 122 |
|
HQP_MVS | | | 98.27 181 | 98.22 176 | 98.44 260 | 99.29 226 | 96.97 285 | 99.39 195 | 99.47 166 | 98.97 37 | 99.11 206 | 99.61 197 | 92.71 280 | 99.69 213 | 97.78 210 | 97.63 234 | 98.67 274 |
|
plane_prior4 | | | | | | | | | | | | 99.61 197 | | | | | |
|
ETH3 D test6400 | | | 98.70 148 | 98.35 167 | 99.73 61 | 99.69 105 | 99.60 70 | 99.16 259 | 99.45 188 | 95.42 321 | 99.27 172 | 99.60 200 | 97.39 124 | 99.91 96 | 95.36 319 | 99.83 77 | 99.70 105 |
|
baseline1 | | | 98.31 176 | 97.95 202 | 99.38 131 | 99.50 171 | 98.74 185 | 99.59 90 | 98.93 319 | 98.41 85 | 99.14 201 | 99.60 200 | 94.59 230 | 99.79 173 | 98.48 151 | 93.29 340 | 99.61 137 |
|
TranMVSNet+NR-MVSNet | | | 97.93 222 | 97.66 233 | 98.76 228 | 98.78 316 | 98.62 196 | 99.65 65 | 99.49 136 | 97.76 166 | 98.49 296 | 99.60 200 | 94.23 243 | 98.97 336 | 98.00 193 | 92.90 344 | 98.70 258 |
|
tpmrst | | | 98.33 175 | 98.48 160 | 97.90 301 | 99.16 259 | 94.78 341 | 99.31 221 | 99.11 301 | 97.27 216 | 99.45 122 | 99.59 203 | 95.33 197 | 99.84 142 | 98.48 151 | 98.61 196 | 99.09 206 |
|
IterMVS-LS | | | 98.46 164 | 98.42 163 | 98.58 240 | 99.59 145 | 98.00 235 | 99.37 203 | 99.43 205 | 96.94 249 | 99.07 215 | 99.59 203 | 97.87 113 | 99.03 322 | 98.32 169 | 95.62 303 | 98.71 253 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
F-COLMAP | | | 99.19 74 | 99.04 82 | 99.64 80 | 99.78 48 | 99.27 117 | 99.42 181 | 99.54 76 | 97.29 214 | 99.41 134 | 99.59 203 | 98.42 91 | 99.93 73 | 98.19 176 | 99.69 118 | 99.73 90 |
|
pmmvs4 | | | 98.13 193 | 97.90 207 | 98.81 222 | 98.61 336 | 98.87 171 | 98.99 298 | 99.21 290 | 96.44 284 | 99.06 219 | 99.58 206 | 95.90 179 | 99.11 314 | 97.18 263 | 96.11 289 | 98.46 324 |
|
1112_ss | | | 98.98 114 | 98.77 124 | 99.59 87 | 99.68 109 | 99.02 146 | 99.25 245 | 99.48 148 | 97.23 221 | 99.13 202 | 99.58 206 | 96.93 144 | 99.90 111 | 98.87 89 | 98.78 193 | 99.84 22 |
|
ab-mvs-re | | | 8.30 349 | 11.06 352 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 99.58 206 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
PatchmatchNet |  | | 98.31 176 | 98.36 165 | 98.19 281 | 99.16 259 | 95.32 331 | 99.27 234 | 98.92 321 | 97.37 208 | 99.37 148 | 99.58 206 | 94.90 211 | 99.70 209 | 97.43 248 | 99.21 158 | 99.54 152 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
SCA | | | 98.19 186 | 98.16 177 | 98.27 278 | 99.30 222 | 95.55 323 | 99.07 277 | 98.97 315 | 97.57 185 | 99.43 127 | 99.57 210 | 92.72 278 | 99.74 187 | 97.58 229 | 99.20 159 | 99.52 158 |
|
Patchmatch-test | | | 97.93 222 | 97.65 234 | 98.77 227 | 99.18 251 | 97.07 274 | 99.03 288 | 99.14 299 | 96.16 305 | 98.74 265 | 99.57 210 | 94.56 232 | 99.72 197 | 93.36 342 | 99.11 166 | 99.52 158 |
|
PVSNet | | 96.02 17 | 98.85 133 | 98.84 116 | 98.89 202 | 99.73 84 | 97.28 262 | 98.32 357 | 99.60 41 | 97.86 151 | 99.50 114 | 99.57 210 | 96.75 150 | 99.86 130 | 98.56 143 | 99.70 117 | 99.54 152 |
|
cdsmvs_eth3d_5k | | | 24.64 348 | 32.85 351 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 99.51 107 | 0.00 382 | 0.00 383 | 99.56 213 | 96.58 155 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
1314 | | | 98.68 153 | 98.54 157 | 99.11 165 | 98.89 300 | 98.65 193 | 99.27 234 | 99.49 136 | 96.89 251 | 97.99 321 | 99.56 213 | 97.72 119 | 99.83 153 | 97.74 215 | 99.27 155 | 98.84 231 |
|
lupinMVS | | | 99.13 84 | 99.01 91 | 99.46 121 | 99.51 161 | 98.94 164 | 99.05 282 | 99.16 296 | 97.86 151 | 99.80 28 | 99.56 213 | 97.39 124 | 99.86 130 | 98.94 77 | 99.85 60 | 99.58 147 |
|
miper_lstm_enhance | | | 98.00 215 | 97.91 206 | 98.28 277 | 99.34 211 | 97.43 259 | 98.88 317 | 99.36 238 | 96.48 281 | 98.80 259 | 99.55 216 | 95.98 172 | 98.91 340 | 97.27 253 | 95.50 307 | 98.51 316 |
|
DPM-MVS | | | 98.95 117 | 98.71 130 | 99.66 71 | 99.63 129 | 99.55 80 | 98.64 340 | 99.10 302 | 97.93 146 | 99.42 130 | 99.55 216 | 98.67 70 | 99.80 170 | 95.80 308 | 99.68 123 | 99.61 137 |
|
CDPH-MVS | | | 99.13 84 | 98.91 104 | 99.80 43 | 99.75 68 | 99.71 49 | 99.15 263 | 99.41 210 | 96.60 272 | 99.60 94 | 99.55 216 | 98.83 47 | 99.90 111 | 97.48 241 | 99.83 77 | 99.78 70 |
|
dp | | | 97.75 252 | 97.80 215 | 97.59 316 | 99.10 269 | 93.71 355 | 99.32 219 | 98.88 328 | 96.48 281 | 99.08 214 | 99.55 216 | 92.67 283 | 99.82 160 | 96.52 294 | 98.58 199 | 99.24 196 |
|
CLD-MVS | | | 98.16 190 | 98.10 183 | 98.33 269 | 99.29 226 | 96.82 292 | 98.75 330 | 99.44 197 | 97.83 156 | 99.13 202 | 99.55 216 | 92.92 271 | 99.67 215 | 98.32 169 | 97.69 233 | 98.48 318 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
ZD-MVS | | | | | | 99.71 95 | 99.79 33 | | 99.61 36 | 96.84 254 | 99.56 102 | 99.54 221 | 98.58 75 | 99.96 20 | 96.93 278 | 99.75 105 | |
|
cl____ | | | 98.01 213 | 97.84 214 | 98.55 245 | 99.25 237 | 97.97 237 | 98.71 334 | 99.34 247 | 96.47 283 | 98.59 291 | 99.54 221 | 95.65 189 | 99.21 301 | 97.21 257 | 95.77 298 | 98.46 324 |
|
DIV-MVS_self_test | | | 98.01 213 | 97.85 213 | 98.48 251 | 99.24 238 | 97.95 241 | 98.71 334 | 99.35 243 | 96.50 276 | 98.60 290 | 99.54 221 | 95.72 186 | 99.03 322 | 97.21 257 | 95.77 298 | 98.46 324 |
|
MVS | | | 97.28 288 | 96.55 297 | 99.48 116 | 98.78 316 | 98.95 161 | 99.27 234 | 99.39 223 | 83.53 367 | 98.08 316 | 99.54 221 | 96.97 142 | 99.87 127 | 94.23 333 | 99.16 161 | 99.63 133 |
|
pmmvs5 | | | 97.52 276 | 97.30 278 | 98.16 283 | 98.57 339 | 96.73 294 | 99.27 234 | 98.90 326 | 96.14 308 | 98.37 304 | 99.53 225 | 91.54 312 | 99.14 306 | 97.51 239 | 95.87 296 | 98.63 294 |
|
HPM-MVS++ |  | | 99.39 50 | 99.23 63 | 99.87 12 | 99.75 68 | 99.84 16 | 99.43 174 | 99.51 107 | 98.68 65 | 99.27 172 | 99.53 225 | 98.64 73 | 99.96 20 | 98.44 157 | 99.80 90 | 99.79 62 |
|
PatchMatch-RL | | | 98.84 136 | 98.62 146 | 99.52 110 | 99.71 95 | 99.28 115 | 99.06 280 | 99.77 9 | 97.74 170 | 99.50 114 | 99.53 225 | 95.41 194 | 99.84 142 | 97.17 264 | 99.64 129 | 99.44 180 |
|
eth_miper_zixun_eth | | | 98.05 205 | 97.96 200 | 98.33 269 | 99.26 233 | 97.38 260 | 98.56 346 | 99.31 267 | 96.65 266 | 98.88 247 | 99.52 228 | 96.58 155 | 99.12 313 | 97.39 250 | 95.53 306 | 98.47 320 |
|
test_prior3 | | | 99.21 72 | 99.05 79 | 99.68 68 | 99.67 110 | 99.48 93 | 98.96 306 | 99.56 58 | 98.34 93 | 99.01 224 | 99.52 228 | 98.68 67 | 99.83 153 | 97.96 195 | 99.74 108 | 99.74 83 |
|
test_prior2 | | | | | | | | 98.96 306 | | 98.34 93 | 99.01 224 | 99.52 228 | 98.68 67 | | 97.96 195 | 99.74 108 | |
|
test_0402 | | | 96.64 300 | 96.24 302 | 97.85 303 | 98.85 309 | 96.43 305 | 99.44 168 | 99.26 281 | 93.52 345 | 96.98 344 | 99.52 228 | 88.52 345 | 99.20 303 | 92.58 352 | 97.50 248 | 97.93 355 |
|
test_yl | | | 98.86 125 | 98.63 141 | 99.54 96 | 99.49 173 | 99.18 125 | 99.50 140 | 99.07 307 | 98.22 106 | 99.61 90 | 99.51 232 | 95.37 195 | 99.84 142 | 98.60 135 | 98.33 209 | 99.59 143 |
|
DCV-MVSNet | | | 98.86 125 | 98.63 141 | 99.54 96 | 99.49 173 | 99.18 125 | 99.50 140 | 99.07 307 | 98.22 106 | 99.61 90 | 99.51 232 | 95.37 195 | 99.84 142 | 98.60 135 | 98.33 209 | 99.59 143 |
|
v148 | | | 97.79 246 | 97.55 241 | 98.50 248 | 98.74 321 | 97.72 252 | 99.54 123 | 99.33 254 | 96.26 295 | 98.90 244 | 99.51 232 | 94.68 226 | 99.14 306 | 97.83 206 | 93.15 343 | 98.63 294 |
|
DU-MVS | | | 98.08 199 | 97.79 216 | 98.96 184 | 98.87 305 | 98.98 150 | 99.41 183 | 99.45 188 | 97.87 150 | 98.71 268 | 99.50 235 | 94.82 214 | 99.22 296 | 98.57 140 | 92.87 346 | 98.68 267 |
|
NR-MVSNet | | | 97.97 220 | 97.61 238 | 99.02 174 | 98.87 305 | 99.26 118 | 99.47 160 | 99.42 207 | 97.63 180 | 97.08 342 | 99.50 235 | 95.07 206 | 99.13 309 | 97.86 203 | 93.59 337 | 98.68 267 |
|
XVG-ACMP-BASELINE | | | 97.83 238 | 97.71 229 | 98.20 280 | 99.11 266 | 96.33 308 | 99.41 183 | 99.52 93 | 98.06 136 | 99.05 220 | 99.50 235 | 89.64 335 | 99.73 193 | 97.73 216 | 97.38 263 | 98.53 314 |
|
MSP-MVS | | | 99.42 42 | 99.27 56 | 99.88 6 | 99.89 9 | 99.80 29 | 99.67 53 | 99.50 128 | 98.70 63 | 99.77 38 | 99.49 238 | 98.21 102 | 99.95 47 | 98.46 155 | 99.77 101 | 99.88 8 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
TEST9 | | | | | | 99.67 110 | 99.65 62 | 99.05 282 | 99.41 210 | 96.22 299 | 98.95 235 | 99.49 238 | 98.77 55 | 99.91 96 | | | |
|
train_agg | | | 99.02 109 | 98.77 124 | 99.77 50 | 99.67 110 | 99.65 62 | 99.05 282 | 99.41 210 | 96.28 292 | 98.95 235 | 99.49 238 | 98.76 57 | 99.91 96 | 97.63 225 | 99.72 112 | 99.75 78 |
|
agg_prior1 | | | 99.01 112 | 98.76 126 | 99.76 53 | 99.67 110 | 99.62 66 | 98.99 298 | 99.40 219 | 96.26 295 | 98.87 249 | 99.49 238 | 98.77 55 | 99.91 96 | 97.69 222 | 99.72 112 | 99.75 78 |
|
PVSNet_Blended | | | 99.08 101 | 98.97 96 | 99.42 127 | 99.76 57 | 98.79 182 | 98.78 327 | 99.91 3 | 96.74 259 | 99.67 68 | 99.49 238 | 97.53 121 | 99.88 124 | 98.98 73 | 99.85 60 | 99.60 139 |
|
CNLPA | | | 99.14 82 | 98.99 92 | 99.59 87 | 99.58 147 | 99.41 102 | 99.16 259 | 99.44 197 | 98.45 81 | 99.19 194 | 99.49 238 | 98.08 109 | 99.89 119 | 97.73 216 | 99.75 105 | 99.48 169 |
|
test_8 | | | | | | 99.67 110 | 99.61 68 | 99.03 288 | 99.41 210 | 96.28 292 | 98.93 240 | 99.48 244 | 98.76 57 | 99.91 96 | | | |
|
EPMVS | | | 97.82 241 | 97.65 234 | 98.35 268 | 98.88 301 | 95.98 315 | 99.49 150 | 94.71 377 | 97.57 185 | 99.26 177 | 99.48 244 | 92.46 292 | 99.71 203 | 97.87 202 | 99.08 171 | 99.35 189 |
|
PLC |  | 97.94 4 | 99.02 109 | 98.85 115 | 99.53 104 | 99.66 119 | 99.01 148 | 99.24 247 | 99.52 93 | 96.85 253 | 99.27 172 | 99.48 244 | 98.25 101 | 99.91 96 | 97.76 212 | 99.62 132 | 99.65 122 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
xiu_mvs_v1_base_debu | | | 99.29 61 | 99.27 56 | 99.34 133 | 99.63 129 | 98.97 153 | 99.12 267 | 99.51 107 | 98.86 48 | 99.84 15 | 99.47 247 | 98.18 104 | 99.99 1 | 99.50 13 | 99.31 152 | 99.08 207 |
|
xiu_mvs_v1_base | | | 99.29 61 | 99.27 56 | 99.34 133 | 99.63 129 | 98.97 153 | 99.12 267 | 99.51 107 | 98.86 48 | 99.84 15 | 99.47 247 | 98.18 104 | 99.99 1 | 99.50 13 | 99.31 152 | 99.08 207 |
|
xiu_mvs_v1_base_debi | | | 99.29 61 | 99.27 56 | 99.34 133 | 99.63 129 | 98.97 153 | 99.12 267 | 99.51 107 | 98.86 48 | 99.84 15 | 99.47 247 | 98.18 104 | 99.99 1 | 99.50 13 | 99.31 152 | 99.08 207 |
|
v1921920 | | | 97.80 245 | 97.45 254 | 98.84 217 | 98.80 312 | 98.53 204 | 99.52 129 | 99.34 247 | 96.15 307 | 99.24 180 | 99.47 247 | 93.98 252 | 99.29 283 | 95.40 317 | 95.13 314 | 98.69 262 |
|
UniMVSNet_NR-MVSNet | | | 98.22 182 | 97.97 199 | 98.96 184 | 98.92 296 | 98.98 150 | 99.48 155 | 99.53 87 | 97.76 166 | 98.71 268 | 99.46 251 | 96.43 162 | 99.22 296 | 98.57 140 | 92.87 346 | 98.69 262 |
|
testgi | | | 97.65 270 | 97.50 248 | 98.13 287 | 99.36 206 | 96.45 304 | 99.42 181 | 99.48 148 | 97.76 166 | 97.87 324 | 99.45 252 | 91.09 317 | 98.81 343 | 94.53 329 | 98.52 204 | 99.13 201 |
|
EIA-MVS | | | 99.18 76 | 99.09 76 | 99.45 122 | 99.49 173 | 99.18 125 | 99.67 53 | 99.53 87 | 97.66 178 | 99.40 139 | 99.44 253 | 98.10 108 | 99.81 165 | 98.94 77 | 99.62 132 | 99.35 189 |
|
tpm2 | | | 97.44 284 | 97.34 273 | 97.74 311 | 99.15 262 | 94.36 348 | 99.45 164 | 98.94 318 | 93.45 348 | 98.90 244 | 99.44 253 | 91.35 314 | 99.59 234 | 97.31 251 | 98.07 226 | 99.29 194 |
|
thisisatest0515 | | | 98.14 192 | 97.79 216 | 99.19 158 | 99.50 171 | 98.50 211 | 98.61 341 | 96.82 368 | 96.95 247 | 99.54 107 | 99.43 255 | 91.66 309 | 99.86 130 | 98.08 188 | 99.51 139 | 99.22 197 |
|
mvs-test1 | | | 98.86 125 | 98.84 116 | 98.89 202 | 99.33 213 | 97.77 249 | 99.44 168 | 99.30 271 | 98.47 78 | 99.10 209 | 99.43 255 | 96.78 147 | 99.95 47 | 98.73 113 | 99.02 177 | 98.96 224 |
|
WR-MVS | | | 98.06 200 | 97.73 227 | 99.06 169 | 98.86 308 | 99.25 119 | 99.19 256 | 99.35 243 | 97.30 213 | 98.66 277 | 99.43 255 | 93.94 253 | 99.21 301 | 98.58 138 | 94.28 328 | 98.71 253 |
|
hse-mvs2 | | | 97.50 279 | 97.14 286 | 98.59 237 | 99.49 173 | 97.05 276 | 99.28 229 | 99.22 287 | 98.94 41 | 99.66 73 | 99.42 258 | 94.93 208 | 99.65 222 | 99.48 18 | 83.80 365 | 99.08 207 |
|
v8 | | | 97.95 221 | 97.63 237 | 98.93 190 | 98.95 294 | 98.81 181 | 99.80 24 | 99.41 210 | 96.03 315 | 99.10 209 | 99.42 258 | 94.92 210 | 99.30 282 | 96.94 277 | 94.08 332 | 98.66 282 |
|
tpmvs | | | 97.98 217 | 98.02 195 | 97.84 304 | 99.04 281 | 94.73 342 | 99.31 221 | 99.20 291 | 96.10 314 | 98.76 264 | 99.42 258 | 94.94 207 | 99.81 165 | 96.97 274 | 98.45 207 | 98.97 222 |
|
UGNet | | | 98.87 122 | 98.69 133 | 99.40 128 | 99.22 242 | 98.72 187 | 99.44 168 | 99.68 19 | 99.24 4 | 99.18 197 | 99.42 258 | 92.74 277 | 99.96 20 | 99.34 35 | 99.94 11 | 99.53 157 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
AUN-MVS | | | 96.88 295 | 96.31 301 | 98.59 237 | 99.48 181 | 97.04 279 | 99.27 234 | 99.22 287 | 97.44 201 | 98.51 294 | 99.41 262 | 91.97 298 | 99.66 218 | 97.71 219 | 83.83 364 | 99.07 212 |
|
Effi-MVS+ | | | 98.81 137 | 98.59 153 | 99.48 116 | 99.46 183 | 99.12 137 | 98.08 363 | 99.50 128 | 97.50 194 | 99.38 146 | 99.41 262 | 96.37 163 | 99.81 165 | 99.11 60 | 98.54 203 | 99.51 164 |
|
v10 | | | 97.85 233 | 97.52 245 | 98.86 213 | 98.99 287 | 98.67 191 | 99.75 37 | 99.41 210 | 95.70 318 | 98.98 231 | 99.41 262 | 94.75 223 | 99.23 293 | 96.01 304 | 94.63 322 | 98.67 274 |
|
v144192 | | | 97.92 225 | 97.60 239 | 98.87 209 | 98.83 311 | 98.65 193 | 99.55 119 | 99.34 247 | 96.20 300 | 99.32 161 | 99.40 265 | 94.36 239 | 99.26 289 | 96.37 299 | 95.03 316 | 98.70 258 |
|
NP-MVS | | | | | | 99.23 239 | 96.92 288 | | | | | 99.40 265 | | | | | |
|
HQP-MVS | | | 98.02 210 | 97.90 207 | 98.37 267 | 99.19 248 | 96.83 290 | 98.98 302 | 99.39 223 | 98.24 102 | 98.66 277 | 99.40 265 | 92.47 289 | 99.64 225 | 97.19 261 | 97.58 239 | 98.64 286 |
|
MAR-MVS | | | 98.86 125 | 98.63 141 | 99.54 96 | 99.37 204 | 99.66 59 | 99.45 164 | 99.54 76 | 96.61 270 | 99.01 224 | 99.40 265 | 97.09 136 | 99.86 130 | 97.68 224 | 99.53 138 | 99.10 202 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
API-MVS | | | 99.04 106 | 99.03 84 | 99.06 169 | 99.40 198 | 99.31 111 | 99.55 119 | 99.56 58 | 98.54 73 | 99.33 160 | 99.39 269 | 98.76 57 | 99.78 178 | 96.98 273 | 99.78 97 | 98.07 344 |
|
CR-MVSNet | | | 98.17 189 | 97.93 205 | 98.87 209 | 99.18 251 | 98.49 212 | 99.22 253 | 99.33 254 | 96.96 245 | 99.56 102 | 99.38 270 | 94.33 240 | 99.00 327 | 94.83 327 | 98.58 199 | 99.14 199 |
|
Patchmtry | | | 97.75 252 | 97.40 265 | 98.81 222 | 99.10 269 | 98.87 171 | 99.11 273 | 99.33 254 | 94.83 331 | 98.81 257 | 99.38 270 | 94.33 240 | 99.02 324 | 96.10 301 | 95.57 304 | 98.53 314 |
|
BH-untuned | | | 98.42 167 | 98.36 165 | 98.59 237 | 99.49 173 | 96.70 295 | 99.27 234 | 99.13 300 | 97.24 220 | 98.80 259 | 99.38 270 | 95.75 184 | 99.74 187 | 97.07 269 | 99.16 161 | 99.33 192 |
|
V42 | | | 98.06 200 | 97.79 216 | 98.86 213 | 98.98 290 | 98.84 175 | 99.69 46 | 99.34 247 | 96.53 275 | 99.30 165 | 99.37 273 | 94.67 227 | 99.32 278 | 97.57 233 | 94.66 321 | 98.42 327 |
|
VPA-MVSNet | | | 98.29 179 | 97.95 202 | 99.30 143 | 99.16 259 | 99.54 82 | 99.50 140 | 99.58 50 | 98.27 101 | 99.35 155 | 99.37 273 | 92.53 287 | 99.65 222 | 99.35 31 | 94.46 324 | 98.72 251 |
|
PVSNet_BlendedMVS | | | 98.86 125 | 98.80 121 | 99.03 173 | 99.76 57 | 98.79 182 | 99.28 229 | 99.91 3 | 97.42 204 | 99.67 68 | 99.37 273 | 97.53 121 | 99.88 124 | 98.98 73 | 97.29 265 | 98.42 327 |
|
D2MVS | | | 98.41 169 | 98.50 158 | 98.15 286 | 99.26 233 | 96.62 299 | 99.40 191 | 99.61 36 | 97.71 172 | 98.98 231 | 99.36 276 | 96.04 171 | 99.67 215 | 98.70 117 | 97.41 259 | 98.15 342 |
|
MVP-Stereo | | | 97.81 243 | 97.75 225 | 97.99 296 | 97.53 355 | 96.60 300 | 98.96 306 | 98.85 330 | 97.22 222 | 97.23 337 | 99.36 276 | 95.28 198 | 99.46 244 | 95.51 314 | 99.78 97 | 97.92 356 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
v1240 | | | 97.69 263 | 97.32 276 | 98.79 225 | 98.85 309 | 98.43 218 | 99.48 155 | 99.36 238 | 96.11 310 | 99.27 172 | 99.36 276 | 93.76 259 | 99.24 292 | 94.46 330 | 95.23 311 | 98.70 258 |
|
v1144 | | | 97.98 217 | 97.69 230 | 98.85 216 | 98.87 305 | 98.66 192 | 99.54 123 | 99.35 243 | 96.27 294 | 99.23 184 | 99.35 279 | 94.67 227 | 99.23 293 | 96.73 287 | 95.16 313 | 98.68 267 |
|
v2v482 | | | 98.06 200 | 97.77 221 | 98.92 192 | 98.90 298 | 98.82 179 | 99.57 104 | 99.36 238 | 96.65 266 | 99.19 194 | 99.35 279 | 94.20 244 | 99.25 290 | 97.72 218 | 94.97 317 | 98.69 262 |
|
CostFormer | | | 97.72 258 | 97.73 227 | 97.71 312 | 99.15 262 | 94.02 351 | 99.54 123 | 99.02 311 | 94.67 334 | 99.04 221 | 99.35 279 | 92.35 295 | 99.77 180 | 98.50 150 | 97.94 228 | 99.34 191 |
|
our_test_3 | | | 97.65 270 | 97.68 231 | 97.55 318 | 98.62 334 | 94.97 338 | 98.84 321 | 99.30 271 | 96.83 256 | 98.19 312 | 99.34 282 | 97.01 140 | 99.02 324 | 95.00 325 | 96.01 290 | 98.64 286 |
|
c3_l | | | 98.12 195 | 98.04 192 | 98.38 266 | 99.30 222 | 97.69 255 | 98.81 324 | 99.33 254 | 96.67 264 | 98.83 255 | 99.34 282 | 97.11 135 | 98.99 328 | 97.58 229 | 95.34 309 | 98.48 318 |
|
Fast-Effi-MVS+-dtu | | | 98.77 143 | 98.83 120 | 98.60 236 | 99.41 193 | 96.99 283 | 99.52 129 | 99.49 136 | 98.11 124 | 99.24 180 | 99.34 282 | 96.96 143 | 99.79 173 | 97.95 197 | 99.45 140 | 99.02 217 |
|
Fast-Effi-MVS+ | | | 98.70 148 | 98.43 162 | 99.51 112 | 99.51 161 | 99.28 115 | 99.52 129 | 99.47 166 | 96.11 310 | 99.01 224 | 99.34 282 | 96.20 168 | 99.84 142 | 97.88 201 | 98.82 190 | 99.39 187 |
|
v1192 | | | 97.81 243 | 97.44 259 | 98.91 197 | 98.88 301 | 98.68 190 | 99.51 134 | 99.34 247 | 96.18 302 | 99.20 191 | 99.34 282 | 94.03 251 | 99.36 268 | 95.32 320 | 95.18 312 | 98.69 262 |
|
tpm | | | 97.67 268 | 97.55 241 | 98.03 290 | 99.02 283 | 95.01 337 | 99.43 174 | 98.54 350 | 96.44 284 | 99.12 204 | 99.34 282 | 91.83 302 | 99.60 233 | 97.75 214 | 96.46 281 | 99.48 169 |
|
PAPM | | | 97.59 273 | 97.09 288 | 99.07 168 | 99.06 277 | 98.26 225 | 98.30 358 | 99.10 302 | 94.88 330 | 98.08 316 | 99.34 282 | 96.27 166 | 99.64 225 | 89.87 359 | 98.92 184 | 99.31 193 |
|
GBi-Net | | | 97.68 265 | 97.48 249 | 98.29 274 | 99.51 161 | 97.26 265 | 99.43 174 | 99.48 148 | 96.49 277 | 99.07 215 | 99.32 289 | 90.26 325 | 98.98 329 | 97.10 266 | 96.65 276 | 98.62 297 |
|
test1 | | | 97.68 265 | 97.48 249 | 98.29 274 | 99.51 161 | 97.26 265 | 99.43 174 | 99.48 148 | 96.49 277 | 99.07 215 | 99.32 289 | 90.26 325 | 98.98 329 | 97.10 266 | 96.65 276 | 98.62 297 |
|
FMVSNet1 | | | 96.84 296 | 96.36 300 | 98.29 274 | 99.32 220 | 97.26 265 | 99.43 174 | 99.48 148 | 95.11 325 | 98.55 292 | 99.32 289 | 83.95 364 | 98.98 329 | 95.81 307 | 96.26 286 | 98.62 297 |
|
MS-PatchMatch | | | 97.24 290 | 97.32 276 | 96.99 330 | 98.45 344 | 93.51 359 | 98.82 323 | 99.32 264 | 97.41 205 | 98.13 315 | 99.30 292 | 88.99 339 | 99.56 236 | 95.68 311 | 99.80 90 | 97.90 357 |
|
GA-MVS | | | 97.85 233 | 97.47 251 | 99.00 177 | 99.38 202 | 97.99 236 | 98.57 344 | 99.15 297 | 97.04 239 | 98.90 244 | 99.30 292 | 89.83 331 | 99.38 259 | 96.70 289 | 98.33 209 | 99.62 135 |
|
miper_ehance_all_eth | | | 98.18 188 | 98.10 183 | 98.41 262 | 99.23 239 | 97.72 252 | 98.72 333 | 99.31 267 | 96.60 272 | 98.88 247 | 99.29 294 | 97.29 130 | 99.13 309 | 97.60 227 | 95.99 292 | 98.38 332 |
|
FMVSNet2 | | | 97.72 258 | 97.36 268 | 98.80 224 | 99.51 161 | 98.84 175 | 99.45 164 | 99.42 207 | 96.49 277 | 98.86 254 | 99.29 294 | 90.26 325 | 98.98 329 | 96.44 296 | 96.56 279 | 98.58 311 |
|
TESTMET0.1,1 | | | 97.55 274 | 97.27 282 | 98.40 264 | 98.93 295 | 96.53 301 | 98.67 336 | 97.61 363 | 96.96 245 | 98.64 284 | 99.28 296 | 88.63 344 | 99.45 245 | 97.30 252 | 99.38 144 | 99.21 198 |
|
FMVSNet3 | | | 98.03 208 | 97.76 224 | 98.84 217 | 99.39 201 | 98.98 150 | 99.40 191 | 99.38 229 | 96.67 264 | 99.07 215 | 99.28 296 | 92.93 270 | 98.98 329 | 97.10 266 | 96.65 276 | 98.56 313 |
|
PAPM_NR | | | 99.04 106 | 98.84 116 | 99.66 71 | 99.74 76 | 99.44 98 | 99.39 195 | 99.38 229 | 97.70 173 | 99.28 169 | 99.28 296 | 98.34 96 | 99.85 136 | 96.96 275 | 99.45 140 | 99.69 108 |
|
EGC-MVSNET | | | 82.80 338 | 77.86 344 | 97.62 314 | 97.91 350 | 96.12 313 | 99.33 218 | 99.28 278 | 8.40 381 | 25.05 382 | 99.27 299 | 84.11 363 | 99.33 274 | 89.20 361 | 98.22 215 | 97.42 363 |
|
ETV-MVS | | | 99.26 66 | 99.21 64 | 99.40 128 | 99.46 183 | 99.30 112 | 99.56 110 | 99.52 93 | 98.52 75 | 99.44 126 | 99.27 299 | 98.41 92 | 99.86 130 | 99.10 61 | 99.59 134 | 99.04 214 |
|
xiu_mvs_v2_base | | | 99.26 66 | 99.25 60 | 99.29 146 | 99.53 157 | 98.91 168 | 99.02 291 | 99.45 188 | 98.80 56 | 99.71 55 | 99.26 301 | 98.94 35 | 99.98 7 | 99.34 35 | 99.23 157 | 98.98 221 |
|
test20.03 | | | 96.12 311 | 95.96 308 | 96.63 338 | 97.44 356 | 95.45 328 | 99.51 134 | 99.38 229 | 96.55 274 | 96.16 351 | 99.25 302 | 93.76 259 | 96.17 371 | 87.35 368 | 94.22 329 | 98.27 336 |
|
PS-MVSNAJ | | | 99.32 57 | 99.32 36 | 99.30 143 | 99.57 149 | 98.94 164 | 98.97 305 | 99.46 176 | 98.92 45 | 99.71 55 | 99.24 303 | 99.01 19 | 99.98 7 | 99.35 31 | 99.66 126 | 98.97 222 |
|
Test_1112_low_res | | | 98.89 121 | 98.66 138 | 99.57 92 | 99.69 105 | 98.95 161 | 99.03 288 | 99.47 166 | 96.98 243 | 99.15 200 | 99.23 304 | 96.77 149 | 99.89 119 | 98.83 102 | 98.78 193 | 99.86 15 |
|
cl22 | | | 97.85 233 | 97.64 236 | 98.48 251 | 99.09 271 | 97.87 244 | 98.60 343 | 99.33 254 | 97.11 233 | 98.87 249 | 99.22 305 | 92.38 294 | 99.17 305 | 98.21 174 | 95.99 292 | 98.42 327 |
|
EG-PatchMatch MVS | | | 95.97 313 | 95.69 313 | 96.81 336 | 97.78 353 | 92.79 362 | 99.16 259 | 98.93 319 | 96.16 305 | 94.08 360 | 99.22 305 | 82.72 366 | 99.47 242 | 95.67 312 | 97.50 248 | 98.17 341 |
|
TR-MVS | | | 97.76 248 | 97.41 264 | 98.82 220 | 99.06 277 | 97.87 244 | 98.87 319 | 98.56 348 | 96.63 269 | 98.68 276 | 99.22 305 | 92.49 288 | 99.65 222 | 95.40 317 | 97.79 231 | 98.95 227 |
|
ET-MVSNet_ETH3D | | | 96.49 303 | 95.64 314 | 99.05 171 | 99.53 157 | 98.82 179 | 98.84 321 | 97.51 364 | 97.63 180 | 84.77 368 | 99.21 308 | 92.09 297 | 98.91 340 | 98.98 73 | 92.21 350 | 99.41 184 |
|
WR-MVS_H | | | 98.13 193 | 97.87 212 | 98.90 199 | 99.02 283 | 98.84 175 | 99.70 44 | 99.59 44 | 97.27 216 | 98.40 302 | 99.19 309 | 95.53 191 | 99.23 293 | 98.34 166 | 93.78 335 | 98.61 306 |
|
miper_enhance_ethall | | | 98.16 190 | 98.08 187 | 98.41 262 | 98.96 293 | 97.72 252 | 98.45 350 | 99.32 264 | 96.95 247 | 98.97 233 | 99.17 310 | 97.06 138 | 99.22 296 | 97.86 203 | 95.99 292 | 98.29 335 |
|
baseline2 | | | 97.87 230 | 97.55 241 | 98.82 220 | 99.18 251 | 98.02 234 | 99.41 183 | 96.58 371 | 96.97 244 | 96.51 347 | 99.17 310 | 93.43 262 | 99.57 235 | 97.71 219 | 99.03 175 | 98.86 229 |
|
MIMVSNet1 | | | 95.51 316 | 95.04 320 | 96.92 334 | 97.38 357 | 95.60 321 | 99.52 129 | 99.50 128 | 93.65 344 | 96.97 345 | 99.17 310 | 85.28 361 | 96.56 370 | 88.36 365 | 95.55 305 | 98.60 309 |
|
gm-plane-assit | | | | | | 98.54 341 | 92.96 361 | | | 94.65 335 | | 99.15 313 | | 99.64 225 | 97.56 234 | | |
|
MIMVSNet | | | 97.73 256 | 97.45 254 | 98.57 241 | 99.45 188 | 97.50 257 | 99.02 291 | 98.98 314 | 96.11 310 | 99.41 134 | 99.14 314 | 90.28 324 | 98.74 344 | 95.74 309 | 98.93 182 | 99.47 175 |
|
LCM-MVSNet-Re | | | 97.83 238 | 98.15 178 | 96.87 335 | 99.30 222 | 92.25 364 | 99.59 90 | 98.26 352 | 97.43 202 | 96.20 350 | 99.13 315 | 96.27 166 | 98.73 345 | 98.17 180 | 98.99 179 | 99.64 129 |
|
UniMVSNet (Re) | | | 98.29 179 | 98.00 196 | 99.13 164 | 99.00 286 | 99.36 106 | 99.49 150 | 99.51 107 | 97.95 144 | 98.97 233 | 99.13 315 | 96.30 165 | 99.38 259 | 98.36 165 | 93.34 339 | 98.66 282 |
|
N_pmnet | | | 94.95 323 | 95.83 311 | 92.31 349 | 98.47 343 | 79.33 376 | 99.12 267 | 92.81 382 | 93.87 341 | 97.68 329 | 99.13 315 | 93.87 255 | 99.01 326 | 91.38 354 | 96.19 287 | 98.59 310 |
|
PAPR | | | 98.63 158 | 98.34 168 | 99.51 112 | 99.40 198 | 99.03 145 | 98.80 325 | 99.36 238 | 96.33 289 | 99.00 229 | 99.12 318 | 98.46 86 | 99.84 142 | 95.23 321 | 99.37 151 | 99.66 118 |
|
tpm cat1 | | | 97.39 285 | 97.36 268 | 97.50 320 | 99.17 257 | 93.73 354 | 99.43 174 | 99.31 267 | 91.27 356 | 98.71 268 | 99.08 319 | 94.31 242 | 99.77 180 | 96.41 298 | 98.50 205 | 99.00 218 |
|
FMVSNet5 | | | 96.43 305 | 96.19 303 | 97.15 326 | 99.11 266 | 95.89 317 | 99.32 219 | 99.52 93 | 94.47 338 | 98.34 306 | 99.07 320 | 87.54 355 | 97.07 366 | 92.61 351 | 95.72 301 | 98.47 320 |
|
PMMVS | | | 98.80 140 | 98.62 146 | 99.34 133 | 99.27 231 | 98.70 189 | 98.76 329 | 99.31 267 | 97.34 209 | 99.21 188 | 99.07 320 | 97.20 132 | 99.82 160 | 98.56 143 | 98.87 187 | 99.52 158 |
|
Anonymous20231206 | | | 96.22 307 | 96.03 306 | 96.79 337 | 97.31 360 | 94.14 350 | 99.63 70 | 99.08 305 | 96.17 303 | 97.04 343 | 99.06 322 | 93.94 253 | 97.76 361 | 86.96 369 | 95.06 315 | 98.47 320 |
|
DeepMVS_CX |  | | | | 93.34 347 | 99.29 226 | 82.27 373 | | 99.22 287 | 85.15 365 | 96.33 349 | 99.05 323 | 90.97 319 | 99.73 193 | 93.57 340 | 97.77 232 | 98.01 348 |
|
YYNet1 | | | 95.36 319 | 94.51 325 | 97.92 299 | 97.89 351 | 97.10 270 | 99.10 275 | 99.23 286 | 93.26 349 | 80.77 372 | 99.04 324 | 92.81 274 | 98.02 354 | 94.30 331 | 94.18 330 | 98.64 286 |
|
Anonymous20240521 | | | 96.20 309 | 95.89 310 | 97.13 328 | 97.72 354 | 94.96 339 | 99.79 29 | 99.29 276 | 93.01 350 | 97.20 339 | 99.03 325 | 89.69 334 | 98.36 349 | 91.16 355 | 96.13 288 | 98.07 344 |
|
MDA-MVSNet-bldmvs | | | 94.96 322 | 93.98 328 | 97.92 299 | 98.24 347 | 97.27 263 | 99.15 263 | 99.33 254 | 93.80 342 | 80.09 374 | 99.03 325 | 88.31 347 | 97.86 359 | 93.49 341 | 94.36 327 | 98.62 297 |
|
test_method | | | 91.10 333 | 91.36 336 | 90.31 353 | 95.85 367 | 73.72 381 | 94.89 370 | 99.25 283 | 68.39 373 | 95.82 354 | 99.02 327 | 80.50 370 | 98.95 338 | 93.64 339 | 94.89 320 | 98.25 338 |
|
BH-w/o | | | 98.00 215 | 97.89 211 | 98.32 271 | 99.35 207 | 96.20 312 | 99.01 296 | 98.90 326 | 96.42 286 | 98.38 303 | 99.00 328 | 95.26 201 | 99.72 197 | 96.06 302 | 98.61 196 | 99.03 215 |
|
Effi-MVS+-dtu | | | 98.78 141 | 98.89 107 | 98.47 255 | 99.33 213 | 96.91 289 | 99.57 104 | 99.30 271 | 98.47 78 | 99.41 134 | 98.99 329 | 96.78 147 | 99.74 187 | 98.73 113 | 99.38 144 | 98.74 247 |
|
MVS_0304 | | | 96.79 298 | 96.52 298 | 97.59 316 | 99.22 242 | 94.92 340 | 99.04 287 | 99.59 44 | 96.49 277 | 98.43 300 | 98.99 329 | 80.48 371 | 99.39 257 | 97.15 265 | 99.27 155 | 98.47 320 |
|
UnsupCasMVSNet_eth | | | 96.44 304 | 96.12 304 | 97.40 322 | 98.65 331 | 95.65 320 | 99.36 207 | 99.51 107 | 97.13 228 | 96.04 353 | 98.99 329 | 88.40 346 | 98.17 351 | 96.71 288 | 90.27 354 | 98.40 330 |
|
test0.0.03 1 | | | 97.71 261 | 97.42 263 | 98.56 243 | 98.41 345 | 97.82 247 | 98.78 327 | 98.63 347 | 97.34 209 | 98.05 320 | 98.98 332 | 94.45 237 | 98.98 329 | 95.04 324 | 97.15 271 | 98.89 228 |
|
MDA-MVSNet_test_wron | | | 95.45 317 | 94.60 323 | 98.01 293 | 98.16 348 | 97.21 268 | 99.11 273 | 99.24 285 | 93.49 346 | 80.73 373 | 98.98 332 | 93.02 268 | 98.18 350 | 94.22 334 | 94.45 325 | 98.64 286 |
|
FPMVS | | | 84.93 337 | 85.65 338 | 82.75 358 | 86.77 379 | 63.39 383 | 98.35 353 | 98.92 321 | 74.11 370 | 83.39 370 | 98.98 332 | 50.85 378 | 92.40 375 | 84.54 372 | 94.97 317 | 92.46 369 |
|
alignmvs | | | 98.81 137 | 98.56 156 | 99.58 90 | 99.43 189 | 99.42 100 | 99.51 134 | 98.96 317 | 98.61 68 | 99.35 155 | 98.92 335 | 94.78 218 | 99.77 180 | 99.35 31 | 98.11 225 | 99.54 152 |
|
test-LLR | | | 98.06 200 | 97.90 207 | 98.55 245 | 98.79 313 | 97.10 270 | 98.67 336 | 97.75 360 | 97.34 209 | 98.61 288 | 98.85 336 | 94.45 237 | 99.45 245 | 97.25 255 | 99.38 144 | 99.10 202 |
|
test-mter | | | 97.49 282 | 97.13 287 | 98.55 245 | 98.79 313 | 97.10 270 | 98.67 336 | 97.75 360 | 96.65 266 | 98.61 288 | 98.85 336 | 88.23 348 | 99.45 245 | 97.25 255 | 99.38 144 | 99.10 202 |
|
canonicalmvs | | | 99.02 109 | 98.86 114 | 99.51 112 | 99.42 190 | 99.32 108 | 99.80 24 | 99.48 148 | 98.63 66 | 99.31 163 | 98.81 338 | 97.09 136 | 99.75 186 | 99.27 46 | 97.90 229 | 99.47 175 |
|
new_pmnet | | | 96.38 306 | 96.03 306 | 97.41 321 | 98.13 349 | 95.16 336 | 99.05 282 | 99.20 291 | 93.94 340 | 97.39 334 | 98.79 339 | 91.61 311 | 99.04 320 | 90.43 357 | 95.77 298 | 98.05 346 |
|
cascas | | | 97.69 263 | 97.43 262 | 98.48 251 | 98.60 337 | 97.30 261 | 98.18 362 | 99.39 223 | 92.96 351 | 98.41 301 | 98.78 340 | 93.77 258 | 99.27 288 | 98.16 181 | 98.61 196 | 98.86 229 |
|
PVSNet_0 | | 94.43 19 | 96.09 312 | 95.47 315 | 97.94 298 | 99.31 221 | 94.34 349 | 97.81 365 | 99.70 15 | 97.12 230 | 97.46 332 | 98.75 341 | 89.71 333 | 99.79 173 | 97.69 222 | 81.69 367 | 99.68 112 |
|
patchmatchnet-post | | | | | | | | | | | | 98.70 342 | 94.79 217 | 99.74 187 | | | |
|
Patchmatch-RL test | | | 95.84 314 | 95.81 312 | 95.95 343 | 95.61 368 | 90.57 368 | 98.24 359 | 98.39 351 | 95.10 327 | 95.20 356 | 98.67 343 | 94.78 218 | 97.77 360 | 96.28 300 | 90.02 355 | 99.51 164 |
|
thres100view900 | | | 97.76 248 | 97.45 254 | 98.69 232 | 99.72 89 | 97.86 246 | 99.59 90 | 98.74 338 | 97.93 146 | 99.26 177 | 98.62 344 | 91.75 303 | 99.83 153 | 93.22 343 | 98.18 220 | 98.37 333 |
|
thres600view7 | | | 97.86 232 | 97.51 247 | 98.92 192 | 99.72 89 | 97.95 241 | 99.59 90 | 98.74 338 | 97.94 145 | 99.27 172 | 98.62 344 | 91.75 303 | 99.86 130 | 93.73 338 | 98.19 219 | 98.96 224 |
|
DSMNet-mixed | | | 97.25 289 | 97.35 270 | 96.95 333 | 97.84 352 | 93.61 358 | 99.57 104 | 96.63 370 | 96.13 309 | 98.87 249 | 98.61 346 | 94.59 230 | 97.70 362 | 95.08 323 | 98.86 188 | 99.55 150 |
|
IB-MVS | | 95.67 18 | 96.22 307 | 95.44 317 | 98.57 241 | 99.21 244 | 96.70 295 | 98.65 339 | 97.74 362 | 96.71 261 | 97.27 336 | 98.54 347 | 86.03 358 | 99.92 85 | 98.47 154 | 86.30 361 | 99.10 202 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
GG-mvs-BLEND | | | | | 98.45 257 | 98.55 340 | 98.16 228 | 99.43 174 | 93.68 379 | | 97.23 337 | 98.46 348 | 89.30 337 | 99.22 296 | 95.43 316 | 98.22 215 | 97.98 352 |
|
tfpn200view9 | | | 97.72 258 | 97.38 266 | 98.72 230 | 99.69 105 | 97.96 239 | 99.50 140 | 98.73 343 | 97.83 156 | 99.17 198 | 98.45 349 | 91.67 307 | 99.83 153 | 93.22 343 | 98.18 220 | 98.37 333 |
|
thres400 | | | 97.77 247 | 97.38 266 | 98.92 192 | 99.69 105 | 97.96 239 | 99.50 140 | 98.73 343 | 97.83 156 | 99.17 198 | 98.45 349 | 91.67 307 | 99.83 153 | 93.22 343 | 98.18 220 | 98.96 224 |
|
KD-MVS_2432*1600 | | | 94.62 324 | 93.72 330 | 97.31 323 | 97.19 363 | 95.82 318 | 98.34 354 | 99.20 291 | 95.00 328 | 97.57 330 | 98.35 351 | 87.95 351 | 98.10 352 | 92.87 348 | 77.00 371 | 98.01 348 |
|
miper_refine_blended | | | 94.62 324 | 93.72 330 | 97.31 323 | 97.19 363 | 95.82 318 | 98.34 354 | 99.20 291 | 95.00 328 | 97.57 330 | 98.35 351 | 87.95 351 | 98.10 352 | 92.87 348 | 77.00 371 | 98.01 348 |
|
thres200 | | | 97.61 272 | 97.28 279 | 98.62 235 | 99.64 126 | 98.03 233 | 99.26 243 | 98.74 338 | 97.68 175 | 99.09 213 | 98.32 353 | 91.66 309 | 99.81 165 | 92.88 347 | 98.22 215 | 98.03 347 |
|
OpenMVS_ROB |  | 92.34 20 | 94.38 328 | 93.70 332 | 96.41 341 | 97.38 357 | 93.17 360 | 99.06 280 | 98.75 335 | 86.58 364 | 94.84 359 | 98.26 354 | 81.53 369 | 99.32 278 | 89.01 362 | 97.87 230 | 96.76 364 |
|
CL-MVSNet_self_test | | | 94.49 326 | 93.97 329 | 96.08 342 | 96.16 366 | 93.67 357 | 98.33 356 | 99.38 229 | 95.13 323 | 97.33 335 | 98.15 355 | 92.69 282 | 96.57 369 | 88.67 363 | 79.87 369 | 97.99 351 |
|
pmmvs3 | | | 94.09 330 | 93.25 333 | 96.60 339 | 94.76 372 | 94.49 345 | 98.92 313 | 98.18 356 | 89.66 360 | 96.48 348 | 98.06 356 | 86.28 357 | 97.33 364 | 89.68 360 | 87.20 360 | 97.97 353 |
|
PM-MVS | | | 92.96 332 | 92.23 335 | 95.14 345 | 95.61 368 | 89.98 370 | 99.37 203 | 98.21 354 | 94.80 332 | 95.04 358 | 97.69 357 | 65.06 374 | 97.90 358 | 94.30 331 | 89.98 356 | 97.54 362 |
|
pmmvs-eth3d | | | 95.34 320 | 94.73 322 | 97.15 326 | 95.53 370 | 95.94 316 | 99.35 213 | 99.10 302 | 95.13 323 | 93.55 361 | 97.54 358 | 88.15 350 | 97.91 357 | 94.58 328 | 89.69 357 | 97.61 359 |
|
ambc | | | | | 93.06 348 | 92.68 373 | 82.36 372 | 98.47 349 | 98.73 343 | | 95.09 357 | 97.41 359 | 55.55 377 | 99.10 316 | 96.42 297 | 91.32 352 | 97.71 358 |
|
RPMNet | | | 96.72 299 | 95.90 309 | 99.19 158 | 99.18 251 | 98.49 212 | 99.22 253 | 99.52 93 | 88.72 363 | 99.56 102 | 97.38 360 | 94.08 250 | 99.95 47 | 86.87 370 | 98.58 199 | 99.14 199 |
|
new-patchmatchnet | | | 94.48 327 | 94.08 327 | 95.67 344 | 95.08 371 | 92.41 363 | 99.18 257 | 99.28 278 | 94.55 337 | 93.49 362 | 97.37 361 | 87.86 353 | 97.01 367 | 91.57 353 | 88.36 358 | 97.61 359 |
|
KD-MVS_self_test | | | 95.00 321 | 94.34 326 | 96.96 332 | 97.07 365 | 95.39 330 | 99.56 110 | 99.44 197 | 95.11 325 | 97.13 341 | 97.32 362 | 91.86 301 | 97.27 365 | 90.35 358 | 81.23 368 | 98.23 340 |
|
PatchT | | | 97.03 294 | 96.44 299 | 98.79 225 | 98.99 287 | 98.34 222 | 99.16 259 | 99.07 307 | 92.13 353 | 99.52 111 | 97.31 363 | 94.54 234 | 98.98 329 | 88.54 364 | 98.73 195 | 99.03 215 |
|
UnsupCasMVSNet_bld | | | 93.53 331 | 92.51 334 | 96.58 340 | 97.38 357 | 93.82 352 | 98.24 359 | 99.48 148 | 91.10 358 | 93.10 363 | 96.66 364 | 74.89 372 | 98.37 348 | 94.03 336 | 87.71 359 | 97.56 361 |
|
LCM-MVSNet | | | 86.80 336 | 85.22 340 | 91.53 351 | 87.81 378 | 80.96 374 | 98.23 361 | 98.99 313 | 71.05 371 | 90.13 367 | 96.51 365 | 48.45 380 | 96.88 368 | 90.51 356 | 85.30 362 | 96.76 364 |
|
PMMVS2 | | | 86.87 335 | 85.37 339 | 91.35 352 | 90.21 376 | 83.80 371 | 98.89 316 | 97.45 365 | 83.13 368 | 91.67 366 | 95.03 366 | 48.49 379 | 94.70 373 | 85.86 371 | 77.62 370 | 95.54 367 |
|
Gipuma |  | | 90.99 334 | 90.15 337 | 93.51 346 | 98.73 322 | 90.12 369 | 93.98 371 | 99.45 188 | 79.32 369 | 92.28 364 | 94.91 367 | 69.61 373 | 97.98 356 | 87.42 367 | 95.67 302 | 92.45 370 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
JIA-IIPM | | | 97.50 279 | 97.02 290 | 98.93 190 | 98.73 322 | 97.80 248 | 99.30 223 | 98.97 315 | 91.73 355 | 98.91 242 | 94.86 368 | 95.10 205 | 99.71 203 | 97.58 229 | 97.98 227 | 99.28 195 |
|
PMVS |  | 70.75 22 | 75.98 344 | 74.97 345 | 79.01 360 | 70.98 383 | 55.18 384 | 93.37 372 | 98.21 354 | 65.08 377 | 61.78 378 | 93.83 369 | 21.74 385 | 92.53 374 | 78.59 373 | 91.12 353 | 89.34 373 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MVS-HIRNet | | | 95.75 315 | 95.16 319 | 97.51 319 | 99.30 222 | 93.69 356 | 98.88 317 | 95.78 372 | 85.09 366 | 98.78 262 | 92.65 370 | 91.29 315 | 99.37 264 | 94.85 326 | 99.85 60 | 99.46 177 |
|
E-PMN | | | 80.61 340 | 79.88 342 | 82.81 357 | 90.75 375 | 76.38 379 | 97.69 366 | 95.76 373 | 66.44 375 | 83.52 369 | 92.25 371 | 62.54 376 | 87.16 377 | 68.53 376 | 61.40 374 | 84.89 375 |
|
EMVS | | | 80.02 341 | 79.22 343 | 82.43 359 | 91.19 374 | 76.40 378 | 97.55 368 | 92.49 383 | 66.36 376 | 83.01 371 | 91.27 372 | 64.63 375 | 85.79 378 | 65.82 377 | 60.65 375 | 85.08 374 |
|
gg-mvs-nofinetune | | | 96.17 310 | 95.32 318 | 98.73 229 | 98.79 313 | 98.14 230 | 99.38 200 | 94.09 378 | 91.07 359 | 98.07 319 | 91.04 373 | 89.62 336 | 99.35 271 | 96.75 285 | 99.09 170 | 98.68 267 |
|
ANet_high | | | 77.30 342 | 74.86 346 | 84.62 356 | 75.88 382 | 77.61 377 | 97.63 367 | 93.15 381 | 88.81 362 | 64.27 377 | 89.29 374 | 36.51 381 | 83.93 379 | 75.89 374 | 52.31 376 | 92.33 371 |
|
MVE |  | 76.82 21 | 76.91 343 | 74.31 347 | 84.70 355 | 85.38 381 | 76.05 380 | 96.88 369 | 93.17 380 | 67.39 374 | 71.28 376 | 89.01 375 | 21.66 386 | 87.69 376 | 71.74 375 | 72.29 373 | 90.35 372 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
testmvs | | | 39.17 346 | 43.78 348 | 25.37 363 | 36.04 386 | 16.84 387 | 98.36 352 | 26.56 385 | 20.06 379 | 38.51 380 | 67.32 376 | 29.64 383 | 15.30 382 | 37.59 379 | 39.90 378 | 43.98 377 |
|
test123 | | | 39.01 347 | 42.50 349 | 28.53 362 | 39.17 385 | 20.91 386 | 98.75 330 | 19.17 387 | 19.83 380 | 38.57 379 | 66.67 377 | 33.16 382 | 15.42 381 | 37.50 380 | 29.66 379 | 49.26 376 |
|
test_post | | | | | | | | | | | | 65.99 378 | 94.65 229 | 99.73 193 | | | |
|
test_post1 | | | | | | | | 99.23 248 | | | | 65.14 379 | 94.18 247 | 99.71 203 | 97.58 229 | | |
|
X-MVStestdata | | | 96.55 301 | 95.45 316 | 99.87 12 | 99.85 26 | 99.83 17 | 99.69 46 | 99.68 19 | 98.98 34 | 99.37 148 | 64.01 380 | 98.81 49 | 99.94 58 | 98.79 107 | 99.86 53 | 99.84 22 |
|
wuyk23d | | | 40.18 345 | 41.29 350 | 36.84 361 | 86.18 380 | 49.12 385 | 79.73 374 | 22.81 386 | 27.64 378 | 25.46 381 | 28.45 381 | 21.98 384 | 48.89 380 | 55.80 378 | 23.56 380 | 12.51 378 |
|
test_blank | | | 0.13 351 | 0.17 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 1.57 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uanet_test | | | 0.02 352 | 0.03 355 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.27 383 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
DCPMVS | | | 0.02 352 | 0.03 355 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.27 383 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
pcd_1.5k_mvsjas | | | 8.27 350 | 11.03 353 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.27 383 | 99.01 19 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
sosnet-low-res | | | 0.02 352 | 0.03 355 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.27 383 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
sosnet | | | 0.02 352 | 0.03 355 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.27 383 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uncertanet | | | 0.02 352 | 0.03 355 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.27 383 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
Regformer | | | 0.02 352 | 0.03 355 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.27 383 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uanet | | | 0.02 352 | 0.03 355 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.27 383 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
FOURS1 | | | | | | 99.91 1 | 99.93 1 | 99.87 9 | 99.56 58 | 99.10 12 | 99.81 25 | | | | | | |
|
MSC_two_6792asdad | | | | | 99.87 12 | 99.51 161 | 99.76 41 | | 99.33 254 | | | | | 99.96 20 | 98.87 89 | 99.84 68 | 99.89 2 |
|
No_MVS | | | | | 99.87 12 | 99.51 161 | 99.76 41 | | 99.33 254 | | | | | 99.96 20 | 98.87 89 | 99.84 68 | 99.89 2 |
|
eth-test2 | | | | | | 0.00 387 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 387 | | | | | | | | | | | |
|
IU-MVS | | | | | | 99.84 33 | 99.88 8 | | 99.32 264 | 98.30 98 | 99.84 15 | | | | 98.86 94 | 99.85 60 | 99.89 2 |
|
save fliter | | | | | | 99.76 57 | 99.59 73 | 99.14 265 | 99.40 219 | 99.00 28 | | | | | | | |
|
test_0728_SECOND | | | | | 99.91 2 | 99.84 33 | 99.89 4 | 99.57 104 | 99.51 107 | | | | | 99.96 20 | 98.93 79 | 99.86 53 | 99.88 8 |
|
GSMVS | | | | | | | | | | | | | | | | | 99.52 158 |
|
test_part2 | | | | | | 99.81 42 | 99.83 17 | | | | 99.77 38 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 94.86 213 | | | | 99.52 158 |
|
sam_mvs | | | | | | | | | | | | | 94.72 225 | | | | |
|
MTGPA |  | | | | | | | | 99.47 166 | | | | | | | | |
|
MTMP | | | | | | | | 99.54 123 | 98.88 328 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 97.49 240 | 99.72 112 | 99.75 78 |
|
agg_prior2 | | | | | | | | | | | | | | | 97.21 257 | 99.73 111 | 99.75 78 |
|
agg_prior | | | | | | 99.67 110 | 99.62 66 | | 99.40 219 | | 98.87 249 | | | 99.91 96 | | | |
|
test_prior4 | | | | | | | 99.56 78 | 98.99 298 | | | | | | | | | |
|
test_prior | | | | | 99.68 68 | 99.67 110 | 99.48 93 | | 99.56 58 | | | | | 99.83 153 | | | 99.74 83 |
|
旧先验2 | | | | | | | | 98.96 306 | | 96.70 262 | 99.47 119 | | | 99.94 58 | 98.19 176 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 99.01 296 | | | | | | | | | |
|
æ— å…ˆéªŒ | | | | | | | | 98.99 298 | 99.51 107 | 96.89 251 | | | | 99.93 73 | 97.53 237 | | 99.72 96 |
|
原ACMM2 | | | | | | | | 98.95 310 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.95 47 | 96.67 291 | | |
|
segment_acmp | | | | | | | | | | | | | 98.96 29 | | | | |
|
testdata1 | | | | | | | | 98.85 320 | | 98.32 97 | | | | | | | |
|
test12 | | | | | 99.75 54 | 99.64 126 | 99.61 68 | | 99.29 276 | | 99.21 188 | | 98.38 93 | 99.89 119 | | 99.74 108 | 99.74 83 |
|
plane_prior7 | | | | | | 99.29 226 | 97.03 280 | | | | | | | | | | |
|
plane_prior6 | | | | | | 99.27 231 | 96.98 284 | | | | | | 92.71 280 | | | | |
|
plane_prior5 | | | | | | | | | 99.47 166 | | | | | 99.69 213 | 97.78 210 | 97.63 234 | 98.67 274 |
|
plane_prior3 | | | | | | | 97.00 282 | | | 98.69 64 | 99.11 206 | | | | | | |
|
plane_prior2 | | | | | | | | 99.39 195 | | 98.97 37 | | | | | | | |
|
plane_prior1 | | | | | | 99.26 233 | | | | | | | | | | | |
|
plane_prior | | | | | | | 96.97 285 | 99.21 255 | | 98.45 81 | | | | | | 97.60 237 | |
|
n2 | | | | | | | | | 0.00 388 | | | | | | | | |
|
nn | | | | | | | | | 0.00 388 | | | | | | | | |
|
door-mid | | | | | | | | | 98.05 357 | | | | | | | | |
|
test11 | | | | | | | | | 99.35 243 | | | | | | | | |
|
door | | | | | | | | | 97.92 358 | | | | | | | | |
|
HQP5-MVS | | | | | | | 96.83 290 | | | | | | | | | | |
|
HQP-NCC | | | | | | 99.19 248 | | 98.98 302 | | 98.24 102 | 98.66 277 | | | | | | |
|
ACMP_Plane | | | | | | 99.19 248 | | 98.98 302 | | 98.24 102 | 98.66 277 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 97.19 261 | | |
|
HQP4-MVS | | | | | | | | | | | 98.66 277 | | | 99.64 225 | | | 98.64 286 |
|
HQP3-MVS | | | | | | | | | 99.39 223 | | | | | | | 97.58 239 | |
|
HQP2-MVS | | | | | | | | | | | | | 92.47 289 | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 95.18 335 | 99.35 213 | | 96.84 254 | 99.58 99 | | 95.19 204 | | 97.82 207 | | 99.46 177 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 97.19 269 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 97.43 258 | |
|
Test By Simon | | | | | | | | | | | | | 98.75 60 | | | | |
|