This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
MSC_two_6792asdad96.52 197.78 5790.86 196.85 6899.61 396.03 199.06 999.07 5
No_MVS96.52 197.78 5790.86 196.85 6899.61 396.03 199.06 999.07 5
APDe-MVS95.46 595.64 594.91 2498.26 3086.29 5197.46 697.40 2089.03 6796.20 1698.10 289.39 1699.34 3695.88 399.03 1199.10 4
SED-MVS95.91 296.28 294.80 3698.77 585.99 5797.13 1497.44 1490.31 3197.71 198.07 492.31 499.58 895.66 499.13 398.84 13
test_241102_TWO97.44 1490.31 3197.62 598.07 491.46 1099.58 895.66 499.12 698.98 9
DVP-MVS++95.98 196.36 194.82 3497.78 5786.00 5598.29 197.49 590.75 2297.62 598.06 692.59 299.61 395.64 699.02 1298.86 10
test_0728_THIRD90.75 2297.04 1098.05 892.09 699.55 1595.64 699.13 399.13 2
DVP-MVScopyleft95.67 396.02 394.64 4398.78 385.93 6097.09 1696.73 8490.27 3397.04 1098.05 891.47 899.55 1595.62 899.08 798.45 38
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND95.01 1798.79 286.43 4397.09 1697.49 599.61 395.62 899.08 798.99 8
IU-MVS98.77 586.00 5596.84 7081.26 25797.26 795.50 1099.13 399.03 7
CNVR-MVS95.40 795.37 795.50 798.11 3988.51 795.29 10096.96 5692.09 495.32 2397.08 4389.49 1599.33 3995.10 1198.85 1998.66 20
MSP-MVS95.42 695.56 694.98 2198.49 1886.52 4096.91 2597.47 1091.73 996.10 1796.69 6389.90 1299.30 4294.70 1298.04 7399.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SMA-MVScopyleft95.20 895.07 1095.59 598.14 3888.48 896.26 4797.28 3185.90 15297.67 398.10 288.41 2099.56 1094.66 1399.19 198.71 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft95.57 495.67 495.25 998.36 2787.28 1795.56 8897.51 489.13 6397.14 897.91 1191.64 799.62 194.61 1499.17 298.86 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + MP.94.85 1394.94 1194.58 4698.25 3186.33 4796.11 5896.62 9688.14 9696.10 1796.96 5089.09 1898.94 8794.48 1598.68 3998.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS94.96 1295.33 893.88 6597.25 8086.69 3296.19 5197.11 4690.42 3096.95 1297.27 2989.53 1496.91 25094.38 1698.85 1998.03 78
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MP-MVS-pluss94.21 3494.00 4294.85 2998.17 3686.65 3594.82 13497.17 4286.26 14492.83 7297.87 1285.57 5899.56 1094.37 1798.92 1798.34 45
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SteuartSystems-ACMMP95.20 895.32 994.85 2996.99 8386.33 4797.33 797.30 2991.38 1395.39 2297.46 1988.98 1999.40 3194.12 1898.89 1898.82 15
Skip Steuart: Steuart Systems R&D Blog.
patch_mono-293.74 4994.32 2292.01 13397.54 6478.37 25793.40 21697.19 3888.02 9894.99 2897.21 3488.35 2198.44 12394.07 1998.09 7099.23 1
DeepPCF-MVS89.96 194.20 3694.77 1492.49 11696.52 9980.00 22094.00 19397.08 4790.05 3795.65 2197.29 2889.66 1398.97 8393.95 2098.71 3498.50 28
ACMMP_NAP94.74 1594.56 1795.28 898.02 4587.70 1295.68 8197.34 2288.28 8995.30 2497.67 1585.90 5499.54 1993.91 2198.95 1598.60 23
xxxxxxxxxxxxxcwj94.65 1694.70 1594.48 5097.85 5085.63 7195.21 10695.47 17789.44 5295.71 1997.70 1388.28 2399.35 3493.89 2298.78 2598.48 30
SF-MVS94.97 1194.90 1395.20 1097.84 5287.76 1096.65 3497.48 987.76 10995.71 1997.70 1388.28 2399.35 3493.89 2298.78 2598.48 30
DROMVSNet93.44 5893.71 5192.63 10995.21 14882.43 15297.27 996.71 8890.57 2992.88 6995.80 10583.16 8498.16 14393.68 2498.14 6797.31 109
CS-MVS94.12 3794.44 1993.17 8396.55 9683.08 13197.63 396.95 5891.71 1093.50 5796.21 8785.61 5698.24 13793.64 2598.17 6598.19 62
dcpmvs_293.49 5694.19 3391.38 16597.69 6176.78 29094.25 17296.29 11388.33 8594.46 3096.88 5388.07 2698.64 10793.62 2698.09 7098.73 16
Regformer-294.33 2894.22 2994.68 4195.54 13586.75 3194.57 15096.70 8991.84 794.41 3196.56 7587.19 3999.13 5793.50 2797.65 8698.16 65
MCST-MVS94.45 2194.20 3295.19 1198.46 2087.50 1595.00 12297.12 4487.13 12392.51 8496.30 8289.24 1799.34 3693.46 2898.62 4898.73 16
zzz-MVS94.47 1994.30 2495.00 1898.42 2286.95 2095.06 12096.97 5391.07 1593.14 6397.56 1684.30 7499.56 1093.43 2998.75 3198.47 34
MTAPA94.42 2594.22 2995.00 1898.42 2286.95 2094.36 16996.97 5391.07 1593.14 6397.56 1684.30 7499.56 1093.43 2998.75 3198.47 34
HPM-MVS++copyleft95.14 1094.91 1295.83 498.25 3189.65 495.92 7096.96 5691.75 894.02 4196.83 5688.12 2599.55 1593.41 3198.94 1698.28 54
SR-MVS94.23 3294.17 3594.43 5398.21 3585.78 6896.40 4196.90 6388.20 9494.33 3397.40 2384.75 7199.03 6793.35 3297.99 7498.48 30
Regformer-194.22 3394.13 3794.51 4995.54 13586.36 4694.57 15096.44 10491.69 1194.32 3496.56 7587.05 4199.03 6793.35 3297.65 8698.15 66
test117293.97 4294.07 3993.66 7498.11 3983.45 11996.26 4796.84 7088.33 8594.19 3697.43 2084.24 7699.01 7393.26 3497.98 7598.52 26
9.1494.47 1897.79 5496.08 5997.44 1486.13 15095.10 2697.40 2388.34 2299.22 4993.25 3598.70 36
Regformer-493.91 4493.81 4694.19 6095.36 14085.47 7494.68 14296.41 10791.60 1293.75 4696.71 6185.95 5399.10 6093.21 3696.65 10598.01 80
CANet93.54 5593.20 6294.55 4795.65 13085.73 7094.94 12596.69 9191.89 690.69 11595.88 10281.99 10499.54 1993.14 3797.95 7798.39 42
ETH3D-3000-0.194.61 1794.44 1995.12 1397.70 6087.71 1195.98 6797.44 1486.67 13695.25 2597.31 2787.73 3099.24 4793.11 3898.76 3098.40 41
CS-MVS-test94.02 3994.29 2593.24 7996.69 9083.24 12497.49 596.92 6192.14 392.90 6895.77 10785.02 6698.33 13293.03 3998.62 4898.13 68
Regformer-393.68 5193.64 5493.81 7095.36 14084.61 8394.68 14295.83 15091.27 1493.60 5296.71 6185.75 5598.86 9492.87 4096.65 10597.96 82
NCCC94.81 1494.69 1695.17 1297.83 5387.46 1695.66 8396.93 6092.34 293.94 4296.58 7387.74 2999.44 3092.83 4198.40 5898.62 22
SR-MVS-dyc-post93.82 4793.82 4593.82 6797.92 4784.57 8596.28 4596.76 8087.46 11693.75 4697.43 2084.24 7699.01 7392.73 4297.80 8197.88 88
RE-MVS-def93.68 5297.92 4784.57 8596.28 4596.76 8087.46 11693.75 4697.43 2082.94 8792.73 4297.80 8197.88 88
TSAR-MVS + GP.93.66 5293.41 5794.41 5596.59 9486.78 2894.40 16293.93 24889.77 4694.21 3595.59 11487.35 3598.61 11192.72 4496.15 11497.83 92
APD-MVS_3200maxsize93.78 4893.77 4993.80 7197.92 4784.19 10096.30 4396.87 6786.96 12793.92 4397.47 1883.88 8198.96 8692.71 4597.87 7998.26 58
PC_three_145282.47 22597.09 997.07 4592.72 198.04 15992.70 4699.02 1298.86 10
PHI-MVS93.89 4693.65 5394.62 4596.84 8686.43 4396.69 3297.49 585.15 17293.56 5596.28 8485.60 5799.31 4192.45 4798.79 2398.12 70
HPM-MVScopyleft94.02 3993.88 4494.43 5398.39 2585.78 6897.25 1097.07 4886.90 13192.62 8196.80 6084.85 7099.17 5392.43 4898.65 4698.33 46
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
alignmvs93.08 6892.50 7494.81 3595.62 13287.61 1495.99 6596.07 13189.77 4694.12 3894.87 13480.56 11398.66 10592.42 4993.10 16498.15 66
ZNCC-MVS94.47 1994.28 2695.03 1698.52 1686.96 1996.85 2897.32 2788.24 9093.15 6297.04 4686.17 4999.62 192.40 5098.81 2298.52 26
canonicalmvs93.27 6492.75 7094.85 2995.70 12987.66 1396.33 4296.41 10790.00 3994.09 3994.60 15082.33 9598.62 11092.40 5092.86 16998.27 56
HFP-MVS94.52 1894.40 2194.86 2798.61 1086.81 2696.94 2097.34 2288.63 7793.65 4997.21 3486.10 5099.49 2692.35 5298.77 2898.30 50
ACMMPR94.43 2394.28 2694.91 2498.63 986.69 3296.94 2097.32 2788.63 7793.53 5697.26 3185.04 6599.54 1992.35 5298.78 2598.50 28
OPU-MVS96.21 398.00 4690.85 397.13 1497.08 4392.59 298.94 8792.25 5498.99 1498.84 13
region2R94.43 2394.27 2894.92 2298.65 886.67 3496.92 2497.23 3588.60 7993.58 5397.27 2985.22 6299.54 1992.21 5598.74 3398.56 25
DeepC-MVS88.79 393.31 6292.99 6694.26 5896.07 11485.83 6694.89 12996.99 5189.02 6989.56 12897.37 2582.51 9299.38 3292.20 5698.30 6297.57 102
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSLP-MVS++93.72 5094.08 3892.65 10897.31 7483.43 12095.79 7597.33 2590.03 3893.58 5396.96 5084.87 6997.76 17592.19 5798.66 4496.76 132
CP-MVS94.34 2794.21 3194.74 4098.39 2586.64 3697.60 497.24 3388.53 8192.73 7797.23 3285.20 6399.32 4092.15 5898.83 2198.25 59
train_agg93.44 5893.08 6394.52 4897.53 6586.49 4194.07 18696.78 7781.86 24392.77 7496.20 8987.63 3299.12 5892.14 5998.69 3797.94 83
diffmvs91.37 9291.23 8891.77 15193.09 23180.27 20792.36 25595.52 17487.03 12691.40 10894.93 13180.08 11897.44 20492.13 6094.56 13897.61 99
h-mvs3390.80 10090.15 10692.75 10296.01 11682.66 14895.43 9195.53 17389.80 4293.08 6595.64 11275.77 16599.00 7892.07 6178.05 33496.60 137
hse-mvs289.88 12789.34 12591.51 15994.83 16881.12 18793.94 19693.91 25189.80 4293.08 6593.60 19175.77 16597.66 18192.07 6177.07 34195.74 171
MP-MVScopyleft94.25 3094.07 3994.77 3898.47 1986.31 4996.71 3196.98 5289.04 6691.98 9397.19 3785.43 6099.56 1092.06 6398.79 2398.44 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZD-MVS98.15 3786.62 3797.07 4883.63 19994.19 3696.91 5287.57 3499.26 4691.99 6498.44 56
EI-MVSNet-Vis-set93.01 6992.92 6893.29 7795.01 15583.51 11894.48 15495.77 15490.87 1892.52 8396.67 6584.50 7399.00 7891.99 6494.44 14297.36 108
XVS94.45 2194.32 2294.85 2998.54 1486.60 3896.93 2297.19 3890.66 2792.85 7097.16 4085.02 6699.49 2691.99 6498.56 5298.47 34
X-MVStestdata88.31 17586.13 21894.85 2998.54 1486.60 3896.93 2297.19 3890.66 2792.85 7023.41 37685.02 6699.49 2691.99 6498.56 5298.47 34
agg_prior193.29 6392.97 6794.26 5897.38 7185.92 6293.92 19796.72 8681.96 23792.16 8996.23 8687.85 2798.97 8391.95 6898.55 5497.90 87
test9_res91.91 6998.71 3498.07 74
abl_693.18 6793.05 6493.57 7697.52 6784.27 9995.53 8996.67 9287.85 10693.20 6197.22 3380.35 11499.18 5291.91 6997.21 9197.26 112
MVS_111021_HR93.45 5793.31 5893.84 6696.99 8384.84 7993.24 22897.24 3388.76 7491.60 10495.85 10386.07 5298.66 10591.91 6998.16 6698.03 78
ETH3D cwj APD-0.1693.91 4493.53 5595.06 1596.76 8887.78 994.92 12797.21 3784.33 18693.89 4497.09 4287.20 3899.29 4491.90 7298.44 5698.12 70
APD-MVScopyleft94.24 3194.07 3994.75 3998.06 4386.90 2395.88 7196.94 5985.68 15895.05 2797.18 3887.31 3699.07 6191.90 7298.61 5098.28 54
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_LR92.47 7692.29 7792.98 9295.99 11884.43 9693.08 23396.09 12988.20 9491.12 11295.72 11081.33 10997.76 17591.74 7497.37 9096.75 133
ETV-MVS92.74 7292.66 7192.97 9395.20 14984.04 10495.07 11796.51 10290.73 2592.96 6791.19 26784.06 7898.34 13091.72 7596.54 10896.54 141
#test#94.32 2994.14 3694.86 2798.61 1086.81 2696.43 3897.34 2287.51 11593.65 4997.21 3486.10 5099.49 2691.68 7698.77 2898.30 50
EI-MVSNet-UG-set92.74 7292.62 7293.12 8594.86 16683.20 12694.40 16295.74 15790.71 2692.05 9296.60 7284.00 7998.99 8091.55 7793.63 15097.17 117
testtj94.39 2694.18 3495.00 1898.24 3386.77 3096.16 5297.23 3587.28 12194.85 2997.04 4686.99 4299.52 2391.54 7898.33 6198.71 18
test_prior393.60 5493.53 5593.82 6797.29 7684.49 8994.12 17996.88 6587.67 11292.63 7996.39 8086.62 4498.87 9191.50 7998.67 4198.11 72
test_prior294.12 17987.67 11292.63 7996.39 8086.62 4491.50 7998.67 41
mPP-MVS93.99 4193.78 4894.63 4498.50 1785.90 6596.87 2696.91 6288.70 7591.83 9997.17 3983.96 8099.55 1591.44 8198.64 4798.43 40
GST-MVS94.21 3493.97 4394.90 2698.41 2486.82 2596.54 3697.19 3888.24 9093.26 5896.83 5685.48 5999.59 791.43 8298.40 5898.30 50
DELS-MVS93.43 6093.25 5993.97 6295.42 13985.04 7893.06 23597.13 4390.74 2491.84 9795.09 12786.32 4899.21 5091.22 8398.45 5597.65 97
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
nrg03091.08 9890.39 10093.17 8393.07 23286.91 2296.41 3996.26 11688.30 8888.37 14594.85 13782.19 9997.64 18691.09 8482.95 27994.96 193
baseline92.39 7892.29 7792.69 10794.46 18481.77 16794.14 17896.27 11589.22 5991.88 9596.00 9782.35 9497.99 16491.05 8595.27 12998.30 50
mvsmamba89.96 12289.50 11891.33 16892.90 24081.82 16596.68 3392.37 28089.03 6787.00 17194.85 13773.05 20897.65 18391.03 8688.63 22194.51 215
xiu_mvs_v1_base_debu90.64 10790.05 10992.40 11993.97 20584.46 9293.32 21895.46 17885.17 16992.25 8694.03 16870.59 23698.57 11390.97 8794.67 13394.18 232
xiu_mvs_v1_base90.64 10790.05 10992.40 11993.97 20584.46 9293.32 21895.46 17885.17 16992.25 8694.03 16870.59 23698.57 11390.97 8794.67 13394.18 232
xiu_mvs_v1_base_debi90.64 10790.05 10992.40 11993.97 20584.46 9293.32 21895.46 17885.17 16992.25 8694.03 16870.59 23698.57 11390.97 8794.67 13394.18 232
VDD-MVS90.74 10289.92 11493.20 8196.27 10583.02 13395.73 7893.86 25288.42 8492.53 8296.84 5562.09 31398.64 10790.95 9092.62 17297.93 85
casdiffmvs92.51 7592.43 7592.74 10394.41 18781.98 16294.54 15296.23 12089.57 5091.96 9496.17 9382.58 9198.01 16290.95 9095.45 12498.23 60
DeepC-MVS_fast89.43 294.04 3893.79 4794.80 3697.48 6986.78 2895.65 8596.89 6489.40 5592.81 7396.97 4985.37 6199.24 4790.87 9298.69 3798.38 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPcopyleft93.24 6592.88 6994.30 5798.09 4285.33 7696.86 2797.45 1388.33 8590.15 12497.03 4881.44 10799.51 2490.85 9395.74 11798.04 77
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PGM-MVS93.96 4393.72 5094.68 4198.43 2186.22 5295.30 9897.78 187.45 11893.26 5897.33 2684.62 7299.51 2490.75 9498.57 5198.32 49
iter_conf0588.85 16188.08 16391.17 17494.27 19281.64 16995.18 10992.15 28886.23 14787.28 16694.07 16663.89 30597.55 19390.63 9589.00 21794.32 228
iter_conf_final89.42 14088.69 14191.60 15695.12 15382.93 13795.75 7792.14 28987.32 12087.12 16994.07 16667.09 27897.55 19390.61 9689.01 21694.32 228
agg_prior290.54 9798.68 3998.27 56
HPM-MVS_fast93.40 6193.22 6093.94 6498.36 2784.83 8097.15 1396.80 7685.77 15592.47 8597.13 4182.38 9399.07 6190.51 9898.40 5897.92 86
lupinMVS90.92 9990.21 10393.03 9093.86 20883.88 10792.81 24293.86 25279.84 27291.76 10094.29 16077.92 14698.04 15990.48 9997.11 9297.17 117
jason90.80 10090.10 10792.90 9693.04 23483.53 11793.08 23394.15 24280.22 26691.41 10794.91 13276.87 15297.93 16990.28 10096.90 9897.24 113
jason: jason.
bld_raw_conf00589.19 14788.56 14791.09 17992.62 24681.17 18596.45 3791.24 31689.08 6486.16 19294.82 14068.16 27397.63 18790.03 10188.46 22694.47 223
CSCG93.23 6693.05 6493.76 7298.04 4484.07 10296.22 5097.37 2184.15 18890.05 12595.66 11187.77 2899.15 5689.91 10298.27 6398.07 74
ETH3 D test640093.64 5393.22 6094.92 2297.79 5486.84 2495.31 9597.26 3282.67 22393.81 4596.29 8387.29 3799.27 4589.87 10398.67 4198.65 21
CPTT-MVS91.99 8091.80 8192.55 11398.24 3381.98 16296.76 3096.49 10381.89 24290.24 12096.44 7978.59 13898.61 11189.68 10497.85 8097.06 121
MVSFormer91.68 8891.30 8692.80 9993.86 20883.88 10795.96 6895.90 14484.66 18291.76 10094.91 13277.92 14697.30 22189.64 10597.11 9297.24 113
test_djsdf89.03 15688.64 14290.21 21690.74 31179.28 24095.96 6895.90 14484.66 18285.33 22492.94 21174.02 19397.30 22189.64 10588.53 22394.05 242
EIA-MVS91.95 8191.94 7991.98 13795.16 15080.01 21995.36 9296.73 8488.44 8289.34 13292.16 23483.82 8298.45 12289.35 10797.06 9497.48 105
RRT_MVS89.09 15188.62 14590.49 20292.85 24179.65 22896.41 3994.41 23188.22 9285.50 20994.77 14269.36 25597.31 21989.33 10886.73 25394.51 215
Effi-MVS+91.59 8991.11 9093.01 9194.35 19183.39 12294.60 14795.10 20187.10 12490.57 11693.10 20781.43 10898.07 15789.29 10994.48 14097.59 101
ET-MVSNet_ETH3D87.51 20485.91 22992.32 12493.70 21683.93 10592.33 25690.94 32384.16 18772.09 35492.52 22369.90 24595.85 30389.20 11088.36 23097.17 117
PS-MVSNAJ91.18 9690.92 9491.96 13995.26 14682.60 15192.09 26595.70 15986.27 14391.84 9792.46 22479.70 12498.99 8089.08 11195.86 11694.29 230
xiu_mvs_v2_base91.13 9790.89 9691.86 14594.97 15882.42 15392.24 25995.64 16686.11 15191.74 10293.14 20579.67 12798.89 9089.06 11295.46 12394.28 231
VNet92.24 7991.91 8093.24 7996.59 9483.43 12094.84 13396.44 10489.19 6194.08 4095.90 10177.85 14998.17 14288.90 11393.38 15898.13 68
PS-MVSNAJss89.97 12189.62 11691.02 18491.90 26480.85 19595.26 10395.98 13786.26 14486.21 19094.29 16079.70 12497.65 18388.87 11488.10 23494.57 211
XVG-OURS-SEG-HR89.95 12389.45 12091.47 16294.00 20381.21 18491.87 26896.06 13385.78 15488.55 14195.73 10974.67 18397.27 22588.71 11589.64 20595.91 162
test_low_dy_conf_00189.07 15388.60 14690.49 20292.39 25179.71 22796.07 6294.84 21786.25 14686.34 18794.97 13069.61 25197.31 21988.59 11688.35 23194.44 225
jajsoiax88.24 17787.50 17490.48 20590.89 30580.14 21195.31 9595.65 16584.97 17684.24 24994.02 17165.31 29697.42 20688.56 11788.52 22493.89 246
mvs_tets88.06 18387.28 18190.38 21190.94 30179.88 22295.22 10595.66 16385.10 17384.21 25093.94 17663.53 30697.40 21388.50 11888.40 22993.87 249
VDDNet89.56 13388.49 15292.76 10195.07 15482.09 15996.30 4393.19 26481.05 26291.88 9596.86 5461.16 32398.33 13288.43 11992.49 17597.84 91
HQP_MVS90.60 11090.19 10491.82 14894.70 17482.73 14495.85 7296.22 12190.81 2086.91 17594.86 13574.23 18798.12 14488.15 12089.99 19694.63 206
plane_prior596.22 12198.12 14488.15 12089.99 19694.63 206
EPNet91.79 8391.02 9394.10 6190.10 32585.25 7796.03 6492.05 29292.83 187.39 16595.78 10679.39 12999.01 7388.13 12297.48 8898.05 76
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OPM-MVS90.12 11689.56 11791.82 14893.14 22983.90 10694.16 17795.74 15788.96 7087.86 15295.43 11772.48 21697.91 17088.10 12390.18 19593.65 265
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MVSTER88.84 16288.29 15890.51 20192.95 23880.44 20593.73 20495.01 20484.66 18287.15 16793.12 20672.79 21297.21 23287.86 12487.36 24693.87 249
3Dnovator+87.14 492.42 7791.37 8595.55 695.63 13188.73 697.07 1896.77 7990.84 1984.02 25296.62 7175.95 16499.34 3687.77 12597.68 8498.59 24
bld_raw_dy_0_6487.60 20086.73 19490.21 21691.72 27080.26 20895.09 11688.61 35085.68 15885.55 20394.38 15563.93 30496.66 25887.73 12687.84 24193.72 262
LPG-MVS_test89.45 13788.90 13791.12 17594.47 18281.49 17495.30 9896.14 12686.73 13485.45 21395.16 12469.89 24698.10 14687.70 12789.23 21293.77 258
LGP-MVS_train91.12 17594.47 18281.49 17496.14 12686.73 13485.45 21395.16 12469.89 24698.10 14687.70 12789.23 21293.77 258
MVS_Test91.31 9391.11 9091.93 14194.37 18880.14 21193.46 21595.80 15286.46 13991.35 10993.77 18682.21 9898.09 15487.57 12994.95 13197.55 104
PVSNet_Blended_VisFu91.38 9190.91 9592.80 9996.39 10283.17 12794.87 13196.66 9383.29 20989.27 13394.46 15480.29 11699.17 5387.57 12995.37 12596.05 159
CDPH-MVS92.83 7092.30 7694.44 5197.79 5486.11 5494.06 18896.66 9380.09 26992.77 7496.63 7086.62 4499.04 6687.40 13198.66 4498.17 64
XVG-OURS89.40 14388.70 14091.52 15894.06 19781.46 17691.27 28096.07 13186.14 14988.89 13995.77 10768.73 26797.26 22787.39 13289.96 19895.83 167
EPP-MVSNet91.70 8791.56 8492.13 13195.88 12280.50 20497.33 795.25 19386.15 14889.76 12795.60 11383.42 8398.32 13487.37 13393.25 16197.56 103
VPA-MVSNet89.62 13088.96 13491.60 15693.86 20882.89 13995.46 9097.33 2587.91 10188.43 14493.31 19774.17 19097.40 21387.32 13482.86 28494.52 214
LFMVS90.08 11789.13 13192.95 9496.71 8982.32 15796.08 5989.91 34186.79 13292.15 9196.81 5862.60 31198.34 13087.18 13593.90 14698.19 62
anonymousdsp87.84 18687.09 18490.12 22289.13 33680.54 20394.67 14495.55 17082.05 23383.82 25692.12 23771.47 22597.15 23487.15 13687.80 24292.67 299
CLD-MVS89.47 13688.90 13791.18 17394.22 19382.07 16092.13 26396.09 12987.90 10285.37 22292.45 22574.38 18597.56 19287.15 13690.43 19193.93 245
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
BP-MVS87.11 138
HQP-MVS89.80 12889.28 12891.34 16794.17 19481.56 17094.39 16496.04 13588.81 7185.43 21693.97 17573.83 19797.96 16687.11 13889.77 20394.50 218
ACMP84.23 889.01 15888.35 15490.99 18794.73 17181.27 18095.07 11795.89 14686.48 13883.67 26094.30 15969.33 25697.99 16487.10 14088.55 22293.72 262
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
旧先验293.36 21771.25 35094.37 3297.13 23786.74 141
3Dnovator86.66 591.73 8690.82 9794.44 5194.59 17886.37 4597.18 1297.02 5089.20 6084.31 24896.66 6673.74 19999.17 5386.74 14197.96 7697.79 94
PVSNet_BlendedMVS89.98 12089.70 11590.82 19196.12 10981.25 18193.92 19796.83 7283.49 20489.10 13592.26 23281.04 11198.85 9786.72 14387.86 24092.35 310
PVSNet_Blended90.73 10390.32 10291.98 13796.12 10981.25 18192.55 25096.83 7282.04 23589.10 13592.56 22281.04 11198.85 9786.72 14395.91 11595.84 166
mvs_anonymous89.37 14489.32 12689.51 24993.47 22174.22 31491.65 27594.83 21882.91 21885.45 21393.79 18481.23 11096.36 28386.47 14594.09 14497.94 83
test111189.10 14988.64 14290.48 20595.53 13774.97 30796.08 5984.89 36288.13 9790.16 12396.65 6763.29 30798.10 14686.14 14696.90 9898.39 42
AUN-MVS87.78 18986.54 20591.48 16194.82 16981.05 18893.91 20093.93 24883.00 21586.93 17393.53 19269.50 25397.67 18086.14 14677.12 34095.73 172
test_yl90.69 10490.02 11292.71 10495.72 12782.41 15594.11 18195.12 19985.63 16091.49 10594.70 14474.75 18098.42 12586.13 14892.53 17397.31 109
DCV-MVSNet90.69 10490.02 11292.71 10495.72 12782.41 15594.11 18195.12 19985.63 16091.49 10594.70 14474.75 18098.42 12586.13 14892.53 17397.31 109
test250687.21 21886.28 21490.02 22895.62 13273.64 31996.25 4971.38 37787.89 10490.45 11796.65 6755.29 34698.09 15486.03 15096.94 9698.33 46
ECVR-MVScopyleft89.09 15188.53 14890.77 19395.62 13275.89 30196.16 5284.22 36487.89 10490.20 12196.65 6763.19 30998.10 14685.90 15196.94 9698.33 46
OMC-MVS91.23 9490.62 9993.08 8796.27 10584.07 10293.52 21295.93 14086.95 12889.51 12996.13 9578.50 14098.35 12985.84 15292.90 16896.83 131
test_part189.00 15987.99 16592.04 13295.94 12183.81 10996.14 5596.05 13486.44 14085.69 19993.73 18971.57 22297.66 18185.80 15380.54 31594.66 205
ACMM84.12 989.14 14888.48 15391.12 17594.65 17781.22 18395.31 9596.12 12885.31 16885.92 19594.34 15670.19 24498.06 15885.65 15488.86 21994.08 240
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DPM-MVS92.58 7491.74 8295.08 1496.19 10789.31 592.66 24596.56 10183.44 20591.68 10395.04 12886.60 4798.99 8085.60 15597.92 7896.93 128
Effi-MVS+-dtu88.65 16788.35 15489.54 24693.33 22476.39 29694.47 15794.36 23387.70 11085.43 21689.56 30673.45 20297.26 22785.57 15691.28 18294.97 190
mvs-test189.45 13789.14 13090.38 21193.33 22477.63 27894.95 12494.36 23387.70 11087.10 17092.81 21673.45 20298.03 16185.57 15693.04 16595.48 177
FIs90.51 11190.35 10190.99 18793.99 20480.98 19095.73 7897.54 389.15 6286.72 17994.68 14681.83 10697.24 22985.18 15888.31 23294.76 203
MG-MVS91.77 8491.70 8392.00 13697.08 8280.03 21893.60 21095.18 19787.85 10690.89 11496.47 7882.06 10298.36 12785.07 15997.04 9597.62 98
CANet_DTU90.26 11589.41 12392.81 9893.46 22283.01 13493.48 21394.47 22989.43 5487.76 15794.23 16470.54 24099.03 6784.97 16096.39 11296.38 143
UniMVSNet_NR-MVSNet89.92 12589.29 12791.81 15093.39 22383.72 11194.43 16097.12 4489.80 4286.46 18293.32 19683.16 8497.23 23084.92 16181.02 30794.49 220
DU-MVS89.34 14588.50 15091.85 14793.04 23483.72 11194.47 15796.59 9889.50 5186.46 18293.29 19977.25 15097.23 23084.92 16181.02 30794.59 209
cascas86.43 24284.98 24990.80 19292.10 25980.92 19390.24 29695.91 14373.10 33983.57 26488.39 32065.15 29797.46 20184.90 16391.43 18194.03 243
UniMVSNet (Re)89.80 12889.07 13292.01 13393.60 21884.52 8894.78 13797.47 1089.26 5886.44 18592.32 22982.10 10097.39 21684.81 16480.84 31194.12 236
Vis-MVSNetpermissive91.75 8591.23 8893.29 7795.32 14383.78 11096.14 5595.98 13789.89 4090.45 11796.58 7375.09 17698.31 13584.75 16596.90 9897.78 95
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v2v48287.84 18687.06 18590.17 21890.99 29779.23 24394.00 19395.13 19884.87 17785.53 20692.07 24374.45 18497.45 20284.71 16681.75 29593.85 252
DP-MVS Recon91.95 8191.28 8793.96 6398.33 2985.92 6294.66 14596.66 9382.69 22290.03 12695.82 10482.30 9699.03 6784.57 16796.48 11196.91 129
UA-Net92.83 7092.54 7393.68 7396.10 11284.71 8295.66 8396.39 10991.92 593.22 6096.49 7783.16 8498.87 9184.47 16895.47 12297.45 107
V4287.68 19186.86 18990.15 22090.58 31680.14 21194.24 17495.28 19283.66 19885.67 20091.33 26274.73 18297.41 21184.43 16981.83 29392.89 294
FC-MVSNet-test90.27 11490.18 10590.53 19893.71 21479.85 22495.77 7697.59 289.31 5786.27 18994.67 14781.93 10597.01 24484.26 17088.09 23694.71 204
cl2286.78 22985.98 22589.18 25592.34 25277.62 27990.84 28794.13 24481.33 25583.97 25490.15 29373.96 19496.60 26684.19 17182.94 28093.33 275
miper_enhance_ethall86.90 22686.18 21789.06 25891.66 27577.58 28090.22 29894.82 21979.16 28084.48 23789.10 30979.19 13196.66 25884.06 17282.94 28092.94 292
VPNet88.20 17887.47 17690.39 20993.56 21979.46 23194.04 18995.54 17288.67 7686.96 17294.58 15269.33 25697.15 23484.05 17380.53 31794.56 212
UGNet89.95 12388.95 13592.95 9494.51 18183.31 12395.70 8095.23 19489.37 5687.58 15993.94 17664.00 30298.78 10283.92 17496.31 11396.74 134
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IterMVS-LS88.36 17487.91 16989.70 24293.80 21178.29 26093.73 20495.08 20385.73 15684.75 23191.90 24879.88 12096.92 24983.83 17582.51 28593.89 246
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_ehance_all_eth87.22 21786.62 20289.02 26092.13 25777.40 28390.91 28694.81 22081.28 25684.32 24690.08 29579.26 13096.62 26183.81 17682.94 28093.04 289
EI-MVSNet89.10 14988.86 13989.80 23891.84 26678.30 25993.70 20795.01 20485.73 15687.15 16795.28 11979.87 12197.21 23283.81 17687.36 24693.88 248
c3_l87.14 22286.50 20789.04 25992.20 25477.26 28491.22 28294.70 22482.01 23684.34 24590.43 28878.81 13496.61 26483.70 17881.09 30493.25 279
Anonymous2024052988.09 18186.59 20392.58 11296.53 9881.92 16495.99 6595.84 14974.11 33189.06 13795.21 12361.44 31898.81 10083.67 17987.47 24397.01 124
v114487.61 19986.79 19390.06 22591.01 29679.34 23693.95 19595.42 18683.36 20885.66 20191.31 26574.98 17897.42 20683.37 18082.06 28993.42 274
thisisatest053088.67 16687.61 17391.86 14594.87 16580.07 21494.63 14689.90 34284.00 19188.46 14393.78 18566.88 28298.46 11983.30 18192.65 17197.06 121
tttt051788.61 16887.78 17091.11 17894.96 15977.81 27295.35 9389.69 34585.09 17488.05 15094.59 15166.93 28098.48 11783.27 18292.13 17897.03 123
testdata90.49 20296.40 10177.89 26995.37 18972.51 34493.63 5196.69 6382.08 10197.65 18383.08 18397.39 8995.94 161
LCM-MVSNet-Re88.30 17688.32 15788.27 27694.71 17372.41 33493.15 22990.98 32287.77 10879.25 31891.96 24678.35 14295.75 30883.04 18495.62 11896.65 136
IS-MVSNet91.43 9091.09 9292.46 11795.87 12481.38 17996.95 1993.69 25789.72 4889.50 13095.98 9878.57 13997.77 17483.02 18596.50 11098.22 61
UniMVSNet_ETH3D87.53 20386.37 20991.00 18692.44 24978.96 24594.74 13995.61 16784.07 19085.36 22394.52 15359.78 33197.34 21882.93 18687.88 23996.71 135
XVG-ACMP-BASELINE86.00 24684.84 25489.45 25091.20 28878.00 26591.70 27395.55 17085.05 17582.97 27392.25 23354.49 34997.48 19982.93 18687.45 24592.89 294
v14419287.19 22086.35 21089.74 23990.64 31478.24 26193.92 19795.43 18481.93 23985.51 20891.05 27574.21 18997.45 20282.86 18881.56 29793.53 268
v887.50 20686.71 19689.89 23291.37 28379.40 23394.50 15395.38 18784.81 17983.60 26391.33 26276.05 16197.42 20682.84 18980.51 31992.84 296
Anonymous2023121186.59 23685.13 24690.98 18996.52 9981.50 17296.14 5596.16 12573.78 33383.65 26192.15 23563.26 30897.37 21782.82 19081.74 29694.06 241
PAPM_NR91.22 9590.78 9892.52 11597.60 6381.46 17694.37 16896.24 11986.39 14287.41 16294.80 14182.06 10298.48 11782.80 19195.37 12597.61 99
eth_miper_zixun_eth86.50 23985.77 23488.68 26791.94 26375.81 30390.47 29294.89 21282.05 23384.05 25190.46 28775.96 16396.77 25482.76 19279.36 32993.46 273
Patchmatch-RL test81.67 29679.96 30286.81 31285.42 36171.23 34082.17 36087.50 35778.47 29177.19 32982.50 35770.81 23393.48 34382.66 19372.89 34995.71 173
tpmrst85.35 25884.99 24886.43 31490.88 30667.88 35888.71 32191.43 31180.13 26886.08 19488.80 31573.05 20896.02 29582.48 19483.40 27895.40 180
sss88.93 16088.26 16090.94 19094.05 19880.78 19791.71 27295.38 18781.55 25188.63 14093.91 18075.04 17795.47 31982.47 19591.61 18096.57 139
ab-mvs89.41 14188.35 15492.60 11095.15 15282.65 14992.20 26195.60 16883.97 19288.55 14193.70 19074.16 19198.21 14182.46 19689.37 20896.94 127
CostFormer85.77 25284.94 25188.26 27791.16 29272.58 33289.47 31091.04 32176.26 31186.45 18489.97 29870.74 23496.86 25382.35 19787.07 25195.34 183
v119287.25 21486.33 21190.00 23090.76 31079.04 24493.80 20195.48 17682.57 22485.48 21191.18 26973.38 20697.42 20682.30 19882.06 28993.53 268
Baseline_NR-MVSNet87.07 22386.63 20188.40 27291.44 27877.87 27094.23 17592.57 27784.12 18985.74 19892.08 24177.25 15096.04 29382.29 19979.94 32391.30 327
Anonymous20240521187.68 19186.13 21892.31 12596.66 9180.74 19894.87 13191.49 30980.47 26589.46 13195.44 11554.72 34898.23 13882.19 20089.89 20097.97 81
v14887.04 22486.32 21289.21 25390.94 30177.26 28493.71 20694.43 23084.84 17884.36 24490.80 28176.04 16297.05 24282.12 20179.60 32793.31 276
114514_t89.51 13488.50 15092.54 11498.11 3981.99 16195.16 11296.36 11170.19 35485.81 19695.25 12176.70 15698.63 10982.07 20296.86 10197.00 125
v192192086.97 22586.06 22389.69 24390.53 31978.11 26493.80 20195.43 18481.90 24185.33 22491.05 27572.66 21397.41 21182.05 20381.80 29493.53 268
OurMVSNet-221017-085.35 25884.64 25887.49 29490.77 30972.59 33194.01 19294.40 23284.72 18179.62 31693.17 20361.91 31596.72 25581.99 20481.16 30193.16 284
v1087.25 21486.38 20889.85 23391.19 28979.50 23094.48 15495.45 18183.79 19683.62 26291.19 26775.13 17597.42 20681.94 20580.60 31392.63 301
TranMVSNet+NR-MVSNet88.84 16287.95 16791.49 16092.68 24583.01 13494.92 12796.31 11289.88 4185.53 20693.85 18376.63 15896.96 24681.91 20679.87 32594.50 218
D2MVS85.90 24885.09 24788.35 27490.79 30877.42 28291.83 26995.70 15980.77 26480.08 30990.02 29666.74 28596.37 28181.88 20787.97 23891.26 328
test-LLR85.87 24985.41 24087.25 30090.95 29971.67 33789.55 30689.88 34383.41 20684.54 23587.95 32767.25 27595.11 32481.82 20893.37 15994.97 190
test-mter84.54 27283.64 27087.25 30090.95 29971.67 33789.55 30689.88 34379.17 27984.54 23587.95 32755.56 34395.11 32481.82 20893.37 15994.97 190
PMMVS85.71 25384.96 25087.95 28588.90 33977.09 28688.68 32290.06 33772.32 34586.47 18190.76 28372.15 21994.40 33081.78 21093.49 15492.36 309
cl____86.52 23885.78 23288.75 26492.03 26176.46 29490.74 28894.30 23681.83 24583.34 26990.78 28275.74 17096.57 26781.74 21181.54 29893.22 281
DIV-MVS_self_test86.53 23785.78 23288.75 26492.02 26276.45 29590.74 28894.30 23681.83 24583.34 26990.82 28075.75 16896.57 26781.73 21281.52 29993.24 280
NR-MVSNet88.58 17087.47 17691.93 14193.04 23484.16 10194.77 13896.25 11889.05 6580.04 31093.29 19979.02 13297.05 24281.71 21380.05 32294.59 209
WTY-MVS89.60 13188.92 13691.67 15495.47 13881.15 18692.38 25494.78 22283.11 21289.06 13794.32 15878.67 13796.61 26481.57 21490.89 18997.24 113
thisisatest051587.33 21085.99 22491.37 16693.49 22079.55 22990.63 29089.56 34880.17 26787.56 16090.86 27867.07 27998.28 13681.50 21593.02 16696.29 145
v124086.78 22985.85 23089.56 24590.45 32077.79 27393.61 20995.37 18981.65 24785.43 21691.15 27171.50 22497.43 20581.47 21682.05 29193.47 272
GeoE90.05 11889.43 12291.90 14495.16 15080.37 20695.80 7494.65 22683.90 19387.55 16194.75 14378.18 14497.62 18981.28 21793.63 15097.71 96
WR-MVS88.38 17287.67 17290.52 20093.30 22680.18 20993.26 22595.96 13988.57 8085.47 21292.81 21676.12 16096.91 25081.24 21882.29 28794.47 223
131487.51 20486.57 20490.34 21492.42 25079.74 22692.63 24695.35 19178.35 29380.14 30791.62 25774.05 19297.15 23481.05 21993.53 15394.12 236
IterMVS-SCA-FT85.45 25584.53 26088.18 28091.71 27276.87 28990.19 29992.65 27685.40 16681.44 28990.54 28566.79 28395.00 32781.04 22081.05 30592.66 300
XXY-MVS87.65 19386.85 19090.03 22692.14 25680.60 20293.76 20395.23 19482.94 21784.60 23394.02 17174.27 18695.49 31881.04 22083.68 27294.01 244
miper_lstm_enhance85.27 26184.59 25987.31 29791.28 28774.63 30987.69 33394.09 24681.20 26081.36 29189.85 30174.97 17994.30 33381.03 22279.84 32693.01 290
GA-MVS86.61 23485.27 24490.66 19491.33 28678.71 24790.40 29393.81 25585.34 16785.12 22689.57 30561.25 32097.11 23880.99 22389.59 20696.15 149
IB-MVS80.51 1585.24 26283.26 27391.19 17292.13 25779.86 22391.75 27191.29 31483.28 21080.66 29988.49 31961.28 31998.46 11980.99 22379.46 32895.25 184
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CVMVSNet84.69 27184.79 25584.37 33291.84 26664.92 36693.70 20791.47 31066.19 36086.16 19295.28 11967.18 27793.33 34580.89 22590.42 19294.88 198
baseline188.10 18087.28 18190.57 19694.96 15980.07 21494.27 17191.29 31486.74 13387.41 16294.00 17376.77 15596.20 28880.77 22679.31 33095.44 178
HyFIR lowres test88.09 18186.81 19191.93 14196.00 11780.63 20090.01 30295.79 15373.42 33687.68 15892.10 24073.86 19697.96 16680.75 22791.70 17997.19 116
AdaColmapbinary89.89 12689.07 13292.37 12297.41 7083.03 13294.42 16195.92 14182.81 22086.34 18794.65 14873.89 19599.02 7180.69 22895.51 12095.05 188
原ACMM192.01 13397.34 7381.05 18896.81 7578.89 28390.45 11795.92 10082.65 9098.84 9980.68 22998.26 6496.14 150
TESTMET0.1,183.74 28082.85 27986.42 31589.96 32971.21 34189.55 30687.88 35377.41 30083.37 26887.31 33556.71 34093.65 34280.62 23092.85 17094.40 226
无先验93.28 22496.26 11673.95 33299.05 6380.56 23196.59 138
112190.42 11289.49 11993.20 8197.27 7884.46 9292.63 24695.51 17571.01 35291.20 11196.21 8782.92 8899.05 6380.56 23198.07 7296.10 155
Fast-Effi-MVS+89.41 14188.64 14291.71 15394.74 17080.81 19693.54 21195.10 20183.11 21286.82 17890.67 28479.74 12397.75 17880.51 23393.55 15296.57 139
CHOSEN 1792x268888.84 16287.69 17192.30 12696.14 10881.42 17890.01 30295.86 14874.52 32887.41 16293.94 17675.46 17398.36 12780.36 23495.53 11997.12 120
CDS-MVSNet89.45 13788.51 14992.29 12793.62 21783.61 11693.01 23694.68 22581.95 23887.82 15593.24 20178.69 13696.99 24580.34 23593.23 16296.28 146
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+-dtu87.44 20786.72 19589.63 24492.04 26077.68 27794.03 19093.94 24785.81 15382.42 27891.32 26470.33 24297.06 24180.33 23690.23 19494.14 235
baseline286.50 23985.39 24189.84 23491.12 29376.70 29191.88 26788.58 35182.35 22979.95 31190.95 27773.42 20497.63 18780.27 23789.95 19995.19 185
API-MVS90.66 10690.07 10892.45 11896.36 10384.57 8596.06 6395.22 19682.39 22689.13 13494.27 16380.32 11598.46 11980.16 23896.71 10394.33 227
MAR-MVS90.30 11389.37 12493.07 8996.61 9384.48 9195.68 8195.67 16182.36 22887.85 15392.85 21276.63 15898.80 10180.01 23996.68 10495.91 162
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HY-MVS83.01 1289.03 15687.94 16892.29 12794.86 16682.77 14092.08 26694.49 22881.52 25286.93 17392.79 21878.32 14398.23 13879.93 24090.55 19095.88 164
CHOSEN 280x42085.15 26383.99 26588.65 26892.47 24878.40 25679.68 36492.76 27274.90 32581.41 29089.59 30469.85 24895.51 31579.92 24195.29 12792.03 315
MVS87.44 20786.10 22191.44 16392.61 24783.62 11592.63 24695.66 16367.26 35881.47 28892.15 23577.95 14598.22 14079.71 24295.48 12192.47 305
pm-mvs186.61 23485.54 23789.82 23591.44 27880.18 20995.28 10294.85 21583.84 19581.66 28792.62 22172.45 21896.48 27479.67 24378.06 33392.82 297
IterMVS84.88 26783.98 26687.60 29091.44 27876.03 30090.18 30092.41 27983.24 21181.06 29590.42 28966.60 28694.28 33479.46 24480.98 31092.48 304
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
1112_ss88.42 17187.33 17991.72 15294.92 16280.98 19092.97 23894.54 22778.16 29783.82 25693.88 18178.78 13597.91 17079.45 24589.41 20796.26 147
gm-plane-assit89.60 33568.00 35677.28 30388.99 31097.57 19179.44 246
PM-MVS78.11 32476.12 32684.09 33683.54 36670.08 35088.97 31985.27 36179.93 27174.73 34486.43 34034.70 37193.48 34379.43 24772.06 35188.72 354
v7n86.81 22785.76 23589.95 23190.72 31279.25 24295.07 11795.92 14184.45 18582.29 27990.86 27872.60 21597.53 19679.42 24880.52 31893.08 288
PAPR90.02 11989.27 12992.29 12795.78 12580.95 19292.68 24496.22 12181.91 24086.66 18093.75 18882.23 9798.44 12379.40 24994.79 13297.48 105
新几何193.10 8697.30 7584.35 9895.56 16971.09 35191.26 11096.24 8582.87 8998.86 9479.19 25098.10 6996.07 157
CP-MVSNet87.63 19687.26 18388.74 26693.12 23076.59 29395.29 10096.58 9988.43 8383.49 26692.98 21075.28 17495.83 30478.97 25181.15 30393.79 254
pmmvs485.43 25683.86 26790.16 21990.02 32882.97 13690.27 29492.67 27575.93 31480.73 29791.74 25271.05 22895.73 30978.85 25283.46 27691.78 318
Test_1112_low_res87.65 19386.51 20691.08 18094.94 16179.28 24091.77 27094.30 23676.04 31383.51 26592.37 22777.86 14897.73 17978.69 25389.13 21496.22 148
Vis-MVSNet (Re-imp)89.59 13289.44 12190.03 22695.74 12675.85 30295.61 8690.80 32787.66 11487.83 15495.40 11876.79 15496.46 27778.37 25496.73 10297.80 93
PS-CasMVS87.32 21186.88 18888.63 26992.99 23776.33 29895.33 9496.61 9788.22 9283.30 27193.07 20873.03 21095.79 30778.36 25581.00 30993.75 260
testdata298.75 10378.30 256
GBi-Net87.26 21285.98 22591.08 18094.01 20083.10 12895.14 11394.94 20783.57 20084.37 24191.64 25366.59 28796.34 28478.23 25785.36 25893.79 254
test187.26 21285.98 22591.08 18094.01 20083.10 12895.14 11394.94 20783.57 20084.37 24191.64 25366.59 28796.34 28478.23 25785.36 25893.79 254
FMVSNet387.40 20986.11 22091.30 16993.79 21383.64 11494.20 17694.81 22083.89 19484.37 24191.87 24968.45 27096.56 26978.23 25785.36 25893.70 264
OpenMVScopyleft83.78 1188.74 16587.29 18093.08 8792.70 24485.39 7596.57 3596.43 10678.74 28880.85 29696.07 9669.64 25099.01 7378.01 26096.65 10594.83 200
tpm84.73 26984.02 26486.87 31190.33 32168.90 35489.06 31789.94 34080.85 26385.75 19789.86 30068.54 26995.97 29777.76 26184.05 26895.75 170
TAMVS89.21 14688.29 15891.96 13993.71 21482.62 15093.30 22294.19 24082.22 23087.78 15693.94 17678.83 13396.95 24777.70 26292.98 16796.32 144
BH-untuned88.60 16988.13 16290.01 22995.24 14778.50 25393.29 22394.15 24284.75 18084.46 23893.40 19375.76 16797.40 21377.59 26394.52 13994.12 236
FMVSNet287.19 22085.82 23191.30 16994.01 20083.67 11394.79 13694.94 20783.57 20083.88 25592.05 24466.59 28796.51 27277.56 26485.01 26193.73 261
RPSCF85.07 26484.27 26187.48 29592.91 23970.62 34791.69 27492.46 27876.20 31282.67 27795.22 12263.94 30397.29 22477.51 26585.80 25694.53 213
PLCcopyleft84.53 789.06 15588.03 16492.15 13097.27 7882.69 14794.29 17095.44 18379.71 27484.01 25394.18 16576.68 15798.75 10377.28 26693.41 15795.02 189
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA89.07 15387.98 16692.34 12396.87 8584.78 8194.08 18593.24 26281.41 25384.46 23895.13 12675.57 17296.62 26177.21 26793.84 14895.61 175
K. test v381.59 29880.15 30085.91 32189.89 33169.42 35392.57 24987.71 35585.56 16273.44 35089.71 30355.58 34295.52 31477.17 26869.76 35392.78 298
QAPM89.51 13488.15 16193.59 7594.92 16284.58 8496.82 2996.70 8978.43 29283.41 26796.19 9273.18 20799.30 4277.11 26996.54 10896.89 130
pmmvs584.21 27482.84 28088.34 27588.95 33876.94 28892.41 25291.91 30075.63 31680.28 30491.18 26964.59 30095.57 31177.09 27083.47 27592.53 303
pmmvs683.42 28281.60 28688.87 26288.01 34977.87 27094.96 12394.24 23974.67 32778.80 31991.09 27460.17 32896.49 27377.06 27175.40 34592.23 313
test_post188.00 3299.81 37869.31 25895.53 31376.65 272
SCA86.32 24385.18 24589.73 24192.15 25576.60 29291.12 28391.69 30383.53 20385.50 20988.81 31366.79 28396.48 27476.65 27290.35 19396.12 152
WR-MVS_H87.80 18887.37 17889.10 25793.23 22778.12 26395.61 8697.30 2987.90 10283.72 25892.01 24579.65 12896.01 29676.36 27480.54 31593.16 284
EU-MVSNet81.32 30380.95 29182.42 34188.50 34263.67 36793.32 21891.33 31264.02 36280.57 30192.83 21461.21 32292.27 35476.34 27580.38 32091.32 326
CMPMVSbinary59.16 2180.52 30979.20 31184.48 33183.98 36467.63 36089.95 30493.84 25464.79 36166.81 36291.14 27257.93 33895.17 32276.25 27688.10 23490.65 337
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
F-COLMAP87.95 18486.80 19291.40 16496.35 10480.88 19494.73 14095.45 18179.65 27582.04 28494.61 14971.13 22798.50 11676.24 27791.05 18794.80 202
PEN-MVS86.80 22886.27 21588.40 27292.32 25375.71 30495.18 10996.38 11087.97 9982.82 27593.15 20473.39 20595.92 29976.15 27879.03 33293.59 266
SixPastTwentyTwo83.91 27882.90 27886.92 30890.99 29770.67 34693.48 21391.99 29585.54 16377.62 32792.11 23960.59 32596.87 25276.05 27977.75 33593.20 282
MVS_030483.46 28181.92 28488.10 28290.63 31577.49 28193.26 22593.75 25680.04 27080.44 30387.24 33747.94 36395.55 31275.79 28088.16 23391.26 328
MS-PatchMatch85.05 26584.16 26287.73 28891.42 28178.51 25291.25 28193.53 25877.50 29980.15 30691.58 25861.99 31495.51 31575.69 28194.35 14389.16 351
BH-w/o87.57 20287.05 18689.12 25694.90 16477.90 26892.41 25293.51 25982.89 21983.70 25991.34 26175.75 16897.07 24075.49 28293.49 15492.39 308
gg-mvs-nofinetune81.77 29479.37 30788.99 26190.85 30777.73 27686.29 34179.63 37374.88 32683.19 27269.05 36760.34 32696.11 29275.46 28394.64 13693.11 286
FMVSNet185.85 25084.11 26391.08 18092.81 24283.10 12895.14 11394.94 20781.64 24882.68 27691.64 25359.01 33596.34 28475.37 28483.78 26993.79 254
EPMVS83.90 27982.70 28187.51 29290.23 32472.67 32888.62 32381.96 36981.37 25485.01 22888.34 32166.31 29094.45 32975.30 28587.12 24995.43 179
pmmvs-eth3d80.97 30778.72 31687.74 28784.99 36379.97 22190.11 30191.65 30475.36 31873.51 34986.03 34359.45 33293.96 33975.17 28672.21 35089.29 349
tpm284.08 27582.94 27787.48 29591.39 28271.27 33989.23 31490.37 33171.95 34784.64 23289.33 30767.30 27496.55 27175.17 28687.09 25094.63 206
lessismore_v086.04 31788.46 34368.78 35580.59 37173.01 35290.11 29455.39 34496.43 27975.06 28865.06 36192.90 293
MVP-Stereo85.97 24784.86 25389.32 25190.92 30382.19 15892.11 26494.19 24078.76 28778.77 32091.63 25668.38 27196.56 26975.01 28993.95 14589.20 350
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PVSNet78.82 1885.55 25484.65 25788.23 27994.72 17271.93 33587.12 33792.75 27378.80 28684.95 22990.53 28664.43 30196.71 25774.74 29093.86 14796.06 158
MDTV_nov1_ep13_2view55.91 37587.62 33573.32 33784.59 23470.33 24274.65 29195.50 176
PatchmatchNetpermissive85.85 25084.70 25689.29 25291.76 26975.54 30588.49 32491.30 31381.63 24985.05 22788.70 31771.71 22096.24 28774.61 29289.05 21596.08 156
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
LF4IMVS80.37 31179.07 31484.27 33486.64 35369.87 35289.39 31191.05 32076.38 30874.97 34390.00 29747.85 36494.25 33574.55 29380.82 31288.69 355
DTE-MVSNet86.11 24585.48 23987.98 28491.65 27674.92 30894.93 12695.75 15687.36 11982.26 28093.04 20972.85 21195.82 30574.04 29477.46 33893.20 282
BH-RMVSNet88.37 17387.48 17591.02 18495.28 14479.45 23292.89 24093.07 26685.45 16586.91 17594.84 13970.35 24197.76 17573.97 29594.59 13795.85 165
CR-MVSNet85.35 25883.76 26890.12 22290.58 31679.34 23685.24 34791.96 29878.27 29485.55 20387.87 33071.03 22995.61 31073.96 29689.36 20995.40 180
ACMH+81.04 1485.05 26583.46 27289.82 23594.66 17679.37 23494.44 15994.12 24582.19 23178.04 32392.82 21558.23 33797.54 19573.77 29782.90 28392.54 302
TR-MVS86.78 22985.76 23589.82 23594.37 18878.41 25592.47 25192.83 27081.11 26186.36 18692.40 22668.73 26797.48 19973.75 29889.85 20293.57 267
UnsupCasMVSNet_eth80.07 31378.27 31785.46 32385.24 36272.63 33088.45 32694.87 21482.99 21671.64 35788.07 32656.34 34191.75 35873.48 29963.36 36492.01 316
PatchMatch-RL86.77 23285.54 23790.47 20795.88 12282.71 14690.54 29192.31 28379.82 27384.32 24691.57 26068.77 26696.39 28073.16 30093.48 15692.32 311
ambc83.06 33979.99 37063.51 36877.47 36592.86 26974.34 34784.45 35028.74 37295.06 32673.06 30168.89 35890.61 338
KD-MVS_self_test80.20 31279.24 30983.07 33885.64 36065.29 36591.01 28593.93 24878.71 28976.32 33486.40 34159.20 33492.93 35072.59 30269.35 35491.00 336
ITE_SJBPF88.24 27891.88 26577.05 28792.92 26885.54 16380.13 30893.30 19857.29 33996.20 28872.46 30384.71 26391.49 323
ACMH80.38 1785.36 25783.68 26990.39 20994.45 18580.63 20094.73 14094.85 21582.09 23277.24 32892.65 22060.01 32997.58 19072.25 30484.87 26292.96 291
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
USDC82.76 28581.26 29087.26 29991.17 29074.55 31089.27 31293.39 26178.26 29575.30 34192.08 24154.43 35096.63 26071.64 30585.79 25790.61 338
EPNet_dtu86.49 24185.94 22888.14 28190.24 32372.82 32694.11 18192.20 28686.66 13779.42 31792.36 22873.52 20095.81 30671.26 30693.66 14995.80 169
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GG-mvs-BLEND87.94 28689.73 33377.91 26787.80 33078.23 37580.58 30083.86 35159.88 33095.33 32171.20 30792.22 17790.60 340
LTVRE_ROB82.13 1386.26 24484.90 25290.34 21494.44 18681.50 17292.31 25894.89 21283.03 21479.63 31592.67 21969.69 24997.79 17371.20 30786.26 25491.72 319
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
JIA-IIPM81.04 30578.98 31587.25 30088.64 34073.48 32181.75 36189.61 34773.19 33882.05 28373.71 36466.07 29495.87 30271.18 30984.60 26492.41 307
Anonymous2024052180.44 31079.21 31084.11 33585.75 35967.89 35792.86 24193.23 26375.61 31775.59 34087.47 33450.03 35894.33 33271.14 31081.21 30090.12 343
TransMVSNet (Re)84.43 27383.06 27688.54 27091.72 27078.44 25495.18 10992.82 27182.73 22179.67 31492.12 23773.49 20195.96 29871.10 31168.73 35991.21 330
PCF-MVS84.11 1087.74 19086.08 22292.70 10694.02 19984.43 9689.27 31295.87 14773.62 33584.43 24094.33 15778.48 14198.86 9470.27 31294.45 14194.81 201
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EG-PatchMatch MVS82.37 29080.34 29688.46 27190.27 32279.35 23592.80 24394.33 23577.14 30473.26 35190.18 29247.47 36596.72 25570.25 31387.32 24889.30 348
MDTV_nov1_ep1383.56 27191.69 27469.93 35187.75 33291.54 30778.60 29084.86 23088.90 31269.54 25296.03 29470.25 31388.93 218
TDRefinement79.81 31577.34 31987.22 30379.24 37175.48 30693.12 23092.03 29376.45 30775.01 34291.58 25849.19 36196.44 27870.22 31569.18 35689.75 345
thres100view90087.63 19686.71 19690.38 21196.12 10978.55 25095.03 12191.58 30587.15 12288.06 14992.29 23168.91 26498.10 14670.13 31691.10 18394.48 221
tfpn200view987.58 20186.64 19990.41 20895.99 11878.64 24894.58 14891.98 29686.94 12988.09 14691.77 25069.18 26198.10 14670.13 31691.10 18394.48 221
thres40087.62 19886.64 19990.57 19695.99 11878.64 24894.58 14891.98 29686.94 12988.09 14691.77 25069.18 26198.10 14670.13 31691.10 18394.96 193
thres600view787.65 19386.67 19890.59 19596.08 11378.72 24694.88 13091.58 30587.06 12588.08 14892.30 23068.91 26498.10 14670.05 31991.10 18394.96 193
thres20087.21 21886.24 21690.12 22295.36 14078.53 25193.26 22592.10 29086.42 14188.00 15191.11 27369.24 26098.00 16369.58 32091.04 18893.83 253
tpm cat181.96 29180.27 29787.01 30691.09 29471.02 34387.38 33691.53 30866.25 35980.17 30586.35 34268.22 27296.15 29169.16 32182.29 28793.86 251
Patchmtry82.71 28680.93 29288.06 28390.05 32776.37 29784.74 35191.96 29872.28 34681.32 29287.87 33071.03 22995.50 31768.97 32280.15 32192.32 311
our_test_381.93 29280.46 29586.33 31688.46 34373.48 32188.46 32591.11 31776.46 30676.69 33288.25 32366.89 28194.36 33168.75 32379.08 33191.14 332
PVSNet_073.20 2077.22 32574.83 33084.37 33290.70 31371.10 34283.09 35889.67 34672.81 34373.93 34883.13 35560.79 32493.70 34168.54 32450.84 37088.30 358
MSDG84.86 26883.09 27590.14 22193.80 21180.05 21689.18 31593.09 26578.89 28378.19 32191.91 24765.86 29597.27 22568.47 32588.45 22793.11 286
LS3D87.89 18586.32 21292.59 11196.07 11482.92 13895.23 10494.92 21175.66 31582.89 27495.98 9872.48 21699.21 5068.43 32695.23 13095.64 174
AllTest83.42 28281.39 28889.52 24795.01 15577.79 27393.12 23090.89 32577.41 30076.12 33693.34 19454.08 35197.51 19768.31 32784.27 26693.26 277
TestCases89.52 24795.01 15577.79 27390.89 32577.41 30076.12 33693.34 19454.08 35197.51 19768.31 32784.27 26693.26 277
dp81.47 30180.23 29885.17 32789.92 33065.49 36486.74 33890.10 33676.30 31081.10 29387.12 33962.81 31095.92 29968.13 32979.88 32494.09 239
tpmvs83.35 28482.07 28287.20 30491.07 29571.00 34488.31 32791.70 30278.91 28280.49 30287.18 33869.30 25997.08 23968.12 33083.56 27493.51 271
FMVSNet581.52 30079.60 30687.27 29891.17 29077.95 26691.49 27792.26 28576.87 30576.16 33587.91 32951.67 35692.34 35367.74 33181.16 30191.52 322
KD-MVS_2432*160078.50 32276.02 32785.93 31986.22 35574.47 31184.80 34992.33 28179.29 27776.98 33085.92 34453.81 35393.97 33767.39 33257.42 36789.36 346
miper_refine_blended78.50 32276.02 32785.93 31986.22 35574.47 31184.80 34992.33 28179.29 27776.98 33085.92 34453.81 35393.97 33767.39 33257.42 36789.36 346
CL-MVSNet_self_test81.74 29580.53 29385.36 32485.96 35772.45 33390.25 29593.07 26681.24 25879.85 31387.29 33670.93 23192.52 35266.95 33469.23 35591.11 334
YYNet179.22 31977.20 32185.28 32688.20 34872.66 32985.87 34390.05 33974.33 33062.70 36487.61 33266.09 29392.03 35566.94 33572.97 34891.15 331
PAPM86.68 23385.39 24190.53 19893.05 23379.33 23989.79 30594.77 22378.82 28581.95 28593.24 20176.81 15397.30 22166.94 33593.16 16394.95 196
DP-MVS87.25 21485.36 24392.90 9697.65 6283.24 12494.81 13592.00 29474.99 32381.92 28695.00 12972.66 21399.05 6366.92 33792.33 17696.40 142
MDA-MVSNet_test_wron79.21 32077.19 32285.29 32588.22 34772.77 32785.87 34390.06 33774.34 32962.62 36587.56 33366.14 29291.99 35666.90 33873.01 34791.10 335
UnsupCasMVSNet_bld76.23 32873.27 33185.09 32883.79 36572.92 32485.65 34693.47 26071.52 34868.84 36079.08 36149.77 35993.21 34666.81 33960.52 36689.13 353
MIMVSNet82.59 28880.53 29388.76 26391.51 27778.32 25886.57 34090.13 33579.32 27680.70 29888.69 31852.98 35593.07 34966.03 34088.86 21994.90 197
LCM-MVSNet66.00 33362.16 33777.51 34864.51 37858.29 37083.87 35590.90 32448.17 36954.69 36773.31 36516.83 38186.75 36765.47 34161.67 36587.48 360
PatchT82.68 28781.27 28986.89 31090.09 32670.94 34584.06 35390.15 33474.91 32485.63 20283.57 35369.37 25494.87 32865.19 34288.50 22594.84 199
test0.0.03 182.41 28981.69 28584.59 33088.23 34672.89 32590.24 29687.83 35483.41 20679.86 31289.78 30267.25 27588.99 36565.18 34383.42 27791.90 317
ppachtmachnet_test81.84 29380.07 30187.15 30588.46 34374.43 31389.04 31892.16 28775.33 31977.75 32588.99 31066.20 29195.37 32065.12 34477.60 33691.65 320
COLMAP_ROBcopyleft80.39 1683.96 27682.04 28389.74 23995.28 14479.75 22594.25 17292.28 28475.17 32178.02 32493.77 18658.60 33697.84 17265.06 34585.92 25591.63 321
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ADS-MVSNet281.66 29779.71 30587.50 29391.35 28474.19 31583.33 35688.48 35272.90 34182.24 28185.77 34664.98 29893.20 34764.57 34683.74 27095.12 186
ADS-MVSNet81.56 29979.78 30386.90 30991.35 28471.82 33683.33 35689.16 34972.90 34182.24 28185.77 34664.98 29893.76 34064.57 34683.74 27095.12 186
new-patchmatchnet76.41 32775.17 32980.13 34382.65 36959.61 36987.66 33491.08 31878.23 29669.85 35883.22 35454.76 34791.63 36064.14 34864.89 36289.16 351
testgi80.94 30880.20 29983.18 33787.96 35066.29 36191.28 27990.70 32983.70 19778.12 32292.84 21351.37 35790.82 36163.34 34982.46 28692.43 306
TinyColmap79.76 31677.69 31885.97 31891.71 27273.12 32389.55 30690.36 33275.03 32272.03 35590.19 29146.22 36696.19 29063.11 35081.03 30688.59 356
pmmvs371.81 33168.71 33481.11 34275.86 37270.42 34886.74 33883.66 36558.95 36568.64 36180.89 35936.93 37089.52 36463.10 35163.59 36383.39 361
TAPA-MVS84.62 688.16 17987.01 18791.62 15596.64 9280.65 19994.39 16496.21 12476.38 30886.19 19195.44 11579.75 12298.08 15662.75 35295.29 12796.13 151
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MDA-MVSNet-bldmvs78.85 32176.31 32486.46 31389.76 33273.88 31788.79 32090.42 33079.16 28059.18 36688.33 32260.20 32794.04 33662.00 35368.96 35791.48 324
tfpnnormal84.72 27083.23 27489.20 25492.79 24380.05 21694.48 15495.81 15182.38 22781.08 29491.21 26669.01 26396.95 24761.69 35480.59 31490.58 341
Anonymous2023120681.03 30679.77 30484.82 32987.85 35170.26 34991.42 27892.08 29173.67 33477.75 32589.25 30862.43 31293.08 34861.50 35582.00 29291.12 333
RPMNet83.95 27781.53 28791.21 17190.58 31679.34 23685.24 34796.76 8071.44 34985.55 20382.97 35670.87 23298.91 8961.01 35689.36 20995.40 180
MIMVSNet179.38 31877.28 32085.69 32286.35 35473.67 31891.61 27692.75 27378.11 29872.64 35388.12 32548.16 36291.97 35760.32 35777.49 33791.43 325
test20.0379.95 31479.08 31382.55 34085.79 35867.74 35991.09 28491.08 31881.23 25974.48 34689.96 29961.63 31690.15 36260.08 35876.38 34289.76 344
DSMNet-mixed76.94 32676.29 32578.89 34483.10 36756.11 37487.78 33179.77 37260.65 36475.64 33988.71 31661.56 31788.34 36660.07 35989.29 21192.21 314
Patchmatch-test81.37 30279.30 30887.58 29190.92 30374.16 31680.99 36287.68 35670.52 35376.63 33388.81 31371.21 22692.76 35160.01 36086.93 25295.83 167
MVS-HIRNet73.70 32972.20 33278.18 34791.81 26856.42 37382.94 35982.58 36755.24 36668.88 35966.48 36855.32 34595.13 32358.12 36188.42 22883.01 362
OpenMVS_ROBcopyleft74.94 1979.51 31777.03 32386.93 30787.00 35276.23 29992.33 25690.74 32868.93 35674.52 34588.23 32449.58 36096.62 26157.64 36284.29 26587.94 359
new_pmnet72.15 33070.13 33378.20 34682.95 36865.68 36283.91 35482.40 36862.94 36364.47 36379.82 36042.85 36886.26 36857.41 36374.44 34682.65 364
N_pmnet68.89 33268.44 33570.23 35189.07 33728.79 38388.06 32819.50 38469.47 35571.86 35684.93 34861.24 32191.75 35854.70 36477.15 33990.15 342
test_method50.52 34048.47 34256.66 35652.26 38218.98 38541.51 37481.40 37010.10 37644.59 37175.01 36328.51 37368.16 37453.54 36549.31 37182.83 363
tmp_tt35.64 34439.24 34624.84 36014.87 38423.90 38462.71 37051.51 3836.58 37836.66 37462.08 37144.37 36730.34 38052.40 36622.00 37720.27 375
test_040281.30 30479.17 31287.67 28993.19 22878.17 26292.98 23791.71 30175.25 32076.02 33890.31 29059.23 33396.37 28150.22 36783.63 27388.47 357
PMMVS259.60 33656.40 33869.21 35268.83 37546.58 37873.02 36977.48 37655.07 36749.21 36972.95 36617.43 38080.04 37249.32 36844.33 37280.99 366
EGC-MVSNET61.97 33556.37 33978.77 34589.63 33473.50 32089.12 31682.79 3660.21 3811.24 38284.80 34939.48 36990.04 36344.13 36975.94 34472.79 368
ANet_high58.88 33754.22 34172.86 34956.50 38156.67 37280.75 36386.00 35873.09 34037.39 37364.63 37022.17 37679.49 37343.51 37023.96 37582.43 365
DeepMVS_CXcopyleft56.31 35774.23 37351.81 37656.67 38244.85 37048.54 37075.16 36227.87 37458.74 37840.92 37152.22 36958.39 371
FPMVS64.63 33462.55 33670.88 35070.80 37456.71 37184.42 35284.42 36351.78 36849.57 36881.61 35823.49 37581.48 37140.61 37276.25 34374.46 367
Gipumacopyleft57.99 33854.91 34067.24 35388.51 34165.59 36352.21 37290.33 33343.58 37142.84 37251.18 37320.29 37885.07 36934.77 37370.45 35251.05 372
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft47.18 2252.22 33948.46 34363.48 35445.72 38346.20 37973.41 36878.31 37441.03 37230.06 37565.68 3696.05 38283.43 37030.04 37465.86 36060.80 369
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.65 2343.39 34138.59 34757.77 35556.52 38048.77 37755.38 37158.64 38129.33 37528.96 37652.65 3724.68 38364.62 37728.11 37533.07 37359.93 370
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN43.23 34242.29 34446.03 35865.58 37737.41 38073.51 36764.62 37833.99 37328.47 37747.87 37419.90 37967.91 37522.23 37624.45 37432.77 373
EMVS42.07 34341.12 34544.92 35963.45 37935.56 38273.65 36663.48 37933.05 37426.88 37845.45 37521.27 37767.14 37619.80 37723.02 37632.06 374
wuyk23d21.27 34620.48 34923.63 36168.59 37636.41 38149.57 3736.85 3859.37 3777.89 3794.46 3814.03 38431.37 37917.47 37816.07 3783.12 376
testmvs8.92 34711.52 3501.12 3631.06 3850.46 38786.02 3420.65 3860.62 3792.74 3809.52 3790.31 3860.45 3822.38 3790.39 3792.46 378
test1238.76 34811.22 3511.39 3620.85 3860.97 38685.76 3450.35 3870.54 3802.45 3818.14 3800.60 3850.48 3812.16 3800.17 3802.71 377
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
cdsmvs_eth3d_5k22.14 34529.52 3480.00 3640.00 3870.00 3880.00 37595.76 1550.00 3820.00 38394.29 16075.66 1710.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas6.64 3508.86 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38279.70 1240.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re7.82 34910.43 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38393.88 1810.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
FOURS198.86 185.54 7398.29 197.49 589.79 4596.29 15
test_one_060198.58 1285.83 6697.44 1491.05 1796.78 1398.06 691.45 11
eth-test20.00 387
eth-test0.00 387
test_241102_ONE98.77 585.99 5797.44 1490.26 3597.71 197.96 1092.31 499.38 32
save fliter97.85 5085.63 7195.21 10696.82 7489.44 52
test072698.78 385.93 6097.19 1197.47 1090.27 3397.64 498.13 191.47 8
GSMVS96.12 152
test_part298.55 1387.22 1896.40 14
sam_mvs171.70 22196.12 152
sam_mvs70.60 235
MTGPAbinary96.97 53
test_post10.29 37770.57 23995.91 301
patchmatchnet-post83.76 35271.53 22396.48 274
MTMP96.16 5260.64 380
TEST997.53 6586.49 4194.07 18696.78 7781.61 25092.77 7496.20 8987.71 3199.12 58
test_897.49 6886.30 5094.02 19196.76 8081.86 24392.70 7896.20 8987.63 3299.02 71
agg_prior97.38 7185.92 6296.72 8692.16 8998.97 83
test_prior485.96 5994.11 181
test_prior93.82 6797.29 7684.49 8996.88 6598.87 9198.11 72
新几何293.11 232
旧先验196.79 8781.81 16695.67 16196.81 5886.69 4397.66 8596.97 126
原ACMM292.94 239
test22296.55 9681.70 16892.22 26095.01 20468.36 35790.20 12196.14 9480.26 11797.80 8196.05 159
segment_acmp87.16 40
testdata192.15 26287.94 100
test1294.34 5697.13 8186.15 5396.29 11391.04 11385.08 6499.01 7398.13 6897.86 90
plane_prior794.70 17482.74 143
plane_prior694.52 18082.75 14174.23 187
plane_prior494.86 135
plane_prior382.75 14190.26 3586.91 175
plane_prior295.85 7290.81 20
plane_prior194.59 178
plane_prior82.73 14495.21 10689.66 4989.88 201
n20.00 388
nn0.00 388
door-mid85.49 359
test1196.57 100
door85.33 360
HQP5-MVS81.56 170
HQP-NCC94.17 19494.39 16488.81 7185.43 216
ACMP_Plane94.17 19494.39 16488.81 7185.43 216
HQP4-MVS85.43 21697.96 16694.51 215
HQP3-MVS96.04 13589.77 203
HQP2-MVS73.83 197
NP-MVS94.37 18882.42 15393.98 174
ACMMP++_ref87.47 243
ACMMP++88.01 237
Test By Simon80.02 119