This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
APDe-MVS97.82 597.73 498.08 1899.15 3594.82 2998.81 798.30 2594.76 3998.30 1798.90 393.77 1799.68 5197.93 199.69 399.75 5
MSC_two_6792asdad98.86 198.67 6696.94 197.93 10799.86 997.68 299.67 699.77 1
No_MVS98.86 198.67 6696.94 197.93 10799.86 997.68 299.67 699.77 1
patch_mono-296.83 4397.44 995.01 17199.05 4385.39 29696.98 16698.77 594.70 4197.99 2398.66 1493.61 1999.91 197.67 499.50 3699.72 10
SED-MVS98.05 297.99 198.24 1099.42 795.30 1898.25 3898.27 3195.13 1999.19 198.89 495.54 599.85 1897.52 599.66 1099.56 27
test_241102_TWO98.27 3195.13 1998.93 698.89 494.99 1199.85 1897.52 599.65 1299.74 7
DVP-MVScopyleft97.91 397.81 398.22 1299.45 395.36 1398.21 4597.85 11894.92 2898.73 1098.87 695.08 899.84 2397.52 599.67 699.48 47
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.51 499.45 395.93 598.21 4598.28 2899.86 997.52 599.67 699.75 5
DVP-MVS++98.06 197.99 198.28 998.67 6695.39 1199.29 198.28 2894.78 3798.93 698.87 696.04 299.86 997.45 999.58 2299.59 20
test_0728_THIRD94.78 3798.73 1098.87 695.87 499.84 2397.45 999.72 299.77 1
DROMVSNet96.42 5896.47 5296.26 11297.01 16891.52 12798.89 597.75 12494.42 4896.64 6597.68 10189.32 9298.60 18997.45 999.11 8898.67 129
IU-MVS99.42 795.39 1197.94 10690.40 18798.94 597.41 1299.66 1099.74 7
dcpmvs_296.37 6197.05 1794.31 21198.96 5084.11 31497.56 10997.51 15393.92 6197.43 3698.52 2592.75 2899.32 12097.32 1399.50 3699.51 39
CS-MVS96.86 3997.06 1596.26 11298.16 11191.16 14699.09 397.87 11395.30 1297.06 5398.03 7491.72 5398.71 18097.10 1499.17 7998.90 109
TSAR-MVS + MP.97.42 997.33 1197.69 4599.25 2994.24 4398.07 5597.85 11893.72 6998.57 1398.35 4293.69 1899.40 11397.06 1599.46 4499.44 53
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS97.68 697.44 998.37 798.90 5595.86 697.27 13798.08 6895.81 497.87 2898.31 5194.26 1399.68 5197.02 1699.49 4099.57 24
SD-MVS97.41 1097.53 797.06 7498.57 7994.46 3497.92 6898.14 5794.82 3499.01 398.55 2294.18 1497.41 31496.94 1799.64 1399.32 66
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CS-MVS-test96.89 3797.04 1896.45 9798.29 9691.66 12199.03 497.85 11895.84 396.90 5697.97 8091.24 6798.75 17496.92 1899.33 5998.94 104
Regformer-496.97 3096.87 2697.25 6498.34 9092.66 8996.96 16898.01 9595.12 2297.14 4798.42 3591.82 5199.61 6696.90 1999.13 8399.50 43
CANet96.39 6096.02 6597.50 5397.62 14093.38 7097.02 15997.96 10495.42 894.86 12197.81 9287.38 12199.82 2996.88 2099.20 7799.29 68
TSAR-MVS + GP.96.69 4996.49 5197.27 6398.31 9593.39 6996.79 18396.72 23494.17 5597.44 3497.66 10492.76 2799.33 11896.86 2197.76 12999.08 89
Regformer-396.85 4196.80 3497.01 7598.34 9092.02 11296.96 16897.76 12395.01 2697.08 5298.42 3591.71 5599.54 9096.80 2299.13 8399.48 47
Regformer-297.16 1996.99 2197.67 4698.32 9393.84 5696.83 17998.10 6595.24 1397.49 3198.25 5992.57 3599.61 6696.80 2299.29 6499.56 27
Regformer-197.10 2196.96 2397.54 5298.32 9393.48 6796.83 17997.99 10195.20 1597.46 3298.25 5992.48 3999.58 7596.79 2499.29 6499.55 31
DeepPCF-MVS93.97 196.61 5297.09 1495.15 16498.09 11486.63 27696.00 24898.15 5595.43 797.95 2498.56 2093.40 2099.36 11796.77 2599.48 4199.45 51
SMA-MVScopyleft97.35 1397.03 1998.30 899.06 4295.42 1097.94 6698.18 5090.57 18398.85 998.94 193.33 2199.83 2696.72 2699.68 499.63 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft97.86 497.65 598.47 599.17 3495.78 797.21 14698.35 2095.16 1898.71 1298.80 1195.05 1099.89 496.70 2799.73 199.73 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS97.59 897.54 697.73 4199.40 1293.77 6198.53 1598.29 2695.55 698.56 1497.81 9293.90 1599.65 5796.62 2899.21 7699.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MSLP-MVS++96.94 3397.06 1596.59 8698.72 6391.86 11697.67 9598.49 1394.66 4397.24 4298.41 3892.31 4298.94 15896.61 2999.46 4498.96 101
MP-MVS-pluss96.70 4896.27 5997.98 2499.23 3294.71 3096.96 16898.06 7790.67 17495.55 11098.78 1291.07 7299.86 996.58 3099.55 2599.38 62
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SteuartSystems-ACMMP97.62 797.53 797.87 2798.39 8794.25 4298.43 2498.27 3195.34 1198.11 2098.56 2094.53 1299.71 4296.57 3199.62 1599.65 12
Skip Steuart: Steuart Systems R&D Blog.
MCST-MVS97.18 1796.84 3098.20 1399.30 2695.35 1597.12 15498.07 7493.54 7796.08 8897.69 10093.86 1699.71 4296.50 3299.39 5399.55 31
xxxxxxxxxxxxxcwj97.36 1297.20 1297.83 2998.91 5394.28 3997.02 15997.22 19195.35 998.27 1898.65 1693.33 2199.72 3996.49 3399.52 2999.51 39
SF-MVS97.39 1197.13 1398.17 1499.02 4695.28 2098.23 4298.27 3192.37 12598.27 1898.65 1693.33 2199.72 3996.49 3399.52 2999.51 39
EI-MVSNet-Vis-set96.51 5596.47 5296.63 8398.24 10191.20 14196.89 17497.73 12794.74 4096.49 7398.49 2890.88 7799.58 7596.44 3598.32 11399.13 83
VDD-MVS93.82 13193.08 13896.02 12497.88 12589.96 18297.72 8995.85 27692.43 12395.86 9798.44 3268.42 33899.39 11496.31 3694.85 18698.71 126
test117296.93 3496.86 2797.15 7099.10 3692.34 9897.96 6598.04 8593.79 6797.35 3998.53 2491.40 6399.56 8596.30 3799.30 6399.55 31
ACMMP_NAP97.20 1696.86 2798.23 1199.09 3895.16 2497.60 10598.19 4892.82 11097.93 2598.74 1391.60 5999.86 996.26 3899.52 2999.67 11
diffmvs95.25 8895.13 8695.63 14296.43 19989.34 20595.99 24997.35 18292.83 10996.31 8097.37 12486.44 13298.67 18396.26 3897.19 14698.87 114
EI-MVSNet-UG-set96.34 6296.30 5896.47 9498.20 10690.93 15396.86 17597.72 13094.67 4296.16 8598.46 3090.43 8399.58 7596.23 4097.96 12398.90 109
SR-MVS97.01 2996.86 2797.47 5499.09 3893.27 7597.98 6098.07 7493.75 6897.45 3398.48 2991.43 6299.59 7296.22 4199.27 6899.54 34
xiu_mvs_v1_base_debu95.01 9494.76 9295.75 13496.58 18791.71 11796.25 23397.35 18292.99 9996.70 6096.63 17082.67 19299.44 10896.22 4197.46 13396.11 228
xiu_mvs_v1_base95.01 9494.76 9295.75 13496.58 18791.71 11796.25 23397.35 18292.99 9996.70 6096.63 17082.67 19299.44 10896.22 4197.46 13396.11 228
xiu_mvs_v1_base_debi95.01 9494.76 9295.75 13496.58 18791.71 11796.25 23397.35 18292.99 9996.70 6096.63 17082.67 19299.44 10896.22 4197.46 13396.11 228
alignmvs95.87 7595.23 8397.78 3697.56 14695.19 2297.86 7297.17 19494.39 5096.47 7596.40 18385.89 14099.20 12896.21 4595.11 18498.95 103
canonicalmvs96.02 7095.45 7697.75 4097.59 14395.15 2598.28 3297.60 14394.52 4696.27 8296.12 19587.65 11499.18 13196.20 4694.82 18898.91 108
zzz-MVS97.07 2396.77 3797.97 2599.37 1794.42 3697.15 15298.08 6895.07 2496.11 8698.59 1890.88 7799.90 296.18 4799.50 3699.58 22
MTAPA97.08 2296.78 3697.97 2599.37 1794.42 3697.24 13998.08 6895.07 2496.11 8698.59 1890.88 7799.90 296.18 4799.50 3699.58 22
APD-MVS_3200maxsize96.81 4496.71 4197.12 7299.01 4992.31 10197.98 6098.06 7793.11 9697.44 3498.55 2290.93 7599.55 8896.06 4999.25 7299.51 39
SR-MVS-dyc-post96.88 3896.80 3497.11 7399.02 4692.34 9897.98 6098.03 8893.52 7997.43 3698.51 2691.40 6399.56 8596.05 5099.26 7099.43 55
RE-MVS-def96.72 4099.02 4692.34 9897.98 6098.03 8893.52 7997.43 3698.51 2690.71 8096.05 5099.26 7099.43 55
MVS_111021_HR96.68 5196.58 4796.99 7698.46 8192.31 10196.20 23898.90 294.30 5395.86 9797.74 9792.33 4099.38 11696.04 5299.42 4999.28 71
PHI-MVS96.77 4696.46 5497.71 4498.40 8594.07 5198.21 4598.45 1689.86 19597.11 5098.01 7792.52 3799.69 4896.03 5399.53 2899.36 64
HPM-MVS++copyleft97.34 1496.97 2298.47 599.08 4096.16 497.55 11197.97 10395.59 596.61 6797.89 8292.57 3599.84 2395.95 5499.51 3399.40 59
DELS-MVS96.61 5296.38 5797.30 6097.79 13093.19 7695.96 25098.18 5095.23 1495.87 9697.65 10591.45 6199.70 4795.87 5599.44 4899.00 99
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_LR96.24 6596.19 6396.39 10298.23 10591.35 13396.24 23698.79 493.99 6095.80 9997.65 10589.92 9099.24 12695.87 5599.20 7798.58 131
h-mvs3394.15 11593.52 12396.04 12397.81 12890.22 17397.62 10497.58 14695.19 1696.74 5897.45 12083.67 16999.61 6695.85 5779.73 34598.29 158
hse-mvs293.45 14492.99 14094.81 18597.02 16788.59 22796.69 19396.47 25395.19 1696.74 5896.16 19483.67 16998.48 20095.85 5779.13 34997.35 196
NCCC97.30 1597.03 1998.11 1798.77 6195.06 2697.34 13098.04 8595.96 297.09 5197.88 8493.18 2499.71 4295.84 5999.17 7999.56 27
VNet95.89 7495.45 7697.21 6898.07 11692.94 8397.50 11498.15 5593.87 6397.52 3097.61 11185.29 14799.53 9395.81 6095.27 18099.16 79
PC_three_145290.77 17098.89 898.28 5796.24 198.35 20895.76 6199.58 2299.59 20
9.1496.75 3898.93 5197.73 8698.23 4291.28 15897.88 2798.44 3293.00 2599.65 5795.76 6199.47 42
XVS97.18 1796.96 2397.81 3399.38 1594.03 5398.59 1298.20 4694.85 3096.59 6998.29 5491.70 5699.80 3195.66 6399.40 5199.62 16
X-MVStestdata91.71 21089.67 26797.81 3399.38 1594.03 5398.59 1298.20 4694.85 3096.59 6932.69 37691.70 5699.80 3195.66 6399.40 5199.62 16
baseline95.58 8095.42 7896.08 11996.78 17890.41 17197.16 15097.45 16693.69 7295.65 10897.85 8887.29 12298.68 18295.66 6397.25 14499.13 83
ETV-MVS96.02 7095.89 6896.40 10097.16 15492.44 9697.47 11997.77 12294.55 4596.48 7494.51 26791.23 6998.92 15995.65 6698.19 11697.82 178
casdiffmvs95.64 7895.49 7496.08 11996.76 18190.45 16997.29 13697.44 17094.00 5995.46 11497.98 7987.52 11898.73 17695.64 6797.33 14199.08 89
HFP-MVS97.14 2096.92 2597.83 2999.42 794.12 4898.52 1698.32 2293.21 9097.18 4498.29 5492.08 4499.83 2695.63 6899.59 1799.54 34
ACMMPR97.07 2396.84 3097.79 3599.44 693.88 5598.52 1698.31 2493.21 9097.15 4698.33 4891.35 6599.86 995.63 6899.59 1799.62 16
HPM-MVScopyleft96.69 4996.45 5597.40 5699.36 2093.11 7898.87 698.06 7791.17 16296.40 7897.99 7890.99 7499.58 7595.61 7099.61 1699.49 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS97.02 2796.81 3397.64 4999.33 2393.54 6598.80 898.28 2892.99 9996.45 7798.30 5391.90 5099.85 1895.61 7099.68 499.54 34
DeepC-MVS93.07 396.06 6895.66 7197.29 6197.96 11893.17 7797.30 13598.06 7793.92 6193.38 15298.66 1486.83 12799.73 3695.60 7299.22 7598.96 101
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ZNCC-MVS96.96 3196.67 4397.85 2899.37 1794.12 4898.49 2098.18 5092.64 11896.39 7998.18 6691.61 5899.88 595.59 7399.55 2599.57 24
ETH3D-3000-0.197.07 2396.71 4198.14 1698.90 5595.33 1797.68 9498.24 3891.57 14697.90 2698.37 4092.61 3499.66 5695.59 7399.51 3399.43 55
mvsmamba93.83 13093.46 12694.93 18094.88 27590.85 15698.55 1495.49 29394.24 5491.29 20196.97 14583.04 18398.14 22595.56 7591.17 24295.78 241
region2R97.07 2396.84 3097.77 3899.46 293.79 5898.52 1698.24 3893.19 9397.14 4798.34 4591.59 6099.87 895.46 7699.59 1799.64 13
iter_conf0593.18 15592.63 15694.83 18296.64 18390.69 16297.60 10595.53 29292.52 12191.58 18996.64 16476.35 29398.13 22695.43 7791.42 23795.68 254
OPU-MVS98.55 398.82 6096.86 398.25 3898.26 5896.04 299.24 12695.36 7899.59 1799.56 27
iter_conf_final93.60 13893.11 13795.04 16897.13 15791.30 13497.92 6895.65 28692.98 10491.60 18896.64 16479.28 25498.13 22695.34 7991.49 23495.70 251
lupinMVS94.99 9894.56 9896.29 11096.34 20391.21 13995.83 25596.27 26188.93 22396.22 8396.88 15186.20 13798.85 16595.27 8099.05 9098.82 118
mPP-MVS96.86 3996.60 4597.64 4999.40 1293.44 6898.50 1998.09 6793.27 8995.95 9598.33 4891.04 7399.88 595.20 8199.57 2499.60 19
DeepC-MVS_fast93.89 296.93 3496.64 4497.78 3698.64 7494.30 3897.41 12298.04 8594.81 3596.59 6998.37 4091.24 6799.64 6595.16 8299.52 2999.42 58
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
jason94.84 10394.39 10696.18 11795.52 23590.93 15396.09 24296.52 25189.28 21196.01 9397.32 12584.70 15498.77 17295.15 8398.91 9798.85 115
jason: jason.
#test#97.02 2796.75 3897.83 2999.42 794.12 4898.15 5098.32 2292.57 11997.18 4498.29 5492.08 4499.83 2695.12 8499.59 1799.54 34
abl_696.40 5996.21 6196.98 7798.89 5892.20 10697.89 7098.03 8893.34 8897.22 4398.42 3587.93 11099.72 3995.10 8599.07 8999.02 92
train_agg96.30 6395.83 6997.72 4298.70 6494.19 4496.41 21598.02 9288.58 23596.03 8997.56 11692.73 3099.59 7295.04 8699.37 5899.39 60
agg_prior196.22 6695.77 7097.56 5198.67 6693.79 5896.28 23198.00 9788.76 23295.68 10497.55 11892.70 3299.57 8395.01 8799.32 6099.32 66
test_prior396.46 5796.20 6297.23 6598.67 6692.99 8096.35 22398.00 9792.80 11196.03 8997.59 11292.01 4699.41 11195.01 8799.38 5499.29 68
test_prior296.35 22392.80 11196.03 8997.59 11292.01 4695.01 8799.38 54
nrg03094.05 12293.31 13396.27 11195.22 25794.59 3298.34 2797.46 16192.93 10791.21 20496.64 16487.23 12498.22 21694.99 9085.80 29695.98 232
VDDNet93.05 16292.07 17496.02 12496.84 17490.39 17298.08 5495.85 27686.22 29095.79 10098.46 3067.59 34199.19 12994.92 9194.85 18698.47 143
APD-MVScopyleft96.95 3296.60 4598.01 2299.03 4594.93 2897.72 8998.10 6591.50 14898.01 2298.32 5092.33 4099.58 7594.85 9299.51 3399.53 38
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ETH3D cwj APD-0.1696.56 5496.06 6498.05 2098.26 10095.19 2296.99 16498.05 8489.85 19797.26 4198.22 6191.80 5299.69 4894.84 9399.28 6699.27 73
GST-MVS96.85 4196.52 5097.82 3299.36 2094.14 4798.29 3198.13 5892.72 11596.70 6098.06 7291.35 6599.86 994.83 9499.28 6699.47 50
MP-MVScopyleft96.77 4696.45 5597.72 4299.39 1493.80 5798.41 2598.06 7793.37 8595.54 11298.34 4590.59 8299.88 594.83 9499.54 2799.49 45
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test9_res94.81 9699.38 5499.45 51
PS-MVSNAJ95.37 8495.33 8195.49 15397.35 14890.66 16495.31 27697.48 15693.85 6496.51 7295.70 22188.65 10199.65 5794.80 9798.27 11496.17 223
HPM-MVS_fast96.51 5596.27 5997.22 6799.32 2492.74 8698.74 998.06 7790.57 18396.77 5798.35 4290.21 8699.53 9394.80 9799.63 1499.38 62
xiu_mvs_v2_base95.32 8695.29 8295.40 15897.22 15090.50 16795.44 27097.44 17093.70 7196.46 7696.18 19188.59 10499.53 9394.79 9997.81 12696.17 223
bld_raw_conf00593.06 16192.54 16394.60 19494.64 28889.95 18398.28 3294.50 33194.06 5790.23 21896.99 14478.34 27298.12 23194.73 10091.09 24595.74 249
CSCG96.05 6995.91 6796.46 9699.24 3090.47 16898.30 3098.57 1289.01 21893.97 13997.57 11492.62 3399.76 3494.66 10199.27 6899.15 81
EIA-MVS95.53 8295.47 7595.71 13997.06 16389.63 18997.82 7797.87 11393.57 7393.92 14095.04 24590.61 8198.95 15794.62 10298.68 10298.54 133
ZD-MVS99.05 4394.59 3298.08 6889.22 21397.03 5498.10 6892.52 3799.65 5794.58 10399.31 62
ACMMPcopyleft96.27 6495.93 6697.28 6299.24 3092.62 9198.25 3898.81 392.99 9994.56 12798.39 3988.96 9699.85 1894.57 10497.63 13099.36 64
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PGM-MVS96.81 4496.53 4997.65 4799.35 2293.53 6697.65 9898.98 192.22 12797.14 4798.44 3291.17 7199.85 1894.35 10599.46 4499.57 24
RRT_MVS93.10 15892.83 14593.93 23394.76 28088.04 24498.47 2296.55 25093.44 8290.01 23297.04 14180.64 22897.93 26794.33 10690.21 25995.83 237
ET-MVSNet_ETH3D91.49 22290.11 25095.63 14296.40 20091.57 12695.34 27393.48 34690.60 18275.58 36195.49 23180.08 24096.79 33494.25 10789.76 26398.52 135
testtj96.93 3496.56 4898.05 2099.10 3694.66 3197.78 8198.22 4392.74 11497.59 2998.20 6591.96 4999.86 994.21 10899.25 7299.63 14
LFMVS93.60 13892.63 15696.52 8898.13 11391.27 13697.94 6693.39 34790.57 18396.29 8198.31 5169.00 33499.16 13394.18 10995.87 16999.12 86
MVSFormer95.37 8495.16 8595.99 12696.34 20391.21 13998.22 4397.57 14791.42 15296.22 8397.32 12586.20 13797.92 26894.07 11099.05 9098.85 115
test_djsdf93.07 16092.76 14994.00 22493.49 32588.70 22498.22 4397.57 14791.42 15290.08 23095.55 22882.85 18997.92 26894.07 11091.58 23295.40 267
mvs_anonymous93.82 13193.74 11494.06 22096.44 19885.41 29495.81 25697.05 20789.85 19790.09 22996.36 18587.44 12097.75 28493.97 11296.69 15699.02 92
VPA-MVSNet93.24 15092.48 16795.51 15095.70 22992.39 9797.86 7298.66 1092.30 12692.09 18295.37 23480.49 23198.40 20393.95 11385.86 29595.75 247
agg_prior293.94 11499.38 5499.50 43
mvs_tets92.31 19091.76 18493.94 23193.41 32788.29 23497.63 10397.53 15192.04 13688.76 26896.45 18074.62 30498.09 23793.91 11591.48 23595.45 263
Effi-MVS+94.93 9994.45 10496.36 10596.61 18491.47 12996.41 21597.41 17591.02 16794.50 12895.92 20487.53 11798.78 17093.89 11696.81 15198.84 117
jajsoiax92.42 18491.89 18294.03 22393.33 33088.50 23197.73 8697.53 15192.00 13888.85 26496.50 17875.62 30098.11 23393.88 11791.56 23395.48 258
XVG-OURS-SEG-HR93.86 12993.55 12094.81 18597.06 16388.53 23095.28 27797.45 16691.68 14494.08 13697.68 10182.41 20098.90 16293.84 11892.47 21796.98 201
PS-MVSNAJss93.74 13493.51 12494.44 20393.91 31289.28 21097.75 8397.56 15092.50 12289.94 23396.54 17688.65 10198.18 22193.83 11990.90 25095.86 233
EPNet95.20 9194.56 9897.14 7192.80 33892.68 8897.85 7594.87 32496.64 192.46 16897.80 9486.23 13499.65 5793.72 12098.62 10499.10 88
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended_VisFu95.27 8794.91 9096.38 10398.20 10690.86 15597.27 13798.25 3690.21 18894.18 13497.27 12787.48 11999.73 3693.53 12197.77 12898.55 132
CPTT-MVS95.57 8195.19 8496.70 8099.27 2891.48 12898.33 2898.11 6387.79 25995.17 11898.03 7487.09 12599.61 6693.51 12299.42 4999.02 92
MVSTER93.20 15192.81 14794.37 20796.56 19089.59 19297.06 15597.12 19891.24 15991.30 19895.96 20282.02 20798.05 24493.48 12390.55 25495.47 261
PVSNet_BlendedMVS94.06 12193.92 11094.47 20298.27 9789.46 20096.73 18798.36 1790.17 18994.36 13095.24 23988.02 10799.58 7593.44 12490.72 25394.36 320
PVSNet_Blended94.87 10294.56 9895.81 13198.27 9789.46 20095.47 26998.36 1788.84 22694.36 13096.09 19988.02 10799.58 7593.44 12498.18 11798.40 151
3Dnovator91.36 595.19 9294.44 10597.44 5596.56 19093.36 7298.65 1198.36 1794.12 5689.25 25898.06 7282.20 20499.77 3393.41 12699.32 6099.18 78
test_low_dy_conf_00193.13 15692.80 14894.14 21794.47 29488.64 22598.26 3696.94 21692.53 12090.93 20797.16 13380.39 23497.99 25293.40 12791.12 24395.77 246
EPP-MVSNet95.22 9095.04 8895.76 13297.49 14789.56 19398.67 1097.00 21390.69 17394.24 13397.62 11089.79 9198.81 16893.39 12896.49 16198.92 107
CHOSEN 280x42093.12 15792.72 15494.34 20996.71 18287.27 25890.29 35497.72 13086.61 28591.34 19595.29 23684.29 16298.41 20293.25 12998.94 9597.35 196
3Dnovator+91.43 495.40 8394.48 10398.16 1596.90 17295.34 1698.48 2197.87 11394.65 4488.53 27398.02 7683.69 16899.71 4293.18 13098.96 9499.44 53
test_yl94.78 10594.23 10796.43 9897.74 13291.22 13796.85 17697.10 20091.23 16095.71 10296.93 14684.30 16099.31 12193.10 13195.12 18298.75 120
DCV-MVSNet94.78 10594.23 10796.43 9897.74 13291.22 13796.85 17697.10 20091.23 16095.71 10296.93 14684.30 16099.31 12193.10 13195.12 18298.75 120
test111193.19 15292.82 14694.30 21297.58 14584.56 30998.21 4589.02 36893.53 7894.58 12698.21 6272.69 31499.05 15093.06 13398.48 10999.28 71
ECVR-MVScopyleft93.19 15292.73 15394.57 20097.66 13785.41 29498.21 4588.23 36993.43 8394.70 12498.21 6272.57 31599.07 14793.05 13498.49 10799.25 74
HQP_MVS93.78 13393.43 12994.82 18396.21 20789.99 17897.74 8497.51 15394.85 3091.34 19596.64 16481.32 21898.60 18993.02 13592.23 22095.86 233
plane_prior597.51 15398.60 18993.02 13592.23 22095.86 233
test250691.60 21490.78 22294.04 22297.66 13783.81 31798.27 3475.53 38093.43 8395.23 11698.21 6267.21 34499.07 14793.01 13798.49 10799.25 74
MVS_Test94.89 10194.62 9695.68 14096.83 17689.55 19496.70 19197.17 19491.17 16295.60 10996.11 19887.87 11198.76 17393.01 13797.17 14798.72 124
bld_raw_dy_0_6492.37 18791.69 18894.39 20694.28 30489.73 18897.71 9193.65 34492.78 11390.46 21396.67 16275.88 29597.97 25692.92 13990.89 25195.48 258
CLD-MVS92.98 16592.53 16494.32 21096.12 21689.20 21295.28 27797.47 15992.66 11689.90 23495.62 22480.58 22998.40 20392.73 14092.40 21895.38 269
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XVG-OURS93.72 13593.35 13294.80 18897.07 16088.61 22694.79 28797.46 16191.97 13993.99 13797.86 8781.74 21398.88 16492.64 14192.67 21596.92 205
ETH3 D test640096.16 6795.52 7398.07 1998.90 5595.06 2697.03 15698.21 4488.16 24896.64 6597.70 9991.18 7099.67 5392.44 14299.47 4299.48 47
旧先验295.94 25181.66 33997.34 4098.82 16792.26 143
CDPH-MVS95.97 7295.38 7997.77 3898.93 5194.44 3596.35 22397.88 11186.98 27896.65 6497.89 8291.99 4899.47 10492.26 14399.46 4499.39 60
FIs94.09 12093.70 11595.27 16095.70 22992.03 11198.10 5298.68 893.36 8790.39 21596.70 15887.63 11597.94 26492.25 14590.50 25695.84 236
LPG-MVS_test92.94 16892.56 16094.10 21896.16 21288.26 23697.65 9897.46 16191.29 15590.12 22697.16 13379.05 25798.73 17692.25 14591.89 22895.31 273
LGP-MVS_train94.10 21896.16 21288.26 23697.46 16191.29 15590.12 22697.16 13379.05 25798.73 17692.25 14591.89 22895.31 273
cascas91.20 23890.08 25194.58 19994.97 26789.16 21593.65 32397.59 14579.90 35089.40 25092.92 32075.36 30198.36 20792.14 14894.75 19096.23 220
OPM-MVS93.28 14992.76 14994.82 18394.63 28990.77 16096.65 19797.18 19293.72 6991.68 18797.26 12879.33 25398.63 18692.13 14992.28 21995.07 284
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
BP-MVS92.13 149
HQP-MVS93.19 15292.74 15294.54 20195.86 22289.33 20696.65 19797.39 17693.55 7490.14 22095.87 20680.95 22198.50 19792.13 14992.10 22595.78 241
DP-MVS Recon95.68 7795.12 8797.37 5799.19 3394.19 4497.03 15698.08 6888.35 24295.09 11997.65 10589.97 8999.48 10392.08 15298.59 10598.44 148
VPNet92.23 19691.31 20294.99 17295.56 23390.96 15197.22 14597.86 11792.96 10690.96 20696.62 17375.06 30298.20 21891.90 15383.65 33095.80 240
sss94.51 10993.80 11396.64 8197.07 16091.97 11496.32 22798.06 7788.94 22294.50 12896.78 15384.60 15599.27 12491.90 15396.02 16598.68 128
anonymousdsp92.16 19991.55 19393.97 22792.58 34289.55 19497.51 11397.42 17489.42 20888.40 27494.84 25380.66 22797.88 27391.87 15591.28 24094.48 316
ACMP89.59 1092.62 17992.14 17394.05 22196.40 20088.20 23997.36 12997.25 19091.52 14788.30 27796.64 16478.46 26998.72 17991.86 15691.48 23595.23 280
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HyFIR lowres test93.66 13692.92 14395.87 12998.24 10189.88 18494.58 29198.49 1385.06 30793.78 14295.78 21582.86 18898.67 18391.77 15795.71 17499.07 91
UGNet94.04 12393.28 13496.31 10796.85 17391.19 14297.88 7197.68 13594.40 4993.00 16096.18 19173.39 31399.61 6691.72 15898.46 11098.13 162
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_NR-MVSNet93.37 14692.67 15595.47 15695.34 24692.83 8497.17 14998.58 1192.98 10490.13 22495.80 21188.37 10697.85 27491.71 15983.93 32595.73 250
DU-MVS92.90 17092.04 17595.49 15394.95 26992.83 8497.16 15098.24 3893.02 9890.13 22495.71 21983.47 17297.85 27491.71 15983.93 32595.78 241
Effi-MVS+-dtu93.08 15993.21 13692.68 28296.02 21983.25 32497.14 15396.72 23493.85 6491.20 20593.44 31483.08 18098.30 21291.69 16195.73 17396.50 216
mvs-test193.63 13793.69 11693.46 25596.02 21984.61 30897.24 13996.72 23493.85 6492.30 17595.76 21683.08 18098.89 16391.69 16196.54 15996.87 207
UniMVSNet (Re)93.31 14892.55 16195.61 14495.39 24093.34 7397.39 12698.71 693.14 9590.10 22894.83 25487.71 11298.03 24891.67 16383.99 32495.46 262
LCM-MVSNet-Re92.50 18092.52 16592.44 28596.82 17781.89 33396.92 17293.71 34392.41 12484.30 32994.60 26585.08 15097.03 32591.51 16497.36 13998.40 151
FC-MVSNet-test93.94 12693.57 11995.04 16895.48 23791.45 13198.12 5198.71 693.37 8590.23 21896.70 15887.66 11397.85 27491.49 16590.39 25795.83 237
PMMVS92.86 17292.34 16994.42 20594.92 27186.73 27294.53 29396.38 25784.78 31294.27 13295.12 24483.13 17998.40 20391.47 16696.49 16198.12 163
Vis-MVSNetpermissive95.23 8994.81 9196.51 9197.18 15391.58 12598.26 3698.12 6094.38 5194.90 12098.15 6782.28 20298.92 15991.45 16798.58 10699.01 96
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CHOSEN 1792x268894.15 11593.51 12496.06 12198.27 9789.38 20395.18 28398.48 1585.60 29893.76 14397.11 13783.15 17899.61 6691.33 16898.72 10199.19 77
OMC-MVS95.09 9394.70 9596.25 11598.46 8191.28 13596.43 21397.57 14792.04 13694.77 12397.96 8187.01 12699.09 14291.31 16996.77 15298.36 155
MG-MVS95.61 7995.38 7996.31 10798.42 8490.53 16696.04 24497.48 15693.47 8195.67 10798.10 6889.17 9499.25 12591.27 17098.77 9999.13 83
ACMM89.79 892.96 16692.50 16694.35 20896.30 20588.71 22397.58 10797.36 18191.40 15490.53 21196.65 16379.77 24698.75 17491.24 17191.64 23095.59 256
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
WTY-MVS94.71 10794.02 10996.79 7997.71 13492.05 11096.59 20697.35 18290.61 18094.64 12596.93 14686.41 13399.39 11491.20 17294.71 19298.94 104
Anonymous2024052991.98 20490.73 22595.73 13798.14 11289.40 20297.99 5997.72 13079.63 35193.54 14797.41 12369.94 33299.56 8591.04 17391.11 24498.22 159
test_part192.21 19891.10 21295.51 15097.80 12992.66 8998.02 5897.68 13589.79 20088.80 26796.02 20076.85 28798.18 22190.86 17484.11 32395.69 252
AUN-MVS91.76 20990.75 22494.81 18597.00 16988.57 22896.65 19796.49 25289.63 20292.15 17896.12 19578.66 26698.50 19790.83 17579.18 34897.36 195
CANet_DTU94.37 11093.65 11896.55 8796.46 19792.13 10896.21 23796.67 24294.38 5193.53 14897.03 14279.34 25299.71 4290.76 17698.45 11197.82 178
ab-mvs93.57 14192.55 16196.64 8197.28 14991.96 11595.40 27197.45 16689.81 19993.22 15896.28 18879.62 24999.46 10590.74 17793.11 20998.50 138
CostFormer91.18 24190.70 22692.62 28394.84 27781.76 33494.09 31094.43 33284.15 31892.72 16793.77 30379.43 25198.20 21890.70 17892.18 22397.90 171
Anonymous20240521192.07 20290.83 22195.76 13298.19 10888.75 22297.58 10795.00 31586.00 29393.64 14497.45 12066.24 35199.53 9390.68 17992.71 21399.01 96
tpmrst91.44 22491.32 20191.79 30195.15 26079.20 35693.42 32795.37 29788.55 23893.49 14993.67 30882.49 19898.27 21390.41 18089.34 26697.90 171
thisisatest053093.03 16392.21 17295.49 15397.07 16089.11 21697.49 11892.19 35590.16 19094.09 13596.41 18276.43 29299.05 15090.38 18195.68 17598.31 157
UA-Net95.95 7395.53 7297.20 6997.67 13592.98 8297.65 9898.13 5894.81 3596.61 6798.35 4288.87 9799.51 9890.36 18297.35 14099.11 87
UniMVSNet_ETH3D91.34 23290.22 24794.68 19394.86 27687.86 25097.23 14497.46 16187.99 25189.90 23496.92 14966.35 34998.23 21590.30 18390.99 24897.96 168
tttt051792.96 16692.33 17094.87 18197.11 15887.16 26497.97 6492.09 35690.63 17893.88 14197.01 14376.50 28999.06 14990.29 18495.45 17798.38 153
IS-MVSNet94.90 10094.52 10196.05 12297.67 13590.56 16598.44 2396.22 26493.21 9093.99 13797.74 9785.55 14598.45 20189.98 18597.86 12499.14 82
miper_enhance_ethall91.54 22091.01 21393.15 26695.35 24587.07 26693.97 31296.90 22386.79 28289.17 25993.43 31686.55 13097.64 29289.97 18686.93 28694.74 310
EI-MVSNet93.03 16392.88 14493.48 25395.77 22786.98 26796.44 21197.12 19890.66 17691.30 19897.64 10886.56 12998.05 24489.91 18790.55 25495.41 264
IterMVS-LS92.29 19291.94 18093.34 25996.25 20686.97 26896.57 20997.05 20790.67 17489.50 24994.80 25686.59 12897.64 29289.91 18786.11 29495.40 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl2291.21 23790.56 23293.14 26796.09 21886.80 27094.41 29896.58 24987.80 25888.58 27293.99 29680.85 22697.62 29589.87 18986.93 28694.99 287
CDS-MVSNet94.14 11893.54 12195.93 12796.18 21091.46 13096.33 22697.04 20988.97 22193.56 14596.51 17787.55 11697.89 27289.80 19095.95 16798.44 148
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
WR-MVS92.34 18891.53 19494.77 19095.13 26290.83 15796.40 21897.98 10291.88 14089.29 25595.54 22982.50 19797.80 27989.79 19185.27 30495.69 252
NR-MVSNet92.34 18891.27 20595.53 14994.95 26993.05 7997.39 12698.07 7492.65 11784.46 32795.71 21985.00 15197.77 28389.71 19283.52 33195.78 241
Anonymous2023121190.63 26089.42 27194.27 21398.24 10189.19 21498.05 5697.89 10979.95 34988.25 28094.96 24672.56 31698.13 22689.70 19385.14 30695.49 257
testdata95.46 15798.18 11088.90 22097.66 13782.73 33397.03 5498.07 7190.06 8798.85 16589.67 19498.98 9398.64 130
Baseline_NR-MVSNet91.20 23890.62 22892.95 27393.83 31588.03 24597.01 16395.12 31188.42 24089.70 24095.13 24383.47 17297.44 31189.66 19583.24 33393.37 338
DPM-MVS95.69 7694.92 8998.01 2298.08 11595.71 995.27 27997.62 14290.43 18695.55 11097.07 13991.72 5399.50 10189.62 19698.94 9598.82 118
XXY-MVS92.16 19991.23 20794.95 17794.75 28290.94 15297.47 11997.43 17389.14 21588.90 26196.43 18179.71 24798.24 21489.56 19787.68 27995.67 255
miper_ehance_all_eth91.59 21591.13 21192.97 27295.55 23486.57 27794.47 29496.88 22687.77 26088.88 26394.01 29486.22 13597.54 30189.49 19886.93 28694.79 306
XVG-ACMP-BASELINE90.93 25090.21 24893.09 26894.31 30285.89 28795.33 27497.26 18891.06 16689.38 25195.44 23368.61 33698.60 18989.46 19991.05 24694.79 306
thisisatest051592.29 19291.30 20395.25 16196.60 18588.90 22094.36 30092.32 35487.92 25393.43 15194.57 26677.28 28599.00 15489.42 20095.86 17097.86 174
c3_l91.38 22790.89 21592.88 27595.58 23286.30 28094.68 28996.84 23088.17 24688.83 26694.23 28685.65 14497.47 30889.36 20184.63 31494.89 296
AdaColmapbinary94.34 11193.68 11796.31 10798.59 7691.68 12096.59 20697.81 12189.87 19492.15 17897.06 14083.62 17199.54 9089.34 20298.07 12097.70 182
TranMVSNet+NR-MVSNet92.50 18091.63 19095.14 16594.76 28092.07 10997.53 11298.11 6392.90 10889.56 24696.12 19583.16 17797.60 29789.30 20383.20 33495.75 247
D2MVS91.30 23490.95 21492.35 28794.71 28485.52 29296.18 23998.21 4488.89 22486.60 31093.82 30179.92 24497.95 26389.29 20490.95 24993.56 334
131492.81 17692.03 17695.14 16595.33 24989.52 19796.04 24497.44 17087.72 26386.25 31395.33 23583.84 16698.79 16989.26 20597.05 14997.11 199
v2v48291.59 21590.85 21993.80 23893.87 31488.17 24196.94 17196.88 22689.54 20389.53 24794.90 25081.70 21498.02 24989.25 20685.04 31095.20 281
114514_t93.95 12593.06 13996.63 8399.07 4191.61 12297.46 12197.96 10477.99 35793.00 16097.57 11486.14 13999.33 11889.22 20799.15 8198.94 104
PAPM_NR95.01 9494.59 9796.26 11298.89 5890.68 16397.24 13997.73 12791.80 14192.93 16596.62 17389.13 9599.14 13689.21 20897.78 12798.97 100
baseline192.82 17591.90 18195.55 14897.20 15290.77 16097.19 14794.58 32992.20 12992.36 17296.34 18684.16 16398.21 21789.20 20983.90 32897.68 183
IB-MVS87.33 1789.91 27588.28 28794.79 18995.26 25687.70 25395.12 28593.95 34289.35 21087.03 30492.49 32570.74 32699.19 12989.18 21081.37 34197.49 193
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HY-MVS89.66 993.87 12892.95 14296.63 8397.10 15992.49 9595.64 26396.64 24389.05 21793.00 16095.79 21485.77 14399.45 10789.16 21194.35 19497.96 168
V4291.58 21790.87 21693.73 24094.05 30988.50 23197.32 13396.97 21488.80 23189.71 23994.33 27882.54 19698.05 24489.01 21285.07 30894.64 314
OurMVSNet-221017-090.51 26390.19 24991.44 31093.41 32781.25 33796.98 16696.28 26091.68 14486.55 31196.30 18774.20 30797.98 25388.96 21387.40 28495.09 283
API-MVS94.84 10394.49 10295.90 12897.90 12492.00 11397.80 7997.48 15689.19 21494.81 12296.71 15688.84 9899.17 13288.91 21498.76 10096.53 214
test-LLR91.42 22591.19 20992.12 29194.59 29080.66 34094.29 30492.98 34991.11 16490.76 20992.37 32779.02 25998.07 24188.81 21596.74 15397.63 184
test-mter90.19 27189.54 27092.12 29194.59 29080.66 34094.29 30492.98 34987.68 26490.76 20992.37 32767.67 34098.07 24188.81 21596.74 15397.63 184
eth_miper_zixun_eth91.02 24590.59 23092.34 28895.33 24984.35 31094.10 30996.90 22388.56 23788.84 26594.33 27884.08 16497.60 29788.77 21784.37 32095.06 285
TAMVS94.01 12493.46 12695.64 14196.16 21290.45 16996.71 19096.89 22589.27 21293.46 15096.92 14987.29 12297.94 26488.70 21895.74 17298.53 134
Patchmatch-RL test87.38 30386.24 30490.81 32088.74 36678.40 36088.12 36393.17 34887.11 27782.17 34489.29 35381.95 20995.60 35088.64 21977.02 35298.41 150
baseline291.63 21390.86 21793.94 23194.33 30086.32 27995.92 25291.64 36089.37 20986.94 30694.69 26081.62 21598.69 18188.64 21994.57 19396.81 209
TESTMET0.1,190.06 27389.42 27191.97 29494.41 29880.62 34294.29 30491.97 35887.28 27490.44 21492.47 32668.79 33597.67 28988.50 22196.60 15897.61 188
Vis-MVSNet (Re-imp)94.15 11593.88 11194.95 17797.61 14187.92 24798.10 5295.80 27892.22 12793.02 15997.45 12084.53 15797.91 27188.24 22297.97 12299.02 92
1112_ss93.37 14692.42 16896.21 11697.05 16590.99 14996.31 22896.72 23486.87 28189.83 23796.69 16086.51 13199.14 13688.12 22393.67 20398.50 138
CVMVSNet91.23 23691.75 18589.67 33495.77 22774.69 36596.44 21194.88 32185.81 29592.18 17797.64 10879.07 25695.58 35188.06 22495.86 17098.74 122
MAR-MVS94.22 11393.46 12696.51 9198.00 11792.19 10797.67 9597.47 15988.13 25093.00 16095.84 20884.86 15399.51 9887.99 22598.17 11897.83 177
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
原ACMM196.38 10398.59 7691.09 14897.89 10987.41 27095.22 11797.68 10190.25 8499.54 9087.95 22699.12 8698.49 140
CP-MVSNet91.89 20691.24 20693.82 23795.05 26588.57 22897.82 7798.19 4891.70 14388.21 28195.76 21681.96 20897.52 30587.86 22784.65 31395.37 270
v14890.99 24690.38 23692.81 27893.83 31585.80 28896.78 18596.68 24089.45 20788.75 26993.93 29882.96 18797.82 27887.83 22883.25 33294.80 304
v114491.37 22990.60 22993.68 24593.89 31388.23 23896.84 17897.03 21188.37 24189.69 24194.39 27482.04 20697.98 25387.80 22985.37 30194.84 298
DIV-MVS_self_test90.97 24890.33 23792.88 27595.36 24486.19 28494.46 29696.63 24687.82 25688.18 28294.23 28682.99 18497.53 30387.72 23085.57 29894.93 292
gm-plane-assit93.22 33178.89 35984.82 31193.52 31198.64 18587.72 230
GeoE93.89 12793.28 13495.72 13896.96 17189.75 18798.24 4196.92 22289.47 20692.12 18097.21 13184.42 15898.39 20687.71 23296.50 16099.01 96
cl____90.96 24990.32 23892.89 27495.37 24386.21 28394.46 29696.64 24387.82 25688.15 28394.18 28982.98 18597.54 30187.70 23385.59 29794.92 294
pmmvs490.93 25089.85 25994.17 21593.34 32990.79 15994.60 29096.02 27084.62 31387.45 29495.15 24181.88 21197.45 31087.70 23387.87 27894.27 325
Test_1112_low_res92.84 17491.84 18395.85 13097.04 16689.97 18195.53 26796.64 24385.38 30189.65 24395.18 24085.86 14199.10 13987.70 23393.58 20898.49 140
无先验95.79 25797.87 11383.87 32399.65 5787.68 23698.89 112
112194.71 10793.83 11297.34 5898.57 7993.64 6396.04 24497.73 12781.56 34195.68 10497.85 8890.23 8599.65 5787.68 23699.12 8698.73 123
Fast-Effi-MVS+93.46 14392.75 15195.59 14596.77 17990.03 17596.81 18297.13 19788.19 24591.30 19894.27 28386.21 13698.63 18687.66 23896.46 16398.12 163
CNLPA94.28 11293.53 12296.52 8898.38 8892.55 9396.59 20696.88 22690.13 19191.91 18497.24 12985.21 14899.09 14287.64 23997.83 12597.92 170
v891.29 23590.53 23393.57 25094.15 30588.12 24397.34 13097.06 20688.99 21988.32 27694.26 28583.08 18098.01 25087.62 24083.92 32794.57 315
pmmvs589.86 27888.87 28092.82 27792.86 33686.23 28296.26 23295.39 29584.24 31787.12 30194.51 26774.27 30697.36 31787.61 24187.57 28094.86 297
Fast-Effi-MVS+-dtu92.29 19291.99 17893.21 26595.27 25385.52 29297.03 15696.63 24692.09 13489.11 26095.14 24280.33 23698.08 23887.54 24294.74 19196.03 231
OpenMVScopyleft89.19 1292.86 17291.68 18996.40 10095.34 24692.73 8798.27 3498.12 6084.86 31085.78 31697.75 9678.89 26499.74 3587.50 24398.65 10396.73 211
miper_lstm_enhance90.50 26490.06 25491.83 29895.33 24983.74 31893.86 31696.70 23987.56 26787.79 28993.81 30283.45 17496.92 33187.39 24484.62 31594.82 301
IterMVS-SCA-FT90.31 26689.81 26191.82 29995.52 23584.20 31394.30 30396.15 26790.61 18087.39 29794.27 28375.80 29796.44 33787.34 24586.88 29094.82 301
PLCcopyleft91.00 694.11 11993.43 12996.13 11898.58 7891.15 14796.69 19397.39 17687.29 27391.37 19496.71 15688.39 10599.52 9787.33 24697.13 14897.73 180
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpm90.25 26889.74 26691.76 30493.92 31179.73 35293.98 31193.54 34588.28 24391.99 18393.25 31777.51 28497.44 31187.30 24787.94 27798.12 163
GA-MVS91.38 22790.31 23994.59 19594.65 28687.62 25494.34 30196.19 26690.73 17290.35 21693.83 29971.84 31897.96 26187.22 24893.61 20698.21 160
BH-untuned92.94 16892.62 15893.92 23497.22 15086.16 28596.40 21896.25 26390.06 19289.79 23896.17 19383.19 17698.35 20887.19 24997.27 14397.24 198
v14419291.06 24390.28 24193.39 25793.66 32087.23 26196.83 17997.07 20487.43 26989.69 24194.28 28281.48 21698.00 25187.18 25084.92 31294.93 292
RPSCF90.75 25590.86 21790.42 32796.84 17476.29 36395.61 26496.34 25883.89 32191.38 19397.87 8576.45 29098.78 17087.16 25192.23 22096.20 221
PS-CasMVS91.55 21990.84 22093.69 24494.96 26888.28 23597.84 7698.24 3891.46 15088.04 28595.80 21179.67 24897.48 30787.02 25284.54 31895.31 273
pm-mvs190.72 25789.65 26993.96 22894.29 30389.63 18997.79 8096.82 23189.07 21686.12 31595.48 23278.61 26797.78 28186.97 25381.67 33994.46 317
IterMVS90.15 27289.67 26791.61 30695.48 23783.72 31994.33 30296.12 26889.99 19387.31 30094.15 29175.78 29996.27 34086.97 25386.89 28994.83 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
F-COLMAP93.58 14092.98 14195.37 15998.40 8588.98 21897.18 14897.29 18787.75 26290.49 21297.10 13885.21 14899.50 10186.70 25596.72 15597.63 184
PVSNet86.66 1892.24 19591.74 18793.73 24097.77 13183.69 32192.88 33696.72 23487.91 25493.00 16094.86 25278.51 26899.05 15086.53 25697.45 13798.47 143
v119291.07 24290.23 24593.58 24993.70 31887.82 25196.73 18797.07 20487.77 26089.58 24494.32 28080.90 22597.97 25686.52 25785.48 29994.95 288
新几何197.32 5998.60 7593.59 6497.75 12481.58 34095.75 10197.85 8890.04 8899.67 5386.50 25899.13 8398.69 127
v1091.04 24490.23 24593.49 25294.12 30688.16 24297.32 13397.08 20388.26 24488.29 27894.22 28882.17 20597.97 25686.45 25984.12 32294.33 321
v192192090.85 25290.03 25593.29 26193.55 32186.96 26996.74 18697.04 20987.36 27189.52 24894.34 27780.23 23897.97 25686.27 26085.21 30594.94 290
MDTV_nov1_ep13_2view70.35 37093.10 33483.88 32293.55 14682.47 19986.25 26198.38 153
test_post192.81 33816.58 38080.53 23097.68 28886.20 262
SCA91.84 20791.18 21093.83 23695.59 23184.95 30494.72 28895.58 28990.82 16892.25 17693.69 30575.80 29798.10 23486.20 26295.98 16698.45 145
PAPR94.18 11493.42 13196.48 9397.64 13991.42 13295.55 26597.71 13488.99 21992.34 17495.82 21089.19 9399.11 13886.14 26497.38 13898.90 109
GBi-Net91.35 23090.27 24294.59 19596.51 19391.18 14397.50 11496.93 21888.82 22889.35 25294.51 26773.87 30897.29 32086.12 26588.82 26995.31 273
test191.35 23090.27 24294.59 19596.51 19391.18 14397.50 11496.93 21888.82 22889.35 25294.51 26773.87 30897.29 32086.12 26588.82 26995.31 273
FMVSNet391.78 20890.69 22795.03 17096.53 19292.27 10397.02 15996.93 21889.79 20089.35 25294.65 26377.01 28697.47 30886.12 26588.82 26995.35 271
EPMVS90.70 25889.81 26193.37 25894.73 28384.21 31293.67 32288.02 37089.50 20592.38 17193.49 31277.82 28297.78 28186.03 26892.68 21498.11 166
MVS91.71 21090.44 23495.51 15095.20 25991.59 12496.04 24497.45 16673.44 36487.36 29895.60 22585.42 14699.10 13985.97 26997.46 13395.83 237
testdata299.67 5385.96 270
K. test v387.64 30286.75 30390.32 32893.02 33579.48 35496.61 20392.08 35790.66 17680.25 35394.09 29267.21 34496.65 33685.96 27080.83 34394.83 299
WR-MVS_H92.00 20391.35 19993.95 22995.09 26489.47 19898.04 5798.68 891.46 15088.34 27594.68 26185.86 14197.56 29985.77 27284.24 32194.82 301
gg-mvs-nofinetune87.82 30085.61 30994.44 20394.46 29589.27 21191.21 34984.61 37580.88 34489.89 23674.98 36871.50 32097.53 30385.75 27397.21 14596.51 215
tpm289.96 27489.21 27592.23 29094.91 27381.25 33793.78 31894.42 33380.62 34791.56 19093.44 31476.44 29197.94 26485.60 27492.08 22797.49 193
v124090.70 25889.85 25993.23 26393.51 32486.80 27096.61 20397.02 21287.16 27689.58 24494.31 28179.55 25097.98 25385.52 27585.44 30094.90 295
PEN-MVS91.20 23890.44 23493.48 25394.49 29387.91 24997.76 8298.18 5091.29 15587.78 29095.74 21880.35 23597.33 31885.46 27682.96 33595.19 282
QAPM93.45 14492.27 17196.98 7796.77 17992.62 9198.39 2698.12 6084.50 31588.27 27997.77 9582.39 20199.81 3085.40 27798.81 9898.51 137
EU-MVSNet88.72 29288.90 27988.20 33993.15 33374.21 36696.63 20294.22 33885.18 30487.32 29995.97 20176.16 29494.98 35585.27 27886.17 29295.41 264
BH-w/o92.14 20191.75 18593.31 26096.99 17085.73 28995.67 26095.69 28288.73 23389.26 25794.82 25582.97 18698.07 24185.26 27996.32 16496.13 227
FMVSNet291.31 23390.08 25194.99 17296.51 19392.21 10497.41 12296.95 21588.82 22888.62 27094.75 25873.87 30897.42 31385.20 28088.55 27495.35 271
PM-MVS83.48 32681.86 33088.31 33887.83 36977.59 36193.43 32691.75 35986.91 27980.63 34989.91 35044.42 37295.84 34685.17 28176.73 35491.50 358
LF4IMVS87.94 29987.25 29689.98 33192.38 34780.05 35094.38 29995.25 30587.59 26684.34 32894.74 25964.31 35697.66 29184.83 28287.45 28192.23 351
PatchmatchNetpermissive91.91 20591.35 19993.59 24895.38 24184.11 31493.15 33295.39 29589.54 20392.10 18193.68 30782.82 19098.13 22684.81 28395.32 17998.52 135
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
pmmvs687.81 30186.19 30592.69 28191.32 35186.30 28097.34 13096.41 25680.59 34884.05 33594.37 27667.37 34397.67 28984.75 28479.51 34794.09 329
v7n90.76 25489.86 25893.45 25693.54 32287.60 25597.70 9397.37 17988.85 22587.65 29294.08 29381.08 22098.10 23484.68 28583.79 32994.66 313
SixPastTwentyTwo89.15 28488.54 28490.98 31793.49 32580.28 34796.70 19194.70 32590.78 16984.15 33295.57 22671.78 31997.71 28784.63 28685.07 30894.94 290
TDRefinement86.53 30884.76 31891.85 29782.23 37384.25 31196.38 22195.35 29884.97 30984.09 33394.94 24765.76 35498.34 21184.60 28774.52 35792.97 340
MVS_030488.79 29087.57 29292.46 28494.65 28686.15 28696.40 21897.17 19486.44 28688.02 28691.71 33956.68 36697.03 32584.47 28892.58 21694.19 326
ACMH87.59 1690.53 26289.42 27193.87 23596.21 20787.92 24797.24 13996.94 21688.45 23983.91 33696.27 18971.92 31798.62 18884.43 28989.43 26595.05 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+87.92 1490.20 27089.18 27693.25 26296.48 19686.45 27896.99 16496.68 24088.83 22784.79 32696.22 19070.16 33098.53 19584.42 29088.04 27694.77 309
MS-PatchMatch90.27 26789.77 26391.78 30294.33 30084.72 30795.55 26596.73 23386.17 29186.36 31295.28 23871.28 32297.80 27984.09 29198.14 11992.81 343
PatchMatch-RL92.90 17092.02 17795.56 14698.19 10890.80 15895.27 27997.18 19287.96 25291.86 18695.68 22280.44 23298.99 15584.01 29297.54 13296.89 206
lessismore_v090.45 32691.96 35079.09 35887.19 37380.32 35294.39 27466.31 35097.55 30084.00 29376.84 35394.70 311
CMPMVSbinary62.92 2185.62 31984.92 31687.74 34189.14 36473.12 36894.17 30796.80 23273.98 36273.65 36394.93 24866.36 34897.61 29683.95 29491.28 24092.48 349
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVP-Stereo90.74 25690.08 25192.71 28093.19 33288.20 23995.86 25496.27 26186.07 29284.86 32594.76 25777.84 28197.75 28483.88 29598.01 12192.17 354
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LS3D93.57 14192.61 15996.47 9497.59 14391.61 12297.67 9597.72 13085.17 30590.29 21798.34 4584.60 15599.73 3683.85 29698.27 11498.06 167
DTE-MVSNet90.56 26189.75 26593.01 27093.95 31087.25 25997.64 10297.65 13990.74 17187.12 30195.68 22279.97 24397.00 32983.33 29781.66 34094.78 308
BH-RMVSNet92.72 17891.97 17994.97 17597.16 15487.99 24696.15 24095.60 28790.62 17991.87 18597.15 13678.41 27098.57 19383.16 29897.60 13198.36 155
pmmvs-eth3d86.22 31384.45 31991.53 30788.34 36787.25 25994.47 29495.01 31483.47 32879.51 35689.61 35269.75 33395.71 34883.13 29976.73 35491.64 355
FMVSNet189.88 27788.31 28694.59 19595.41 23991.18 14397.50 11496.93 21886.62 28487.41 29694.51 26765.94 35397.29 32083.04 30087.43 28295.31 273
MDTV_nov1_ep1390.76 22395.22 25780.33 34593.03 33595.28 30288.14 24992.84 16693.83 29981.34 21798.08 23882.86 30194.34 195
TR-MVS91.48 22390.59 23094.16 21696.40 20087.33 25695.67 26095.34 30187.68 26491.46 19295.52 23076.77 28898.35 20882.85 30293.61 20696.79 210
JIA-IIPM88.26 29787.04 30191.91 29593.52 32381.42 33689.38 36094.38 33480.84 34590.93 20780.74 36679.22 25597.92 26882.76 30391.62 23196.38 219
PVSNet_082.17 1985.46 32083.64 32390.92 31895.27 25379.49 35390.55 35395.60 28783.76 32483.00 34289.95 34971.09 32397.97 25682.75 30460.79 37195.31 273
ambc86.56 34583.60 37170.00 37185.69 36594.97 31780.60 35088.45 35437.42 37496.84 33382.69 30575.44 35692.86 342
USDC88.94 28687.83 29192.27 28994.66 28584.96 30393.86 31695.90 27487.34 27283.40 33895.56 22767.43 34298.19 22082.64 30689.67 26493.66 333
ITE_SJBPF92.43 28695.34 24685.37 29795.92 27291.47 14987.75 29196.39 18471.00 32497.96 26182.36 30789.86 26293.97 330
UnsupCasMVSNet_eth85.99 31584.45 31990.62 32489.97 35982.40 33093.62 32497.37 17989.86 19578.59 35892.37 32765.25 35595.35 35482.27 30870.75 36394.10 327
GG-mvs-BLEND93.62 24693.69 31989.20 21292.39 34383.33 37687.98 28889.84 35171.00 32496.87 33282.08 30995.40 17894.80 304
thres600view792.49 18291.60 19195.18 16397.91 12389.47 19897.65 9894.66 32692.18 13393.33 15394.91 24978.06 27899.10 13981.61 31094.06 20096.98 201
LTVRE_ROB88.41 1390.99 24689.92 25794.19 21496.18 21089.55 19496.31 22897.09 20287.88 25585.67 31795.91 20578.79 26598.57 19381.50 31189.98 26094.44 318
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tpmvs89.83 27989.15 27791.89 29694.92 27180.30 34693.11 33395.46 29486.28 28888.08 28492.65 32280.44 23298.52 19681.47 31289.92 26196.84 208
thres100view90092.43 18391.58 19294.98 17497.92 12289.37 20497.71 9194.66 32692.20 12993.31 15494.90 25078.06 27899.08 14481.40 31394.08 19796.48 217
tfpn200view992.38 18691.52 19594.95 17797.85 12689.29 20897.41 12294.88 32192.19 13193.27 15694.46 27278.17 27499.08 14481.40 31394.08 19796.48 217
thres40092.42 18491.52 19595.12 16797.85 12689.29 20897.41 12294.88 32192.19 13193.27 15694.46 27278.17 27499.08 14481.40 31394.08 19796.98 201
DP-MVS92.76 17791.51 19796.52 8898.77 6190.99 14997.38 12896.08 26982.38 33489.29 25597.87 8583.77 16799.69 4881.37 31696.69 15698.89 112
thres20092.23 19691.39 19894.75 19297.61 14189.03 21796.60 20595.09 31292.08 13593.28 15594.00 29578.39 27199.04 15381.26 31794.18 19696.19 222
CR-MVSNet90.82 25389.77 26393.95 22994.45 29687.19 26290.23 35595.68 28486.89 28092.40 16992.36 33080.91 22397.05 32481.09 31893.95 20197.60 189
MSDG91.42 22590.24 24494.96 17697.15 15688.91 21993.69 32196.32 25985.72 29786.93 30796.47 17980.24 23798.98 15680.57 31995.05 18596.98 201
dp88.90 28888.26 28890.81 32094.58 29276.62 36292.85 33794.93 31985.12 30690.07 23193.07 31875.81 29698.12 23180.53 32087.42 28397.71 181
tpm cat188.36 29587.21 29891.81 30095.13 26280.55 34392.58 34095.70 28174.97 36187.45 29491.96 33578.01 28098.17 22380.39 32188.74 27296.72 212
KD-MVS_self_test85.95 31684.95 31588.96 33689.55 36379.11 35795.13 28496.42 25585.91 29484.07 33490.48 34570.03 33194.82 35680.04 32272.94 36192.94 341
AllTest90.23 26988.98 27893.98 22597.94 12086.64 27396.51 21095.54 29085.38 30185.49 31996.77 15470.28 32899.15 13480.02 32392.87 21096.15 225
TestCases93.98 22597.94 12086.64 27395.54 29085.38 30185.49 31996.77 15470.28 32899.15 13480.02 32392.87 21096.15 225
ADS-MVSNet289.45 28188.59 28392.03 29395.86 22282.26 33190.93 35094.32 33783.23 33091.28 20291.81 33779.01 26195.99 34279.52 32591.39 23897.84 175
ADS-MVSNet89.89 27688.68 28293.53 25195.86 22284.89 30590.93 35095.07 31383.23 33091.28 20291.81 33779.01 26197.85 27479.52 32591.39 23897.84 175
our_test_388.78 29187.98 29091.20 31592.45 34582.53 32793.61 32595.69 28285.77 29684.88 32493.71 30479.99 24296.78 33579.47 32786.24 29194.28 324
EPNet_dtu91.71 21091.28 20492.99 27193.76 31783.71 32096.69 19395.28 30293.15 9487.02 30595.95 20383.37 17597.38 31679.46 32896.84 15097.88 173
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TransMVSNet (Re)88.94 28687.56 29393.08 26994.35 29988.45 23397.73 8695.23 30687.47 26884.26 33095.29 23679.86 24597.33 31879.44 32974.44 35893.45 337
EG-PatchMatch MVS87.02 30685.44 31091.76 30492.67 34085.00 30296.08 24396.45 25483.41 32979.52 35593.49 31257.10 36597.72 28679.34 33090.87 25292.56 347
Patchmtry88.64 29387.25 29692.78 27994.09 30786.64 27389.82 35895.68 28480.81 34687.63 29392.36 33080.91 22397.03 32578.86 33185.12 30794.67 312
FMVSNet587.29 30485.79 30891.78 30294.80 27987.28 25795.49 26895.28 30284.09 31983.85 33791.82 33662.95 35994.17 36078.48 33285.34 30393.91 331
COLMAP_ROBcopyleft87.81 1590.40 26589.28 27493.79 23997.95 11987.13 26596.92 17295.89 27582.83 33286.88 30997.18 13273.77 31199.29 12378.44 33393.62 20594.95 288
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2024052186.42 31085.44 31089.34 33590.33 35679.79 35196.73 18795.92 27283.71 32583.25 33991.36 34263.92 35796.01 34178.39 33485.36 30292.22 352
test0.0.03 189.37 28388.70 28191.41 31192.47 34485.63 29095.22 28292.70 35291.11 16486.91 30893.65 30979.02 25993.19 36678.00 33589.18 26795.41 264
MIMVSNet88.50 29486.76 30293.72 24294.84 27787.77 25291.39 34594.05 33986.41 28787.99 28792.59 32463.27 35895.82 34777.44 33692.84 21297.57 191
MDA-MVSNet_test_wron85.87 31784.23 32190.80 32292.38 34782.57 32693.17 33095.15 30982.15 33567.65 36592.33 33378.20 27395.51 35277.33 33779.74 34494.31 323
YYNet185.87 31784.23 32190.78 32392.38 34782.46 32993.17 33095.14 31082.12 33667.69 36492.36 33078.16 27695.50 35377.31 33879.73 34594.39 319
UnsupCasMVSNet_bld82.13 33079.46 33390.14 33088.00 36882.47 32890.89 35296.62 24878.94 35475.61 36084.40 36456.63 36796.31 33977.30 33966.77 36791.63 356
KD-MVS_2432*160084.81 32382.64 32691.31 31291.07 35385.34 29891.22 34795.75 27985.56 29983.09 34090.21 34767.21 34495.89 34377.18 34062.48 36992.69 344
miper_refine_blended84.81 32382.64 32691.31 31291.07 35385.34 29891.22 34795.75 27985.56 29983.09 34090.21 34767.21 34495.89 34377.18 34062.48 36992.69 344
PCF-MVS89.48 1191.56 21889.95 25696.36 10596.60 18592.52 9492.51 34197.26 18879.41 35288.90 26196.56 17584.04 16599.55 8877.01 34297.30 14297.01 200
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
testgi87.97 29887.21 29890.24 32992.86 33680.76 33996.67 19694.97 31791.74 14285.52 31895.83 20962.66 36094.47 35976.25 34388.36 27595.48 258
TinyColmap86.82 30785.35 31391.21 31494.91 27382.99 32593.94 31494.02 34183.58 32681.56 34594.68 26162.34 36198.13 22675.78 34487.35 28592.52 348
ppachtmachnet_test88.35 29687.29 29591.53 30792.45 34583.57 32293.75 31995.97 27184.28 31685.32 32294.18 28979.00 26396.93 33075.71 34584.99 31194.10 327
PAPM91.52 22190.30 24095.20 16295.30 25289.83 18593.38 32896.85 22986.26 28988.59 27195.80 21184.88 15298.15 22475.67 34695.93 16897.63 184
CL-MVSNet_self_test86.31 31285.15 31489.80 33388.83 36581.74 33593.93 31596.22 26486.67 28385.03 32390.80 34478.09 27794.50 35774.92 34771.86 36293.15 339
tfpnnormal89.70 28088.40 28593.60 24795.15 26090.10 17497.56 10998.16 5487.28 27486.16 31494.63 26477.57 28398.05 24474.48 34884.59 31692.65 346
DSMNet-mixed86.34 31186.12 30787.00 34489.88 36070.43 36994.93 28690.08 36677.97 35885.42 32192.78 32174.44 30593.96 36174.43 34995.14 18196.62 213
Patchmatch-test89.42 28287.99 28993.70 24395.27 25385.11 30088.98 36194.37 33581.11 34287.10 30393.69 30582.28 20297.50 30674.37 35094.76 18998.48 142
LCM-MVSNet72.55 33369.39 33782.03 34870.81 38065.42 37590.12 35794.36 33655.02 37065.88 36781.72 36524.16 38189.96 36874.32 35168.10 36690.71 362
new-patchmatchnet83.18 32781.87 32987.11 34386.88 37075.99 36493.70 32095.18 30885.02 30877.30 35988.40 35565.99 35293.88 36274.19 35270.18 36491.47 359
MDA-MVSNet-bldmvs85.00 32182.95 32591.17 31693.13 33483.33 32394.56 29295.00 31584.57 31465.13 36992.65 32270.45 32795.85 34573.57 35377.49 35194.33 321
pmmvs379.97 33177.50 33587.39 34282.80 37279.38 35592.70 33990.75 36570.69 36578.66 35787.47 36251.34 37093.40 36473.39 35469.65 36589.38 364
test_method66.11 33864.89 34069.79 35572.62 37835.23 38565.19 37392.83 35120.35 37665.20 36888.08 35943.14 37382.70 37373.12 35563.46 36891.45 360
PatchT88.87 28987.42 29493.22 26494.08 30885.10 30189.51 35994.64 32881.92 33792.36 17288.15 35880.05 24197.01 32872.43 35693.65 20497.54 192
Anonymous2023120687.09 30586.14 30689.93 33291.22 35280.35 34496.11 24195.35 29883.57 32784.16 33193.02 31973.54 31295.61 34972.16 35786.14 29393.84 332
MVS-HIRNet82.47 32981.21 33186.26 34695.38 24169.21 37288.96 36289.49 36766.28 36680.79 34874.08 37068.48 33797.39 31571.93 35895.47 17692.18 353
new_pmnet82.89 32881.12 33288.18 34089.63 36180.18 34891.77 34492.57 35376.79 36075.56 36288.23 35761.22 36294.48 35871.43 35982.92 33689.87 363
TAPA-MVS90.10 792.30 19191.22 20895.56 14698.33 9289.60 19196.79 18397.65 13981.83 33891.52 19197.23 13087.94 10998.91 16171.31 36098.37 11298.17 161
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test20.0386.14 31485.40 31288.35 33790.12 35780.06 34995.90 25395.20 30788.59 23481.29 34693.62 31071.43 32192.65 36771.26 36181.17 34292.34 350
tmp_tt51.94 34453.82 34446.29 36033.73 38445.30 38378.32 37067.24 38318.02 37750.93 37387.05 36352.99 36953.11 37970.76 36225.29 37740.46 375
MIMVSNet184.93 32283.05 32490.56 32589.56 36284.84 30695.40 27195.35 29883.91 32080.38 35192.21 33457.23 36493.34 36570.69 36382.75 33893.50 335
RPMNet88.98 28587.05 30094.77 19094.45 29687.19 26290.23 35598.03 8877.87 35992.40 16987.55 36180.17 23999.51 9868.84 36493.95 20197.60 189
N_pmnet78.73 33278.71 33478.79 35092.80 33846.50 38194.14 30843.71 38478.61 35580.83 34791.66 34074.94 30396.36 33867.24 36584.45 31993.50 335
OpenMVS_ROBcopyleft81.14 2084.42 32582.28 32890.83 31990.06 35884.05 31695.73 25994.04 34073.89 36380.17 35491.53 34159.15 36397.64 29266.92 36689.05 26890.80 361
PMMVS270.19 33566.92 33880.01 34976.35 37465.67 37486.22 36487.58 37264.83 36862.38 37080.29 36726.78 37988.49 37063.79 36754.07 37285.88 365
test_040286.46 30984.79 31791.45 30995.02 26685.55 29196.29 23094.89 32080.90 34382.21 34393.97 29768.21 33997.29 32062.98 36888.68 27391.51 357
DeepMVS_CXcopyleft74.68 35490.84 35564.34 37681.61 37865.34 36767.47 36688.01 36048.60 37180.13 37562.33 36973.68 36079.58 369
EGC-MVSNET68.77 33663.01 34186.07 34792.49 34382.24 33293.96 31390.96 3640.71 3812.62 38290.89 34353.66 36893.46 36357.25 37084.55 31782.51 367
FPMVS71.27 33469.85 33675.50 35274.64 37559.03 37791.30 34691.50 36158.80 36957.92 37188.28 35629.98 37785.53 37253.43 37182.84 33781.95 368
ANet_high63.94 33959.58 34277.02 35161.24 38266.06 37385.66 36687.93 37178.53 35642.94 37471.04 37125.42 38080.71 37452.60 37230.83 37584.28 366
Gipumacopyleft67.86 33765.41 33975.18 35392.66 34173.45 36766.50 37294.52 33053.33 37157.80 37266.07 37230.81 37589.20 36948.15 37378.88 35062.90 372
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft53.92 2258.58 34055.40 34368.12 35651.00 38348.64 37978.86 36987.10 37446.77 37235.84 37874.28 3698.76 38286.34 37142.07 37473.91 35969.38 370
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive50.73 2353.25 34248.81 34766.58 35765.34 38157.50 37872.49 37170.94 38240.15 37539.28 37763.51 3736.89 38473.48 37838.29 37542.38 37368.76 371
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN53.28 34152.56 34555.43 35874.43 37647.13 38083.63 36876.30 37942.23 37342.59 37562.22 37428.57 37874.40 37631.53 37631.51 37444.78 373
EMVS52.08 34351.31 34654.39 35972.62 37845.39 38283.84 36775.51 38141.13 37440.77 37659.65 37530.08 37673.60 37728.31 37729.90 37644.18 374
wuyk23d25.11 34524.57 34926.74 36173.98 37739.89 38457.88 3749.80 38512.27 37810.39 3796.97 3817.03 38336.44 38025.43 37817.39 3783.89 378
testmvs13.36 34716.33 3504.48 3635.04 3852.26 38793.18 3293.28 3862.70 3798.24 38021.66 3772.29 3862.19 3817.58 3792.96 3799.00 377
test12313.04 34815.66 3515.18 3624.51 3863.45 38692.50 3421.81 3872.50 3807.58 38120.15 3783.67 3852.18 3827.13 3801.07 3809.90 376
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
cdsmvs_eth3d_5k23.24 34630.99 3480.00 3640.00 3870.00 3880.00 37597.63 1410.00 3820.00 38396.88 15184.38 1590.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas7.39 3509.85 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38288.65 1010.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re8.06 34910.74 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38396.69 1600.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
FOURS199.55 193.34 7399.29 198.35 2094.98 2798.49 15
test_one_060199.32 2495.20 2198.25 3695.13 1998.48 1698.87 695.16 7
eth-test20.00 387
eth-test0.00 387
test_241102_ONE99.42 795.30 1898.27 3195.09 2399.19 198.81 1095.54 599.65 57
save fliter98.91 5394.28 3997.02 15998.02 9295.35 9
test072699.45 395.36 1398.31 2998.29 2694.92 2898.99 498.92 295.08 8
GSMVS98.45 145
test_part299.28 2795.74 898.10 21
sam_mvs182.76 19198.45 145
sam_mvs81.94 210
MTGPAbinary98.08 68
test_post17.58 37981.76 21298.08 238
patchmatchnet-post90.45 34682.65 19598.10 234
MTMP97.86 7282.03 377
TEST998.70 6494.19 4496.41 21598.02 9288.17 24696.03 8997.56 11692.74 2999.59 72
test_898.67 6694.06 5296.37 22298.01 9588.58 23595.98 9497.55 11892.73 3099.58 75
agg_prior98.67 6693.79 5898.00 9795.68 10499.57 83
test_prior493.66 6296.42 214
test_prior97.23 6598.67 6692.99 8098.00 9799.41 11199.29 68
新几何295.79 257
旧先验198.38 8893.38 7097.75 12498.09 7092.30 4399.01 9299.16 79
原ACMM295.67 260
test22298.24 10192.21 10495.33 27497.60 14379.22 35395.25 11597.84 9188.80 9999.15 8198.72 124
segment_acmp92.89 26
testdata195.26 28193.10 97
test1297.65 4798.46 8194.26 4197.66 13795.52 11390.89 7699.46 10599.25 7299.22 76
plane_prior796.21 20789.98 180
plane_prior696.10 21790.00 17681.32 218
plane_prior496.64 164
plane_prior390.00 17694.46 4791.34 195
plane_prior297.74 8494.85 30
plane_prior196.14 215
plane_prior89.99 17897.24 13994.06 5792.16 224
n20.00 388
nn0.00 388
door-mid91.06 363
test1197.88 111
door91.13 362
HQP5-MVS89.33 206
HQP-NCC95.86 22296.65 19793.55 7490.14 220
ACMP_Plane95.86 22296.65 19793.55 7490.14 220
HQP4-MVS90.14 22098.50 19795.78 241
HQP3-MVS97.39 17692.10 225
HQP2-MVS80.95 221
NP-MVS95.99 22189.81 18695.87 206
ACMMP++_ref90.30 258
ACMMP++91.02 247
Test By Simon88.73 100