ETH3D-3000-0.1 | | | 78.58 16 | 78.91 14 | 77.61 48 | 83.06 79 | 57.86 91 | 84.14 46 | 88.31 1 | 60.37 101 | 79.14 22 | 90.35 29 | 57.76 29 | 87.00 67 | 77.16 22 | 89.90 18 | 87.97 22 |
|
9.14 | | | | 78.75 16 | | 83.10 78 | | 84.15 44 | 88.26 2 | 59.90 113 | 78.57 27 | 90.36 28 | 57.51 33 | 86.86 70 | 77.39 18 | 89.52 25 | |
|
SF-MVS | | | 78.82 13 | 79.22 12 | 77.60 49 | 82.88 84 | 57.83 92 | 84.99 32 | 88.13 3 | 61.86 79 | 79.16 20 | 90.75 17 | 57.96 26 | 87.09 64 | 77.08 23 | 90.18 15 | 87.87 25 |
|
ETH3 D test6400 | | | 79.14 11 | 79.32 10 | 78.61 32 | 86.34 31 | 58.11 88 | 84.65 34 | 87.66 4 | 58.56 141 | 78.87 24 | 89.54 53 | 63.67 13 | 89.57 16 | 74.60 36 | 89.98 17 | 88.14 17 |
|
ETH3D cwj APD-0.16 | | | 78.02 25 | 78.13 25 | 77.71 47 | 82.10 90 | 58.65 82 | 82.72 71 | 87.55 5 | 58.33 146 | 78.05 30 | 90.06 40 | 58.35 25 | 87.65 49 | 76.15 28 | 89.86 19 | 86.82 66 |
|
DVP-MVS++ | | | 81.67 1 | 82.40 1 | 79.47 9 | 87.24 14 | 59.15 68 | 88.18 1 | 87.15 6 | 65.04 20 | 84.26 5 | 91.86 6 | 67.01 1 | 90.84 3 | 79.48 4 | 91.38 2 | 88.42 8 |
|
test_0728_SECOND | | | | | 79.19 15 | 87.82 3 | 59.11 71 | 87.85 5 | 87.15 6 | | | | | 90.84 3 | 78.66 13 | 90.61 11 | 87.62 38 |
|
test_part1 | | | 74.74 62 | 74.42 64 | 75.70 85 | 81.69 97 | 51.26 193 | 83.98 49 | 87.05 8 | 65.31 16 | 73.10 80 | 86.20 106 | 53.94 63 | 88.06 38 | 65.32 111 | 73.17 203 | 87.77 32 |
|
MCST-MVS | | | 77.48 33 | 77.45 30 | 77.54 50 | 86.67 22 | 58.36 85 | 83.22 62 | 86.93 9 | 56.91 168 | 74.91 49 | 88.19 69 | 59.15 22 | 87.68 48 | 73.67 45 | 87.45 47 | 86.57 73 |
|
DeepC-MVS | | 69.38 2 | 78.56 18 | 78.14 24 | 79.83 6 | 83.60 72 | 61.62 26 | 84.17 43 | 86.85 10 | 63.23 49 | 73.84 68 | 90.25 35 | 57.68 30 | 89.96 13 | 74.62 35 | 89.03 26 | 87.89 23 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
test_one_0601 | | | | | | 87.58 9 | 59.30 65 | | 86.84 11 | 65.01 23 | 83.80 11 | 91.86 6 | 64.03 11 | | | | |
|
test0726 | | | | | | 87.75 7 | 59.07 72 | 87.86 4 | 86.83 12 | 64.26 32 | 84.19 7 | 91.92 5 | 64.82 8 | | | | |
|
MSP-MVS | | | 81.06 3 | 81.40 4 | 80.02 1 | 86.21 34 | 62.73 12 | 86.09 17 | 86.83 12 | 65.51 14 | 83.81 10 | 90.51 23 | 63.71 12 | 89.23 20 | 81.51 1 | 88.44 32 | 88.09 19 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
SED-MVS | | | 81.56 2 | 82.30 2 | 79.32 12 | 87.77 4 | 58.90 77 | 87.82 7 | 86.78 14 | 64.18 35 | 85.97 1 | 91.84 8 | 66.87 3 | 90.83 5 | 78.63 15 | 90.87 5 | 88.23 13 |
|
test_241102_ONE | | | | | | 87.77 4 | 58.90 77 | | 86.78 14 | 64.20 34 | 85.97 1 | 91.34 12 | 66.87 3 | 90.78 7 | | | |
|
test_241102_TWO | | | | | | | | | 86.73 16 | 64.18 35 | 84.26 5 | 91.84 8 | 65.19 6 | 90.83 5 | 78.63 15 | 90.70 7 | 87.65 36 |
|
CSCG | | | 76.92 38 | 76.75 37 | 77.41 52 | 83.96 71 | 59.60 59 | 82.95 65 | 86.50 17 | 60.78 92 | 75.27 42 | 84.83 133 | 60.76 16 | 86.56 82 | 67.86 85 | 87.87 46 | 86.06 93 |
|
DPE-MVS |  | | 80.56 5 | 80.98 5 | 79.29 14 | 87.27 13 | 60.56 48 | 85.71 26 | 86.42 18 | 63.28 47 | 83.27 13 | 91.83 10 | 64.96 7 | 90.47 10 | 76.41 27 | 89.67 22 | 86.84 65 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
APDe-MVS | | | 80.16 7 | 80.59 6 | 78.86 28 | 86.64 23 | 60.02 53 | 88.12 3 | 86.42 18 | 62.94 54 | 82.40 14 | 92.12 2 | 59.64 19 | 89.76 14 | 78.70 11 | 88.32 36 | 86.79 68 |
|
3Dnovator+ | | 66.72 4 | 75.84 51 | 74.57 62 | 79.66 8 | 82.40 87 | 59.92 56 | 85.83 22 | 86.32 20 | 66.92 8 | 67.80 160 | 89.24 58 | 42.03 196 | 89.38 18 | 64.07 120 | 86.50 62 | 89.69 1 |
|
DROMVSNet | | | 75.84 51 | 75.87 48 | 75.74 82 | 78.86 157 | 52.65 173 | 83.73 55 | 86.08 21 | 63.47 45 | 72.77 86 | 87.25 85 | 53.13 76 | 87.93 42 | 71.97 56 | 85.57 67 | 86.66 71 |
|
ZNCC-MVS | | | 78.82 13 | 78.67 17 | 79.30 13 | 86.43 30 | 62.05 21 | 86.62 11 | 86.01 22 | 63.32 46 | 75.08 44 | 90.47 27 | 53.96 62 | 88.68 27 | 76.48 26 | 89.63 24 | 87.16 55 |
|
SteuartSystems-ACMMP | | | 79.48 10 | 79.31 11 | 79.98 2 | 83.01 82 | 62.18 19 | 87.60 9 | 85.83 23 | 66.69 10 | 78.03 31 | 90.98 14 | 54.26 58 | 90.06 12 | 78.42 17 | 89.02 27 | 87.69 34 |
Skip Steuart: Steuart Systems R&D Blog. |
PHI-MVS | | | 75.87 50 | 75.36 51 | 77.41 52 | 80.62 118 | 55.91 126 | 84.28 40 | 85.78 24 | 56.08 187 | 73.41 73 | 86.58 99 | 50.94 101 | 88.54 28 | 70.79 65 | 89.71 21 | 87.79 31 |
|
SMA-MVS |  | | 80.28 6 | 80.39 7 | 79.95 3 | 86.60 25 | 61.95 22 | 86.33 13 | 85.75 25 | 62.49 65 | 82.20 15 | 92.28 1 | 56.53 36 | 89.70 15 | 79.85 3 | 91.48 1 | 88.19 15 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
DPM-MVS | | | 75.47 55 | 75.00 55 | 76.88 60 | 81.38 104 | 59.16 67 | 79.94 115 | 85.71 26 | 56.59 176 | 72.46 91 | 86.76 89 | 56.89 34 | 87.86 45 | 66.36 99 | 88.91 30 | 83.64 184 |
|
MSC_two_6792asdad | | | | | 79.95 3 | 87.24 14 | 61.04 36 | | 85.62 27 | | | | | 90.96 1 | 79.31 7 | 90.65 8 | 87.85 27 |
|
No_MVS | | | | | 79.95 3 | 87.24 14 | 61.04 36 | | 85.62 27 | | | | | 90.96 1 | 79.31 7 | 90.65 8 | 87.85 27 |
|
IU-MVS | | | | | | 87.77 4 | 59.15 68 | | 85.53 29 | 53.93 227 | 84.64 3 | | | | 79.07 9 | 90.87 5 | 88.37 10 |
|
MP-MVS-pluss | | | 78.35 22 | 78.46 18 | 78.03 43 | 84.96 60 | 59.52 61 | 82.93 66 | 85.39 30 | 62.15 70 | 76.41 36 | 91.51 11 | 52.47 81 | 86.78 74 | 80.66 2 | 89.64 23 | 87.80 30 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
testtj | | | 78.47 19 | 78.43 19 | 78.61 32 | 86.82 17 | 60.67 46 | 86.07 18 | 85.38 31 | 62.12 71 | 78.65 26 | 90.29 33 | 55.76 44 | 89.31 19 | 73.55 47 | 87.22 49 | 85.84 100 |
|
DeepPCF-MVS | | 69.58 1 | 79.03 12 | 79.00 13 | 79.13 18 | 84.92 64 | 60.32 51 | 83.03 64 | 85.33 32 | 62.86 57 | 80.17 17 | 90.03 43 | 61.76 15 | 88.95 24 | 74.21 38 | 88.67 31 | 88.12 18 |
|
CS-MVS-test | | | 75.62 54 | 75.31 53 | 76.56 69 | 80.63 117 | 55.13 140 | 83.88 53 | 85.22 33 | 62.05 75 | 71.49 101 | 86.03 113 | 53.83 67 | 86.36 90 | 67.74 86 | 86.91 56 | 88.19 15 |
|
GST-MVS | | | 78.14 24 | 77.85 27 | 78.99 25 | 86.05 43 | 61.82 25 | 85.84 21 | 85.21 34 | 63.56 44 | 74.29 60 | 90.03 43 | 52.56 78 | 88.53 29 | 74.79 34 | 88.34 34 | 86.63 72 |
|
ACMMP_NAP | | | 78.77 15 | 78.78 15 | 78.74 30 | 85.44 52 | 61.04 36 | 83.84 54 | 85.16 35 | 62.88 56 | 78.10 28 | 91.26 13 | 52.51 79 | 88.39 30 | 79.34 6 | 90.52 13 | 86.78 69 |
|
HPM-MVS |  | | 77.28 34 | 76.85 36 | 78.54 34 | 85.00 59 | 60.81 43 | 82.91 67 | 85.08 36 | 62.57 63 | 73.09 81 | 89.97 46 | 50.90 102 | 87.48 53 | 75.30 30 | 86.85 57 | 87.33 52 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
casdiffmvs | | | 74.80 60 | 74.89 59 | 74.53 113 | 75.59 235 | 50.37 209 | 78.17 144 | 85.06 37 | 62.80 61 | 74.40 58 | 87.86 76 | 57.88 28 | 83.61 152 | 69.46 74 | 82.79 91 | 89.59 2 |
|
DVP-MVS |  | | 80.84 4 | 81.64 3 | 78.42 36 | 87.75 7 | 59.07 72 | 87.85 5 | 85.03 38 | 64.26 32 | 83.82 8 | 92.00 3 | 64.82 8 | 90.75 8 | 78.66 13 | 90.61 11 | 85.45 119 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
CNVR-MVS | | | 79.84 9 | 79.97 9 | 79.45 10 | 87.90 2 | 62.17 20 | 84.37 37 | 85.03 38 | 66.96 5 | 77.58 32 | 90.06 40 | 59.47 21 | 89.13 22 | 78.67 12 | 89.73 20 | 87.03 58 |
|
ETV-MVS | | | 74.46 68 | 73.84 71 | 76.33 72 | 79.27 147 | 55.24 139 | 79.22 129 | 85.00 40 | 64.97 24 | 72.65 88 | 79.46 250 | 53.65 72 | 87.87 44 | 67.45 92 | 82.91 87 | 85.89 99 |
|
test_prior3 | | | 76.89 40 | 76.96 35 | 76.69 63 | 84.20 69 | 57.27 100 | 81.75 89 | 84.88 41 | 60.37 101 | 75.01 45 | 89.06 59 | 56.22 40 | 86.43 87 | 72.19 53 | 88.96 28 | 86.38 75 |
|
test_prior | | | | | 76.69 63 | 84.20 69 | 57.27 100 | | 84.88 41 | | | | | 86.43 87 | | | 86.38 75 |
|
DeepC-MVS_fast | | 68.24 3 | 77.25 35 | 76.63 39 | 79.12 19 | 86.15 38 | 60.86 41 | 84.71 33 | 84.85 43 | 61.98 78 | 73.06 82 | 88.88 64 | 53.72 68 | 89.06 23 | 68.27 78 | 88.04 42 | 87.42 46 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CLD-MVS | | | 73.33 79 | 72.68 83 | 75.29 95 | 78.82 159 | 53.33 162 | 78.23 143 | 84.79 44 | 61.30 86 | 70.41 108 | 81.04 213 | 52.41 82 | 87.12 62 | 64.61 119 | 82.49 95 | 85.41 123 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
baseline | | | 74.61 65 | 74.70 61 | 74.34 117 | 75.70 231 | 49.99 216 | 77.54 157 | 84.63 45 | 62.73 62 | 73.98 62 | 87.79 78 | 57.67 31 | 83.82 148 | 69.49 72 | 82.74 92 | 89.20 4 |
|
ACMMP |  | | 76.02 48 | 75.33 52 | 78.07 41 | 85.20 56 | 61.91 23 | 85.49 30 | 84.44 46 | 63.04 52 | 69.80 122 | 89.74 52 | 45.43 165 | 87.16 59 | 72.01 55 | 82.87 89 | 85.14 130 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
NCCC | | | 78.58 16 | 78.31 20 | 79.39 11 | 87.51 12 | 62.61 16 | 85.20 31 | 84.42 47 | 66.73 9 | 74.67 55 | 89.38 56 | 55.30 48 | 89.18 21 | 74.19 39 | 87.34 48 | 86.38 75 |
|
APD-MVS |  | | 78.02 25 | 78.04 26 | 77.98 44 | 86.44 29 | 60.81 43 | 85.52 28 | 84.36 48 | 60.61 94 | 79.05 23 | 90.30 32 | 55.54 47 | 88.32 33 | 73.48 48 | 87.03 52 | 84.83 140 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
HFP-MVS | | | 78.01 27 | 77.65 28 | 79.10 20 | 86.71 20 | 62.81 10 | 86.29 14 | 84.32 49 | 62.82 58 | 73.96 63 | 90.50 24 | 53.20 74 | 88.35 31 | 74.02 41 | 87.05 50 | 86.13 90 |
|
#test# | | | 77.83 28 | 77.41 31 | 79.10 20 | 86.71 20 | 62.81 10 | 85.69 27 | 84.32 49 | 61.61 82 | 73.96 63 | 90.50 24 | 53.20 74 | 88.35 31 | 73.68 44 | 87.05 50 | 86.13 90 |
|
ACMMPR | | | 77.71 29 | 77.23 33 | 79.16 16 | 86.75 19 | 62.93 9 | 86.29 14 | 84.24 51 | 62.82 58 | 73.55 72 | 90.56 22 | 49.80 108 | 88.24 34 | 74.02 41 | 87.03 52 | 86.32 84 |
|
DELS-MVS | | | 74.76 61 | 74.46 63 | 75.65 87 | 77.84 187 | 52.25 183 | 75.59 196 | 84.17 52 | 63.76 41 | 73.15 77 | 82.79 174 | 59.58 20 | 86.80 72 | 67.24 93 | 86.04 64 | 87.89 23 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
region2R | | | 77.67 31 | 77.18 34 | 79.15 17 | 86.76 18 | 62.95 8 | 86.29 14 | 84.16 53 | 62.81 60 | 73.30 74 | 90.58 21 | 49.90 106 | 88.21 35 | 73.78 43 | 87.03 52 | 86.29 87 |
|
CDPH-MVS | | | 76.31 44 | 75.67 50 | 78.22 40 | 85.35 55 | 59.14 70 | 81.31 98 | 84.02 54 | 56.32 180 | 74.05 61 | 88.98 62 | 53.34 73 | 87.92 43 | 69.23 75 | 88.42 33 | 87.59 39 |
|
HQP_MVS | | | 74.31 70 | 73.73 72 | 76.06 74 | 81.41 102 | 56.31 115 | 84.22 41 | 84.01 55 | 64.52 28 | 69.27 130 | 86.10 109 | 45.26 169 | 87.21 57 | 68.16 81 | 80.58 112 | 84.65 146 |
|
plane_prior5 | | | | | | | | | 84.01 55 | | | | | 87.21 57 | 68.16 81 | 80.58 112 | 84.65 146 |
|
XVS | | | 77.17 36 | 76.56 40 | 79.00 23 | 86.32 32 | 62.62 14 | 85.83 22 | 83.92 57 | 64.55 26 | 72.17 94 | 90.01 45 | 47.95 129 | 88.01 40 | 71.55 60 | 86.74 59 | 86.37 78 |
|
X-MVStestdata | | | 70.21 127 | 67.28 173 | 79.00 23 | 86.32 32 | 62.62 14 | 85.83 22 | 83.92 57 | 64.55 26 | 72.17 94 | 6.49 376 | 47.95 129 | 88.01 40 | 71.55 60 | 86.74 59 | 86.37 78 |
|
CS-MVS | | | 76.25 46 | 75.98 45 | 77.06 58 | 80.15 129 | 55.63 131 | 84.51 36 | 83.90 59 | 63.24 48 | 73.30 74 | 87.27 84 | 55.06 50 | 86.30 92 | 71.78 57 | 84.58 71 | 89.25 3 |
|
HQP3-MVS | | | | | | | | | 83.90 59 | | | | | | | 80.35 118 | |
|
HQP-MVS | | | 73.45 78 | 72.80 82 | 75.40 91 | 80.66 114 | 54.94 141 | 82.31 79 | 83.90 59 | 62.10 72 | 67.85 155 | 85.54 126 | 45.46 163 | 86.93 68 | 67.04 95 | 80.35 118 | 84.32 154 |
|
canonicalmvs | | | 74.67 64 | 74.98 57 | 73.71 133 | 78.94 156 | 50.56 207 | 80.23 108 | 83.87 62 | 60.30 107 | 77.15 33 | 86.56 100 | 59.65 18 | 82.00 187 | 66.01 103 | 82.12 96 | 88.58 7 |
|
SD-MVS | | | 77.70 30 | 77.62 29 | 77.93 45 | 84.47 67 | 61.88 24 | 84.55 35 | 83.87 62 | 60.37 101 | 79.89 18 | 89.38 56 | 54.97 51 | 85.58 108 | 76.12 29 | 84.94 69 | 86.33 82 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
TSAR-MVS + MP. | | | 78.44 20 | 78.28 21 | 78.90 26 | 84.96 60 | 61.41 29 | 84.03 47 | 83.82 64 | 59.34 126 | 79.37 19 | 89.76 51 | 59.84 17 | 87.62 50 | 76.69 25 | 86.74 59 | 87.68 35 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
PGM-MVS | | | 76.77 41 | 76.06 43 | 78.88 27 | 86.14 39 | 62.73 12 | 82.55 75 | 83.74 65 | 61.71 80 | 72.45 93 | 90.34 31 | 48.48 125 | 88.13 36 | 72.32 52 | 86.85 57 | 85.78 102 |
|
HPM-MVS++ |  | | 79.88 8 | 80.14 8 | 79.10 20 | 88.17 1 | 64.80 1 | 86.59 12 | 83.70 66 | 65.37 15 | 78.78 25 | 90.64 19 | 58.63 24 | 87.24 55 | 79.00 10 | 90.37 14 | 85.26 129 |
|
OPM-MVS | | | 74.73 63 | 74.25 66 | 76.19 73 | 80.81 113 | 59.01 75 | 82.60 74 | 83.64 67 | 63.74 42 | 72.52 90 | 87.49 79 | 47.18 143 | 85.88 101 | 69.47 73 | 80.78 108 | 83.66 182 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
FOURS1 | | | | | | 86.12 40 | 60.82 42 | 88.18 1 | 83.61 68 | 60.87 89 | 81.50 16 | | | | | | |
|
FIs | | | 70.82 114 | 71.43 94 | 68.98 230 | 78.33 172 | 38.14 324 | 76.96 171 | 83.59 69 | 61.02 88 | 67.33 167 | 86.73 91 | 55.07 49 | 81.64 192 | 54.61 192 | 79.22 134 | 87.14 56 |
|
MP-MVS |  | | 78.35 22 | 78.26 22 | 78.64 31 | 86.54 27 | 63.47 5 | 86.02 20 | 83.55 70 | 63.89 40 | 73.60 71 | 90.60 20 | 54.85 54 | 86.72 75 | 77.20 21 | 88.06 41 | 85.74 108 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
QAPM | | | 70.05 129 | 68.81 138 | 73.78 126 | 76.54 220 | 53.43 159 | 83.23 61 | 83.48 71 | 52.89 236 | 65.90 195 | 86.29 105 | 41.55 207 | 86.49 86 | 51.01 220 | 78.40 148 | 81.42 223 |
|
test11 | | | | | | | | | 83.47 72 | | | | | | | | |
|
CP-MVS | | | 77.12 37 | 76.68 38 | 78.43 35 | 86.05 43 | 63.18 7 | 87.55 10 | 83.45 73 | 62.44 67 | 72.68 87 | 90.50 24 | 48.18 127 | 87.34 54 | 73.59 46 | 85.71 65 | 84.76 145 |
|
原ACMM1 | | | | | 74.69 104 | 85.39 54 | 59.40 62 | | 83.42 74 | 51.47 251 | 70.27 111 | 86.61 97 | 48.61 123 | 86.51 85 | 53.85 197 | 87.96 43 | 78.16 268 |
|
LPG-MVS_test | | | 72.74 85 | 71.74 90 | 75.76 80 | 80.22 124 | 57.51 98 | 82.55 75 | 83.40 75 | 61.32 84 | 66.67 180 | 87.33 82 | 39.15 227 | 86.59 80 | 67.70 87 | 77.30 159 | 83.19 194 |
|
LGP-MVS_train | | | | | 75.76 80 | 80.22 124 | 57.51 98 | | 83.40 75 | 61.32 84 | 66.67 180 | 87.33 82 | 39.15 227 | 86.59 80 | 67.70 87 | 77.30 159 | 83.19 194 |
|
test12 | | | | | 77.76 46 | 84.52 66 | 58.41 84 | | 83.36 77 | | 72.93 84 | | 54.61 56 | 88.05 39 | | 88.12 40 | 86.81 67 |
|
PAPR | | | 71.72 102 | 70.82 106 | 74.41 116 | 81.20 109 | 51.17 194 | 79.55 124 | 83.33 78 | 55.81 193 | 66.93 175 | 84.61 139 | 50.95 100 | 86.06 94 | 55.79 180 | 79.20 135 | 86.00 94 |
|
CANet | | | 76.46 43 | 75.93 46 | 78.06 42 | 81.29 105 | 57.53 97 | 82.35 77 | 83.31 79 | 67.78 3 | 70.09 112 | 86.34 104 | 54.92 52 | 88.90 25 | 72.68 51 | 84.55 72 | 87.76 33 |
|
APD-MVS_3200maxsize | | | 74.96 58 | 74.39 65 | 76.67 65 | 82.20 89 | 58.24 87 | 83.67 56 | 83.29 80 | 58.41 143 | 73.71 69 | 90.14 37 | 45.62 158 | 85.99 97 | 69.64 71 | 82.85 90 | 85.78 102 |
|
PAPM_NR | | | 72.63 87 | 71.80 89 | 75.13 98 | 81.72 96 | 53.42 160 | 79.91 117 | 83.28 81 | 59.14 128 | 66.31 188 | 85.90 118 | 51.86 89 | 86.06 94 | 57.45 169 | 80.62 110 | 85.91 97 |
|
EIA-MVS | | | 71.78 100 | 70.60 108 | 75.30 94 | 79.85 133 | 53.54 156 | 77.27 165 | 83.26 82 | 57.92 154 | 66.49 183 | 79.39 251 | 52.07 87 | 86.69 76 | 60.05 156 | 79.14 137 | 85.66 110 |
|
FC-MVSNet-test | | | 69.80 136 | 70.58 110 | 67.46 245 | 77.61 198 | 34.73 349 | 76.05 190 | 83.19 83 | 60.84 90 | 65.88 196 | 86.46 101 | 54.52 57 | 80.76 217 | 52.52 207 | 78.12 149 | 86.91 62 |
|
3Dnovator | | 64.47 5 | 72.49 89 | 71.39 96 | 75.79 79 | 77.70 190 | 58.99 76 | 80.66 105 | 83.15 84 | 62.24 69 | 65.46 203 | 86.59 98 | 42.38 194 | 85.52 110 | 59.59 161 | 84.72 70 | 82.85 203 |
|
MVS_Test | | | 72.45 90 | 72.46 85 | 72.42 168 | 74.88 243 | 48.50 236 | 76.28 184 | 83.14 85 | 59.40 124 | 72.46 91 | 84.68 136 | 55.66 46 | 81.12 204 | 65.98 104 | 79.66 126 | 87.63 37 |
|
DP-MVS Recon | | | 72.15 97 | 70.73 107 | 76.40 70 | 86.57 26 | 57.99 90 | 81.15 100 | 82.96 86 | 57.03 165 | 66.78 176 | 85.56 124 | 44.50 176 | 88.11 37 | 51.77 216 | 80.23 121 | 83.10 198 |
|
Regformer-2 | | | 75.63 53 | 74.99 56 | 77.54 50 | 80.43 120 | 58.32 86 | 79.50 125 | 82.92 87 | 67.84 1 | 75.94 37 | 80.75 223 | 55.73 45 | 86.80 72 | 71.44 62 | 80.38 116 | 87.50 42 |
|
UniMVSNet (Re) | | | 70.63 118 | 70.20 114 | 71.89 171 | 78.55 165 | 45.29 270 | 75.94 193 | 82.92 87 | 63.68 43 | 68.16 148 | 83.59 161 | 53.89 65 | 83.49 155 | 53.97 195 | 71.12 230 | 86.89 63 |
|
MAR-MVS | | | 71.51 104 | 70.15 116 | 75.60 89 | 81.84 95 | 59.39 63 | 81.38 97 | 82.90 89 | 54.90 216 | 68.08 151 | 78.70 258 | 47.73 131 | 85.51 111 | 51.68 218 | 84.17 77 | 81.88 219 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
nrg030 | | | 72.96 83 | 73.01 80 | 72.84 156 | 75.41 238 | 50.24 210 | 80.02 112 | 82.89 90 | 58.36 145 | 74.44 57 | 86.73 91 | 58.90 23 | 80.83 213 | 65.84 105 | 74.46 182 | 87.44 45 |
|
ACMP | | 63.53 6 | 72.30 92 | 71.20 101 | 75.59 90 | 80.28 122 | 57.54 96 | 82.74 70 | 82.84 91 | 60.58 95 | 65.24 210 | 86.18 107 | 39.25 225 | 86.03 96 | 66.95 97 | 76.79 167 | 83.22 192 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
ZD-MVS | | | | | | 86.64 23 | 60.38 50 | | 82.70 92 | 57.95 153 | 78.10 28 | 90.06 40 | 56.12 42 | 88.84 26 | 74.05 40 | 87.00 55 | |
|
UniMVSNet_NR-MVSNet | | | 71.11 109 | 71.00 104 | 71.44 182 | 79.20 149 | 44.13 279 | 76.02 192 | 82.60 93 | 66.48 13 | 68.20 145 | 84.60 140 | 56.82 35 | 82.82 172 | 54.62 190 | 70.43 237 | 87.36 51 |
|
alignmvs | | | 73.86 76 | 73.99 68 | 73.45 143 | 78.20 175 | 50.50 208 | 78.57 137 | 82.43 94 | 59.40 124 | 76.57 34 | 86.71 93 | 56.42 39 | 81.23 203 | 65.84 105 | 81.79 100 | 88.62 5 |
|
Anonymous20231211 | | | 69.28 150 | 68.47 144 | 71.73 175 | 80.28 122 | 47.18 252 | 79.98 114 | 82.37 95 | 54.61 219 | 67.24 168 | 84.01 152 | 39.43 223 | 82.41 182 | 55.45 184 | 72.83 208 | 85.62 113 |
|
mPP-MVS | | | 76.54 42 | 75.93 46 | 78.34 39 | 86.47 28 | 63.50 4 | 85.74 25 | 82.28 96 | 62.90 55 | 71.77 97 | 90.26 34 | 46.61 152 | 86.55 83 | 71.71 58 | 85.66 66 | 84.97 137 |
|
SR-MVS | | | 76.13 47 | 75.70 49 | 77.40 54 | 85.87 45 | 61.20 33 | 85.52 28 | 82.19 97 | 59.99 112 | 75.10 43 | 90.35 29 | 47.66 133 | 86.52 84 | 71.64 59 | 82.99 84 | 84.47 151 |
|
Regformer-1 | | | 75.47 55 | 74.93 58 | 77.09 57 | 80.43 120 | 57.70 95 | 79.50 125 | 82.13 98 | 67.84 1 | 75.73 40 | 80.75 223 | 56.50 37 | 86.07 93 | 71.07 64 | 80.38 116 | 87.50 42 |
|
PS-MVSNAJss | | | 72.24 93 | 71.21 100 | 75.31 93 | 78.50 166 | 55.93 125 | 81.63 91 | 82.12 99 | 56.24 183 | 70.02 116 | 85.68 123 | 47.05 145 | 84.34 137 | 65.27 112 | 74.41 184 | 85.67 109 |
|
WR-MVS_H | | | 67.02 198 | 66.92 182 | 67.33 249 | 77.95 185 | 37.75 327 | 77.57 155 | 82.11 100 | 62.03 77 | 62.65 241 | 82.48 183 | 50.57 103 | 79.46 233 | 42.91 284 | 64.01 301 | 84.79 143 |
|
ACMM | | 61.98 7 | 70.80 115 | 69.73 121 | 74.02 121 | 80.59 119 | 58.59 83 | 82.68 72 | 82.02 101 | 55.46 201 | 67.18 170 | 84.39 145 | 38.51 232 | 83.17 160 | 60.65 151 | 76.10 171 | 80.30 245 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
MSLP-MVS++ | | | 73.77 77 | 73.47 76 | 74.66 106 | 83.02 81 | 59.29 66 | 82.30 82 | 81.88 102 | 59.34 126 | 71.59 100 | 86.83 87 | 45.94 156 | 83.65 151 | 65.09 113 | 85.22 68 | 81.06 234 |
|
abl_6 | | | 74.34 69 | 73.50 74 | 76.86 61 | 82.43 86 | 60.16 52 | 83.48 59 | 81.86 103 | 58.81 133 | 73.95 65 | 89.86 48 | 41.87 199 | 86.62 79 | 67.98 83 | 81.23 107 | 83.80 175 |
|
MVS | | | 67.37 188 | 66.33 194 | 70.51 205 | 75.46 237 | 50.94 197 | 73.95 228 | 81.85 104 | 41.57 340 | 62.54 244 | 78.57 263 | 47.98 128 | 85.47 114 | 52.97 205 | 82.05 97 | 75.14 300 |
|
114514_t | | | 70.83 113 | 69.56 123 | 74.64 108 | 86.21 34 | 54.63 146 | 82.34 78 | 81.81 105 | 48.22 283 | 63.01 235 | 85.83 120 | 40.92 215 | 87.10 63 | 57.91 167 | 79.79 123 | 82.18 212 |
|
PCF-MVS | | 61.88 8 | 70.95 112 | 69.49 126 | 75.35 92 | 77.63 193 | 55.71 128 | 76.04 191 | 81.81 105 | 50.30 264 | 69.66 123 | 85.40 129 | 52.51 79 | 84.89 125 | 51.82 215 | 80.24 120 | 85.45 119 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
EPP-MVSNet | | | 72.16 96 | 71.31 99 | 74.71 103 | 78.68 163 | 49.70 219 | 82.10 84 | 81.65 107 | 60.40 98 | 65.94 193 | 85.84 119 | 51.74 91 | 86.37 89 | 55.93 177 | 79.55 129 | 88.07 21 |
|
test1172 | | | 75.36 57 | 74.81 60 | 77.02 59 | 85.47 51 | 60.79 45 | 83.94 52 | 81.63 108 | 59.52 123 | 74.66 56 | 90.18 36 | 44.74 172 | 85.84 102 | 70.63 67 | 82.52 93 | 84.42 152 |
|
PVSNet_BlendedMVS | | | 68.56 166 | 67.72 155 | 71.07 195 | 77.03 210 | 50.57 205 | 74.50 219 | 81.52 109 | 53.66 230 | 64.22 227 | 79.72 244 | 49.13 116 | 82.87 168 | 55.82 178 | 73.92 188 | 79.77 255 |
|
PVSNet_Blended | | | 68.59 162 | 67.72 155 | 71.19 191 | 77.03 210 | 50.57 205 | 72.51 251 | 81.52 109 | 51.91 244 | 64.22 227 | 77.77 275 | 49.13 116 | 82.87 168 | 55.82 178 | 79.58 127 | 80.14 248 |
|
DU-MVS | | | 70.01 130 | 69.53 125 | 71.44 182 | 78.05 181 | 44.13 279 | 75.01 208 | 81.51 111 | 64.37 31 | 68.20 145 | 84.52 141 | 49.12 118 | 82.82 172 | 54.62 190 | 70.43 237 | 87.37 49 |
|
Regformer-4 | | | 74.25 72 | 73.48 75 | 76.57 68 | 79.75 134 | 56.54 114 | 78.54 139 | 81.49 112 | 66.93 7 | 73.90 66 | 80.30 231 | 53.84 66 | 85.98 98 | 69.76 70 | 76.84 165 | 87.17 54 |
|
dcpmvs_2 | | | 74.55 67 | 75.23 54 | 72.48 164 | 82.34 88 | 53.34 161 | 77.87 148 | 81.46 113 | 57.80 157 | 75.49 41 | 86.81 88 | 62.22 14 | 77.75 262 | 71.09 63 | 82.02 98 | 86.34 80 |
|
v1144 | | | 70.42 123 | 69.31 129 | 73.76 128 | 73.22 264 | 50.64 204 | 77.83 150 | 81.43 114 | 58.58 139 | 69.40 128 | 81.16 210 | 47.53 136 | 85.29 119 | 64.01 122 | 70.64 233 | 85.34 124 |
|
v10 | | | 70.21 127 | 69.02 134 | 73.81 125 | 73.51 263 | 50.92 199 | 78.74 133 | 81.39 115 | 60.05 111 | 66.39 186 | 81.83 199 | 47.58 135 | 85.41 117 | 62.80 133 | 68.86 268 | 85.09 133 |
|
SR-MVS-dyc-post | | | 74.57 66 | 73.90 69 | 76.58 67 | 83.49 74 | 59.87 57 | 84.29 38 | 81.36 116 | 58.07 150 | 73.14 78 | 90.07 38 | 44.74 172 | 85.84 102 | 68.20 79 | 81.76 102 | 84.03 162 |
|
RE-MVS-def | | | | 73.71 73 | | 83.49 74 | 59.87 57 | 84.29 38 | 81.36 116 | 58.07 150 | 73.14 78 | 90.07 38 | 43.06 188 | | 68.20 79 | 81.76 102 | 84.03 162 |
|
v1192 | | | 69.97 132 | 68.68 140 | 73.85 124 | 73.19 265 | 50.94 197 | 77.68 153 | 81.36 116 | 57.51 160 | 68.95 136 | 80.85 220 | 45.28 168 | 85.33 118 | 62.97 132 | 70.37 239 | 85.27 128 |
|
RPMNet | | | 61.53 261 | 58.42 271 | 70.86 197 | 69.96 312 | 52.07 186 | 65.31 312 | 81.36 116 | 43.20 330 | 59.36 274 | 70.15 336 | 35.37 262 | 85.47 114 | 36.42 323 | 64.65 298 | 75.06 301 |
|
OpenMVS |  | 61.03 9 | 68.85 156 | 67.56 159 | 72.70 160 | 74.26 258 | 53.99 150 | 81.21 99 | 81.34 120 | 52.70 237 | 62.75 239 | 85.55 125 | 38.86 230 | 84.14 139 | 48.41 239 | 83.01 83 | 79.97 250 |
|
v7n | | | 69.01 155 | 67.36 170 | 73.98 122 | 72.51 279 | 52.65 173 | 78.54 139 | 81.30 121 | 60.26 108 | 62.67 240 | 81.62 202 | 43.61 183 | 84.49 133 | 57.01 171 | 68.70 270 | 84.79 143 |
|
MG-MVS | | | 73.96 74 | 73.89 70 | 74.16 120 | 85.65 47 | 49.69 221 | 81.59 94 | 81.29 122 | 61.45 83 | 71.05 103 | 88.11 70 | 51.77 90 | 87.73 47 | 61.05 149 | 83.09 82 | 85.05 134 |
|
TEST9 | | | | | | 85.58 49 | 61.59 27 | 81.62 92 | 81.26 123 | 55.65 198 | 74.93 47 | 88.81 65 | 53.70 69 | 84.68 129 | | | |
|
train_agg | | | 76.27 45 | 76.15 42 | 76.64 66 | 85.58 49 | 61.59 27 | 81.62 92 | 81.26 123 | 55.86 189 | 74.93 47 | 88.81 65 | 53.70 69 | 84.68 129 | 75.24 32 | 88.33 35 | 83.65 183 |
|
PAPM | | | 67.92 180 | 66.69 184 | 71.63 179 | 78.09 179 | 49.02 229 | 77.09 168 | 81.24 125 | 51.04 258 | 60.91 260 | 83.98 153 | 47.71 132 | 84.99 120 | 40.81 297 | 79.32 133 | 80.90 236 |
|
test_8 | | | | | | 85.40 53 | 60.96 39 | 81.54 95 | 81.18 126 | 55.86 189 | 74.81 50 | 88.80 67 | 53.70 69 | 84.45 134 | | | |
|
TranMVSNet+NR-MVSNet | | | 70.36 124 | 70.10 118 | 71.17 192 | 78.64 164 | 42.97 290 | 76.53 179 | 81.16 127 | 66.95 6 | 68.53 141 | 85.42 128 | 51.61 92 | 83.07 161 | 52.32 208 | 69.70 255 | 87.46 44 |
|
HPM-MVS_fast | | | 74.30 71 | 73.46 77 | 76.80 62 | 84.45 68 | 59.04 74 | 83.65 57 | 81.05 128 | 60.15 109 | 70.43 107 | 89.84 49 | 41.09 214 | 85.59 107 | 67.61 89 | 82.90 88 | 85.77 105 |
|
agg_prior1 | | | 75.94 49 | 76.01 44 | 75.72 83 | 85.04 57 | 59.96 54 | 81.44 96 | 81.04 129 | 56.14 186 | 74.68 53 | 88.90 63 | 53.91 64 | 84.04 141 | 75.01 33 | 87.92 45 | 83.16 197 |
|
agg_prior | | | | | | 85.04 57 | 59.96 54 | | 81.04 129 | | 74.68 53 | | | 84.04 141 | | | |
|
Anonymous20240529 | | | 69.91 133 | 69.02 134 | 72.56 162 | 80.19 127 | 47.65 246 | 77.56 156 | 80.99 131 | 55.45 202 | 69.88 120 | 86.76 89 | 39.24 226 | 82.18 185 | 54.04 194 | 77.10 161 | 87.85 27 |
|
zzz-MVS | | | 77.61 32 | 77.36 32 | 78.35 37 | 86.08 41 | 63.57 2 | 83.37 60 | 80.97 132 | 65.13 18 | 75.77 38 | 90.88 15 | 48.63 121 | 86.66 77 | 77.23 19 | 88.17 38 | 84.81 141 |
|
MTGPA |  | | | | | | | | 80.97 132 | | | | | | | | |
|
MTAPA | | | 76.90 39 | 76.42 41 | 78.35 37 | 86.08 41 | 63.57 2 | 74.92 211 | 80.97 132 | 65.13 18 | 75.77 38 | 90.88 15 | 48.63 121 | 86.66 77 | 77.23 19 | 88.17 38 | 84.81 141 |
|
NR-MVSNet | | | 69.54 144 | 68.85 137 | 71.59 180 | 78.05 181 | 43.81 283 | 74.20 223 | 80.86 135 | 65.18 17 | 62.76 238 | 84.52 141 | 52.35 84 | 83.59 153 | 50.96 221 | 70.78 232 | 87.37 49 |
|
v8 | | | 70.33 125 | 69.28 130 | 73.49 141 | 73.15 266 | 50.22 211 | 78.62 136 | 80.78 136 | 60.79 91 | 66.45 185 | 82.11 194 | 49.35 111 | 84.98 122 | 63.58 127 | 68.71 269 | 85.28 127 |
|
v144192 | | | 69.71 137 | 68.51 142 | 73.33 148 | 73.10 267 | 50.13 213 | 77.54 157 | 80.64 137 | 56.65 170 | 68.57 140 | 80.55 225 | 46.87 150 | 84.96 124 | 62.98 131 | 69.66 256 | 84.89 139 |
|
v1921920 | | | 69.47 146 | 68.17 150 | 73.36 147 | 73.06 268 | 50.10 214 | 77.39 160 | 80.56 138 | 56.58 177 | 68.59 138 | 80.37 227 | 44.72 174 | 84.98 122 | 62.47 137 | 69.82 251 | 85.00 135 |
|
v1240 | | | 69.24 152 | 67.91 153 | 73.25 151 | 73.02 270 | 49.82 217 | 77.21 166 | 80.54 139 | 56.43 179 | 68.34 144 | 80.51 226 | 43.33 186 | 84.99 120 | 62.03 141 | 69.77 254 | 84.95 138 |
|
v2v482 | | | 70.50 121 | 69.45 128 | 73.66 135 | 72.62 276 | 50.03 215 | 77.58 154 | 80.51 140 | 59.90 113 | 69.52 124 | 82.14 193 | 47.53 136 | 84.88 127 | 65.07 114 | 70.17 243 | 86.09 92 |
|
PEN-MVS | | | 66.60 207 | 66.45 187 | 67.04 250 | 77.11 208 | 36.56 337 | 77.03 170 | 80.42 141 | 62.95 53 | 62.51 246 | 84.03 151 | 46.69 151 | 79.07 244 | 44.22 269 | 63.08 310 | 85.51 116 |
|
API-MVS | | | 72.17 95 | 71.41 95 | 74.45 115 | 81.95 94 | 57.22 102 | 84.03 47 | 80.38 142 | 59.89 116 | 68.40 142 | 82.33 186 | 49.64 109 | 87.83 46 | 51.87 214 | 84.16 78 | 78.30 266 |
|
PVSNet_Blended_VisFu | | | 71.45 106 | 70.39 112 | 74.65 107 | 82.01 91 | 58.82 79 | 79.93 116 | 80.35 143 | 55.09 208 | 65.82 198 | 82.16 192 | 49.17 115 | 82.64 177 | 60.34 154 | 78.62 146 | 82.50 208 |
|
test_yl | | | 69.69 138 | 69.13 131 | 71.36 186 | 78.37 170 | 45.74 264 | 74.71 215 | 80.20 144 | 57.91 155 | 70.01 117 | 83.83 156 | 42.44 192 | 82.87 168 | 54.97 186 | 79.72 124 | 85.48 117 |
|
DCV-MVSNet | | | 69.69 138 | 69.13 131 | 71.36 186 | 78.37 170 | 45.74 264 | 74.71 215 | 80.20 144 | 57.91 155 | 70.01 117 | 83.83 156 | 42.44 192 | 82.87 168 | 54.97 186 | 79.72 124 | 85.48 117 |
|
TAPA-MVS | | 59.36 10 | 66.60 207 | 65.20 213 | 70.81 198 | 76.63 217 | 48.75 233 | 76.52 180 | 80.04 146 | 50.64 262 | 65.24 210 | 84.93 132 | 39.15 227 | 78.54 251 | 36.77 316 | 76.88 164 | 85.14 130 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
xxxxxxxxxxxxxcwj | | | 78.37 21 | 78.25 23 | 78.76 29 | 86.17 36 | 61.30 31 | 83.98 49 | 79.95 147 | 59.00 129 | 79.16 20 | 90.75 17 | 57.96 26 | 87.09 64 | 77.08 23 | 90.18 15 | 87.87 25 |
|
Regformer-3 | | | 73.89 75 | 73.28 79 | 75.71 84 | 79.75 134 | 55.48 136 | 78.54 139 | 79.93 148 | 66.58 11 | 73.62 70 | 80.30 231 | 54.87 53 | 84.54 132 | 69.09 76 | 76.84 165 | 87.10 57 |
|
OMC-MVS | | | 71.40 107 | 70.60 108 | 73.78 126 | 76.60 218 | 53.15 165 | 79.74 121 | 79.78 149 | 58.37 144 | 68.75 137 | 86.45 102 | 45.43 165 | 80.60 218 | 62.58 134 | 77.73 152 | 87.58 40 |
|
ACMH | | 55.70 15 | 65.20 225 | 63.57 227 | 70.07 211 | 78.07 180 | 52.01 189 | 79.48 127 | 79.69 150 | 55.75 195 | 56.59 296 | 80.98 215 | 27.12 332 | 80.94 209 | 42.90 285 | 71.58 226 | 77.25 281 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
VPA-MVSNet | | | 69.02 154 | 69.47 127 | 67.69 243 | 77.42 202 | 41.00 307 | 74.04 225 | 79.68 151 | 60.06 110 | 69.26 132 | 84.81 134 | 51.06 99 | 77.58 264 | 54.44 193 | 74.43 183 | 84.48 150 |
|
save fliter | | | | | | 86.17 36 | 61.30 31 | 83.98 49 | 79.66 152 | 59.00 129 | | | | | | | |
|
Effi-MVS+ | | | 73.31 80 | 72.54 84 | 75.62 88 | 77.87 186 | 53.64 153 | 79.62 123 | 79.61 153 | 61.63 81 | 72.02 96 | 82.61 179 | 56.44 38 | 85.97 99 | 63.99 123 | 79.07 138 | 87.25 53 |
|
PS-CasMVS | | | 66.42 211 | 66.32 195 | 66.70 254 | 77.60 200 | 36.30 342 | 76.94 172 | 79.61 153 | 62.36 68 | 62.43 248 | 83.66 159 | 45.69 157 | 78.37 252 | 45.35 266 | 63.26 308 | 85.42 122 |
|
CP-MVSNet | | | 66.49 210 | 66.41 191 | 66.72 252 | 77.67 192 | 36.33 340 | 76.83 176 | 79.52 155 | 62.45 66 | 62.54 244 | 83.47 167 | 46.32 153 | 78.37 252 | 45.47 264 | 63.43 307 | 85.45 119 |
|
V42 | | | 68.65 161 | 67.35 171 | 72.56 162 | 68.93 323 | 50.18 212 | 72.90 245 | 79.47 156 | 56.92 167 | 69.45 127 | 80.26 233 | 46.29 154 | 82.99 162 | 64.07 120 | 67.82 276 | 84.53 148 |
|
Fast-Effi-MVS+ | | | 70.28 126 | 69.12 133 | 73.73 131 | 78.50 166 | 51.50 191 | 75.01 208 | 79.46 157 | 56.16 185 | 68.59 138 | 79.55 248 | 53.97 61 | 84.05 140 | 53.34 202 | 77.53 155 | 85.65 111 |
|
DTE-MVSNet | | | 65.58 218 | 65.34 210 | 66.31 257 | 76.06 227 | 34.79 346 | 76.43 181 | 79.38 158 | 62.55 64 | 61.66 255 | 83.83 156 | 45.60 159 | 79.15 242 | 41.64 296 | 60.88 324 | 85.00 135 |
|
EI-MVSNet-Vis-set | | | 72.42 91 | 71.59 91 | 74.91 99 | 78.47 168 | 54.02 149 | 77.05 169 | 79.33 159 | 65.03 22 | 71.68 99 | 79.35 253 | 52.75 77 | 84.89 125 | 66.46 98 | 74.23 185 | 85.83 101 |
|
EI-MVSNet-UG-set | | | 71.92 98 | 71.06 103 | 74.52 114 | 77.98 184 | 53.56 155 | 76.62 177 | 79.16 160 | 64.40 30 | 71.18 102 | 78.95 257 | 52.19 85 | 84.66 131 | 65.47 109 | 73.57 193 | 85.32 126 |
|
XVG-OURS-SEG-HR | | | 68.81 157 | 67.47 166 | 72.82 158 | 74.40 255 | 56.87 112 | 70.59 277 | 79.04 161 | 54.77 217 | 66.99 172 | 86.01 114 | 39.57 222 | 78.21 255 | 62.54 135 | 73.33 198 | 83.37 188 |
|
PS-MVSNAJ | | | 70.51 120 | 69.70 122 | 72.93 154 | 81.52 99 | 55.79 127 | 74.92 211 | 79.00 162 | 55.04 213 | 69.88 120 | 78.66 259 | 47.05 145 | 82.19 184 | 61.61 144 | 79.58 127 | 80.83 237 |
|
xiu_mvs_v2_base | | | 70.52 119 | 69.75 120 | 72.84 156 | 81.21 108 | 55.63 131 | 75.11 205 | 78.92 163 | 54.92 215 | 69.96 119 | 79.68 245 | 47.00 149 | 82.09 186 | 61.60 145 | 79.37 130 | 80.81 238 |
|
EG-PatchMatch MVS | | | 64.71 230 | 62.87 235 | 70.22 207 | 77.68 191 | 53.48 157 | 77.99 147 | 78.82 164 | 53.37 232 | 56.03 299 | 77.41 278 | 24.75 347 | 84.04 141 | 46.37 252 | 73.42 197 | 73.14 320 |
|
XVG-OURS | | | 68.76 160 | 67.37 169 | 72.90 155 | 74.32 257 | 57.22 102 | 70.09 284 | 78.81 165 | 55.24 204 | 67.79 161 | 85.81 122 | 36.54 256 | 78.28 254 | 62.04 140 | 75.74 174 | 83.19 194 |
|
c3_l | | | 68.33 171 | 67.56 159 | 70.62 202 | 70.87 298 | 46.21 260 | 74.47 220 | 78.80 166 | 56.22 184 | 66.19 189 | 78.53 264 | 51.88 88 | 81.40 197 | 62.08 138 | 69.04 265 | 84.25 156 |
|
ambc | | | | | 65.13 277 | 63.72 351 | 37.07 332 | 47.66 361 | 78.78 167 | | 54.37 318 | 71.42 326 | 11.24 370 | 80.94 209 | 45.64 259 | 53.85 347 | 77.38 277 |
|
AdaColmap |  | | 69.99 131 | 68.66 141 | 73.97 123 | 84.94 62 | 57.83 92 | 82.63 73 | 78.71 168 | 56.28 182 | 64.34 222 | 84.14 148 | 41.57 204 | 87.06 66 | 46.45 251 | 78.88 139 | 77.02 283 |
|
IS-MVSNet | | | 71.57 103 | 71.00 104 | 73.27 149 | 78.86 157 | 45.63 268 | 80.22 109 | 78.69 169 | 64.14 38 | 66.46 184 | 87.36 81 | 49.30 112 | 85.60 106 | 50.26 225 | 83.71 80 | 88.59 6 |
|
miper_ehance_all_eth | | | 68.03 177 | 67.24 177 | 70.40 206 | 70.54 301 | 46.21 260 | 73.98 226 | 78.68 170 | 55.07 211 | 66.05 191 | 77.80 273 | 52.16 86 | 81.31 200 | 61.53 148 | 69.32 259 | 83.67 180 |
|
cdsmvs_eth3d_5k | | | 17.50 344 | 23.34 343 | 0.00 364 | 0.00 387 | 0.00 387 | 0.00 375 | 78.63 171 | 0.00 382 | 0.00 383 | 82.18 189 | 49.25 114 | 0.00 381 | 0.00 381 | 0.00 379 | 0.00 379 |
|
TSAR-MVS + GP. | | | 74.90 59 | 74.15 67 | 77.17 56 | 82.00 92 | 58.77 80 | 81.80 87 | 78.57 172 | 58.58 139 | 74.32 59 | 84.51 143 | 55.94 43 | 87.22 56 | 67.11 94 | 84.48 74 | 85.52 115 |
|
mvs_tets | | | 68.18 175 | 66.36 193 | 73.63 138 | 75.61 234 | 55.35 138 | 80.77 103 | 78.56 173 | 52.48 240 | 64.27 225 | 84.10 150 | 27.45 330 | 81.84 190 | 63.45 129 | 70.56 236 | 83.69 179 |
|
test_low_dy_conf_001 | | | 68.55 167 | 66.83 183 | 73.73 131 | 75.99 228 | 51.45 192 | 79.99 113 | 78.55 174 | 50.21 265 | 62.97 236 | 84.81 134 | 30.97 304 | 84.40 135 | 64.80 115 | 73.16 204 | 85.34 124 |
|
MVP-Stereo | | | 65.41 221 | 63.80 224 | 70.22 207 | 77.62 197 | 55.53 134 | 76.30 183 | 78.53 175 | 50.59 263 | 56.47 297 | 78.65 260 | 39.84 219 | 82.68 175 | 44.10 273 | 72.12 221 | 72.44 329 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
jajsoiax | | | 68.25 173 | 66.45 187 | 73.66 135 | 75.62 233 | 55.49 135 | 80.82 102 | 78.51 176 | 52.33 241 | 64.33 223 | 84.11 149 | 28.28 324 | 81.81 191 | 63.48 128 | 70.62 234 | 83.67 180 |
|
MVSFormer | | | 71.50 105 | 70.38 113 | 74.88 100 | 78.76 160 | 57.15 107 | 82.79 68 | 78.48 177 | 51.26 255 | 69.49 125 | 83.22 168 | 43.99 181 | 83.24 158 | 66.06 101 | 79.37 130 | 84.23 157 |
|
test_djsdf | | | 69.45 147 | 67.74 154 | 74.58 111 | 74.57 251 | 54.92 143 | 82.79 68 | 78.48 177 | 51.26 255 | 65.41 204 | 83.49 166 | 38.37 234 | 83.24 158 | 66.06 101 | 69.25 262 | 85.56 114 |
|
diffmvs | | | 70.69 116 | 70.43 111 | 71.46 181 | 69.45 318 | 48.95 231 | 72.93 244 | 78.46 179 | 57.27 162 | 71.69 98 | 83.97 154 | 51.48 93 | 77.92 259 | 70.70 66 | 77.95 151 | 87.53 41 |
|
EI-MVSNet | | | 69.27 151 | 68.44 146 | 71.73 175 | 74.47 252 | 49.39 226 | 75.20 203 | 78.45 180 | 59.60 119 | 69.16 134 | 76.51 289 | 51.29 94 | 82.50 179 | 59.86 160 | 71.45 228 | 83.30 189 |
|
XVG-ACMP-BASELINE | | | 64.36 234 | 62.23 243 | 70.74 200 | 72.35 281 | 52.45 181 | 70.80 276 | 78.45 180 | 53.84 228 | 59.87 269 | 81.10 212 | 16.24 362 | 79.32 236 | 55.64 183 | 71.76 223 | 80.47 241 |
|
MVSTER | | | 67.16 195 | 65.58 208 | 71.88 172 | 70.37 305 | 49.70 219 | 70.25 283 | 78.45 180 | 51.52 249 | 69.16 134 | 80.37 227 | 38.45 233 | 82.50 179 | 60.19 155 | 71.46 227 | 83.44 187 |
|
miper_enhance_ethall | | | 67.11 196 | 66.09 200 | 70.17 210 | 69.21 320 | 45.98 262 | 72.85 246 | 78.41 183 | 51.38 252 | 65.65 199 | 75.98 297 | 51.17 97 | 81.25 201 | 60.82 150 | 69.32 259 | 83.29 191 |
|
MVS_111021_HR | | | 74.02 73 | 73.46 77 | 75.69 86 | 83.01 82 | 60.63 47 | 77.29 164 | 78.40 184 | 61.18 87 | 70.58 106 | 85.97 115 | 54.18 60 | 84.00 145 | 67.52 90 | 82.98 86 | 82.45 209 |
|
1314 | | | 64.61 232 | 63.21 232 | 68.80 232 | 71.87 288 | 47.46 249 | 73.95 228 | 78.39 185 | 42.88 333 | 59.97 267 | 76.60 288 | 38.11 238 | 79.39 235 | 54.84 188 | 72.32 218 | 79.55 256 |
|
Vis-MVSNet |  | | 72.18 94 | 71.37 97 | 74.61 109 | 81.29 105 | 55.41 137 | 80.90 101 | 78.28 186 | 60.73 93 | 69.23 133 | 88.09 71 | 44.36 178 | 82.65 176 | 57.68 168 | 81.75 104 | 85.77 105 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
RRT_MVS | | | 69.42 148 | 67.49 165 | 75.21 97 | 78.01 183 | 52.56 177 | 82.23 83 | 78.15 187 | 55.84 191 | 65.65 199 | 85.07 130 | 30.86 305 | 86.83 71 | 61.56 147 | 70.00 246 | 86.24 89 |
|
GeoE | | | 71.01 111 | 70.15 116 | 73.60 139 | 79.57 140 | 52.17 184 | 78.93 131 | 78.12 188 | 58.02 152 | 67.76 163 | 83.87 155 | 52.36 83 | 82.72 174 | 56.90 172 | 75.79 173 | 85.92 96 |
|
ACMH+ | | 57.40 11 | 66.12 213 | 64.06 219 | 72.30 170 | 77.79 189 | 52.83 171 | 80.39 107 | 78.03 189 | 57.30 161 | 57.47 291 | 82.55 181 | 27.68 328 | 84.17 138 | 45.54 261 | 69.78 252 | 79.90 251 |
|
eth_miper_zixun_eth | | | 67.63 184 | 66.28 197 | 71.67 177 | 71.60 290 | 48.33 238 | 73.68 237 | 77.88 190 | 55.80 194 | 65.91 194 | 78.62 262 | 47.35 142 | 82.88 167 | 59.45 162 | 66.25 287 | 83.81 171 |
|
CPTT-MVS | | | 72.78 84 | 72.08 88 | 74.87 101 | 84.88 65 | 61.41 29 | 84.15 44 | 77.86 191 | 55.27 203 | 67.51 165 | 88.08 72 | 41.93 198 | 81.85 189 | 69.04 77 | 80.01 122 | 81.35 227 |
|
GBi-Net | | | 67.21 190 | 66.55 185 | 69.19 226 | 77.63 193 | 43.33 286 | 77.31 161 | 77.83 192 | 56.62 173 | 65.04 213 | 82.70 175 | 41.85 200 | 80.33 224 | 47.18 245 | 72.76 210 | 83.92 166 |
|
test1 | | | 67.21 190 | 66.55 185 | 69.19 226 | 77.63 193 | 43.33 286 | 77.31 161 | 77.83 192 | 56.62 173 | 65.04 213 | 82.70 175 | 41.85 200 | 80.33 224 | 47.18 245 | 72.76 210 | 83.92 166 |
|
FMVSNet1 | | | 66.70 205 | 65.87 202 | 69.19 226 | 77.49 201 | 43.33 286 | 77.31 161 | 77.83 192 | 56.45 178 | 64.60 221 | 82.70 175 | 38.08 239 | 80.33 224 | 46.08 254 | 72.31 219 | 83.92 166 |
|
UA-Net | | | 73.13 81 | 72.93 81 | 73.76 128 | 83.58 73 | 51.66 190 | 78.75 132 | 77.66 195 | 67.75 4 | 72.61 89 | 89.42 54 | 49.82 107 | 83.29 157 | 53.61 200 | 83.14 81 | 86.32 84 |
|
VDD-MVS | | | 72.50 88 | 72.09 87 | 73.75 130 | 81.58 98 | 49.69 221 | 77.76 152 | 77.63 196 | 63.21 50 | 73.21 76 | 89.02 61 | 42.14 195 | 83.32 156 | 61.72 143 | 82.50 94 | 88.25 12 |
|
IterMVS-LS | | | 69.22 153 | 68.48 143 | 71.43 184 | 74.44 254 | 49.40 225 | 76.23 185 | 77.55 197 | 59.60 119 | 65.85 197 | 81.59 205 | 51.28 95 | 81.58 195 | 59.87 159 | 69.90 250 | 83.30 189 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
FMVSNet2 | | | 66.93 200 | 66.31 196 | 68.79 233 | 77.63 193 | 42.98 289 | 76.11 187 | 77.47 198 | 56.62 173 | 65.22 212 | 82.17 191 | 41.85 200 | 80.18 227 | 47.05 248 | 72.72 213 | 83.20 193 |
|
PLC |  | 56.13 14 | 65.09 226 | 63.21 232 | 70.72 201 | 81.04 111 | 54.87 144 | 78.57 137 | 77.47 198 | 48.51 279 | 55.71 300 | 81.89 197 | 33.71 278 | 79.71 229 | 41.66 294 | 70.37 239 | 77.58 275 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
BH-untuned | | | 68.27 172 | 67.29 172 | 71.21 190 | 79.74 136 | 53.22 164 | 76.06 189 | 77.46 200 | 57.19 163 | 66.10 190 | 81.61 203 | 45.37 167 | 83.50 154 | 45.42 265 | 76.68 169 | 76.91 287 |
|
VNet | | | 69.68 140 | 70.19 115 | 68.16 240 | 79.73 137 | 41.63 303 | 70.53 278 | 77.38 201 | 60.37 101 | 70.69 105 | 86.63 96 | 51.08 98 | 77.09 270 | 53.61 200 | 81.69 106 | 85.75 107 |
|
cl22 | | | 67.47 187 | 66.45 187 | 70.54 204 | 69.85 314 | 46.49 256 | 73.85 234 | 77.35 202 | 55.07 211 | 65.51 202 | 77.92 269 | 47.64 134 | 81.10 205 | 61.58 146 | 69.32 259 | 84.01 164 |
|
anonymousdsp | | | 67.00 199 | 64.82 216 | 73.57 140 | 70.09 309 | 56.13 120 | 76.35 182 | 77.35 202 | 48.43 281 | 64.99 216 | 80.84 221 | 33.01 287 | 80.34 223 | 64.66 117 | 67.64 278 | 84.23 157 |
|
cascas | | | 65.98 214 | 63.42 229 | 73.64 137 | 77.26 206 | 52.58 176 | 72.26 255 | 77.21 204 | 48.56 278 | 61.21 259 | 74.60 309 | 32.57 298 | 85.82 104 | 50.38 224 | 76.75 168 | 82.52 207 |
|
FMVSNet3 | | | 66.32 212 | 65.61 207 | 68.46 236 | 76.48 221 | 42.34 293 | 74.98 210 | 77.15 205 | 55.83 192 | 65.04 213 | 81.16 210 | 39.91 218 | 80.14 228 | 47.18 245 | 72.76 210 | 82.90 202 |
|
v148 | | | 68.24 174 | 67.19 178 | 71.40 185 | 70.43 303 | 47.77 245 | 75.76 195 | 77.03 206 | 58.91 131 | 67.36 166 | 80.10 236 | 48.60 124 | 81.89 188 | 60.01 157 | 66.52 286 | 84.53 148 |
|
Fast-Effi-MVS+-dtu | | | 67.37 188 | 65.33 211 | 73.48 142 | 72.94 271 | 57.78 94 | 77.47 159 | 76.88 207 | 57.60 159 | 61.97 251 | 76.85 283 | 39.31 224 | 80.49 222 | 54.72 189 | 70.28 242 | 82.17 214 |
|
CANet_DTU | | | 68.18 175 | 67.71 157 | 69.59 221 | 74.83 244 | 46.24 259 | 78.66 135 | 76.85 208 | 59.60 119 | 63.45 231 | 82.09 195 | 35.25 263 | 77.41 266 | 59.88 158 | 78.76 143 | 85.14 130 |
|
cl____ | | | 67.18 193 | 66.26 198 | 69.94 213 | 70.20 306 | 45.74 264 | 73.30 239 | 76.83 209 | 55.10 206 | 65.27 206 | 79.57 247 | 47.39 140 | 80.53 219 | 59.41 164 | 69.22 263 | 83.53 186 |
|
DIV-MVS_self_test | | | 67.18 193 | 66.26 198 | 69.94 213 | 70.20 306 | 45.74 264 | 73.29 240 | 76.83 209 | 55.10 206 | 65.27 206 | 79.58 246 | 47.38 141 | 80.53 219 | 59.43 163 | 69.22 263 | 83.54 185 |
|
h-mvs33 | | | 72.71 86 | 71.49 93 | 76.40 70 | 81.99 93 | 59.58 60 | 76.92 173 | 76.74 211 | 60.40 98 | 74.81 50 | 85.95 117 | 45.54 161 | 85.76 105 | 70.41 68 | 70.61 235 | 83.86 170 |
|
BH-w/o | | | 66.85 201 | 65.83 203 | 69.90 216 | 79.29 145 | 52.46 180 | 74.66 217 | 76.65 212 | 54.51 223 | 64.85 217 | 78.12 265 | 45.59 160 | 82.95 164 | 43.26 280 | 75.54 176 | 74.27 313 |
|
LTVRE_ROB | | 55.42 16 | 63.15 246 | 61.23 255 | 68.92 231 | 76.57 219 | 47.80 243 | 59.92 334 | 76.39 213 | 54.35 225 | 58.67 282 | 82.46 184 | 29.44 316 | 81.49 196 | 42.12 290 | 71.14 229 | 77.46 276 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
BH-RMVSNet | | | 68.81 157 | 67.42 167 | 72.97 153 | 80.11 130 | 52.53 178 | 74.26 222 | 76.29 214 | 58.48 142 | 68.38 143 | 84.20 146 | 42.59 190 | 83.83 147 | 46.53 250 | 75.91 172 | 82.56 205 |
|
F-COLMAP | | | 63.05 247 | 60.87 260 | 69.58 223 | 76.99 212 | 53.63 154 | 78.12 146 | 76.16 215 | 47.97 287 | 52.41 330 | 81.61 203 | 27.87 326 | 78.11 256 | 40.07 300 | 66.66 284 | 77.00 284 |
|
ab-mvs | | | 66.65 206 | 66.42 190 | 67.37 247 | 76.17 224 | 41.73 300 | 70.41 281 | 76.14 216 | 53.99 226 | 65.98 192 | 83.51 165 | 49.48 110 | 76.24 279 | 48.60 237 | 73.46 196 | 84.14 160 |
|
WR-MVS | | | 68.47 169 | 68.47 144 | 68.44 237 | 80.20 126 | 39.84 310 | 73.75 236 | 76.07 217 | 64.68 25 | 68.11 150 | 83.63 160 | 50.39 105 | 79.14 243 | 49.78 226 | 69.66 256 | 86.34 80 |
|
Effi-MVS+-dtu | | | 69.64 142 | 67.53 162 | 75.95 76 | 76.10 225 | 62.29 18 | 80.20 110 | 76.06 218 | 59.83 117 | 65.26 209 | 77.09 279 | 41.56 205 | 84.02 144 | 60.60 152 | 71.09 231 | 81.53 222 |
|
mvs-test1 | | | 70.44 122 | 68.19 149 | 77.18 55 | 76.10 225 | 63.22 6 | 80.59 106 | 76.06 218 | 59.83 117 | 66.32 187 | 79.87 239 | 41.56 205 | 85.53 109 | 60.60 152 | 72.77 209 | 82.80 204 |
|
MSDG | | | 61.81 259 | 59.23 265 | 69.55 224 | 72.64 275 | 52.63 175 | 70.45 280 | 75.81 220 | 51.38 252 | 53.70 322 | 76.11 293 | 29.52 314 | 81.08 207 | 37.70 311 | 65.79 291 | 74.93 305 |
|
miper_lstm_enhance | | | 62.03 256 | 60.88 259 | 65.49 273 | 66.71 336 | 46.25 258 | 56.29 346 | 75.70 221 | 50.68 260 | 61.27 258 | 75.48 302 | 40.21 217 | 68.03 314 | 56.31 175 | 65.25 294 | 82.18 212 |
|
pm-mvs1 | | | 65.24 224 | 64.97 215 | 66.04 265 | 72.38 280 | 39.40 315 | 72.62 249 | 75.63 222 | 55.53 200 | 62.35 250 | 83.18 170 | 47.45 138 | 76.47 276 | 49.06 234 | 66.54 285 | 82.24 211 |
|
UniMVSNet_ETH3D | | | 67.60 185 | 67.07 181 | 69.18 229 | 77.39 203 | 42.29 294 | 74.18 224 | 75.59 223 | 60.37 101 | 66.77 177 | 86.06 111 | 37.64 241 | 78.93 250 | 52.16 210 | 73.49 195 | 86.32 84 |
|
HyFIR lowres test | | | 65.67 217 | 63.01 234 | 73.67 134 | 79.97 132 | 55.65 130 | 69.07 292 | 75.52 224 | 42.68 334 | 63.53 230 | 77.95 267 | 40.43 216 | 81.64 192 | 46.01 255 | 71.91 222 | 83.73 178 |
|
pmmvs6 | | | 63.69 238 | 62.82 237 | 66.27 259 | 70.63 300 | 39.27 316 | 73.13 242 | 75.47 225 | 52.69 238 | 59.75 272 | 82.30 187 | 39.71 221 | 77.03 271 | 47.40 243 | 64.35 300 | 82.53 206 |
|
UGNet | | | 68.81 157 | 67.39 168 | 73.06 152 | 78.33 172 | 54.47 147 | 79.77 119 | 75.40 226 | 60.45 97 | 63.22 232 | 84.40 144 | 32.71 294 | 80.91 212 | 51.71 217 | 80.56 114 | 83.81 171 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
VDDNet | | | 71.81 99 | 71.33 98 | 73.26 150 | 82.80 85 | 47.60 248 | 78.74 133 | 75.27 227 | 59.59 122 | 72.94 83 | 89.40 55 | 41.51 208 | 83.91 146 | 58.75 165 | 82.99 84 | 88.26 11 |
|
hse-mvs2 | | | 71.04 110 | 69.86 119 | 74.60 110 | 79.58 139 | 57.12 109 | 73.96 227 | 75.25 228 | 60.40 98 | 74.81 50 | 81.95 196 | 45.54 161 | 82.90 165 | 70.41 68 | 66.83 283 | 83.77 176 |
|
AUN-MVS | | | 68.45 170 | 66.41 191 | 74.57 112 | 79.53 141 | 57.08 110 | 73.93 231 | 75.23 229 | 54.44 224 | 66.69 179 | 81.85 198 | 37.10 251 | 82.89 166 | 62.07 139 | 66.84 282 | 83.75 177 |
|
mvs_anonymous | | | 68.03 177 | 67.51 163 | 69.59 221 | 72.08 284 | 44.57 277 | 71.99 258 | 75.23 229 | 51.67 245 | 67.06 171 | 82.57 180 | 54.68 55 | 77.94 258 | 56.56 173 | 75.71 175 | 86.26 88 |
|
TR-MVS | | | 66.59 209 | 65.07 214 | 71.17 192 | 79.18 150 | 49.63 223 | 73.48 238 | 75.20 231 | 52.95 234 | 67.90 153 | 80.33 230 | 39.81 220 | 83.68 150 | 43.20 281 | 73.56 194 | 80.20 246 |
|
IB-MVS | | 56.42 12 | 65.40 222 | 62.73 238 | 73.40 146 | 74.89 242 | 52.78 172 | 73.09 243 | 75.13 232 | 55.69 196 | 58.48 285 | 73.73 315 | 32.86 289 | 86.32 91 | 50.63 222 | 70.11 244 | 81.10 233 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
mvsmamba | | | 71.15 108 | 69.54 124 | 75.99 75 | 77.61 198 | 53.46 158 | 81.95 86 | 75.11 233 | 57.73 158 | 66.95 174 | 85.96 116 | 37.14 249 | 87.56 51 | 67.94 84 | 75.49 177 | 86.97 59 |
|
xiu_mvs_v1_base_debu | | | 68.58 163 | 67.28 173 | 72.48 164 | 78.19 176 | 57.19 104 | 75.28 200 | 75.09 234 | 51.61 246 | 70.04 113 | 81.41 207 | 32.79 290 | 79.02 245 | 63.81 124 | 77.31 156 | 81.22 229 |
|
xiu_mvs_v1_base | | | 68.58 163 | 67.28 173 | 72.48 164 | 78.19 176 | 57.19 104 | 75.28 200 | 75.09 234 | 51.61 246 | 70.04 113 | 81.41 207 | 32.79 290 | 79.02 245 | 63.81 124 | 77.31 156 | 81.22 229 |
|
xiu_mvs_v1_base_debi | | | 68.58 163 | 67.28 173 | 72.48 164 | 78.19 176 | 57.19 104 | 75.28 200 | 75.09 234 | 51.61 246 | 70.04 113 | 81.41 207 | 32.79 290 | 79.02 245 | 63.81 124 | 77.31 156 | 81.22 229 |
|
TransMVSNet (Re) | | | 64.72 229 | 64.33 218 | 65.87 269 | 75.22 240 | 38.56 321 | 74.66 217 | 75.08 237 | 58.90 132 | 61.79 254 | 82.63 178 | 51.18 96 | 78.07 257 | 43.63 277 | 55.87 340 | 80.99 235 |
|
ET-MVSNet_ETH3D | | | 67.96 179 | 65.72 205 | 74.68 105 | 76.67 216 | 55.62 133 | 75.11 205 | 74.74 238 | 52.91 235 | 60.03 266 | 80.12 235 | 33.68 279 | 82.64 177 | 61.86 142 | 76.34 170 | 85.78 102 |
|
LS3D | | | 64.71 230 | 62.50 240 | 71.34 188 | 79.72 138 | 55.71 128 | 79.82 118 | 74.72 239 | 48.50 280 | 56.62 295 | 84.62 138 | 33.59 281 | 82.34 183 | 29.65 354 | 75.23 180 | 75.97 291 |
|
Baseline_NR-MVSNet | | | 67.05 197 | 67.56 159 | 65.50 272 | 75.65 232 | 37.70 328 | 75.42 198 | 74.65 240 | 59.90 113 | 68.14 149 | 83.15 171 | 49.12 118 | 77.20 268 | 52.23 209 | 69.78 252 | 81.60 221 |
|
HY-MVS | | 56.14 13 | 64.55 233 | 63.89 221 | 66.55 255 | 74.73 248 | 41.02 305 | 69.96 285 | 74.43 241 | 49.29 272 | 61.66 255 | 80.92 217 | 47.43 139 | 76.68 274 | 44.91 268 | 71.69 224 | 81.94 217 |
|
GA-MVS | | | 65.53 219 | 63.70 225 | 71.02 196 | 70.87 298 | 48.10 240 | 70.48 279 | 74.40 242 | 56.69 169 | 64.70 219 | 76.77 284 | 33.66 280 | 81.10 205 | 55.42 185 | 70.32 241 | 83.87 169 |
|
bld_raw_conf005 | | | 70.66 117 | 68.94 136 | 75.84 78 | 77.34 204 | 53.03 168 | 81.79 88 | 74.40 242 | 58.13 148 | 66.63 182 | 86.04 112 | 33.24 285 | 87.56 51 | 67.51 91 | 75.34 179 | 86.92 61 |
|
KD-MVS_self_test | | | 55.22 300 | 53.89 306 | 59.21 308 | 57.80 369 | 27.47 369 | 57.75 341 | 74.32 244 | 47.38 293 | 50.90 336 | 70.00 337 | 28.45 323 | 70.30 305 | 40.44 299 | 57.92 334 | 79.87 252 |
|
patch_mono-2 | | | 69.85 134 | 71.09 102 | 66.16 261 | 79.11 153 | 54.80 145 | 71.97 259 | 74.31 245 | 53.50 231 | 70.90 104 | 84.17 147 | 57.63 32 | 63.31 332 | 66.17 100 | 82.02 98 | 80.38 244 |
|
无先验 | | | | | | | | 79.66 122 | 74.30 246 | 48.40 282 | | | | 80.78 215 | 53.62 198 | | 79.03 262 |
|
thisisatest0530 | | | 67.92 180 | 65.78 204 | 74.33 118 | 76.29 222 | 51.03 196 | 76.89 174 | 74.25 247 | 53.67 229 | 65.59 201 | 81.76 200 | 35.15 264 | 85.50 112 | 55.94 176 | 72.47 214 | 86.47 74 |
|
CHOSEN 1792x2688 | | | 65.08 227 | 62.84 236 | 71.82 173 | 81.49 101 | 56.26 118 | 66.32 303 | 74.20 248 | 40.53 345 | 63.16 234 | 78.65 260 | 41.30 210 | 77.80 261 | 45.80 257 | 74.09 186 | 81.40 224 |
|
MS-PatchMatch | | | 62.42 251 | 61.46 251 | 65.31 276 | 75.21 241 | 52.10 185 | 72.05 257 | 74.05 249 | 46.41 302 | 57.42 292 | 74.36 310 | 34.35 273 | 77.57 265 | 45.62 260 | 73.67 190 | 66.26 353 |
|
tttt0517 | | | 67.83 182 | 65.66 206 | 74.33 118 | 76.69 215 | 50.82 201 | 77.86 149 | 73.99 250 | 54.54 222 | 64.64 220 | 82.53 182 | 35.06 265 | 85.50 112 | 55.71 181 | 69.91 249 | 86.67 70 |
|
iter_conf_final | | | 69.82 135 | 68.02 152 | 75.23 96 | 79.38 144 | 52.91 170 | 80.11 111 | 73.96 251 | 54.99 214 | 68.04 152 | 83.59 161 | 29.05 318 | 87.16 59 | 65.41 110 | 77.62 153 | 85.63 112 |
|
USDC | | | 56.35 292 | 54.24 303 | 62.69 292 | 64.74 346 | 40.31 308 | 65.05 314 | 73.83 252 | 43.93 325 | 47.58 346 | 77.71 276 | 15.36 364 | 75.05 283 | 38.19 310 | 61.81 319 | 72.70 324 |
|
tfpnnormal | | | 62.47 250 | 61.63 249 | 64.99 278 | 74.81 245 | 39.01 317 | 71.22 268 | 73.72 253 | 55.22 205 | 60.21 263 | 80.09 237 | 41.26 213 | 76.98 272 | 30.02 352 | 68.09 274 | 78.97 263 |
|
iter_conf05 | | | 69.40 149 | 67.62 158 | 74.73 102 | 77.84 187 | 51.13 195 | 79.28 128 | 73.71 254 | 54.62 218 | 68.17 147 | 83.59 161 | 28.68 322 | 87.16 59 | 65.74 107 | 76.95 162 | 85.91 97 |
|
jason | | | 69.65 141 | 68.39 147 | 73.43 145 | 78.27 174 | 56.88 111 | 77.12 167 | 73.71 254 | 46.53 301 | 69.34 129 | 83.22 168 | 43.37 185 | 79.18 238 | 64.77 116 | 79.20 135 | 84.23 157 |
jason: jason. |
D2MVS | | | 62.30 253 | 60.29 262 | 68.34 239 | 66.46 338 | 48.42 237 | 65.70 306 | 73.42 256 | 47.71 289 | 58.16 287 | 75.02 305 | 30.51 307 | 77.71 263 | 53.96 196 | 71.68 225 | 78.90 264 |
|
COLMAP_ROB |  | 52.97 17 | 61.27 265 | 58.81 267 | 68.64 234 | 74.63 249 | 52.51 179 | 78.42 142 | 73.30 257 | 49.92 269 | 50.96 335 | 81.51 206 | 23.06 350 | 79.40 234 | 31.63 344 | 65.85 289 | 74.01 316 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
lupinMVS | | | 69.57 143 | 68.28 148 | 73.44 144 | 78.76 160 | 57.15 107 | 76.57 178 | 73.29 258 | 46.19 304 | 69.49 125 | 82.18 189 | 43.99 181 | 79.23 237 | 64.66 117 | 79.37 130 | 83.93 165 |
|
DP-MVS | | | 65.68 216 | 63.66 226 | 71.75 174 | 84.93 63 | 56.87 112 | 80.74 104 | 73.16 259 | 53.06 233 | 59.09 278 | 82.35 185 | 36.79 255 | 85.94 100 | 32.82 336 | 69.96 248 | 72.45 328 |
|
thisisatest0515 | | | 65.83 215 | 63.50 228 | 72.82 158 | 73.75 261 | 49.50 224 | 71.32 266 | 73.12 260 | 49.39 271 | 63.82 229 | 76.50 291 | 34.95 267 | 84.84 128 | 53.20 204 | 75.49 177 | 84.13 161 |
|
VPNet | | | 67.52 186 | 68.11 151 | 65.74 270 | 79.18 150 | 36.80 335 | 72.17 256 | 72.83 261 | 62.04 76 | 67.79 161 | 85.83 120 | 48.88 120 | 76.60 275 | 51.30 219 | 72.97 207 | 83.81 171 |
|
CL-MVSNet_self_test | | | 61.53 261 | 60.94 258 | 63.30 287 | 68.95 322 | 36.93 334 | 67.60 298 | 72.80 262 | 55.67 197 | 59.95 268 | 76.63 285 | 45.01 171 | 72.22 296 | 39.74 304 | 62.09 317 | 80.74 239 |
|
OurMVSNet-221017-0 | | | 61.37 264 | 58.63 270 | 69.61 220 | 72.05 285 | 48.06 241 | 73.93 231 | 72.51 263 | 47.23 297 | 54.74 312 | 80.92 217 | 21.49 357 | 81.24 202 | 48.57 238 | 56.22 339 | 79.53 257 |
|
EPNet | | | 73.09 82 | 72.16 86 | 75.90 77 | 75.95 229 | 56.28 117 | 83.05 63 | 72.39 264 | 66.53 12 | 65.27 206 | 87.00 86 | 50.40 104 | 85.47 114 | 62.48 136 | 86.32 63 | 85.94 95 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
1112_ss | | | 64.00 236 | 63.36 230 | 65.93 267 | 79.28 146 | 42.58 292 | 71.35 265 | 72.36 265 | 46.41 302 | 60.55 262 | 77.89 271 | 46.27 155 | 73.28 290 | 46.18 253 | 69.97 247 | 81.92 218 |
|
test_0402 | | | 63.25 244 | 61.01 257 | 69.96 212 | 80.00 131 | 54.37 148 | 76.86 175 | 72.02 266 | 54.58 221 | 58.71 281 | 80.79 222 | 35.00 266 | 84.36 136 | 26.41 362 | 64.71 297 | 71.15 340 |
|
EU-MVSNet | | | 55.61 297 | 54.41 300 | 59.19 309 | 65.41 344 | 33.42 356 | 72.44 252 | 71.91 267 | 28.81 362 | 51.27 333 | 73.87 314 | 24.76 346 | 69.08 310 | 43.04 282 | 58.20 333 | 75.06 301 |
|
KD-MVS_2432*1600 | | | 53.45 308 | 51.50 315 | 59.30 305 | 62.82 352 | 37.14 330 | 55.33 347 | 71.79 268 | 47.34 295 | 55.09 308 | 70.52 332 | 21.91 355 | 70.45 303 | 35.72 326 | 42.97 363 | 70.31 343 |
|
miper_refine_blended | | | 53.45 308 | 51.50 315 | 59.30 305 | 62.82 352 | 37.14 330 | 55.33 347 | 71.79 268 | 47.34 295 | 55.09 308 | 70.52 332 | 21.91 355 | 70.45 303 | 35.72 326 | 42.97 363 | 70.31 343 |
|
Anonymous202405211 | | | 66.84 202 | 65.99 201 | 69.40 225 | 80.19 127 | 42.21 295 | 71.11 272 | 71.31 270 | 58.80 134 | 67.90 153 | 86.39 103 | 29.83 313 | 79.65 230 | 49.60 232 | 78.78 142 | 86.33 82 |
|
LFMVS | | | 71.78 100 | 71.59 91 | 72.32 169 | 83.40 76 | 46.38 257 | 79.75 120 | 71.08 271 | 64.18 35 | 72.80 85 | 88.64 68 | 42.58 191 | 83.72 149 | 57.41 170 | 84.49 73 | 86.86 64 |
|
CDS-MVSNet | | | 66.80 203 | 65.37 209 | 71.10 194 | 78.98 155 | 53.13 167 | 73.27 241 | 71.07 272 | 52.15 243 | 64.72 218 | 80.23 234 | 43.56 184 | 77.10 269 | 45.48 263 | 78.88 139 | 83.05 199 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
Anonymous20240521 | | | 55.30 298 | 54.41 300 | 57.96 317 | 60.92 364 | 41.73 300 | 71.09 273 | 71.06 273 | 41.18 341 | 48.65 344 | 73.31 317 | 16.93 361 | 59.25 346 | 42.54 286 | 64.01 301 | 72.90 322 |
|
OpenMVS_ROB |  | 52.78 18 | 60.03 269 | 58.14 275 | 65.69 271 | 70.47 302 | 44.82 272 | 75.33 199 | 70.86 274 | 45.04 312 | 56.06 298 | 76.00 294 | 26.89 335 | 79.65 230 | 35.36 328 | 67.29 279 | 72.60 325 |
|
CNLPA | | | 65.43 220 | 64.02 220 | 69.68 219 | 78.73 162 | 58.07 89 | 77.82 151 | 70.71 275 | 51.49 250 | 61.57 257 | 83.58 164 | 38.23 237 | 70.82 300 | 43.90 274 | 70.10 245 | 80.16 247 |
|
CostFormer | | | 64.04 235 | 62.51 239 | 68.61 235 | 71.88 287 | 45.77 263 | 71.30 267 | 70.60 276 | 47.55 291 | 64.31 224 | 76.61 287 | 41.63 203 | 79.62 232 | 49.74 228 | 69.00 266 | 80.42 242 |
|
Test_1112_low_res | | | 62.32 252 | 61.77 247 | 64.00 283 | 79.08 154 | 39.53 314 | 68.17 294 | 70.17 277 | 43.25 329 | 59.03 279 | 79.90 238 | 44.08 179 | 71.24 299 | 43.79 276 | 68.42 272 | 81.25 228 |
|
MVS_111021_LR | | | 69.50 145 | 68.78 139 | 71.65 178 | 78.38 169 | 59.33 64 | 74.82 213 | 70.11 278 | 58.08 149 | 67.83 159 | 84.68 136 | 41.96 197 | 76.34 278 | 65.62 108 | 77.54 154 | 79.30 260 |
|
ANet_high | | | 41.38 332 | 37.47 337 | 53.11 336 | 39.73 378 | 24.45 374 | 56.94 343 | 69.69 279 | 47.65 290 | 26.04 369 | 52.32 363 | 12.44 366 | 62.38 336 | 21.80 365 | 10.61 376 | 72.49 327 |
|
SixPastTwentyTwo | | | 61.65 260 | 58.80 268 | 70.20 209 | 75.80 230 | 47.22 251 | 75.59 196 | 69.68 280 | 54.61 219 | 54.11 319 | 79.26 254 | 27.07 333 | 82.96 163 | 43.27 279 | 49.79 355 | 80.41 243 |
|
IterMVS-SCA-FT | | | 62.49 249 | 61.52 250 | 65.40 274 | 71.99 286 | 50.80 202 | 71.15 271 | 69.63 281 | 45.71 310 | 60.61 261 | 77.93 268 | 37.45 243 | 65.99 325 | 55.67 182 | 63.50 306 | 79.42 258 |
|
TAMVS | | | 66.78 204 | 65.27 212 | 71.33 189 | 79.16 152 | 53.67 152 | 73.84 235 | 69.59 282 | 52.32 242 | 65.28 205 | 81.72 201 | 44.49 177 | 77.40 267 | 42.32 288 | 78.66 145 | 82.92 200 |
|
CMPMVS |  | 42.80 21 | 57.81 284 | 55.97 289 | 63.32 286 | 60.98 362 | 47.38 250 | 64.66 316 | 69.50 283 | 32.06 359 | 46.83 350 | 77.80 273 | 29.50 315 | 71.36 298 | 48.68 236 | 73.75 189 | 71.21 339 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
tfpn200view9 | | | 63.18 245 | 62.18 244 | 66.21 260 | 76.85 213 | 39.62 312 | 71.96 260 | 69.44 284 | 56.63 171 | 62.61 242 | 79.83 240 | 37.18 246 | 79.17 239 | 31.84 340 | 73.25 200 | 79.83 253 |
|
thres400 | | | 63.31 241 | 62.18 244 | 66.72 252 | 76.85 213 | 39.62 312 | 71.96 260 | 69.44 284 | 56.63 171 | 62.61 242 | 79.83 240 | 37.18 246 | 79.17 239 | 31.84 340 | 73.25 200 | 81.36 225 |
|
thres200 | | | 62.20 254 | 61.16 256 | 65.34 275 | 75.38 239 | 39.99 309 | 69.60 287 | 69.29 286 | 55.64 199 | 61.87 253 | 76.99 280 | 37.07 252 | 78.96 249 | 31.28 348 | 73.28 199 | 77.06 282 |
|
UnsupCasMVSNet_eth | | | 53.16 313 | 52.47 311 | 55.23 326 | 59.45 366 | 33.39 357 | 59.43 336 | 69.13 287 | 45.98 306 | 50.35 342 | 72.32 321 | 29.30 317 | 58.26 349 | 42.02 292 | 44.30 361 | 74.05 315 |
|
thres100view900 | | | 63.28 243 | 62.41 241 | 65.89 268 | 77.31 205 | 38.66 320 | 72.65 247 | 69.11 288 | 57.07 164 | 62.45 247 | 81.03 214 | 37.01 253 | 79.17 239 | 31.84 340 | 73.25 200 | 79.83 253 |
|
thres600view7 | | | 63.30 242 | 62.27 242 | 66.41 256 | 77.18 207 | 38.87 318 | 72.35 253 | 69.11 288 | 56.98 166 | 62.37 249 | 80.96 216 | 37.01 253 | 79.00 248 | 31.43 347 | 73.05 206 | 81.36 225 |
|
CVMVSNet | | | 59.63 273 | 59.14 266 | 61.08 303 | 74.47 252 | 38.84 319 | 75.20 203 | 68.74 290 | 31.15 360 | 58.24 286 | 76.51 289 | 32.39 299 | 68.58 312 | 49.77 227 | 65.84 290 | 75.81 294 |
|
TinyColmap | | | 54.14 303 | 51.72 313 | 61.40 301 | 66.84 335 | 41.97 296 | 66.52 301 | 68.51 291 | 44.81 313 | 42.69 360 | 75.77 298 | 11.66 368 | 72.94 291 | 31.96 338 | 56.77 337 | 69.27 349 |
|
baseline2 | | | 63.42 240 | 61.26 254 | 69.89 217 | 72.55 278 | 47.62 247 | 71.54 263 | 68.38 292 | 50.11 266 | 54.82 311 | 75.55 301 | 43.06 188 | 80.96 208 | 48.13 240 | 67.16 281 | 81.11 232 |
|
IterMVS | | | 62.79 248 | 61.27 253 | 67.35 248 | 69.37 319 | 52.04 188 | 71.17 269 | 68.24 293 | 52.63 239 | 59.82 270 | 76.91 282 | 37.32 245 | 72.36 293 | 52.80 206 | 63.19 309 | 77.66 274 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
旧先验1 | | | | | | 83.04 80 | 53.15 165 | | 67.52 294 | | | 87.85 77 | 44.08 179 | | | 80.76 109 | 78.03 273 |
|
AllTest | | | 57.08 288 | 54.65 297 | 64.39 281 | 71.44 292 | 49.03 227 | 69.92 286 | 67.30 295 | 45.97 307 | 47.16 348 | 79.77 242 | 17.47 359 | 67.56 316 | 33.65 333 | 59.16 330 | 76.57 288 |
|
TestCases | | | | | 64.39 281 | 71.44 292 | 49.03 227 | | 67.30 295 | 45.97 307 | 47.16 348 | 79.77 242 | 17.47 359 | 67.56 316 | 33.65 333 | 59.16 330 | 76.57 288 |
|
baseline1 | | | 63.81 237 | 63.87 223 | 63.62 284 | 76.29 222 | 36.36 338 | 71.78 262 | 67.29 297 | 56.05 188 | 64.23 226 | 82.95 173 | 47.11 144 | 74.41 286 | 47.30 244 | 61.85 318 | 80.10 249 |
|
tpmvs | | | 58.47 277 | 56.95 283 | 63.03 291 | 70.20 306 | 41.21 304 | 67.90 297 | 67.23 298 | 49.62 270 | 54.73 313 | 70.84 329 | 34.14 274 | 76.24 279 | 36.64 320 | 61.29 322 | 71.64 336 |
|
Gipuma |  | | 34.77 337 | 31.91 341 | 43.33 350 | 62.05 357 | 37.87 325 | 20.39 371 | 67.03 299 | 23.23 368 | 18.41 372 | 25.84 372 | 4.24 378 | 62.73 334 | 14.71 370 | 51.32 351 | 29.38 371 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
ECVR-MVS |  | | 67.72 183 | 67.51 163 | 68.35 238 | 79.46 142 | 36.29 343 | 74.79 214 | 66.93 300 | 58.72 135 | 67.19 169 | 88.05 73 | 36.10 257 | 81.38 198 | 52.07 211 | 84.25 75 | 87.39 47 |
|
tpm2 | | | 62.07 255 | 60.10 263 | 67.99 241 | 72.79 273 | 43.86 282 | 71.05 274 | 66.85 301 | 43.14 331 | 62.77 237 | 75.39 303 | 38.32 235 | 80.80 214 | 41.69 293 | 68.88 267 | 79.32 259 |
|
XXY-MVS | | | 60.68 266 | 61.67 248 | 57.70 320 | 70.43 303 | 38.45 322 | 64.19 318 | 66.47 302 | 48.05 286 | 63.22 232 | 80.86 219 | 49.28 113 | 60.47 341 | 45.25 267 | 67.28 280 | 74.19 314 |
|
1121 | | | 68.53 168 | 67.16 179 | 72.63 161 | 85.64 48 | 61.14 34 | 73.95 228 | 66.46 303 | 44.61 316 | 70.28 110 | 86.68 94 | 41.42 209 | 80.78 215 | 53.62 198 | 81.79 100 | 75.97 291 |
|
新几何1 | | | | | 70.76 199 | 85.66 46 | 61.13 35 | | 66.43 304 | 44.68 315 | 70.29 109 | 86.64 95 | 41.29 211 | 75.23 282 | 49.72 229 | 81.75 104 | 75.93 293 |
|
ppachtmachnet_test | | | 58.06 282 | 55.38 293 | 66.10 264 | 69.51 316 | 48.99 230 | 68.01 296 | 66.13 305 | 44.50 318 | 54.05 320 | 70.74 330 | 32.09 301 | 72.34 294 | 36.68 319 | 56.71 338 | 76.99 286 |
|
tpm cat1 | | | 59.25 274 | 56.95 283 | 66.15 262 | 72.19 283 | 46.96 253 | 68.09 295 | 65.76 306 | 40.03 348 | 57.81 289 | 70.56 331 | 38.32 235 | 74.51 285 | 38.26 309 | 61.50 321 | 77.00 284 |
|
test1111 | | | 67.21 190 | 67.14 180 | 67.42 246 | 79.24 148 | 34.76 348 | 73.89 233 | 65.65 307 | 58.71 137 | 66.96 173 | 87.95 75 | 36.09 258 | 80.53 219 | 52.03 212 | 83.79 79 | 86.97 59 |
|
EPNet_dtu | | | 61.90 257 | 61.97 246 | 61.68 298 | 72.89 272 | 39.78 311 | 75.85 194 | 65.62 308 | 55.09 208 | 54.56 315 | 79.36 252 | 37.59 242 | 67.02 319 | 39.80 303 | 76.95 162 | 78.25 267 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MVS_0304 | | | 58.51 276 | 57.36 279 | 61.96 297 | 70.04 310 | 41.83 298 | 69.40 290 | 65.46 309 | 50.73 259 | 53.30 328 | 74.06 313 | 22.65 351 | 70.18 307 | 42.16 289 | 68.44 271 | 73.86 318 |
|
pmmvs4 | | | 61.48 263 | 59.39 264 | 67.76 242 | 71.57 291 | 53.86 151 | 71.42 264 | 65.34 310 | 44.20 321 | 59.46 273 | 77.92 269 | 35.90 259 | 74.71 284 | 43.87 275 | 64.87 296 | 74.71 309 |
|
testdata | | | | | 64.66 279 | 81.52 99 | 52.93 169 | | 65.29 311 | 46.09 305 | 73.88 67 | 87.46 80 | 38.08 239 | 66.26 324 | 53.31 203 | 78.48 147 | 74.78 308 |
|
TDRefinement | | | 53.44 310 | 50.72 318 | 61.60 299 | 64.31 349 | 46.96 253 | 70.89 275 | 65.27 312 | 41.78 336 | 44.61 356 | 77.98 266 | 11.52 369 | 66.36 323 | 28.57 357 | 51.59 350 | 71.49 337 |
|
MIMVSNet1 | | | 55.17 301 | 54.31 302 | 57.77 319 | 70.03 311 | 32.01 360 | 65.68 307 | 64.81 313 | 49.19 273 | 46.75 351 | 76.00 294 | 25.53 343 | 64.04 330 | 28.65 356 | 62.13 316 | 77.26 280 |
|
pmmvs-eth3d | | | 58.81 275 | 56.31 288 | 66.30 258 | 67.61 330 | 52.42 182 | 72.30 254 | 64.76 314 | 43.55 327 | 54.94 310 | 74.19 312 | 28.95 319 | 72.60 292 | 43.31 278 | 57.21 335 | 73.88 317 |
|
MDTV_nov1_ep13 | | | | 57.00 282 | | 72.73 274 | 38.26 323 | 65.02 315 | 64.73 315 | 44.74 314 | 55.46 302 | 72.48 320 | 32.61 297 | 70.47 302 | 37.47 312 | 67.75 277 | |
|
UnsupCasMVSNet_bld | | | 50.07 321 | 48.87 322 | 53.66 333 | 60.97 363 | 33.67 355 | 57.62 342 | 64.56 316 | 39.47 350 | 47.38 347 | 64.02 356 | 27.47 329 | 59.32 345 | 34.69 330 | 43.68 362 | 67.98 352 |
|
ITE_SJBPF | | | | | 62.09 296 | 66.16 340 | 44.55 278 | | 64.32 317 | 47.36 294 | 55.31 305 | 80.34 229 | 19.27 358 | 62.68 335 | 36.29 324 | 62.39 315 | 79.04 261 |
|
WTY-MVS | | | 59.75 272 | 60.39 261 | 57.85 318 | 72.32 282 | 37.83 326 | 61.05 332 | 64.18 318 | 45.95 309 | 61.91 252 | 79.11 256 | 47.01 148 | 60.88 340 | 42.50 287 | 69.49 258 | 74.83 306 |
|
MDA-MVSNet-bldmvs | | | 53.87 306 | 50.81 317 | 63.05 290 | 66.25 339 | 48.58 235 | 56.93 344 | 63.82 319 | 48.09 285 | 41.22 361 | 70.48 334 | 30.34 309 | 68.00 315 | 34.24 331 | 45.92 360 | 72.57 326 |
|
Vis-MVSNet (Re-imp) | | | 63.69 238 | 63.88 222 | 63.14 289 | 74.75 247 | 31.04 363 | 71.16 270 | 63.64 320 | 56.32 180 | 59.80 271 | 84.99 131 | 44.51 175 | 75.46 281 | 39.12 305 | 80.62 110 | 82.92 200 |
|
test222 | | | | | | 83.14 77 | 58.68 81 | 72.57 250 | 63.45 321 | 41.78 336 | 67.56 164 | 86.12 108 | 37.13 250 | | | 78.73 144 | 74.98 304 |
|
PVSNet | | 50.76 19 | 58.40 278 | 57.39 278 | 61.42 300 | 75.53 236 | 44.04 281 | 61.43 327 | 63.45 321 | 47.04 299 | 56.91 293 | 73.61 316 | 27.00 334 | 64.76 328 | 39.12 305 | 72.40 215 | 75.47 298 |
|
SCA | | | 60.49 267 | 58.38 272 | 66.80 251 | 74.14 260 | 48.06 241 | 63.35 320 | 63.23 323 | 49.13 274 | 59.33 277 | 72.10 322 | 37.45 243 | 74.27 287 | 44.17 270 | 62.57 313 | 78.05 270 |
|
CR-MVSNet | | | 59.91 270 | 57.90 277 | 65.96 266 | 69.96 312 | 52.07 186 | 65.31 312 | 63.15 324 | 42.48 335 | 59.36 274 | 74.84 306 | 35.83 260 | 70.75 301 | 45.50 262 | 64.65 298 | 75.06 301 |
|
Patchmtry | | | 57.16 287 | 56.47 286 | 59.23 307 | 69.17 321 | 34.58 350 | 62.98 321 | 63.15 324 | 44.53 317 | 56.83 294 | 74.84 306 | 35.83 260 | 68.71 311 | 40.03 301 | 60.91 323 | 74.39 312 |
|
pmmvs5 | | | 56.47 290 | 55.68 291 | 58.86 311 | 61.41 359 | 36.71 336 | 66.37 302 | 62.75 326 | 40.38 346 | 53.70 322 | 76.62 286 | 34.56 269 | 67.05 318 | 40.02 302 | 65.27 293 | 72.83 323 |
|
K. test v3 | | | 60.47 268 | 57.11 280 | 70.56 203 | 73.74 262 | 48.22 239 | 75.10 207 | 62.55 327 | 58.27 147 | 53.62 324 | 76.31 292 | 27.81 327 | 81.59 194 | 47.42 242 | 39.18 366 | 81.88 219 |
|
FMVSNet5 | | | 55.86 295 | 54.93 295 | 58.66 313 | 71.05 297 | 36.35 339 | 64.18 319 | 62.48 328 | 46.76 300 | 50.66 340 | 74.73 308 | 25.80 341 | 64.04 330 | 33.11 335 | 65.57 292 | 75.59 297 |
|
PatchmatchNet |  | | 59.84 271 | 58.24 273 | 64.65 280 | 73.05 269 | 46.70 255 | 69.42 289 | 62.18 329 | 47.55 291 | 58.88 280 | 71.96 324 | 34.49 271 | 69.16 309 | 42.99 283 | 63.60 305 | 78.07 269 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
Anonymous20231206 | | | 55.10 302 | 55.30 294 | 54.48 330 | 69.81 315 | 33.94 354 | 62.91 322 | 62.13 330 | 41.08 342 | 55.18 307 | 75.65 299 | 32.75 293 | 56.59 356 | 30.32 351 | 67.86 275 | 72.91 321 |
|
bld_raw_dy_0_64 | | | 64.87 228 | 63.22 231 | 69.83 218 | 74.79 246 | 53.32 163 | 78.15 145 | 62.02 331 | 51.20 257 | 60.17 264 | 83.12 172 | 24.15 349 | 74.20 289 | 63.08 130 | 72.33 217 | 81.96 216 |
|
sss | | | 56.17 294 | 56.57 285 | 54.96 327 | 66.93 334 | 36.32 341 | 57.94 340 | 61.69 332 | 41.67 338 | 58.64 283 | 75.32 304 | 38.72 231 | 56.25 357 | 42.04 291 | 66.19 288 | 72.31 333 |
|
our_test_3 | | | 56.49 289 | 54.42 299 | 62.68 293 | 69.51 316 | 45.48 269 | 66.08 304 | 61.49 333 | 44.11 324 | 50.73 339 | 69.60 340 | 33.05 286 | 68.15 313 | 38.38 308 | 56.86 336 | 74.40 311 |
|
tpmrst | | | 58.24 279 | 58.70 269 | 56.84 321 | 66.97 333 | 34.32 351 | 69.57 288 | 61.14 334 | 47.17 298 | 58.58 284 | 71.60 325 | 41.28 212 | 60.41 342 | 49.20 233 | 62.84 311 | 75.78 295 |
|
MIMVSNet | | | 57.35 285 | 57.07 281 | 58.22 314 | 74.21 259 | 37.18 329 | 62.46 323 | 60.88 335 | 48.88 276 | 55.29 306 | 75.99 296 | 31.68 302 | 62.04 337 | 31.87 339 | 72.35 216 | 75.43 299 |
|
LCM-MVSNet | | | 40.30 333 | 35.88 338 | 53.57 334 | 42.24 375 | 29.15 367 | 45.21 364 | 60.53 336 | 22.23 370 | 28.02 368 | 50.98 366 | 3.72 380 | 61.78 338 | 31.22 349 | 38.76 367 | 69.78 346 |
|
ADS-MVSNet2 | | | 51.33 318 | 48.76 323 | 59.07 310 | 66.02 342 | 44.60 276 | 50.90 355 | 59.76 337 | 36.90 352 | 50.74 337 | 66.18 351 | 26.38 336 | 63.11 333 | 27.17 358 | 54.76 343 | 69.50 347 |
|
new-patchmatchnet | | | 47.56 325 | 47.73 326 | 47.06 346 | 58.81 367 | 9.37 381 | 48.78 359 | 59.21 338 | 43.28 328 | 44.22 357 | 68.66 342 | 25.67 342 | 57.20 353 | 31.57 346 | 49.35 356 | 74.62 310 |
|
test20.03 | | | 53.87 306 | 54.02 305 | 53.41 335 | 61.47 358 | 28.11 368 | 61.30 329 | 59.21 338 | 51.34 254 | 52.09 331 | 77.43 277 | 33.29 284 | 58.55 348 | 29.76 353 | 60.27 327 | 73.58 319 |
|
JIA-IIPM | | | 51.56 317 | 47.68 327 | 63.21 288 | 64.61 347 | 50.73 203 | 47.71 360 | 58.77 340 | 42.90 332 | 48.46 345 | 51.72 364 | 24.97 345 | 70.24 306 | 36.06 325 | 53.89 346 | 68.64 351 |
|
testgi | | | 51.90 315 | 52.37 312 | 50.51 344 | 60.39 365 | 23.55 375 | 58.42 338 | 58.15 341 | 49.03 275 | 51.83 332 | 79.21 255 | 22.39 352 | 55.59 360 | 29.24 355 | 62.64 312 | 72.40 332 |
|
LCM-MVSNet-Re | | | 61.88 258 | 61.35 252 | 63.46 285 | 74.58 250 | 31.48 362 | 61.42 328 | 58.14 342 | 58.71 137 | 53.02 329 | 79.55 248 | 43.07 187 | 76.80 273 | 45.69 258 | 77.96 150 | 82.11 215 |
|
test-LLR | | | 58.15 281 | 58.13 276 | 58.22 314 | 68.57 324 | 44.80 273 | 65.46 309 | 57.92 343 | 50.08 267 | 55.44 303 | 69.82 338 | 32.62 295 | 57.44 351 | 49.66 230 | 73.62 191 | 72.41 330 |
|
test-mter | | | 56.42 291 | 55.82 290 | 58.22 314 | 68.57 324 | 44.80 273 | 65.46 309 | 57.92 343 | 39.94 349 | 55.44 303 | 69.82 338 | 21.92 354 | 57.44 351 | 49.66 230 | 73.62 191 | 72.41 330 |
|
RPSCF | | | 55.80 296 | 54.22 304 | 60.53 304 | 65.13 345 | 42.91 291 | 64.30 317 | 57.62 345 | 36.84 354 | 58.05 288 | 82.28 188 | 28.01 325 | 56.24 358 | 37.14 314 | 58.61 332 | 82.44 210 |
|
GG-mvs-BLEND | | | | | 62.34 294 | 71.36 296 | 37.04 333 | 69.20 291 | 57.33 346 | | 54.73 313 | 65.48 353 | 30.37 308 | 77.82 260 | 34.82 329 | 74.93 181 | 72.17 334 |
|
MDA-MVSNet_test_wron | | | 50.71 320 | 48.95 321 | 56.00 325 | 61.17 360 | 41.84 297 | 51.90 354 | 56.45 347 | 40.96 343 | 44.79 355 | 67.84 344 | 30.04 312 | 55.07 363 | 36.71 318 | 50.69 353 | 71.11 341 |
|
YYNet1 | | | 50.73 319 | 48.96 320 | 56.03 324 | 61.10 361 | 41.78 299 | 51.94 353 | 56.44 348 | 40.94 344 | 44.84 354 | 67.80 345 | 30.08 311 | 55.08 362 | 36.77 316 | 50.71 352 | 71.22 338 |
|
gg-mvs-nofinetune | | | 57.86 283 | 56.43 287 | 62.18 295 | 72.62 276 | 35.35 345 | 66.57 300 | 56.33 349 | 50.65 261 | 57.64 290 | 57.10 361 | 30.65 306 | 76.36 277 | 37.38 313 | 78.88 139 | 74.82 307 |
|
TESTMET0.1,1 | | | 55.28 299 | 54.90 296 | 56.42 322 | 66.56 337 | 43.67 284 | 65.46 309 | 56.27 350 | 39.18 351 | 53.83 321 | 67.44 347 | 24.21 348 | 55.46 361 | 48.04 241 | 73.11 205 | 70.13 345 |
|
PMMVS | | | 53.96 304 | 53.26 310 | 56.04 323 | 62.60 355 | 50.92 199 | 61.17 331 | 56.09 351 | 32.81 358 | 53.51 326 | 66.84 349 | 34.04 275 | 59.93 344 | 44.14 272 | 68.18 273 | 57.27 361 |
|
tpm | | | 57.34 286 | 58.16 274 | 54.86 328 | 71.80 289 | 34.77 347 | 67.47 299 | 56.04 352 | 48.20 284 | 60.10 265 | 76.92 281 | 37.17 248 | 53.41 364 | 40.76 298 | 65.01 295 | 76.40 290 |
|
PVSNet_0 | | 43.31 20 | 47.46 326 | 45.64 329 | 52.92 337 | 67.60 331 | 44.65 275 | 54.06 351 | 54.64 353 | 41.59 339 | 46.15 352 | 58.75 360 | 30.99 303 | 58.66 347 | 32.18 337 | 24.81 369 | 55.46 362 |
|
dp | | | 51.89 316 | 51.60 314 | 52.77 338 | 68.44 327 | 32.45 359 | 62.36 324 | 54.57 354 | 44.16 322 | 49.31 343 | 67.91 343 | 28.87 321 | 56.61 355 | 33.89 332 | 54.89 342 | 69.24 350 |
|
PatchT | | | 53.17 312 | 53.44 309 | 52.33 340 | 68.29 328 | 25.34 373 | 58.21 339 | 54.41 355 | 44.46 319 | 54.56 315 | 69.05 341 | 33.32 283 | 60.94 339 | 36.93 315 | 61.76 320 | 70.73 342 |
|
test0.0.03 1 | | | 53.32 311 | 53.59 308 | 52.50 339 | 62.81 354 | 29.45 366 | 59.51 335 | 54.11 356 | 50.08 267 | 54.40 317 | 74.31 311 | 32.62 295 | 55.92 359 | 30.50 350 | 63.95 303 | 72.15 335 |
|
PatchMatch-RL | | | 56.25 293 | 54.55 298 | 61.32 302 | 77.06 209 | 56.07 122 | 65.57 308 | 54.10 357 | 44.13 323 | 53.49 327 | 71.27 328 | 25.20 344 | 66.78 320 | 36.52 322 | 63.66 304 | 61.12 356 |
|
FPMVS | | | 42.18 331 | 41.11 333 | 45.39 347 | 58.03 368 | 41.01 306 | 49.50 357 | 53.81 358 | 30.07 361 | 33.71 366 | 64.03 354 | 11.69 367 | 52.08 366 | 14.01 371 | 55.11 341 | 43.09 367 |
|
test2506 | | | 65.33 223 | 64.61 217 | 67.50 244 | 79.46 142 | 34.19 352 | 74.43 221 | 51.92 359 | 58.72 135 | 66.75 178 | 88.05 73 | 25.99 340 | 80.92 211 | 51.94 213 | 84.25 75 | 87.39 47 |
|
EGC-MVSNET | | | 42.47 330 | 38.48 336 | 54.46 331 | 74.33 256 | 48.73 234 | 70.33 282 | 51.10 360 | 0.03 379 | 0.18 380 | 67.78 346 | 13.28 365 | 66.49 322 | 18.91 367 | 50.36 354 | 48.15 364 |
|
Patchmatch-RL test | | | 58.16 280 | 55.49 292 | 66.15 262 | 67.92 329 | 48.89 232 | 60.66 333 | 51.07 361 | 47.86 288 | 59.36 274 | 62.71 358 | 34.02 276 | 72.27 295 | 56.41 174 | 59.40 329 | 77.30 278 |
|
lessismore_v0 | | | | | 69.91 215 | 71.42 294 | 47.80 243 | | 50.90 362 | | 50.39 341 | 75.56 300 | 27.43 331 | 81.33 199 | 45.91 256 | 34.10 368 | 80.59 240 |
|
ADS-MVSNet | | | 48.48 323 | 47.77 325 | 50.63 343 | 66.02 342 | 29.92 365 | 50.90 355 | 50.87 363 | 36.90 352 | 50.74 337 | 66.18 351 | 26.38 336 | 52.47 365 | 27.17 358 | 54.76 343 | 69.50 347 |
|
EPMVS | | | 53.96 304 | 53.69 307 | 54.79 329 | 66.12 341 | 31.96 361 | 62.34 325 | 49.05 364 | 44.42 320 | 55.54 301 | 71.33 327 | 30.22 310 | 56.70 354 | 41.65 295 | 62.54 314 | 75.71 296 |
|
PMVS |  | 28.69 22 | 36.22 336 | 33.29 340 | 45.02 349 | 36.82 380 | 35.98 344 | 54.68 350 | 48.74 365 | 26.31 365 | 21.02 370 | 51.61 365 | 2.88 382 | 60.10 343 | 9.99 375 | 47.58 358 | 38.99 370 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
LF4IMVS | | | 42.95 329 | 42.26 331 | 45.04 348 | 48.30 373 | 32.50 358 | 54.80 349 | 48.49 366 | 28.03 363 | 40.51 363 | 70.16 335 | 9.24 373 | 43.89 370 | 31.63 344 | 49.18 357 | 58.72 358 |
|
Patchmatch-test | | | 49.08 322 | 48.28 324 | 51.50 342 | 64.40 348 | 30.85 364 | 45.68 362 | 48.46 367 | 35.60 355 | 46.10 353 | 72.10 322 | 34.47 272 | 46.37 368 | 27.08 360 | 60.65 326 | 77.27 279 |
|
door | | | | | | | | | 47.60 368 | | | | | | | | |
|
door-mid | | | | | | | | | 47.19 369 | | | | | | | | |
|
pmmvs3 | | | 44.92 328 | 41.95 332 | 53.86 332 | 52.58 371 | 43.55 285 | 62.11 326 | 46.90 370 | 26.05 366 | 40.63 362 | 60.19 359 | 11.08 371 | 57.91 350 | 31.83 343 | 46.15 359 | 60.11 357 |
|
MVS-HIRNet | | | 45.52 327 | 44.48 330 | 48.65 345 | 68.49 326 | 34.05 353 | 59.41 337 | 44.50 371 | 27.03 364 | 37.96 365 | 50.47 367 | 26.16 339 | 64.10 329 | 26.74 361 | 59.52 328 | 47.82 365 |
|
CHOSEN 280x420 | | | 47.83 324 | 46.36 328 | 52.24 341 | 67.37 332 | 49.78 218 | 38.91 368 | 43.11 372 | 35.00 356 | 43.27 359 | 63.30 357 | 28.95 319 | 49.19 367 | 36.53 321 | 60.80 325 | 57.76 360 |
|
test_method | | | 19.68 343 | 18.10 346 | 24.41 358 | 13.68 383 | 3.11 384 | 12.06 374 | 42.37 373 | 2.00 377 | 11.97 375 | 36.38 369 | 5.77 377 | 29.35 377 | 15.06 369 | 23.65 370 | 40.76 368 |
|
PM-MVS | | | 52.33 314 | 50.19 319 | 58.75 312 | 62.10 356 | 45.14 271 | 65.75 305 | 40.38 374 | 43.60 326 | 53.52 325 | 72.65 319 | 9.16 374 | 65.87 326 | 50.41 223 | 54.18 345 | 65.24 355 |
|
E-PMN | | | 23.77 340 | 22.73 344 | 26.90 356 | 42.02 376 | 20.67 376 | 42.66 366 | 35.70 375 | 17.43 371 | 10.28 377 | 25.05 373 | 6.42 376 | 42.39 372 | 10.28 374 | 14.71 373 | 17.63 372 |
|
EMVS | | | 22.97 341 | 21.84 345 | 26.36 357 | 40.20 377 | 19.53 378 | 41.95 367 | 34.64 376 | 17.09 372 | 9.73 378 | 22.83 374 | 7.29 375 | 42.22 373 | 9.18 376 | 13.66 374 | 17.32 373 |
|
new_pmnet | | | 34.13 338 | 34.29 339 | 33.64 353 | 52.63 370 | 18.23 379 | 44.43 365 | 33.90 377 | 22.81 369 | 30.89 367 | 53.18 362 | 10.48 372 | 35.72 375 | 20.77 366 | 39.51 365 | 46.98 366 |
|
DSMNet-mixed | | | 39.30 335 | 38.72 335 | 41.03 351 | 51.22 372 | 19.66 377 | 45.53 363 | 31.35 378 | 15.83 373 | 39.80 364 | 67.42 348 | 22.19 353 | 45.13 369 | 22.43 364 | 52.69 348 | 58.31 359 |
|
PMMVS2 | | | 27.40 339 | 25.91 342 | 31.87 355 | 39.46 379 | 6.57 382 | 31.17 369 | 28.52 379 | 23.96 367 | 20.45 371 | 48.94 368 | 4.20 379 | 37.94 374 | 16.51 368 | 19.97 371 | 51.09 363 |
|
MVE |  | 17.77 23 | 21.41 342 | 17.77 347 | 32.34 354 | 34.34 381 | 25.44 372 | 16.11 372 | 24.11 380 | 11.19 374 | 13.22 374 | 31.92 370 | 1.58 383 | 30.95 376 | 10.47 373 | 17.03 372 | 40.62 369 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
MTMP | | | | | | | | 86.03 19 | 17.08 381 | | | | | | | | |
|
tmp_tt | | | 9.43 346 | 11.14 349 | 4.30 361 | 2.38 384 | 4.40 383 | 13.62 373 | 16.08 382 | 0.39 378 | 15.89 373 | 13.06 375 | 15.80 363 | 5.54 380 | 12.63 372 | 10.46 377 | 2.95 375 |
|
DeepMVS_CX |  | | | | 12.03 360 | 17.97 382 | 10.91 380 | | 10.60 383 | 7.46 375 | 11.07 376 | 28.36 371 | 3.28 381 | 11.29 379 | 8.01 377 | 9.74 378 | 13.89 374 |
|
wuyk23d | | | 13.32 345 | 12.52 348 | 15.71 359 | 47.54 374 | 26.27 370 | 31.06 370 | 1.98 384 | 4.93 376 | 5.18 379 | 1.94 379 | 0.45 384 | 18.54 378 | 6.81 378 | 12.83 375 | 2.33 376 |
|
N_pmnet | | | 39.35 334 | 40.28 334 | 36.54 352 | 63.76 350 | 1.62 385 | 49.37 358 | 0.76 385 | 34.62 357 | 43.61 358 | 66.38 350 | 26.25 338 | 42.57 371 | 26.02 363 | 51.77 349 | 65.44 354 |
|
test_blank | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 387 | 0.00 375 | 0.00 386 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 386 | 0.00 381 | 0.00 381 | 0.00 379 | 0.00 379 |
|
uanet_test | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 387 | 0.00 375 | 0.00 386 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 386 | 0.00 381 | 0.00 381 | 0.00 379 | 0.00 379 |
|
DCPMVS | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 387 | 0.00 375 | 0.00 386 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 386 | 0.00 381 | 0.00 381 | 0.00 379 | 0.00 379 |
|
pcd_1.5k_mvsjas | | | 3.92 350 | 5.23 353 | 0.00 364 | 0.00 387 | 0.00 387 | 0.00 375 | 0.00 386 | 0.00 382 | 0.00 383 | 0.00 382 | 47.05 145 | 0.00 381 | 0.00 381 | 0.00 379 | 0.00 379 |
|
sosnet-low-res | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 387 | 0.00 375 | 0.00 386 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 386 | 0.00 381 | 0.00 381 | 0.00 379 | 0.00 379 |
|
sosnet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 387 | 0.00 375 | 0.00 386 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 386 | 0.00 381 | 0.00 381 | 0.00 379 | 0.00 379 |
|
uncertanet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 387 | 0.00 375 | 0.00 386 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 386 | 0.00 381 | 0.00 381 | 0.00 379 | 0.00 379 |
|
Regformer | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 387 | 0.00 375 | 0.00 386 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 386 | 0.00 381 | 0.00 381 | 0.00 379 | 0.00 379 |
|
testmvs | | | 4.52 349 | 6.03 352 | 0.01 363 | 0.01 385 | 0.00 387 | 53.86 352 | 0.00 386 | 0.01 380 | 0.04 381 | 0.27 380 | 0.00 386 | 0.00 381 | 0.04 379 | 0.00 379 | 0.03 378 |
|
test123 | | | 4.73 348 | 6.30 351 | 0.02 362 | 0.01 385 | 0.01 386 | 56.36 345 | 0.00 386 | 0.01 380 | 0.04 381 | 0.21 381 | 0.01 385 | 0.00 381 | 0.03 380 | 0.00 379 | 0.04 377 |
|
n2 | | | | | | | | | 0.00 386 | | | | | | | | |
|
nn | | | | | | | | | 0.00 386 | | | | | | | | |
|
ab-mvs-re | | | 6.49 347 | 8.65 350 | 0.00 364 | 0.00 387 | 0.00 387 | 0.00 375 | 0.00 386 | 0.00 382 | 0.00 383 | 77.89 271 | 0.00 386 | 0.00 381 | 0.00 381 | 0.00 379 | 0.00 379 |
|
uanet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 387 | 0.00 375 | 0.00 386 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 386 | 0.00 381 | 0.00 381 | 0.00 379 | 0.00 379 |
|
PC_three_1452 | | | | | | | | | | 55.09 208 | 84.46 4 | 89.84 49 | 66.68 5 | 89.41 17 | 74.24 37 | 91.38 2 | 88.42 8 |
|
eth-test2 | | | | | | 0.00 387 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 387 | | | | | | | | | | | |
|
OPU-MVS | | | | | 79.83 6 | 87.54 11 | 60.93 40 | 87.82 7 | | | | 89.89 47 | 67.01 1 | 90.33 11 | 73.16 49 | 91.15 4 | 88.23 13 |
|
test_0728_THIRD | | | | | | | | | | 65.04 20 | 83.82 8 | 92.00 3 | 64.69 10 | 90.75 8 | 79.48 4 | 90.63 10 | 88.09 19 |
|
GSMVS | | | | | | | | | | | | | | | | | 78.05 270 |
|
test_part2 | | | | | | 87.58 9 | 60.47 49 | | | | 83.42 12 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 34.74 268 | | | | 78.05 270 |
|
sam_mvs | | | | | | | | | | | | | 33.43 282 | | | | |
|
test_post1 | | | | | | | | 68.67 293 | | | | 3.64 377 | 32.39 299 | 69.49 308 | 44.17 270 | | |
|
test_post | | | | | | | | | | | | 3.55 378 | 33.90 277 | 66.52 321 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 64.03 354 | 34.50 270 | 74.27 287 | | | |
|
gm-plane-assit | | | | | | 71.40 295 | 41.72 302 | | | 48.85 277 | | 73.31 317 | | 82.48 181 | 48.90 235 | | |
|
test9_res | | | | | | | | | | | | | | | 75.28 31 | 88.31 37 | 83.81 171 |
|
agg_prior2 | | | | | | | | | | | | | | | 73.09 50 | 87.93 44 | 84.33 153 |
|
test_prior4 | | | | | | | 62.51 17 | 82.08 85 | | | | | | | | | |
|
test_prior2 | | | | | | | | 81.75 89 | | 60.37 101 | 75.01 45 | 89.06 59 | 56.22 40 | | 72.19 53 | 88.96 28 | |
|
旧先验2 | | | | | | | | 76.08 188 | | 45.32 311 | 76.55 35 | | | 65.56 327 | 58.75 165 | | |
|
新几何2 | | | | | | | | 76.12 186 | | | | | | | | | |
|
原ACMM2 | | | | | | | | 79.02 130 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 72.18 297 | 46.95 249 | | |
|
segment_acmp | | | | | | | | | | | | | 54.23 59 | | | | |
|
testdata1 | | | | | | | | 72.65 247 | | 60.50 96 | | | | | | | |
|
plane_prior7 | | | | | | 81.41 102 | 55.96 124 | | | | | | | | | | |
|
plane_prior6 | | | | | | 81.20 109 | 56.24 119 | | | | | | 45.26 169 | | | | |
|
plane_prior4 | | | | | | | | | | | | 86.10 109 | | | | | |
|
plane_prior3 | | | | | | | 56.09 121 | | | 63.92 39 | 69.27 130 | | | | | | |
|
plane_prior2 | | | | | | | | 84.22 41 | | 64.52 28 | | | | | | | |
|
plane_prior1 | | | | | | 81.27 107 | | | | | | | | | | | |
|
plane_prior | | | | | | | 56.31 115 | 83.58 58 | | 63.19 51 | | | | | | 80.48 115 | |
|
HQP5-MVS | | | | | | | 54.94 141 | | | | | | | | | | |
|
HQP-NCC | | | | | | 80.66 114 | | 82.31 79 | | 62.10 72 | 67.85 155 | | | | | | |
|
ACMP_Plane | | | | | | 80.66 114 | | 82.31 79 | | 62.10 72 | 67.85 155 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 67.04 95 | | |
|
HQP4-MVS | | | | | | | | | | | 67.85 155 | | | 86.93 68 | | | 84.32 154 |
|
HQP2-MVS | | | | | | | | | | | | | 45.46 163 | | | | |
|
NP-MVS | | | | | | 80.98 112 | 56.05 123 | | | | | 85.54 126 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 25.89 371 | 61.22 330 | | 40.10 347 | 51.10 334 | | 32.97 288 | | 38.49 307 | | 78.61 265 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 74.07 187 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 72.16 220 | |
|
Test By Simon | | | | | | | | | | | | | 48.33 126 | | | | |
|