This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
PGM-MVS96.81 4496.53 4997.65 4799.35 2293.53 6697.65 9898.98 192.22 12797.14 4798.44 3291.17 7199.85 1894.35 10599.46 4499.57 24
MVS_111021_HR96.68 5196.58 4796.99 7698.46 8192.31 10196.20 23898.90 294.30 5395.86 9797.74 9792.33 4099.38 11696.04 5299.42 4999.28 71
ACMMPcopyleft96.27 6495.93 6697.28 6299.24 3092.62 9198.25 3898.81 392.99 9994.56 12798.39 3988.96 9699.85 1894.57 10497.63 13099.36 64
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS_111021_LR96.24 6596.19 6396.39 10298.23 10591.35 13396.24 23698.79 493.99 6095.80 9997.65 10589.92 9099.24 12695.87 5599.20 7798.58 131
patch_mono-296.83 4397.44 995.01 17199.05 4385.39 29696.98 16698.77 594.70 4197.99 2398.66 1493.61 1999.91 197.67 499.50 3699.72 10
FC-MVSNet-test93.94 12693.57 11995.04 16895.48 23791.45 13198.12 5198.71 693.37 8590.23 21896.70 15887.66 11397.85 27491.49 16590.39 25795.83 237
UniMVSNet (Re)93.31 14892.55 16195.61 14495.39 24093.34 7397.39 12698.71 693.14 9590.10 22894.83 25487.71 11298.03 24891.67 16383.99 32495.46 262
FIs94.09 12093.70 11595.27 16095.70 22992.03 11198.10 5298.68 893.36 8790.39 21596.70 15887.63 11597.94 26492.25 14590.50 25695.84 236
WR-MVS_H92.00 20391.35 19993.95 22995.09 26489.47 19898.04 5798.68 891.46 15088.34 27594.68 26185.86 14197.56 29985.77 27284.24 32194.82 301
VPA-MVSNet93.24 15092.48 16795.51 15095.70 22992.39 9797.86 7298.66 1092.30 12692.09 18295.37 23480.49 23198.40 20393.95 11385.86 29595.75 247
UniMVSNet_NR-MVSNet93.37 14692.67 15595.47 15695.34 24692.83 8497.17 14998.58 1192.98 10490.13 22495.80 21188.37 10697.85 27491.71 15983.93 32595.73 250
CSCG96.05 6995.91 6796.46 9699.24 3090.47 16898.30 3098.57 1289.01 21893.97 13997.57 11492.62 3399.76 3494.66 10199.27 6899.15 81
MSLP-MVS++96.94 3397.06 1596.59 8698.72 6391.86 11697.67 9598.49 1394.66 4397.24 4298.41 3892.31 4298.94 15896.61 2999.46 4498.96 101
HyFIR lowres test93.66 13692.92 14395.87 12998.24 10189.88 18494.58 29198.49 1385.06 30793.78 14295.78 21582.86 18898.67 18391.77 15795.71 17499.07 91
CHOSEN 1792x268894.15 11593.51 12496.06 12198.27 9789.38 20395.18 28398.48 1585.60 29893.76 14397.11 13783.15 17899.61 6691.33 16898.72 10199.19 77
PHI-MVS96.77 4696.46 5497.71 4498.40 8594.07 5198.21 4598.45 1689.86 19597.11 5098.01 7792.52 3799.69 4896.03 5399.53 2899.36 64
PVSNet_BlendedMVS94.06 12193.92 11094.47 20298.27 9789.46 20096.73 18798.36 1790.17 18994.36 13095.24 23988.02 10799.58 7593.44 12490.72 25394.36 320
PVSNet_Blended94.87 10294.56 9895.81 13198.27 9789.46 20095.47 26998.36 1788.84 22694.36 13096.09 19988.02 10799.58 7593.44 12498.18 11798.40 151
3Dnovator91.36 595.19 9294.44 10597.44 5596.56 19093.36 7298.65 1198.36 1794.12 5689.25 25898.06 7282.20 20499.77 3393.41 12699.32 6099.18 78
FOURS199.55 193.34 7399.29 198.35 2094.98 2798.49 15
DPE-MVScopyleft97.86 497.65 598.47 599.17 3495.78 797.21 14698.35 2095.16 1898.71 1298.80 1195.05 1099.89 496.70 2799.73 199.73 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HFP-MVS97.14 2096.92 2597.83 2999.42 794.12 4898.52 1698.32 2293.21 9097.18 4498.29 5492.08 4499.83 2695.63 6899.59 1799.54 34
#test#97.02 2796.75 3897.83 2999.42 794.12 4898.15 5098.32 2292.57 11997.18 4498.29 5492.08 4499.83 2695.12 8499.59 1799.54 34
ACMMPR97.07 2396.84 3097.79 3599.44 693.88 5598.52 1698.31 2493.21 9097.15 4698.33 4891.35 6599.86 995.63 6899.59 1799.62 16
APDe-MVS97.82 597.73 498.08 1899.15 3594.82 2998.81 798.30 2594.76 3998.30 1798.90 393.77 1799.68 5197.93 199.69 399.75 5
test072699.45 395.36 1398.31 2998.29 2694.92 2898.99 498.92 295.08 8
MSP-MVS97.59 897.54 697.73 4199.40 1293.77 6198.53 1598.29 2695.55 698.56 1497.81 9293.90 1599.65 5796.62 2899.21 7699.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVS++98.06 197.99 198.28 998.67 6695.39 1199.29 198.28 2894.78 3798.93 698.87 696.04 299.86 997.45 999.58 2299.59 20
test_0728_SECOND98.51 499.45 395.93 598.21 4598.28 2899.86 997.52 599.67 699.75 5
CP-MVS97.02 2796.81 3397.64 4999.33 2393.54 6598.80 898.28 2892.99 9996.45 7798.30 5391.90 5099.85 1895.61 7099.68 499.54 34
SED-MVS98.05 297.99 198.24 1099.42 795.30 1898.25 3898.27 3195.13 1999.19 198.89 495.54 599.85 1897.52 599.66 1099.56 27
test_241102_TWO98.27 3195.13 1998.93 698.89 494.99 1199.85 1897.52 599.65 1299.74 7
test_241102_ONE99.42 795.30 1898.27 3195.09 2399.19 198.81 1095.54 599.65 57
SF-MVS97.39 1197.13 1398.17 1499.02 4695.28 2098.23 4298.27 3192.37 12598.27 1898.65 1693.33 2199.72 3996.49 3399.52 2999.51 39
SteuartSystems-ACMMP97.62 797.53 797.87 2798.39 8794.25 4298.43 2498.27 3195.34 1198.11 2098.56 2094.53 1299.71 4296.57 3199.62 1599.65 12
Skip Steuart: Steuart Systems R&D Blog.
test_one_060199.32 2495.20 2198.25 3695.13 1998.48 1698.87 695.16 7
PVSNet_Blended_VisFu95.27 8794.91 9096.38 10398.20 10690.86 15597.27 13798.25 3690.21 18894.18 13497.27 12787.48 11999.73 3693.53 12197.77 12898.55 132
ETH3D-3000-0.197.07 2396.71 4198.14 1698.90 5595.33 1797.68 9498.24 3891.57 14697.90 2698.37 4092.61 3499.66 5695.59 7399.51 3399.43 55
region2R97.07 2396.84 3097.77 3899.46 293.79 5898.52 1698.24 3893.19 9397.14 4798.34 4591.59 6099.87 895.46 7699.59 1799.64 13
PS-CasMVS91.55 21990.84 22093.69 24494.96 26888.28 23597.84 7698.24 3891.46 15088.04 28595.80 21179.67 24897.48 30787.02 25284.54 31895.31 273
DU-MVS92.90 17092.04 17595.49 15394.95 26992.83 8497.16 15098.24 3893.02 9890.13 22495.71 21983.47 17297.85 27491.71 15983.93 32595.78 241
9.1496.75 3898.93 5197.73 8698.23 4291.28 15897.88 2798.44 3293.00 2599.65 5795.76 6199.47 42
testtj96.93 3496.56 4898.05 2099.10 3694.66 3197.78 8198.22 4392.74 11497.59 2998.20 6591.96 4999.86 994.21 10899.25 7299.63 14
ETH3 D test640096.16 6795.52 7398.07 1998.90 5595.06 2697.03 15698.21 4488.16 24896.64 6597.70 9991.18 7099.67 5392.44 14299.47 4299.48 47
D2MVS91.30 23490.95 21492.35 28794.71 28485.52 29296.18 23998.21 4488.89 22486.60 31093.82 30179.92 24497.95 26389.29 20490.95 24993.56 334
XVS97.18 1796.96 2397.81 3399.38 1594.03 5398.59 1298.20 4694.85 3096.59 6998.29 5491.70 5699.80 3195.66 6399.40 5199.62 16
X-MVStestdata91.71 21089.67 26797.81 3399.38 1594.03 5398.59 1298.20 4694.85 3096.59 6932.69 37691.70 5699.80 3195.66 6399.40 5199.62 16
ACMMP_NAP97.20 1696.86 2798.23 1199.09 3895.16 2497.60 10598.19 4892.82 11097.93 2598.74 1391.60 5999.86 996.26 3899.52 2999.67 11
CP-MVSNet91.89 20691.24 20693.82 23795.05 26588.57 22897.82 7798.19 4891.70 14388.21 28195.76 21681.96 20897.52 30587.86 22784.65 31395.37 270
ZNCC-MVS96.96 3196.67 4397.85 2899.37 1794.12 4898.49 2098.18 5092.64 11896.39 7998.18 6691.61 5899.88 595.59 7399.55 2599.57 24
SMA-MVScopyleft97.35 1397.03 1998.30 899.06 4295.42 1097.94 6698.18 5090.57 18398.85 998.94 193.33 2199.83 2696.72 2699.68 499.63 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PEN-MVS91.20 23890.44 23493.48 25394.49 29387.91 24997.76 8298.18 5091.29 15587.78 29095.74 21880.35 23597.33 31885.46 27682.96 33595.19 282
DELS-MVS96.61 5296.38 5797.30 6097.79 13093.19 7695.96 25098.18 5095.23 1495.87 9697.65 10591.45 6199.70 4795.87 5599.44 4899.00 99
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
tfpnnormal89.70 28088.40 28593.60 24795.15 26090.10 17497.56 10998.16 5487.28 27486.16 31494.63 26477.57 28398.05 24474.48 34884.59 31692.65 346
VNet95.89 7495.45 7697.21 6898.07 11692.94 8397.50 11498.15 5593.87 6397.52 3097.61 11185.29 14799.53 9395.81 6095.27 18099.16 79
DeepPCF-MVS93.97 196.61 5297.09 1495.15 16498.09 11486.63 27696.00 24898.15 5595.43 797.95 2498.56 2093.40 2099.36 11796.77 2599.48 4199.45 51
SD-MVS97.41 1097.53 797.06 7498.57 7994.46 3497.92 6898.14 5794.82 3499.01 398.55 2294.18 1497.41 31496.94 1799.64 1399.32 66
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GST-MVS96.85 4196.52 5097.82 3299.36 2094.14 4798.29 3198.13 5892.72 11596.70 6098.06 7291.35 6599.86 994.83 9499.28 6699.47 50
UA-Net95.95 7395.53 7297.20 6997.67 13592.98 8297.65 9898.13 5894.81 3596.61 6798.35 4288.87 9799.51 9890.36 18297.35 14099.11 87
QAPM93.45 14492.27 17196.98 7796.77 17992.62 9198.39 2698.12 6084.50 31588.27 27997.77 9582.39 20199.81 3085.40 27798.81 9898.51 137
Vis-MVSNetpermissive95.23 8994.81 9196.51 9197.18 15391.58 12598.26 3698.12 6094.38 5194.90 12098.15 6782.28 20298.92 15991.45 16798.58 10699.01 96
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OpenMVScopyleft89.19 1292.86 17291.68 18996.40 10095.34 24692.73 8798.27 3498.12 6084.86 31085.78 31697.75 9678.89 26499.74 3587.50 24398.65 10396.73 211
TranMVSNet+NR-MVSNet92.50 18091.63 19095.14 16594.76 28092.07 10997.53 11298.11 6392.90 10889.56 24696.12 19583.16 17797.60 29789.30 20383.20 33495.75 247
CPTT-MVS95.57 8195.19 8496.70 8099.27 2891.48 12898.33 2898.11 6387.79 25995.17 11898.03 7487.09 12599.61 6693.51 12299.42 4999.02 92
Regformer-297.16 1996.99 2197.67 4698.32 9393.84 5696.83 17998.10 6595.24 1397.49 3198.25 5992.57 3599.61 6696.80 2299.29 6499.56 27
APD-MVScopyleft96.95 3296.60 4598.01 2299.03 4594.93 2897.72 8998.10 6591.50 14898.01 2298.32 5092.33 4099.58 7594.85 9299.51 3399.53 38
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
mPP-MVS96.86 3996.60 4597.64 4999.40 1293.44 6898.50 1998.09 6793.27 8995.95 9598.33 4891.04 7399.88 595.20 8199.57 2499.60 19
ZD-MVS99.05 4394.59 3298.08 6889.22 21397.03 5498.10 6892.52 3799.65 5794.58 10399.31 62
zzz-MVS97.07 2396.77 3797.97 2599.37 1794.42 3697.15 15298.08 6895.07 2496.11 8698.59 1890.88 7799.90 296.18 4799.50 3699.58 22
MTGPAbinary98.08 68
MTAPA97.08 2296.78 3697.97 2599.37 1794.42 3697.24 13998.08 6895.07 2496.11 8698.59 1890.88 7799.90 296.18 4799.50 3699.58 22
CNVR-MVS97.68 697.44 998.37 798.90 5595.86 697.27 13798.08 6895.81 497.87 2898.31 5194.26 1399.68 5197.02 1699.49 4099.57 24
DP-MVS Recon95.68 7795.12 8797.37 5799.19 3394.19 4497.03 15698.08 6888.35 24295.09 11997.65 10589.97 8999.48 10392.08 15298.59 10598.44 148
SR-MVS97.01 2996.86 2797.47 5499.09 3893.27 7597.98 6098.07 7493.75 6897.45 3398.48 2991.43 6299.59 7296.22 4199.27 6899.54 34
MCST-MVS97.18 1796.84 3098.20 1399.30 2695.35 1597.12 15498.07 7493.54 7796.08 8897.69 10093.86 1699.71 4296.50 3299.39 5399.55 31
NR-MVSNet92.34 18891.27 20595.53 14994.95 26993.05 7997.39 12698.07 7492.65 11784.46 32795.71 21985.00 15197.77 28389.71 19283.52 33195.78 241
MP-MVS-pluss96.70 4896.27 5997.98 2499.23 3294.71 3096.96 16898.06 7790.67 17495.55 11098.78 1291.07 7299.86 996.58 3099.55 2599.38 62
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
APD-MVS_3200maxsize96.81 4496.71 4197.12 7299.01 4992.31 10197.98 6098.06 7793.11 9697.44 3498.55 2290.93 7599.55 8896.06 4999.25 7299.51 39
MP-MVScopyleft96.77 4696.45 5597.72 4299.39 1493.80 5798.41 2598.06 7793.37 8595.54 11298.34 4590.59 8299.88 594.83 9499.54 2799.49 45
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVS_fast96.51 5596.27 5997.22 6799.32 2492.74 8698.74 998.06 7790.57 18396.77 5798.35 4290.21 8699.53 9394.80 9799.63 1499.38 62
HPM-MVScopyleft96.69 4996.45 5597.40 5699.36 2093.11 7898.87 698.06 7791.17 16296.40 7897.99 7890.99 7499.58 7595.61 7099.61 1699.49 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
sss94.51 10993.80 11396.64 8197.07 16091.97 11496.32 22798.06 7788.94 22294.50 12896.78 15384.60 15599.27 12491.90 15396.02 16598.68 128
DeepC-MVS93.07 396.06 6895.66 7197.29 6197.96 11893.17 7797.30 13598.06 7793.92 6193.38 15298.66 1486.83 12799.73 3695.60 7299.22 7598.96 101
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETH3D cwj APD-0.1696.56 5496.06 6498.05 2098.26 10095.19 2296.99 16498.05 8489.85 19797.26 4198.22 6191.80 5299.69 4894.84 9399.28 6699.27 73
test117296.93 3496.86 2797.15 7099.10 3692.34 9897.96 6598.04 8593.79 6797.35 3998.53 2491.40 6399.56 8596.30 3799.30 6399.55 31
NCCC97.30 1597.03 1998.11 1798.77 6195.06 2697.34 13098.04 8595.96 297.09 5197.88 8493.18 2499.71 4295.84 5999.17 7999.56 27
DeepC-MVS_fast93.89 296.93 3496.64 4497.78 3698.64 7494.30 3897.41 12298.04 8594.81 3596.59 6998.37 4091.24 6799.64 6595.16 8299.52 2999.42 58
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post96.88 3896.80 3497.11 7399.02 4692.34 9897.98 6098.03 8893.52 7997.43 3698.51 2691.40 6399.56 8596.05 5099.26 7099.43 55
RE-MVS-def96.72 4099.02 4692.34 9897.98 6098.03 8893.52 7997.43 3698.51 2690.71 8096.05 5099.26 7099.43 55
abl_696.40 5996.21 6196.98 7798.89 5892.20 10697.89 7098.03 8893.34 8897.22 4398.42 3587.93 11099.72 3995.10 8599.07 8999.02 92
RPMNet88.98 28587.05 30094.77 19094.45 29687.19 26290.23 35598.03 8877.87 35992.40 16987.55 36180.17 23999.51 9868.84 36493.95 20197.60 189
save fliter98.91 5394.28 3997.02 15998.02 9295.35 9
TEST998.70 6494.19 4496.41 21598.02 9288.17 24696.03 8997.56 11692.74 2999.59 72
train_agg96.30 6395.83 6997.72 4298.70 6494.19 4496.41 21598.02 9288.58 23596.03 8997.56 11692.73 3099.59 7295.04 8699.37 5899.39 60
test_898.67 6694.06 5296.37 22298.01 9588.58 23595.98 9497.55 11892.73 3099.58 75
Regformer-496.97 3096.87 2697.25 6498.34 9092.66 8996.96 16898.01 9595.12 2297.14 4798.42 3591.82 5199.61 6696.90 1999.13 8399.50 43
agg_prior196.22 6695.77 7097.56 5198.67 6693.79 5896.28 23198.00 9788.76 23295.68 10497.55 11892.70 3299.57 8395.01 8799.32 6099.32 66
agg_prior98.67 6693.79 5898.00 9795.68 10499.57 83
test_prior396.46 5796.20 6297.23 6598.67 6692.99 8096.35 22398.00 9792.80 11196.03 8997.59 11292.01 4699.41 11195.01 8799.38 5499.29 68
test_prior97.23 6598.67 6692.99 8098.00 9799.41 11199.29 68
Regformer-197.10 2196.96 2397.54 5298.32 9393.48 6796.83 17997.99 10195.20 1597.46 3298.25 5992.48 3999.58 7596.79 2499.29 6499.55 31
WR-MVS92.34 18891.53 19494.77 19095.13 26290.83 15796.40 21897.98 10291.88 14089.29 25595.54 22982.50 19797.80 27989.79 19185.27 30495.69 252
HPM-MVS++copyleft97.34 1496.97 2298.47 599.08 4096.16 497.55 11197.97 10395.59 596.61 6797.89 8292.57 3599.84 2395.95 5499.51 3399.40 59
CANet96.39 6096.02 6597.50 5397.62 14093.38 7097.02 15997.96 10495.42 894.86 12197.81 9287.38 12199.82 2996.88 2099.20 7799.29 68
114514_t93.95 12593.06 13996.63 8399.07 4191.61 12297.46 12197.96 10477.99 35793.00 16097.57 11486.14 13999.33 11889.22 20799.15 8198.94 104
IU-MVS99.42 795.39 1197.94 10690.40 18798.94 597.41 1299.66 1099.74 7
MSC_two_6792asdad98.86 198.67 6696.94 197.93 10799.86 997.68 299.67 699.77 1
No_MVS98.86 198.67 6696.94 197.93 10799.86 997.68 299.67 699.77 1
Anonymous2023121190.63 26089.42 27194.27 21398.24 10189.19 21498.05 5697.89 10979.95 34988.25 28094.96 24672.56 31698.13 22689.70 19385.14 30695.49 257
原ACMM196.38 10398.59 7691.09 14897.89 10987.41 27095.22 11797.68 10190.25 8499.54 9087.95 22699.12 8698.49 140
CDPH-MVS95.97 7295.38 7997.77 3898.93 5194.44 3596.35 22397.88 11186.98 27896.65 6497.89 8291.99 4899.47 10492.26 14399.46 4499.39 60
test1197.88 111
EIA-MVS95.53 8295.47 7595.71 13997.06 16389.63 18997.82 7797.87 11393.57 7393.92 14095.04 24590.61 8198.95 15794.62 10298.68 10298.54 133
CS-MVS96.86 3997.06 1596.26 11298.16 11191.16 14699.09 397.87 11395.30 1297.06 5398.03 7491.72 5398.71 18097.10 1499.17 7998.90 109
无先验95.79 25797.87 11383.87 32399.65 5787.68 23698.89 112
3Dnovator+91.43 495.40 8394.48 10398.16 1596.90 17295.34 1698.48 2197.87 11394.65 4488.53 27398.02 7683.69 16899.71 4293.18 13098.96 9499.44 53
VPNet92.23 19691.31 20294.99 17295.56 23390.96 15197.22 14597.86 11792.96 10690.96 20696.62 17375.06 30298.20 21891.90 15383.65 33095.80 240
DVP-MVScopyleft97.91 397.81 398.22 1299.45 395.36 1398.21 4597.85 11894.92 2898.73 1098.87 695.08 899.84 2397.52 599.67 699.48 47
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
TSAR-MVS + MP.97.42 997.33 1197.69 4599.25 2994.24 4398.07 5597.85 11893.72 6998.57 1398.35 4293.69 1899.40 11397.06 1599.46 4499.44 53
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CS-MVS-test96.89 3797.04 1896.45 9798.29 9691.66 12199.03 497.85 11895.84 396.90 5697.97 8091.24 6798.75 17496.92 1899.33 5998.94 104
AdaColmapbinary94.34 11193.68 11796.31 10798.59 7691.68 12096.59 20697.81 12189.87 19492.15 17897.06 14083.62 17199.54 9089.34 20298.07 12097.70 182
ETV-MVS96.02 7095.89 6896.40 10097.16 15492.44 9697.47 11997.77 12294.55 4596.48 7494.51 26791.23 6998.92 15995.65 6698.19 11697.82 178
Regformer-396.85 4196.80 3497.01 7598.34 9092.02 11296.96 16897.76 12395.01 2697.08 5298.42 3591.71 5599.54 9096.80 2299.13 8399.48 47
新几何197.32 5998.60 7593.59 6497.75 12481.58 34095.75 10197.85 8890.04 8899.67 5386.50 25899.13 8398.69 127
旧先验198.38 8893.38 7097.75 12498.09 7092.30 4399.01 9299.16 79
DROMVSNet96.42 5896.47 5296.26 11297.01 16891.52 12798.89 597.75 12494.42 4896.64 6597.68 10189.32 9298.60 18997.45 999.11 8898.67 129
EI-MVSNet-Vis-set96.51 5596.47 5296.63 8398.24 10191.20 14196.89 17497.73 12794.74 4096.49 7398.49 2890.88 7799.58 7596.44 3598.32 11399.13 83
112194.71 10793.83 11297.34 5898.57 7993.64 6396.04 24497.73 12781.56 34195.68 10497.85 8890.23 8599.65 5787.68 23699.12 8698.73 123
PAPM_NR95.01 9494.59 9796.26 11298.89 5890.68 16397.24 13997.73 12791.80 14192.93 16596.62 17389.13 9599.14 13689.21 20897.78 12798.97 100
Anonymous2024052991.98 20490.73 22595.73 13798.14 11289.40 20297.99 5997.72 13079.63 35193.54 14797.41 12369.94 33299.56 8591.04 17391.11 24498.22 159
CHOSEN 280x42093.12 15792.72 15494.34 20996.71 18287.27 25890.29 35497.72 13086.61 28591.34 19595.29 23684.29 16298.41 20293.25 12998.94 9597.35 196
EI-MVSNet-UG-set96.34 6296.30 5896.47 9498.20 10690.93 15396.86 17597.72 13094.67 4296.16 8598.46 3090.43 8399.58 7596.23 4097.96 12398.90 109
LS3D93.57 14192.61 15996.47 9497.59 14391.61 12297.67 9597.72 13085.17 30590.29 21798.34 4584.60 15599.73 3683.85 29698.27 11498.06 167
PAPR94.18 11493.42 13196.48 9397.64 13991.42 13295.55 26597.71 13488.99 21992.34 17495.82 21089.19 9399.11 13886.14 26497.38 13898.90 109
test_part192.21 19891.10 21295.51 15097.80 12992.66 8998.02 5897.68 13589.79 20088.80 26796.02 20076.85 28798.18 22190.86 17484.11 32395.69 252
UGNet94.04 12393.28 13496.31 10796.85 17391.19 14297.88 7197.68 13594.40 4993.00 16096.18 19173.39 31399.61 6691.72 15898.46 11098.13 162
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
testdata95.46 15798.18 11088.90 22097.66 13782.73 33397.03 5498.07 7190.06 8798.85 16589.67 19498.98 9398.64 130
test1297.65 4798.46 8194.26 4197.66 13795.52 11390.89 7699.46 10599.25 7299.22 76
DTE-MVSNet90.56 26189.75 26593.01 27093.95 31087.25 25997.64 10297.65 13990.74 17187.12 30195.68 22279.97 24397.00 32983.33 29781.66 34094.78 308
TAPA-MVS90.10 792.30 19191.22 20895.56 14698.33 9289.60 19196.79 18397.65 13981.83 33891.52 19197.23 13087.94 10998.91 16171.31 36098.37 11298.17 161
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
cdsmvs_eth3d_5k23.24 34630.99 3480.00 3640.00 3870.00 3880.00 37597.63 1410.00 3820.00 38396.88 15184.38 1590.00 3830.00 3810.00 3810.00 379
DPM-MVS95.69 7694.92 8998.01 2298.08 11595.71 995.27 27997.62 14290.43 18695.55 11097.07 13991.72 5399.50 10189.62 19698.94 9598.82 118
canonicalmvs96.02 7095.45 7697.75 4097.59 14395.15 2598.28 3297.60 14394.52 4696.27 8296.12 19587.65 11499.18 13196.20 4694.82 18898.91 108
test22298.24 10192.21 10495.33 27497.60 14379.22 35395.25 11597.84 9188.80 9999.15 8198.72 124
cascas91.20 23890.08 25194.58 19994.97 26789.16 21593.65 32397.59 14579.90 35089.40 25092.92 32075.36 30198.36 20792.14 14894.75 19096.23 220
h-mvs3394.15 11593.52 12396.04 12397.81 12890.22 17397.62 10497.58 14695.19 1696.74 5897.45 12083.67 16999.61 6695.85 5779.73 34598.29 158
MVSFormer95.37 8495.16 8595.99 12696.34 20391.21 13998.22 4397.57 14791.42 15296.22 8397.32 12586.20 13797.92 26894.07 11099.05 9098.85 115
test_djsdf93.07 16092.76 14994.00 22493.49 32588.70 22498.22 4397.57 14791.42 15290.08 23095.55 22882.85 18997.92 26894.07 11091.58 23295.40 267
OMC-MVS95.09 9394.70 9596.25 11598.46 8191.28 13596.43 21397.57 14792.04 13694.77 12397.96 8187.01 12699.09 14291.31 16996.77 15298.36 155
PS-MVSNAJss93.74 13493.51 12494.44 20393.91 31289.28 21097.75 8397.56 15092.50 12289.94 23396.54 17688.65 10198.18 22193.83 11990.90 25095.86 233
jajsoiax92.42 18491.89 18294.03 22393.33 33088.50 23197.73 8697.53 15192.00 13888.85 26496.50 17875.62 30098.11 23393.88 11791.56 23395.48 258
mvs_tets92.31 19091.76 18493.94 23193.41 32788.29 23497.63 10397.53 15192.04 13688.76 26896.45 18074.62 30498.09 23793.91 11591.48 23595.45 263
dcpmvs_296.37 6197.05 1794.31 21198.96 5084.11 31497.56 10997.51 15393.92 6197.43 3698.52 2592.75 2899.32 12097.32 1399.50 3699.51 39
HQP_MVS93.78 13393.43 12994.82 18396.21 20789.99 17897.74 8497.51 15394.85 3091.34 19596.64 16481.32 21898.60 18993.02 13592.23 22095.86 233
plane_prior597.51 15398.60 18993.02 13592.23 22095.86 233
PS-MVSNAJ95.37 8495.33 8195.49 15397.35 14890.66 16495.31 27697.48 15693.85 6496.51 7295.70 22188.65 10199.65 5794.80 9798.27 11496.17 223
API-MVS94.84 10394.49 10295.90 12897.90 12492.00 11397.80 7997.48 15689.19 21494.81 12296.71 15688.84 9899.17 13288.91 21498.76 10096.53 214
MG-MVS95.61 7995.38 7996.31 10798.42 8490.53 16696.04 24497.48 15693.47 8195.67 10798.10 6889.17 9499.25 12591.27 17098.77 9999.13 83
MAR-MVS94.22 11393.46 12696.51 9198.00 11792.19 10797.67 9597.47 15988.13 25093.00 16095.84 20884.86 15399.51 9887.99 22598.17 11897.83 177
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CLD-MVS92.98 16592.53 16494.32 21096.12 21689.20 21295.28 27797.47 15992.66 11689.90 23495.62 22480.58 22998.40 20392.73 14092.40 21895.38 269
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_ETH3D91.34 23290.22 24794.68 19394.86 27687.86 25097.23 14497.46 16187.99 25189.90 23496.92 14966.35 34998.23 21590.30 18390.99 24897.96 168
nrg03094.05 12293.31 13396.27 11195.22 25794.59 3298.34 2797.46 16192.93 10791.21 20496.64 16487.23 12498.22 21694.99 9085.80 29695.98 232
XVG-OURS93.72 13593.35 13294.80 18897.07 16088.61 22694.79 28797.46 16191.97 13993.99 13797.86 8781.74 21398.88 16492.64 14192.67 21596.92 205
LPG-MVS_test92.94 16892.56 16094.10 21896.16 21288.26 23697.65 9897.46 16191.29 15590.12 22697.16 13379.05 25798.73 17692.25 14591.89 22895.31 273
LGP-MVS_train94.10 21896.16 21288.26 23697.46 16191.29 15590.12 22697.16 13379.05 25798.73 17692.25 14591.89 22895.31 273
MVS91.71 21090.44 23495.51 15095.20 25991.59 12496.04 24497.45 16673.44 36487.36 29895.60 22585.42 14699.10 13985.97 26997.46 13395.83 237
XVG-OURS-SEG-HR93.86 12993.55 12094.81 18597.06 16388.53 23095.28 27797.45 16691.68 14494.08 13697.68 10182.41 20098.90 16293.84 11892.47 21796.98 201
baseline95.58 8095.42 7896.08 11996.78 17890.41 17197.16 15097.45 16693.69 7295.65 10897.85 8887.29 12298.68 18295.66 6397.25 14499.13 83
ab-mvs93.57 14192.55 16196.64 8197.28 14991.96 11595.40 27197.45 16689.81 19993.22 15896.28 18879.62 24999.46 10590.74 17793.11 20998.50 138
xiu_mvs_v2_base95.32 8695.29 8295.40 15897.22 15090.50 16795.44 27097.44 17093.70 7196.46 7696.18 19188.59 10499.53 9394.79 9997.81 12696.17 223
131492.81 17692.03 17695.14 16595.33 24989.52 19796.04 24497.44 17087.72 26386.25 31395.33 23583.84 16698.79 16989.26 20597.05 14997.11 199
casdiffmvs95.64 7895.49 7496.08 11996.76 18190.45 16997.29 13697.44 17094.00 5995.46 11497.98 7987.52 11898.73 17695.64 6797.33 14199.08 89
XXY-MVS92.16 19991.23 20794.95 17794.75 28290.94 15297.47 11997.43 17389.14 21588.90 26196.43 18179.71 24798.24 21489.56 19787.68 27995.67 255
anonymousdsp92.16 19991.55 19393.97 22792.58 34289.55 19497.51 11397.42 17489.42 20888.40 27494.84 25380.66 22797.88 27391.87 15591.28 24094.48 316
Effi-MVS+94.93 9994.45 10496.36 10596.61 18491.47 12996.41 21597.41 17591.02 16794.50 12895.92 20487.53 11798.78 17093.89 11696.81 15198.84 117
HQP3-MVS97.39 17692.10 225
HQP-MVS93.19 15292.74 15294.54 20195.86 22289.33 20696.65 19797.39 17693.55 7490.14 22095.87 20680.95 22198.50 19792.13 14992.10 22595.78 241
PLCcopyleft91.00 694.11 11993.43 12996.13 11898.58 7891.15 14796.69 19397.39 17687.29 27391.37 19496.71 15688.39 10599.52 9787.33 24697.13 14897.73 180
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v7n90.76 25489.86 25893.45 25693.54 32287.60 25597.70 9397.37 17988.85 22587.65 29294.08 29381.08 22098.10 23484.68 28583.79 32994.66 313
UnsupCasMVSNet_eth85.99 31584.45 31990.62 32489.97 35982.40 33093.62 32497.37 17989.86 19578.59 35892.37 32765.25 35595.35 35482.27 30870.75 36394.10 327
ACMM89.79 892.96 16692.50 16694.35 20896.30 20588.71 22397.58 10797.36 18191.40 15490.53 21196.65 16379.77 24698.75 17491.24 17191.64 23095.59 256
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
xiu_mvs_v1_base_debu95.01 9494.76 9295.75 13496.58 18791.71 11796.25 23397.35 18292.99 9996.70 6096.63 17082.67 19299.44 10896.22 4197.46 13396.11 228
xiu_mvs_v1_base95.01 9494.76 9295.75 13496.58 18791.71 11796.25 23397.35 18292.99 9996.70 6096.63 17082.67 19299.44 10896.22 4197.46 13396.11 228
xiu_mvs_v1_base_debi95.01 9494.76 9295.75 13496.58 18791.71 11796.25 23397.35 18292.99 9996.70 6096.63 17082.67 19299.44 10896.22 4197.46 13396.11 228
diffmvs95.25 8895.13 8695.63 14296.43 19989.34 20595.99 24997.35 18292.83 10996.31 8097.37 12486.44 13298.67 18396.26 3897.19 14698.87 114
WTY-MVS94.71 10794.02 10996.79 7997.71 13492.05 11096.59 20697.35 18290.61 18094.64 12596.93 14686.41 13399.39 11491.20 17294.71 19298.94 104
F-COLMAP93.58 14092.98 14195.37 15998.40 8588.98 21897.18 14897.29 18787.75 26290.49 21297.10 13885.21 14899.50 10186.70 25596.72 15597.63 184
XVG-ACMP-BASELINE90.93 25090.21 24893.09 26894.31 30285.89 28795.33 27497.26 18891.06 16689.38 25195.44 23368.61 33698.60 18989.46 19991.05 24694.79 306
PCF-MVS89.48 1191.56 21889.95 25696.36 10596.60 18592.52 9492.51 34197.26 18879.41 35288.90 26196.56 17584.04 16599.55 8877.01 34297.30 14297.01 200
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ACMP89.59 1092.62 17992.14 17394.05 22196.40 20088.20 23997.36 12997.25 19091.52 14788.30 27796.64 16478.46 26998.72 17991.86 15691.48 23595.23 280
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
xxxxxxxxxxxxxcwj97.36 1297.20 1297.83 2998.91 5394.28 3997.02 15997.22 19195.35 998.27 1898.65 1693.33 2199.72 3996.49 3399.52 2999.51 39
OPM-MVS93.28 14992.76 14994.82 18394.63 28990.77 16096.65 19797.18 19293.72 6991.68 18797.26 12879.33 25398.63 18692.13 14992.28 21995.07 284
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PatchMatch-RL92.90 17092.02 17795.56 14698.19 10890.80 15895.27 27997.18 19287.96 25291.86 18695.68 22280.44 23298.99 15584.01 29297.54 13296.89 206
MVS_030488.79 29087.57 29292.46 28494.65 28686.15 28696.40 21897.17 19486.44 28688.02 28691.71 33956.68 36697.03 32584.47 28892.58 21694.19 326
alignmvs95.87 7595.23 8397.78 3697.56 14695.19 2297.86 7297.17 19494.39 5096.47 7596.40 18385.89 14099.20 12896.21 4595.11 18498.95 103
MVS_Test94.89 10194.62 9695.68 14096.83 17689.55 19496.70 19197.17 19491.17 16295.60 10996.11 19887.87 11198.76 17393.01 13797.17 14798.72 124
Fast-Effi-MVS+93.46 14392.75 15195.59 14596.77 17990.03 17596.81 18297.13 19788.19 24591.30 19894.27 28386.21 13698.63 18687.66 23896.46 16398.12 163
EI-MVSNet93.03 16392.88 14493.48 25395.77 22786.98 26796.44 21197.12 19890.66 17691.30 19897.64 10886.56 12998.05 24489.91 18790.55 25495.41 264
MVSTER93.20 15192.81 14794.37 20796.56 19089.59 19297.06 15597.12 19891.24 15991.30 19895.96 20282.02 20798.05 24493.48 12390.55 25495.47 261
test_yl94.78 10594.23 10796.43 9897.74 13291.22 13796.85 17697.10 20091.23 16095.71 10296.93 14684.30 16099.31 12193.10 13195.12 18298.75 120
DCV-MVSNet94.78 10594.23 10796.43 9897.74 13291.22 13796.85 17697.10 20091.23 16095.71 10296.93 14684.30 16099.31 12193.10 13195.12 18298.75 120
LTVRE_ROB88.41 1390.99 24689.92 25794.19 21496.18 21089.55 19496.31 22897.09 20287.88 25585.67 31795.91 20578.79 26598.57 19381.50 31189.98 26094.44 318
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v1091.04 24490.23 24593.49 25294.12 30688.16 24297.32 13397.08 20388.26 24488.29 27894.22 28882.17 20597.97 25686.45 25984.12 32294.33 321
v14419291.06 24390.28 24193.39 25793.66 32087.23 26196.83 17997.07 20487.43 26989.69 24194.28 28281.48 21698.00 25187.18 25084.92 31294.93 292
v119291.07 24290.23 24593.58 24993.70 31887.82 25196.73 18797.07 20487.77 26089.58 24494.32 28080.90 22597.97 25686.52 25785.48 29994.95 288
v891.29 23590.53 23393.57 25094.15 30588.12 24397.34 13097.06 20688.99 21988.32 27694.26 28583.08 18098.01 25087.62 24083.92 32794.57 315
mvs_anonymous93.82 13193.74 11494.06 22096.44 19885.41 29495.81 25697.05 20789.85 19790.09 22996.36 18587.44 12097.75 28493.97 11296.69 15699.02 92
IterMVS-LS92.29 19291.94 18093.34 25996.25 20686.97 26896.57 20997.05 20790.67 17489.50 24994.80 25686.59 12897.64 29289.91 18786.11 29495.40 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192090.85 25290.03 25593.29 26193.55 32186.96 26996.74 18697.04 20987.36 27189.52 24894.34 27780.23 23897.97 25686.27 26085.21 30594.94 290
CDS-MVSNet94.14 11893.54 12195.93 12796.18 21091.46 13096.33 22697.04 20988.97 22193.56 14596.51 17787.55 11697.89 27289.80 19095.95 16798.44 148
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v114491.37 22990.60 22993.68 24593.89 31388.23 23896.84 17897.03 21188.37 24189.69 24194.39 27482.04 20697.98 25387.80 22985.37 30194.84 298
v124090.70 25889.85 25993.23 26393.51 32486.80 27096.61 20397.02 21287.16 27689.58 24494.31 28179.55 25097.98 25385.52 27585.44 30094.90 295
EPP-MVSNet95.22 9095.04 8895.76 13297.49 14789.56 19398.67 1097.00 21390.69 17394.24 13397.62 11089.79 9198.81 16893.39 12896.49 16198.92 107
V4291.58 21790.87 21693.73 24094.05 30988.50 23197.32 13396.97 21488.80 23189.71 23994.33 27882.54 19698.05 24489.01 21285.07 30894.64 314
FMVSNet291.31 23390.08 25194.99 17296.51 19392.21 10497.41 12296.95 21588.82 22888.62 27094.75 25873.87 30897.42 31385.20 28088.55 27495.35 271
test_low_dy_conf_00193.13 15692.80 14894.14 21794.47 29488.64 22598.26 3696.94 21692.53 12090.93 20797.16 13380.39 23497.99 25293.40 12791.12 24395.77 246
ACMH87.59 1690.53 26289.42 27193.87 23596.21 20787.92 24797.24 13996.94 21688.45 23983.91 33696.27 18971.92 31798.62 18884.43 28989.43 26595.05 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GBi-Net91.35 23090.27 24294.59 19596.51 19391.18 14397.50 11496.93 21888.82 22889.35 25294.51 26773.87 30897.29 32086.12 26588.82 26995.31 273
test191.35 23090.27 24294.59 19596.51 19391.18 14397.50 11496.93 21888.82 22889.35 25294.51 26773.87 30897.29 32086.12 26588.82 26995.31 273
FMVSNet391.78 20890.69 22795.03 17096.53 19292.27 10397.02 15996.93 21889.79 20089.35 25294.65 26377.01 28697.47 30886.12 26588.82 26995.35 271
FMVSNet189.88 27788.31 28694.59 19595.41 23991.18 14397.50 11496.93 21886.62 28487.41 29694.51 26765.94 35397.29 32083.04 30087.43 28295.31 273
GeoE93.89 12793.28 13495.72 13896.96 17189.75 18798.24 4196.92 22289.47 20692.12 18097.21 13184.42 15898.39 20687.71 23296.50 16099.01 96
miper_enhance_ethall91.54 22091.01 21393.15 26695.35 24587.07 26693.97 31296.90 22386.79 28289.17 25993.43 31686.55 13097.64 29289.97 18686.93 28694.74 310
eth_miper_zixun_eth91.02 24590.59 23092.34 28895.33 24984.35 31094.10 30996.90 22388.56 23788.84 26594.33 27884.08 16497.60 29788.77 21784.37 32095.06 285
TAMVS94.01 12493.46 12695.64 14196.16 21290.45 16996.71 19096.89 22589.27 21293.46 15096.92 14987.29 12297.94 26488.70 21895.74 17298.53 134
miper_ehance_all_eth91.59 21591.13 21192.97 27295.55 23486.57 27794.47 29496.88 22687.77 26088.88 26394.01 29486.22 13597.54 30189.49 19886.93 28694.79 306
v2v48291.59 21590.85 21993.80 23893.87 31488.17 24196.94 17196.88 22689.54 20389.53 24794.90 25081.70 21498.02 24989.25 20685.04 31095.20 281
CNLPA94.28 11293.53 12296.52 8898.38 8892.55 9396.59 20696.88 22690.13 19191.91 18497.24 12985.21 14899.09 14287.64 23997.83 12597.92 170
PAPM91.52 22190.30 24095.20 16295.30 25289.83 18593.38 32896.85 22986.26 28988.59 27195.80 21184.88 15298.15 22475.67 34695.93 16897.63 184
c3_l91.38 22790.89 21592.88 27595.58 23286.30 28094.68 28996.84 23088.17 24688.83 26694.23 28685.65 14497.47 30889.36 20184.63 31494.89 296
pm-mvs190.72 25789.65 26993.96 22894.29 30389.63 18997.79 8096.82 23189.07 21686.12 31595.48 23278.61 26797.78 28186.97 25381.67 33994.46 317
CMPMVSbinary62.92 2185.62 31984.92 31687.74 34189.14 36473.12 36894.17 30796.80 23273.98 36273.65 36394.93 24866.36 34897.61 29683.95 29491.28 24092.48 349
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MS-PatchMatch90.27 26789.77 26391.78 30294.33 30084.72 30795.55 26596.73 23386.17 29186.36 31295.28 23871.28 32297.80 27984.09 29198.14 11992.81 343
Effi-MVS+-dtu93.08 15993.21 13692.68 28296.02 21983.25 32497.14 15396.72 23493.85 6491.20 20593.44 31483.08 18098.30 21291.69 16195.73 17396.50 216
mvs-test193.63 13793.69 11693.46 25596.02 21984.61 30897.24 13996.72 23493.85 6492.30 17595.76 21683.08 18098.89 16391.69 16196.54 15996.87 207
TSAR-MVS + GP.96.69 4996.49 5197.27 6398.31 9593.39 6996.79 18396.72 23494.17 5597.44 3497.66 10492.76 2799.33 11896.86 2197.76 12999.08 89
1112_ss93.37 14692.42 16896.21 11697.05 16590.99 14996.31 22896.72 23486.87 28189.83 23796.69 16086.51 13199.14 13688.12 22393.67 20398.50 138
PVSNet86.66 1892.24 19591.74 18793.73 24097.77 13183.69 32192.88 33696.72 23487.91 25493.00 16094.86 25278.51 26899.05 15086.53 25697.45 13798.47 143
miper_lstm_enhance90.50 26490.06 25491.83 29895.33 24983.74 31893.86 31696.70 23987.56 26787.79 28993.81 30283.45 17496.92 33187.39 24484.62 31594.82 301
v14890.99 24690.38 23692.81 27893.83 31585.80 28896.78 18596.68 24089.45 20788.75 26993.93 29882.96 18797.82 27887.83 22883.25 33294.80 304
ACMH+87.92 1490.20 27089.18 27693.25 26296.48 19686.45 27896.99 16496.68 24088.83 22784.79 32696.22 19070.16 33098.53 19584.42 29088.04 27694.77 309
CANet_DTU94.37 11093.65 11896.55 8796.46 19792.13 10896.21 23796.67 24294.38 5193.53 14897.03 14279.34 25299.71 4290.76 17698.45 11197.82 178
cl____90.96 24990.32 23892.89 27495.37 24386.21 28394.46 29696.64 24387.82 25688.15 28394.18 28982.98 18597.54 30187.70 23385.59 29794.92 294
HY-MVS89.66 993.87 12892.95 14296.63 8397.10 15992.49 9595.64 26396.64 24389.05 21793.00 16095.79 21485.77 14399.45 10789.16 21194.35 19497.96 168
Test_1112_low_res92.84 17491.84 18395.85 13097.04 16689.97 18195.53 26796.64 24385.38 30189.65 24395.18 24085.86 14199.10 13987.70 23393.58 20898.49 140
DIV-MVS_self_test90.97 24890.33 23792.88 27595.36 24486.19 28494.46 29696.63 24687.82 25688.18 28294.23 28682.99 18497.53 30387.72 23085.57 29894.93 292
Fast-Effi-MVS+-dtu92.29 19291.99 17893.21 26595.27 25385.52 29297.03 15696.63 24692.09 13489.11 26095.14 24280.33 23698.08 23887.54 24294.74 19196.03 231
UnsupCasMVSNet_bld82.13 33079.46 33390.14 33088.00 36882.47 32890.89 35296.62 24878.94 35475.61 36084.40 36456.63 36796.31 33977.30 33966.77 36791.63 356
cl2291.21 23790.56 23293.14 26796.09 21886.80 27094.41 29896.58 24987.80 25888.58 27293.99 29680.85 22697.62 29589.87 18986.93 28694.99 287
RRT_MVS93.10 15892.83 14593.93 23394.76 28088.04 24498.47 2296.55 25093.44 8290.01 23297.04 14180.64 22897.93 26794.33 10690.21 25995.83 237
jason94.84 10394.39 10696.18 11795.52 23590.93 15396.09 24296.52 25189.28 21196.01 9397.32 12584.70 15498.77 17295.15 8398.91 9798.85 115
jason: jason.
AUN-MVS91.76 20990.75 22494.81 18597.00 16988.57 22896.65 19796.49 25289.63 20292.15 17896.12 19578.66 26698.50 19790.83 17579.18 34897.36 195
hse-mvs293.45 14492.99 14094.81 18597.02 16788.59 22796.69 19396.47 25395.19 1696.74 5896.16 19483.67 16998.48 20095.85 5779.13 34997.35 196
EG-PatchMatch MVS87.02 30685.44 31091.76 30492.67 34085.00 30296.08 24396.45 25483.41 32979.52 35593.49 31257.10 36597.72 28679.34 33090.87 25292.56 347
KD-MVS_self_test85.95 31684.95 31588.96 33689.55 36379.11 35795.13 28496.42 25585.91 29484.07 33490.48 34570.03 33194.82 35680.04 32272.94 36192.94 341
pmmvs687.81 30186.19 30592.69 28191.32 35186.30 28097.34 13096.41 25680.59 34884.05 33594.37 27667.37 34397.67 28984.75 28479.51 34794.09 329
PMMVS92.86 17292.34 16994.42 20594.92 27186.73 27294.53 29396.38 25784.78 31294.27 13295.12 24483.13 17998.40 20391.47 16696.49 16198.12 163
RPSCF90.75 25590.86 21790.42 32796.84 17476.29 36395.61 26496.34 25883.89 32191.38 19397.87 8576.45 29098.78 17087.16 25192.23 22096.20 221
MSDG91.42 22590.24 24494.96 17697.15 15688.91 21993.69 32196.32 25985.72 29786.93 30796.47 17980.24 23798.98 15680.57 31995.05 18596.98 201
OurMVSNet-221017-090.51 26390.19 24991.44 31093.41 32781.25 33796.98 16696.28 26091.68 14486.55 31196.30 18774.20 30797.98 25388.96 21387.40 28495.09 283
MVP-Stereo90.74 25690.08 25192.71 28093.19 33288.20 23995.86 25496.27 26186.07 29284.86 32594.76 25777.84 28197.75 28483.88 29598.01 12192.17 354
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
lupinMVS94.99 9894.56 9896.29 11096.34 20391.21 13995.83 25596.27 26188.93 22396.22 8396.88 15186.20 13798.85 16595.27 8099.05 9098.82 118
BH-untuned92.94 16892.62 15893.92 23497.22 15086.16 28596.40 21896.25 26390.06 19289.79 23896.17 19383.19 17698.35 20887.19 24997.27 14397.24 198
CL-MVSNet_self_test86.31 31285.15 31489.80 33388.83 36581.74 33593.93 31596.22 26486.67 28385.03 32390.80 34478.09 27794.50 35774.92 34771.86 36293.15 339
IS-MVSNet94.90 10094.52 10196.05 12297.67 13590.56 16598.44 2396.22 26493.21 9093.99 13797.74 9785.55 14598.45 20189.98 18597.86 12499.14 82
GA-MVS91.38 22790.31 23994.59 19594.65 28687.62 25494.34 30196.19 26690.73 17290.35 21693.83 29971.84 31897.96 26187.22 24893.61 20698.21 160
IterMVS-SCA-FT90.31 26689.81 26191.82 29995.52 23584.20 31394.30 30396.15 26790.61 18087.39 29794.27 28375.80 29796.44 33787.34 24586.88 29094.82 301
IterMVS90.15 27289.67 26791.61 30695.48 23783.72 31994.33 30296.12 26889.99 19387.31 30094.15 29175.78 29996.27 34086.97 25386.89 28994.83 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS92.76 17791.51 19796.52 8898.77 6190.99 14997.38 12896.08 26982.38 33489.29 25597.87 8583.77 16799.69 4881.37 31696.69 15698.89 112
pmmvs490.93 25089.85 25994.17 21593.34 32990.79 15994.60 29096.02 27084.62 31387.45 29495.15 24181.88 21197.45 31087.70 23387.87 27894.27 325
ppachtmachnet_test88.35 29687.29 29591.53 30792.45 34583.57 32293.75 31995.97 27184.28 31685.32 32294.18 28979.00 26396.93 33075.71 34584.99 31194.10 327
Anonymous2024052186.42 31085.44 31089.34 33590.33 35679.79 35196.73 18795.92 27283.71 32583.25 33991.36 34263.92 35796.01 34178.39 33485.36 30292.22 352
ITE_SJBPF92.43 28695.34 24685.37 29795.92 27291.47 14987.75 29196.39 18471.00 32497.96 26182.36 30789.86 26293.97 330
USDC88.94 28687.83 29192.27 28994.66 28584.96 30393.86 31695.90 27487.34 27283.40 33895.56 22767.43 34298.19 22082.64 30689.67 26493.66 333
COLMAP_ROBcopyleft87.81 1590.40 26589.28 27493.79 23997.95 11987.13 26596.92 17295.89 27582.83 33286.88 30997.18 13273.77 31199.29 12378.44 33393.62 20594.95 288
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
VDD-MVS93.82 13193.08 13896.02 12497.88 12589.96 18297.72 8995.85 27692.43 12395.86 9798.44 3268.42 33899.39 11496.31 3694.85 18698.71 126
VDDNet93.05 16292.07 17496.02 12496.84 17490.39 17298.08 5495.85 27686.22 29095.79 10098.46 3067.59 34199.19 12994.92 9194.85 18698.47 143
Vis-MVSNet (Re-imp)94.15 11593.88 11194.95 17797.61 14187.92 24798.10 5295.80 27892.22 12793.02 15997.45 12084.53 15797.91 27188.24 22297.97 12299.02 92
KD-MVS_2432*160084.81 32382.64 32691.31 31291.07 35385.34 29891.22 34795.75 27985.56 29983.09 34090.21 34767.21 34495.89 34377.18 34062.48 36992.69 344
miper_refine_blended84.81 32382.64 32691.31 31291.07 35385.34 29891.22 34795.75 27985.56 29983.09 34090.21 34767.21 34495.89 34377.18 34062.48 36992.69 344
tpm cat188.36 29587.21 29891.81 30095.13 26280.55 34392.58 34095.70 28174.97 36187.45 29491.96 33578.01 28098.17 22380.39 32188.74 27296.72 212
our_test_388.78 29187.98 29091.20 31592.45 34582.53 32793.61 32595.69 28285.77 29684.88 32493.71 30479.99 24296.78 33579.47 32786.24 29194.28 324
BH-w/o92.14 20191.75 18593.31 26096.99 17085.73 28995.67 26095.69 28288.73 23389.26 25794.82 25582.97 18698.07 24185.26 27996.32 16496.13 227
CR-MVSNet90.82 25389.77 26393.95 22994.45 29687.19 26290.23 35595.68 28486.89 28092.40 16992.36 33080.91 22397.05 32481.09 31893.95 20197.60 189
Patchmtry88.64 29387.25 29692.78 27994.09 30786.64 27389.82 35895.68 28480.81 34687.63 29392.36 33080.91 22397.03 32578.86 33185.12 30794.67 312
iter_conf_final93.60 13893.11 13795.04 16897.13 15791.30 13497.92 6895.65 28692.98 10491.60 18896.64 16479.28 25498.13 22695.34 7991.49 23495.70 251
BH-RMVSNet92.72 17891.97 17994.97 17597.16 15487.99 24696.15 24095.60 28790.62 17991.87 18597.15 13678.41 27098.57 19383.16 29897.60 13198.36 155
PVSNet_082.17 1985.46 32083.64 32390.92 31895.27 25379.49 35390.55 35395.60 28783.76 32483.00 34289.95 34971.09 32397.97 25682.75 30460.79 37195.31 273
SCA91.84 20791.18 21093.83 23695.59 23184.95 30494.72 28895.58 28990.82 16892.25 17693.69 30575.80 29798.10 23486.20 26295.98 16698.45 145
AllTest90.23 26988.98 27893.98 22597.94 12086.64 27396.51 21095.54 29085.38 30185.49 31996.77 15470.28 32899.15 13480.02 32392.87 21096.15 225
TestCases93.98 22597.94 12086.64 27395.54 29085.38 30185.49 31996.77 15470.28 32899.15 13480.02 32392.87 21096.15 225
iter_conf0593.18 15592.63 15694.83 18296.64 18390.69 16297.60 10595.53 29292.52 12191.58 18996.64 16476.35 29398.13 22695.43 7791.42 23795.68 254
mvsmamba93.83 13093.46 12694.93 18094.88 27590.85 15698.55 1495.49 29394.24 5491.29 20196.97 14583.04 18398.14 22595.56 7591.17 24295.78 241
tpmvs89.83 27989.15 27791.89 29694.92 27180.30 34693.11 33395.46 29486.28 28888.08 28492.65 32280.44 23298.52 19681.47 31289.92 26196.84 208
pmmvs589.86 27888.87 28092.82 27792.86 33686.23 28296.26 23295.39 29584.24 31787.12 30194.51 26774.27 30697.36 31787.61 24187.57 28094.86 297
PatchmatchNetpermissive91.91 20591.35 19993.59 24895.38 24184.11 31493.15 33295.39 29589.54 20392.10 18193.68 30782.82 19098.13 22684.81 28395.32 17998.52 135
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst91.44 22491.32 20191.79 30195.15 26079.20 35693.42 32795.37 29788.55 23893.49 14993.67 30882.49 19898.27 21390.41 18089.34 26697.90 171
Anonymous2023120687.09 30586.14 30689.93 33291.22 35280.35 34496.11 24195.35 29883.57 32784.16 33193.02 31973.54 31295.61 34972.16 35786.14 29393.84 332
MIMVSNet184.93 32283.05 32490.56 32589.56 36284.84 30695.40 27195.35 29883.91 32080.38 35192.21 33457.23 36493.34 36570.69 36382.75 33893.50 335
TDRefinement86.53 30884.76 31891.85 29782.23 37384.25 31196.38 22195.35 29884.97 30984.09 33394.94 24765.76 35498.34 21184.60 28774.52 35792.97 340
TR-MVS91.48 22390.59 23094.16 21696.40 20087.33 25695.67 26095.34 30187.68 26491.46 19295.52 23076.77 28898.35 20882.85 30293.61 20696.79 210
EPNet_dtu91.71 21091.28 20492.99 27193.76 31783.71 32096.69 19395.28 30293.15 9487.02 30595.95 20383.37 17597.38 31679.46 32896.84 15097.88 173
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FMVSNet587.29 30485.79 30891.78 30294.80 27987.28 25795.49 26895.28 30284.09 31983.85 33791.82 33662.95 35994.17 36078.48 33285.34 30393.91 331
MDTV_nov1_ep1390.76 22395.22 25780.33 34593.03 33595.28 30288.14 24992.84 16693.83 29981.34 21798.08 23882.86 30194.34 195
LF4IMVS87.94 29987.25 29689.98 33192.38 34780.05 35094.38 29995.25 30587.59 26684.34 32894.74 25964.31 35697.66 29184.83 28287.45 28192.23 351
TransMVSNet (Re)88.94 28687.56 29393.08 26994.35 29988.45 23397.73 8695.23 30687.47 26884.26 33095.29 23679.86 24597.33 31879.44 32974.44 35893.45 337
test20.0386.14 31485.40 31288.35 33790.12 35780.06 34995.90 25395.20 30788.59 23481.29 34693.62 31071.43 32192.65 36771.26 36181.17 34292.34 350
new-patchmatchnet83.18 32781.87 32987.11 34386.88 37075.99 36493.70 32095.18 30885.02 30877.30 35988.40 35565.99 35293.88 36274.19 35270.18 36491.47 359
MDA-MVSNet_test_wron85.87 31784.23 32190.80 32292.38 34782.57 32693.17 33095.15 30982.15 33567.65 36592.33 33378.20 27395.51 35277.33 33779.74 34494.31 323
YYNet185.87 31784.23 32190.78 32392.38 34782.46 32993.17 33095.14 31082.12 33667.69 36492.36 33078.16 27695.50 35377.31 33879.73 34594.39 319
Baseline_NR-MVSNet91.20 23890.62 22892.95 27393.83 31588.03 24597.01 16395.12 31188.42 24089.70 24095.13 24383.47 17297.44 31189.66 19583.24 33393.37 338
thres20092.23 19691.39 19894.75 19297.61 14189.03 21796.60 20595.09 31292.08 13593.28 15594.00 29578.39 27199.04 15381.26 31794.18 19696.19 222
ADS-MVSNet89.89 27688.68 28293.53 25195.86 22284.89 30590.93 35095.07 31383.23 33091.28 20291.81 33779.01 26197.85 27479.52 32591.39 23897.84 175
pmmvs-eth3d86.22 31384.45 31991.53 30788.34 36787.25 25994.47 29495.01 31483.47 32879.51 35689.61 35269.75 33395.71 34883.13 29976.73 35491.64 355
Anonymous20240521192.07 20290.83 22195.76 13298.19 10888.75 22297.58 10795.00 31586.00 29393.64 14497.45 12066.24 35199.53 9390.68 17992.71 21399.01 96
MDA-MVSNet-bldmvs85.00 32182.95 32591.17 31693.13 33483.33 32394.56 29295.00 31584.57 31465.13 36992.65 32270.45 32795.85 34573.57 35377.49 35194.33 321
ambc86.56 34583.60 37170.00 37185.69 36594.97 31780.60 35088.45 35437.42 37496.84 33382.69 30575.44 35692.86 342
testgi87.97 29887.21 29890.24 32992.86 33680.76 33996.67 19694.97 31791.74 14285.52 31895.83 20962.66 36094.47 35976.25 34388.36 27595.48 258
dp88.90 28888.26 28890.81 32094.58 29276.62 36292.85 33794.93 31985.12 30690.07 23193.07 31875.81 29698.12 23180.53 32087.42 28397.71 181
test_040286.46 30984.79 31791.45 30995.02 26685.55 29196.29 23094.89 32080.90 34382.21 34393.97 29768.21 33997.29 32062.98 36888.68 27391.51 357
tfpn200view992.38 18691.52 19594.95 17797.85 12689.29 20897.41 12294.88 32192.19 13193.27 15694.46 27278.17 27499.08 14481.40 31394.08 19796.48 217
CVMVSNet91.23 23691.75 18589.67 33495.77 22774.69 36596.44 21194.88 32185.81 29592.18 17797.64 10879.07 25695.58 35188.06 22495.86 17098.74 122
thres40092.42 18491.52 19595.12 16797.85 12689.29 20897.41 12294.88 32192.19 13193.27 15694.46 27278.17 27499.08 14481.40 31394.08 19796.98 201
EPNet95.20 9194.56 9897.14 7192.80 33892.68 8897.85 7594.87 32496.64 192.46 16897.80 9486.23 13499.65 5793.72 12098.62 10499.10 88
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SixPastTwentyTwo89.15 28488.54 28490.98 31793.49 32580.28 34796.70 19194.70 32590.78 16984.15 33295.57 22671.78 31997.71 28784.63 28685.07 30894.94 290
thres100view90092.43 18391.58 19294.98 17497.92 12289.37 20497.71 9194.66 32692.20 12993.31 15494.90 25078.06 27899.08 14481.40 31394.08 19796.48 217
thres600view792.49 18291.60 19195.18 16397.91 12389.47 19897.65 9894.66 32692.18 13393.33 15394.91 24978.06 27899.10 13981.61 31094.06 20096.98 201
PatchT88.87 28987.42 29493.22 26494.08 30885.10 30189.51 35994.64 32881.92 33792.36 17288.15 35880.05 24197.01 32872.43 35693.65 20497.54 192
baseline192.82 17591.90 18195.55 14897.20 15290.77 16097.19 14794.58 32992.20 12992.36 17296.34 18684.16 16398.21 21789.20 20983.90 32897.68 183
Gipumacopyleft67.86 33765.41 33975.18 35392.66 34173.45 36766.50 37294.52 33053.33 37157.80 37266.07 37230.81 37589.20 36948.15 37378.88 35062.90 372
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
bld_raw_conf00593.06 16192.54 16394.60 19494.64 28889.95 18398.28 3294.50 33194.06 5790.23 21896.99 14478.34 27298.12 23194.73 10091.09 24595.74 249
CostFormer91.18 24190.70 22692.62 28394.84 27781.76 33494.09 31094.43 33284.15 31892.72 16793.77 30379.43 25198.20 21890.70 17892.18 22397.90 171
tpm289.96 27489.21 27592.23 29094.91 27381.25 33793.78 31894.42 33380.62 34791.56 19093.44 31476.44 29197.94 26485.60 27492.08 22797.49 193
JIA-IIPM88.26 29787.04 30191.91 29593.52 32381.42 33689.38 36094.38 33480.84 34590.93 20780.74 36679.22 25597.92 26882.76 30391.62 23196.38 219
Patchmatch-test89.42 28287.99 28993.70 24395.27 25385.11 30088.98 36194.37 33581.11 34287.10 30393.69 30582.28 20297.50 30674.37 35094.76 18998.48 142
LCM-MVSNet72.55 33369.39 33782.03 34870.81 38065.42 37590.12 35794.36 33655.02 37065.88 36781.72 36524.16 38189.96 36874.32 35168.10 36690.71 362
ADS-MVSNet289.45 28188.59 28392.03 29395.86 22282.26 33190.93 35094.32 33783.23 33091.28 20291.81 33779.01 26195.99 34279.52 32591.39 23897.84 175
EU-MVSNet88.72 29288.90 27988.20 33993.15 33374.21 36696.63 20294.22 33885.18 30487.32 29995.97 20176.16 29494.98 35585.27 27886.17 29295.41 264
MIMVSNet88.50 29486.76 30293.72 24294.84 27787.77 25291.39 34594.05 33986.41 28787.99 28792.59 32463.27 35895.82 34777.44 33692.84 21297.57 191
OpenMVS_ROBcopyleft81.14 2084.42 32582.28 32890.83 31990.06 35884.05 31695.73 25994.04 34073.89 36380.17 35491.53 34159.15 36397.64 29266.92 36689.05 26890.80 361
TinyColmap86.82 30785.35 31391.21 31494.91 27382.99 32593.94 31494.02 34183.58 32681.56 34594.68 26162.34 36198.13 22675.78 34487.35 28592.52 348
IB-MVS87.33 1789.91 27588.28 28794.79 18995.26 25687.70 25395.12 28593.95 34289.35 21087.03 30492.49 32570.74 32699.19 12989.18 21081.37 34197.49 193
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
LCM-MVSNet-Re92.50 18092.52 16592.44 28596.82 17781.89 33396.92 17293.71 34392.41 12484.30 32994.60 26585.08 15097.03 32591.51 16497.36 13998.40 151
bld_raw_dy_0_6492.37 18791.69 18894.39 20694.28 30489.73 18897.71 9193.65 34492.78 11390.46 21396.67 16275.88 29597.97 25692.92 13990.89 25195.48 258
tpm90.25 26889.74 26691.76 30493.92 31179.73 35293.98 31193.54 34588.28 24391.99 18393.25 31777.51 28497.44 31187.30 24787.94 27798.12 163
ET-MVSNet_ETH3D91.49 22290.11 25095.63 14296.40 20091.57 12695.34 27393.48 34690.60 18275.58 36195.49 23180.08 24096.79 33494.25 10789.76 26398.52 135
LFMVS93.60 13892.63 15696.52 8898.13 11391.27 13697.94 6693.39 34790.57 18396.29 8198.31 5169.00 33499.16 13394.18 10995.87 16999.12 86
Patchmatch-RL test87.38 30386.24 30490.81 32088.74 36678.40 36088.12 36393.17 34887.11 27782.17 34489.29 35381.95 20995.60 35088.64 21977.02 35298.41 150
test-LLR91.42 22591.19 20992.12 29194.59 29080.66 34094.29 30492.98 34991.11 16490.76 20992.37 32779.02 25998.07 24188.81 21596.74 15397.63 184
test-mter90.19 27189.54 27092.12 29194.59 29080.66 34094.29 30492.98 34987.68 26490.76 20992.37 32767.67 34098.07 24188.81 21596.74 15397.63 184
test_method66.11 33864.89 34069.79 35572.62 37835.23 38565.19 37392.83 35120.35 37665.20 36888.08 35943.14 37382.70 37373.12 35563.46 36891.45 360
test0.0.03 189.37 28388.70 28191.41 31192.47 34485.63 29095.22 28292.70 35291.11 16486.91 30893.65 30979.02 25993.19 36678.00 33589.18 26795.41 264
new_pmnet82.89 32881.12 33288.18 34089.63 36180.18 34891.77 34492.57 35376.79 36075.56 36288.23 35761.22 36294.48 35871.43 35982.92 33689.87 363
thisisatest051592.29 19291.30 20395.25 16196.60 18588.90 22094.36 30092.32 35487.92 25393.43 15194.57 26677.28 28599.00 15489.42 20095.86 17097.86 174
thisisatest053093.03 16392.21 17295.49 15397.07 16089.11 21697.49 11892.19 35590.16 19094.09 13596.41 18276.43 29299.05 15090.38 18195.68 17598.31 157
tttt051792.96 16692.33 17094.87 18197.11 15887.16 26497.97 6492.09 35690.63 17893.88 14197.01 14376.50 28999.06 14990.29 18495.45 17798.38 153
K. test v387.64 30286.75 30390.32 32893.02 33579.48 35496.61 20392.08 35790.66 17680.25 35394.09 29267.21 34496.65 33685.96 27080.83 34394.83 299
TESTMET0.1,190.06 27389.42 27191.97 29494.41 29880.62 34294.29 30491.97 35887.28 27490.44 21492.47 32668.79 33597.67 28988.50 22196.60 15897.61 188
PM-MVS83.48 32681.86 33088.31 33887.83 36977.59 36193.43 32691.75 35986.91 27980.63 34989.91 35044.42 37295.84 34685.17 28176.73 35491.50 358
baseline291.63 21390.86 21793.94 23194.33 30086.32 27995.92 25291.64 36089.37 20986.94 30694.69 26081.62 21598.69 18188.64 21994.57 19396.81 209
FPMVS71.27 33469.85 33675.50 35274.64 37559.03 37791.30 34691.50 36158.80 36957.92 37188.28 35629.98 37785.53 37253.43 37182.84 33781.95 368
door91.13 362
door-mid91.06 363
EGC-MVSNET68.77 33663.01 34186.07 34792.49 34382.24 33293.96 31390.96 3640.71 3812.62 38290.89 34353.66 36893.46 36357.25 37084.55 31782.51 367
pmmvs379.97 33177.50 33587.39 34282.80 37279.38 35592.70 33990.75 36570.69 36578.66 35787.47 36251.34 37093.40 36473.39 35469.65 36589.38 364
DSMNet-mixed86.34 31186.12 30787.00 34489.88 36070.43 36994.93 28690.08 36677.97 35885.42 32192.78 32174.44 30593.96 36174.43 34995.14 18196.62 213
MVS-HIRNet82.47 32981.21 33186.26 34695.38 24169.21 37288.96 36289.49 36766.28 36680.79 34874.08 37068.48 33797.39 31571.93 35895.47 17692.18 353
test111193.19 15292.82 14694.30 21297.58 14584.56 30998.21 4589.02 36893.53 7894.58 12698.21 6272.69 31499.05 15093.06 13398.48 10999.28 71
ECVR-MVScopyleft93.19 15292.73 15394.57 20097.66 13785.41 29498.21 4588.23 36993.43 8394.70 12498.21 6272.57 31599.07 14793.05 13498.49 10799.25 74
EPMVS90.70 25889.81 26193.37 25894.73 28384.21 31293.67 32288.02 37089.50 20592.38 17193.49 31277.82 28297.78 28186.03 26892.68 21498.11 166
ANet_high63.94 33959.58 34277.02 35161.24 38266.06 37385.66 36687.93 37178.53 35642.94 37471.04 37125.42 38080.71 37452.60 37230.83 37584.28 366
PMMVS270.19 33566.92 33880.01 34976.35 37465.67 37486.22 36487.58 37264.83 36862.38 37080.29 36726.78 37988.49 37063.79 36754.07 37285.88 365
lessismore_v090.45 32691.96 35079.09 35887.19 37380.32 35294.39 27466.31 35097.55 30084.00 29376.84 35394.70 311
PMVScopyleft53.92 2258.58 34055.40 34368.12 35651.00 38348.64 37978.86 36987.10 37446.77 37235.84 37874.28 3698.76 38286.34 37142.07 37473.91 35969.38 370
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
gg-mvs-nofinetune87.82 30085.61 30994.44 20394.46 29589.27 21191.21 34984.61 37580.88 34489.89 23674.98 36871.50 32097.53 30385.75 27397.21 14596.51 215
GG-mvs-BLEND93.62 24693.69 31989.20 21292.39 34383.33 37687.98 28889.84 35171.00 32496.87 33282.08 30995.40 17894.80 304
MTMP97.86 7282.03 377
DeepMVS_CXcopyleft74.68 35490.84 35564.34 37681.61 37865.34 36767.47 36688.01 36048.60 37180.13 37562.33 36973.68 36079.58 369
E-PMN53.28 34152.56 34555.43 35874.43 37647.13 38083.63 36876.30 37942.23 37342.59 37562.22 37428.57 37874.40 37631.53 37631.51 37444.78 373
test250691.60 21490.78 22294.04 22297.66 13783.81 31798.27 3475.53 38093.43 8395.23 11698.21 6267.21 34499.07 14793.01 13798.49 10799.25 74
EMVS52.08 34351.31 34654.39 35972.62 37845.39 38283.84 36775.51 38141.13 37440.77 37659.65 37530.08 37673.60 37728.31 37729.90 37644.18 374
MVEpermissive50.73 2353.25 34248.81 34766.58 35765.34 38157.50 37872.49 37170.94 38240.15 37539.28 37763.51 3736.89 38473.48 37838.29 37542.38 37368.76 371
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt51.94 34453.82 34446.29 36033.73 38445.30 38378.32 37067.24 38318.02 37750.93 37387.05 36352.99 36953.11 37970.76 36225.29 37740.46 375
N_pmnet78.73 33278.71 33478.79 35092.80 33846.50 38194.14 30843.71 38478.61 35580.83 34791.66 34074.94 30396.36 33867.24 36584.45 31993.50 335
wuyk23d25.11 34524.57 34926.74 36173.98 37739.89 38457.88 3749.80 38512.27 37810.39 3796.97 3817.03 38336.44 38025.43 37817.39 3783.89 378
testmvs13.36 34716.33 3504.48 3635.04 3852.26 38793.18 3293.28 3862.70 3798.24 38021.66 3772.29 3862.19 3817.58 3792.96 3799.00 377
test12313.04 34815.66 3515.18 3624.51 3863.45 38692.50 3421.81 3872.50 3807.58 38120.15 3783.67 3852.18 3827.13 3801.07 3809.90 376
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas7.39 3509.85 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38288.65 1010.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
n20.00 388
nn0.00 388
ab-mvs-re8.06 34910.74 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38396.69 1600.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
PC_three_145290.77 17098.89 898.28 5796.24 198.35 20895.76 6199.58 2299.59 20
eth-test20.00 387
eth-test0.00 387
OPU-MVS98.55 398.82 6096.86 398.25 3898.26 5896.04 299.24 12695.36 7899.59 1799.56 27
test_0728_THIRD94.78 3798.73 1098.87 695.87 499.84 2397.45 999.72 299.77 1
GSMVS98.45 145
test_part299.28 2795.74 898.10 21
sam_mvs182.76 19198.45 145
sam_mvs81.94 210
test_post192.81 33816.58 38080.53 23097.68 28886.20 262
test_post17.58 37981.76 21298.08 238
patchmatchnet-post90.45 34682.65 19598.10 234
gm-plane-assit93.22 33178.89 35984.82 31193.52 31198.64 18587.72 230
test9_res94.81 9699.38 5499.45 51
agg_prior293.94 11499.38 5499.50 43
test_prior493.66 6296.42 214
test_prior296.35 22392.80 11196.03 8997.59 11292.01 4695.01 8799.38 54
旧先验295.94 25181.66 33997.34 4098.82 16792.26 143
新几何295.79 257
原ACMM295.67 260
testdata299.67 5385.96 270
segment_acmp92.89 26
testdata195.26 28193.10 97
plane_prior796.21 20789.98 180
plane_prior696.10 21790.00 17681.32 218
plane_prior496.64 164
plane_prior390.00 17694.46 4791.34 195
plane_prior297.74 8494.85 30
plane_prior196.14 215
plane_prior89.99 17897.24 13994.06 5792.16 224
HQP5-MVS89.33 206
HQP-NCC95.86 22296.65 19793.55 7490.14 220
ACMP_Plane95.86 22296.65 19793.55 7490.14 220
BP-MVS92.13 149
HQP4-MVS90.14 22098.50 19795.78 241
HQP2-MVS80.95 221
NP-MVS95.99 22189.81 18695.87 206
MDTV_nov1_ep13_2view70.35 37093.10 33483.88 32293.55 14682.47 19986.25 26198.38 153
ACMMP++_ref90.30 258
ACMMP++91.02 247
Test By Simon88.73 100