PGM-MVS | | | 96.81 44 | 96.53 49 | 97.65 47 | 99.35 22 | 93.53 66 | 97.65 98 | 98.98 1 | 92.22 127 | 97.14 47 | 98.44 32 | 91.17 71 | 99.85 18 | 94.35 105 | 99.46 44 | 99.57 24 |
|
MVS_111021_HR | | | 96.68 51 | 96.58 47 | 96.99 76 | 98.46 81 | 92.31 101 | 96.20 238 | 98.90 2 | 94.30 53 | 95.86 97 | 97.74 97 | 92.33 40 | 99.38 116 | 96.04 52 | 99.42 49 | 99.28 71 |
|
ACMMP |  | | 96.27 64 | 95.93 66 | 97.28 62 | 99.24 30 | 92.62 91 | 98.25 38 | 98.81 3 | 92.99 99 | 94.56 127 | 98.39 39 | 88.96 96 | 99.85 18 | 94.57 104 | 97.63 130 | 99.36 64 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
MVS_111021_LR | | | 96.24 65 | 96.19 63 | 96.39 102 | 98.23 105 | 91.35 133 | 96.24 236 | 98.79 4 | 93.99 60 | 95.80 99 | 97.65 105 | 89.92 90 | 99.24 126 | 95.87 55 | 99.20 77 | 98.58 131 |
|
patch_mono-2 | | | 96.83 43 | 97.44 9 | 95.01 171 | 99.05 43 | 85.39 296 | 96.98 166 | 98.77 5 | 94.70 41 | 97.99 23 | 98.66 14 | 93.61 19 | 99.91 1 | 97.67 4 | 99.50 36 | 99.72 10 |
|
FC-MVSNet-test | | | 93.94 126 | 93.57 119 | 95.04 168 | 95.48 237 | 91.45 131 | 98.12 51 | 98.71 6 | 93.37 85 | 90.23 218 | 96.70 158 | 87.66 113 | 97.85 274 | 91.49 165 | 90.39 257 | 95.83 237 |
|
UniMVSNet (Re) | | | 93.31 148 | 92.55 161 | 95.61 144 | 95.39 240 | 93.34 73 | 97.39 126 | 98.71 6 | 93.14 95 | 90.10 228 | 94.83 254 | 87.71 112 | 98.03 248 | 91.67 163 | 83.99 324 | 95.46 262 |
|
FIs | | | 94.09 120 | 93.70 115 | 95.27 160 | 95.70 229 | 92.03 111 | 98.10 52 | 98.68 8 | 93.36 87 | 90.39 215 | 96.70 158 | 87.63 115 | 97.94 264 | 92.25 145 | 90.50 256 | 95.84 236 |
|
WR-MVS_H | | | 92.00 203 | 91.35 199 | 93.95 229 | 95.09 264 | 89.47 198 | 98.04 57 | 98.68 8 | 91.46 150 | 88.34 275 | 94.68 261 | 85.86 141 | 97.56 299 | 85.77 272 | 84.24 321 | 94.82 301 |
|
VPA-MVSNet | | | 93.24 150 | 92.48 167 | 95.51 150 | 95.70 229 | 92.39 97 | 97.86 72 | 98.66 10 | 92.30 126 | 92.09 182 | 95.37 234 | 80.49 231 | 98.40 203 | 93.95 113 | 85.86 295 | 95.75 247 |
|
UniMVSNet_NR-MVSNet | | | 93.37 146 | 92.67 155 | 95.47 156 | 95.34 246 | 92.83 84 | 97.17 149 | 98.58 11 | 92.98 104 | 90.13 224 | 95.80 211 | 88.37 106 | 97.85 274 | 91.71 159 | 83.93 325 | 95.73 250 |
|
CSCG | | | 96.05 69 | 95.91 67 | 96.46 96 | 99.24 30 | 90.47 168 | 98.30 30 | 98.57 12 | 89.01 218 | 93.97 139 | 97.57 114 | 92.62 33 | 99.76 34 | 94.66 101 | 99.27 68 | 99.15 81 |
|
MSLP-MVS++ | | | 96.94 33 | 97.06 15 | 96.59 86 | 98.72 63 | 91.86 116 | 97.67 95 | 98.49 13 | 94.66 43 | 97.24 42 | 98.41 38 | 92.31 42 | 98.94 158 | 96.61 29 | 99.46 44 | 98.96 101 |
|
HyFIR lowres test | | | 93.66 136 | 92.92 143 | 95.87 129 | 98.24 101 | 89.88 184 | 94.58 291 | 98.49 13 | 85.06 307 | 93.78 142 | 95.78 215 | 82.86 188 | 98.67 183 | 91.77 157 | 95.71 174 | 99.07 91 |
|
CHOSEN 1792x2688 | | | 94.15 115 | 93.51 124 | 96.06 121 | 98.27 97 | 89.38 203 | 95.18 283 | 98.48 15 | 85.60 298 | 93.76 143 | 97.11 137 | 83.15 178 | 99.61 66 | 91.33 168 | 98.72 101 | 99.19 77 |
|
PHI-MVS | | | 96.77 46 | 96.46 54 | 97.71 44 | 98.40 85 | 94.07 51 | 98.21 45 | 98.45 16 | 89.86 195 | 97.11 50 | 98.01 77 | 92.52 37 | 99.69 48 | 96.03 53 | 99.53 28 | 99.36 64 |
|
PVSNet_BlendedMVS | | | 94.06 121 | 93.92 110 | 94.47 202 | 98.27 97 | 89.46 200 | 96.73 187 | 98.36 17 | 90.17 189 | 94.36 130 | 95.24 239 | 88.02 107 | 99.58 75 | 93.44 124 | 90.72 253 | 94.36 320 |
|
PVSNet_Blended | | | 94.87 102 | 94.56 98 | 95.81 131 | 98.27 97 | 89.46 200 | 95.47 269 | 98.36 17 | 88.84 226 | 94.36 130 | 96.09 199 | 88.02 107 | 99.58 75 | 93.44 124 | 98.18 117 | 98.40 151 |
|
3Dnovator | | 91.36 5 | 95.19 92 | 94.44 105 | 97.44 55 | 96.56 190 | 93.36 72 | 98.65 11 | 98.36 17 | 94.12 56 | 89.25 258 | 98.06 72 | 82.20 204 | 99.77 33 | 93.41 126 | 99.32 60 | 99.18 78 |
|
FOURS1 | | | | | | 99.55 1 | 93.34 73 | 99.29 1 | 98.35 20 | 94.98 27 | 98.49 15 | | | | | | |
|
DPE-MVS |  | | 97.86 4 | 97.65 5 | 98.47 5 | 99.17 34 | 95.78 7 | 97.21 146 | 98.35 20 | 95.16 18 | 98.71 12 | 98.80 11 | 95.05 10 | 99.89 4 | 96.70 27 | 99.73 1 | 99.73 9 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
HFP-MVS | | | 97.14 20 | 96.92 25 | 97.83 29 | 99.42 7 | 94.12 48 | 98.52 16 | 98.32 22 | 93.21 90 | 97.18 44 | 98.29 54 | 92.08 44 | 99.83 26 | 95.63 68 | 99.59 17 | 99.54 34 |
|
#test# | | | 97.02 27 | 96.75 38 | 97.83 29 | 99.42 7 | 94.12 48 | 98.15 50 | 98.32 22 | 92.57 119 | 97.18 44 | 98.29 54 | 92.08 44 | 99.83 26 | 95.12 84 | 99.59 17 | 99.54 34 |
|
ACMMPR | | | 97.07 23 | 96.84 30 | 97.79 35 | 99.44 6 | 93.88 55 | 98.52 16 | 98.31 24 | 93.21 90 | 97.15 46 | 98.33 48 | 91.35 65 | 99.86 9 | 95.63 68 | 99.59 17 | 99.62 16 |
|
APDe-MVS | | | 97.82 5 | 97.73 4 | 98.08 18 | 99.15 35 | 94.82 29 | 98.81 7 | 98.30 25 | 94.76 39 | 98.30 17 | 98.90 3 | 93.77 17 | 99.68 51 | 97.93 1 | 99.69 3 | 99.75 5 |
|
test0726 | | | | | | 99.45 3 | 95.36 13 | 98.31 29 | 98.29 26 | 94.92 28 | 98.99 4 | 98.92 2 | 95.08 8 | | | | |
|
MSP-MVS | | | 97.59 8 | 97.54 6 | 97.73 41 | 99.40 12 | 93.77 61 | 98.53 15 | 98.29 26 | 95.55 6 | 98.56 14 | 97.81 92 | 93.90 15 | 99.65 57 | 96.62 28 | 99.21 76 | 99.77 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DVP-MVS++ | | | 98.06 1 | 97.99 1 | 98.28 9 | 98.67 66 | 95.39 11 | 99.29 1 | 98.28 28 | 94.78 37 | 98.93 6 | 98.87 6 | 96.04 2 | 99.86 9 | 97.45 9 | 99.58 22 | 99.59 20 |
|
test_0728_SECOND | | | | | 98.51 4 | 99.45 3 | 95.93 5 | 98.21 45 | 98.28 28 | | | | | 99.86 9 | 97.52 5 | 99.67 6 | 99.75 5 |
|
CP-MVS | | | 97.02 27 | 96.81 33 | 97.64 49 | 99.33 23 | 93.54 65 | 98.80 8 | 98.28 28 | 92.99 99 | 96.45 77 | 98.30 53 | 91.90 50 | 99.85 18 | 95.61 70 | 99.68 4 | 99.54 34 |
|
SED-MVS | | | 98.05 2 | 97.99 1 | 98.24 10 | 99.42 7 | 95.30 18 | 98.25 38 | 98.27 31 | 95.13 19 | 99.19 1 | 98.89 4 | 95.54 5 | 99.85 18 | 97.52 5 | 99.66 10 | 99.56 27 |
|
test_241102_TWO | | | | | | | | | 98.27 31 | 95.13 19 | 98.93 6 | 98.89 4 | 94.99 11 | 99.85 18 | 97.52 5 | 99.65 12 | 99.74 7 |
|
test_241102_ONE | | | | | | 99.42 7 | 95.30 18 | | 98.27 31 | 95.09 23 | 99.19 1 | 98.81 10 | 95.54 5 | 99.65 57 | | | |
|
SF-MVS | | | 97.39 11 | 97.13 13 | 98.17 14 | 99.02 46 | 95.28 20 | 98.23 42 | 98.27 31 | 92.37 125 | 98.27 18 | 98.65 16 | 93.33 21 | 99.72 39 | 96.49 33 | 99.52 29 | 99.51 39 |
|
SteuartSystems-ACMMP | | | 97.62 7 | 97.53 7 | 97.87 27 | 98.39 87 | 94.25 42 | 98.43 24 | 98.27 31 | 95.34 11 | 98.11 20 | 98.56 20 | 94.53 12 | 99.71 42 | 96.57 31 | 99.62 15 | 99.65 12 |
Skip Steuart: Steuart Systems R&D Blog. |
test_one_0601 | | | | | | 99.32 24 | 95.20 21 | | 98.25 36 | 95.13 19 | 98.48 16 | 98.87 6 | 95.16 7 | | | | |
|
PVSNet_Blended_VisFu | | | 95.27 87 | 94.91 90 | 96.38 103 | 98.20 106 | 90.86 155 | 97.27 137 | 98.25 36 | 90.21 188 | 94.18 134 | 97.27 127 | 87.48 119 | 99.73 36 | 93.53 121 | 97.77 128 | 98.55 132 |
|
ETH3D-3000-0.1 | | | 97.07 23 | 96.71 41 | 98.14 16 | 98.90 55 | 95.33 17 | 97.68 94 | 98.24 38 | 91.57 146 | 97.90 26 | 98.37 40 | 92.61 34 | 99.66 56 | 95.59 73 | 99.51 33 | 99.43 55 |
|
region2R | | | 97.07 23 | 96.84 30 | 97.77 38 | 99.46 2 | 93.79 58 | 98.52 16 | 98.24 38 | 93.19 93 | 97.14 47 | 98.34 45 | 91.59 60 | 99.87 8 | 95.46 76 | 99.59 17 | 99.64 13 |
|
PS-CasMVS | | | 91.55 219 | 90.84 220 | 93.69 244 | 94.96 268 | 88.28 235 | 97.84 76 | 98.24 38 | 91.46 150 | 88.04 285 | 95.80 211 | 79.67 248 | 97.48 307 | 87.02 252 | 84.54 318 | 95.31 273 |
|
DU-MVS | | | 92.90 170 | 92.04 175 | 95.49 153 | 94.95 269 | 92.83 84 | 97.16 150 | 98.24 38 | 93.02 98 | 90.13 224 | 95.71 219 | 83.47 172 | 97.85 274 | 91.71 159 | 83.93 325 | 95.78 241 |
|
9.14 | | | | 96.75 38 | | 98.93 51 | | 97.73 86 | 98.23 42 | 91.28 158 | 97.88 27 | 98.44 32 | 93.00 25 | 99.65 57 | 95.76 61 | 99.47 42 | |
|
testtj | | | 96.93 34 | 96.56 48 | 98.05 20 | 99.10 36 | 94.66 31 | 97.78 81 | 98.22 43 | 92.74 114 | 97.59 29 | 98.20 65 | 91.96 49 | 99.86 9 | 94.21 108 | 99.25 72 | 99.63 14 |
|
ETH3 D test6400 | | | 96.16 67 | 95.52 73 | 98.07 19 | 98.90 55 | 95.06 26 | 97.03 156 | 98.21 44 | 88.16 248 | 96.64 65 | 97.70 99 | 91.18 70 | 99.67 53 | 92.44 142 | 99.47 42 | 99.48 47 |
|
D2MVS | | | 91.30 234 | 90.95 214 | 92.35 287 | 94.71 284 | 85.52 292 | 96.18 239 | 98.21 44 | 88.89 224 | 86.60 310 | 93.82 301 | 79.92 244 | 97.95 263 | 89.29 204 | 90.95 249 | 93.56 334 |
|
XVS | | | 97.18 17 | 96.96 23 | 97.81 33 | 99.38 15 | 94.03 53 | 98.59 12 | 98.20 46 | 94.85 30 | 96.59 69 | 98.29 54 | 91.70 56 | 99.80 31 | 95.66 63 | 99.40 51 | 99.62 16 |
|
X-MVStestdata | | | 91.71 210 | 89.67 267 | 97.81 33 | 99.38 15 | 94.03 53 | 98.59 12 | 98.20 46 | 94.85 30 | 96.59 69 | 32.69 376 | 91.70 56 | 99.80 31 | 95.66 63 | 99.40 51 | 99.62 16 |
|
ACMMP_NAP | | | 97.20 16 | 96.86 27 | 98.23 11 | 99.09 38 | 95.16 24 | 97.60 105 | 98.19 48 | 92.82 110 | 97.93 25 | 98.74 13 | 91.60 59 | 99.86 9 | 96.26 38 | 99.52 29 | 99.67 11 |
|
CP-MVSNet | | | 91.89 206 | 91.24 206 | 93.82 237 | 95.05 265 | 88.57 228 | 97.82 77 | 98.19 48 | 91.70 143 | 88.21 281 | 95.76 216 | 81.96 208 | 97.52 305 | 87.86 227 | 84.65 313 | 95.37 270 |
|
ZNCC-MVS | | | 96.96 31 | 96.67 43 | 97.85 28 | 99.37 17 | 94.12 48 | 98.49 20 | 98.18 50 | 92.64 118 | 96.39 79 | 98.18 66 | 91.61 58 | 99.88 5 | 95.59 73 | 99.55 25 | 99.57 24 |
|
SMA-MVS |  | | 97.35 13 | 97.03 19 | 98.30 8 | 99.06 42 | 95.42 10 | 97.94 66 | 98.18 50 | 90.57 183 | 98.85 9 | 98.94 1 | 93.33 21 | 99.83 26 | 96.72 26 | 99.68 4 | 99.63 14 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
PEN-MVS | | | 91.20 238 | 90.44 234 | 93.48 253 | 94.49 293 | 87.91 249 | 97.76 82 | 98.18 50 | 91.29 155 | 87.78 290 | 95.74 218 | 80.35 235 | 97.33 318 | 85.46 276 | 82.96 335 | 95.19 282 |
|
DELS-MVS | | | 96.61 52 | 96.38 57 | 97.30 60 | 97.79 130 | 93.19 76 | 95.96 250 | 98.18 50 | 95.23 14 | 95.87 96 | 97.65 105 | 91.45 61 | 99.70 47 | 95.87 55 | 99.44 48 | 99.00 99 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
tfpnnormal | | | 89.70 280 | 88.40 285 | 93.60 247 | 95.15 260 | 90.10 174 | 97.56 109 | 98.16 54 | 87.28 274 | 86.16 314 | 94.63 264 | 77.57 283 | 98.05 244 | 74.48 348 | 84.59 316 | 92.65 346 |
|
VNet | | | 95.89 74 | 95.45 76 | 97.21 68 | 98.07 116 | 92.94 83 | 97.50 114 | 98.15 55 | 93.87 63 | 97.52 30 | 97.61 111 | 85.29 147 | 99.53 93 | 95.81 60 | 95.27 180 | 99.16 79 |
|
DeepPCF-MVS | | 93.97 1 | 96.61 52 | 97.09 14 | 95.15 164 | 98.09 114 | 86.63 276 | 96.00 248 | 98.15 55 | 95.43 7 | 97.95 24 | 98.56 20 | 93.40 20 | 99.36 117 | 96.77 25 | 99.48 41 | 99.45 51 |
|
SD-MVS | | | 97.41 10 | 97.53 7 | 97.06 74 | 98.57 79 | 94.46 34 | 97.92 68 | 98.14 57 | 94.82 34 | 99.01 3 | 98.55 22 | 94.18 14 | 97.41 314 | 96.94 17 | 99.64 13 | 99.32 66 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
GST-MVS | | | 96.85 41 | 96.52 50 | 97.82 32 | 99.36 20 | 94.14 47 | 98.29 31 | 98.13 58 | 92.72 115 | 96.70 60 | 98.06 72 | 91.35 65 | 99.86 9 | 94.83 94 | 99.28 66 | 99.47 50 |
|
UA-Net | | | 95.95 73 | 95.53 72 | 97.20 69 | 97.67 135 | 92.98 82 | 97.65 98 | 98.13 58 | 94.81 35 | 96.61 67 | 98.35 42 | 88.87 97 | 99.51 98 | 90.36 182 | 97.35 140 | 99.11 87 |
|
QAPM | | | 93.45 144 | 92.27 171 | 96.98 77 | 96.77 179 | 92.62 91 | 98.39 26 | 98.12 60 | 84.50 315 | 88.27 279 | 97.77 95 | 82.39 201 | 99.81 30 | 85.40 277 | 98.81 98 | 98.51 137 |
|
Vis-MVSNet |  | | 95.23 89 | 94.81 91 | 96.51 91 | 97.18 153 | 91.58 125 | 98.26 36 | 98.12 60 | 94.38 51 | 94.90 120 | 98.15 67 | 82.28 202 | 98.92 159 | 91.45 167 | 98.58 106 | 99.01 96 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
OpenMVS |  | 89.19 12 | 92.86 172 | 91.68 189 | 96.40 100 | 95.34 246 | 92.73 87 | 98.27 34 | 98.12 60 | 84.86 310 | 85.78 316 | 97.75 96 | 78.89 264 | 99.74 35 | 87.50 243 | 98.65 103 | 96.73 211 |
|
TranMVSNet+NR-MVSNet | | | 92.50 180 | 91.63 190 | 95.14 165 | 94.76 280 | 92.07 109 | 97.53 112 | 98.11 63 | 92.90 108 | 89.56 246 | 96.12 195 | 83.16 177 | 97.60 297 | 89.30 203 | 83.20 334 | 95.75 247 |
|
CPTT-MVS | | | 95.57 81 | 95.19 84 | 96.70 80 | 99.27 28 | 91.48 128 | 98.33 28 | 98.11 63 | 87.79 259 | 95.17 118 | 98.03 74 | 87.09 125 | 99.61 66 | 93.51 122 | 99.42 49 | 99.02 92 |
|
Regformer-2 | | | 97.16 19 | 96.99 21 | 97.67 46 | 98.32 93 | 93.84 56 | 96.83 179 | 98.10 65 | 95.24 13 | 97.49 31 | 98.25 59 | 92.57 35 | 99.61 66 | 96.80 22 | 99.29 64 | 99.56 27 |
|
APD-MVS |  | | 96.95 32 | 96.60 45 | 98.01 22 | 99.03 45 | 94.93 28 | 97.72 89 | 98.10 65 | 91.50 148 | 98.01 22 | 98.32 50 | 92.33 40 | 99.58 75 | 94.85 92 | 99.51 33 | 99.53 38 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
mPP-MVS | | | 96.86 39 | 96.60 45 | 97.64 49 | 99.40 12 | 93.44 68 | 98.50 19 | 98.09 67 | 93.27 89 | 95.95 95 | 98.33 48 | 91.04 73 | 99.88 5 | 95.20 81 | 99.57 24 | 99.60 19 |
|
ZD-MVS | | | | | | 99.05 43 | 94.59 32 | | 98.08 68 | 89.22 213 | 97.03 54 | 98.10 68 | 92.52 37 | 99.65 57 | 94.58 103 | 99.31 62 | |
|
zzz-MVS | | | 97.07 23 | 96.77 37 | 97.97 25 | 99.37 17 | 94.42 36 | 97.15 152 | 98.08 68 | 95.07 24 | 96.11 86 | 98.59 18 | 90.88 77 | 99.90 2 | 96.18 47 | 99.50 36 | 99.58 22 |
|
MTGPA |  | | | | | | | | 98.08 68 | | | | | | | | |
|
MTAPA | | | 97.08 22 | 96.78 36 | 97.97 25 | 99.37 17 | 94.42 36 | 97.24 139 | 98.08 68 | 95.07 24 | 96.11 86 | 98.59 18 | 90.88 77 | 99.90 2 | 96.18 47 | 99.50 36 | 99.58 22 |
|
CNVR-MVS | | | 97.68 6 | 97.44 9 | 98.37 7 | 98.90 55 | 95.86 6 | 97.27 137 | 98.08 68 | 95.81 4 | 97.87 28 | 98.31 51 | 94.26 13 | 99.68 51 | 97.02 16 | 99.49 40 | 99.57 24 |
|
DP-MVS Recon | | | 95.68 77 | 95.12 87 | 97.37 57 | 99.19 33 | 94.19 44 | 97.03 156 | 98.08 68 | 88.35 242 | 95.09 119 | 97.65 105 | 89.97 89 | 99.48 103 | 92.08 152 | 98.59 105 | 98.44 148 |
|
SR-MVS | | | 97.01 29 | 96.86 27 | 97.47 54 | 99.09 38 | 93.27 75 | 97.98 60 | 98.07 74 | 93.75 68 | 97.45 33 | 98.48 29 | 91.43 62 | 99.59 72 | 96.22 41 | 99.27 68 | 99.54 34 |
|
MCST-MVS | | | 97.18 17 | 96.84 30 | 98.20 13 | 99.30 26 | 95.35 15 | 97.12 154 | 98.07 74 | 93.54 77 | 96.08 88 | 97.69 100 | 93.86 16 | 99.71 42 | 96.50 32 | 99.39 53 | 99.55 31 |
|
NR-MVSNet | | | 92.34 188 | 91.27 205 | 95.53 149 | 94.95 269 | 93.05 79 | 97.39 126 | 98.07 74 | 92.65 117 | 84.46 327 | 95.71 219 | 85.00 151 | 97.77 283 | 89.71 192 | 83.52 331 | 95.78 241 |
|
MP-MVS-pluss | | | 96.70 48 | 96.27 59 | 97.98 24 | 99.23 32 | 94.71 30 | 96.96 168 | 98.06 77 | 90.67 174 | 95.55 110 | 98.78 12 | 91.07 72 | 99.86 9 | 96.58 30 | 99.55 25 | 99.38 62 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
APD-MVS_3200maxsize | | | 96.81 44 | 96.71 41 | 97.12 72 | 99.01 49 | 92.31 101 | 97.98 60 | 98.06 77 | 93.11 96 | 97.44 34 | 98.55 22 | 90.93 75 | 99.55 88 | 96.06 49 | 99.25 72 | 99.51 39 |
|
MP-MVS |  | | 96.77 46 | 96.45 55 | 97.72 42 | 99.39 14 | 93.80 57 | 98.41 25 | 98.06 77 | 93.37 85 | 95.54 112 | 98.34 45 | 90.59 82 | 99.88 5 | 94.83 94 | 99.54 27 | 99.49 45 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
HPM-MVS_fast | | | 96.51 55 | 96.27 59 | 97.22 67 | 99.32 24 | 92.74 86 | 98.74 9 | 98.06 77 | 90.57 183 | 96.77 57 | 98.35 42 | 90.21 86 | 99.53 93 | 94.80 97 | 99.63 14 | 99.38 62 |
|
HPM-MVS |  | | 96.69 49 | 96.45 55 | 97.40 56 | 99.36 20 | 93.11 78 | 98.87 6 | 98.06 77 | 91.17 162 | 96.40 78 | 97.99 78 | 90.99 74 | 99.58 75 | 95.61 70 | 99.61 16 | 99.49 45 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
sss | | | 94.51 109 | 93.80 113 | 96.64 81 | 97.07 160 | 91.97 114 | 96.32 227 | 98.06 77 | 88.94 222 | 94.50 128 | 96.78 153 | 84.60 155 | 99.27 124 | 91.90 153 | 96.02 165 | 98.68 128 |
|
DeepC-MVS | | 93.07 3 | 96.06 68 | 95.66 71 | 97.29 61 | 97.96 118 | 93.17 77 | 97.30 135 | 98.06 77 | 93.92 61 | 93.38 152 | 98.66 14 | 86.83 127 | 99.73 36 | 95.60 72 | 99.22 75 | 98.96 101 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ETH3D cwj APD-0.16 | | | 96.56 54 | 96.06 64 | 98.05 20 | 98.26 100 | 95.19 22 | 96.99 164 | 98.05 84 | 89.85 197 | 97.26 41 | 98.22 61 | 91.80 52 | 99.69 48 | 94.84 93 | 99.28 66 | 99.27 73 |
|
test1172 | | | 96.93 34 | 96.86 27 | 97.15 70 | 99.10 36 | 92.34 98 | 97.96 65 | 98.04 85 | 93.79 67 | 97.35 39 | 98.53 24 | 91.40 63 | 99.56 85 | 96.30 37 | 99.30 63 | 99.55 31 |
|
NCCC | | | 97.30 15 | 97.03 19 | 98.11 17 | 98.77 61 | 95.06 26 | 97.34 130 | 98.04 85 | 95.96 2 | 97.09 51 | 97.88 84 | 93.18 24 | 99.71 42 | 95.84 59 | 99.17 79 | 99.56 27 |
|
DeepC-MVS_fast | | 93.89 2 | 96.93 34 | 96.64 44 | 97.78 36 | 98.64 74 | 94.30 38 | 97.41 122 | 98.04 85 | 94.81 35 | 96.59 69 | 98.37 40 | 91.24 67 | 99.64 65 | 95.16 82 | 99.52 29 | 99.42 58 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
SR-MVS-dyc-post | | | 96.88 38 | 96.80 34 | 97.11 73 | 99.02 46 | 92.34 98 | 97.98 60 | 98.03 88 | 93.52 79 | 97.43 36 | 98.51 26 | 91.40 63 | 99.56 85 | 96.05 50 | 99.26 70 | 99.43 55 |
|
RE-MVS-def | | | | 96.72 40 | | 99.02 46 | 92.34 98 | 97.98 60 | 98.03 88 | 93.52 79 | 97.43 36 | 98.51 26 | 90.71 80 | | 96.05 50 | 99.26 70 | 99.43 55 |
|
abl_6 | | | 96.40 59 | 96.21 61 | 96.98 77 | 98.89 58 | 92.20 106 | 97.89 70 | 98.03 88 | 93.34 88 | 97.22 43 | 98.42 35 | 87.93 110 | 99.72 39 | 95.10 85 | 99.07 89 | 99.02 92 |
|
RPMNet | | | 88.98 285 | 87.05 300 | 94.77 190 | 94.45 296 | 87.19 262 | 90.23 355 | 98.03 88 | 77.87 359 | 92.40 169 | 87.55 361 | 80.17 239 | 99.51 98 | 68.84 364 | 93.95 201 | 97.60 189 |
|
save fliter | | | | | | 98.91 53 | 94.28 39 | 97.02 159 | 98.02 92 | 95.35 9 | | | | | | | |
|
TEST9 | | | | | | 98.70 64 | 94.19 44 | 96.41 215 | 98.02 92 | 88.17 246 | 96.03 89 | 97.56 116 | 92.74 29 | 99.59 72 | | | |
|
train_agg | | | 96.30 63 | 95.83 69 | 97.72 42 | 98.70 64 | 94.19 44 | 96.41 215 | 98.02 92 | 88.58 235 | 96.03 89 | 97.56 116 | 92.73 30 | 99.59 72 | 95.04 86 | 99.37 58 | 99.39 60 |
|
test_8 | | | | | | 98.67 66 | 94.06 52 | 96.37 222 | 98.01 95 | 88.58 235 | 95.98 94 | 97.55 118 | 92.73 30 | 99.58 75 | | | |
|
Regformer-4 | | | 96.97 30 | 96.87 26 | 97.25 64 | 98.34 90 | 92.66 89 | 96.96 168 | 98.01 95 | 95.12 22 | 97.14 47 | 98.42 35 | 91.82 51 | 99.61 66 | 96.90 19 | 99.13 83 | 99.50 43 |
|
agg_prior1 | | | 96.22 66 | 95.77 70 | 97.56 51 | 98.67 66 | 93.79 58 | 96.28 231 | 98.00 97 | 88.76 232 | 95.68 104 | 97.55 118 | 92.70 32 | 99.57 83 | 95.01 87 | 99.32 60 | 99.32 66 |
|
agg_prior | | | | | | 98.67 66 | 93.79 58 | | 98.00 97 | | 95.68 104 | | | 99.57 83 | | | |
|
test_prior3 | | | 96.46 57 | 96.20 62 | 97.23 65 | 98.67 66 | 92.99 80 | 96.35 223 | 98.00 97 | 92.80 111 | 96.03 89 | 97.59 112 | 92.01 46 | 99.41 111 | 95.01 87 | 99.38 54 | 99.29 68 |
|
test_prior | | | | | 97.23 65 | 98.67 66 | 92.99 80 | | 98.00 97 | | | | | 99.41 111 | | | 99.29 68 |
|
Regformer-1 | | | 97.10 21 | 96.96 23 | 97.54 52 | 98.32 93 | 93.48 67 | 96.83 179 | 97.99 101 | 95.20 15 | 97.46 32 | 98.25 59 | 92.48 39 | 99.58 75 | 96.79 24 | 99.29 64 | 99.55 31 |
|
WR-MVS | | | 92.34 188 | 91.53 194 | 94.77 190 | 95.13 262 | 90.83 157 | 96.40 218 | 97.98 102 | 91.88 140 | 89.29 255 | 95.54 229 | 82.50 197 | 97.80 279 | 89.79 191 | 85.27 304 | 95.69 252 |
|
HPM-MVS++ |  | | 97.34 14 | 96.97 22 | 98.47 5 | 99.08 40 | 96.16 4 | 97.55 111 | 97.97 103 | 95.59 5 | 96.61 67 | 97.89 82 | 92.57 35 | 99.84 23 | 95.95 54 | 99.51 33 | 99.40 59 |
|
CANet | | | 96.39 60 | 96.02 65 | 97.50 53 | 97.62 140 | 93.38 70 | 97.02 159 | 97.96 104 | 95.42 8 | 94.86 121 | 97.81 92 | 87.38 121 | 99.82 29 | 96.88 20 | 99.20 77 | 99.29 68 |
|
114514_t | | | 93.95 125 | 93.06 139 | 96.63 83 | 99.07 41 | 91.61 122 | 97.46 121 | 97.96 104 | 77.99 357 | 93.00 160 | 97.57 114 | 86.14 139 | 99.33 118 | 89.22 207 | 99.15 81 | 98.94 104 |
|
IU-MVS | | | | | | 99.42 7 | 95.39 11 | | 97.94 106 | 90.40 187 | 98.94 5 | | | | 97.41 12 | 99.66 10 | 99.74 7 |
|
MSC_two_6792asdad | | | | | 98.86 1 | 98.67 66 | 96.94 1 | | 97.93 107 | | | | | 99.86 9 | 97.68 2 | 99.67 6 | 99.77 1 |
|
No_MVS | | | | | 98.86 1 | 98.67 66 | 96.94 1 | | 97.93 107 | | | | | 99.86 9 | 97.68 2 | 99.67 6 | 99.77 1 |
|
Anonymous20231211 | | | 90.63 260 | 89.42 271 | 94.27 213 | 98.24 101 | 89.19 214 | 98.05 56 | 97.89 109 | 79.95 349 | 88.25 280 | 94.96 246 | 72.56 316 | 98.13 226 | 89.70 193 | 85.14 306 | 95.49 257 |
|
原ACMM1 | | | | | 96.38 103 | 98.59 76 | 91.09 148 | | 97.89 109 | 87.41 270 | 95.22 117 | 97.68 101 | 90.25 84 | 99.54 90 | 87.95 226 | 99.12 86 | 98.49 140 |
|
CDPH-MVS | | | 95.97 72 | 95.38 79 | 97.77 38 | 98.93 51 | 94.44 35 | 96.35 223 | 97.88 111 | 86.98 278 | 96.65 64 | 97.89 82 | 91.99 48 | 99.47 104 | 92.26 143 | 99.46 44 | 99.39 60 |
|
test11 | | | | | | | | | 97.88 111 | | | | | | | | |
|
EIA-MVS | | | 95.53 82 | 95.47 75 | 95.71 139 | 97.06 163 | 89.63 189 | 97.82 77 | 97.87 113 | 93.57 73 | 93.92 140 | 95.04 245 | 90.61 81 | 98.95 157 | 94.62 102 | 98.68 102 | 98.54 133 |
|
CS-MVS | | | 96.86 39 | 97.06 15 | 96.26 112 | 98.16 111 | 91.16 146 | 99.09 3 | 97.87 113 | 95.30 12 | 97.06 53 | 98.03 74 | 91.72 53 | 98.71 180 | 97.10 14 | 99.17 79 | 98.90 109 |
|
无先验 | | | | | | | | 95.79 257 | 97.87 113 | 83.87 323 | | | | 99.65 57 | 87.68 236 | | 98.89 112 |
|
3Dnovator+ | | 91.43 4 | 95.40 83 | 94.48 103 | 98.16 15 | 96.90 172 | 95.34 16 | 98.48 21 | 97.87 113 | 94.65 44 | 88.53 273 | 98.02 76 | 83.69 168 | 99.71 42 | 93.18 130 | 98.96 94 | 99.44 53 |
|
VPNet | | | 92.23 196 | 91.31 202 | 94.99 172 | 95.56 233 | 90.96 151 | 97.22 145 | 97.86 117 | 92.96 106 | 90.96 206 | 96.62 173 | 75.06 302 | 98.20 218 | 91.90 153 | 83.65 330 | 95.80 240 |
|
DVP-MVS |  | | 97.91 3 | 97.81 3 | 98.22 12 | 99.45 3 | 95.36 13 | 98.21 45 | 97.85 118 | 94.92 28 | 98.73 10 | 98.87 6 | 95.08 8 | 99.84 23 | 97.52 5 | 99.67 6 | 99.48 47 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
TSAR-MVS + MP. | | | 97.42 9 | 97.33 11 | 97.69 45 | 99.25 29 | 94.24 43 | 98.07 55 | 97.85 118 | 93.72 69 | 98.57 13 | 98.35 42 | 93.69 18 | 99.40 113 | 97.06 15 | 99.46 44 | 99.44 53 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
CS-MVS-test | | | 96.89 37 | 97.04 18 | 96.45 97 | 98.29 96 | 91.66 121 | 99.03 4 | 97.85 118 | 95.84 3 | 96.90 56 | 97.97 80 | 91.24 67 | 98.75 174 | 96.92 18 | 99.33 59 | 98.94 104 |
|
AdaColmap |  | | 94.34 111 | 93.68 117 | 96.31 107 | 98.59 76 | 91.68 120 | 96.59 206 | 97.81 121 | 89.87 194 | 92.15 178 | 97.06 140 | 83.62 171 | 99.54 90 | 89.34 202 | 98.07 120 | 97.70 182 |
|
ETV-MVS | | | 96.02 70 | 95.89 68 | 96.40 100 | 97.16 154 | 92.44 96 | 97.47 119 | 97.77 122 | 94.55 45 | 96.48 74 | 94.51 267 | 91.23 69 | 98.92 159 | 95.65 66 | 98.19 116 | 97.82 178 |
|
Regformer-3 | | | 96.85 41 | 96.80 34 | 97.01 75 | 98.34 90 | 92.02 112 | 96.96 168 | 97.76 123 | 95.01 26 | 97.08 52 | 98.42 35 | 91.71 55 | 99.54 90 | 96.80 22 | 99.13 83 | 99.48 47 |
|
新几何1 | | | | | 97.32 59 | 98.60 75 | 93.59 64 | | 97.75 124 | 81.58 340 | 95.75 101 | 97.85 88 | 90.04 88 | 99.67 53 | 86.50 258 | 99.13 83 | 98.69 127 |
|
旧先验1 | | | | | | 98.38 88 | 93.38 70 | | 97.75 124 | | | 98.09 70 | 92.30 43 | | | 99.01 92 | 99.16 79 |
|
DROMVSNet | | | 96.42 58 | 96.47 52 | 96.26 112 | 97.01 168 | 91.52 127 | 98.89 5 | 97.75 124 | 94.42 48 | 96.64 65 | 97.68 101 | 89.32 92 | 98.60 189 | 97.45 9 | 99.11 88 | 98.67 129 |
|
EI-MVSNet-Vis-set | | | 96.51 55 | 96.47 52 | 96.63 83 | 98.24 101 | 91.20 141 | 96.89 174 | 97.73 127 | 94.74 40 | 96.49 73 | 98.49 28 | 90.88 77 | 99.58 75 | 96.44 35 | 98.32 113 | 99.13 83 |
|
1121 | | | 94.71 107 | 93.83 112 | 97.34 58 | 98.57 79 | 93.64 63 | 96.04 244 | 97.73 127 | 81.56 341 | 95.68 104 | 97.85 88 | 90.23 85 | 99.65 57 | 87.68 236 | 99.12 86 | 98.73 123 |
|
PAPM_NR | | | 95.01 94 | 94.59 97 | 96.26 112 | 98.89 58 | 90.68 163 | 97.24 139 | 97.73 127 | 91.80 141 | 92.93 165 | 96.62 173 | 89.13 95 | 99.14 136 | 89.21 208 | 97.78 127 | 98.97 100 |
|
Anonymous20240529 | | | 91.98 204 | 90.73 225 | 95.73 137 | 98.14 112 | 89.40 202 | 97.99 59 | 97.72 130 | 79.63 351 | 93.54 147 | 97.41 123 | 69.94 332 | 99.56 85 | 91.04 173 | 91.11 244 | 98.22 159 |
|
CHOSEN 280x420 | | | 93.12 157 | 92.72 154 | 94.34 209 | 96.71 182 | 87.27 258 | 90.29 354 | 97.72 130 | 86.61 285 | 91.34 195 | 95.29 236 | 84.29 162 | 98.41 202 | 93.25 129 | 98.94 95 | 97.35 196 |
|
EI-MVSNet-UG-set | | | 96.34 62 | 96.30 58 | 96.47 94 | 98.20 106 | 90.93 153 | 96.86 175 | 97.72 130 | 94.67 42 | 96.16 85 | 98.46 30 | 90.43 83 | 99.58 75 | 96.23 40 | 97.96 123 | 98.90 109 |
|
LS3D | | | 93.57 141 | 92.61 159 | 96.47 94 | 97.59 143 | 91.61 122 | 97.67 95 | 97.72 130 | 85.17 305 | 90.29 217 | 98.34 45 | 84.60 155 | 99.73 36 | 83.85 296 | 98.27 114 | 98.06 167 |
|
PAPR | | | 94.18 114 | 93.42 131 | 96.48 93 | 97.64 139 | 91.42 132 | 95.55 265 | 97.71 134 | 88.99 219 | 92.34 174 | 95.82 210 | 89.19 93 | 99.11 138 | 86.14 264 | 97.38 138 | 98.90 109 |
|
test_part1 | | | 92.21 198 | 91.10 212 | 95.51 150 | 97.80 129 | 92.66 89 | 98.02 58 | 97.68 135 | 89.79 200 | 88.80 267 | 96.02 200 | 76.85 287 | 98.18 221 | 90.86 174 | 84.11 323 | 95.69 252 |
|
UGNet | | | 94.04 123 | 93.28 134 | 96.31 107 | 96.85 173 | 91.19 142 | 97.88 71 | 97.68 135 | 94.40 49 | 93.00 160 | 96.18 191 | 73.39 313 | 99.61 66 | 91.72 158 | 98.46 110 | 98.13 162 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
testdata | | | | | 95.46 157 | 98.18 110 | 88.90 220 | | 97.66 137 | 82.73 333 | 97.03 54 | 98.07 71 | 90.06 87 | 98.85 165 | 89.67 194 | 98.98 93 | 98.64 130 |
|
test12 | | | | | 97.65 47 | 98.46 81 | 94.26 41 | | 97.66 137 | | 95.52 113 | | 90.89 76 | 99.46 105 | | 99.25 72 | 99.22 76 |
|
DTE-MVSNet | | | 90.56 261 | 89.75 265 | 93.01 270 | 93.95 310 | 87.25 259 | 97.64 102 | 97.65 139 | 90.74 171 | 87.12 301 | 95.68 222 | 79.97 243 | 97.00 329 | 83.33 297 | 81.66 340 | 94.78 308 |
|
TAPA-MVS | | 90.10 7 | 92.30 191 | 91.22 208 | 95.56 146 | 98.33 92 | 89.60 191 | 96.79 183 | 97.65 139 | 81.83 338 | 91.52 191 | 97.23 130 | 87.94 109 | 98.91 161 | 71.31 360 | 98.37 112 | 98.17 161 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
cdsmvs_eth3d_5k | | | 23.24 346 | 30.99 348 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 97.63 141 | 0.00 382 | 0.00 383 | 96.88 151 | 84.38 159 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
DPM-MVS | | | 95.69 76 | 94.92 89 | 98.01 22 | 98.08 115 | 95.71 9 | 95.27 279 | 97.62 142 | 90.43 186 | 95.55 110 | 97.07 139 | 91.72 53 | 99.50 101 | 89.62 196 | 98.94 95 | 98.82 118 |
|
canonicalmvs | | | 96.02 70 | 95.45 76 | 97.75 40 | 97.59 143 | 95.15 25 | 98.28 32 | 97.60 143 | 94.52 46 | 96.27 82 | 96.12 195 | 87.65 114 | 99.18 131 | 96.20 46 | 94.82 188 | 98.91 108 |
|
test222 | | | | | | 98.24 101 | 92.21 104 | 95.33 274 | 97.60 143 | 79.22 353 | 95.25 115 | 97.84 91 | 88.80 99 | | | 99.15 81 | 98.72 124 |
|
cascas | | | 91.20 238 | 90.08 251 | 94.58 199 | 94.97 267 | 89.16 215 | 93.65 323 | 97.59 145 | 79.90 350 | 89.40 250 | 92.92 320 | 75.36 301 | 98.36 207 | 92.14 148 | 94.75 190 | 96.23 220 |
|
h-mvs33 | | | 94.15 115 | 93.52 123 | 96.04 123 | 97.81 128 | 90.22 173 | 97.62 104 | 97.58 146 | 95.19 16 | 96.74 58 | 97.45 120 | 83.67 169 | 99.61 66 | 95.85 57 | 79.73 345 | 98.29 158 |
|
MVSFormer | | | 95.37 84 | 95.16 85 | 95.99 126 | 96.34 203 | 91.21 139 | 98.22 43 | 97.57 147 | 91.42 152 | 96.22 83 | 97.32 125 | 86.20 137 | 97.92 268 | 94.07 110 | 99.05 90 | 98.85 115 |
|
test_djsdf | | | 93.07 160 | 92.76 149 | 94.00 224 | 93.49 325 | 88.70 224 | 98.22 43 | 97.57 147 | 91.42 152 | 90.08 230 | 95.55 228 | 82.85 189 | 97.92 268 | 94.07 110 | 91.58 232 | 95.40 267 |
|
OMC-MVS | | | 95.09 93 | 94.70 95 | 96.25 115 | 98.46 81 | 91.28 135 | 96.43 213 | 97.57 147 | 92.04 136 | 94.77 123 | 97.96 81 | 87.01 126 | 99.09 142 | 91.31 169 | 96.77 152 | 98.36 155 |
|
PS-MVSNAJss | | | 93.74 134 | 93.51 124 | 94.44 203 | 93.91 312 | 89.28 210 | 97.75 83 | 97.56 150 | 92.50 122 | 89.94 233 | 96.54 176 | 88.65 101 | 98.18 221 | 93.83 119 | 90.90 250 | 95.86 233 |
|
jajsoiax | | | 92.42 184 | 91.89 182 | 94.03 223 | 93.33 330 | 88.50 231 | 97.73 86 | 97.53 151 | 92.00 138 | 88.85 264 | 96.50 178 | 75.62 300 | 98.11 233 | 93.88 117 | 91.56 233 | 95.48 258 |
|
mvs_tets | | | 92.31 190 | 91.76 184 | 93.94 231 | 93.41 327 | 88.29 234 | 97.63 103 | 97.53 151 | 92.04 136 | 88.76 268 | 96.45 180 | 74.62 304 | 98.09 237 | 93.91 115 | 91.48 235 | 95.45 263 |
|
dcpmvs_2 | | | 96.37 61 | 97.05 17 | 94.31 211 | 98.96 50 | 84.11 314 | 97.56 109 | 97.51 153 | 93.92 61 | 97.43 36 | 98.52 25 | 92.75 28 | 99.32 120 | 97.32 13 | 99.50 36 | 99.51 39 |
|
HQP_MVS | | | 93.78 133 | 93.43 129 | 94.82 183 | 96.21 207 | 89.99 178 | 97.74 84 | 97.51 153 | 94.85 30 | 91.34 195 | 96.64 164 | 81.32 218 | 98.60 189 | 93.02 135 | 92.23 220 | 95.86 233 |
|
plane_prior5 | | | | | | | | | 97.51 153 | | | | | 98.60 189 | 93.02 135 | 92.23 220 | 95.86 233 |
|
PS-MVSNAJ | | | 95.37 84 | 95.33 81 | 95.49 153 | 97.35 148 | 90.66 164 | 95.31 276 | 97.48 156 | 93.85 64 | 96.51 72 | 95.70 221 | 88.65 101 | 99.65 57 | 94.80 97 | 98.27 114 | 96.17 223 |
|
API-MVS | | | 94.84 103 | 94.49 102 | 95.90 128 | 97.90 124 | 92.00 113 | 97.80 79 | 97.48 156 | 89.19 214 | 94.81 122 | 96.71 156 | 88.84 98 | 99.17 132 | 88.91 214 | 98.76 100 | 96.53 214 |
|
MG-MVS | | | 95.61 79 | 95.38 79 | 96.31 107 | 98.42 84 | 90.53 166 | 96.04 244 | 97.48 156 | 93.47 81 | 95.67 107 | 98.10 68 | 89.17 94 | 99.25 125 | 91.27 170 | 98.77 99 | 99.13 83 |
|
MAR-MVS | | | 94.22 113 | 93.46 126 | 96.51 91 | 98.00 117 | 92.19 107 | 97.67 95 | 97.47 159 | 88.13 250 | 93.00 160 | 95.84 208 | 84.86 153 | 99.51 98 | 87.99 225 | 98.17 118 | 97.83 177 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
CLD-MVS | | | 92.98 165 | 92.53 164 | 94.32 210 | 96.12 216 | 89.20 212 | 95.28 277 | 97.47 159 | 92.66 116 | 89.90 234 | 95.62 224 | 80.58 229 | 98.40 203 | 92.73 140 | 92.40 218 | 95.38 269 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
UniMVSNet_ETH3D | | | 91.34 232 | 90.22 247 | 94.68 193 | 94.86 276 | 87.86 250 | 97.23 144 | 97.46 161 | 87.99 251 | 89.90 234 | 96.92 149 | 66.35 349 | 98.23 215 | 90.30 183 | 90.99 248 | 97.96 168 |
|
nrg030 | | | 94.05 122 | 93.31 133 | 96.27 111 | 95.22 257 | 94.59 32 | 98.34 27 | 97.46 161 | 92.93 107 | 91.21 204 | 96.64 164 | 87.23 124 | 98.22 216 | 94.99 90 | 85.80 296 | 95.98 232 |
|
XVG-OURS | | | 93.72 135 | 93.35 132 | 94.80 188 | 97.07 160 | 88.61 226 | 94.79 287 | 97.46 161 | 91.97 139 | 93.99 137 | 97.86 87 | 81.74 213 | 98.88 164 | 92.64 141 | 92.67 215 | 96.92 205 |
|
LPG-MVS_test | | | 92.94 168 | 92.56 160 | 94.10 218 | 96.16 212 | 88.26 236 | 97.65 98 | 97.46 161 | 91.29 155 | 90.12 226 | 97.16 133 | 79.05 257 | 98.73 176 | 92.25 145 | 91.89 228 | 95.31 273 |
|
LGP-MVS_train | | | | | 94.10 218 | 96.16 212 | 88.26 236 | | 97.46 161 | 91.29 155 | 90.12 226 | 97.16 133 | 79.05 257 | 98.73 176 | 92.25 145 | 91.89 228 | 95.31 273 |
|
MVS | | | 91.71 210 | 90.44 234 | 95.51 150 | 95.20 259 | 91.59 124 | 96.04 244 | 97.45 166 | 73.44 364 | 87.36 298 | 95.60 225 | 85.42 146 | 99.10 139 | 85.97 269 | 97.46 133 | 95.83 237 |
|
XVG-OURS-SEG-HR | | | 93.86 129 | 93.55 120 | 94.81 185 | 97.06 163 | 88.53 230 | 95.28 277 | 97.45 166 | 91.68 144 | 94.08 136 | 97.68 101 | 82.41 200 | 98.90 162 | 93.84 118 | 92.47 217 | 96.98 201 |
|
baseline | | | 95.58 80 | 95.42 78 | 96.08 119 | 96.78 178 | 90.41 171 | 97.16 150 | 97.45 166 | 93.69 72 | 95.65 108 | 97.85 88 | 87.29 122 | 98.68 182 | 95.66 63 | 97.25 144 | 99.13 83 |
|
ab-mvs | | | 93.57 141 | 92.55 161 | 96.64 81 | 97.28 149 | 91.96 115 | 95.40 271 | 97.45 166 | 89.81 199 | 93.22 158 | 96.28 188 | 79.62 249 | 99.46 105 | 90.74 177 | 93.11 209 | 98.50 138 |
|
xiu_mvs_v2_base | | | 95.32 86 | 95.29 82 | 95.40 158 | 97.22 150 | 90.50 167 | 95.44 270 | 97.44 170 | 93.70 71 | 96.46 76 | 96.18 191 | 88.59 104 | 99.53 93 | 94.79 99 | 97.81 126 | 96.17 223 |
|
1314 | | | 92.81 176 | 92.03 176 | 95.14 165 | 95.33 249 | 89.52 197 | 96.04 244 | 97.44 170 | 87.72 263 | 86.25 313 | 95.33 235 | 83.84 166 | 98.79 169 | 89.26 205 | 97.05 149 | 97.11 199 |
|
casdiffmvs | | | 95.64 78 | 95.49 74 | 96.08 119 | 96.76 181 | 90.45 169 | 97.29 136 | 97.44 170 | 94.00 59 | 95.46 114 | 97.98 79 | 87.52 118 | 98.73 176 | 95.64 67 | 97.33 141 | 99.08 89 |
|
XXY-MVS | | | 92.16 199 | 91.23 207 | 94.95 177 | 94.75 282 | 90.94 152 | 97.47 119 | 97.43 173 | 89.14 215 | 88.90 261 | 96.43 181 | 79.71 247 | 98.24 214 | 89.56 197 | 87.68 279 | 95.67 255 |
|
anonymousdsp | | | 92.16 199 | 91.55 193 | 93.97 227 | 92.58 342 | 89.55 194 | 97.51 113 | 97.42 174 | 89.42 208 | 88.40 274 | 94.84 253 | 80.66 227 | 97.88 273 | 91.87 155 | 91.28 240 | 94.48 316 |
|
Effi-MVS+ | | | 94.93 99 | 94.45 104 | 96.36 105 | 96.61 184 | 91.47 129 | 96.41 215 | 97.41 175 | 91.02 167 | 94.50 128 | 95.92 204 | 87.53 117 | 98.78 170 | 93.89 116 | 96.81 151 | 98.84 117 |
|
HQP3-MVS | | | | | | | | | 97.39 176 | | | | | | | 92.10 225 | |
|
HQP-MVS | | | 93.19 152 | 92.74 152 | 94.54 201 | 95.86 222 | 89.33 206 | 96.65 197 | 97.39 176 | 93.55 74 | 90.14 220 | 95.87 206 | 80.95 221 | 98.50 197 | 92.13 149 | 92.10 225 | 95.78 241 |
|
PLC |  | 91.00 6 | 94.11 119 | 93.43 129 | 96.13 118 | 98.58 78 | 91.15 147 | 96.69 193 | 97.39 176 | 87.29 273 | 91.37 194 | 96.71 156 | 88.39 105 | 99.52 97 | 87.33 246 | 97.13 148 | 97.73 180 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
v7n | | | 90.76 254 | 89.86 258 | 93.45 256 | 93.54 322 | 87.60 255 | 97.70 93 | 97.37 179 | 88.85 225 | 87.65 292 | 94.08 293 | 81.08 220 | 98.10 234 | 84.68 285 | 83.79 329 | 94.66 313 |
|
UnsupCasMVSNet_eth | | | 85.99 315 | 84.45 319 | 90.62 324 | 89.97 359 | 82.40 330 | 93.62 324 | 97.37 179 | 89.86 195 | 78.59 358 | 92.37 327 | 65.25 355 | 95.35 354 | 82.27 308 | 70.75 363 | 94.10 327 |
|
ACMM | | 89.79 8 | 92.96 166 | 92.50 166 | 94.35 208 | 96.30 205 | 88.71 223 | 97.58 107 | 97.36 181 | 91.40 154 | 90.53 211 | 96.65 163 | 79.77 246 | 98.75 174 | 91.24 171 | 91.64 230 | 95.59 256 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
xiu_mvs_v1_base_debu | | | 95.01 94 | 94.76 92 | 95.75 134 | 96.58 187 | 91.71 117 | 96.25 233 | 97.35 182 | 92.99 99 | 96.70 60 | 96.63 170 | 82.67 192 | 99.44 108 | 96.22 41 | 97.46 133 | 96.11 228 |
|
xiu_mvs_v1_base | | | 95.01 94 | 94.76 92 | 95.75 134 | 96.58 187 | 91.71 117 | 96.25 233 | 97.35 182 | 92.99 99 | 96.70 60 | 96.63 170 | 82.67 192 | 99.44 108 | 96.22 41 | 97.46 133 | 96.11 228 |
|
xiu_mvs_v1_base_debi | | | 95.01 94 | 94.76 92 | 95.75 134 | 96.58 187 | 91.71 117 | 96.25 233 | 97.35 182 | 92.99 99 | 96.70 60 | 96.63 170 | 82.67 192 | 99.44 108 | 96.22 41 | 97.46 133 | 96.11 228 |
|
diffmvs | | | 95.25 88 | 95.13 86 | 95.63 142 | 96.43 199 | 89.34 205 | 95.99 249 | 97.35 182 | 92.83 109 | 96.31 80 | 97.37 124 | 86.44 132 | 98.67 183 | 96.26 38 | 97.19 146 | 98.87 114 |
|
WTY-MVS | | | 94.71 107 | 94.02 109 | 96.79 79 | 97.71 134 | 92.05 110 | 96.59 206 | 97.35 182 | 90.61 180 | 94.64 125 | 96.93 146 | 86.41 133 | 99.39 114 | 91.20 172 | 94.71 192 | 98.94 104 |
|
F-COLMAP | | | 93.58 140 | 92.98 141 | 95.37 159 | 98.40 85 | 88.98 218 | 97.18 148 | 97.29 187 | 87.75 262 | 90.49 212 | 97.10 138 | 85.21 148 | 99.50 101 | 86.70 255 | 96.72 155 | 97.63 184 |
|
XVG-ACMP-BASELINE | | | 90.93 250 | 90.21 248 | 93.09 268 | 94.31 302 | 85.89 287 | 95.33 274 | 97.26 188 | 91.06 166 | 89.38 251 | 95.44 233 | 68.61 336 | 98.60 189 | 89.46 199 | 91.05 246 | 94.79 306 |
|
PCF-MVS | | 89.48 11 | 91.56 218 | 89.95 256 | 96.36 105 | 96.60 185 | 92.52 94 | 92.51 341 | 97.26 188 | 79.41 352 | 88.90 261 | 96.56 175 | 84.04 165 | 99.55 88 | 77.01 342 | 97.30 142 | 97.01 200 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
ACMP | | 89.59 10 | 92.62 179 | 92.14 173 | 94.05 221 | 96.40 200 | 88.20 239 | 97.36 129 | 97.25 190 | 91.52 147 | 88.30 277 | 96.64 164 | 78.46 269 | 98.72 179 | 91.86 156 | 91.48 235 | 95.23 280 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
xxxxxxxxxxxxxcwj | | | 97.36 12 | 97.20 12 | 97.83 29 | 98.91 53 | 94.28 39 | 97.02 159 | 97.22 191 | 95.35 9 | 98.27 18 | 98.65 16 | 93.33 21 | 99.72 39 | 96.49 33 | 99.52 29 | 99.51 39 |
|
OPM-MVS | | | 93.28 149 | 92.76 149 | 94.82 183 | 94.63 289 | 90.77 160 | 96.65 197 | 97.18 192 | 93.72 69 | 91.68 187 | 97.26 128 | 79.33 253 | 98.63 186 | 92.13 149 | 92.28 219 | 95.07 284 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
PatchMatch-RL | | | 92.90 170 | 92.02 177 | 95.56 146 | 98.19 108 | 90.80 158 | 95.27 279 | 97.18 192 | 87.96 252 | 91.86 186 | 95.68 222 | 80.44 232 | 98.99 155 | 84.01 292 | 97.54 132 | 96.89 206 |
|
MVS_0304 | | | 88.79 290 | 87.57 292 | 92.46 284 | 94.65 286 | 86.15 286 | 96.40 218 | 97.17 194 | 86.44 286 | 88.02 286 | 91.71 339 | 56.68 366 | 97.03 325 | 84.47 288 | 92.58 216 | 94.19 326 |
|
alignmvs | | | 95.87 75 | 95.23 83 | 97.78 36 | 97.56 146 | 95.19 22 | 97.86 72 | 97.17 194 | 94.39 50 | 96.47 75 | 96.40 183 | 85.89 140 | 99.20 128 | 96.21 45 | 95.11 184 | 98.95 103 |
|
MVS_Test | | | 94.89 101 | 94.62 96 | 95.68 140 | 96.83 176 | 89.55 194 | 96.70 191 | 97.17 194 | 91.17 162 | 95.60 109 | 96.11 198 | 87.87 111 | 98.76 173 | 93.01 137 | 97.17 147 | 98.72 124 |
|
Fast-Effi-MVS+ | | | 93.46 143 | 92.75 151 | 95.59 145 | 96.77 179 | 90.03 175 | 96.81 182 | 97.13 197 | 88.19 245 | 91.30 198 | 94.27 283 | 86.21 136 | 98.63 186 | 87.66 238 | 96.46 163 | 98.12 163 |
|
EI-MVSNet | | | 93.03 163 | 92.88 144 | 93.48 253 | 95.77 227 | 86.98 267 | 96.44 211 | 97.12 198 | 90.66 176 | 91.30 198 | 97.64 108 | 86.56 129 | 98.05 244 | 89.91 187 | 90.55 254 | 95.41 264 |
|
MVSTER | | | 93.20 151 | 92.81 147 | 94.37 207 | 96.56 190 | 89.59 192 | 97.06 155 | 97.12 198 | 91.24 159 | 91.30 198 | 95.96 202 | 82.02 207 | 98.05 244 | 93.48 123 | 90.55 254 | 95.47 261 |
|
test_yl | | | 94.78 105 | 94.23 107 | 96.43 98 | 97.74 132 | 91.22 137 | 96.85 176 | 97.10 200 | 91.23 160 | 95.71 102 | 96.93 146 | 84.30 160 | 99.31 121 | 93.10 131 | 95.12 182 | 98.75 120 |
|
DCV-MVSNet | | | 94.78 105 | 94.23 107 | 96.43 98 | 97.74 132 | 91.22 137 | 96.85 176 | 97.10 200 | 91.23 160 | 95.71 102 | 96.93 146 | 84.30 160 | 99.31 121 | 93.10 131 | 95.12 182 | 98.75 120 |
|
LTVRE_ROB | | 88.41 13 | 90.99 246 | 89.92 257 | 94.19 214 | 96.18 210 | 89.55 194 | 96.31 228 | 97.09 202 | 87.88 255 | 85.67 317 | 95.91 205 | 78.79 265 | 98.57 193 | 81.50 311 | 89.98 260 | 94.44 318 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
v10 | | | 91.04 244 | 90.23 245 | 93.49 252 | 94.12 306 | 88.16 242 | 97.32 133 | 97.08 203 | 88.26 244 | 88.29 278 | 94.22 288 | 82.17 205 | 97.97 256 | 86.45 259 | 84.12 322 | 94.33 321 |
|
v144192 | | | 91.06 243 | 90.28 241 | 93.39 257 | 93.66 320 | 87.23 261 | 96.83 179 | 97.07 204 | 87.43 269 | 89.69 241 | 94.28 282 | 81.48 216 | 98.00 251 | 87.18 250 | 84.92 312 | 94.93 292 |
|
v1192 | | | 91.07 242 | 90.23 245 | 93.58 249 | 93.70 318 | 87.82 251 | 96.73 187 | 97.07 204 | 87.77 260 | 89.58 244 | 94.32 280 | 80.90 225 | 97.97 256 | 86.52 257 | 85.48 299 | 94.95 288 |
|
v8 | | | 91.29 235 | 90.53 233 | 93.57 250 | 94.15 305 | 88.12 243 | 97.34 130 | 97.06 206 | 88.99 219 | 88.32 276 | 94.26 285 | 83.08 180 | 98.01 250 | 87.62 240 | 83.92 327 | 94.57 315 |
|
mvs_anonymous | | | 93.82 131 | 93.74 114 | 94.06 220 | 96.44 198 | 85.41 294 | 95.81 256 | 97.05 207 | 89.85 197 | 90.09 229 | 96.36 185 | 87.44 120 | 97.75 284 | 93.97 112 | 96.69 156 | 99.02 92 |
|
IterMVS-LS | | | 92.29 192 | 91.94 180 | 93.34 259 | 96.25 206 | 86.97 268 | 96.57 209 | 97.05 207 | 90.67 174 | 89.50 249 | 94.80 256 | 86.59 128 | 97.64 292 | 89.91 187 | 86.11 294 | 95.40 267 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
v1921920 | | | 90.85 252 | 90.03 255 | 93.29 261 | 93.55 321 | 86.96 269 | 96.74 186 | 97.04 209 | 87.36 271 | 89.52 248 | 94.34 277 | 80.23 238 | 97.97 256 | 86.27 260 | 85.21 305 | 94.94 290 |
|
CDS-MVSNet | | | 94.14 118 | 93.54 121 | 95.93 127 | 96.18 210 | 91.46 130 | 96.33 226 | 97.04 209 | 88.97 221 | 93.56 145 | 96.51 177 | 87.55 116 | 97.89 272 | 89.80 190 | 95.95 167 | 98.44 148 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
v1144 | | | 91.37 229 | 90.60 229 | 93.68 245 | 93.89 313 | 88.23 238 | 96.84 178 | 97.03 211 | 88.37 241 | 89.69 241 | 94.39 274 | 82.04 206 | 97.98 253 | 87.80 229 | 85.37 301 | 94.84 298 |
|
v1240 | | | 90.70 258 | 89.85 259 | 93.23 263 | 93.51 324 | 86.80 270 | 96.61 203 | 97.02 212 | 87.16 276 | 89.58 244 | 94.31 281 | 79.55 250 | 97.98 253 | 85.52 275 | 85.44 300 | 94.90 295 |
|
EPP-MVSNet | | | 95.22 90 | 95.04 88 | 95.76 132 | 97.49 147 | 89.56 193 | 98.67 10 | 97.00 213 | 90.69 173 | 94.24 133 | 97.62 110 | 89.79 91 | 98.81 168 | 93.39 128 | 96.49 161 | 98.92 107 |
|
V42 | | | 91.58 217 | 90.87 216 | 93.73 240 | 94.05 309 | 88.50 231 | 97.32 133 | 96.97 214 | 88.80 231 | 89.71 239 | 94.33 278 | 82.54 196 | 98.05 244 | 89.01 212 | 85.07 308 | 94.64 314 |
|
FMVSNet2 | | | 91.31 233 | 90.08 251 | 94.99 172 | 96.51 193 | 92.21 104 | 97.41 122 | 96.95 215 | 88.82 228 | 88.62 270 | 94.75 258 | 73.87 308 | 97.42 313 | 85.20 280 | 88.55 274 | 95.35 271 |
|
test_low_dy_conf_001 | | | 93.13 156 | 92.80 148 | 94.14 217 | 94.47 294 | 88.64 225 | 98.26 36 | 96.94 216 | 92.53 120 | 90.93 207 | 97.16 133 | 80.39 234 | 97.99 252 | 93.40 127 | 91.12 243 | 95.77 246 |
|
ACMH | | 87.59 16 | 90.53 262 | 89.42 271 | 93.87 235 | 96.21 207 | 87.92 247 | 97.24 139 | 96.94 216 | 88.45 239 | 83.91 336 | 96.27 189 | 71.92 317 | 98.62 188 | 84.43 289 | 89.43 265 | 95.05 286 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
GBi-Net | | | 91.35 230 | 90.27 242 | 94.59 195 | 96.51 193 | 91.18 143 | 97.50 114 | 96.93 218 | 88.82 228 | 89.35 252 | 94.51 267 | 73.87 308 | 97.29 320 | 86.12 265 | 88.82 269 | 95.31 273 |
|
test1 | | | 91.35 230 | 90.27 242 | 94.59 195 | 96.51 193 | 91.18 143 | 97.50 114 | 96.93 218 | 88.82 228 | 89.35 252 | 94.51 267 | 73.87 308 | 97.29 320 | 86.12 265 | 88.82 269 | 95.31 273 |
|
FMVSNet3 | | | 91.78 208 | 90.69 227 | 95.03 170 | 96.53 192 | 92.27 103 | 97.02 159 | 96.93 218 | 89.79 200 | 89.35 252 | 94.65 263 | 77.01 286 | 97.47 308 | 86.12 265 | 88.82 269 | 95.35 271 |
|
FMVSNet1 | | | 89.88 277 | 88.31 286 | 94.59 195 | 95.41 239 | 91.18 143 | 97.50 114 | 96.93 218 | 86.62 284 | 87.41 296 | 94.51 267 | 65.94 353 | 97.29 320 | 83.04 300 | 87.43 282 | 95.31 273 |
|
GeoE | | | 93.89 127 | 93.28 134 | 95.72 138 | 96.96 171 | 89.75 187 | 98.24 41 | 96.92 222 | 89.47 206 | 92.12 180 | 97.21 131 | 84.42 158 | 98.39 206 | 87.71 232 | 96.50 160 | 99.01 96 |
|
miper_enhance_ethall | | | 91.54 220 | 91.01 213 | 93.15 266 | 95.35 245 | 87.07 266 | 93.97 312 | 96.90 223 | 86.79 282 | 89.17 259 | 93.43 316 | 86.55 130 | 97.64 292 | 89.97 186 | 86.93 286 | 94.74 310 |
|
eth_miper_zixun_eth | | | 91.02 245 | 90.59 230 | 92.34 288 | 95.33 249 | 84.35 310 | 94.10 309 | 96.90 223 | 88.56 237 | 88.84 265 | 94.33 278 | 84.08 164 | 97.60 297 | 88.77 217 | 84.37 320 | 95.06 285 |
|
TAMVS | | | 94.01 124 | 93.46 126 | 95.64 141 | 96.16 212 | 90.45 169 | 96.71 190 | 96.89 225 | 89.27 212 | 93.46 150 | 96.92 149 | 87.29 122 | 97.94 264 | 88.70 218 | 95.74 172 | 98.53 134 |
|
miper_ehance_all_eth | | | 91.59 215 | 91.13 211 | 92.97 272 | 95.55 234 | 86.57 277 | 94.47 294 | 96.88 226 | 87.77 260 | 88.88 263 | 94.01 294 | 86.22 135 | 97.54 301 | 89.49 198 | 86.93 286 | 94.79 306 |
|
v2v482 | | | 91.59 215 | 90.85 219 | 93.80 238 | 93.87 314 | 88.17 241 | 96.94 171 | 96.88 226 | 89.54 203 | 89.53 247 | 94.90 250 | 81.70 214 | 98.02 249 | 89.25 206 | 85.04 310 | 95.20 281 |
|
CNLPA | | | 94.28 112 | 93.53 122 | 96.52 88 | 98.38 88 | 92.55 93 | 96.59 206 | 96.88 226 | 90.13 191 | 91.91 184 | 97.24 129 | 85.21 148 | 99.09 142 | 87.64 239 | 97.83 125 | 97.92 170 |
|
PAPM | | | 91.52 221 | 90.30 240 | 95.20 162 | 95.30 252 | 89.83 185 | 93.38 328 | 96.85 229 | 86.26 289 | 88.59 271 | 95.80 211 | 84.88 152 | 98.15 224 | 75.67 346 | 95.93 168 | 97.63 184 |
|
c3_l | | | 91.38 227 | 90.89 215 | 92.88 275 | 95.58 232 | 86.30 280 | 94.68 289 | 96.84 230 | 88.17 246 | 88.83 266 | 94.23 286 | 85.65 144 | 97.47 308 | 89.36 201 | 84.63 314 | 94.89 296 |
|
pm-mvs1 | | | 90.72 257 | 89.65 269 | 93.96 228 | 94.29 303 | 89.63 189 | 97.79 80 | 96.82 231 | 89.07 216 | 86.12 315 | 95.48 232 | 78.61 267 | 97.78 281 | 86.97 253 | 81.67 339 | 94.46 317 |
|
CMPMVS |  | 62.92 21 | 85.62 319 | 84.92 316 | 87.74 341 | 89.14 364 | 73.12 368 | 94.17 307 | 96.80 232 | 73.98 362 | 73.65 363 | 94.93 248 | 66.36 348 | 97.61 296 | 83.95 294 | 91.28 240 | 92.48 349 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
MS-PatchMatch | | | 90.27 267 | 89.77 263 | 91.78 302 | 94.33 300 | 84.72 307 | 95.55 265 | 96.73 233 | 86.17 291 | 86.36 312 | 95.28 238 | 71.28 322 | 97.80 279 | 84.09 291 | 98.14 119 | 92.81 343 |
|
Effi-MVS+-dtu | | | 93.08 159 | 93.21 136 | 92.68 282 | 96.02 219 | 83.25 324 | 97.14 153 | 96.72 234 | 93.85 64 | 91.20 205 | 93.44 314 | 83.08 180 | 98.30 212 | 91.69 161 | 95.73 173 | 96.50 216 |
|
mvs-test1 | | | 93.63 137 | 93.69 116 | 93.46 255 | 96.02 219 | 84.61 308 | 97.24 139 | 96.72 234 | 93.85 64 | 92.30 175 | 95.76 216 | 83.08 180 | 98.89 163 | 91.69 161 | 96.54 159 | 96.87 207 |
|
TSAR-MVS + GP. | | | 96.69 49 | 96.49 51 | 97.27 63 | 98.31 95 | 93.39 69 | 96.79 183 | 96.72 234 | 94.17 55 | 97.44 34 | 97.66 104 | 92.76 27 | 99.33 118 | 96.86 21 | 97.76 129 | 99.08 89 |
|
1112_ss | | | 93.37 146 | 92.42 168 | 96.21 116 | 97.05 165 | 90.99 149 | 96.31 228 | 96.72 234 | 86.87 281 | 89.83 237 | 96.69 160 | 86.51 131 | 99.14 136 | 88.12 223 | 93.67 203 | 98.50 138 |
|
PVSNet | | 86.66 18 | 92.24 195 | 91.74 187 | 93.73 240 | 97.77 131 | 83.69 321 | 92.88 336 | 96.72 234 | 87.91 254 | 93.00 160 | 94.86 252 | 78.51 268 | 99.05 150 | 86.53 256 | 97.45 137 | 98.47 143 |
|
miper_lstm_enhance | | | 90.50 264 | 90.06 254 | 91.83 298 | 95.33 249 | 83.74 318 | 93.86 316 | 96.70 239 | 87.56 267 | 87.79 289 | 93.81 302 | 83.45 174 | 96.92 331 | 87.39 244 | 84.62 315 | 94.82 301 |
|
v148 | | | 90.99 246 | 90.38 236 | 92.81 278 | 93.83 315 | 85.80 288 | 96.78 185 | 96.68 240 | 89.45 207 | 88.75 269 | 93.93 298 | 82.96 187 | 97.82 278 | 87.83 228 | 83.25 332 | 94.80 304 |
|
ACMH+ | | 87.92 14 | 90.20 270 | 89.18 276 | 93.25 262 | 96.48 196 | 86.45 278 | 96.99 164 | 96.68 240 | 88.83 227 | 84.79 326 | 96.22 190 | 70.16 330 | 98.53 195 | 84.42 290 | 88.04 276 | 94.77 309 |
|
CANet_DTU | | | 94.37 110 | 93.65 118 | 96.55 87 | 96.46 197 | 92.13 108 | 96.21 237 | 96.67 242 | 94.38 51 | 93.53 148 | 97.03 142 | 79.34 252 | 99.71 42 | 90.76 176 | 98.45 111 | 97.82 178 |
|
cl____ | | | 90.96 249 | 90.32 238 | 92.89 274 | 95.37 243 | 86.21 283 | 94.46 296 | 96.64 243 | 87.82 256 | 88.15 283 | 94.18 289 | 82.98 185 | 97.54 301 | 87.70 233 | 85.59 297 | 94.92 294 |
|
HY-MVS | | 89.66 9 | 93.87 128 | 92.95 142 | 96.63 83 | 97.10 159 | 92.49 95 | 95.64 263 | 96.64 243 | 89.05 217 | 93.00 160 | 95.79 214 | 85.77 143 | 99.45 107 | 89.16 211 | 94.35 194 | 97.96 168 |
|
Test_1112_low_res | | | 92.84 174 | 91.84 183 | 95.85 130 | 97.04 166 | 89.97 181 | 95.53 267 | 96.64 243 | 85.38 301 | 89.65 243 | 95.18 240 | 85.86 141 | 99.10 139 | 87.70 233 | 93.58 208 | 98.49 140 |
|
DIV-MVS_self_test | | | 90.97 248 | 90.33 237 | 92.88 275 | 95.36 244 | 86.19 284 | 94.46 296 | 96.63 246 | 87.82 256 | 88.18 282 | 94.23 286 | 82.99 184 | 97.53 303 | 87.72 230 | 85.57 298 | 94.93 292 |
|
Fast-Effi-MVS+-dtu | | | 92.29 192 | 91.99 178 | 93.21 265 | 95.27 253 | 85.52 292 | 97.03 156 | 96.63 246 | 92.09 134 | 89.11 260 | 95.14 242 | 80.33 236 | 98.08 238 | 87.54 242 | 94.74 191 | 96.03 231 |
|
UnsupCasMVSNet_bld | | | 82.13 330 | 79.46 333 | 90.14 330 | 88.00 368 | 82.47 328 | 90.89 352 | 96.62 248 | 78.94 354 | 75.61 360 | 84.40 364 | 56.63 367 | 96.31 339 | 77.30 339 | 66.77 367 | 91.63 356 |
|
cl22 | | | 91.21 237 | 90.56 232 | 93.14 267 | 96.09 218 | 86.80 270 | 94.41 298 | 96.58 249 | 87.80 258 | 88.58 272 | 93.99 296 | 80.85 226 | 97.62 295 | 89.87 189 | 86.93 286 | 94.99 287 |
|
RRT_MVS | | | 93.10 158 | 92.83 145 | 93.93 233 | 94.76 280 | 88.04 244 | 98.47 22 | 96.55 250 | 93.44 82 | 90.01 232 | 97.04 141 | 80.64 228 | 97.93 267 | 94.33 106 | 90.21 259 | 95.83 237 |
|
jason | | | 94.84 103 | 94.39 106 | 96.18 117 | 95.52 235 | 90.93 153 | 96.09 242 | 96.52 251 | 89.28 211 | 96.01 93 | 97.32 125 | 84.70 154 | 98.77 172 | 95.15 83 | 98.91 97 | 98.85 115 |
jason: jason. |
AUN-MVS | | | 91.76 209 | 90.75 224 | 94.81 185 | 97.00 169 | 88.57 228 | 96.65 197 | 96.49 252 | 89.63 202 | 92.15 178 | 96.12 195 | 78.66 266 | 98.50 197 | 90.83 175 | 79.18 348 | 97.36 195 |
|
hse-mvs2 | | | 93.45 144 | 92.99 140 | 94.81 185 | 97.02 167 | 88.59 227 | 96.69 193 | 96.47 253 | 95.19 16 | 96.74 58 | 96.16 194 | 83.67 169 | 98.48 200 | 95.85 57 | 79.13 349 | 97.35 196 |
|
EG-PatchMatch MVS | | | 87.02 306 | 85.44 310 | 91.76 304 | 92.67 340 | 85.00 302 | 96.08 243 | 96.45 254 | 83.41 329 | 79.52 355 | 93.49 312 | 57.10 365 | 97.72 286 | 79.34 330 | 90.87 252 | 92.56 347 |
|
KD-MVS_self_test | | | 85.95 316 | 84.95 315 | 88.96 336 | 89.55 363 | 79.11 357 | 95.13 284 | 96.42 255 | 85.91 294 | 84.07 334 | 90.48 345 | 70.03 331 | 94.82 356 | 80.04 322 | 72.94 361 | 92.94 341 |
|
pmmvs6 | | | 87.81 301 | 86.19 305 | 92.69 281 | 91.32 351 | 86.30 280 | 97.34 130 | 96.41 256 | 80.59 348 | 84.05 335 | 94.37 276 | 67.37 343 | 97.67 289 | 84.75 284 | 79.51 347 | 94.09 329 |
|
PMMVS | | | 92.86 172 | 92.34 169 | 94.42 205 | 94.92 271 | 86.73 272 | 94.53 293 | 96.38 257 | 84.78 312 | 94.27 132 | 95.12 244 | 83.13 179 | 98.40 203 | 91.47 166 | 96.49 161 | 98.12 163 |
|
RPSCF | | | 90.75 255 | 90.86 217 | 90.42 327 | 96.84 174 | 76.29 363 | 95.61 264 | 96.34 258 | 83.89 321 | 91.38 193 | 97.87 85 | 76.45 290 | 98.78 170 | 87.16 251 | 92.23 220 | 96.20 221 |
|
MSDG | | | 91.42 225 | 90.24 244 | 94.96 176 | 97.15 156 | 88.91 219 | 93.69 321 | 96.32 259 | 85.72 297 | 86.93 307 | 96.47 179 | 80.24 237 | 98.98 156 | 80.57 319 | 95.05 185 | 96.98 201 |
|
OurMVSNet-221017-0 | | | 90.51 263 | 90.19 249 | 91.44 310 | 93.41 327 | 81.25 337 | 96.98 166 | 96.28 260 | 91.68 144 | 86.55 311 | 96.30 187 | 74.20 307 | 97.98 253 | 88.96 213 | 87.40 284 | 95.09 283 |
|
MVP-Stereo | | | 90.74 256 | 90.08 251 | 92.71 280 | 93.19 332 | 88.20 239 | 95.86 254 | 96.27 261 | 86.07 292 | 84.86 325 | 94.76 257 | 77.84 281 | 97.75 284 | 83.88 295 | 98.01 121 | 92.17 354 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
lupinMVS | | | 94.99 98 | 94.56 98 | 96.29 110 | 96.34 203 | 91.21 139 | 95.83 255 | 96.27 261 | 88.93 223 | 96.22 83 | 96.88 151 | 86.20 137 | 98.85 165 | 95.27 80 | 99.05 90 | 98.82 118 |
|
BH-untuned | | | 92.94 168 | 92.62 158 | 93.92 234 | 97.22 150 | 86.16 285 | 96.40 218 | 96.25 263 | 90.06 192 | 89.79 238 | 96.17 193 | 83.19 176 | 98.35 208 | 87.19 249 | 97.27 143 | 97.24 198 |
|
CL-MVSNet_self_test | | | 86.31 312 | 85.15 314 | 89.80 333 | 88.83 365 | 81.74 335 | 93.93 315 | 96.22 264 | 86.67 283 | 85.03 323 | 90.80 344 | 78.09 277 | 94.50 357 | 74.92 347 | 71.86 362 | 93.15 339 |
|
IS-MVSNet | | | 94.90 100 | 94.52 101 | 96.05 122 | 97.67 135 | 90.56 165 | 98.44 23 | 96.22 264 | 93.21 90 | 93.99 137 | 97.74 97 | 85.55 145 | 98.45 201 | 89.98 185 | 97.86 124 | 99.14 82 |
|
GA-MVS | | | 91.38 227 | 90.31 239 | 94.59 195 | 94.65 286 | 87.62 254 | 94.34 301 | 96.19 266 | 90.73 172 | 90.35 216 | 93.83 299 | 71.84 318 | 97.96 261 | 87.22 248 | 93.61 206 | 98.21 160 |
|
IterMVS-SCA-FT | | | 90.31 266 | 89.81 261 | 91.82 299 | 95.52 235 | 84.20 313 | 94.30 303 | 96.15 267 | 90.61 180 | 87.39 297 | 94.27 283 | 75.80 297 | 96.44 337 | 87.34 245 | 86.88 290 | 94.82 301 |
|
IterMVS | | | 90.15 272 | 89.67 267 | 91.61 306 | 95.48 237 | 83.72 319 | 94.33 302 | 96.12 268 | 89.99 193 | 87.31 300 | 94.15 291 | 75.78 299 | 96.27 340 | 86.97 253 | 86.89 289 | 94.83 299 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
DP-MVS | | | 92.76 177 | 91.51 197 | 96.52 88 | 98.77 61 | 90.99 149 | 97.38 128 | 96.08 269 | 82.38 334 | 89.29 255 | 97.87 85 | 83.77 167 | 99.69 48 | 81.37 316 | 96.69 156 | 98.89 112 |
|
pmmvs4 | | | 90.93 250 | 89.85 259 | 94.17 215 | 93.34 329 | 90.79 159 | 94.60 290 | 96.02 270 | 84.62 313 | 87.45 294 | 95.15 241 | 81.88 211 | 97.45 310 | 87.70 233 | 87.87 278 | 94.27 325 |
|
ppachtmachnet_test | | | 88.35 296 | 87.29 295 | 91.53 307 | 92.45 345 | 83.57 322 | 93.75 319 | 95.97 271 | 84.28 316 | 85.32 322 | 94.18 289 | 79.00 263 | 96.93 330 | 75.71 345 | 84.99 311 | 94.10 327 |
|
Anonymous20240521 | | | 86.42 310 | 85.44 310 | 89.34 335 | 90.33 356 | 79.79 351 | 96.73 187 | 95.92 272 | 83.71 325 | 83.25 339 | 91.36 342 | 63.92 357 | 96.01 341 | 78.39 334 | 85.36 302 | 92.22 352 |
|
ITE_SJBPF | | | | | 92.43 286 | 95.34 246 | 85.37 297 | | 95.92 272 | 91.47 149 | 87.75 291 | 96.39 184 | 71.00 324 | 97.96 261 | 82.36 307 | 89.86 262 | 93.97 330 |
|
USDC | | | 88.94 286 | 87.83 291 | 92.27 289 | 94.66 285 | 84.96 303 | 93.86 316 | 95.90 274 | 87.34 272 | 83.40 338 | 95.56 227 | 67.43 342 | 98.19 220 | 82.64 306 | 89.67 264 | 93.66 333 |
|
COLMAP_ROB |  | 87.81 15 | 90.40 265 | 89.28 274 | 93.79 239 | 97.95 119 | 87.13 265 | 96.92 172 | 95.89 275 | 82.83 332 | 86.88 309 | 97.18 132 | 73.77 311 | 99.29 123 | 78.44 333 | 93.62 205 | 94.95 288 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
VDD-MVS | | | 93.82 131 | 93.08 138 | 96.02 124 | 97.88 125 | 89.96 182 | 97.72 89 | 95.85 276 | 92.43 123 | 95.86 97 | 98.44 32 | 68.42 338 | 99.39 114 | 96.31 36 | 94.85 186 | 98.71 126 |
|
VDDNet | | | 93.05 162 | 92.07 174 | 96.02 124 | 96.84 174 | 90.39 172 | 98.08 54 | 95.85 276 | 86.22 290 | 95.79 100 | 98.46 30 | 67.59 341 | 99.19 129 | 94.92 91 | 94.85 186 | 98.47 143 |
|
Vis-MVSNet (Re-imp) | | | 94.15 115 | 93.88 111 | 94.95 177 | 97.61 141 | 87.92 247 | 98.10 52 | 95.80 278 | 92.22 127 | 93.02 159 | 97.45 120 | 84.53 157 | 97.91 271 | 88.24 222 | 97.97 122 | 99.02 92 |
|
KD-MVS_2432*1600 | | | 84.81 323 | 82.64 326 | 91.31 312 | 91.07 353 | 85.34 298 | 91.22 347 | 95.75 279 | 85.56 299 | 83.09 340 | 90.21 347 | 67.21 344 | 95.89 343 | 77.18 340 | 62.48 369 | 92.69 344 |
|
miper_refine_blended | | | 84.81 323 | 82.64 326 | 91.31 312 | 91.07 353 | 85.34 298 | 91.22 347 | 95.75 279 | 85.56 299 | 83.09 340 | 90.21 347 | 67.21 344 | 95.89 343 | 77.18 340 | 62.48 369 | 92.69 344 |
|
tpm cat1 | | | 88.36 295 | 87.21 298 | 91.81 300 | 95.13 262 | 80.55 343 | 92.58 340 | 95.70 281 | 74.97 361 | 87.45 294 | 91.96 335 | 78.01 280 | 98.17 223 | 80.39 321 | 88.74 272 | 96.72 212 |
|
our_test_3 | | | 88.78 291 | 87.98 290 | 91.20 315 | 92.45 345 | 82.53 327 | 93.61 325 | 95.69 282 | 85.77 296 | 84.88 324 | 93.71 304 | 79.99 242 | 96.78 335 | 79.47 327 | 86.24 291 | 94.28 324 |
|
BH-w/o | | | 92.14 201 | 91.75 185 | 93.31 260 | 96.99 170 | 85.73 289 | 95.67 260 | 95.69 282 | 88.73 233 | 89.26 257 | 94.82 255 | 82.97 186 | 98.07 241 | 85.26 279 | 96.32 164 | 96.13 227 |
|
CR-MVSNet | | | 90.82 253 | 89.77 263 | 93.95 229 | 94.45 296 | 87.19 262 | 90.23 355 | 95.68 284 | 86.89 280 | 92.40 169 | 92.36 330 | 80.91 223 | 97.05 324 | 81.09 318 | 93.95 201 | 97.60 189 |
|
Patchmtry | | | 88.64 293 | 87.25 296 | 92.78 279 | 94.09 307 | 86.64 273 | 89.82 358 | 95.68 284 | 80.81 346 | 87.63 293 | 92.36 330 | 80.91 223 | 97.03 325 | 78.86 331 | 85.12 307 | 94.67 312 |
|
iter_conf_final | | | 93.60 138 | 93.11 137 | 95.04 168 | 97.13 157 | 91.30 134 | 97.92 68 | 95.65 286 | 92.98 104 | 91.60 188 | 96.64 164 | 79.28 254 | 98.13 226 | 95.34 79 | 91.49 234 | 95.70 251 |
|
BH-RMVSNet | | | 92.72 178 | 91.97 179 | 94.97 175 | 97.16 154 | 87.99 246 | 96.15 240 | 95.60 287 | 90.62 179 | 91.87 185 | 97.15 136 | 78.41 270 | 98.57 193 | 83.16 298 | 97.60 131 | 98.36 155 |
|
PVSNet_0 | | 82.17 19 | 85.46 320 | 83.64 323 | 90.92 318 | 95.27 253 | 79.49 353 | 90.55 353 | 95.60 287 | 83.76 324 | 83.00 342 | 89.95 349 | 71.09 323 | 97.97 256 | 82.75 304 | 60.79 371 | 95.31 273 |
|
SCA | | | 91.84 207 | 91.18 210 | 93.83 236 | 95.59 231 | 84.95 304 | 94.72 288 | 95.58 289 | 90.82 168 | 92.25 176 | 93.69 305 | 75.80 297 | 98.10 234 | 86.20 262 | 95.98 166 | 98.45 145 |
|
AllTest | | | 90.23 269 | 88.98 278 | 93.98 225 | 97.94 120 | 86.64 273 | 96.51 210 | 95.54 290 | 85.38 301 | 85.49 319 | 96.77 154 | 70.28 328 | 99.15 134 | 80.02 323 | 92.87 210 | 96.15 225 |
|
TestCases | | | | | 93.98 225 | 97.94 120 | 86.64 273 | | 95.54 290 | 85.38 301 | 85.49 319 | 96.77 154 | 70.28 328 | 99.15 134 | 80.02 323 | 92.87 210 | 96.15 225 |
|
iter_conf05 | | | 93.18 155 | 92.63 156 | 94.83 182 | 96.64 183 | 90.69 162 | 97.60 105 | 95.53 292 | 92.52 121 | 91.58 189 | 96.64 164 | 76.35 293 | 98.13 226 | 95.43 77 | 91.42 237 | 95.68 254 |
|
mvsmamba | | | 93.83 130 | 93.46 126 | 94.93 180 | 94.88 275 | 90.85 156 | 98.55 14 | 95.49 293 | 94.24 54 | 91.29 201 | 96.97 145 | 83.04 183 | 98.14 225 | 95.56 75 | 91.17 242 | 95.78 241 |
|
tpmvs | | | 89.83 279 | 89.15 277 | 91.89 296 | 94.92 271 | 80.30 346 | 93.11 333 | 95.46 294 | 86.28 288 | 88.08 284 | 92.65 322 | 80.44 232 | 98.52 196 | 81.47 312 | 89.92 261 | 96.84 208 |
|
pmmvs5 | | | 89.86 278 | 88.87 280 | 92.82 277 | 92.86 336 | 86.23 282 | 96.26 232 | 95.39 295 | 84.24 317 | 87.12 301 | 94.51 267 | 74.27 306 | 97.36 317 | 87.61 241 | 87.57 280 | 94.86 297 |
|
PatchmatchNet |  | | 91.91 205 | 91.35 199 | 93.59 248 | 95.38 241 | 84.11 314 | 93.15 332 | 95.39 295 | 89.54 203 | 92.10 181 | 93.68 307 | 82.82 190 | 98.13 226 | 84.81 283 | 95.32 179 | 98.52 135 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
tpmrst | | | 91.44 224 | 91.32 201 | 91.79 301 | 95.15 260 | 79.20 356 | 93.42 327 | 95.37 297 | 88.55 238 | 93.49 149 | 93.67 308 | 82.49 198 | 98.27 213 | 90.41 180 | 89.34 266 | 97.90 171 |
|
Anonymous20231206 | | | 87.09 305 | 86.14 306 | 89.93 332 | 91.22 352 | 80.35 344 | 96.11 241 | 95.35 298 | 83.57 327 | 84.16 331 | 93.02 319 | 73.54 312 | 95.61 349 | 72.16 357 | 86.14 293 | 93.84 332 |
|
MIMVSNet1 | | | 84.93 322 | 83.05 324 | 90.56 325 | 89.56 362 | 84.84 306 | 95.40 271 | 95.35 298 | 83.91 320 | 80.38 351 | 92.21 334 | 57.23 364 | 93.34 365 | 70.69 363 | 82.75 338 | 93.50 335 |
|
TDRefinement | | | 86.53 308 | 84.76 318 | 91.85 297 | 82.23 373 | 84.25 311 | 96.38 221 | 95.35 298 | 84.97 309 | 84.09 333 | 94.94 247 | 65.76 354 | 98.34 211 | 84.60 287 | 74.52 357 | 92.97 340 |
|
TR-MVS | | | 91.48 223 | 90.59 230 | 94.16 216 | 96.40 200 | 87.33 256 | 95.67 260 | 95.34 301 | 87.68 264 | 91.46 192 | 95.52 230 | 76.77 288 | 98.35 208 | 82.85 302 | 93.61 206 | 96.79 210 |
|
EPNet_dtu | | | 91.71 210 | 91.28 204 | 92.99 271 | 93.76 317 | 83.71 320 | 96.69 193 | 95.28 302 | 93.15 94 | 87.02 305 | 95.95 203 | 83.37 175 | 97.38 316 | 79.46 328 | 96.84 150 | 97.88 173 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
FMVSNet5 | | | 87.29 304 | 85.79 308 | 91.78 302 | 94.80 279 | 87.28 257 | 95.49 268 | 95.28 302 | 84.09 319 | 83.85 337 | 91.82 336 | 62.95 359 | 94.17 360 | 78.48 332 | 85.34 303 | 93.91 331 |
|
MDTV_nov1_ep13 | | | | 90.76 223 | | 95.22 257 | 80.33 345 | 93.03 335 | 95.28 302 | 88.14 249 | 92.84 166 | 93.83 299 | 81.34 217 | 98.08 238 | 82.86 301 | 94.34 195 | |
|
LF4IMVS | | | 87.94 299 | 87.25 296 | 89.98 331 | 92.38 347 | 80.05 350 | 94.38 299 | 95.25 305 | 87.59 266 | 84.34 328 | 94.74 259 | 64.31 356 | 97.66 291 | 84.83 282 | 87.45 281 | 92.23 351 |
|
TransMVSNet (Re) | | | 88.94 286 | 87.56 293 | 93.08 269 | 94.35 299 | 88.45 233 | 97.73 86 | 95.23 306 | 87.47 268 | 84.26 330 | 95.29 236 | 79.86 245 | 97.33 318 | 79.44 329 | 74.44 358 | 93.45 337 |
|
test20.03 | | | 86.14 314 | 85.40 312 | 88.35 337 | 90.12 357 | 80.06 349 | 95.90 253 | 95.20 307 | 88.59 234 | 81.29 346 | 93.62 310 | 71.43 321 | 92.65 367 | 71.26 361 | 81.17 342 | 92.34 350 |
|
new-patchmatchnet | | | 83.18 327 | 81.87 329 | 87.11 343 | 86.88 370 | 75.99 364 | 93.70 320 | 95.18 308 | 85.02 308 | 77.30 359 | 88.40 355 | 65.99 352 | 93.88 362 | 74.19 352 | 70.18 364 | 91.47 359 |
|
MDA-MVSNet_test_wron | | | 85.87 317 | 84.23 321 | 90.80 322 | 92.38 347 | 82.57 326 | 93.17 330 | 95.15 309 | 82.15 335 | 67.65 365 | 92.33 333 | 78.20 273 | 95.51 352 | 77.33 337 | 79.74 344 | 94.31 323 |
|
YYNet1 | | | 85.87 317 | 84.23 321 | 90.78 323 | 92.38 347 | 82.46 329 | 93.17 330 | 95.14 310 | 82.12 336 | 67.69 364 | 92.36 330 | 78.16 276 | 95.50 353 | 77.31 338 | 79.73 345 | 94.39 319 |
|
Baseline_NR-MVSNet | | | 91.20 238 | 90.62 228 | 92.95 273 | 93.83 315 | 88.03 245 | 97.01 163 | 95.12 311 | 88.42 240 | 89.70 240 | 95.13 243 | 83.47 172 | 97.44 311 | 89.66 195 | 83.24 333 | 93.37 338 |
|
thres200 | | | 92.23 196 | 91.39 198 | 94.75 192 | 97.61 141 | 89.03 217 | 96.60 205 | 95.09 312 | 92.08 135 | 93.28 155 | 94.00 295 | 78.39 271 | 99.04 153 | 81.26 317 | 94.18 196 | 96.19 222 |
|
ADS-MVSNet | | | 89.89 276 | 88.68 282 | 93.53 251 | 95.86 222 | 84.89 305 | 90.93 350 | 95.07 313 | 83.23 330 | 91.28 202 | 91.81 337 | 79.01 261 | 97.85 274 | 79.52 325 | 91.39 238 | 97.84 175 |
|
pmmvs-eth3d | | | 86.22 313 | 84.45 319 | 91.53 307 | 88.34 367 | 87.25 259 | 94.47 294 | 95.01 314 | 83.47 328 | 79.51 356 | 89.61 352 | 69.75 333 | 95.71 348 | 83.13 299 | 76.73 354 | 91.64 355 |
|
Anonymous202405211 | | | 92.07 202 | 90.83 221 | 95.76 132 | 98.19 108 | 88.75 222 | 97.58 107 | 95.00 315 | 86.00 293 | 93.64 144 | 97.45 120 | 66.24 351 | 99.53 93 | 90.68 179 | 92.71 213 | 99.01 96 |
|
MDA-MVSNet-bldmvs | | | 85.00 321 | 82.95 325 | 91.17 316 | 93.13 334 | 83.33 323 | 94.56 292 | 95.00 315 | 84.57 314 | 65.13 369 | 92.65 322 | 70.45 327 | 95.85 345 | 73.57 353 | 77.49 351 | 94.33 321 |
|
ambc | | | | | 86.56 345 | 83.60 371 | 70.00 371 | 85.69 365 | 94.97 317 | | 80.60 350 | 88.45 354 | 37.42 374 | 96.84 333 | 82.69 305 | 75.44 356 | 92.86 342 |
|
testgi | | | 87.97 298 | 87.21 298 | 90.24 329 | 92.86 336 | 80.76 339 | 96.67 196 | 94.97 317 | 91.74 142 | 85.52 318 | 95.83 209 | 62.66 360 | 94.47 359 | 76.25 343 | 88.36 275 | 95.48 258 |
|
dp | | | 88.90 288 | 88.26 288 | 90.81 320 | 94.58 292 | 76.62 362 | 92.85 337 | 94.93 319 | 85.12 306 | 90.07 231 | 93.07 318 | 75.81 296 | 98.12 231 | 80.53 320 | 87.42 283 | 97.71 181 |
|
test_0402 | | | 86.46 309 | 84.79 317 | 91.45 309 | 95.02 266 | 85.55 291 | 96.29 230 | 94.89 320 | 80.90 343 | 82.21 343 | 93.97 297 | 68.21 339 | 97.29 320 | 62.98 368 | 88.68 273 | 91.51 357 |
|
tfpn200view9 | | | 92.38 186 | 91.52 195 | 94.95 177 | 97.85 126 | 89.29 208 | 97.41 122 | 94.88 321 | 92.19 131 | 93.27 156 | 94.46 272 | 78.17 274 | 99.08 144 | 81.40 313 | 94.08 197 | 96.48 217 |
|
CVMVSNet | | | 91.23 236 | 91.75 185 | 89.67 334 | 95.77 227 | 74.69 365 | 96.44 211 | 94.88 321 | 85.81 295 | 92.18 177 | 97.64 108 | 79.07 256 | 95.58 351 | 88.06 224 | 95.86 170 | 98.74 122 |
|
thres400 | | | 92.42 184 | 91.52 195 | 95.12 167 | 97.85 126 | 89.29 208 | 97.41 122 | 94.88 321 | 92.19 131 | 93.27 156 | 94.46 272 | 78.17 274 | 99.08 144 | 81.40 313 | 94.08 197 | 96.98 201 |
|
EPNet | | | 95.20 91 | 94.56 98 | 97.14 71 | 92.80 338 | 92.68 88 | 97.85 75 | 94.87 324 | 96.64 1 | 92.46 168 | 97.80 94 | 86.23 134 | 99.65 57 | 93.72 120 | 98.62 104 | 99.10 88 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
SixPastTwentyTwo | | | 89.15 284 | 88.54 284 | 90.98 317 | 93.49 325 | 80.28 347 | 96.70 191 | 94.70 325 | 90.78 169 | 84.15 332 | 95.57 226 | 71.78 319 | 97.71 287 | 84.63 286 | 85.07 308 | 94.94 290 |
|
thres100view900 | | | 92.43 183 | 91.58 192 | 94.98 174 | 97.92 122 | 89.37 204 | 97.71 91 | 94.66 326 | 92.20 129 | 93.31 154 | 94.90 250 | 78.06 278 | 99.08 144 | 81.40 313 | 94.08 197 | 96.48 217 |
|
thres600view7 | | | 92.49 182 | 91.60 191 | 95.18 163 | 97.91 123 | 89.47 198 | 97.65 98 | 94.66 326 | 92.18 133 | 93.33 153 | 94.91 249 | 78.06 278 | 99.10 139 | 81.61 310 | 94.06 200 | 96.98 201 |
|
PatchT | | | 88.87 289 | 87.42 294 | 93.22 264 | 94.08 308 | 85.10 301 | 89.51 359 | 94.64 328 | 81.92 337 | 92.36 172 | 88.15 358 | 80.05 241 | 97.01 328 | 72.43 356 | 93.65 204 | 97.54 192 |
|
baseline1 | | | 92.82 175 | 91.90 181 | 95.55 148 | 97.20 152 | 90.77 160 | 97.19 147 | 94.58 329 | 92.20 129 | 92.36 172 | 96.34 186 | 84.16 163 | 98.21 217 | 89.20 209 | 83.90 328 | 97.68 183 |
|
Gipuma |  | | 67.86 337 | 65.41 339 | 75.18 353 | 92.66 341 | 73.45 367 | 66.50 372 | 94.52 330 | 53.33 371 | 57.80 372 | 66.07 372 | 30.81 375 | 89.20 369 | 48.15 373 | 78.88 350 | 62.90 372 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
bld_raw_conf005 | | | 93.06 161 | 92.54 163 | 94.60 194 | 94.64 288 | 89.95 183 | 98.28 32 | 94.50 331 | 94.06 57 | 90.23 218 | 96.99 144 | 78.34 272 | 98.12 231 | 94.73 100 | 91.09 245 | 95.74 249 |
|
CostFormer | | | 91.18 241 | 90.70 226 | 92.62 283 | 94.84 277 | 81.76 334 | 94.09 310 | 94.43 332 | 84.15 318 | 92.72 167 | 93.77 303 | 79.43 251 | 98.20 218 | 90.70 178 | 92.18 223 | 97.90 171 |
|
tpm2 | | | 89.96 274 | 89.21 275 | 92.23 290 | 94.91 273 | 81.25 337 | 93.78 318 | 94.42 333 | 80.62 347 | 91.56 190 | 93.44 314 | 76.44 291 | 97.94 264 | 85.60 274 | 92.08 227 | 97.49 193 |
|
JIA-IIPM | | | 88.26 297 | 87.04 301 | 91.91 295 | 93.52 323 | 81.42 336 | 89.38 360 | 94.38 334 | 80.84 345 | 90.93 207 | 80.74 366 | 79.22 255 | 97.92 268 | 82.76 303 | 91.62 231 | 96.38 219 |
|
Patchmatch-test | | | 89.42 282 | 87.99 289 | 93.70 243 | 95.27 253 | 85.11 300 | 88.98 361 | 94.37 335 | 81.11 342 | 87.10 303 | 93.69 305 | 82.28 202 | 97.50 306 | 74.37 350 | 94.76 189 | 98.48 142 |
|
LCM-MVSNet | | | 72.55 333 | 69.39 337 | 82.03 348 | 70.81 380 | 65.42 375 | 90.12 357 | 94.36 336 | 55.02 370 | 65.88 367 | 81.72 365 | 24.16 381 | 89.96 368 | 74.32 351 | 68.10 366 | 90.71 362 |
|
ADS-MVSNet2 | | | 89.45 281 | 88.59 283 | 92.03 293 | 95.86 222 | 82.26 331 | 90.93 350 | 94.32 337 | 83.23 330 | 91.28 202 | 91.81 337 | 79.01 261 | 95.99 342 | 79.52 325 | 91.39 238 | 97.84 175 |
|
EU-MVSNet | | | 88.72 292 | 88.90 279 | 88.20 339 | 93.15 333 | 74.21 366 | 96.63 202 | 94.22 338 | 85.18 304 | 87.32 299 | 95.97 201 | 76.16 294 | 94.98 355 | 85.27 278 | 86.17 292 | 95.41 264 |
|
MIMVSNet | | | 88.50 294 | 86.76 302 | 93.72 242 | 94.84 277 | 87.77 252 | 91.39 345 | 94.05 339 | 86.41 287 | 87.99 287 | 92.59 324 | 63.27 358 | 95.82 347 | 77.44 336 | 92.84 212 | 97.57 191 |
|
OpenMVS_ROB |  | 81.14 20 | 84.42 325 | 82.28 328 | 90.83 319 | 90.06 358 | 84.05 316 | 95.73 259 | 94.04 340 | 73.89 363 | 80.17 354 | 91.53 341 | 59.15 363 | 97.64 292 | 66.92 366 | 89.05 268 | 90.80 361 |
|
TinyColmap | | | 86.82 307 | 85.35 313 | 91.21 314 | 94.91 273 | 82.99 325 | 93.94 314 | 94.02 341 | 83.58 326 | 81.56 345 | 94.68 261 | 62.34 361 | 98.13 226 | 75.78 344 | 87.35 285 | 92.52 348 |
|
IB-MVS | | 87.33 17 | 89.91 275 | 88.28 287 | 94.79 189 | 95.26 256 | 87.70 253 | 95.12 285 | 93.95 342 | 89.35 210 | 87.03 304 | 92.49 325 | 70.74 326 | 99.19 129 | 89.18 210 | 81.37 341 | 97.49 193 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
LCM-MVSNet-Re | | | 92.50 180 | 92.52 165 | 92.44 285 | 96.82 177 | 81.89 333 | 96.92 172 | 93.71 343 | 92.41 124 | 84.30 329 | 94.60 265 | 85.08 150 | 97.03 325 | 91.51 164 | 97.36 139 | 98.40 151 |
|
bld_raw_dy_0_64 | | | 92.37 187 | 91.69 188 | 94.39 206 | 94.28 304 | 89.73 188 | 97.71 91 | 93.65 344 | 92.78 113 | 90.46 213 | 96.67 162 | 75.88 295 | 97.97 256 | 92.92 139 | 90.89 251 | 95.48 258 |
|
tpm | | | 90.25 268 | 89.74 266 | 91.76 304 | 93.92 311 | 79.73 352 | 93.98 311 | 93.54 345 | 88.28 243 | 91.99 183 | 93.25 317 | 77.51 284 | 97.44 311 | 87.30 247 | 87.94 277 | 98.12 163 |
|
ET-MVSNet_ETH3D | | | 91.49 222 | 90.11 250 | 95.63 142 | 96.40 200 | 91.57 126 | 95.34 273 | 93.48 346 | 90.60 182 | 75.58 361 | 95.49 231 | 80.08 240 | 96.79 334 | 94.25 107 | 89.76 263 | 98.52 135 |
|
LFMVS | | | 93.60 138 | 92.63 156 | 96.52 88 | 98.13 113 | 91.27 136 | 97.94 66 | 93.39 347 | 90.57 183 | 96.29 81 | 98.31 51 | 69.00 334 | 99.16 133 | 94.18 109 | 95.87 169 | 99.12 86 |
|
Patchmatch-RL test | | | 87.38 303 | 86.24 304 | 90.81 320 | 88.74 366 | 78.40 360 | 88.12 363 | 93.17 348 | 87.11 277 | 82.17 344 | 89.29 353 | 81.95 209 | 95.60 350 | 88.64 219 | 77.02 352 | 98.41 150 |
|
test-LLR | | | 91.42 225 | 91.19 209 | 92.12 291 | 94.59 290 | 80.66 340 | 94.29 304 | 92.98 349 | 91.11 164 | 90.76 209 | 92.37 327 | 79.02 259 | 98.07 241 | 88.81 215 | 96.74 153 | 97.63 184 |
|
test-mter | | | 90.19 271 | 89.54 270 | 92.12 291 | 94.59 290 | 80.66 340 | 94.29 304 | 92.98 349 | 87.68 264 | 90.76 209 | 92.37 327 | 67.67 340 | 98.07 241 | 88.81 215 | 96.74 153 | 97.63 184 |
|
test_method | | | 66.11 338 | 64.89 340 | 69.79 355 | 72.62 378 | 35.23 385 | 65.19 373 | 92.83 351 | 20.35 376 | 65.20 368 | 88.08 359 | 43.14 373 | 82.70 373 | 73.12 355 | 63.46 368 | 91.45 360 |
|
test0.0.03 1 | | | 89.37 283 | 88.70 281 | 91.41 311 | 92.47 344 | 85.63 290 | 95.22 282 | 92.70 352 | 91.11 164 | 86.91 308 | 93.65 309 | 79.02 259 | 93.19 366 | 78.00 335 | 89.18 267 | 95.41 264 |
|
new_pmnet | | | 82.89 328 | 81.12 332 | 88.18 340 | 89.63 361 | 80.18 348 | 91.77 344 | 92.57 353 | 76.79 360 | 75.56 362 | 88.23 357 | 61.22 362 | 94.48 358 | 71.43 359 | 82.92 336 | 89.87 363 |
|
thisisatest0515 | | | 92.29 192 | 91.30 203 | 95.25 161 | 96.60 185 | 88.90 220 | 94.36 300 | 92.32 354 | 87.92 253 | 93.43 151 | 94.57 266 | 77.28 285 | 99.00 154 | 89.42 200 | 95.86 170 | 97.86 174 |
|
thisisatest0530 | | | 93.03 163 | 92.21 172 | 95.49 153 | 97.07 160 | 89.11 216 | 97.49 118 | 92.19 355 | 90.16 190 | 94.09 135 | 96.41 182 | 76.43 292 | 99.05 150 | 90.38 181 | 95.68 175 | 98.31 157 |
|
tttt0517 | | | 92.96 166 | 92.33 170 | 94.87 181 | 97.11 158 | 87.16 264 | 97.97 64 | 92.09 356 | 90.63 178 | 93.88 141 | 97.01 143 | 76.50 289 | 99.06 149 | 90.29 184 | 95.45 177 | 98.38 153 |
|
K. test v3 | | | 87.64 302 | 86.75 303 | 90.32 328 | 93.02 335 | 79.48 354 | 96.61 203 | 92.08 357 | 90.66 176 | 80.25 353 | 94.09 292 | 67.21 344 | 96.65 336 | 85.96 270 | 80.83 343 | 94.83 299 |
|
TESTMET0.1,1 | | | 90.06 273 | 89.42 271 | 91.97 294 | 94.41 298 | 80.62 342 | 94.29 304 | 91.97 358 | 87.28 274 | 90.44 214 | 92.47 326 | 68.79 335 | 97.67 289 | 88.50 221 | 96.60 158 | 97.61 188 |
|
PM-MVS | | | 83.48 326 | 81.86 330 | 88.31 338 | 87.83 369 | 77.59 361 | 93.43 326 | 91.75 359 | 86.91 279 | 80.63 349 | 89.91 350 | 44.42 372 | 95.84 346 | 85.17 281 | 76.73 354 | 91.50 358 |
|
baseline2 | | | 91.63 213 | 90.86 217 | 93.94 231 | 94.33 300 | 86.32 279 | 95.92 252 | 91.64 360 | 89.37 209 | 86.94 306 | 94.69 260 | 81.62 215 | 98.69 181 | 88.64 219 | 94.57 193 | 96.81 209 |
|
FPMVS | | | 71.27 334 | 69.85 336 | 75.50 352 | 74.64 375 | 59.03 377 | 91.30 346 | 91.50 361 | 58.80 369 | 57.92 371 | 88.28 356 | 29.98 377 | 85.53 372 | 53.43 371 | 82.84 337 | 81.95 368 |
|
door | | | | | | | | | 91.13 362 | | | | | | | | |
|
door-mid | | | | | | | | | 91.06 363 | | | | | | | | |
|
EGC-MVSNET | | | 68.77 336 | 63.01 341 | 86.07 347 | 92.49 343 | 82.24 332 | 93.96 313 | 90.96 364 | 0.71 381 | 2.62 382 | 90.89 343 | 53.66 368 | 93.46 363 | 57.25 370 | 84.55 317 | 82.51 367 |
|
pmmvs3 | | | 79.97 331 | 77.50 335 | 87.39 342 | 82.80 372 | 79.38 355 | 92.70 339 | 90.75 365 | 70.69 365 | 78.66 357 | 87.47 362 | 51.34 370 | 93.40 364 | 73.39 354 | 69.65 365 | 89.38 364 |
|
DSMNet-mixed | | | 86.34 311 | 86.12 307 | 87.00 344 | 89.88 360 | 70.43 369 | 94.93 286 | 90.08 366 | 77.97 358 | 85.42 321 | 92.78 321 | 74.44 305 | 93.96 361 | 74.43 349 | 95.14 181 | 96.62 213 |
|
MVS-HIRNet | | | 82.47 329 | 81.21 331 | 86.26 346 | 95.38 241 | 69.21 372 | 88.96 362 | 89.49 367 | 66.28 366 | 80.79 348 | 74.08 370 | 68.48 337 | 97.39 315 | 71.93 358 | 95.47 176 | 92.18 353 |
|
test1111 | | | 93.19 152 | 92.82 146 | 94.30 212 | 97.58 145 | 84.56 309 | 98.21 45 | 89.02 368 | 93.53 78 | 94.58 126 | 98.21 62 | 72.69 314 | 99.05 150 | 93.06 133 | 98.48 109 | 99.28 71 |
|
ECVR-MVS |  | | 93.19 152 | 92.73 153 | 94.57 200 | 97.66 137 | 85.41 294 | 98.21 45 | 88.23 369 | 93.43 83 | 94.70 124 | 98.21 62 | 72.57 315 | 99.07 147 | 93.05 134 | 98.49 107 | 99.25 74 |
|
EPMVS | | | 90.70 258 | 89.81 261 | 93.37 258 | 94.73 283 | 84.21 312 | 93.67 322 | 88.02 370 | 89.50 205 | 92.38 171 | 93.49 312 | 77.82 282 | 97.78 281 | 86.03 268 | 92.68 214 | 98.11 166 |
|
ANet_high | | | 63.94 339 | 59.58 342 | 77.02 351 | 61.24 382 | 66.06 373 | 85.66 366 | 87.93 371 | 78.53 356 | 42.94 374 | 71.04 371 | 25.42 380 | 80.71 374 | 52.60 372 | 30.83 375 | 84.28 366 |
|
PMMVS2 | | | 70.19 335 | 66.92 338 | 80.01 349 | 76.35 374 | 65.67 374 | 86.22 364 | 87.58 372 | 64.83 368 | 62.38 370 | 80.29 367 | 26.78 379 | 88.49 370 | 63.79 367 | 54.07 372 | 85.88 365 |
|
lessismore_v0 | | | | | 90.45 326 | 91.96 350 | 79.09 358 | | 87.19 373 | | 80.32 352 | 94.39 274 | 66.31 350 | 97.55 300 | 84.00 293 | 76.84 353 | 94.70 311 |
|
PMVS |  | 53.92 22 | 58.58 340 | 55.40 343 | 68.12 356 | 51.00 383 | 48.64 379 | 78.86 369 | 87.10 374 | 46.77 372 | 35.84 378 | 74.28 369 | 8.76 382 | 86.34 371 | 42.07 374 | 73.91 359 | 69.38 370 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
gg-mvs-nofinetune | | | 87.82 300 | 85.61 309 | 94.44 203 | 94.46 295 | 89.27 211 | 91.21 349 | 84.61 375 | 80.88 344 | 89.89 236 | 74.98 368 | 71.50 320 | 97.53 303 | 85.75 273 | 97.21 145 | 96.51 215 |
|
GG-mvs-BLEND | | | | | 93.62 246 | 93.69 319 | 89.20 212 | 92.39 343 | 83.33 376 | | 87.98 288 | 89.84 351 | 71.00 324 | 96.87 332 | 82.08 309 | 95.40 178 | 94.80 304 |
|
MTMP | | | | | | | | 97.86 72 | 82.03 377 | | | | | | | | |
|
DeepMVS_CX |  | | | | 74.68 354 | 90.84 355 | 64.34 376 | | 81.61 378 | 65.34 367 | 67.47 366 | 88.01 360 | 48.60 371 | 80.13 375 | 62.33 369 | 73.68 360 | 79.58 369 |
|
E-PMN | | | 53.28 341 | 52.56 345 | 55.43 358 | 74.43 376 | 47.13 380 | 83.63 368 | 76.30 379 | 42.23 373 | 42.59 375 | 62.22 374 | 28.57 378 | 74.40 376 | 31.53 376 | 31.51 374 | 44.78 373 |
|
test2506 | | | 91.60 214 | 90.78 222 | 94.04 222 | 97.66 137 | 83.81 317 | 98.27 34 | 75.53 380 | 93.43 83 | 95.23 116 | 98.21 62 | 67.21 344 | 99.07 147 | 93.01 137 | 98.49 107 | 99.25 74 |
|
EMVS | | | 52.08 343 | 51.31 346 | 54.39 359 | 72.62 378 | 45.39 382 | 83.84 367 | 75.51 381 | 41.13 374 | 40.77 376 | 59.65 375 | 30.08 376 | 73.60 377 | 28.31 377 | 29.90 376 | 44.18 374 |
|
MVE |  | 50.73 23 | 53.25 342 | 48.81 347 | 66.58 357 | 65.34 381 | 57.50 378 | 72.49 371 | 70.94 382 | 40.15 375 | 39.28 377 | 63.51 373 | 6.89 384 | 73.48 378 | 38.29 375 | 42.38 373 | 68.76 371 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
tmp_tt | | | 51.94 344 | 53.82 344 | 46.29 360 | 33.73 384 | 45.30 383 | 78.32 370 | 67.24 383 | 18.02 377 | 50.93 373 | 87.05 363 | 52.99 369 | 53.11 379 | 70.76 362 | 25.29 377 | 40.46 375 |
|
N_pmnet | | | 78.73 332 | 78.71 334 | 78.79 350 | 92.80 338 | 46.50 381 | 94.14 308 | 43.71 384 | 78.61 355 | 80.83 347 | 91.66 340 | 74.94 303 | 96.36 338 | 67.24 365 | 84.45 319 | 93.50 335 |
|
wuyk23d | | | 25.11 345 | 24.57 349 | 26.74 361 | 73.98 377 | 39.89 384 | 57.88 374 | 9.80 385 | 12.27 378 | 10.39 379 | 6.97 381 | 7.03 383 | 36.44 380 | 25.43 378 | 17.39 378 | 3.89 378 |
|
testmvs | | | 13.36 347 | 16.33 350 | 4.48 363 | 5.04 385 | 2.26 387 | 93.18 329 | 3.28 386 | 2.70 379 | 8.24 380 | 21.66 377 | 2.29 386 | 2.19 381 | 7.58 379 | 2.96 379 | 9.00 377 |
|
test123 | | | 13.04 348 | 15.66 351 | 5.18 362 | 4.51 386 | 3.45 386 | 92.50 342 | 1.81 387 | 2.50 380 | 7.58 381 | 20.15 378 | 3.67 385 | 2.18 382 | 7.13 380 | 1.07 380 | 9.90 376 |
|
test_blank | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uanet_test | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
DCPMVS | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
pcd_1.5k_mvsjas | | | 7.39 350 | 9.85 353 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 88.65 101 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
sosnet-low-res | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
sosnet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uncertanet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
Regformer | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
n2 | | | | | | | | | 0.00 388 | | | | | | | | |
|
nn | | | | | | | | | 0.00 388 | | | | | | | | |
|
ab-mvs-re | | | 8.06 349 | 10.74 352 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 96.69 160 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uanet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
PC_three_1452 | | | | | | | | | | 90.77 170 | 98.89 8 | 98.28 57 | 96.24 1 | 98.35 208 | 95.76 61 | 99.58 22 | 99.59 20 |
|
eth-test2 | | | | | | 0.00 387 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 387 | | | | | | | | | | | |
|
OPU-MVS | | | | | 98.55 3 | 98.82 60 | 96.86 3 | 98.25 38 | | | | 98.26 58 | 96.04 2 | 99.24 126 | 95.36 78 | 99.59 17 | 99.56 27 |
|
test_0728_THIRD | | | | | | | | | | 94.78 37 | 98.73 10 | 98.87 6 | 95.87 4 | 99.84 23 | 97.45 9 | 99.72 2 | 99.77 1 |
|
GSMVS | | | | | | | | | | | | | | | | | 98.45 145 |
|
test_part2 | | | | | | 99.28 27 | 95.74 8 | | | | 98.10 21 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 82.76 191 | | | | 98.45 145 |
|
sam_mvs | | | | | | | | | | | | | 81.94 210 | | | | |
|
test_post1 | | | | | | | | 92.81 338 | | | | 16.58 380 | 80.53 230 | 97.68 288 | 86.20 262 | | |
|
test_post | | | | | | | | | | | | 17.58 379 | 81.76 212 | 98.08 238 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 90.45 346 | 82.65 195 | 98.10 234 | | | |
|
gm-plane-assit | | | | | | 93.22 331 | 78.89 359 | | | 84.82 311 | | 93.52 311 | | 98.64 185 | 87.72 230 | | |
|
test9_res | | | | | | | | | | | | | | | 94.81 96 | 99.38 54 | 99.45 51 |
|
agg_prior2 | | | | | | | | | | | | | | | 93.94 114 | 99.38 54 | 99.50 43 |
|
test_prior4 | | | | | | | 93.66 62 | 96.42 214 | | | | | | | | | |
|
test_prior2 | | | | | | | | 96.35 223 | | 92.80 111 | 96.03 89 | 97.59 112 | 92.01 46 | | 95.01 87 | 99.38 54 | |
|
旧先验2 | | | | | | | | 95.94 251 | | 81.66 339 | 97.34 40 | | | 98.82 167 | 92.26 143 | | |
|
新几何2 | | | | | | | | 95.79 257 | | | | | | | | | |
|
原ACMM2 | | | | | | | | 95.67 260 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.67 53 | 85.96 270 | | |
|
segment_acmp | | | | | | | | | | | | | 92.89 26 | | | | |
|
testdata1 | | | | | | | | 95.26 281 | | 93.10 97 | | | | | | | |
|
plane_prior7 | | | | | | 96.21 207 | 89.98 180 | | | | | | | | | | |
|
plane_prior6 | | | | | | 96.10 217 | 90.00 176 | | | | | | 81.32 218 | | | | |
|
plane_prior4 | | | | | | | | | | | | 96.64 164 | | | | | |
|
plane_prior3 | | | | | | | 90.00 176 | | | 94.46 47 | 91.34 195 | | | | | | |
|
plane_prior2 | | | | | | | | 97.74 84 | | 94.85 30 | | | | | | | |
|
plane_prior1 | | | | | | 96.14 215 | | | | | | | | | | | |
|
plane_prior | | | | | | | 89.99 178 | 97.24 139 | | 94.06 57 | | | | | | 92.16 224 | |
|
HQP5-MVS | | | | | | | 89.33 206 | | | | | | | | | | |
|
HQP-NCC | | | | | | 95.86 222 | | 96.65 197 | | 93.55 74 | 90.14 220 | | | | | | |
|
ACMP_Plane | | | | | | 95.86 222 | | 96.65 197 | | 93.55 74 | 90.14 220 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 92.13 149 | | |
|
HQP4-MVS | | | | | | | | | | | 90.14 220 | | | 98.50 197 | | | 95.78 241 |
|
HQP2-MVS | | | | | | | | | | | | | 80.95 221 | | | | |
|
NP-MVS | | | | | | 95.99 221 | 89.81 186 | | | | | 95.87 206 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 70.35 370 | 93.10 334 | | 83.88 322 | 93.55 146 | | 82.47 199 | | 86.25 261 | | 98.38 153 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 90.30 258 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 91.02 247 | |
|
Test By Simon | | | | | | | | | | | | | 88.73 100 | | | | |
|