This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
CHOSEN 1792x268899.19 7499.10 7499.45 12299.89 998.52 20899.39 19599.94 198.73 6199.11 20699.89 1795.50 19299.94 5899.50 1399.97 599.89 2
PVSNet_Blended_VisFu99.36 5399.28 5499.61 8599.86 2299.07 14299.47 16099.93 297.66 17899.71 5599.86 3397.73 11899.96 2099.47 2099.82 8399.79 62
PVSNet_BlendedMVS98.86 12598.80 12199.03 17399.76 5798.79 18299.28 22999.91 397.42 20499.67 6899.37 27397.53 12199.88 12498.98 7397.29 26598.42 327
PVSNet_Blended99.08 10198.97 9699.42 12799.76 5798.79 18298.78 32799.91 396.74 25999.67 6899.49 23897.53 12199.88 12498.98 7399.85 6099.60 139
HyFIR lowres test99.11 9598.92 10299.65 7599.90 499.37 10599.02 29199.91 397.67 17799.59 9799.75 12395.90 17999.73 19399.53 1099.02 17799.86 15
MVS_111021_LR99.41 4699.33 3499.65 7599.77 5499.51 9098.94 31299.85 698.82 5299.65 7999.74 12998.51 8299.80 17098.83 10299.89 3599.64 129
MVS_111021_HR99.41 4699.32 3699.66 7199.72 8999.47 9598.95 31099.85 698.82 5299.54 10799.73 13698.51 8299.74 18798.91 8299.88 3899.77 72
PHI-MVS99.30 5999.17 6899.70 6799.56 15399.52 8899.58 9899.80 897.12 23099.62 8899.73 13698.58 7599.90 11198.61 13299.91 1899.68 112
PatchMatch-RL98.84 13698.62 14699.52 11099.71 9599.28 11599.06 28099.77 997.74 17099.50 11499.53 22595.41 19499.84 14297.17 26499.64 12999.44 180
3Dnovator97.25 999.24 7099.05 7999.81 4199.12 26499.66 5999.84 1499.74 1099.09 1598.92 24199.90 1395.94 17699.98 798.95 7699.92 1399.79 62
QAPM98.67 15498.30 17299.80 4399.20 24699.67 5799.77 3299.72 1194.74 33398.73 26699.90 1395.78 18399.98 796.96 27599.88 3899.76 77
OpenMVScopyleft96.50 1698.47 16398.12 18199.52 11099.04 28199.53 8599.82 1899.72 1194.56 33698.08 31699.88 2394.73 22499.98 797.47 24399.76 10499.06 213
CHOSEN 280x42099.12 9099.13 7199.08 16699.66 11997.89 24398.43 35199.71 1398.88 4799.62 8899.76 11896.63 15399.70 20999.46 2199.99 199.66 118
MSLP-MVS++99.46 2799.47 1499.44 12699.60 14399.16 12899.41 18399.71 1398.98 3499.45 12299.78 10599.19 999.54 23999.28 4399.84 6899.63 133
UA-Net99.42 4299.29 5099.80 4399.62 13599.55 8099.50 14099.70 1598.79 5799.77 3899.96 197.45 12399.96 2098.92 8199.90 2599.89 2
PVSNet_094.43 1996.09 31295.47 31597.94 29899.31 22194.34 34997.81 36599.70 1597.12 23097.46 33298.75 34189.71 33399.79 17397.69 22281.69 36799.68 112
AdaColmapbinary99.01 11298.80 12199.66 7199.56 15399.54 8299.18 25799.70 1598.18 11499.35 15599.63 18896.32 16499.90 11197.48 24199.77 10199.55 150
ACMMPcopyleft99.45 2999.32 3699.82 3899.89 999.67 5799.62 7699.69 1898.12 12299.63 8499.84 4798.73 6399.96 2098.55 14699.83 7799.81 46
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
XVS99.53 1299.42 1899.87 1299.85 2699.83 1799.69 4699.68 1998.98 3499.37 14899.74 12998.81 4999.94 5898.79 10799.86 5399.84 22
X-MVStestdata96.55 30195.45 31699.87 1299.85 2699.83 1799.69 4699.68 1998.98 3499.37 14864.01 38098.81 4999.94 5898.79 10799.86 5399.84 22
UGNet98.87 12298.69 13399.40 12899.22 24298.72 18799.44 16899.68 1999.24 499.18 19799.42 25892.74 27799.96 2099.34 3599.94 1199.53 157
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ZNCC-MVS99.47 2599.33 3499.87 1299.87 1699.81 2799.64 6899.67 2298.08 13199.55 10699.64 18298.91 4099.96 2098.72 11599.90 2599.82 40
GST-MVS99.40 4999.24 6199.85 2899.86 2299.79 3399.60 8399.67 2297.97 14399.63 8499.68 16298.52 8199.95 4798.38 16199.86 5399.81 46
HFP-MVS99.49 1799.37 2599.86 2199.87 1699.80 2999.66 5799.67 2298.15 11699.68 6299.69 15499.06 1699.96 2098.69 12099.87 4299.84 22
#test#99.43 3799.29 5099.86 2199.87 1699.80 2999.55 11999.67 2297.83 15699.68 6299.69 15499.06 1699.96 2098.39 15999.87 4299.84 22
ACMMPR99.49 1799.36 2799.86 2199.87 1699.79 3399.66 5799.67 2298.15 11699.67 6899.69 15498.95 3299.96 2098.69 12099.87 4299.84 22
region2R99.48 2299.35 3099.87 1299.88 1299.80 2999.65 6599.66 2798.13 12099.66 7399.68 16298.96 2999.96 2098.62 12999.87 4299.84 22
EU-MVSNet97.98 21798.03 19397.81 30898.72 32496.65 29899.66 5799.66 2798.09 12798.35 30599.82 5895.25 20298.01 35597.41 24995.30 31098.78 235
DELS-MVS99.48 2299.42 1899.65 7599.72 8999.40 10499.05 28299.66 2799.14 799.57 10199.80 8698.46 8699.94 5899.57 899.84 6899.60 139
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Vis-MVSNetpermissive99.12 9098.97 9699.56 9499.78 4899.10 13899.68 5199.66 2798.49 7799.86 1399.87 2994.77 22199.84 14299.19 5199.41 14399.74 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CSCG99.32 5799.32 3699.32 13899.85 2698.29 22399.71 4399.66 2798.11 12499.41 13499.80 8698.37 9599.96 2098.99 7299.96 799.72 96
PGM-MVS99.45 2999.31 4399.86 2199.87 1699.78 4099.58 9899.65 3297.84 15599.71 5599.80 8699.12 1399.97 1298.33 16799.87 4299.83 33
patch_mono-299.26 6699.62 198.16 28399.81 4294.59 34499.52 12999.64 3399.33 299.73 4999.90 1399.00 2599.99 199.69 199.98 299.89 2
SR-MVS99.43 3799.29 5099.86 2199.75 6899.83 1799.59 9099.62 3498.21 10899.73 4999.79 9898.68 6799.96 2098.44 15799.77 10199.79 62
sss99.17 7899.05 7999.53 10499.62 13598.97 15399.36 20799.62 3497.83 15699.67 6899.65 17597.37 12899.95 4799.19 5199.19 16099.68 112
ZD-MVS99.71 9599.79 3399.61 3696.84 25499.56 10299.54 22198.58 7599.96 2096.93 27899.75 105
D2MVS98.41 16998.50 15898.15 28699.26 23396.62 29999.40 19199.61 3697.71 17298.98 23199.36 27696.04 17199.67 21598.70 11797.41 25998.15 342
tfpnnormal97.84 23697.47 25198.98 18199.20 24699.22 12299.64 6899.61 3696.32 29098.27 31099.70 14593.35 26499.44 25095.69 31095.40 30898.27 336
AllTest98.87 12298.72 12899.31 13999.86 2298.48 21499.56 11099.61 3697.85 15399.36 15299.85 3895.95 17499.85 13696.66 29299.83 7799.59 143
TestCases99.31 13999.86 2298.48 21499.61 3697.85 15399.36 15299.85 3895.95 17499.85 13696.66 29299.83 7799.59 143
FC-MVSNet-test98.75 14598.62 14699.15 16399.08 27399.45 9799.86 1399.60 4198.23 10598.70 27499.82 5896.80 14699.22 29699.07 6596.38 28398.79 234
PVSNet96.02 1798.85 13398.84 11698.89 20299.73 8497.28 26298.32 35799.60 4197.86 15199.50 11499.57 21096.75 15099.86 13098.56 14399.70 11799.54 152
LTVRE_ROB97.16 1298.02 21097.90 20798.40 26499.23 23996.80 29399.70 4499.60 4197.12 23098.18 31399.70 14591.73 30599.72 19798.39 15997.45 25498.68 267
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVS_030496.79 29896.52 29897.59 31699.22 24294.92 34099.04 28799.59 4496.49 27798.43 30098.99 32980.48 37199.39 25797.15 26599.27 15598.47 320
FIs98.78 14198.63 14199.23 15699.18 25199.54 8299.83 1799.59 4498.28 9998.79 26199.81 7196.75 15099.37 26499.08 6496.38 28398.78 235
WR-MVS_H98.13 19397.87 21298.90 19999.02 28398.84 17599.70 4499.59 4497.27 21698.40 30299.19 30995.53 19199.23 29398.34 16693.78 33598.61 306
abl_699.44 3399.31 4399.83 3699.85 2699.75 4399.66 5799.59 4498.13 12099.82 2399.81 7198.60 7499.96 2098.46 15599.88 3899.79 62
114514_t98.93 11898.67 13599.72 6499.85 2699.53 8599.62 7699.59 4492.65 35299.71 5599.78 10598.06 11099.90 11198.84 9999.91 1899.74 83
COLMAP_ROBcopyleft97.56 698.86 12598.75 12799.17 16099.88 1298.53 20499.34 21699.59 4497.55 18798.70 27499.89 1795.83 18199.90 11198.10 18399.90 2599.08 207
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CS-MVS-test99.49 1799.48 1299.54 9699.78 4899.30 11299.89 299.58 5098.56 7199.73 4999.69 15498.55 7899.82 16099.69 199.85 6099.48 169
VPA-MVSNet98.29 17997.95 20299.30 14399.16 25999.54 8299.50 14099.58 5098.27 10199.35 15599.37 27392.53 28799.65 22299.35 3194.46 32498.72 251
DROMVSNet99.44 3399.39 2299.58 9099.56 15399.49 9199.88 499.58 5098.38 8799.73 4999.69 15498.20 10399.70 20999.64 599.82 8399.54 152
CANet99.25 6999.14 7099.59 8799.41 19399.16 12899.35 21399.57 5398.82 5299.51 11399.61 19796.46 15999.95 4799.59 699.98 299.65 122
Anonymous2023121197.88 22897.54 24498.90 19999.71 9598.53 20499.48 15599.57 5394.16 33998.81 25799.68 16293.23 26599.42 25598.84 9994.42 32698.76 242
VPNet97.84 23697.44 25999.01 17599.21 24498.94 16499.48 15599.57 5398.38 8799.28 16999.73 13688.89 34099.39 25799.19 5193.27 34198.71 253
DP-MVS Recon99.12 9098.95 10099.65 7599.74 7699.70 5199.27 23499.57 5396.40 28899.42 13099.68 16298.75 6099.80 17097.98 19499.72 11299.44 180
LS3D99.27 6499.12 7299.74 5999.18 25199.75 4399.56 11099.57 5398.45 8199.49 11799.85 3897.77 11799.94 5898.33 16799.84 6899.52 158
FOURS199.91 199.93 199.87 999.56 5899.10 1299.81 25
test117299.43 3799.29 5099.85 2899.75 6899.82 2399.60 8399.56 5898.28 9999.74 4799.79 9898.53 7999.95 4798.55 14699.78 9799.79 62
test_prior399.21 7299.05 7999.68 6899.67 11099.48 9398.96 30699.56 5898.34 9399.01 22499.52 22898.68 6799.83 15397.96 19599.74 10899.74 83
test_prior99.68 6899.67 11099.48 9399.56 5899.83 15399.74 83
APDe-MVS99.66 199.57 399.92 199.77 5499.89 499.75 3799.56 5899.02 2199.88 699.85 3899.18 1099.96 2099.22 4999.92 1399.90 1
HPM-MVS_fast99.51 1599.40 2199.85 2899.91 199.79 3399.76 3599.56 5897.72 17199.76 4399.75 12399.13 1299.92 8599.07 6599.92 1399.85 18
WTY-MVS99.06 10398.88 10899.61 8599.62 13599.16 12899.37 20399.56 5898.04 13899.53 10999.62 19396.84 14599.94 5898.85 9698.49 20699.72 96
API-MVS99.04 10699.03 8499.06 16999.40 19899.31 11199.55 11999.56 5898.54 7399.33 16099.39 26998.76 5799.78 17896.98 27399.78 9798.07 344
ACMH97.28 898.10 19697.99 19798.44 26099.41 19396.96 28799.60 8399.56 5898.09 12798.15 31499.91 1090.87 32099.70 20998.88 8597.45 25498.67 274
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CS-MVS99.50 1699.48 1299.54 9699.76 5799.42 10099.90 199.55 6798.56 7199.78 3599.70 14598.65 7299.79 17399.65 499.78 9799.41 184
CVMVSNet98.57 16098.67 13598.30 27399.35 20795.59 32299.50 14099.55 6798.60 6999.39 14299.83 5194.48 23699.45 24598.75 11098.56 20299.85 18
bld_raw_conf00598.62 15998.50 15898.95 18699.02 28398.79 18299.66 5799.55 6798.14 11998.95 23599.91 1094.54 23499.33 27499.36 3097.39 26298.74 247
XVG-OURS98.73 14698.68 13498.88 20599.70 10297.73 25198.92 31399.55 6798.52 7599.45 12299.84 4795.27 19999.91 9698.08 18898.84 18999.00 218
LPG-MVS_test98.22 18298.13 18098.49 24999.33 21397.05 27699.58 9899.55 6797.46 19599.24 18099.83 5192.58 28599.72 19798.09 18497.51 24698.68 267
LGP-MVS_train98.49 24999.33 21397.05 27699.55 6797.46 19599.24 18099.83 5192.58 28599.72 19798.09 18497.51 24698.68 267
XXY-MVS98.38 17298.09 18699.24 15499.26 23399.32 10899.56 11099.55 6797.45 19898.71 26899.83 5193.23 26599.63 23098.88 8596.32 28598.76 242
DeepC-MVS98.35 299.30 5999.19 6699.64 8099.82 3999.23 12199.62 7699.55 6798.94 4199.63 8499.95 295.82 18299.94 5899.37 2999.97 599.73 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSDG98.98 11498.80 12199.53 10499.76 5799.19 12398.75 33099.55 6797.25 21899.47 11999.77 11297.82 11599.87 12796.93 27899.90 2599.54 152
SF-MVS99.38 5199.24 6199.79 4699.79 4699.68 5499.57 10499.54 7697.82 16199.71 5599.80 8698.95 3299.93 7398.19 17699.84 6899.74 83
PS-MVSNAJss98.92 11998.92 10298.90 19998.78 31698.53 20499.78 3099.54 7698.07 13299.00 22999.76 11899.01 1999.37 26499.13 5897.23 26798.81 232
新几何199.75 5499.75 6899.59 7399.54 7696.76 25899.29 16899.64 18298.43 8899.94 5896.92 28099.66 12699.72 96
旧先验199.74 7699.59 7399.54 7699.69 15498.47 8599.68 12399.73 90
APD-MVS_3200maxsize99.48 2299.35 3099.85 2899.76 5799.83 1799.63 7099.54 7698.36 9199.79 3099.82 5898.86 4499.95 4798.62 12999.81 8699.78 70
XVG-OURS-SEG-HR98.69 15198.62 14698.89 20299.71 9597.74 25099.12 26799.54 7698.44 8499.42 13099.71 14194.20 24499.92 8598.54 14898.90 18699.00 218
HPM-MVScopyleft99.42 4299.28 5499.83 3699.90 499.72 4799.81 2099.54 7697.59 18299.68 6299.63 18898.91 4099.94 5898.58 13899.91 1899.84 22
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ab-mvs98.86 12598.63 14199.54 9699.64 12699.19 12399.44 16899.54 7697.77 16599.30 16599.81 7194.20 24499.93 7399.17 5498.82 19099.49 168
F-COLMAP99.19 7499.04 8299.64 8099.78 4899.27 11799.42 18199.54 7697.29 21499.41 13499.59 20398.42 9199.93 7398.19 17699.69 11899.73 90
ACMH+97.24 1097.92 22597.78 21998.32 27199.46 18396.68 29799.56 11099.54 7698.41 8597.79 32899.87 2990.18 32999.66 21898.05 19297.18 27098.62 297
MAR-MVS98.86 12598.63 14199.54 9699.37 20499.66 5999.45 16499.54 7696.61 27099.01 22499.40 26597.09 13699.86 13097.68 22499.53 13899.10 202
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
xxxxxxxxxxxxxcwj99.43 3799.32 3699.75 5499.76 5799.59 7399.14 26599.53 8799.00 2899.71 5599.80 8698.95 3299.93 7398.19 17699.84 6899.74 83
UniMVSNet_ETH3D97.32 28796.81 29398.87 20999.40 19897.46 25899.51 13499.53 8795.86 31798.54 29399.77 11282.44 36899.66 21898.68 12297.52 24499.50 167
EIA-MVS99.18 7699.09 7699.45 12299.49 17399.18 12599.67 5399.53 8797.66 17899.40 13999.44 25398.10 10899.81 16598.94 7799.62 13299.35 189
jajsoiax98.43 16698.28 17398.88 20598.60 33798.43 21899.82 1899.53 8798.19 11098.63 28599.80 8693.22 26799.44 25099.22 4997.50 24898.77 240
mvs_tets98.40 17198.23 17598.91 19798.67 33098.51 21099.66 5799.53 8798.19 11098.65 28399.81 7192.75 27599.44 25099.31 3897.48 25298.77 240
UniMVSNet_NR-MVSNet98.22 18297.97 19998.96 18498.92 29698.98 15099.48 15599.53 8797.76 16698.71 26899.46 25196.43 16299.22 29698.57 14092.87 34698.69 262
SR-MVS-dyc-post99.45 2999.31 4399.85 2899.76 5799.82 2399.63 7099.52 9398.38 8799.76 4399.82 5898.53 7999.95 4798.61 13299.81 8699.77 72
RE-MVS-def99.34 3299.76 5799.82 2399.63 7099.52 9398.38 8799.76 4399.82 5898.75 6098.61 13299.81 8699.77 72
dcpmvs_299.23 7199.58 298.16 28399.83 3794.68 34399.76 3599.52 9399.07 1899.98 199.88 2398.56 7799.93 7399.67 399.98 299.87 13
ETV-MVS99.26 6699.21 6499.40 12899.46 18399.30 11299.56 11099.52 9398.52 7599.44 12699.27 29998.41 9299.86 13099.10 6199.59 13499.04 214
MP-MVS-pluss99.37 5299.20 6599.88 699.90 499.87 1299.30 22399.52 9397.18 22499.60 9499.79 9898.79 5199.95 4798.83 10299.91 1899.83 33
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SD-MVS99.41 4699.52 899.05 17199.74 7699.68 5499.46 16399.52 9399.11 1199.88 699.91 1099.43 197.70 36298.72 11599.93 1299.77 72
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PS-CasMVS97.93 22297.59 24098.95 18698.99 28799.06 14399.68 5199.52 9397.13 22898.31 30799.68 16292.44 29399.05 31998.51 14994.08 33298.75 244
XVG-ACMP-BASELINE97.83 23897.71 22998.20 28099.11 26696.33 30899.41 18399.52 9398.06 13699.05 22099.50 23589.64 33599.73 19397.73 21697.38 26398.53 314
CNVR-MVS99.42 4299.30 4699.78 4899.62 13599.71 4999.26 24399.52 9398.82 5299.39 14299.71 14198.96 2999.85 13698.59 13799.80 9099.77 72
CP-MVS99.45 2999.32 3699.85 2899.83 3799.75 4399.69 4699.52 9398.07 13299.53 10999.63 18898.93 3999.97 1298.74 11199.91 1899.83 33
RPMNet96.72 29995.90 30999.19 15899.18 25198.49 21299.22 25399.52 9388.72 36399.56 10297.38 36094.08 25099.95 4786.87 37098.58 19999.14 199
FMVSNet596.43 30596.19 30397.15 32699.11 26695.89 31799.32 21999.52 9394.47 33898.34 30699.07 32087.54 35597.07 36692.61 35195.72 30198.47 320
OMC-MVS99.08 10199.04 8299.20 15799.67 11098.22 22699.28 22999.52 9398.07 13299.66 7399.81 7197.79 11699.78 17897.79 20999.81 8699.60 139
PLCcopyleft97.94 499.02 10998.85 11599.53 10499.66 11999.01 14899.24 24799.52 9396.85 25399.27 17299.48 24498.25 10199.91 9697.76 21299.62 13299.65 122
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DVP-MVS++99.59 399.50 1099.88 699.51 16199.88 899.87 999.51 10798.99 3199.88 699.81 7199.27 599.96 2098.85 9699.80 9099.81 46
GeoE98.85 13398.62 14699.53 10499.61 13999.08 14099.80 2499.51 10797.10 23499.31 16399.78 10595.23 20399.77 18098.21 17499.03 17599.75 78
9.1499.10 7499.72 8999.40 19199.51 10797.53 19199.64 8399.78 10598.84 4699.91 9697.63 22599.82 83
testtj99.12 9098.87 10999.86 2199.72 8999.79 3399.44 16899.51 10797.29 21499.59 9799.74 12998.15 10799.96 2096.74 28699.69 11899.81 46
ETH3D-3000-0.199.21 7299.02 8799.77 5099.73 8499.69 5299.38 20099.51 10797.45 19899.61 9099.75 12398.51 8299.91 9697.45 24699.83 7799.71 103
test_0728_SECOND99.91 299.84 3399.89 499.57 10499.51 10799.96 2098.93 7999.86 5399.88 8
DPE-MVScopyleft99.46 2799.32 3699.91 299.78 4899.88 899.36 20799.51 10798.73 6199.88 699.84 4798.72 6499.96 2098.16 18199.87 4299.88 8
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
xiu_mvs_v1_base_debu99.29 6199.27 5699.34 13399.63 12998.97 15399.12 26799.51 10798.86 4899.84 1599.47 24798.18 10499.99 199.50 1399.31 15299.08 207
xiu_mvs_v1_base99.29 6199.27 5699.34 13399.63 12998.97 15399.12 26799.51 10798.86 4899.84 1599.47 24798.18 10499.99 199.50 1399.31 15299.08 207
xiu_mvs_v1_base_debi99.29 6199.27 5699.34 13399.63 12998.97 15399.12 26799.51 10798.86 4899.84 1599.47 24798.18 10499.99 199.50 1399.31 15299.08 207
cdsmvs_eth3d_5k24.64 34832.85 3510.00 3640.00 3870.00 3880.00 37599.51 1070.00 3820.00 38399.56 21396.58 1550.00 3830.00 3810.00 3810.00 379
HPM-MVS++copyleft99.39 5099.23 6399.87 1299.75 6899.84 1699.43 17499.51 10798.68 6599.27 17299.53 22598.64 7399.96 2098.44 15799.80 9099.79 62
无先验98.99 29899.51 10796.89 25199.93 7397.53 23799.72 96
testdata99.54 9699.75 6898.95 16199.51 10797.07 23699.43 12799.70 14598.87 4399.94 5897.76 21299.64 12999.72 96
PEN-MVS97.76 24897.44 25998.72 23098.77 31998.54 20399.78 3099.51 10797.06 23898.29 30999.64 18292.63 28498.89 34298.09 18493.16 34298.72 251
UniMVSNet (Re)98.29 17998.00 19699.13 16499.00 28699.36 10699.49 15099.51 10797.95 14498.97 23399.13 31596.30 16599.38 25998.36 16593.34 33998.66 282
mvsmamba98.92 11998.87 10999.08 16699.07 27499.16 12899.88 499.51 10798.15 11699.40 13999.89 1797.12 13499.33 27499.38 2797.40 26098.73 250
SteuartSystems-ACMMP99.54 1099.42 1899.87 1299.82 3999.81 2799.59 9099.51 10798.62 6799.79 3099.83 5199.28 499.97 1298.48 15199.90 2599.84 22
Skip Steuart: Steuart Systems R&D Blog.
UnsupCasMVSNet_eth96.44 30496.12 30497.40 32298.65 33195.65 32099.36 20799.51 10797.13 22896.04 35398.99 32988.40 34698.17 35196.71 28890.27 35498.40 330
3Dnovator+97.12 1399.18 7698.97 9699.82 3899.17 25799.68 5499.81 2099.51 10799.20 598.72 26799.89 1795.68 18899.97 1298.86 9499.86 5399.81 46
TAPA-MVS97.07 1597.74 25597.34 27398.94 18899.70 10297.53 25699.25 24599.51 10791.90 35499.30 16599.63 18898.78 5299.64 22588.09 36699.87 4299.65 122
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test072699.85 2699.89 499.62 7699.50 12899.10 1299.86 1399.82 5898.94 35
MSP-MVS99.42 4299.27 5699.88 699.89 999.80 2999.67 5399.50 12898.70 6399.77 3899.49 23898.21 10299.95 4798.46 15599.77 10199.88 8
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
Effi-MVS+98.81 13798.59 15399.48 11699.46 18399.12 13798.08 36399.50 12897.50 19499.38 14699.41 26296.37 16399.81 16599.11 6098.54 20399.51 164
anonymousdsp98.44 16598.28 17398.94 18898.50 34298.96 15799.77 3299.50 12897.07 23698.87 24999.77 11294.76 22299.28 28498.66 12597.60 23798.57 312
casdiffmvs99.13 8498.98 9599.56 9499.65 12499.16 12899.56 11099.50 12898.33 9699.41 13499.86 3395.92 17799.83 15399.45 2299.16 16199.70 105
APD-MVScopyleft99.27 6499.08 7799.84 3599.75 6899.79 3399.50 14099.50 12897.16 22699.77 3899.82 5898.78 5299.94 5897.56 23499.86 5399.80 56
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MIMVSNet195.51 31695.04 32096.92 33497.38 35795.60 32199.52 12999.50 12893.65 34496.97 34599.17 31085.28 36196.56 37088.36 36595.55 30598.60 309
DP-MVS99.16 8098.95 10099.78 4899.77 5499.53 8599.41 18399.50 12897.03 24199.04 22199.88 2397.39 12499.92 8598.66 12599.90 2599.87 13
test_one_060199.81 4299.88 899.49 13698.97 3799.65 7999.81 7199.09 14
test_part197.75 25297.24 28399.29 14699.59 14599.63 6599.65 6599.49 13696.17 30398.44 29999.69 15489.80 33299.47 24298.68 12293.66 33698.78 235
Fast-Effi-MVS+-dtu98.77 14398.83 12098.60 23699.41 19396.99 28399.52 12999.49 13698.11 12499.24 18099.34 28296.96 14399.79 17397.95 19799.45 14099.02 217
IterMVS-SCA-FT97.82 24197.75 22598.06 28999.57 14996.36 30799.02 29199.49 13697.18 22498.71 26899.72 14092.72 27899.14 30697.44 24795.86 29798.67 274
Regformer-499.59 399.54 699.73 6199.76 5799.41 10299.58 9899.49 13699.02 2199.88 699.80 8699.00 2599.94 5899.45 2299.92 1399.84 22
Regformer-299.54 1099.47 1499.75 5499.71 9599.52 8899.49 15099.49 13698.94 4199.83 2099.76 11899.01 1999.94 5899.15 5799.87 4299.80 56
test22299.75 6899.49 9198.91 31599.49 13696.42 28699.34 15999.65 17598.28 10099.69 11899.72 96
131498.68 15398.54 15799.11 16598.89 30098.65 19399.27 23499.49 13696.89 25197.99 32199.56 21397.72 11999.83 15397.74 21599.27 15598.84 231
diffmvs99.14 8299.02 8799.51 11299.61 13998.96 15799.28 22999.49 13698.46 8099.72 5499.71 14196.50 15899.88 12499.31 3899.11 16699.67 115
TranMVSNet+NR-MVSNet97.93 22297.66 23398.76 22898.78 31698.62 19699.65 6599.49 13697.76 16698.49 29699.60 20094.23 24398.97 33698.00 19392.90 34498.70 258
CPTT-MVS99.11 9598.90 10599.74 5999.80 4599.46 9699.59 9099.49 13697.03 24199.63 8499.69 15497.27 13199.96 2097.82 20799.84 6899.81 46
ACMP97.20 1198.06 20097.94 20498.45 25799.37 20497.01 28199.44 16899.49 13697.54 19098.45 29899.79 9891.95 29999.72 19797.91 19997.49 25198.62 297
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SED-MVS99.61 299.52 899.88 699.84 3399.90 299.60 8399.48 14899.08 1699.91 299.81 7199.20 799.96 2098.91 8299.85 6099.79 62
test_241102_TWO99.48 14899.08 1699.88 699.81 7198.94 3599.96 2098.91 8299.84 6899.88 8
test_241102_ONE99.84 3399.90 299.48 14899.07 1899.91 299.74 12999.20 799.76 184
ACMMP_NAP99.47 2599.34 3299.88 699.87 1699.86 1399.47 16099.48 14898.05 13799.76 4399.86 3398.82 4899.93 7398.82 10699.91 1899.84 22
canonicalmvs99.02 10998.86 11499.51 11299.42 19099.32 10899.80 2499.48 14898.63 6699.31 16398.81 33897.09 13699.75 18699.27 4697.90 22999.47 175
112199.09 9998.87 10999.75 5499.74 7699.60 7099.27 23499.48 14896.82 25799.25 17999.65 17598.38 9399.93 7397.53 23799.67 12599.73 90
testgi97.65 27097.50 24898.13 28799.36 20696.45 30499.42 18199.48 14897.76 16697.87 32499.45 25291.09 31798.81 34394.53 32998.52 20499.13 201
DTE-MVSNet97.51 27897.19 28598.46 25698.63 33398.13 23199.84 1499.48 14896.68 26397.97 32299.67 16892.92 27198.56 34696.88 28292.60 34998.70 258
mPP-MVS99.44 3399.30 4699.86 2199.88 1299.79 3399.69 4699.48 14898.12 12299.50 11499.75 12398.78 5299.97 1298.57 14099.89 3599.83 33
baseline99.15 8199.02 8799.53 10499.66 11999.14 13499.72 4199.48 14898.35 9299.42 13099.84 4796.07 17099.79 17399.51 1299.14 16499.67 115
NCCC99.34 5599.19 6699.79 4699.61 13999.65 6299.30 22399.48 14898.86 4899.21 18899.63 18898.72 6499.90 11198.25 17299.63 13199.80 56
GBi-Net97.68 26597.48 24998.29 27499.51 16197.26 26599.43 17499.48 14896.49 27799.07 21599.32 28990.26 32598.98 32997.10 26696.65 27698.62 297
UnsupCasMVSNet_bld93.53 33192.51 33496.58 34097.38 35793.82 35298.24 35999.48 14891.10 35893.10 36396.66 36474.89 37298.37 34894.03 33687.71 35997.56 361
test197.68 26597.48 24998.29 27499.51 16197.26 26599.43 17499.48 14896.49 27799.07 21599.32 28990.26 32598.98 32997.10 26696.65 27698.62 297
FMVSNet196.84 29696.36 30098.29 27499.32 22097.26 26599.43 17499.48 14895.11 32598.55 29299.32 28983.95 36498.98 32995.81 30796.26 28698.62 297
1112_ss98.98 11498.77 12499.59 8799.68 10999.02 14699.25 24599.48 14897.23 22199.13 20299.58 20696.93 14499.90 11198.87 8998.78 19399.84 22
IterMVS97.83 23897.77 22198.02 29299.58 14796.27 31099.02 29199.48 14897.22 22298.71 26899.70 14592.75 27599.13 30997.46 24496.00 29198.67 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CMPMVSbinary69.68 2394.13 32994.90 32191.84 35097.24 36180.01 37598.52 34799.48 14889.01 36191.99 36599.67 16885.67 36099.13 30995.44 31597.03 27296.39 366
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
SMA-MVScopyleft99.44 3399.30 4699.85 2899.73 8499.83 1799.56 11099.47 16697.45 19899.78 3599.82 5899.18 1099.91 9698.79 10799.89 3599.81 46
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
zzz-MVS99.49 1799.36 2799.89 499.90 499.86 1399.36 20799.47 16698.79 5799.68 6299.81 7198.43 8899.97 1298.88 8599.90 2599.83 33
MTGPAbinary99.47 166
pmmvs696.53 30296.09 30597.82 30798.69 32895.47 32799.37 20399.47 16693.46 34797.41 33399.78 10587.06 35699.33 27496.92 28092.70 34898.65 284
Fast-Effi-MVS+98.70 14898.43 16299.51 11299.51 16199.28 11599.52 12999.47 16696.11 31099.01 22499.34 28296.20 16899.84 14297.88 20198.82 19099.39 187
MTAPA99.52 1499.39 2299.89 499.90 499.86 1399.66 5799.47 16698.79 5799.68 6299.81 7198.43 8899.97 1298.88 8599.90 2599.83 33
原ACMM199.65 7599.73 8499.33 10799.47 16697.46 19599.12 20499.66 17498.67 7099.91 9697.70 22199.69 11899.71 103
HQP_MVS98.27 18198.22 17698.44 26099.29 22696.97 28599.39 19599.47 16698.97 3799.11 20699.61 19792.71 28099.69 21397.78 21097.63 23498.67 274
plane_prior599.47 16699.69 21397.78 21097.63 23498.67 274
Test_1112_low_res98.89 12198.66 13899.57 9299.69 10598.95 16199.03 28899.47 16696.98 24399.15 20099.23 30496.77 14999.89 11998.83 10298.78 19399.86 15
ppachtmachnet_test97.49 28297.45 25497.61 31598.62 33495.24 33298.80 32599.46 17696.11 31098.22 31199.62 19396.45 16098.97 33693.77 33795.97 29598.61 306
nrg03098.64 15798.42 16399.28 14999.05 28099.69 5299.81 2099.46 17698.04 13899.01 22499.82 5896.69 15299.38 25999.34 3594.59 32398.78 235
v7n97.87 23097.52 24598.92 19298.76 32098.58 20099.84 1499.46 17696.20 30098.91 24299.70 14594.89 21299.44 25096.03 30393.89 33498.75 244
PS-MVSNAJ99.32 5799.32 3699.30 14399.57 14998.94 16498.97 30599.46 17698.92 4599.71 5599.24 30399.01 1999.98 799.35 3199.66 12698.97 222
Regformer-199.53 1299.47 1499.72 6499.71 9599.44 9899.49 15099.46 17698.95 4099.83 2099.76 11899.01 1999.93 7399.17 5499.87 4299.80 56
MP-MVScopyleft99.33 5699.15 6999.87 1299.88 1299.82 2399.66 5799.46 17698.09 12799.48 11899.74 12998.29 9999.96 2097.93 19899.87 4299.82 40
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVSNet98.09 19797.78 21999.01 17598.97 29299.24 12099.67 5399.46 17697.25 21898.48 29799.64 18293.79 25799.06 31898.63 12894.10 33198.74 247
MVSFormer99.17 7899.12 7299.29 14699.51 16198.94 16499.88 499.46 17697.55 18799.80 2899.65 17597.39 12499.28 28499.03 6799.85 6099.65 122
test_djsdf98.67 15498.57 15598.98 18198.70 32798.91 16899.88 499.46 17697.55 18799.22 18599.88 2395.73 18599.28 28499.03 6797.62 23698.75 244
CDS-MVSNet99.09 9999.03 8499.25 15299.42 19098.73 18699.45 16499.46 17698.11 12499.46 12199.77 11298.01 11199.37 26498.70 11798.92 18499.66 118
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS99.12 9099.08 7799.24 15499.46 18398.55 20299.51 13499.46 17698.09 12799.45 12299.82 5898.34 9699.51 24098.70 11798.93 18299.67 115
DeepC-MVS_fast98.69 199.49 1799.39 2299.77 5099.63 12999.59 7399.36 20799.46 17699.07 1899.79 3099.82 5898.85 4599.92 8598.68 12299.87 4299.82 40
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
h-mvs3397.70 26297.28 27998.97 18399.70 10297.27 26399.36 20799.45 18898.94 4199.66 7399.64 18294.93 20899.99 199.48 1884.36 36399.65 122
ETH3 D test640098.70 14898.35 16799.73 6199.69 10599.60 7099.16 25999.45 18895.42 32199.27 17299.60 20097.39 12499.91 9695.36 31999.83 7799.70 105
xiu_mvs_v2_base99.26 6699.25 6099.29 14699.53 15798.91 16899.02 29199.45 18898.80 5699.71 5599.26 30198.94 3599.98 799.34 3599.23 15798.98 221
EI-MVSNet-UG-set99.58 599.57 399.64 8099.78 4899.14 13499.60 8399.45 18899.01 2499.90 499.83 5198.98 2799.93 7399.59 699.95 899.86 15
EI-MVSNet-Vis-set99.58 599.56 599.64 8099.78 4899.15 13399.61 8299.45 18899.01 2499.89 599.82 5899.01 1999.92 8599.56 999.95 899.85 18
pm-mvs197.68 26597.28 27998.88 20599.06 27798.62 19699.50 14099.45 18896.32 29097.87 32499.79 9892.47 28999.35 27197.54 23693.54 33898.67 274
DU-MVS98.08 19997.79 21698.96 18498.87 30598.98 15099.41 18399.45 18897.87 15098.71 26899.50 23594.82 21499.22 29698.57 14092.87 34698.68 267
ACMM97.58 598.37 17398.34 16898.48 25199.41 19397.10 27099.56 11099.45 18898.53 7499.04 22199.85 3893.00 26999.71 20398.74 11197.45 25498.64 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Gipumacopyleft90.99 33490.15 33793.51 34698.73 32290.12 36993.98 37199.45 18879.32 36992.28 36494.91 36769.61 37397.98 35687.42 36795.67 30292.45 370
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
KD-MVS_self_test95.00 32194.34 32696.96 33297.07 36595.39 33099.56 11099.44 19795.11 32597.13 34197.32 36291.86 30197.27 36590.35 35881.23 36898.23 340
ETH3D cwj APD-0.1699.06 10398.84 11699.72 6499.51 16199.60 7099.23 24899.44 19797.04 23999.39 14299.67 16898.30 9899.92 8597.27 25399.69 11899.64 129
Regformer-399.57 899.53 799.68 6899.76 5799.29 11499.58 9899.44 19799.01 2499.87 1299.80 8698.97 2899.91 9699.44 2499.92 1399.83 33
RPSCF98.22 18298.62 14696.99 33099.82 3991.58 36799.72 4199.44 19796.61 27099.66 7399.89 1795.92 17799.82 16097.46 24499.10 16999.57 148
Vis-MVSNet (Re-imp)98.87 12298.72 12899.31 13999.71 9598.88 17099.80 2499.44 19797.91 14899.36 15299.78 10595.49 19399.43 25497.91 19999.11 16699.62 135
CNLPA99.14 8298.99 9299.59 8799.58 14799.41 10299.16 25999.44 19798.45 8199.19 19499.49 23898.08 10999.89 11997.73 21699.75 10599.48 169
DeepPCF-MVS98.18 398.81 13799.37 2597.12 32999.60 14391.75 36698.61 34199.44 19799.35 199.83 2099.85 3898.70 6699.81 16599.02 7099.91 1899.81 46
CLD-MVS98.16 19098.10 18398.33 26999.29 22696.82 29298.75 33099.44 19797.83 15699.13 20299.55 21692.92 27199.67 21598.32 16997.69 23398.48 318
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous2024052998.09 19797.68 23199.34 13399.66 11998.44 21799.40 19199.43 20593.67 34399.22 18599.89 1790.23 32899.93 7399.26 4798.33 20999.66 118
IterMVS-LS98.46 16498.42 16398.58 24099.59 14598.00 23599.37 20399.43 20596.94 24999.07 21599.59 20397.87 11399.03 32298.32 16995.62 30398.71 253
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
iter_conf0598.55 16198.44 16198.87 20999.34 21198.60 19999.55 11999.42 20798.21 10899.37 14899.77 11293.55 26199.38 25999.30 4197.48 25298.63 294
NR-MVSNet97.97 22097.61 23899.02 17498.87 30599.26 11899.47 16099.42 20797.63 18097.08 34299.50 23595.07 20699.13 30997.86 20393.59 33798.68 267
FMVSNet297.72 25897.36 26898.80 22499.51 16198.84 17599.45 16499.42 20796.49 27798.86 25499.29 29490.26 32598.98 32996.44 29696.56 27998.58 311
iter_conf_final98.71 14798.61 15298.99 17999.49 17398.96 15799.63 7099.41 21098.19 11099.39 14299.77 11294.82 21499.38 25999.30 4197.52 24498.64 286
bld_raw_dy_0_6498.69 15198.58 15498.99 17998.88 30198.96 15799.80 2499.41 21097.91 14899.32 16199.87 2995.70 18799.31 28199.09 6297.27 26698.71 253
test_low_dy_conf_00198.76 14498.71 13098.92 19298.92 29698.71 18899.87 999.41 21097.81 16299.35 15599.93 496.63 15399.28 28499.03 6797.44 25798.78 235
TEST999.67 11099.65 6299.05 28299.41 21096.22 29998.95 23599.49 23898.77 5599.91 96
train_agg99.02 10998.77 12499.77 5099.67 11099.65 6299.05 28299.41 21096.28 29298.95 23599.49 23898.76 5799.91 9697.63 22599.72 11299.75 78
test_899.67 11099.61 6899.03 28899.41 21096.28 29298.93 24099.48 24498.76 5799.91 96
v897.95 22197.63 23798.93 19098.95 29498.81 18199.80 2499.41 21096.03 31599.10 20999.42 25894.92 21099.30 28296.94 27794.08 33298.66 282
v1097.85 23397.52 24598.86 21398.99 28798.67 19199.75 3799.41 21095.70 31898.98 23199.41 26294.75 22399.23 29396.01 30494.63 32298.67 274
CDPH-MVS99.13 8498.91 10499.80 4399.75 6899.71 4999.15 26399.41 21096.60 27299.60 9499.55 21698.83 4799.90 11197.48 24199.83 7799.78 70
save fliter99.76 5799.59 7399.14 26599.40 21999.00 28
agg_prior199.01 11298.76 12699.76 5399.67 11099.62 6698.99 29899.40 21996.26 29598.87 24999.49 23898.77 5599.91 9697.69 22299.72 11299.75 78
agg_prior99.67 11099.62 6699.40 21998.87 24999.91 96
MCST-MVS99.43 3799.30 4699.82 3899.79 4699.74 4699.29 22799.40 21998.79 5799.52 11199.62 19398.91 4099.90 11198.64 12799.75 10599.82 40
TSAR-MVS + MP.99.58 599.50 1099.81 4199.91 199.66 5999.63 7099.39 22398.91 4699.78 3599.85 3899.36 299.94 5898.84 9999.88 3899.82 40
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MVS97.28 28896.55 29799.48 11698.78 31698.95 16199.27 23499.39 22383.53 36798.08 31699.54 22196.97 14299.87 12794.23 33399.16 16199.63 133
VNet99.11 9598.90 10599.73 6199.52 15999.56 7899.41 18399.39 22399.01 2499.74 4799.78 10595.56 19099.92 8599.52 1198.18 22099.72 96
HQP3-MVS99.39 22397.58 239
cascas97.69 26397.43 26298.48 25198.60 33797.30 26198.18 36299.39 22392.96 35198.41 30198.78 34093.77 25899.27 28898.16 18198.61 19698.86 229
HQP-MVS98.02 21097.90 20798.37 26799.19 24896.83 29098.98 30299.39 22398.24 10298.66 27799.40 26592.47 28999.64 22597.19 26197.58 23998.64 286
CL-MVSNet_self_test94.49 32693.97 32996.08 34296.16 36693.67 35798.33 35699.38 22995.13 32397.33 33598.15 35592.69 28296.57 36988.67 36379.87 36997.99 351
OPM-MVS98.19 18698.10 18398.45 25798.88 30197.07 27499.28 22999.38 22998.57 7099.22 18599.81 7192.12 29699.66 21898.08 18897.54 24398.61 306
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EI-MVSNet98.67 15498.67 13598.68 23399.35 20797.97 23799.50 14099.38 22996.93 25099.20 19199.83 5197.87 11399.36 26898.38 16197.56 24198.71 253
test20.0396.12 31195.96 30896.63 33897.44 35695.45 32899.51 13499.38 22996.55 27496.16 35199.25 30293.76 25996.17 37187.35 36894.22 32998.27 336
mvs_anonymous99.03 10898.99 9299.16 16199.38 20298.52 20899.51 13499.38 22997.79 16399.38 14699.81 7197.30 12999.45 24599.35 3198.99 17999.51 164
MVSTER98.49 16298.32 17099.00 17799.35 20799.02 14699.54 12399.38 22997.41 20599.20 19199.73 13693.86 25699.36 26898.87 8997.56 24198.62 297
FMVSNet398.03 20897.76 22498.84 21799.39 20198.98 15099.40 19199.38 22996.67 26499.07 21599.28 29692.93 27098.98 32997.10 26696.65 27698.56 313
PAPM_NR99.04 10698.84 11699.66 7199.74 7699.44 9899.39 19599.38 22997.70 17399.28 16999.28 29698.34 9699.85 13696.96 27599.45 14099.69 108
DVP-MVScopyleft99.57 899.47 1499.88 699.85 2699.89 499.57 10499.37 23799.10 1299.81 2599.80 8698.94 3599.96 2098.93 7999.86 5399.81 46
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
miper_lstm_enhance98.00 21597.91 20698.28 27799.34 21197.43 25998.88 31799.36 23896.48 28198.80 25999.55 21695.98 17298.91 34097.27 25395.50 30798.51 316
v124097.69 26397.32 27698.79 22598.85 30998.43 21899.48 15599.36 23896.11 31099.27 17299.36 27693.76 25999.24 29294.46 33095.23 31198.70 258
v2v48298.06 20097.77 22198.92 19298.90 29898.82 17999.57 10499.36 23896.65 26699.19 19499.35 27994.20 24499.25 29097.72 21894.97 31798.69 262
HY-MVS97.30 798.85 13398.64 14099.47 11999.42 19099.08 14099.62 7699.36 23897.39 20799.28 16999.68 16296.44 16199.92 8598.37 16398.22 21599.40 186
PAPR98.63 15898.34 16899.51 11299.40 19899.03 14598.80 32599.36 23896.33 28999.00 22999.12 31898.46 8699.84 14295.23 32199.37 15199.66 118
DIV-MVS_self_test98.01 21397.85 21398.48 25199.24 23897.95 24198.71 33499.35 24396.50 27698.60 29099.54 22195.72 18699.03 32297.21 25795.77 29898.46 324
v114497.98 21797.69 23098.85 21698.87 30598.66 19299.54 12399.35 24396.27 29499.23 18499.35 27994.67 22799.23 29396.73 28795.16 31398.68 267
WR-MVS98.06 20097.73 22799.06 16998.86 30899.25 11999.19 25699.35 24397.30 21398.66 27799.43 25593.94 25399.21 30198.58 13894.28 32898.71 253
test1199.35 243
cl____98.01 21397.84 21498.55 24599.25 23797.97 23798.71 33499.34 24796.47 28398.59 29199.54 22195.65 18999.21 30197.21 25795.77 29898.46 324
v14419297.92 22597.60 23998.87 20998.83 31198.65 19399.55 11999.34 24796.20 30099.32 16199.40 26594.36 23999.26 28996.37 29995.03 31698.70 258
v192192097.80 24597.45 25498.84 21798.80 31298.53 20499.52 12999.34 24796.15 30799.24 18099.47 24793.98 25299.29 28395.40 31795.13 31498.69 262
v119297.81 24397.44 25998.91 19798.88 30198.68 19099.51 13499.34 24796.18 30299.20 19199.34 28294.03 25199.36 26895.32 32095.18 31298.69 262
V4298.06 20097.79 21698.86 21398.98 29098.84 17599.69 4699.34 24796.53 27599.30 16599.37 27394.67 22799.32 27897.57 23394.66 32198.42 327
MVS_Test99.10 9898.97 9699.48 11699.49 17399.14 13499.67 5399.34 24797.31 21299.58 9999.76 11897.65 12099.82 16098.87 8999.07 17299.46 177
MG-MVS99.13 8499.02 8799.45 12299.57 14998.63 19599.07 27799.34 24798.99 3199.61 9099.82 5897.98 11299.87 12797.00 27199.80 9099.85 18
MSC_two_6792asdad99.87 1299.51 16199.76 4199.33 25499.96 2098.87 8999.84 6899.89 2
No_MVS99.87 1299.51 16199.76 4199.33 25499.96 2098.87 8999.84 6899.89 2
cl2297.85 23397.64 23698.48 25199.09 27197.87 24498.60 34399.33 25497.11 23398.87 24999.22 30592.38 29499.17 30598.21 17495.99 29298.42 327
c3_l98.12 19598.04 19298.38 26699.30 22297.69 25598.81 32499.33 25496.67 26498.83 25599.34 28297.11 13598.99 32897.58 22995.34 30998.48 318
v14897.79 24697.55 24198.50 24898.74 32197.72 25299.54 12399.33 25496.26 29598.90 24499.51 23294.68 22699.14 30697.83 20693.15 34398.63 294
MDA-MVSNet-bldmvs94.96 32293.98 32897.92 29998.24 34797.27 26399.15 26399.33 25493.80 34280.09 37499.03 32588.31 34797.86 35993.49 34194.36 32798.62 297
TSAR-MVS + GP.99.36 5399.36 2799.36 13299.67 11098.61 19899.07 27799.33 25499.00 2899.82 2399.81 7199.06 1699.84 14299.09 6299.42 14299.65 122
CR-MVSNet98.17 18997.93 20598.87 20999.18 25198.49 21299.22 25399.33 25496.96 24599.56 10299.38 27094.33 24099.00 32794.83 32798.58 19999.14 199
Patchmtry97.75 25297.40 26598.81 22299.10 26998.87 17199.11 27399.33 25494.83 33198.81 25799.38 27094.33 24099.02 32496.10 30195.57 30498.53 314
EPP-MVSNet99.13 8498.99 9299.53 10499.65 12499.06 14399.81 2099.33 25497.43 20299.60 9499.88 2397.14 13399.84 14299.13 5898.94 18199.69 108
IU-MVS99.84 3399.88 899.32 26498.30 9899.84 1598.86 9499.85 6099.89 2
miper_enhance_ethall98.16 19098.08 18798.41 26298.96 29397.72 25298.45 35099.32 26496.95 24798.97 23399.17 31097.06 13899.22 29697.86 20395.99 29298.29 335
MS-PatchMatch97.24 29097.32 27696.99 33098.45 34493.51 35998.82 32399.32 26497.41 20598.13 31599.30 29288.99 33999.56 23695.68 31199.80 9097.90 357
miper_ehance_all_eth98.18 18898.10 18398.41 26299.23 23997.72 25298.72 33399.31 26796.60 27298.88 24799.29 29497.29 13099.13 30997.60 22795.99 29298.38 332
eth_miper_zixun_eth98.05 20597.96 20098.33 26999.26 23397.38 26098.56 34699.31 26796.65 26698.88 24799.52 22896.58 15599.12 31397.39 25095.53 30698.47 320
tpm cat197.39 28597.36 26897.50 32099.17 25793.73 35499.43 17499.31 26791.27 35698.71 26899.08 31994.31 24299.77 18096.41 29898.50 20599.00 218
PMMVS98.80 14098.62 14699.34 13399.27 23198.70 18998.76 32999.31 26797.34 20999.21 18899.07 32097.20 13299.82 16098.56 14398.87 18799.52 158
our_test_397.65 27097.68 23197.55 31898.62 33494.97 33898.84 32199.30 27196.83 25698.19 31299.34 28297.01 14099.02 32495.00 32596.01 29098.64 286
Effi-MVS+-dtu98.78 14198.89 10798.47 25599.33 21396.91 28999.57 10499.30 27198.47 7899.41 13498.99 32996.78 14799.74 18798.73 11399.38 14498.74 247
CANet_DTU98.97 11698.87 10999.25 15299.33 21398.42 22099.08 27699.30 27199.16 699.43 12799.75 12395.27 19999.97 1298.56 14399.95 899.36 188
mvs-test198.86 12598.84 11698.89 20299.33 21397.77 24999.44 16899.30 27198.47 7899.10 20999.43 25596.78 14799.95 4798.73 11399.02 17798.96 224
VDDNet97.55 27497.02 29099.16 16199.49 17398.12 23299.38 20099.30 27195.35 32299.68 6299.90 1382.62 36799.93 7399.31 3898.13 22499.42 182
Anonymous2024052196.20 30995.89 31097.13 32897.72 35494.96 33999.79 2999.29 27693.01 35097.20 33999.03 32589.69 33498.36 34991.16 35596.13 28898.07 344
test1299.75 5499.64 12699.61 6899.29 27699.21 18898.38 9399.89 11999.74 10899.74 83
EGC-MVSNET82.80 33877.86 34497.62 31497.91 35096.12 31399.33 21899.28 2788.40 38125.05 38299.27 29984.11 36399.33 27489.20 36198.22 21597.42 363
new-patchmatchnet94.48 32794.08 32795.67 34495.08 37192.41 36399.18 25799.28 27894.55 33793.49 36297.37 36187.86 35397.01 36791.57 35388.36 35897.61 359
RRT_MVS98.70 14898.66 13898.83 21998.90 29898.45 21699.89 299.28 27897.76 16698.94 23899.92 996.98 14199.25 29099.28 4397.00 27398.80 233
jason99.13 8499.03 8499.45 12299.46 18398.87 17199.12 26799.26 28198.03 14099.79 3099.65 17597.02 13999.85 13699.02 7099.90 2599.65 122
jason: jason.
test_040296.64 30096.24 30297.85 30398.85 30996.43 30599.44 16899.26 28193.52 34596.98 34499.52 22888.52 34599.20 30392.58 35297.50 24897.93 355
test_method91.10 33391.36 33690.31 35395.85 36773.72 38194.89 37099.25 28368.39 37395.82 35499.02 32780.50 37098.95 33893.64 33994.89 32098.25 338
PCF-MVS97.08 1497.66 26997.06 28999.47 11999.61 13999.09 13998.04 36499.25 28391.24 35798.51 29499.70 14594.55 23399.91 9692.76 35099.85 6099.42 182
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MDA-MVSNet_test_wron95.45 31794.60 32398.01 29398.16 34897.21 26899.11 27399.24 28593.49 34680.73 37398.98 33293.02 26898.18 35094.22 33494.45 32598.64 286
YYNet195.36 31994.51 32597.92 29997.89 35197.10 27099.10 27599.23 28693.26 34980.77 37299.04 32492.81 27498.02 35494.30 33194.18 33098.64 286
hse-mvs297.50 27997.14 28698.59 23799.49 17397.05 27699.28 22999.22 28798.94 4199.66 7399.42 25894.93 20899.65 22299.48 1883.80 36599.08 207
AUN-MVS96.88 29596.31 30198.59 23799.48 18197.04 27999.27 23499.22 28797.44 20198.51 29499.41 26291.97 29899.66 21897.71 21983.83 36499.07 212
DeepMVS_CXcopyleft93.34 34799.29 22682.27 37399.22 28785.15 36596.33 34999.05 32390.97 31999.73 19393.57 34097.77 23298.01 348
pmmvs498.13 19397.90 20798.81 22298.61 33698.87 17198.99 29899.21 29096.44 28499.06 21999.58 20695.90 17999.11 31497.18 26396.11 28998.46 324
KD-MVS_2432*160094.62 32493.72 33097.31 32397.19 36395.82 31898.34 35499.20 29195.00 32897.57 33098.35 35187.95 35198.10 35292.87 34877.00 37198.01 348
miper_refine_blended94.62 32493.72 33097.31 32397.19 36395.82 31898.34 35499.20 29195.00 32897.57 33098.35 35187.95 35198.10 35292.87 34877.00 37198.01 348
tpmvs97.98 21798.02 19597.84 30499.04 28194.73 34299.31 22199.20 29196.10 31498.76 26499.42 25894.94 20799.81 16596.97 27498.45 20798.97 222
new_pmnet96.38 30696.03 30697.41 32198.13 34995.16 33699.05 28299.20 29193.94 34097.39 33498.79 33991.61 31199.04 32090.43 35795.77 29898.05 346
IS-MVSNet99.05 10598.87 10999.57 9299.73 8499.32 10899.75 3799.20 29198.02 14199.56 10299.86 3396.54 15799.67 21598.09 18499.13 16599.73 90
lupinMVS99.13 8499.01 9199.46 12199.51 16198.94 16499.05 28299.16 29697.86 15199.80 2899.56 21397.39 12499.86 13098.94 7799.85 6099.58 147
GA-MVS97.85 23397.47 25199.00 17799.38 20297.99 23698.57 34499.15 29797.04 23998.90 24499.30 29289.83 33199.38 25996.70 28998.33 20999.62 135
ADS-MVSNet98.20 18598.08 18798.56 24399.33 21396.48 30399.23 24899.15 29796.24 29799.10 20999.67 16894.11 24899.71 20396.81 28399.05 17399.48 169
Patchmatch-test97.93 22297.65 23498.77 22799.18 25197.07 27499.03 28899.14 29996.16 30598.74 26599.57 21094.56 23299.72 19793.36 34299.11 16699.52 158
BH-untuned98.42 16798.36 16598.59 23799.49 17396.70 29599.27 23499.13 30097.24 22098.80 25999.38 27095.75 18499.74 18797.07 26999.16 16199.33 192
tpmrst98.33 17598.48 16097.90 30199.16 25994.78 34199.31 22199.11 30197.27 21699.45 12299.59 20395.33 19799.84 14298.48 15198.61 19699.09 206
DPM-MVS98.95 11798.71 13099.66 7199.63 12999.55 8098.64 34099.10 30297.93 14699.42 13099.55 21698.67 7099.80 17095.80 30899.68 12399.61 137
pmmvs-eth3d95.34 32094.73 32297.15 32695.53 37095.94 31699.35 21399.10 30295.13 32393.55 36197.54 35888.15 35097.91 35794.58 32889.69 35797.61 359
PAPM97.59 27397.09 28899.07 16899.06 27798.26 22598.30 35899.10 30294.88 33098.08 31699.34 28296.27 16699.64 22589.87 35998.92 18499.31 193
Anonymous2023120696.22 30796.03 30696.79 33797.31 36094.14 35099.63 7099.08 30596.17 30397.04 34399.06 32293.94 25397.76 36186.96 36995.06 31598.47 320
ADS-MVSNet298.02 21098.07 19097.87 30299.33 21395.19 33499.23 24899.08 30596.24 29799.10 20999.67 16894.11 24898.93 33996.81 28399.05 17399.48 169
test_yl98.86 12598.63 14199.54 9699.49 17399.18 12599.50 14099.07 30798.22 10699.61 9099.51 23295.37 19599.84 14298.60 13598.33 20999.59 143
DCV-MVSNet98.86 12598.63 14199.54 9699.49 17399.18 12599.50 14099.07 30798.22 10699.61 9099.51 23295.37 19599.84 14298.60 13598.33 20999.59 143
PatchT97.03 29496.44 29998.79 22598.99 28798.34 22299.16 25999.07 30792.13 35399.52 11197.31 36394.54 23498.98 32988.54 36498.73 19599.03 215
USDC97.34 28697.20 28497.75 31099.07 27495.20 33398.51 34899.04 31097.99 14298.31 30799.86 3389.02 33899.55 23895.67 31297.36 26498.49 317
CostFormer97.72 25897.73 22797.71 31299.15 26294.02 35199.54 12399.02 31194.67 33499.04 22199.35 27992.35 29599.77 18098.50 15097.94 22899.34 191
OurMVSNet-221017-097.88 22897.77 22198.19 28198.71 32696.53 30199.88 499.00 31297.79 16398.78 26299.94 391.68 30699.35 27197.21 25796.99 27498.69 262
LCM-MVSNet86.80 33685.22 34091.53 35187.81 37880.96 37498.23 36198.99 31371.05 37190.13 36796.51 36548.45 38096.88 36890.51 35685.30 36296.76 364
MIMVSNet97.73 25697.45 25498.57 24199.45 18897.50 25799.02 29198.98 31496.11 31099.41 13499.14 31490.28 32498.74 34495.74 30998.93 18299.47 175
SCA98.19 18698.16 17798.27 27899.30 22295.55 32399.07 27798.97 31597.57 18599.43 12799.57 21092.72 27899.74 18797.58 22999.20 15999.52 158
JIA-IIPM97.50 27997.02 29098.93 19098.73 32297.80 24899.30 22398.97 31591.73 35598.91 24294.86 36895.10 20599.71 20397.58 22997.98 22799.28 195
alignmvs98.81 13798.56 15699.58 9099.43 18999.42 10099.51 13498.96 31798.61 6899.35 15598.92 33594.78 21899.77 18099.35 3198.11 22599.54 152
tpm297.44 28497.34 27397.74 31199.15 26294.36 34899.45 16498.94 31893.45 34898.90 24499.44 25391.35 31499.59 23497.31 25198.07 22699.29 194
baseline198.31 17697.95 20299.38 13199.50 17198.74 18599.59 9098.93 31998.41 8599.14 20199.60 20094.59 23099.79 17398.48 15193.29 34099.61 137
EG-PatchMatch MVS95.97 31395.69 31396.81 33697.78 35392.79 36299.16 25998.93 31996.16 30594.08 36099.22 30582.72 36699.47 24295.67 31297.50 24898.17 341
PatchmatchNetpermissive98.31 17698.36 16598.19 28199.16 25995.32 33199.27 23498.92 32197.37 20899.37 14899.58 20694.90 21199.70 20997.43 24899.21 15899.54 152
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ITE_SJBPF98.08 28899.29 22696.37 30698.92 32198.34 9398.83 25599.75 12391.09 31799.62 23195.82 30697.40 26098.25 338
FPMVS84.93 33785.65 33882.75 35886.77 37963.39 38398.35 35398.92 32174.11 37083.39 37098.98 33250.85 37892.40 37584.54 37294.97 31792.46 369
TransMVSNet (Re)97.15 29196.58 29698.86 21399.12 26498.85 17499.49 15098.91 32495.48 32097.16 34099.80 8693.38 26399.11 31494.16 33591.73 35198.62 297
EPNet98.86 12598.71 13099.30 14397.20 36298.18 22799.62 7698.91 32499.28 398.63 28599.81 7195.96 17399.99 199.24 4899.72 11299.73 90
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs597.52 27697.30 27898.16 28398.57 33996.73 29499.27 23498.90 32696.14 30898.37 30499.53 22591.54 31299.14 30697.51 23995.87 29698.63 294
BH-w/o98.00 21597.89 21198.32 27199.35 20796.20 31299.01 29698.90 32696.42 28698.38 30399.00 32895.26 20199.72 19796.06 30298.61 19699.03 215
MTMP99.54 12398.88 328
dp97.75 25297.80 21597.59 31699.10 26993.71 35599.32 21998.88 32896.48 28199.08 21499.55 21692.67 28399.82 16096.52 29498.58 19999.24 196
MVP-Stereo97.81 24397.75 22597.99 29697.53 35596.60 30098.96 30698.85 33097.22 22297.23 33799.36 27695.28 19899.46 24495.51 31499.78 9797.92 356
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
VDD-MVS97.73 25697.35 27098.88 20599.47 18297.12 26999.34 21698.85 33098.19 11099.67 6899.85 3882.98 36599.92 8599.49 1798.32 21399.60 139
Baseline_NR-MVSNet97.76 24897.45 25498.68 23399.09 27198.29 22399.41 18398.85 33095.65 31998.63 28599.67 16894.82 21499.10 31698.07 19192.89 34598.64 286
LF4IMVS97.52 27697.46 25397.70 31398.98 29095.55 32399.29 22798.82 33398.07 13298.66 27799.64 18289.97 33099.61 23297.01 27096.68 27597.94 354
BH-RMVSNet98.41 16998.08 18799.40 12899.41 19398.83 17899.30 22398.77 33497.70 17398.94 23899.65 17592.91 27399.74 18796.52 29499.55 13799.64 129
EPNet_dtu98.03 20897.96 20098.23 27998.27 34695.54 32599.23 24898.75 33599.02 2197.82 32699.71 14196.11 16999.48 24193.04 34699.65 12899.69 108
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TDRefinement95.42 31894.57 32497.97 29789.83 37796.11 31499.48 15598.75 33596.74 25996.68 34699.88 2388.65 34399.71 20398.37 16382.74 36698.09 343
OpenMVS_ROBcopyleft92.34 2094.38 32893.70 33296.41 34197.38 35793.17 36099.06 28098.75 33586.58 36494.84 35998.26 35481.53 36999.32 27889.01 36297.87 23096.76 364
thres100view90097.76 24897.45 25498.69 23299.72 8997.86 24699.59 9098.74 33897.93 14699.26 17798.62 34491.75 30399.83 15393.22 34398.18 22098.37 333
thres600view797.86 23297.51 24798.92 19299.72 8997.95 24199.59 9098.74 33897.94 14599.27 17298.62 34491.75 30399.86 13093.73 33898.19 21998.96 224
thres20097.61 27297.28 27998.62 23599.64 12698.03 23399.26 24398.74 33897.68 17599.09 21398.32 35391.66 30999.81 16592.88 34798.22 21598.03 347
MDTV_nov1_ep1398.32 17099.11 26694.44 34699.27 23498.74 33897.51 19399.40 13999.62 19394.78 21899.76 18497.59 22898.81 192
TinyColmap97.12 29296.89 29297.83 30599.07 27495.52 32698.57 34498.74 33897.58 18497.81 32799.79 9888.16 34999.56 23695.10 32297.21 26898.39 331
tfpn200view997.72 25897.38 26698.72 23099.69 10597.96 23999.50 14098.73 34397.83 15699.17 19898.45 34991.67 30799.83 15393.22 34398.18 22098.37 333
ambc93.06 34892.68 37382.36 37298.47 34998.73 34395.09 35797.41 35955.55 37799.10 31696.42 29791.32 35297.71 358
thres40097.77 24797.38 26698.92 19299.69 10597.96 23999.50 14098.73 34397.83 15699.17 19898.45 34991.67 30799.83 15393.22 34398.18 22098.96 224
SixPastTwentyTwo97.50 27997.33 27598.03 29098.65 33196.23 31199.77 3298.68 34697.14 22797.90 32399.93 490.45 32399.18 30497.00 27196.43 28298.67 274
test0.0.03 197.71 26197.42 26398.56 24398.41 34597.82 24798.78 32798.63 34797.34 20998.05 32098.98 33294.45 23798.98 32995.04 32497.15 27198.89 228
TR-MVS97.76 24897.41 26498.82 22099.06 27797.87 24498.87 31998.56 34896.63 26998.68 27699.22 30592.49 28899.65 22295.40 31797.79 23198.95 227
Anonymous20240521198.30 17897.98 19899.26 15199.57 14998.16 22899.41 18398.55 34996.03 31599.19 19499.74 12991.87 30099.92 8599.16 5698.29 21499.70 105
tpm97.67 26897.55 24198.03 29099.02 28395.01 33799.43 17498.54 35096.44 28499.12 20499.34 28291.83 30299.60 23397.75 21496.46 28199.48 169
Patchmatch-RL test95.84 31495.81 31295.95 34395.61 36890.57 36898.24 35998.39 35195.10 32795.20 35698.67 34394.78 21897.77 36096.28 30090.02 35599.51 164
LCM-MVSNet-Re97.83 23898.15 17896.87 33599.30 22292.25 36499.59 9098.26 35297.43 20296.20 35099.13 31596.27 16698.73 34598.17 18098.99 17999.64 129
LFMVS97.90 22797.35 27099.54 9699.52 15999.01 14899.39 19598.24 35397.10 23499.65 7999.79 9884.79 36299.91 9699.28 4398.38 20899.69 108
PM-MVS92.96 33292.23 33595.14 34595.61 36889.98 37099.37 20398.21 35494.80 33295.04 35897.69 35765.06 37497.90 35894.30 33189.98 35697.54 362
PMVScopyleft70.75 2275.98 34474.97 34579.01 36070.98 38355.18 38493.37 37298.21 35465.08 37761.78 37893.83 36921.74 38592.53 37478.59 37391.12 35389.34 373
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
pmmvs394.09 33093.25 33396.60 33994.76 37294.49 34598.92 31398.18 35689.66 36096.48 34898.06 35686.28 35797.33 36489.68 36087.20 36097.97 353
door-mid98.05 357
tmp_tt82.80 33881.52 34186.66 35466.61 38468.44 38292.79 37397.92 35868.96 37280.04 37599.85 3885.77 35996.15 37297.86 20343.89 37795.39 368
door97.92 358
test-LLR98.06 20097.90 20798.55 24598.79 31397.10 27098.67 33697.75 36097.34 20998.61 28898.85 33694.45 23799.45 24597.25 25599.38 14499.10 202
test-mter97.49 28297.13 28798.55 24598.79 31397.10 27098.67 33697.75 36096.65 26698.61 28898.85 33688.23 34899.45 24597.25 25599.38 14499.10 202
IB-MVS95.67 1896.22 30795.44 31798.57 24199.21 24496.70 29598.65 33997.74 36296.71 26197.27 33698.54 34786.03 35899.92 8598.47 15486.30 36199.10 202
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TESTMET0.1,197.55 27497.27 28298.40 26498.93 29596.53 30198.67 33697.61 36396.96 24598.64 28499.28 29688.63 34499.45 24597.30 25299.38 14499.21 198
ET-MVSNet_ETH3D96.49 30395.64 31499.05 17199.53 15798.82 17998.84 32197.51 36497.63 18084.77 36899.21 30892.09 29798.91 34098.98 7392.21 35099.41 184
PMMVS286.87 33585.37 33991.35 35290.21 37683.80 37198.89 31697.45 36583.13 36891.67 36695.03 36648.49 37994.70 37385.86 37177.62 37095.54 367
K. test v397.10 29396.79 29498.01 29398.72 32496.33 30899.87 997.05 36697.59 18296.16 35199.80 8688.71 34199.04 32096.69 29096.55 28098.65 284
tttt051798.42 16798.14 17999.28 14999.66 11998.38 22199.74 4096.85 36797.68 17599.79 3099.74 12991.39 31399.89 11998.83 10299.56 13599.57 148
thisisatest051598.14 19297.79 21699.19 15899.50 17198.50 21198.61 34196.82 36896.95 24799.54 10799.43 25591.66 30999.86 13098.08 18899.51 13999.22 197
thisisatest053098.35 17498.03 19399.31 13999.63 12998.56 20199.54 12396.75 36997.53 19199.73 4999.65 17591.25 31699.89 11998.62 12999.56 13599.48 169
DSMNet-mixed97.25 28997.35 27096.95 33397.84 35293.61 35899.57 10496.63 37096.13 30998.87 24998.61 34694.59 23097.70 36295.08 32398.86 18899.55 150
baseline297.87 23097.55 24198.82 22099.18 25198.02 23499.41 18396.58 37196.97 24496.51 34799.17 31093.43 26299.57 23597.71 21999.03 17598.86 229
MVS-HIRNet95.75 31595.16 31997.51 31999.30 22293.69 35698.88 31795.78 37285.09 36698.78 26292.65 37091.29 31599.37 26494.85 32699.85 6099.46 177
E-PMN80.61 34079.88 34282.81 35790.75 37576.38 37997.69 36695.76 37366.44 37583.52 36992.25 37162.54 37687.16 37768.53 37661.40 37484.89 375
test111198.04 20698.11 18297.83 30599.74 7693.82 35299.58 9895.40 37499.12 1099.65 7999.93 490.73 32199.84 14299.43 2599.38 14499.82 40
ECVR-MVScopyleft98.04 20698.05 19198.00 29599.74 7694.37 34799.59 9094.98 37599.13 899.66 7399.93 490.67 32299.84 14299.40 2699.38 14499.80 56
lessismore_v097.79 30998.69 32895.44 32994.75 37695.71 35599.87 2988.69 34299.32 27895.89 30594.93 31998.62 297
EPMVS97.82 24197.65 23498.35 26898.88 30195.98 31599.49 15094.71 37797.57 18599.26 17799.48 24492.46 29299.71 20397.87 20299.08 17199.35 189
gg-mvs-nofinetune96.17 31095.32 31898.73 22998.79 31398.14 23099.38 20094.09 37891.07 35998.07 31991.04 37389.62 33699.35 27196.75 28599.09 17098.68 267
GG-mvs-BLEND98.45 25798.55 34098.16 22899.43 17493.68 37997.23 33798.46 34889.30 33799.22 29695.43 31698.22 21597.98 352
MVEpermissive76.82 2176.91 34374.31 34784.70 35585.38 38176.05 38096.88 36993.17 38067.39 37471.28 37689.01 37521.66 38687.69 37671.74 37572.29 37390.35 372
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high77.30 34274.86 34684.62 35675.88 38277.61 37797.63 36793.15 38188.81 36264.27 37789.29 37436.51 38183.93 37975.89 37452.31 37692.33 371
N_pmnet94.95 32395.83 31192.31 34998.47 34379.33 37699.12 26792.81 38293.87 34197.68 32999.13 31593.87 25599.01 32691.38 35496.19 28798.59 310
EMVS80.02 34179.22 34382.43 35991.19 37476.40 37897.55 36892.49 38366.36 37683.01 37191.27 37264.63 37585.79 37865.82 37760.65 37585.08 374
test250696.81 29796.65 29597.29 32599.74 7692.21 36599.60 8385.06 38499.13 899.77 3899.93 487.82 35499.85 13699.38 2799.38 14499.80 56
testmvs39.17 34643.78 34825.37 36336.04 38616.84 38798.36 35226.56 38520.06 37938.51 38067.32 37629.64 38315.30 38237.59 37939.90 37843.98 377
wuyk23d40.18 34541.29 35036.84 36186.18 38049.12 38579.73 37422.81 38627.64 37825.46 38128.45 38121.98 38448.89 38055.80 37823.56 38012.51 378
test12339.01 34742.50 34928.53 36239.17 38520.91 38698.75 33019.17 38719.83 38038.57 37966.67 37733.16 38215.42 38137.50 38029.66 37949.26 376
test_blank0.13 3510.17 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3831.57 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.02 3520.03 3550.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 3830.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.02 3520.03 3550.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 3830.00 3870.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas8.27 35011.03 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 38399.01 190.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.02 3520.03 3550.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 3830.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.02 3520.03 3550.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 3830.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.02 3520.03 3550.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 3830.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.02 3520.03 3550.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 3830.00 3870.00 3830.00 3810.00 3810.00 379
n20.00 388
nn0.00 388
ab-mvs-re8.30 34911.06 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38399.58 2060.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.02 3520.03 3550.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 3830.00 3870.00 3830.00 3810.00 3810.00 379
PC_three_145298.18 11499.84 1599.70 14599.31 398.52 34798.30 17199.80 9099.81 46
eth-test20.00 387
eth-test0.00 387
OPU-MVS99.64 8099.56 15399.72 4799.60 8399.70 14599.27 599.42 25598.24 17399.80 9099.79 62
test_0728_THIRD98.99 3199.81 2599.80 8699.09 1499.96 2098.85 9699.90 2599.88 8
GSMVS99.52 158
test_part299.81 4299.83 1799.77 38
sam_mvs194.86 21399.52 158
sam_mvs94.72 225
test_post199.23 24865.14 37994.18 24799.71 20397.58 229
test_post65.99 37894.65 22999.73 193
patchmatchnet-post98.70 34294.79 21799.74 187
gm-plane-assit98.54 34192.96 36194.65 33599.15 31399.64 22597.56 234
test9_res97.49 24099.72 11299.75 78
agg_prior297.21 25799.73 11199.75 78
test_prior499.56 7898.99 298
test_prior298.96 30698.34 9399.01 22499.52 22898.68 6797.96 19599.74 108
旧先验298.96 30696.70 26299.47 11999.94 5898.19 176
新几何299.01 296
原ACMM298.95 310
testdata299.95 4796.67 291
segment_acmp98.96 29
testdata198.85 32098.32 97
plane_prior799.29 22697.03 280
plane_prior699.27 23196.98 28492.71 280
plane_prior499.61 197
plane_prior397.00 28298.69 6499.11 206
plane_prior299.39 19598.97 37
plane_prior199.26 233
plane_prior96.97 28599.21 25598.45 8197.60 237
HQP5-MVS96.83 290
HQP-NCC99.19 24898.98 30298.24 10298.66 277
ACMP_Plane99.19 24898.98 30298.24 10298.66 277
BP-MVS97.19 261
HQP4-MVS98.66 27799.64 22598.64 286
HQP2-MVS92.47 289
NP-MVS99.23 23996.92 28899.40 265
MDTV_nov1_ep13_2view95.18 33599.35 21396.84 25499.58 9995.19 20497.82 20799.46 177
ACMMP++_ref97.19 269
ACMMP++97.43 258
Test By Simon98.75 60