This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
ETH3D-3000-0.178.58 1678.91 1477.61 4883.06 7957.86 9184.14 4688.31 160.37 10179.14 2290.35 2957.76 2987.00 6777.16 2289.90 1887.97 22
9.1478.75 1683.10 7884.15 4488.26 259.90 11378.57 2790.36 2857.51 3386.86 7077.39 1889.52 25
SF-MVS78.82 1379.22 1277.60 4982.88 8457.83 9284.99 3288.13 361.86 7979.16 2090.75 1757.96 2687.09 6477.08 2390.18 1587.87 25
ETH3 D test640079.14 1179.32 1078.61 3286.34 3158.11 8884.65 3487.66 458.56 14178.87 2489.54 5363.67 1389.57 1674.60 3689.98 1788.14 17
ETH3D cwj APD-0.1678.02 2578.13 2577.71 4782.10 9058.65 8282.72 7187.55 558.33 14678.05 3090.06 4058.35 2587.65 4976.15 2889.86 1986.82 66
DVP-MVS++81.67 182.40 179.47 987.24 1459.15 6888.18 187.15 665.04 2084.26 591.86 667.01 190.84 379.48 491.38 288.42 8
test_0728_SECOND79.19 1587.82 359.11 7187.85 587.15 690.84 378.66 1390.61 1187.62 38
test_part174.74 6274.42 6475.70 8581.69 9751.26 19383.98 4987.05 865.31 1673.10 8086.20 10653.94 6388.06 3865.32 11173.17 20387.77 32
MCST-MVS77.48 3377.45 3077.54 5086.67 2258.36 8583.22 6286.93 956.91 16874.91 4988.19 6959.15 2287.68 4873.67 4587.45 4786.57 73
DeepC-MVS69.38 278.56 1878.14 2479.83 683.60 7261.62 2684.17 4386.85 1063.23 4973.84 6890.25 3557.68 3089.96 1374.62 3589.03 2687.89 23
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_one_060187.58 959.30 6586.84 1165.01 2383.80 1191.86 664.03 11
test072687.75 759.07 7287.86 486.83 1264.26 3284.19 791.92 564.82 8
MSP-MVS81.06 381.40 480.02 186.21 3462.73 1286.09 1786.83 1265.51 1483.81 1090.51 2363.71 1289.23 2081.51 188.44 3288.09 19
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SED-MVS81.56 282.30 279.32 1287.77 458.90 7787.82 786.78 1464.18 3585.97 191.84 866.87 390.83 578.63 1590.87 588.23 13
test_241102_ONE87.77 458.90 7786.78 1464.20 3485.97 191.34 1266.87 390.78 7
test_241102_TWO86.73 1664.18 3584.26 591.84 865.19 690.83 578.63 1590.70 787.65 36
CSCG76.92 3876.75 3777.41 5283.96 7159.60 5982.95 6586.50 1760.78 9275.27 4284.83 13360.76 1686.56 8267.86 8587.87 4686.06 93
DPE-MVScopyleft80.56 580.98 579.29 1487.27 1360.56 4885.71 2686.42 1863.28 4783.27 1391.83 1064.96 790.47 1076.41 2789.67 2286.84 65
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS80.16 780.59 678.86 2886.64 2360.02 5388.12 386.42 1862.94 5482.40 1492.12 259.64 1989.76 1478.70 1188.32 3686.79 68
3Dnovator+66.72 475.84 5174.57 6279.66 882.40 8759.92 5685.83 2286.32 2066.92 867.80 16089.24 5842.03 19689.38 1864.07 12086.50 6289.69 1
DROMVSNet75.84 5175.87 4875.74 8278.86 15752.65 17383.73 5586.08 2163.47 4572.77 8687.25 8553.13 7687.93 4271.97 5685.57 6786.66 71
ZNCC-MVS78.82 1378.67 1779.30 1386.43 3062.05 2186.62 1186.01 2263.32 4675.08 4490.47 2753.96 6288.68 2776.48 2689.63 2487.16 55
SteuartSystems-ACMMP79.48 1079.31 1179.98 283.01 8262.18 1987.60 985.83 2366.69 1078.03 3190.98 1454.26 5890.06 1278.42 1789.02 2787.69 34
Skip Steuart: Steuart Systems R&D Blog.
PHI-MVS75.87 5075.36 5177.41 5280.62 11855.91 12684.28 4085.78 2456.08 18773.41 7386.58 9950.94 10188.54 2870.79 6589.71 2187.79 31
SMA-MVScopyleft80.28 680.39 779.95 386.60 2561.95 2286.33 1385.75 2562.49 6582.20 1592.28 156.53 3689.70 1579.85 391.48 188.19 15
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPM-MVS75.47 5575.00 5576.88 6081.38 10459.16 6779.94 11585.71 2656.59 17672.46 9186.76 8956.89 3487.86 4566.36 9988.91 3083.64 184
MSC_two_6792asdad79.95 387.24 1461.04 3685.62 2790.96 179.31 790.65 887.85 27
No_MVS79.95 387.24 1461.04 3685.62 2790.96 179.31 790.65 887.85 27
IU-MVS87.77 459.15 6885.53 2953.93 22784.64 379.07 990.87 588.37 10
MP-MVS-pluss78.35 2278.46 1878.03 4384.96 6059.52 6182.93 6685.39 3062.15 7076.41 3691.51 1152.47 8186.78 7480.66 289.64 2387.80 30
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
testtj78.47 1978.43 1978.61 3286.82 1760.67 4686.07 1885.38 3162.12 7178.65 2690.29 3355.76 4489.31 1973.55 4787.22 4985.84 100
DeepPCF-MVS69.58 179.03 1279.00 1379.13 1884.92 6460.32 5183.03 6485.33 3262.86 5780.17 1790.03 4361.76 1588.95 2474.21 3888.67 3188.12 18
CS-MVS-test75.62 5475.31 5376.56 6980.63 11755.13 14083.88 5385.22 3362.05 7571.49 10186.03 11353.83 6786.36 9067.74 8686.91 5688.19 15
GST-MVS78.14 2477.85 2778.99 2586.05 4361.82 2585.84 2185.21 3463.56 4474.29 6090.03 4352.56 7888.53 2974.79 3488.34 3486.63 72
ACMMP_NAP78.77 1578.78 1578.74 3085.44 5261.04 3683.84 5485.16 3562.88 5678.10 2891.26 1352.51 7988.39 3079.34 690.52 1386.78 69
HPM-MVScopyleft77.28 3476.85 3678.54 3485.00 5960.81 4382.91 6785.08 3662.57 6373.09 8189.97 4650.90 10287.48 5375.30 3086.85 5787.33 52
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
casdiffmvs74.80 6074.89 5974.53 11375.59 23550.37 20978.17 14485.06 3762.80 6174.40 5887.86 7657.88 2883.61 15269.46 7482.79 9189.59 2
DVP-MVScopyleft80.84 481.64 378.42 3687.75 759.07 7287.85 585.03 3864.26 3283.82 892.00 364.82 890.75 878.66 1390.61 1185.45 119
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CNVR-MVS79.84 979.97 979.45 1087.90 262.17 2084.37 3785.03 3866.96 577.58 3290.06 4059.47 2189.13 2278.67 1289.73 2087.03 58
ETV-MVS74.46 6873.84 7176.33 7279.27 14755.24 13979.22 12985.00 4064.97 2472.65 8879.46 25053.65 7287.87 4467.45 9282.91 8785.89 99
test_prior376.89 4076.96 3576.69 6384.20 6957.27 10081.75 8984.88 4160.37 10175.01 4589.06 5956.22 4086.43 8772.19 5388.96 2886.38 75
test_prior76.69 6384.20 6957.27 10084.88 4186.43 8786.38 75
DeepC-MVS_fast68.24 377.25 3576.63 3979.12 1986.15 3860.86 4184.71 3384.85 4361.98 7873.06 8288.88 6453.72 6889.06 2368.27 7888.04 4287.42 46
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CLD-MVS73.33 7972.68 8375.29 9578.82 15953.33 16278.23 14384.79 4461.30 8670.41 10881.04 21352.41 8287.12 6264.61 11982.49 9585.41 123
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
baseline74.61 6574.70 6174.34 11775.70 23149.99 21677.54 15784.63 4562.73 6273.98 6287.79 7857.67 3183.82 14869.49 7282.74 9289.20 4
ACMMPcopyleft76.02 4875.33 5278.07 4185.20 5661.91 2385.49 3084.44 4663.04 5269.80 12289.74 5245.43 16587.16 5972.01 5582.87 8985.14 130
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
NCCC78.58 1678.31 2079.39 1187.51 1262.61 1685.20 3184.42 4766.73 974.67 5589.38 5655.30 4889.18 2174.19 3987.34 4886.38 75
APD-MVScopyleft78.02 2578.04 2677.98 4486.44 2960.81 4385.52 2884.36 4860.61 9479.05 2390.30 3255.54 4788.32 3373.48 4887.03 5284.83 140
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS78.01 2777.65 2879.10 2086.71 2062.81 1086.29 1484.32 4962.82 5873.96 6390.50 2453.20 7488.35 3174.02 4187.05 5086.13 90
#test#77.83 2877.41 3179.10 2086.71 2062.81 1085.69 2784.32 4961.61 8273.96 6390.50 2453.20 7488.35 3173.68 4487.05 5086.13 90
ACMMPR77.71 2977.23 3379.16 1686.75 1962.93 986.29 1484.24 5162.82 5873.55 7290.56 2249.80 10888.24 3474.02 4187.03 5286.32 84
DELS-MVS74.76 6174.46 6375.65 8777.84 18752.25 18375.59 19684.17 5263.76 4173.15 7782.79 17459.58 2086.80 7267.24 9386.04 6487.89 23
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
region2R77.67 3177.18 3479.15 1786.76 1862.95 886.29 1484.16 5362.81 6073.30 7490.58 2149.90 10688.21 3573.78 4387.03 5286.29 87
CDPH-MVS76.31 4475.67 5078.22 4085.35 5559.14 7081.31 9884.02 5456.32 18074.05 6188.98 6253.34 7387.92 4369.23 7588.42 3387.59 39
HQP_MVS74.31 7073.73 7276.06 7481.41 10256.31 11584.22 4184.01 5564.52 2869.27 13086.10 10945.26 16987.21 5768.16 8180.58 11284.65 146
plane_prior584.01 5587.21 5768.16 8180.58 11284.65 146
XVS77.17 3676.56 4079.00 2386.32 3262.62 1485.83 2283.92 5764.55 2672.17 9490.01 4547.95 12988.01 4071.55 6086.74 5986.37 78
X-MVStestdata70.21 12767.28 17379.00 2386.32 3262.62 1485.83 2283.92 5764.55 2672.17 946.49 37647.95 12988.01 4071.55 6086.74 5986.37 78
CS-MVS76.25 4675.98 4577.06 5880.15 12955.63 13184.51 3683.90 5963.24 4873.30 7487.27 8455.06 5086.30 9271.78 5784.58 7189.25 3
HQP3-MVS83.90 5980.35 118
HQP-MVS73.45 7872.80 8275.40 9180.66 11454.94 14182.31 7983.90 5962.10 7267.85 15585.54 12645.46 16386.93 6867.04 9580.35 11884.32 154
canonicalmvs74.67 6474.98 5773.71 13378.94 15650.56 20780.23 10883.87 6260.30 10777.15 3386.56 10059.65 1882.00 18766.01 10382.12 9688.58 7
SD-MVS77.70 3077.62 2977.93 4584.47 6761.88 2484.55 3583.87 6260.37 10179.89 1889.38 5654.97 5185.58 10876.12 2984.94 6986.33 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.78.44 2078.28 2178.90 2684.96 6061.41 2984.03 4783.82 6459.34 12679.37 1989.76 5159.84 1787.62 5076.69 2586.74 5987.68 35
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PGM-MVS76.77 4176.06 4378.88 2786.14 3962.73 1282.55 7583.74 6561.71 8072.45 9390.34 3148.48 12588.13 3672.32 5286.85 5785.78 102
HPM-MVS++copyleft79.88 880.14 879.10 2088.17 164.80 186.59 1283.70 6665.37 1578.78 2590.64 1958.63 2487.24 5579.00 1090.37 1485.26 129
OPM-MVS74.73 6374.25 6676.19 7380.81 11359.01 7582.60 7483.64 6763.74 4272.52 9087.49 7947.18 14385.88 10169.47 7380.78 10883.66 182
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
FOURS186.12 4060.82 4288.18 183.61 6860.87 8981.50 16
FIs70.82 11471.43 9468.98 23078.33 17238.14 32476.96 17183.59 6961.02 8867.33 16786.73 9155.07 4981.64 19254.61 19279.22 13487.14 56
MP-MVScopyleft78.35 2278.26 2278.64 3186.54 2763.47 586.02 2083.55 7063.89 4073.60 7190.60 2054.85 5486.72 7577.20 2188.06 4185.74 108
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
QAPM70.05 12968.81 13873.78 12676.54 22053.43 15983.23 6183.48 7152.89 23665.90 19586.29 10541.55 20786.49 8651.01 22078.40 14881.42 223
test1183.47 72
CP-MVS77.12 3776.68 3878.43 3586.05 4363.18 787.55 1083.45 7362.44 6772.68 8790.50 2448.18 12787.34 5473.59 4685.71 6584.76 145
原ACMM174.69 10485.39 5459.40 6283.42 7451.47 25170.27 11186.61 9748.61 12386.51 8553.85 19787.96 4378.16 268
LPG-MVS_test72.74 8571.74 9075.76 8080.22 12457.51 9882.55 7583.40 7561.32 8466.67 18087.33 8239.15 22786.59 8067.70 8777.30 15983.19 194
LGP-MVS_train75.76 8080.22 12457.51 9883.40 7561.32 8466.67 18087.33 8239.15 22786.59 8067.70 8777.30 15983.19 194
test1277.76 4684.52 6658.41 8483.36 7772.93 8454.61 5688.05 3988.12 4086.81 67
PAPR71.72 10270.82 10674.41 11681.20 10951.17 19479.55 12483.33 7855.81 19366.93 17584.61 13950.95 10086.06 9455.79 18079.20 13586.00 94
CANet76.46 4375.93 4678.06 4281.29 10557.53 9782.35 7783.31 7967.78 370.09 11286.34 10454.92 5288.90 2572.68 5184.55 7287.76 33
APD-MVS_3200maxsize74.96 5874.39 6576.67 6582.20 8958.24 8783.67 5683.29 8058.41 14373.71 6990.14 3745.62 15885.99 9769.64 7182.85 9085.78 102
PAPM_NR72.63 8771.80 8975.13 9881.72 9653.42 16079.91 11783.28 8159.14 12866.31 18885.90 11851.86 8986.06 9457.45 16980.62 11085.91 97
EIA-MVS71.78 10070.60 10875.30 9479.85 13353.54 15677.27 16583.26 8257.92 15466.49 18379.39 25152.07 8786.69 7660.05 15679.14 13785.66 110
FC-MVSNet-test69.80 13670.58 11067.46 24577.61 19834.73 34976.05 19083.19 8360.84 9065.88 19686.46 10154.52 5780.76 21752.52 20778.12 14986.91 62
3Dnovator64.47 572.49 8971.39 9675.79 7977.70 19058.99 7680.66 10583.15 8462.24 6965.46 20386.59 9842.38 19485.52 11059.59 16184.72 7082.85 203
MVS_Test72.45 9072.46 8572.42 16874.88 24348.50 23676.28 18483.14 8559.40 12472.46 9184.68 13655.66 4681.12 20465.98 10479.66 12687.63 37
DP-MVS Recon72.15 9770.73 10776.40 7086.57 2657.99 9081.15 10082.96 8657.03 16566.78 17685.56 12444.50 17688.11 3751.77 21680.23 12183.10 198
Regformer-275.63 5374.99 5677.54 5080.43 12058.32 8679.50 12582.92 8767.84 175.94 3780.75 22355.73 4586.80 7271.44 6280.38 11687.50 42
UniMVSNet (Re)70.63 11870.20 11471.89 17178.55 16545.29 27075.94 19382.92 8763.68 4368.16 14883.59 16153.89 6583.49 15553.97 19571.12 23086.89 63
MAR-MVS71.51 10470.15 11675.60 8981.84 9559.39 6381.38 9782.90 8954.90 21668.08 15178.70 25847.73 13185.51 11151.68 21884.17 7781.88 219
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
nrg03072.96 8373.01 8072.84 15675.41 23850.24 21080.02 11282.89 9058.36 14574.44 5786.73 9158.90 2380.83 21365.84 10574.46 18287.44 45
ACMP63.53 672.30 9271.20 10175.59 9080.28 12257.54 9682.74 7082.84 9160.58 9565.24 21086.18 10739.25 22586.03 9666.95 9776.79 16783.22 192
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ZD-MVS86.64 2360.38 5082.70 9257.95 15378.10 2890.06 4056.12 4288.84 2674.05 4087.00 55
UniMVSNet_NR-MVSNet71.11 10971.00 10471.44 18279.20 14944.13 27976.02 19282.60 9366.48 1368.20 14584.60 14056.82 3582.82 17254.62 19070.43 23787.36 51
alignmvs73.86 7673.99 6873.45 14378.20 17550.50 20878.57 13782.43 9459.40 12476.57 3486.71 9356.42 3981.23 20365.84 10581.79 10088.62 5
Anonymous2023121169.28 15068.47 14471.73 17580.28 12247.18 25279.98 11482.37 9554.61 21967.24 16884.01 15239.43 22382.41 18255.45 18472.83 20885.62 113
mPP-MVS76.54 4275.93 4678.34 3986.47 2863.50 485.74 2582.28 9662.90 5571.77 9790.26 3446.61 15286.55 8371.71 5885.66 6684.97 137
SR-MVS76.13 4775.70 4977.40 5485.87 4561.20 3385.52 2882.19 9759.99 11275.10 4390.35 2947.66 13386.52 8471.64 5982.99 8484.47 151
Regformer-175.47 5574.93 5877.09 5780.43 12057.70 9579.50 12582.13 9867.84 175.73 4080.75 22356.50 3786.07 9371.07 6480.38 11687.50 42
PS-MVSNAJss72.24 9371.21 10075.31 9378.50 16655.93 12581.63 9182.12 9956.24 18370.02 11685.68 12347.05 14584.34 13765.27 11274.41 18485.67 109
WR-MVS_H67.02 19866.92 18267.33 24977.95 18537.75 32777.57 15582.11 10062.03 7762.65 24182.48 18350.57 10379.46 23342.91 28464.01 30184.79 143
ACMM61.98 770.80 11569.73 12174.02 12180.59 11958.59 8382.68 7282.02 10155.46 20167.18 17084.39 14538.51 23283.17 16060.65 15176.10 17180.30 245
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MSLP-MVS++73.77 7773.47 7674.66 10683.02 8159.29 6682.30 8281.88 10259.34 12671.59 10086.83 8745.94 15683.65 15165.09 11385.22 6881.06 234
abl_674.34 6973.50 7476.86 6182.43 8660.16 5283.48 5981.86 10358.81 13373.95 6589.86 4841.87 19986.62 7967.98 8381.23 10783.80 175
MVS67.37 18866.33 19470.51 20575.46 23750.94 19773.95 22881.85 10441.57 34062.54 24478.57 26347.98 12885.47 11452.97 20582.05 9775.14 300
114514_t70.83 11369.56 12374.64 10886.21 3454.63 14682.34 7881.81 10548.22 28363.01 23585.83 12040.92 21587.10 6357.91 16779.79 12382.18 212
PCF-MVS61.88 870.95 11269.49 12675.35 9277.63 19355.71 12876.04 19181.81 10550.30 26469.66 12385.40 12952.51 7984.89 12551.82 21580.24 12085.45 119
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EPP-MVSNet72.16 9671.31 9974.71 10378.68 16349.70 21982.10 8481.65 10760.40 9865.94 19385.84 11951.74 9186.37 8955.93 17779.55 12988.07 21
test117275.36 5774.81 6077.02 5985.47 5160.79 4583.94 5281.63 10859.52 12374.66 5690.18 3644.74 17285.84 10270.63 6782.52 9384.42 152
PVSNet_BlendedMVS68.56 16667.72 15571.07 19577.03 21050.57 20574.50 21981.52 10953.66 23064.22 22779.72 24449.13 11682.87 16855.82 17873.92 18879.77 255
PVSNet_Blended68.59 16267.72 15571.19 19177.03 21050.57 20572.51 25181.52 10951.91 24464.22 22777.77 27549.13 11682.87 16855.82 17879.58 12780.14 248
DU-MVS70.01 13069.53 12571.44 18278.05 18144.13 27975.01 20881.51 11164.37 3168.20 14584.52 14149.12 11882.82 17254.62 19070.43 23787.37 49
Regformer-474.25 7273.48 7576.57 6879.75 13456.54 11478.54 13981.49 11266.93 773.90 6680.30 23153.84 6685.98 9869.76 7076.84 16587.17 54
dcpmvs_274.55 6775.23 5472.48 16482.34 8853.34 16177.87 14881.46 11357.80 15775.49 4186.81 8862.22 1477.75 26271.09 6382.02 9886.34 80
v114470.42 12369.31 12973.76 12873.22 26450.64 20477.83 15081.43 11458.58 13969.40 12881.16 21047.53 13685.29 11964.01 12270.64 23385.34 124
v1070.21 12769.02 13473.81 12573.51 26350.92 19978.74 13381.39 11560.05 11166.39 18681.83 19947.58 13585.41 11762.80 13368.86 26885.09 133
SR-MVS-dyc-post74.57 6673.90 6976.58 6783.49 7459.87 5784.29 3881.36 11658.07 15073.14 7890.07 3844.74 17285.84 10268.20 7981.76 10284.03 162
RE-MVS-def73.71 7383.49 7459.87 5784.29 3881.36 11658.07 15073.14 7890.07 3843.06 18868.20 7981.76 10284.03 162
v119269.97 13268.68 14073.85 12473.19 26550.94 19777.68 15381.36 11657.51 16068.95 13680.85 22045.28 16885.33 11862.97 13270.37 23985.27 128
RPMNet61.53 26158.42 27170.86 19769.96 31252.07 18665.31 31281.36 11643.20 33059.36 27470.15 33635.37 26285.47 11436.42 32364.65 29875.06 301
OpenMVScopyleft61.03 968.85 15667.56 15972.70 16074.26 25853.99 15081.21 9981.34 12052.70 23762.75 23985.55 12538.86 23084.14 13948.41 23983.01 8379.97 250
v7n69.01 15567.36 17073.98 12272.51 27952.65 17378.54 13981.30 12160.26 10862.67 24081.62 20243.61 18384.49 13357.01 17168.70 27084.79 143
MG-MVS73.96 7473.89 7074.16 12085.65 4749.69 22181.59 9481.29 12261.45 8371.05 10388.11 7051.77 9087.73 4761.05 14983.09 8285.05 134
TEST985.58 4961.59 2781.62 9281.26 12355.65 19874.93 4788.81 6553.70 6984.68 129
train_agg76.27 4576.15 4276.64 6685.58 4961.59 2781.62 9281.26 12355.86 18974.93 4788.81 6553.70 6984.68 12975.24 3288.33 3583.65 183
PAPM67.92 18066.69 18471.63 17978.09 17949.02 22977.09 16881.24 12551.04 25860.91 26083.98 15347.71 13284.99 12040.81 29779.32 13380.90 236
test_885.40 5360.96 3981.54 9581.18 12655.86 18974.81 5088.80 6753.70 6984.45 134
TranMVSNet+NR-MVSNet70.36 12470.10 11871.17 19278.64 16442.97 29076.53 17981.16 12766.95 668.53 14185.42 12851.61 9283.07 16152.32 20869.70 25587.46 44
HPM-MVS_fast74.30 7173.46 7776.80 6284.45 6859.04 7483.65 5781.05 12860.15 10970.43 10789.84 4941.09 21485.59 10767.61 8982.90 8885.77 105
agg_prior175.94 4976.01 4475.72 8385.04 5759.96 5481.44 9681.04 12956.14 18674.68 5388.90 6353.91 6484.04 14175.01 3387.92 4583.16 197
agg_prior85.04 5759.96 5481.04 12974.68 5384.04 141
Anonymous2024052969.91 13369.02 13472.56 16280.19 12747.65 24677.56 15680.99 13155.45 20269.88 12086.76 8939.24 22682.18 18554.04 19477.10 16187.85 27
zzz-MVS77.61 3277.36 3278.35 3786.08 4163.57 283.37 6080.97 13265.13 1875.77 3890.88 1548.63 12186.66 7777.23 1988.17 3884.81 141
MTGPAbinary80.97 132
MTAPA76.90 3976.42 4178.35 3786.08 4163.57 274.92 21180.97 13265.13 1875.77 3890.88 1548.63 12186.66 7777.23 1988.17 3884.81 141
NR-MVSNet69.54 14468.85 13771.59 18078.05 18143.81 28374.20 22380.86 13565.18 1762.76 23884.52 14152.35 8483.59 15350.96 22170.78 23287.37 49
v870.33 12569.28 13073.49 14173.15 26650.22 21178.62 13680.78 13660.79 9166.45 18582.11 19449.35 11184.98 12263.58 12768.71 26985.28 127
v14419269.71 13768.51 14273.33 14873.10 26750.13 21377.54 15780.64 13756.65 17068.57 14080.55 22546.87 15084.96 12462.98 13169.66 25684.89 139
v192192069.47 14668.17 15073.36 14773.06 26850.10 21477.39 16080.56 13856.58 17768.59 13880.37 22744.72 17484.98 12262.47 13769.82 25185.00 135
v124069.24 15267.91 15373.25 15173.02 27049.82 21777.21 16680.54 13956.43 17968.34 14480.51 22643.33 18684.99 12062.03 14169.77 25484.95 138
v2v48270.50 12169.45 12873.66 13572.62 27650.03 21577.58 15480.51 14059.90 11369.52 12482.14 19347.53 13684.88 12765.07 11470.17 24386.09 92
PEN-MVS66.60 20766.45 18767.04 25077.11 20836.56 33777.03 17080.42 14162.95 5362.51 24684.03 15146.69 15179.07 24444.22 26963.08 31085.51 116
API-MVS72.17 9571.41 9574.45 11581.95 9457.22 10284.03 4780.38 14259.89 11668.40 14282.33 18649.64 10987.83 4651.87 21484.16 7878.30 266
PVSNet_Blended_VisFu71.45 10670.39 11274.65 10782.01 9158.82 7979.93 11680.35 14355.09 20865.82 19882.16 19249.17 11582.64 17760.34 15478.62 14682.50 208
test_yl69.69 13869.13 13171.36 18678.37 17045.74 26474.71 21580.20 14457.91 15570.01 11783.83 15642.44 19282.87 16854.97 18679.72 12485.48 117
DCV-MVSNet69.69 13869.13 13171.36 18678.37 17045.74 26474.71 21580.20 14457.91 15570.01 11783.83 15642.44 19282.87 16854.97 18679.72 12485.48 117
TAPA-MVS59.36 1066.60 20765.20 21370.81 19876.63 21748.75 23376.52 18080.04 14650.64 26265.24 21084.93 13239.15 22778.54 25136.77 31676.88 16485.14 130
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
xxxxxxxxxxxxxcwj78.37 2178.25 2378.76 2986.17 3661.30 3183.98 4979.95 14759.00 12979.16 2090.75 1757.96 2687.09 6477.08 2390.18 1587.87 25
Regformer-373.89 7573.28 7975.71 8479.75 13455.48 13678.54 13979.93 14866.58 1173.62 7080.30 23154.87 5384.54 13269.09 7676.84 16587.10 57
OMC-MVS71.40 10770.60 10873.78 12676.60 21853.15 16579.74 12179.78 14958.37 14468.75 13786.45 10245.43 16580.60 21862.58 13477.73 15287.58 40
ACMH55.70 1565.20 22563.57 22770.07 21178.07 18052.01 18979.48 12779.69 15055.75 19556.59 29680.98 21527.12 33280.94 20942.90 28571.58 22677.25 281
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPA-MVSNet69.02 15469.47 12767.69 24377.42 20241.00 30774.04 22579.68 15160.06 11069.26 13284.81 13451.06 9977.58 26454.44 19374.43 18384.48 150
save fliter86.17 3661.30 3183.98 4979.66 15259.00 129
Effi-MVS+73.31 8072.54 8475.62 8877.87 18653.64 15379.62 12379.61 15361.63 8172.02 9682.61 17956.44 3885.97 9963.99 12379.07 13887.25 53
PS-CasMVS66.42 21166.32 19566.70 25477.60 20036.30 34276.94 17279.61 15362.36 6862.43 24883.66 15945.69 15778.37 25245.35 26663.26 30885.42 122
CP-MVSNet66.49 21066.41 19166.72 25277.67 19236.33 34076.83 17679.52 15562.45 6662.54 24483.47 16746.32 15378.37 25245.47 26463.43 30785.45 119
V4268.65 16167.35 17172.56 16268.93 32350.18 21272.90 24579.47 15656.92 16769.45 12780.26 23346.29 15482.99 16264.07 12067.82 27684.53 148
Fast-Effi-MVS+70.28 12669.12 13373.73 13178.50 16651.50 19175.01 20879.46 15756.16 18568.59 13879.55 24853.97 6184.05 14053.34 20277.53 15585.65 111
DTE-MVSNet65.58 21865.34 21066.31 25776.06 22734.79 34676.43 18179.38 15862.55 6461.66 25583.83 15645.60 15979.15 24241.64 29660.88 32485.00 135
EI-MVSNet-Vis-set72.42 9171.59 9174.91 9978.47 16854.02 14977.05 16979.33 15965.03 2271.68 9979.35 25352.75 7784.89 12566.46 9874.23 18585.83 101
EI-MVSNet-UG-set71.92 9871.06 10374.52 11477.98 18453.56 15576.62 17779.16 16064.40 3071.18 10278.95 25752.19 8584.66 13165.47 10973.57 19385.32 126
XVG-OURS-SEG-HR68.81 15767.47 16672.82 15874.40 25556.87 11270.59 27779.04 16154.77 21766.99 17286.01 11439.57 22278.21 25562.54 13573.33 19883.37 188
PS-MVSNAJ70.51 12069.70 12272.93 15481.52 9955.79 12774.92 21179.00 16255.04 21369.88 12078.66 25947.05 14582.19 18461.61 14479.58 12780.83 237
xiu_mvs_v2_base70.52 11969.75 12072.84 15681.21 10855.63 13175.11 20578.92 16354.92 21569.96 11979.68 24547.00 14982.09 18661.60 14579.37 13080.81 238
EG-PatchMatch MVS64.71 23062.87 23570.22 20777.68 19153.48 15777.99 14778.82 16453.37 23256.03 29977.41 27824.75 34784.04 14146.37 25273.42 19773.14 320
XVG-OURS68.76 16067.37 16972.90 15574.32 25757.22 10270.09 28478.81 16555.24 20467.79 16185.81 12236.54 25678.28 25462.04 14075.74 17483.19 194
c3_l68.33 17167.56 15970.62 20270.87 29846.21 26074.47 22078.80 16656.22 18466.19 18978.53 26451.88 8881.40 19762.08 13869.04 26584.25 156
ambc65.13 27763.72 35137.07 33247.66 36178.78 16754.37 31871.42 32611.24 37080.94 20945.64 25953.85 34777.38 277
AdaColmapbinary69.99 13168.66 14173.97 12384.94 6257.83 9282.63 7378.71 16856.28 18264.34 22284.14 14841.57 20487.06 6646.45 25178.88 13977.02 283
IS-MVSNet71.57 10371.00 10473.27 14978.86 15745.63 26880.22 10978.69 16964.14 3866.46 18487.36 8149.30 11285.60 10650.26 22583.71 8088.59 6
miper_ehance_all_eth68.03 17767.24 17770.40 20670.54 30146.21 26073.98 22678.68 17055.07 21166.05 19177.80 27352.16 8681.31 20061.53 14869.32 25983.67 180
cdsmvs_eth3d_5k17.50 34423.34 3430.00 3640.00 3870.00 3870.00 37578.63 1710.00 3820.00 38382.18 18949.25 1140.00 3810.00 3810.00 3790.00 379
TSAR-MVS + GP.74.90 5974.15 6777.17 5682.00 9258.77 8081.80 8778.57 17258.58 13974.32 5984.51 14355.94 4387.22 5667.11 9484.48 7485.52 115
mvs_tets68.18 17566.36 19373.63 13875.61 23455.35 13880.77 10378.56 17352.48 24064.27 22584.10 15027.45 33081.84 19063.45 12970.56 23683.69 179
test_low_dy_conf_00168.55 16766.83 18373.73 13175.99 22851.45 19279.99 11378.55 17450.21 26562.97 23684.81 13430.97 30484.40 13564.80 11573.16 20485.34 124
MVP-Stereo65.41 22163.80 22470.22 20777.62 19755.53 13476.30 18378.53 17550.59 26356.47 29778.65 26039.84 21982.68 17544.10 27372.12 22172.44 329
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
jajsoiax68.25 17366.45 18773.66 13575.62 23355.49 13580.82 10278.51 17652.33 24164.33 22384.11 14928.28 32481.81 19163.48 12870.62 23483.67 180
MVSFormer71.50 10570.38 11374.88 10078.76 16057.15 10782.79 6878.48 17751.26 25569.49 12583.22 16843.99 18183.24 15866.06 10179.37 13084.23 157
test_djsdf69.45 14767.74 15474.58 11174.57 25154.92 14382.79 6878.48 17751.26 25565.41 20483.49 16638.37 23483.24 15866.06 10169.25 26285.56 114
diffmvs70.69 11670.43 11171.46 18169.45 31848.95 23172.93 24478.46 17957.27 16271.69 9883.97 15451.48 9377.92 25970.70 6677.95 15187.53 41
EI-MVSNet69.27 15168.44 14671.73 17574.47 25249.39 22675.20 20378.45 18059.60 11969.16 13476.51 28951.29 9482.50 17959.86 16071.45 22883.30 189
XVG-ACMP-BASELINE64.36 23462.23 24370.74 20072.35 28152.45 18170.80 27678.45 18053.84 22859.87 26981.10 21216.24 36279.32 23655.64 18371.76 22380.47 241
MVSTER67.16 19565.58 20871.88 17270.37 30549.70 21970.25 28378.45 18051.52 24969.16 13480.37 22738.45 23382.50 17960.19 15571.46 22783.44 187
miper_enhance_ethall67.11 19666.09 20070.17 21069.21 32045.98 26272.85 24678.41 18351.38 25265.65 19975.98 29751.17 9781.25 20160.82 15069.32 25983.29 191
MVS_111021_HR74.02 7373.46 7775.69 8683.01 8260.63 4777.29 16478.40 18461.18 8770.58 10685.97 11554.18 6084.00 14567.52 9082.98 8682.45 209
131464.61 23263.21 23268.80 23271.87 28847.46 24973.95 22878.39 18542.88 33359.97 26776.60 28838.11 23879.39 23554.84 18872.32 21879.55 256
Vis-MVSNetpermissive72.18 9471.37 9774.61 10981.29 10555.41 13780.90 10178.28 18660.73 9369.23 13388.09 7144.36 17882.65 17657.68 16881.75 10485.77 105
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
RRT_MVS69.42 14867.49 16575.21 9778.01 18352.56 17782.23 8378.15 18755.84 19165.65 19985.07 13030.86 30586.83 7161.56 14770.00 24686.24 89
GeoE71.01 11170.15 11673.60 13979.57 14052.17 18478.93 13178.12 18858.02 15267.76 16383.87 15552.36 8382.72 17456.90 17275.79 17385.92 96
ACMH+57.40 1166.12 21364.06 21972.30 17077.79 18952.83 17180.39 10778.03 18957.30 16157.47 29182.55 18127.68 32884.17 13845.54 26169.78 25279.90 251
eth_miper_zixun_eth67.63 18466.28 19771.67 17771.60 29048.33 23873.68 23777.88 19055.80 19465.91 19478.62 26247.35 14282.88 16759.45 16266.25 28783.81 171
CPTT-MVS72.78 8472.08 8874.87 10184.88 6561.41 2984.15 4477.86 19155.27 20367.51 16588.08 7241.93 19881.85 18969.04 7780.01 12281.35 227
GBi-Net67.21 19066.55 18569.19 22677.63 19343.33 28677.31 16177.83 19256.62 17365.04 21382.70 17541.85 20080.33 22447.18 24572.76 21083.92 166
test167.21 19066.55 18569.19 22677.63 19343.33 28677.31 16177.83 19256.62 17365.04 21382.70 17541.85 20080.33 22447.18 24572.76 21083.92 166
FMVSNet166.70 20565.87 20269.19 22677.49 20143.33 28677.31 16177.83 19256.45 17864.60 22182.70 17538.08 23980.33 22446.08 25472.31 21983.92 166
UA-Net73.13 8172.93 8173.76 12883.58 7351.66 19078.75 13277.66 19567.75 472.61 8989.42 5449.82 10783.29 15753.61 20083.14 8186.32 84
VDD-MVS72.50 8872.09 8773.75 13081.58 9849.69 22177.76 15277.63 19663.21 5073.21 7689.02 6142.14 19583.32 15661.72 14382.50 9488.25 12
IterMVS-LS69.22 15368.48 14371.43 18474.44 25449.40 22576.23 18577.55 19759.60 11965.85 19781.59 20551.28 9581.58 19559.87 15969.90 25083.30 189
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet266.93 20066.31 19668.79 23377.63 19342.98 28976.11 18777.47 19856.62 17365.22 21282.17 19141.85 20080.18 22747.05 24872.72 21383.20 193
PLCcopyleft56.13 1465.09 22663.21 23270.72 20181.04 11154.87 14478.57 13777.47 19848.51 27955.71 30081.89 19733.71 27879.71 22941.66 29470.37 23977.58 275
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
BH-untuned68.27 17267.29 17271.21 19079.74 13653.22 16476.06 18977.46 20057.19 16366.10 19081.61 20345.37 16783.50 15445.42 26576.68 16976.91 287
VNet69.68 14070.19 11568.16 24079.73 13741.63 30370.53 27877.38 20160.37 10170.69 10586.63 9651.08 9877.09 27053.61 20081.69 10685.75 107
cl2267.47 18766.45 18770.54 20469.85 31446.49 25673.85 23477.35 20255.07 21165.51 20277.92 26947.64 13481.10 20561.58 14669.32 25984.01 164
anonymousdsp67.00 19964.82 21673.57 14070.09 30956.13 12076.35 18277.35 20248.43 28164.99 21680.84 22133.01 28780.34 22364.66 11767.64 27884.23 157
cascas65.98 21463.42 22973.64 13777.26 20652.58 17672.26 25577.21 20448.56 27861.21 25974.60 30932.57 29885.82 10450.38 22476.75 16882.52 207
FMVSNet366.32 21265.61 20768.46 23676.48 22142.34 29374.98 21077.15 20555.83 19265.04 21381.16 21039.91 21880.14 22847.18 24572.76 21082.90 202
v14868.24 17467.19 17871.40 18570.43 30347.77 24575.76 19577.03 20658.91 13167.36 16680.10 23648.60 12481.89 18860.01 15766.52 28684.53 148
Fast-Effi-MVS+-dtu67.37 18865.33 21173.48 14272.94 27157.78 9477.47 15976.88 20757.60 15961.97 25176.85 28339.31 22480.49 22254.72 18970.28 24282.17 214
CANet_DTU68.18 17567.71 15769.59 22174.83 24446.24 25978.66 13576.85 20859.60 11963.45 23182.09 19535.25 26377.41 26659.88 15878.76 14385.14 130
cl____67.18 19366.26 19869.94 21370.20 30645.74 26473.30 23976.83 20955.10 20665.27 20679.57 24747.39 14080.53 21959.41 16469.22 26383.53 186
DIV-MVS_self_test67.18 19366.26 19869.94 21370.20 30645.74 26473.29 24076.83 20955.10 20665.27 20679.58 24647.38 14180.53 21959.43 16369.22 26383.54 185
h-mvs3372.71 8671.49 9376.40 7081.99 9359.58 6076.92 17376.74 21160.40 9874.81 5085.95 11745.54 16185.76 10570.41 6870.61 23583.86 170
BH-w/o66.85 20165.83 20369.90 21679.29 14552.46 18074.66 21776.65 21254.51 22364.85 21778.12 26545.59 16082.95 16443.26 28075.54 17674.27 313
LTVRE_ROB55.42 1663.15 24661.23 25568.92 23176.57 21947.80 24359.92 33476.39 21354.35 22558.67 28282.46 18429.44 31681.49 19642.12 29071.14 22977.46 276
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
BH-RMVSNet68.81 15767.42 16772.97 15380.11 13052.53 17874.26 22276.29 21458.48 14268.38 14384.20 14642.59 19083.83 14746.53 25075.91 17282.56 205
F-COLMAP63.05 24760.87 26069.58 22376.99 21253.63 15478.12 14676.16 21547.97 28752.41 33081.61 20327.87 32678.11 25640.07 30066.66 28477.00 284
ab-mvs66.65 20666.42 19067.37 24776.17 22441.73 30070.41 28176.14 21653.99 22665.98 19283.51 16549.48 11076.24 27948.60 23773.46 19684.14 160
WR-MVS68.47 16968.47 14468.44 23780.20 12639.84 31073.75 23676.07 21764.68 2568.11 15083.63 16050.39 10579.14 24349.78 22669.66 25686.34 80
Effi-MVS+-dtu69.64 14267.53 16275.95 7676.10 22562.29 1880.20 11076.06 21859.83 11765.26 20977.09 27941.56 20584.02 14460.60 15271.09 23181.53 222
mvs-test170.44 12268.19 14977.18 5576.10 22563.22 680.59 10676.06 21859.83 11766.32 18779.87 23941.56 20585.53 10960.60 15272.77 20982.80 204
MSDG61.81 25959.23 26569.55 22472.64 27552.63 17570.45 28075.81 22051.38 25253.70 32276.11 29329.52 31481.08 20737.70 31165.79 29174.93 305
miper_lstm_enhance62.03 25660.88 25965.49 27366.71 33646.25 25856.29 34675.70 22150.68 26061.27 25875.48 30240.21 21768.03 31456.31 17565.25 29482.18 212
pm-mvs165.24 22464.97 21566.04 26572.38 28039.40 31572.62 24975.63 22255.53 20062.35 25083.18 17047.45 13876.47 27649.06 23466.54 28582.24 211
UniMVSNet_ETH3D67.60 18567.07 18169.18 22977.39 20342.29 29474.18 22475.59 22360.37 10166.77 17786.06 11137.64 24178.93 25052.16 21073.49 19586.32 84
HyFIR lowres test65.67 21763.01 23473.67 13479.97 13255.65 13069.07 29275.52 22442.68 33463.53 23077.95 26740.43 21681.64 19246.01 25571.91 22283.73 178
pmmvs663.69 23862.82 23766.27 25970.63 30039.27 31673.13 24275.47 22552.69 23859.75 27282.30 18739.71 22177.03 27147.40 24364.35 30082.53 206
UGNet68.81 15767.39 16873.06 15278.33 17254.47 14779.77 11975.40 22660.45 9763.22 23284.40 14432.71 29480.91 21251.71 21780.56 11483.81 171
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VDDNet71.81 9971.33 9873.26 15082.80 8547.60 24878.74 13375.27 22759.59 12272.94 8389.40 5541.51 20883.91 14658.75 16582.99 8488.26 11
hse-mvs271.04 11069.86 11974.60 11079.58 13957.12 10973.96 22775.25 22860.40 9874.81 5081.95 19645.54 16182.90 16570.41 6866.83 28383.77 176
AUN-MVS68.45 17066.41 19174.57 11279.53 14157.08 11073.93 23175.23 22954.44 22466.69 17981.85 19837.10 25182.89 16662.07 13966.84 28283.75 177
mvs_anonymous68.03 17767.51 16369.59 22172.08 28444.57 27771.99 25875.23 22951.67 24567.06 17182.57 18054.68 5577.94 25856.56 17375.71 17586.26 88
TR-MVS66.59 20965.07 21471.17 19279.18 15049.63 22373.48 23875.20 23152.95 23467.90 15380.33 23039.81 22083.68 15043.20 28173.56 19480.20 246
IB-MVS56.42 1265.40 22262.73 23873.40 14674.89 24252.78 17273.09 24375.13 23255.69 19658.48 28573.73 31532.86 28986.32 9150.63 22270.11 24481.10 233
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
mvsmamba71.15 10869.54 12475.99 7577.61 19853.46 15881.95 8675.11 23357.73 15866.95 17485.96 11637.14 24987.56 5167.94 8475.49 17786.97 59
xiu_mvs_v1_base_debu68.58 16367.28 17372.48 16478.19 17657.19 10475.28 20075.09 23451.61 24670.04 11381.41 20732.79 29079.02 24563.81 12477.31 15681.22 229
xiu_mvs_v1_base68.58 16367.28 17372.48 16478.19 17657.19 10475.28 20075.09 23451.61 24670.04 11381.41 20732.79 29079.02 24563.81 12477.31 15681.22 229
xiu_mvs_v1_base_debi68.58 16367.28 17372.48 16478.19 17657.19 10475.28 20075.09 23451.61 24670.04 11381.41 20732.79 29079.02 24563.81 12477.31 15681.22 229
TransMVSNet (Re)64.72 22964.33 21865.87 26975.22 24038.56 32174.66 21775.08 23758.90 13261.79 25482.63 17851.18 9678.07 25743.63 27755.87 34080.99 235
ET-MVSNet_ETH3D67.96 17965.72 20574.68 10576.67 21655.62 13375.11 20574.74 23852.91 23560.03 26680.12 23533.68 27982.64 17761.86 14276.34 17085.78 102
LS3D64.71 23062.50 24071.34 18879.72 13855.71 12879.82 11874.72 23948.50 28056.62 29584.62 13833.59 28182.34 18329.65 35475.23 18075.97 291
Baseline_NR-MVSNet67.05 19767.56 15965.50 27275.65 23237.70 32875.42 19874.65 24059.90 11368.14 14983.15 17149.12 11877.20 26852.23 20969.78 25281.60 221
HY-MVS56.14 1364.55 23363.89 22166.55 25574.73 24841.02 30569.96 28574.43 24149.29 27261.66 25580.92 21747.43 13976.68 27444.91 26871.69 22481.94 217
GA-MVS65.53 21963.70 22571.02 19670.87 29848.10 24070.48 27974.40 24256.69 16964.70 21976.77 28433.66 28081.10 20555.42 18570.32 24183.87 169
bld_raw_conf00570.66 11768.94 13675.84 7877.34 20453.03 16881.79 8874.40 24258.13 14866.63 18286.04 11233.24 28587.56 5167.51 9175.34 17986.92 61
KD-MVS_self_test55.22 30053.89 30659.21 30857.80 36927.47 36957.75 34174.32 24447.38 29350.90 33670.00 33728.45 32370.30 30540.44 29957.92 33479.87 252
patch_mono-269.85 13471.09 10266.16 26179.11 15354.80 14571.97 25974.31 24553.50 23170.90 10484.17 14757.63 3263.31 33266.17 10082.02 9880.38 244
无先验79.66 12274.30 24648.40 28280.78 21553.62 19879.03 262
thisisatest053067.92 18065.78 20474.33 11876.29 22251.03 19676.89 17474.25 24753.67 22965.59 20181.76 20035.15 26485.50 11255.94 17672.47 21486.47 74
CHOSEN 1792x268865.08 22762.84 23671.82 17381.49 10156.26 11866.32 30374.20 24840.53 34563.16 23478.65 26041.30 21077.80 26145.80 25774.09 18681.40 224
MS-PatchMatch62.42 25161.46 25165.31 27675.21 24152.10 18572.05 25774.05 24946.41 30257.42 29274.36 31034.35 27377.57 26545.62 26073.67 19066.26 353
tttt051767.83 18265.66 20674.33 11876.69 21550.82 20177.86 14973.99 25054.54 22264.64 22082.53 18235.06 26585.50 11255.71 18169.91 24986.67 70
iter_conf_final69.82 13568.02 15275.23 9679.38 14452.91 17080.11 11173.96 25154.99 21468.04 15283.59 16129.05 31887.16 5965.41 11077.62 15385.63 112
USDC56.35 29254.24 30362.69 29264.74 34640.31 30865.05 31473.83 25243.93 32547.58 34677.71 27615.36 36475.05 28338.19 31061.81 31972.70 324
tfpnnormal62.47 25061.63 24964.99 27874.81 24539.01 31771.22 26873.72 25355.22 20560.21 26380.09 23741.26 21376.98 27230.02 35268.09 27478.97 263
iter_conf0569.40 14967.62 15874.73 10277.84 18751.13 19579.28 12873.71 25454.62 21868.17 14783.59 16128.68 32287.16 5965.74 10776.95 16285.91 97
jason69.65 14168.39 14773.43 14578.27 17456.88 11177.12 16773.71 25446.53 30169.34 12983.22 16843.37 18579.18 23864.77 11679.20 13584.23 157
jason: jason.
D2MVS62.30 25360.29 26268.34 23966.46 33848.42 23765.70 30673.42 25647.71 28958.16 28775.02 30530.51 30777.71 26353.96 19671.68 22578.90 264
COLMAP_ROBcopyleft52.97 1761.27 26558.81 26768.64 23474.63 24952.51 17978.42 14273.30 25749.92 26950.96 33581.51 20623.06 35079.40 23431.63 34465.85 28974.01 316
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
lupinMVS69.57 14368.28 14873.44 14478.76 16057.15 10776.57 17873.29 25846.19 30469.49 12582.18 18943.99 18179.23 23764.66 11779.37 13083.93 165
DP-MVS65.68 21663.66 22671.75 17484.93 6356.87 11280.74 10473.16 25953.06 23359.09 27882.35 18536.79 25585.94 10032.82 33669.96 24872.45 328
thisisatest051565.83 21563.50 22872.82 15873.75 26149.50 22471.32 26673.12 26049.39 27163.82 22976.50 29134.95 26784.84 12853.20 20475.49 17784.13 161
VPNet67.52 18668.11 15165.74 27079.18 15036.80 33572.17 25672.83 26162.04 7667.79 16185.83 12048.88 12076.60 27551.30 21972.97 20783.81 171
CL-MVSNet_self_test61.53 26160.94 25863.30 28768.95 32236.93 33467.60 29872.80 26255.67 19759.95 26876.63 28545.01 17172.22 29639.74 30462.09 31780.74 239
OurMVSNet-221017-061.37 26458.63 27069.61 22072.05 28548.06 24173.93 23172.51 26347.23 29754.74 31280.92 21721.49 35781.24 20248.57 23856.22 33979.53 257
EPNet73.09 8272.16 8675.90 7775.95 22956.28 11783.05 6372.39 26466.53 1265.27 20687.00 8650.40 10485.47 11462.48 13686.32 6385.94 95
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
1112_ss64.00 23663.36 23065.93 26779.28 14642.58 29271.35 26572.36 26546.41 30260.55 26277.89 27146.27 15573.28 29046.18 25369.97 24781.92 218
test_040263.25 24461.01 25769.96 21280.00 13154.37 14876.86 17572.02 26654.58 22158.71 28180.79 22235.00 26684.36 13626.41 36264.71 29771.15 340
EU-MVSNet55.61 29754.41 30059.19 30965.41 34433.42 35672.44 25271.91 26728.81 36251.27 33373.87 31424.76 34669.08 31043.04 28258.20 33375.06 301
KD-MVS_2432*160053.45 30851.50 31559.30 30562.82 35237.14 33055.33 34771.79 26847.34 29555.09 30870.52 33221.91 35570.45 30335.72 32642.97 36370.31 343
miper_refine_blended53.45 30851.50 31559.30 30562.82 35237.14 33055.33 34771.79 26847.34 29555.09 30870.52 33221.91 35570.45 30335.72 32642.97 36370.31 343
Anonymous20240521166.84 20265.99 20169.40 22580.19 12742.21 29571.11 27271.31 27058.80 13467.90 15386.39 10329.83 31379.65 23049.60 23278.78 14286.33 82
LFMVS71.78 10071.59 9172.32 16983.40 7646.38 25779.75 12071.08 27164.18 3572.80 8588.64 6842.58 19183.72 14957.41 17084.49 7386.86 64
CDS-MVSNet66.80 20365.37 20971.10 19478.98 15553.13 16773.27 24171.07 27252.15 24364.72 21880.23 23443.56 18477.10 26945.48 26378.88 13983.05 199
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Anonymous2024052155.30 29854.41 30057.96 31760.92 36441.73 30071.09 27371.06 27341.18 34148.65 34473.31 31716.93 36159.25 34642.54 28664.01 30172.90 322
OpenMVS_ROBcopyleft52.78 1860.03 26958.14 27565.69 27170.47 30244.82 27275.33 19970.86 27445.04 31256.06 29876.00 29426.89 33579.65 23035.36 32867.29 27972.60 325
CNLPA65.43 22064.02 22069.68 21978.73 16258.07 8977.82 15170.71 27551.49 25061.57 25783.58 16438.23 23770.82 30043.90 27470.10 24580.16 247
CostFormer64.04 23562.51 23968.61 23571.88 28745.77 26371.30 26770.60 27647.55 29164.31 22476.61 28741.63 20379.62 23249.74 22869.00 26680.42 242
Test_1112_low_res62.32 25261.77 24764.00 28379.08 15439.53 31468.17 29470.17 27743.25 32959.03 27979.90 23844.08 17971.24 29943.79 27668.42 27281.25 228
MVS_111021_LR69.50 14568.78 13971.65 17878.38 16959.33 6474.82 21370.11 27858.08 14967.83 15984.68 13641.96 19776.34 27865.62 10877.54 15479.30 260
ANet_high41.38 33237.47 33753.11 33639.73 37824.45 37456.94 34369.69 27947.65 29026.04 36952.32 36312.44 36662.38 33621.80 36510.61 37672.49 327
SixPastTwentyTwo61.65 26058.80 26870.20 20975.80 23047.22 25175.59 19669.68 28054.61 21954.11 31979.26 25427.07 33382.96 16343.27 27949.79 35580.41 243
IterMVS-SCA-FT62.49 24961.52 25065.40 27471.99 28650.80 20271.15 27169.63 28145.71 31060.61 26177.93 26837.45 24365.99 32555.67 18263.50 30679.42 258
TAMVS66.78 20465.27 21271.33 18979.16 15253.67 15273.84 23569.59 28252.32 24265.28 20581.72 20144.49 17777.40 26742.32 28878.66 14582.92 200
CMPMVSbinary42.80 2157.81 28455.97 28963.32 28660.98 36247.38 25064.66 31669.50 28332.06 35946.83 35077.80 27329.50 31571.36 29848.68 23673.75 18971.21 339
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
tfpn200view963.18 24562.18 24466.21 26076.85 21339.62 31271.96 26069.44 28456.63 17162.61 24279.83 24037.18 24679.17 23931.84 34073.25 20079.83 253
thres40063.31 24162.18 24466.72 25276.85 21339.62 31271.96 26069.44 28456.63 17162.61 24279.83 24037.18 24679.17 23931.84 34073.25 20081.36 225
thres20062.20 25461.16 25665.34 27575.38 23939.99 30969.60 28769.29 28655.64 19961.87 25376.99 28037.07 25278.96 24931.28 34873.28 19977.06 282
UnsupCasMVSNet_eth53.16 31352.47 31155.23 32659.45 36633.39 35759.43 33669.13 28745.98 30650.35 34272.32 32129.30 31758.26 34942.02 29244.30 36174.05 315
thres100view90063.28 24362.41 24165.89 26877.31 20538.66 32072.65 24769.11 28857.07 16462.45 24781.03 21437.01 25379.17 23931.84 34073.25 20079.83 253
thres600view763.30 24262.27 24266.41 25677.18 20738.87 31872.35 25369.11 28856.98 16662.37 24980.96 21637.01 25379.00 24831.43 34773.05 20681.36 225
CVMVSNet59.63 27359.14 26661.08 30374.47 25238.84 31975.20 20368.74 29031.15 36058.24 28676.51 28932.39 29968.58 31249.77 22765.84 29075.81 294
TinyColmap54.14 30351.72 31361.40 30166.84 33541.97 29666.52 30168.51 29144.81 31342.69 36075.77 29811.66 36872.94 29131.96 33856.77 33769.27 349
baseline263.42 24061.26 25469.89 21772.55 27847.62 24771.54 26368.38 29250.11 26654.82 31175.55 30143.06 18880.96 20848.13 24067.16 28181.11 232
IterMVS62.79 24861.27 25367.35 24869.37 31952.04 18871.17 26968.24 29352.63 23959.82 27076.91 28237.32 24572.36 29352.80 20663.19 30977.66 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
旧先验183.04 8053.15 16567.52 29487.85 7744.08 17980.76 10978.03 273
AllTest57.08 28854.65 29764.39 28171.44 29249.03 22769.92 28667.30 29545.97 30747.16 34879.77 24217.47 35967.56 31633.65 33359.16 33076.57 288
TestCases64.39 28171.44 29249.03 22767.30 29545.97 30747.16 34879.77 24217.47 35967.56 31633.65 33359.16 33076.57 288
baseline163.81 23763.87 22363.62 28476.29 22236.36 33871.78 26267.29 29756.05 18864.23 22682.95 17347.11 14474.41 28647.30 24461.85 31880.10 249
tpmvs58.47 27756.95 28363.03 29170.20 30641.21 30467.90 29767.23 29849.62 27054.73 31370.84 32934.14 27476.24 27936.64 32061.29 32271.64 336
Gipumacopyleft34.77 33731.91 34143.33 35062.05 35737.87 32520.39 37167.03 29923.23 36818.41 37225.84 3724.24 37862.73 33414.71 37051.32 35129.38 371
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ECVR-MVScopyleft67.72 18367.51 16368.35 23879.46 14236.29 34374.79 21466.93 30058.72 13567.19 16988.05 7336.10 25781.38 19852.07 21184.25 7587.39 47
tpm262.07 25560.10 26367.99 24172.79 27343.86 28271.05 27466.85 30143.14 33162.77 23775.39 30338.32 23580.80 21441.69 29368.88 26779.32 259
XXY-MVS60.68 26661.67 24857.70 32070.43 30338.45 32264.19 31866.47 30248.05 28663.22 23280.86 21949.28 11360.47 34145.25 26767.28 28074.19 314
112168.53 16867.16 17972.63 16185.64 4861.14 3473.95 22866.46 30344.61 31670.28 11086.68 9441.42 20980.78 21553.62 19881.79 10075.97 291
新几何170.76 19985.66 4661.13 3566.43 30444.68 31570.29 10986.64 9541.29 21175.23 28249.72 22981.75 10475.93 293
ppachtmachnet_test58.06 28255.38 29366.10 26469.51 31648.99 23068.01 29666.13 30544.50 31854.05 32070.74 33032.09 30172.34 29436.68 31956.71 33876.99 286
tpm cat159.25 27456.95 28366.15 26272.19 28346.96 25368.09 29565.76 30640.03 34857.81 28970.56 33138.32 23574.51 28538.26 30961.50 32177.00 284
test111167.21 19067.14 18067.42 24679.24 14834.76 34873.89 23365.65 30758.71 13766.96 17387.95 7536.09 25880.53 21952.03 21283.79 7986.97 59
EPNet_dtu61.90 25761.97 24661.68 29872.89 27239.78 31175.85 19465.62 30855.09 20854.56 31579.36 25237.59 24267.02 31939.80 30376.95 16278.25 267
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_030458.51 27657.36 27961.96 29770.04 31041.83 29869.40 29065.46 30950.73 25953.30 32874.06 31322.65 35170.18 30742.16 28968.44 27173.86 318
pmmvs461.48 26359.39 26467.76 24271.57 29153.86 15171.42 26465.34 31044.20 32159.46 27377.92 26935.90 25974.71 28443.87 27564.87 29674.71 309
testdata64.66 27981.52 9952.93 16965.29 31146.09 30573.88 6787.46 8038.08 23966.26 32453.31 20378.48 14774.78 308
TDRefinement53.44 31050.72 31861.60 29964.31 34946.96 25370.89 27565.27 31241.78 33644.61 35677.98 26611.52 36966.36 32328.57 35751.59 35071.49 337
MIMVSNet155.17 30154.31 30257.77 31970.03 31132.01 36065.68 30764.81 31349.19 27346.75 35176.00 29425.53 34364.04 33028.65 35662.13 31677.26 280
pmmvs-eth3d58.81 27556.31 28866.30 25867.61 33052.42 18272.30 25464.76 31443.55 32754.94 31074.19 31228.95 31972.60 29243.31 27857.21 33573.88 317
MDTV_nov1_ep1357.00 28272.73 27438.26 32365.02 31564.73 31544.74 31455.46 30272.48 32032.61 29770.47 30237.47 31267.75 277
UnsupCasMVSNet_bld50.07 32148.87 32253.66 33360.97 36333.67 35557.62 34264.56 31639.47 35047.38 34764.02 35627.47 32959.32 34534.69 33043.68 36267.98 352
ITE_SJBPF62.09 29666.16 34044.55 27864.32 31747.36 29455.31 30580.34 22919.27 35862.68 33536.29 32462.39 31579.04 261
WTY-MVS59.75 27260.39 26157.85 31872.32 28237.83 32661.05 33264.18 31845.95 30961.91 25279.11 25647.01 14860.88 34042.50 28769.49 25874.83 306
MDA-MVSNet-bldmvs53.87 30650.81 31763.05 29066.25 33948.58 23556.93 34463.82 31948.09 28541.22 36170.48 33430.34 30968.00 31534.24 33145.92 36072.57 326
Vis-MVSNet (Re-imp)63.69 23863.88 22263.14 28974.75 24731.04 36371.16 27063.64 32056.32 18059.80 27184.99 13144.51 17575.46 28139.12 30580.62 11082.92 200
test22283.14 7758.68 8172.57 25063.45 32141.78 33667.56 16486.12 10837.13 25078.73 14474.98 304
PVSNet50.76 1958.40 27857.39 27861.42 30075.53 23644.04 28161.43 32763.45 32147.04 29956.91 29373.61 31627.00 33464.76 32839.12 30572.40 21575.47 298
SCA60.49 26758.38 27266.80 25174.14 26048.06 24163.35 32063.23 32349.13 27459.33 27772.10 32237.45 24374.27 28744.17 27062.57 31378.05 270
CR-MVSNet59.91 27057.90 27765.96 26669.96 31252.07 18665.31 31263.15 32442.48 33559.36 27474.84 30635.83 26070.75 30145.50 26264.65 29875.06 301
Patchmtry57.16 28756.47 28659.23 30769.17 32134.58 35062.98 32163.15 32444.53 31756.83 29474.84 30635.83 26068.71 31140.03 30160.91 32374.39 312
pmmvs556.47 29055.68 29158.86 31161.41 35936.71 33666.37 30262.75 32640.38 34653.70 32276.62 28634.56 26967.05 31840.02 30265.27 29372.83 323
K. test v360.47 26857.11 28070.56 20373.74 26248.22 23975.10 20762.55 32758.27 14753.62 32476.31 29227.81 32781.59 19447.42 24239.18 36681.88 219
FMVSNet555.86 29554.93 29558.66 31371.05 29736.35 33964.18 31962.48 32846.76 30050.66 34074.73 30825.80 34164.04 33033.11 33565.57 29275.59 297
PatchmatchNetpermissive59.84 27158.24 27364.65 28073.05 26946.70 25569.42 28962.18 32947.55 29158.88 28071.96 32434.49 27169.16 30942.99 28363.60 30578.07 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Anonymous2023120655.10 30255.30 29454.48 33069.81 31533.94 35462.91 32262.13 33041.08 34255.18 30775.65 29932.75 29356.59 35630.32 35167.86 27572.91 321
bld_raw_dy_0_6464.87 22863.22 23169.83 21874.79 24653.32 16378.15 14562.02 33151.20 25760.17 26483.12 17224.15 34974.20 28963.08 13072.33 21781.96 216
sss56.17 29456.57 28554.96 32766.93 33436.32 34157.94 34061.69 33241.67 33858.64 28375.32 30438.72 23156.25 35742.04 29166.19 28872.31 333
our_test_356.49 28954.42 29962.68 29369.51 31645.48 26966.08 30461.49 33344.11 32450.73 33969.60 34033.05 28668.15 31338.38 30856.86 33674.40 311
tpmrst58.24 27958.70 26956.84 32166.97 33334.32 35169.57 28861.14 33447.17 29858.58 28471.60 32541.28 21260.41 34249.20 23362.84 31175.78 295
MIMVSNet57.35 28557.07 28158.22 31474.21 25937.18 32962.46 32360.88 33548.88 27655.29 30675.99 29631.68 30262.04 33731.87 33972.35 21675.43 299
LCM-MVSNet40.30 33335.88 33853.57 33442.24 37529.15 36745.21 36460.53 33622.23 37028.02 36850.98 3663.72 38061.78 33831.22 34938.76 36769.78 346
ADS-MVSNet251.33 31848.76 32359.07 31066.02 34244.60 27650.90 35559.76 33736.90 35250.74 33766.18 35126.38 33663.11 33327.17 35854.76 34369.50 347
new-patchmatchnet47.56 32547.73 32647.06 34658.81 3679.37 38148.78 35959.21 33843.28 32844.22 35768.66 34225.67 34257.20 35331.57 34649.35 35674.62 310
test20.0353.87 30654.02 30553.41 33561.47 35828.11 36861.30 32959.21 33851.34 25452.09 33177.43 27733.29 28458.55 34829.76 35360.27 32773.58 319
JIA-IIPM51.56 31747.68 32763.21 28864.61 34750.73 20347.71 36058.77 34042.90 33248.46 34551.72 36424.97 34570.24 30636.06 32553.89 34668.64 351
testgi51.90 31552.37 31250.51 34460.39 36523.55 37558.42 33858.15 34149.03 27551.83 33279.21 25522.39 35255.59 36029.24 35562.64 31272.40 332
LCM-MVSNet-Re61.88 25861.35 25263.46 28574.58 25031.48 36261.42 32858.14 34258.71 13753.02 32979.55 24843.07 18776.80 27345.69 25877.96 15082.11 215
test-LLR58.15 28158.13 27658.22 31468.57 32444.80 27365.46 30957.92 34350.08 26755.44 30369.82 33832.62 29557.44 35149.66 23073.62 19172.41 330
test-mter56.42 29155.82 29058.22 31468.57 32444.80 27365.46 30957.92 34339.94 34955.44 30369.82 33821.92 35457.44 35149.66 23073.62 19172.41 330
RPSCF55.80 29654.22 30460.53 30465.13 34542.91 29164.30 31757.62 34536.84 35458.05 28882.28 18828.01 32556.24 35837.14 31458.61 33282.44 210
GG-mvs-BLEND62.34 29471.36 29637.04 33369.20 29157.33 34654.73 31365.48 35330.37 30877.82 26034.82 32974.93 18172.17 334
MDA-MVSNet_test_wron50.71 32048.95 32156.00 32561.17 36041.84 29751.90 35456.45 34740.96 34344.79 35567.84 34430.04 31255.07 36336.71 31850.69 35371.11 341
YYNet150.73 31948.96 32056.03 32461.10 36141.78 29951.94 35356.44 34840.94 34444.84 35467.80 34530.08 31155.08 36236.77 31650.71 35271.22 338
gg-mvs-nofinetune57.86 28356.43 28762.18 29572.62 27635.35 34566.57 30056.33 34950.65 26157.64 29057.10 36130.65 30676.36 27737.38 31378.88 13974.82 307
TESTMET0.1,155.28 29954.90 29656.42 32266.56 33743.67 28465.46 30956.27 35039.18 35153.83 32167.44 34724.21 34855.46 36148.04 24173.11 20570.13 345
PMMVS53.96 30453.26 31056.04 32362.60 35550.92 19961.17 33156.09 35132.81 35853.51 32666.84 34934.04 27559.93 34444.14 27268.18 27357.27 361
tpm57.34 28658.16 27454.86 32871.80 28934.77 34767.47 29956.04 35248.20 28460.10 26576.92 28137.17 24853.41 36440.76 29865.01 29576.40 290
PVSNet_043.31 2047.46 32645.64 32952.92 33767.60 33144.65 27554.06 35154.64 35341.59 33946.15 35258.75 36030.99 30358.66 34732.18 33724.81 36955.46 362
dp51.89 31651.60 31452.77 33868.44 32732.45 35962.36 32454.57 35444.16 32249.31 34367.91 34328.87 32156.61 35533.89 33254.89 34269.24 350
PatchT53.17 31253.44 30952.33 34068.29 32825.34 37358.21 33954.41 35544.46 31954.56 31569.05 34133.32 28360.94 33936.93 31561.76 32070.73 342
test0.0.03 153.32 31153.59 30852.50 33962.81 35429.45 36659.51 33554.11 35650.08 26754.40 31774.31 31132.62 29555.92 35930.50 35063.95 30372.15 335
PatchMatch-RL56.25 29354.55 29861.32 30277.06 20956.07 12265.57 30854.10 35744.13 32353.49 32771.27 32825.20 34466.78 32036.52 32263.66 30461.12 356
FPMVS42.18 33141.11 33345.39 34758.03 36841.01 30649.50 35753.81 35830.07 36133.71 36664.03 35411.69 36752.08 36614.01 37155.11 34143.09 367
test250665.33 22364.61 21767.50 24479.46 14234.19 35274.43 22151.92 35958.72 13566.75 17888.05 7325.99 34080.92 21151.94 21384.25 7587.39 47
EGC-MVSNET42.47 33038.48 33654.46 33174.33 25648.73 23470.33 28251.10 3600.03 3790.18 38067.78 34613.28 36566.49 32218.91 36750.36 35448.15 364
Patchmatch-RL test58.16 28055.49 29266.15 26267.92 32948.89 23260.66 33351.07 36147.86 28859.36 27462.71 35834.02 27672.27 29556.41 17459.40 32977.30 278
lessismore_v069.91 21571.42 29447.80 24350.90 36250.39 34175.56 30027.43 33181.33 19945.91 25634.10 36880.59 240
ADS-MVSNet48.48 32347.77 32550.63 34366.02 34229.92 36550.90 35550.87 36336.90 35250.74 33766.18 35126.38 33652.47 36527.17 35854.76 34369.50 347
EPMVS53.96 30453.69 30754.79 32966.12 34131.96 36162.34 32549.05 36444.42 32055.54 30171.33 32730.22 31056.70 35441.65 29562.54 31475.71 296
PMVScopyleft28.69 2236.22 33633.29 34045.02 34936.82 38035.98 34454.68 35048.74 36526.31 36521.02 37051.61 3652.88 38260.10 3439.99 37547.58 35838.99 370
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
LF4IMVS42.95 32942.26 33145.04 34848.30 37332.50 35854.80 34948.49 36628.03 36340.51 36370.16 3359.24 37343.89 37031.63 34449.18 35758.72 358
Patchmatch-test49.08 32248.28 32451.50 34264.40 34830.85 36445.68 36248.46 36735.60 35546.10 35372.10 32234.47 27246.37 36827.08 36060.65 32677.27 279
door47.60 368
door-mid47.19 369
pmmvs344.92 32841.95 33253.86 33252.58 37143.55 28562.11 32646.90 37026.05 36640.63 36260.19 35911.08 37157.91 35031.83 34346.15 35960.11 357
MVS-HIRNet45.52 32744.48 33048.65 34568.49 32634.05 35359.41 33744.50 37127.03 36437.96 36550.47 36726.16 33964.10 32926.74 36159.52 32847.82 365
CHOSEN 280x42047.83 32446.36 32852.24 34167.37 33249.78 21838.91 36843.11 37235.00 35643.27 35963.30 35728.95 31949.19 36736.53 32160.80 32557.76 360
test_method19.68 34318.10 34624.41 35813.68 3833.11 38412.06 37442.37 3732.00 37711.97 37536.38 3695.77 37729.35 37715.06 36923.65 37040.76 368
PM-MVS52.33 31450.19 31958.75 31262.10 35645.14 27165.75 30540.38 37443.60 32653.52 32572.65 3199.16 37465.87 32650.41 22354.18 34565.24 355
E-PMN23.77 34022.73 34426.90 35642.02 37620.67 37642.66 36635.70 37517.43 37110.28 37725.05 3736.42 37642.39 37210.28 37414.71 37317.63 372
EMVS22.97 34121.84 34526.36 35740.20 37719.53 37841.95 36734.64 37617.09 3729.73 37822.83 3747.29 37542.22 3739.18 37613.66 37417.32 373
new_pmnet34.13 33834.29 33933.64 35352.63 37018.23 37944.43 36533.90 37722.81 36930.89 36753.18 36210.48 37235.72 37520.77 36639.51 36546.98 366
DSMNet-mixed39.30 33538.72 33541.03 35151.22 37219.66 37745.53 36331.35 37815.83 37339.80 36467.42 34822.19 35345.13 36922.43 36452.69 34858.31 359
PMMVS227.40 33925.91 34231.87 35539.46 3796.57 38231.17 36928.52 37923.96 36720.45 37148.94 3684.20 37937.94 37416.51 36819.97 37151.09 363
MVEpermissive17.77 2321.41 34217.77 34732.34 35434.34 38125.44 37216.11 37224.11 38011.19 37413.22 37431.92 3701.58 38330.95 37610.47 37317.03 37240.62 369
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MTMP86.03 1917.08 381
tmp_tt9.43 34611.14 3494.30 3612.38 3844.40 38313.62 37316.08 3820.39 37815.89 37313.06 37515.80 3635.54 38012.63 37210.46 3772.95 375
DeepMVS_CXcopyleft12.03 36017.97 38210.91 38010.60 3837.46 37511.07 37628.36 3713.28 38111.29 3798.01 3779.74 37813.89 374
wuyk23d13.32 34512.52 34815.71 35947.54 37426.27 37031.06 3701.98 3844.93 3765.18 3791.94 3790.45 38418.54 3786.81 37812.83 3752.33 376
N_pmnet39.35 33440.28 33436.54 35263.76 3501.62 38549.37 3580.76 38534.62 35743.61 35866.38 35026.25 33842.57 37126.02 36351.77 34965.44 354
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3870.00 3750.00 3860.00 3820.00 3830.00 3820.00 3860.00 3810.00 3810.00 3790.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3870.00 3750.00 3860.00 3820.00 3830.00 3820.00 3860.00 3810.00 3810.00 3790.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3870.00 3750.00 3860.00 3820.00 3830.00 3820.00 3860.00 3810.00 3810.00 3790.00 379
pcd_1.5k_mvsjas3.92 3505.23 3530.00 3640.00 3870.00 3870.00 3750.00 3860.00 3820.00 3830.00 38247.05 1450.00 3810.00 3810.00 3790.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3870.00 3750.00 3860.00 3820.00 3830.00 3820.00 3860.00 3810.00 3810.00 3790.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3870.00 3750.00 3860.00 3820.00 3830.00 3820.00 3860.00 3810.00 3810.00 3790.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3870.00 3750.00 3860.00 3820.00 3830.00 3820.00 3860.00 3810.00 3810.00 3790.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3870.00 3750.00 3860.00 3820.00 3830.00 3820.00 3860.00 3810.00 3810.00 3790.00 379
testmvs4.52 3496.03 3520.01 3630.01 3850.00 38753.86 3520.00 3860.01 3800.04 3810.27 3800.00 3860.00 3810.04 3790.00 3790.03 378
test1234.73 3486.30 3510.02 3620.01 3850.01 38656.36 3450.00 3860.01 3800.04 3810.21 3810.01 3850.00 3810.03 3800.00 3790.04 377
n20.00 386
nn0.00 386
ab-mvs-re6.49 3478.65 3500.00 3640.00 3870.00 3870.00 3750.00 3860.00 3820.00 38377.89 2710.00 3860.00 3810.00 3810.00 3790.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3870.00 3750.00 3860.00 3820.00 3830.00 3820.00 3860.00 3810.00 3810.00 3790.00 379
PC_three_145255.09 20884.46 489.84 4966.68 589.41 1774.24 3791.38 288.42 8
eth-test20.00 387
eth-test0.00 387
OPU-MVS79.83 687.54 1160.93 4087.82 789.89 4767.01 190.33 1173.16 4991.15 488.23 13
test_0728_THIRD65.04 2083.82 892.00 364.69 1090.75 879.48 490.63 1088.09 19
GSMVS78.05 270
test_part287.58 960.47 4983.42 12
sam_mvs134.74 26878.05 270
sam_mvs33.43 282
test_post168.67 2933.64 37732.39 29969.49 30844.17 270
test_post3.55 37833.90 27766.52 321
patchmatchnet-post64.03 35434.50 27074.27 287
gm-plane-assit71.40 29541.72 30248.85 27773.31 31782.48 18148.90 235
test9_res75.28 3188.31 3783.81 171
agg_prior273.09 5087.93 4484.33 153
test_prior462.51 1782.08 85
test_prior281.75 8960.37 10175.01 4589.06 5956.22 4072.19 5388.96 28
旧先验276.08 18845.32 31176.55 3565.56 32758.75 165
新几何276.12 186
原ACMM279.02 130
testdata272.18 29746.95 249
segment_acmp54.23 59
testdata172.65 24760.50 96
plane_prior781.41 10255.96 124
plane_prior681.20 10956.24 11945.26 169
plane_prior486.10 109
plane_prior356.09 12163.92 3969.27 130
plane_prior284.22 4164.52 28
plane_prior181.27 107
plane_prior56.31 11583.58 5863.19 5180.48 115
HQP5-MVS54.94 141
HQP-NCC80.66 11482.31 7962.10 7267.85 155
ACMP_Plane80.66 11482.31 7962.10 7267.85 155
BP-MVS67.04 95
HQP4-MVS67.85 15586.93 6884.32 154
HQP2-MVS45.46 163
NP-MVS80.98 11256.05 12385.54 126
MDTV_nov1_ep13_2view25.89 37161.22 33040.10 34751.10 33432.97 28838.49 30778.61 265
ACMMP++_ref74.07 187
ACMMP++72.16 220
Test By Simon48.33 126