This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
CHOSEN 1792x268897.12 11496.80 10998.08 12999.30 7994.56 22698.05 23599.71 193.57 21797.09 14898.91 11088.17 21899.89 3996.87 11799.56 8699.81 11
HyFIR lowres test96.90 12296.49 12798.14 12399.33 6995.56 17797.38 28599.65 292.34 26197.61 13698.20 19189.29 18799.10 19496.97 10397.60 18299.77 23
MVS_111021_LR98.34 5298.23 4798.67 8399.27 8796.90 11297.95 24499.58 397.14 4998.44 8399.01 9495.03 8099.62 13597.91 4999.75 4299.50 100
MVS_111021_HR98.47 4098.34 3398.88 7599.22 9897.32 9397.91 24899.58 397.20 4498.33 9099.00 9595.99 3999.64 13098.05 4399.76 3699.69 57
PGM-MVS98.49 3798.23 4799.27 4199.72 1398.08 6498.99 7999.49 595.43 12699.03 3999.32 3795.56 5399.94 496.80 12299.77 3099.78 16
ACMMPcopyleft98.23 5897.95 6199.09 6299.74 897.62 8499.03 6999.41 695.98 9997.60 13799.36 3094.45 9599.93 1997.14 9798.85 13399.70 54
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSCG97.85 7297.74 6898.20 12099.67 2795.16 19399.22 3499.32 793.04 23797.02 15498.92 10995.36 6499.91 3497.43 8799.64 6899.52 94
patch_mono-298.36 4898.87 396.82 21099.53 3990.68 31498.64 15399.29 897.88 599.19 2999.52 396.80 1599.97 199.11 199.86 199.82 10
PVSNet_BlendedMVS96.73 12796.60 12297.12 18899.25 9095.35 18898.26 20999.26 994.28 17897.94 11497.46 25192.74 11699.81 7596.88 11493.32 26396.20 327
PVSNet_Blended97.38 10197.12 9598.14 12399.25 9095.35 18897.28 29699.26 993.13 23497.94 11498.21 19092.74 11699.81 7596.88 11499.40 10899.27 134
UniMVSNet_NR-MVSNet95.71 17595.15 18597.40 17396.84 28196.97 10898.74 12999.24 1195.16 14293.88 25797.72 23291.68 13898.31 29395.81 15587.25 33696.92 251
WR-MVS_H95.05 21394.46 21796.81 21196.86 28095.82 16999.24 2999.24 1193.87 19692.53 30296.84 30490.37 16898.24 30193.24 23587.93 32896.38 320
FC-MVSNet-test96.42 14096.05 14297.53 16796.95 27397.27 9599.36 1699.23 1395.83 10793.93 25498.37 17292.00 13298.32 29196.02 14992.72 27197.00 243
VPA-MVSNet95.75 17295.11 18897.69 15697.24 25497.27 9598.94 8999.23 1395.13 14395.51 20197.32 26085.73 26798.91 22097.33 9289.55 30796.89 259
FIs96.51 13796.12 13997.67 15897.13 26597.54 8799.36 1699.22 1595.89 10394.03 25198.35 17491.98 13398.44 27296.40 13892.76 27097.01 242
tfpnnormal93.66 28192.70 29096.55 23996.94 27495.94 16098.97 8399.19 1691.04 30591.38 32197.34 25884.94 28198.61 24985.45 34289.02 31795.11 348
UniMVSNet (Re)95.78 17195.19 18497.58 16496.99 27297.47 8998.79 12499.18 1795.60 11893.92 25597.04 28591.68 13898.48 26495.80 15787.66 33196.79 271
PVSNet_Blended_VisFu97.70 7897.46 8298.44 10399.27 8795.91 16598.63 15599.16 1894.48 17497.67 13098.88 11292.80 11599.91 3497.11 9899.12 11999.50 100
CHOSEN 280x42097.18 11197.18 9497.20 18198.81 13893.27 27195.78 34899.15 1995.25 13896.79 16798.11 19792.29 12299.07 19798.56 1399.85 599.25 136
D2MVS95.18 20695.08 18995.48 28797.10 26792.07 28798.30 20399.13 2094.02 18792.90 29096.73 30789.48 18298.73 24094.48 19893.60 25595.65 340
PHI-MVS98.34 5298.06 5599.18 5099.15 10998.12 6399.04 6699.09 2193.32 22698.83 5799.10 7896.54 2099.83 6097.70 7099.76 3699.59 87
UA-Net97.96 6497.62 7098.98 6898.86 13397.47 8998.89 9799.08 2296.67 7198.72 6599.54 193.15 11299.81 7594.87 18398.83 13499.65 73
PatchMatch-RL96.59 13296.03 14498.27 11499.31 7496.51 13197.91 24899.06 2393.72 20596.92 15998.06 20088.50 21399.65 12891.77 27799.00 12598.66 190
3Dnovator94.51 597.46 9296.93 10599.07 6397.78 21697.64 8299.35 1899.06 2397.02 5593.75 26499.16 6889.25 18999.92 2597.22 9599.75 4299.64 76
MSLP-MVS++98.56 2998.57 1198.55 9099.26 8996.80 11598.71 13899.05 2597.28 3698.84 5599.28 4496.47 2299.40 16398.52 2099.70 5799.47 107
PS-CasMVS94.67 23593.99 24396.71 21596.68 29095.26 19199.13 5099.03 2693.68 21192.33 30997.95 21085.35 27598.10 30993.59 22688.16 32796.79 271
TranMVSNet+NR-MVSNet95.14 20894.48 21597.11 18996.45 30496.36 13999.03 6999.03 2695.04 15093.58 26797.93 21288.27 21698.03 31694.13 20986.90 34196.95 250
PEN-MVS94.42 25293.73 26396.49 24396.28 31294.84 20999.17 4399.00 2893.51 21892.23 31197.83 22486.10 26197.90 32592.55 25886.92 34096.74 276
Vis-MVSNetpermissive97.42 9897.11 9698.34 11098.66 15196.23 14499.22 3499.00 2896.63 7398.04 10199.21 5588.05 22399.35 16696.01 15099.21 11599.45 113
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DU-MVS95.42 18994.76 20297.40 17396.53 29796.97 10898.66 15198.99 3095.43 12693.88 25797.69 23388.57 20998.31 29395.81 15587.25 33696.92 251
VPNet94.99 21694.19 22997.40 17397.16 26396.57 12798.71 13898.97 3195.67 11594.84 21298.24 18980.36 32598.67 24596.46 13387.32 33596.96 247
OpenMVScopyleft93.04 1395.83 16995.00 19298.32 11197.18 26297.32 9399.21 3798.97 3189.96 32291.14 32399.05 8986.64 25099.92 2593.38 23099.47 9997.73 222
HFP-MVS98.63 1798.40 2399.32 3199.72 1398.29 5199.23 3098.96 3396.10 9698.94 4599.17 6396.06 3499.92 2597.62 7499.78 2799.75 32
#test#98.54 3398.27 4199.32 3199.72 1398.29 5198.98 8298.96 3395.65 11798.94 4599.17 6396.06 3499.92 2597.21 9699.78 2799.75 32
FOURS199.82 198.66 2699.69 198.95 3597.46 2399.39 15
ACMMPR98.59 2198.36 2799.29 3499.74 898.15 6199.23 3098.95 3596.10 9698.93 5099.19 6295.70 5099.94 497.62 7499.79 2399.78 16
CP-MVSNet94.94 22294.30 22596.83 20996.72 28895.56 17799.11 5498.95 3593.89 19492.42 30897.90 21487.19 24198.12 30894.32 20388.21 32596.82 270
NR-MVSNet94.98 21894.16 23197.44 16996.53 29797.22 10198.74 12998.95 3594.96 15489.25 34097.69 23389.32 18698.18 30394.59 19587.40 33496.92 251
region2R98.61 1898.38 2599.29 3499.74 898.16 6099.23 3098.93 3996.15 9198.94 4599.17 6395.91 4399.94 497.55 8299.79 2399.78 16
APDe-MVS99.02 498.84 499.55 999.57 3598.96 1699.39 1398.93 3997.38 3099.41 1399.54 196.66 1799.84 5798.86 499.85 599.87 1
VNet97.79 7497.40 8698.96 7098.88 13197.55 8698.63 15598.93 3996.74 6899.02 4098.84 11790.33 17099.83 6098.53 1496.66 19899.50 100
UGNet96.78 12696.30 13398.19 12298.24 18395.89 16798.88 10098.93 3997.39 2996.81 16597.84 22182.60 30999.90 3796.53 13199.49 9698.79 181
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
sss97.39 10096.98 10498.61 8698.60 15796.61 12498.22 21198.93 3993.97 19198.01 10898.48 15891.98 13399.85 5496.45 13498.15 16299.39 118
QAPM96.29 14595.40 16898.96 7097.85 21397.60 8599.23 3098.93 3989.76 32693.11 28699.02 9089.11 19499.93 1991.99 27299.62 7299.34 121
DPE-MVScopyleft98.92 598.67 899.65 299.58 3499.20 998.42 18698.91 4597.58 1599.54 899.46 1397.10 1299.94 497.64 7399.84 1099.83 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
114514_t96.93 12096.27 13498.92 7299.50 4597.63 8398.85 10698.90 4684.80 35697.77 12299.11 7692.84 11499.66 12794.85 18499.77 3099.47 107
LS3D97.16 11296.66 12198.68 8298.53 16197.19 10298.93 9198.90 4692.83 24695.99 19599.37 2692.12 12999.87 4893.67 22499.57 8198.97 170
DELS-MVS98.40 4598.20 4998.99 6699.00 12197.66 8197.75 26498.89 4897.71 998.33 9098.97 9794.97 8199.88 4798.42 2899.76 3699.42 117
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DP-MVS Recon97.86 7197.46 8299.06 6499.53 3998.35 4898.33 19598.89 4892.62 25098.05 9998.94 10695.34 6599.65 12896.04 14899.42 10599.19 143
AdaColmapbinary97.15 11396.70 11798.48 9999.16 10796.69 12198.01 23998.89 4894.44 17696.83 16298.68 13690.69 16499.76 10794.36 20099.29 11498.98 169
DVP-MVS++99.08 298.89 299.64 399.17 10399.23 799.69 198.88 5197.32 3399.53 999.47 1097.81 399.94 498.47 2299.72 5499.74 37
test_0728_SECOND99.71 199.72 1399.35 198.97 8398.88 5199.94 498.47 2299.81 1299.84 6
test072699.72 1399.25 299.06 6398.88 5197.62 1299.56 699.50 597.42 9
MSP-MVS98.74 998.55 1399.29 3499.75 498.23 5499.26 2798.88 5197.52 1799.41 1398.78 12496.00 3899.79 9697.79 6199.59 7799.85 4
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
Anonymous2023121194.10 27293.26 28196.61 22799.11 11294.28 23599.01 7598.88 5186.43 34792.81 29297.57 24581.66 31498.68 24494.83 18589.02 31796.88 260
XVS98.70 1098.49 2099.34 2699.70 2498.35 4899.29 2398.88 5197.40 2798.46 7999.20 5995.90 4499.89 3997.85 5699.74 4599.78 16
X-MVStestdata94.06 27692.30 29699.34 2699.70 2498.35 4899.29 2398.88 5197.40 2798.46 7943.50 37695.90 4499.89 3997.85 5699.74 4599.78 16
SED-MVS99.09 198.91 199.63 499.71 2199.24 599.02 7398.87 5897.65 1099.73 199.48 897.53 799.94 498.43 2699.81 1299.70 54
test_241102_TWO98.87 5897.65 1099.53 999.48 897.34 1199.94 498.43 2699.80 1999.83 7
test_241102_ONE99.71 2199.24 598.87 5897.62 1299.73 199.39 1897.53 799.74 111
CP-MVS98.57 2798.36 2799.19 4699.66 2897.86 7399.34 1998.87 5895.96 10198.60 7599.13 7396.05 3699.94 497.77 6299.86 199.77 23
SteuartSystems-ACMMP98.90 698.75 699.36 2499.22 9898.43 3899.10 5798.87 5897.38 3099.35 1799.40 1797.78 599.87 4897.77 6299.85 599.78 16
Skip Steuart: Steuart Systems R&D Blog.
DeepPCF-MVS96.37 297.93 6998.48 2296.30 25999.00 12189.54 33097.43 28298.87 5898.16 299.26 2299.38 2596.12 3299.64 13098.30 3499.77 3099.72 46
test_one_060199.66 2899.25 298.86 6497.55 1699.20 2699.47 1097.57 6
ZNCC-MVS98.49 3798.20 4999.35 2599.73 1298.39 3999.19 4198.86 6495.77 10998.31 9299.10 7895.46 5799.93 1997.57 8099.81 1299.74 37
testtj98.33 5497.95 6199.47 1499.49 4998.70 2398.83 11098.86 6495.48 12398.91 5299.17 6395.48 5699.93 1995.80 15799.53 9299.76 30
DTE-MVSNet93.98 27893.26 28196.14 26496.06 32194.39 23299.20 3998.86 6493.06 23691.78 31797.81 22685.87 26597.58 33690.53 29486.17 34596.46 317
SD-MVS98.64 1598.68 798.53 9499.33 6998.36 4798.90 9398.85 6897.28 3699.72 399.39 1896.63 1997.60 33598.17 3699.85 599.64 76
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ETH3D-3000-0.198.35 5098.00 5999.38 2099.47 5298.68 2598.67 14898.84 6994.66 16799.11 3499.25 5095.46 5799.81 7596.80 12299.73 4799.63 79
test_prior398.22 5997.90 6499.19 4699.31 7498.22 5597.80 26098.84 6996.12 9497.89 11998.69 13495.96 4099.70 11996.89 11199.60 7499.65 73
test_prior99.19 4699.31 7498.22 5598.84 6999.70 11999.65 73
test117298.56 2998.35 2999.16 5399.53 3997.94 7199.09 5898.83 7296.52 7799.05 3899.34 3595.34 6599.82 6897.86 5599.64 6899.73 42
Anonymous2024052995.10 21094.22 22797.75 15099.01 12094.26 23798.87 10398.83 7285.79 35396.64 17098.97 9778.73 33399.85 5496.27 14094.89 22799.12 154
9.1498.06 5599.47 5298.71 13898.82 7494.36 17799.16 3299.29 4396.05 3699.81 7597.00 10199.71 56
SR-MVS98.57 2798.35 2999.24 4399.53 3998.18 5899.09 5898.82 7496.58 7499.10 3599.32 3795.39 6199.82 6897.70 7099.63 7099.72 46
GST-MVS98.43 4398.12 5299.34 2699.72 1398.38 4099.09 5898.82 7495.71 11298.73 6499.06 8895.27 7099.93 1997.07 10099.63 7099.72 46
abl_698.30 5798.03 5799.13 5799.56 3797.76 8099.13 5098.82 7496.14 9299.26 2299.37 2693.33 10999.93 1996.96 10599.67 6099.69 57
HPM-MVS_fast98.38 4698.13 5199.12 6099.75 497.86 7399.44 1298.82 7494.46 17598.94 4599.20 5995.16 7699.74 11197.58 7799.85 599.77 23
APD-MVScopyleft98.35 5098.00 5999.42 1899.51 4398.72 2198.80 12098.82 7494.52 17299.23 2499.25 5095.54 5599.80 8496.52 13299.77 3099.74 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SF-MVS98.59 2198.32 3899.41 1999.54 3898.71 2299.04 6698.81 8095.12 14499.32 1899.39 1896.22 2499.84 5797.72 6599.73 4799.67 67
ETH3 D test640097.59 8697.01 10199.34 2699.40 6398.56 3098.20 21598.81 8091.63 28498.44 8398.85 11593.98 10499.82 6894.11 21199.69 5899.64 76
test_part194.82 22593.82 25497.82 14498.84 13697.82 7799.03 6998.81 8092.31 26592.51 30497.89 21681.96 31198.67 24594.80 18888.24 32496.98 244
MVS_030492.81 29792.01 29995.23 29497.46 24091.33 30298.17 22498.81 8091.13 30493.80 26295.68 34166.08 36998.06 31490.79 29096.13 22096.32 324
ACMMP_NAP98.61 1898.30 3999.55 999.62 3298.95 1798.82 11398.81 8095.80 10899.16 3299.47 1095.37 6399.92 2597.89 5299.75 4299.79 13
Regformer-298.69 1298.52 1599.19 4699.35 6498.01 6798.37 19098.81 8097.48 2099.21 2599.21 5596.13 3199.80 8498.40 3099.73 4799.75 32
APD-MVS_3200maxsize98.53 3598.33 3799.15 5699.50 4597.92 7299.15 4598.81 8096.24 8899.20 2699.37 2695.30 6899.80 8497.73 6499.67 6099.72 46
WR-MVS95.15 20794.46 21797.22 18096.67 29196.45 13398.21 21298.81 8094.15 18193.16 28297.69 23387.51 23598.30 29595.29 17588.62 32196.90 258
mPP-MVS98.51 3698.26 4299.25 4299.75 498.04 6599.28 2598.81 8096.24 8898.35 8999.23 5295.46 5799.94 497.42 8899.81 1299.77 23
CNVR-MVS98.78 798.56 1299.45 1799.32 7298.87 1998.47 17898.81 8097.72 798.76 6199.16 6897.05 1399.78 10098.06 4199.66 6399.69 57
CPTT-MVS97.72 7797.32 8998.92 7299.64 3097.10 10499.12 5298.81 8092.34 26198.09 9799.08 8693.01 11399.92 2596.06 14799.77 3099.75 32
SR-MVS-dyc-post98.54 3398.35 2999.13 5799.49 4997.86 7399.11 5498.80 9196.49 7899.17 3099.35 3295.34 6599.82 6897.72 6599.65 6499.71 50
RE-MVS-def98.34 3399.49 4997.86 7399.11 5498.80 9196.49 7899.17 3099.35 3295.29 6997.72 6599.65 6499.71 50
SMA-MVScopyleft98.58 2498.25 4399.56 899.51 4399.04 1598.95 8798.80 9193.67 21399.37 1699.52 396.52 2199.89 3998.06 4199.81 1299.76 30
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVScopyleft98.36 4898.10 5499.13 5799.74 897.82 7799.53 898.80 9194.63 16898.61 7498.97 9795.13 7799.77 10597.65 7299.83 1199.79 13
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
RPMNet92.81 29791.34 30597.24 17997.00 27093.43 26494.96 35498.80 9182.27 36096.93 15792.12 36386.98 24599.82 6876.32 36896.65 19998.46 199
ZD-MVS99.46 5598.70 2398.79 9693.21 23098.67 6798.97 9795.70 5099.83 6096.07 14499.58 80
Regformer-498.64 1598.53 1498.99 6699.43 6197.37 9298.40 18898.79 9697.46 2399.09 3699.31 3995.86 4699.80 8498.64 899.76 3699.79 13
MP-MVScopyleft98.33 5498.01 5899.28 3899.75 498.18 5899.22 3498.79 9696.13 9397.92 11799.23 5294.54 9099.94 496.74 12699.78 2799.73 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CANet98.05 6297.76 6798.90 7498.73 14297.27 9598.35 19398.78 9997.37 3297.72 12798.96 10391.53 14599.92 2598.79 699.65 6499.51 98
MP-MVS-pluss98.31 5697.92 6399.49 1299.72 1398.88 1898.43 18498.78 9994.10 18397.69 12999.42 1695.25 7299.92 2598.09 4099.80 1999.67 67
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DeepC-MVS_fast96.70 198.55 3198.34 3399.18 5099.25 9098.04 6598.50 17598.78 9997.72 798.92 5199.28 4495.27 7099.82 6897.55 8299.77 3099.69 57
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS97.81 7397.60 7198.44 10399.12 11195.97 15797.75 26498.78 9996.89 6198.46 7999.22 5493.90 10599.68 12594.81 18799.52 9499.67 67
Regformer-198.66 1398.51 1699.12 6099.35 6497.81 7998.37 19098.76 10397.49 1999.20 2699.21 5596.08 3399.79 9698.42 2899.73 4799.75 32
NCCC98.61 1898.35 2999.38 2099.28 8698.61 2998.45 17998.76 10397.82 698.45 8298.93 10796.65 1899.83 6097.38 9099.41 10699.71 50
PLCcopyleft95.07 497.20 11096.78 11298.44 10399.29 8296.31 14398.14 22698.76 10392.41 25996.39 18598.31 18194.92 8399.78 10094.06 21398.77 13799.23 137
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
h-mvs3396.17 15095.62 16497.81 14599.03 11794.45 22898.64 15398.75 10697.48 2098.67 6798.72 13289.76 17799.86 5397.95 4681.59 35599.11 155
DeepC-MVS95.98 397.88 7097.58 7298.77 7899.25 9096.93 11098.83 11098.75 10696.96 5896.89 16199.50 590.46 16799.87 4897.84 5899.76 3699.52 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
zzz-MVS98.55 3198.25 4399.46 1599.76 298.64 2798.55 16898.74 10897.27 4098.02 10499.39 1894.81 8499.96 297.91 4999.79 2399.77 23
MTGPAbinary98.74 108
MTAPA98.58 2498.29 4099.46 1599.76 298.64 2798.90 9398.74 10897.27 4098.02 10499.39 1894.81 8499.96 297.91 4999.79 2399.77 23
ab-mvs96.42 14095.71 15898.55 9098.63 15496.75 11897.88 25398.74 10893.84 19796.54 17898.18 19385.34 27699.75 10995.93 15196.35 20899.15 150
TEST999.31 7498.50 3497.92 24698.73 11292.63 24997.74 12598.68 13696.20 2799.80 84
train_agg97.97 6397.52 7799.33 3099.31 7498.50 3497.92 24698.73 11292.98 23997.74 12598.68 13696.20 2799.80 8496.59 12899.57 8199.68 63
test_899.29 8298.44 3697.89 25298.72 11492.98 23997.70 12898.66 13996.20 2799.80 84
agg_prior197.95 6797.51 7999.28 3899.30 7998.38 4097.81 25998.72 11493.16 23397.57 13898.66 13996.14 3099.81 7596.63 12799.56 8699.66 71
agg_prior99.30 7998.38 4098.72 11497.57 13899.81 75
无先验97.58 27698.72 11491.38 29099.87 4893.36 23299.60 85
save fliter99.46 5598.38 4098.21 21298.71 11897.95 3
WTY-MVS97.37 10296.92 10698.72 8098.86 13396.89 11498.31 20198.71 11895.26 13797.67 13098.56 15292.21 12699.78 10095.89 15296.85 19399.48 105
3Dnovator+94.38 697.43 9796.78 11299.38 2097.83 21498.52 3299.37 1598.71 11897.09 5392.99 28999.13 7389.36 18599.89 3996.97 10399.57 8199.71 50
旧先验199.29 8297.48 8898.70 12199.09 8495.56 5399.47 9999.61 82
EI-MVSNet-Vis-set98.47 4098.39 2498.69 8199.46 5596.49 13298.30 20398.69 12297.21 4398.84 5599.36 3095.41 6099.78 10098.62 1099.65 6499.80 12
新几何199.16 5399.34 6698.01 6798.69 12290.06 32198.13 9498.95 10594.60 8999.89 3991.97 27399.47 9999.59 87
API-MVS97.41 9997.25 9197.91 13898.70 14796.80 11598.82 11398.69 12294.53 17098.11 9598.28 18394.50 9499.57 13994.12 21099.49 9697.37 232
ETH3D cwj APD-0.1697.96 6497.52 7799.29 3499.05 11498.52 3298.33 19598.68 12593.18 23198.68 6699.13 7394.62 8899.83 6096.45 13499.55 9099.52 94
EI-MVSNet-UG-set98.41 4498.34 3398.61 8699.45 5996.32 14198.28 20698.68 12597.17 4698.74 6299.37 2695.25 7299.79 9698.57 1299.54 9199.73 42
Regformer-398.59 2198.50 1798.86 7699.43 6197.05 10598.40 18898.68 12597.43 2699.06 3799.31 3995.80 4799.77 10598.62 1099.76 3699.78 16
testdata98.26 11699.20 10195.36 18698.68 12591.89 27698.60 7599.10 7894.44 9699.82 6894.27 20599.44 10499.58 91
112197.37 10296.77 11699.16 5399.34 6697.99 7098.19 21998.68 12590.14 32098.01 10898.97 9794.80 8699.87 4893.36 23299.46 10299.61 82
MCST-MVS98.65 1498.37 2699.48 1399.60 3398.87 1998.41 18798.68 12597.04 5498.52 7898.80 12296.78 1699.83 6097.93 4899.61 7399.74 37
PVSNet91.96 1896.35 14396.15 13896.96 20099.17 10392.05 28896.08 34198.68 12593.69 20997.75 12497.80 22788.86 20499.69 12494.26 20699.01 12499.15 150
MAR-MVS96.91 12196.40 12998.45 10298.69 14996.90 11298.66 15198.68 12592.40 26097.07 15197.96 20991.54 14499.75 10993.68 22298.92 12798.69 186
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
原ACMM198.65 8499.32 7296.62 12298.67 13393.27 22997.81 12198.97 9795.18 7599.83 6093.84 21899.46 10299.50 100
CDPH-MVS97.94 6897.49 8099.28 3899.47 5298.44 3697.91 24898.67 13392.57 25398.77 6098.85 11595.93 4299.72 11395.56 16799.69 5899.68 63
UnsupCasMVSNet_eth90.99 31389.92 31694.19 32594.08 35589.83 32497.13 30798.67 13393.69 20985.83 35696.19 32875.15 35496.74 35089.14 31879.41 36096.00 332
TSAR-MVS + MP.98.78 798.62 999.24 4399.69 2698.28 5399.14 4798.66 13696.84 6299.56 699.31 3996.34 2399.70 11998.32 3399.73 4799.73 42
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft98.58 2498.25 4399.55 999.50 4599.08 1198.72 13798.66 13697.51 1898.15 9398.83 11995.70 5099.92 2597.53 8499.67 6099.66 71
test22299.23 9797.17 10397.40 28398.66 13688.68 33798.05 9998.96 10394.14 10099.53 9299.61 82
test1198.66 136
XXY-MVS95.20 20594.45 21997.46 16896.75 28696.56 12898.86 10598.65 14093.30 22893.27 27998.27 18684.85 28398.87 22794.82 18691.26 28796.96 247
IU-MVS99.71 2199.23 798.64 14195.28 13699.63 498.35 3299.81 1299.83 7
TAPA-MVS93.98 795.35 19694.56 21197.74 15199.13 11094.83 21198.33 19598.64 14186.62 34596.29 18798.61 14494.00 10399.29 17080.00 36099.41 10699.09 157
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MSC_two_6792asdad99.62 699.17 10399.08 1198.63 14399.94 498.53 1499.80 1999.86 2
No_MVS99.62 699.17 10399.08 1198.63 14399.94 498.53 1499.80 1999.86 2
F-COLMAP97.09 11696.80 10997.97 13599.45 5994.95 20698.55 16898.62 14593.02 23896.17 19098.58 14994.01 10299.81 7593.95 21598.90 12899.14 152
EIA-MVS97.75 7597.58 7298.27 11498.38 16996.44 13499.01 7598.60 14695.88 10597.26 14397.53 24894.97 8199.33 16897.38 9099.20 11699.05 163
PAPM_NR97.46 9297.11 9698.50 9699.50 4596.41 13798.63 15598.60 14695.18 14197.06 15298.06 20094.26 9999.57 13993.80 22098.87 13299.52 94
cdsmvs_eth3d_5k23.98 34631.98 3480.00 3640.00 3870.00 3880.00 37598.59 1480.00 3820.00 38398.61 14490.60 1650.00 3830.00 3810.00 3810.00 379
131496.25 14995.73 15497.79 14697.13 26595.55 17998.19 21998.59 14893.47 22092.03 31597.82 22591.33 14999.49 15394.62 19298.44 15298.32 206
CVMVSNet95.43 18896.04 14393.57 32997.93 20883.62 36498.12 22998.59 14895.68 11396.56 17499.02 9087.51 23597.51 33993.56 22897.44 18499.60 85
OMC-MVS97.55 9097.34 8898.20 12099.33 6995.92 16498.28 20698.59 14895.52 12297.97 11199.10 7893.28 11199.49 15395.09 18098.88 13099.19 143
LTVRE_ROB92.95 1594.60 23893.90 24996.68 22097.41 24894.42 23098.52 17098.59 14891.69 28291.21 32298.35 17484.87 28299.04 20191.06 28693.44 26196.60 294
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DVP-MVScopyleft99.03 398.83 599.63 499.72 1399.25 298.97 8398.58 15397.62 1299.45 1199.46 1397.42 999.94 498.47 2299.81 1299.69 57
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
UniMVSNet_ETH3D94.24 26293.33 27896.97 19997.19 26193.38 26898.74 12998.57 15491.21 30293.81 26198.58 14972.85 36298.77 23895.05 18193.93 24498.77 183
PAPR96.84 12496.24 13698.65 8498.72 14696.92 11197.36 28998.57 15493.33 22596.67 16997.57 24594.30 9899.56 14291.05 28898.59 14499.47 107
HQP_MVS96.14 15195.90 14796.85 20897.42 24594.60 22398.80 12098.56 15697.28 3695.34 20298.28 18387.09 24299.03 20296.07 14494.27 23096.92 251
plane_prior598.56 15699.03 20296.07 14494.27 23096.92 251
ETV-MVS97.96 6497.81 6598.40 10798.42 16797.27 9598.73 13398.55 15896.84 6298.38 8697.44 25495.39 6199.35 16697.62 7498.89 12998.58 196
mvs_tets95.41 19195.00 19296.65 22195.58 33594.42 23099.00 7798.55 15895.73 11193.21 28198.38 17183.45 30798.63 24897.09 9994.00 24196.91 256
LPG-MVS_test95.62 18195.34 17496.47 24597.46 24093.54 25998.99 7998.54 16094.67 16594.36 23298.77 12685.39 27399.11 19195.71 16294.15 23696.76 274
LGP-MVS_train96.47 24597.46 24093.54 25998.54 16094.67 16594.36 23298.77 12685.39 27399.11 19195.71 16294.15 23696.76 274
test1299.18 5099.16 10798.19 5798.53 16298.07 9895.13 7799.72 11399.56 8699.63 79
CNLPA97.45 9597.03 10098.73 7999.05 11497.44 9198.07 23398.53 16295.32 13496.80 16698.53 15393.32 11099.72 11394.31 20499.31 11399.02 165
xxxxxxxxxxxxxcwj98.70 1098.50 1799.30 3399.46 5598.38 4098.21 21298.52 16497.95 399.32 1899.39 1896.22 2499.84 5797.72 6599.73 4799.67 67
jajsoiax95.45 18795.03 19196.73 21495.42 34294.63 21899.14 4798.52 16495.74 11093.22 28098.36 17383.87 30398.65 24796.95 10694.04 23996.91 256
XVG-OURS96.55 13696.41 12896.99 19598.75 14193.76 25097.50 27998.52 16495.67 11596.83 16299.30 4288.95 20299.53 14895.88 15396.26 21597.69 224
xiu_mvs_v1_base_debu97.60 8397.56 7497.72 15298.35 17195.98 15297.86 25598.51 16797.13 5099.01 4198.40 16891.56 14199.80 8498.53 1498.68 13897.37 232
xiu_mvs_v1_base97.60 8397.56 7497.72 15298.35 17195.98 15297.86 25598.51 16797.13 5099.01 4198.40 16891.56 14199.80 8498.53 1498.68 13897.37 232
xiu_mvs_v1_base_debi97.60 8397.56 7497.72 15298.35 17195.98 15297.86 25598.51 16797.13 5099.01 4198.40 16891.56 14199.80 8498.53 1498.68 13897.37 232
PS-MVSNAJ97.73 7697.77 6697.62 16298.68 15095.58 17697.34 29198.51 16797.29 3598.66 7197.88 21794.51 9199.90 3797.87 5499.17 11897.39 230
cascas94.63 23793.86 25296.93 20296.91 27794.27 23696.00 34598.51 16785.55 35494.54 22196.23 32584.20 29698.87 22795.80 15796.98 19297.66 225
CS-MVS-test98.49 3798.50 1798.46 10199.20 10197.05 10599.64 498.50 17297.45 2598.88 5399.14 7295.25 7299.15 18498.83 599.56 8699.20 139
PS-MVSNAJss96.43 13996.26 13596.92 20595.84 32995.08 19899.16 4498.50 17295.87 10693.84 26098.34 17894.51 9198.61 24996.88 11493.45 26097.06 238
MVS94.67 23593.54 27298.08 12996.88 27996.56 12898.19 21998.50 17278.05 36592.69 29798.02 20291.07 15699.63 13390.09 29998.36 15798.04 213
XVG-OURS-SEG-HR96.51 13796.34 13097.02 19498.77 14093.76 25097.79 26298.50 17295.45 12596.94 15699.09 8487.87 22899.55 14796.76 12595.83 22497.74 221
PVSNet_088.72 1991.28 30990.03 31595.00 30297.99 20587.29 35894.84 35798.50 17292.06 27289.86 33495.19 34479.81 32899.39 16492.27 26469.79 36998.33 205
ACMH92.88 1694.55 24293.95 24596.34 25797.63 22693.26 27298.81 11998.49 17793.43 22289.74 33598.53 15381.91 31299.08 19693.69 22193.30 26496.70 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CS-MVS98.44 4298.49 2098.31 11299.08 11396.73 11999.67 398.47 17897.17 4698.94 4599.10 7895.73 4999.13 18798.71 799.49 9699.09 157
xiu_mvs_v2_base97.66 8097.70 6997.56 16698.61 15695.46 18297.44 28098.46 17997.15 4898.65 7298.15 19494.33 9799.80 8497.84 5898.66 14297.41 228
HQP3-MVS98.46 17994.18 234
HQP-MVS95.72 17495.40 16896.69 21897.20 25894.25 23898.05 23598.46 17996.43 8194.45 22597.73 23086.75 24898.96 21395.30 17394.18 23496.86 265
CLD-MVS95.62 18195.34 17496.46 24897.52 23793.75 25297.27 29798.46 17995.53 12194.42 23098.00 20586.21 25998.97 20996.25 14294.37 22896.66 289
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XVG-ACMP-BASELINE94.54 24394.14 23395.75 28296.55 29691.65 29798.11 23198.44 18394.96 15494.22 24097.90 21479.18 33299.11 19194.05 21493.85 24596.48 315
ACMP93.49 1095.34 19794.98 19496.43 25097.67 22393.48 26398.73 13398.44 18394.94 15792.53 30298.53 15384.50 29099.14 18695.48 17094.00 24196.66 289
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM93.85 995.69 17895.38 17296.61 22797.61 22793.84 24898.91 9298.44 18395.25 13894.28 23698.47 16086.04 26499.12 18995.50 16993.95 24396.87 262
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Effi-MVS+97.12 11496.69 11898.39 10898.19 18996.72 12097.37 28798.43 18693.71 20697.65 13398.02 20292.20 12799.25 17296.87 11797.79 17499.19 143
DROMVSNet98.21 6098.11 5398.49 9898.34 17697.26 9999.61 598.43 18696.78 6598.87 5498.84 11793.72 10699.01 20798.91 399.50 9599.19 143
anonymousdsp95.42 18994.91 19796.94 20195.10 34495.90 16699.14 4798.41 18893.75 20193.16 28297.46 25187.50 23798.41 28295.63 16694.03 24096.50 313
PMMVS96.60 13096.33 13197.41 17197.90 21093.93 24597.35 29098.41 18892.84 24597.76 12397.45 25391.10 15599.20 17896.26 14197.91 16999.11 155
MVSFormer97.57 8897.49 8097.84 14198.07 19995.76 17199.47 998.40 19094.98 15298.79 5898.83 11992.34 12098.41 28296.91 10799.59 7799.34 121
test_djsdf96.00 15795.69 16196.93 20295.72 33195.49 18199.47 998.40 19094.98 15294.58 22097.86 21889.16 19298.41 28296.91 10794.12 23896.88 260
OPM-MVS95.69 17895.33 17696.76 21396.16 31894.63 21898.43 18498.39 19296.64 7295.02 20998.78 12485.15 27899.05 19895.21 17994.20 23396.60 294
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
canonicalmvs97.67 7997.23 9298.98 6898.70 14798.38 4099.34 1998.39 19296.76 6797.67 13097.40 25792.26 12399.49 15398.28 3596.28 21499.08 161
DP-MVS96.59 13295.93 14698.57 8899.34 6696.19 14798.70 14298.39 19289.45 33194.52 22299.35 3291.85 13599.85 5492.89 24998.88 13099.68 63
dcpmvs_298.08 6198.59 1096.56 23499.57 3590.34 32099.15 4598.38 19596.82 6499.29 2099.49 795.78 4899.57 13998.94 299.86 199.77 23
diffmvs97.58 8797.40 8698.13 12598.32 18095.81 17098.06 23498.37 19696.20 9098.74 6298.89 11191.31 15099.25 17298.16 3798.52 14799.34 121
ACMH+92.99 1494.30 25893.77 25995.88 27797.81 21592.04 28998.71 13898.37 19693.99 19090.60 32998.47 16080.86 32299.05 19892.75 25192.40 27396.55 302
MSDG95.93 16395.30 18097.83 14298.90 12995.36 18696.83 32898.37 19691.32 29594.43 22998.73 13090.27 17199.60 13690.05 30298.82 13598.52 197
DPM-MVS97.55 9096.99 10399.23 4599.04 11698.55 3197.17 30498.35 19994.85 15997.93 11698.58 14995.07 7999.71 11892.60 25399.34 11199.43 115
CMPMVSbinary66.06 2189.70 32289.67 31889.78 34693.19 36176.56 37197.00 31298.35 19980.97 36281.57 36397.75 22974.75 35698.61 24989.85 30593.63 25294.17 357
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
v7n94.19 26593.43 27696.47 24595.90 32694.38 23399.26 2798.34 20191.99 27392.76 29497.13 27188.31 21598.52 26189.48 31487.70 33096.52 308
CDS-MVSNet96.99 11896.69 11897.90 13998.05 20295.98 15298.20 21598.33 20293.67 21396.95 15598.49 15793.54 10798.42 27495.24 17897.74 17799.31 127
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
casdiffmvs97.63 8297.41 8598.28 11398.33 17896.14 14898.82 11398.32 20396.38 8597.95 11299.21 5591.23 15299.23 17598.12 3898.37 15599.48 105
baseline97.64 8197.44 8498.25 11798.35 17196.20 14599.00 7798.32 20396.33 8798.03 10299.17 6391.35 14899.16 18198.10 3998.29 16099.39 118
cl2294.68 23294.19 22996.13 26598.11 19793.60 25796.94 31598.31 20592.43 25893.32 27896.87 30286.51 25298.28 29994.10 21291.16 28896.51 311
test_yl97.22 10796.78 11298.54 9298.73 14296.60 12598.45 17998.31 20594.70 16198.02 10498.42 16690.80 16199.70 11996.81 12096.79 19599.34 121
DCV-MVSNet97.22 10796.78 11298.54 9298.73 14296.60 12598.45 17998.31 20594.70 16198.02 10498.42 16690.80 16199.70 11996.81 12096.79 19599.34 121
nrg03096.28 14795.72 15597.96 13796.90 27898.15 6199.39 1398.31 20595.47 12494.42 23098.35 17492.09 13098.69 24197.50 8689.05 31597.04 239
TAMVS97.02 11796.79 11197.70 15598.06 20195.31 19098.52 17098.31 20593.95 19297.05 15398.61 14493.49 10898.52 26195.33 17297.81 17399.29 132
EPP-MVSNet97.46 9297.28 9097.99 13498.64 15395.38 18599.33 2298.31 20593.61 21697.19 14599.07 8794.05 10199.23 17596.89 11198.43 15499.37 120
UnsupCasMVSNet_bld87.17 33085.12 33493.31 33491.94 36588.77 34294.92 35698.30 21184.30 35882.30 36290.04 36463.96 37197.25 34285.85 33974.47 36893.93 362
Vis-MVSNet (Re-imp)96.87 12396.55 12497.83 14298.73 14295.46 18299.20 3998.30 21194.96 15496.60 17398.87 11390.05 17398.59 25293.67 22498.60 14399.46 111
TSAR-MVS + GP.98.38 4698.24 4698.81 7799.22 9897.25 10098.11 23198.29 21397.19 4598.99 4499.02 9096.22 2499.67 12698.52 2098.56 14699.51 98
MS-PatchMatch93.84 28093.63 26894.46 32196.18 31589.45 33197.76 26398.27 21492.23 26792.13 31397.49 24979.50 32998.69 24189.75 30799.38 10995.25 344
EI-MVSNet95.96 15995.83 15096.36 25597.93 20893.70 25698.12 22998.27 21493.70 20895.07 20799.02 9092.23 12598.54 25894.68 18993.46 25896.84 267
MVSTER96.06 15495.72 15597.08 19198.23 18495.93 16398.73 13398.27 21494.86 15895.07 20798.09 19888.21 21798.54 25896.59 12893.46 25896.79 271
FMVSNet294.47 24993.61 26997.04 19298.21 18696.43 13598.79 12498.27 21492.46 25493.50 27397.09 27681.16 31798.00 31991.09 28491.93 27796.70 283
test_low_dy_conf_00196.06 15495.86 14896.69 21896.39 30694.58 22599.47 998.26 21895.68 11395.23 20598.73 13088.90 20398.47 26796.43 13693.62 25397.02 241
FMVSNet394.97 21994.26 22697.11 18998.18 19196.62 12298.56 16698.26 21893.67 21394.09 24797.10 27284.25 29398.01 31792.08 26792.14 27496.70 283
Fast-Effi-MVS+96.28 14795.70 16098.03 13298.29 18295.97 15798.58 16198.25 22091.74 27995.29 20497.23 26691.03 15799.15 18492.90 24797.96 16898.97 170
PAPM94.95 22094.00 24197.78 14797.04 26995.65 17496.03 34498.25 22091.23 30094.19 24297.80 22791.27 15198.86 22982.61 35497.61 18198.84 179
CANet_DTU96.96 11996.55 12498.21 11998.17 19396.07 15097.98 24298.21 22297.24 4297.13 14798.93 10786.88 24799.91 3495.00 18299.37 11098.66 190
HY-MVS93.96 896.82 12596.23 13798.57 8898.46 16597.00 10798.14 22698.21 22293.95 19296.72 16897.99 20691.58 14099.76 10794.51 19796.54 20398.95 173
PCF-MVS93.45 1194.68 23293.43 27698.42 10698.62 15596.77 11795.48 35298.20 22484.63 35793.34 27798.32 18088.55 21199.81 7584.80 34798.96 12698.68 187
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v894.47 24993.77 25996.57 23396.36 30894.83 21199.05 6598.19 22591.92 27593.16 28296.97 29288.82 20698.48 26491.69 27987.79 32996.39 319
v1094.29 25993.55 27196.51 24296.39 30694.80 21398.99 7998.19 22591.35 29393.02 28896.99 29088.09 22198.41 28290.50 29588.41 32396.33 323
mvs_anonymous96.70 12896.53 12697.18 18398.19 18993.78 24998.31 20198.19 22594.01 18894.47 22498.27 18692.08 13198.46 26997.39 8997.91 16999.31 127
AllTest95.24 20294.65 20796.99 19599.25 9093.21 27498.59 15998.18 22891.36 29193.52 27098.77 12684.67 28699.72 11389.70 30997.87 17198.02 214
TestCases96.99 19599.25 9093.21 27498.18 22891.36 29193.52 27098.77 12684.67 28699.72 11389.70 30997.87 17198.02 214
GBi-Net94.49 24793.80 25696.56 23498.21 18695.00 20098.82 11398.18 22892.46 25494.09 24797.07 27981.16 31797.95 32192.08 26792.14 27496.72 279
test194.49 24793.80 25696.56 23498.21 18695.00 20098.82 11398.18 22892.46 25494.09 24797.07 27981.16 31797.95 32192.08 26792.14 27496.72 279
FMVSNet193.19 29392.07 29896.56 23497.54 23495.00 20098.82 11398.18 22890.38 31592.27 31097.07 27973.68 36097.95 32189.36 31691.30 28596.72 279
v119294.32 25793.58 27096.53 24096.10 31994.45 22898.50 17598.17 23391.54 28694.19 24297.06 28286.95 24698.43 27390.14 29889.57 30596.70 283
v124094.06 27693.29 28096.34 25796.03 32393.90 24698.44 18298.17 23391.18 30394.13 24597.01 28986.05 26298.42 27489.13 31989.50 30996.70 283
v14419294.39 25493.70 26596.48 24496.06 32194.35 23498.58 16198.16 23591.45 28894.33 23497.02 28787.50 23798.45 27091.08 28589.11 31496.63 291
Fast-Effi-MVS+-dtu95.87 16695.85 14995.91 27497.74 22091.74 29598.69 14498.15 23695.56 12094.92 21097.68 23688.98 20098.79 23693.19 23797.78 17597.20 236
v192192094.20 26493.47 27596.40 25395.98 32494.08 24298.52 17098.15 23691.33 29494.25 23897.20 26986.41 25698.42 27490.04 30389.39 31196.69 288
v114494.59 24093.92 24696.60 22996.21 31394.78 21598.59 15998.14 23891.86 27894.21 24197.02 28787.97 22498.41 28291.72 27889.57 30596.61 293
IterMVS-LS95.46 18595.21 18396.22 26298.12 19693.72 25598.32 20098.13 23993.71 20694.26 23797.31 26192.24 12498.10 30994.63 19090.12 29896.84 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GeoE96.58 13496.07 14198.10 12898.35 17195.89 16799.34 1998.12 24093.12 23596.09 19198.87 11389.71 17998.97 20992.95 24598.08 16599.43 115
EU-MVSNet93.66 28194.14 23392.25 34295.96 32583.38 36598.52 17098.12 24094.69 16392.61 29998.13 19687.36 24096.39 35891.82 27590.00 30096.98 244
IterMVS94.09 27393.85 25394.80 31097.99 20590.35 31997.18 30298.12 24093.68 21192.46 30797.34 25884.05 29897.41 34092.51 26091.33 28496.62 292
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT94.11 27193.87 25194.85 30797.98 20790.56 31797.18 30298.11 24393.75 20192.58 30097.48 25083.97 30097.41 34092.48 26291.30 28596.58 296
COLMAP_ROBcopyleft93.27 1295.33 19894.87 19996.71 21599.29 8293.24 27398.58 16198.11 24389.92 32393.57 26899.10 7886.37 25799.79 9690.78 29198.10 16497.09 237
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
hse-mvs295.71 17595.30 18096.93 20298.50 16293.53 26198.36 19298.10 24597.48 2098.67 6797.99 20689.76 17799.02 20597.95 4680.91 35998.22 208
AUN-MVS94.53 24493.73 26396.92 20598.50 16293.52 26298.34 19498.10 24593.83 19995.94 19797.98 20885.59 27099.03 20294.35 20180.94 35898.22 208
Effi-MVS+-dtu96.29 14596.56 12395.51 28697.89 21190.22 32198.80 12098.10 24596.57 7596.45 18496.66 31090.81 15998.91 22095.72 16097.99 16797.40 229
mvs-test196.60 13096.68 12096.37 25497.89 21191.81 29198.56 16698.10 24596.57 7596.52 18097.94 21190.81 15999.45 16195.72 16098.01 16697.86 218
1112_ss96.63 12996.00 14598.50 9698.56 15896.37 13898.18 22398.10 24592.92 24294.84 21298.43 16492.14 12899.58 13894.35 20196.51 20499.56 93
V4294.78 22894.14 23396.70 21796.33 31195.22 19298.97 8398.09 25092.32 26394.31 23597.06 28288.39 21498.55 25692.90 24788.87 31996.34 321
miper_enhance_ethall95.10 21094.75 20396.12 26697.53 23693.73 25496.61 33598.08 25192.20 27093.89 25696.65 31292.44 11998.30 29594.21 20791.16 28896.34 321
v2v48294.69 23094.03 23796.65 22196.17 31694.79 21498.67 14898.08 25192.72 24794.00 25297.16 27087.69 23498.45 27092.91 24688.87 31996.72 279
CL-MVSNet_self_test90.11 31989.14 32293.02 33791.86 36688.23 35196.51 33898.07 25390.49 31090.49 33094.41 35084.75 28595.34 36380.79 35874.95 36695.50 341
miper_ehance_all_eth95.01 21494.69 20695.97 27197.70 22293.31 27097.02 31198.07 25392.23 26793.51 27296.96 29491.85 13598.15 30593.68 22291.16 28896.44 318
eth_miper_zixun_eth94.68 23294.41 22295.47 28897.64 22591.71 29696.73 33298.07 25392.71 24893.64 26597.21 26890.54 16698.17 30493.38 23089.76 30296.54 303
MVS_Test97.28 10597.00 10298.13 12598.33 17895.97 15798.74 12998.07 25394.27 17998.44 8398.07 19992.48 11899.26 17196.43 13698.19 16199.16 149
Test_1112_low_res96.34 14495.66 16398.36 10998.56 15895.94 16097.71 26698.07 25392.10 27194.79 21697.29 26291.75 13799.56 14294.17 20896.50 20599.58 91
iter_conf_final96.42 14096.12 13997.34 17698.46 16596.55 13099.08 6198.06 25896.03 9895.63 19998.46 16287.72 23098.59 25297.84 5893.80 24796.87 262
alignmvs97.56 8997.07 9999.01 6598.66 15198.37 4698.83 11098.06 25896.74 6898.00 11097.65 23790.80 16199.48 15798.37 3196.56 20299.19 143
RPSCF94.87 22495.40 16893.26 33598.89 13082.06 36998.33 19598.06 25890.30 31796.56 17499.26 4787.09 24299.49 15393.82 21996.32 21098.24 207
miper_lstm_enhance94.33 25694.07 23695.11 29997.75 21790.97 30897.22 29998.03 26191.67 28392.76 29496.97 29290.03 17497.78 33192.51 26089.64 30496.56 300
c3_l94.79 22794.43 22195.89 27697.75 21793.12 27797.16 30598.03 26192.23 26793.46 27597.05 28491.39 14698.01 31793.58 22789.21 31396.53 305
pm-mvs193.94 27993.06 28396.59 23096.49 30195.16 19398.95 8798.03 26192.32 26391.08 32497.84 22184.54 28998.41 28292.16 26586.13 34796.19 328
iter_conf0596.13 15295.79 15197.15 18598.16 19495.99 15198.88 10097.98 26495.91 10295.58 20098.46 16285.53 27198.59 25297.88 5393.75 24896.86 265
mvsmamba96.57 13596.32 13297.32 17796.60 29396.43 13599.54 797.98 26496.49 7895.20 20698.64 14190.82 15898.55 25697.97 4593.65 25196.98 244
v14894.29 25993.76 26195.91 27496.10 31992.93 27998.58 16197.97 26692.59 25293.47 27496.95 29688.53 21298.32 29192.56 25787.06 33896.49 314
IS-MVSNet97.22 10796.88 10798.25 11798.85 13596.36 13999.19 4197.97 26695.39 12897.23 14498.99 9691.11 15498.93 21894.60 19398.59 14499.47 107
cl____94.51 24694.01 24096.02 26897.58 22993.40 26797.05 30997.96 26891.73 28192.76 29497.08 27889.06 19698.13 30792.61 25290.29 29796.52 308
KD-MVS_self_test90.38 31789.38 32093.40 33292.85 36388.94 34197.95 24497.94 26990.35 31690.25 33193.96 35579.82 32795.94 36084.62 34976.69 36495.33 343
DIV-MVS_self_test94.52 24594.03 23795.99 26997.57 23393.38 26897.05 30997.94 26991.74 27992.81 29297.10 27289.12 19398.07 31392.60 25390.30 29696.53 305
pmmvs691.77 30590.63 30995.17 29794.69 35291.24 30598.67 14897.92 27186.14 34989.62 33697.56 24775.79 35298.34 28990.75 29284.56 34995.94 334
RRT_MVS95.98 15895.78 15296.56 23496.48 30294.22 24099.57 697.92 27195.89 10393.95 25398.70 13389.27 18898.42 27497.23 9493.02 26797.04 239
jason97.32 10497.08 9898.06 13197.45 24495.59 17597.87 25497.91 27394.79 16098.55 7798.83 11991.12 15399.23 17597.58 7799.60 7499.34 121
jason: jason.
ppachtmachnet_test93.22 29192.63 29194.97 30395.45 34090.84 31096.88 32497.88 27490.60 30992.08 31497.26 26388.08 22297.86 33085.12 34490.33 29596.22 326
tpm cat193.36 28592.80 28795.07 30197.58 22987.97 35396.76 33097.86 27582.17 36193.53 26996.04 33186.13 26099.13 18789.24 31795.87 22398.10 212
EG-PatchMatch MVS91.13 31190.12 31494.17 32694.73 35189.00 33998.13 22897.81 27689.22 33485.32 35896.46 31867.71 36698.42 27487.89 32893.82 24695.08 349
BH-untuned95.95 16095.72 15596.65 22198.55 16092.26 28498.23 21097.79 27793.73 20494.62 21998.01 20488.97 20199.00 20893.04 24298.51 14898.68 187
lupinMVS97.44 9697.22 9398.12 12798.07 19995.76 17197.68 26897.76 27894.50 17398.79 5898.61 14492.34 12099.30 16997.58 7799.59 7799.31 127
VDDNet95.36 19594.53 21297.86 14098.10 19895.13 19698.85 10697.75 27990.46 31298.36 8799.39 1873.27 36199.64 13097.98 4496.58 20198.81 180
ADS-MVSNet95.00 21594.45 21996.63 22598.00 20391.91 29096.04 34297.74 28090.15 31896.47 18296.64 31387.89 22698.96 21390.08 30097.06 18999.02 165
tpmvs94.60 23894.36 22495.33 29397.46 24088.60 34596.88 32497.68 28191.29 29793.80 26296.42 32088.58 20899.24 17491.06 28696.04 22298.17 210
pmmvs494.69 23093.99 24396.81 21195.74 33095.94 16097.40 28397.67 28290.42 31493.37 27697.59 24389.08 19598.20 30292.97 24491.67 28196.30 325
our_test_393.65 28393.30 27994.69 31295.45 34089.68 32896.91 31897.65 28391.97 27491.66 31996.88 30089.67 18097.93 32488.02 32691.49 28396.48 315
MVP-Stereo94.28 26193.92 24695.35 29294.95 34692.60 28297.97 24397.65 28391.61 28590.68 32897.09 27686.32 25898.42 27489.70 30999.34 11195.02 351
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
KD-MVS_2432*160089.61 32487.96 32894.54 31694.06 35691.59 29895.59 35097.63 28589.87 32488.95 34294.38 35278.28 33696.82 34884.83 34568.05 37095.21 345
miper_refine_blended89.61 32487.96 32894.54 31694.06 35691.59 29895.59 35097.63 28589.87 32488.95 34294.38 35278.28 33696.82 34884.83 34568.05 37095.21 345
SCA95.46 18595.13 18696.46 24897.67 22391.29 30497.33 29297.60 28794.68 16496.92 15997.10 27283.97 30098.89 22492.59 25598.32 15999.20 139
GA-MVS94.81 22694.03 23797.14 18697.15 26493.86 24796.76 33097.58 28894.00 18994.76 21797.04 28580.91 32098.48 26491.79 27696.25 21699.09 157
Anonymous2024052191.18 31090.44 31193.42 33093.70 35988.47 34798.94 8997.56 28988.46 33889.56 33895.08 34777.15 34896.97 34683.92 35089.55 30794.82 353
test20.0390.89 31490.38 31292.43 33993.48 36088.14 35298.33 19597.56 28993.40 22387.96 34796.71 30980.69 32494.13 36979.15 36386.17 34595.01 352
CR-MVSNet94.76 22994.15 23296.59 23097.00 27093.43 26494.96 35497.56 28992.46 25496.93 15796.24 32388.15 21997.88 32987.38 32996.65 19998.46 199
Patchmtry93.22 29192.35 29595.84 27896.77 28393.09 27894.66 35997.56 28987.37 34392.90 29096.24 32388.15 21997.90 32587.37 33090.10 29996.53 305
tpmrst95.63 18095.69 16195.44 29097.54 23488.54 34696.97 31397.56 28993.50 21997.52 14096.93 29889.49 18199.16 18195.25 17796.42 20798.64 192
FMVSNet591.81 30490.92 30794.49 31897.21 25792.09 28698.00 24197.55 29489.31 33390.86 32695.61 34274.48 35795.32 36485.57 34089.70 30396.07 331
testgi93.06 29592.45 29494.88 30696.43 30589.90 32398.75 12697.54 29595.60 11891.63 32097.91 21374.46 35897.02 34586.10 33693.67 24997.72 223
PatchmatchNetpermissive95.71 17595.52 16696.29 26097.58 22990.72 31396.84 32797.52 29694.06 18497.08 14996.96 29489.24 19098.90 22392.03 27198.37 15599.26 135
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDA-MVSNet-bldmvs89.97 32188.35 32694.83 30995.21 34391.34 30197.64 27197.51 29788.36 33971.17 37196.13 32979.22 33196.63 35583.65 35186.27 34496.52 308
USDC93.33 28892.71 28995.21 29596.83 28290.83 31196.91 31897.50 29893.84 19790.72 32798.14 19577.69 34198.82 23389.51 31393.21 26695.97 333
ITE_SJBPF95.44 29097.42 24591.32 30397.50 29895.09 14893.59 26698.35 17481.70 31398.88 22689.71 30893.39 26296.12 329
Patchmatch-test94.42 25293.68 26796.63 22597.60 22891.76 29394.83 35897.49 30089.45 33194.14 24497.10 27288.99 19798.83 23285.37 34398.13 16399.29 132
YYNet190.70 31689.39 31994.62 31594.79 35090.65 31597.20 30097.46 30187.54 34272.54 36995.74 33486.51 25296.66 35486.00 33786.76 34396.54 303
MDA-MVSNet_test_wron90.71 31589.38 32094.68 31394.83 34890.78 31297.19 30197.46 30187.60 34172.41 37095.72 33886.51 25296.71 35385.92 33886.80 34296.56 300
BH-RMVSNet95.92 16495.32 17797.69 15698.32 18094.64 21798.19 21997.45 30394.56 16996.03 19398.61 14485.02 27999.12 18990.68 29399.06 12099.30 130
MIMVSNet189.67 32388.28 32793.82 32792.81 36491.08 30798.01 23997.45 30387.95 34087.90 34895.87 33367.63 36794.56 36878.73 36588.18 32695.83 336
OurMVSNet-221017-094.21 26394.00 24194.85 30795.60 33489.22 33598.89 9797.43 30595.29 13592.18 31298.52 15682.86 30898.59 25293.46 22991.76 27996.74 276
BH-w/o95.38 19295.08 18996.26 26198.34 17691.79 29297.70 26797.43 30592.87 24494.24 23997.22 26788.66 20798.84 23091.55 28197.70 17998.16 211
bld_raw_conf00595.91 16595.56 16596.99 19596.51 29995.46 18299.21 3797.42 30796.41 8494.10 24698.63 14386.59 25198.54 25897.56 8193.59 25696.96 247
VDD-MVS95.82 17095.23 18297.61 16398.84 13693.98 24498.68 14597.40 30895.02 15197.95 11299.34 3574.37 35999.78 10098.64 896.80 19499.08 161
Gipumacopyleft78.40 33576.75 33883.38 35295.54 33680.43 37079.42 37397.40 30864.67 37073.46 36880.82 37145.65 37593.14 37066.32 37287.43 33376.56 373
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
bld_raw_dy_0_6495.74 17395.31 17997.03 19396.35 30995.76 17199.12 5297.37 31095.97 10094.70 21898.48 15885.80 26698.49 26396.55 13093.48 25796.84 267
new-patchmatchnet88.50 32887.45 33191.67 34490.31 37085.89 36197.16 30597.33 31189.47 33083.63 36192.77 35976.38 34995.06 36682.70 35377.29 36394.06 360
ADS-MVSNet294.58 24194.40 22395.11 29998.00 20388.74 34396.04 34297.30 31290.15 31896.47 18296.64 31387.89 22697.56 33790.08 30097.06 18999.02 165
MDTV_nov1_ep1395.40 16897.48 23888.34 34996.85 32697.29 31393.74 20397.48 14197.26 26389.18 19199.05 19891.92 27497.43 185
pmmvs593.65 28392.97 28595.68 28395.49 33892.37 28398.20 21597.28 31489.66 32892.58 30097.26 26382.14 31098.09 31193.18 23890.95 29196.58 296
EPNet_dtu95.21 20494.95 19695.99 26996.17 31690.45 31898.16 22597.27 31596.77 6693.14 28598.33 17990.34 16998.42 27485.57 34098.81 13699.09 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2023120691.66 30691.10 30693.33 33394.02 35887.35 35798.58 16197.26 31690.48 31190.16 33296.31 32183.83 30496.53 35679.36 36289.90 30196.12 329
test_040291.32 30890.27 31394.48 31996.60 29391.12 30698.50 17597.22 31786.10 35088.30 34696.98 29177.65 34397.99 32078.13 36692.94 26994.34 355
dp94.15 26893.90 24994.90 30597.31 25186.82 36096.97 31397.19 31891.22 30196.02 19496.61 31585.51 27299.02 20590.00 30494.30 22998.85 177
thres20095.25 20194.57 21097.28 17898.81 13894.92 20798.20 21597.11 31995.24 14096.54 17896.22 32784.58 28899.53 14887.93 32796.50 20597.39 230
PatchT93.06 29591.97 30096.35 25696.69 28992.67 28194.48 36097.08 32086.62 34597.08 14992.23 36287.94 22597.90 32578.89 36496.69 19798.49 198
TDRefinement91.06 31289.68 31795.21 29585.35 37491.49 30098.51 17497.07 32191.47 28788.83 34497.84 22177.31 34599.09 19592.79 25077.98 36295.04 350
LF4IMVS93.14 29492.79 28894.20 32495.88 32788.67 34497.66 27097.07 32193.81 20091.71 31897.65 23777.96 34098.81 23491.47 28291.92 27895.12 347
Anonymous20240521195.28 20094.49 21497.67 15899.00 12193.75 25298.70 14297.04 32390.66 30896.49 18198.80 12278.13 33899.83 6096.21 14395.36 22699.44 114
baseline195.84 16895.12 18798.01 13398.49 16495.98 15298.73 13397.03 32495.37 13196.22 18898.19 19289.96 17599.16 18194.60 19387.48 33298.90 176
MIMVSNet93.26 29092.21 29796.41 25197.73 22193.13 27695.65 34997.03 32491.27 29994.04 25096.06 33075.33 35397.19 34386.56 33396.23 21798.92 175
EPNet97.28 10596.87 10898.51 9594.98 34596.14 14898.90 9397.02 32698.28 195.99 19599.11 7691.36 14799.89 3996.98 10299.19 11799.50 100
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TR-MVS94.94 22294.20 22897.17 18497.75 21794.14 24197.59 27597.02 32692.28 26695.75 19897.64 23983.88 30298.96 21389.77 30696.15 21998.40 201
JIA-IIPM93.35 28692.49 29395.92 27396.48 30290.65 31595.01 35396.96 32885.93 35196.08 19287.33 36787.70 23398.78 23791.35 28395.58 22598.34 204
pmmvs-eth3d90.36 31889.05 32394.32 32391.10 36892.12 28597.63 27496.95 32988.86 33684.91 35993.13 35878.32 33596.74 35088.70 32181.81 35494.09 359
tfpn200view995.32 19994.62 20897.43 17098.94 12794.98 20398.68 14596.93 33095.33 13296.55 17696.53 31684.23 29499.56 14288.11 32396.29 21197.76 219
thres40095.38 19294.62 20897.65 16198.94 12794.98 20398.68 14596.93 33095.33 13296.55 17696.53 31684.23 29499.56 14288.11 32396.29 21198.40 201
thres100view90095.38 19294.70 20597.41 17198.98 12594.92 20798.87 10396.90 33295.38 12996.61 17296.88 30084.29 29199.56 14288.11 32396.29 21197.76 219
thres600view795.49 18494.77 20197.67 15898.98 12595.02 19998.85 10696.90 33295.38 12996.63 17196.90 29984.29 29199.59 13788.65 32296.33 20998.40 201
test_method79.03 33378.17 33681.63 35386.06 37354.40 38382.75 37296.89 33439.54 37680.98 36495.57 34358.37 37294.73 36784.74 34878.61 36195.75 337
CostFormer94.95 22094.73 20495.60 28597.28 25289.06 33797.53 27896.89 33489.66 32896.82 16496.72 30886.05 26298.95 21795.53 16896.13 22098.79 181
new_pmnet90.06 32089.00 32493.22 33694.18 35388.32 35096.42 34096.89 33486.19 34885.67 35793.62 35677.18 34797.10 34481.61 35689.29 31294.23 356
OpenMVS_ROBcopyleft86.42 2089.00 32787.43 33293.69 32893.08 36289.42 33297.91 24896.89 33478.58 36485.86 35594.69 34969.48 36498.29 29877.13 36793.29 26593.36 364
tpm294.19 26593.76 26195.46 28997.23 25589.04 33897.31 29496.85 33887.08 34496.21 18996.79 30683.75 30698.74 23992.43 26396.23 21798.59 194
TransMVSNet (Re)92.67 29991.51 30496.15 26396.58 29594.65 21698.90 9396.73 33990.86 30789.46 33997.86 21885.62 26998.09 31186.45 33481.12 35695.71 338
ambc89.49 34786.66 37275.78 37292.66 36596.72 34086.55 35392.50 36146.01 37497.90 32590.32 29682.09 35194.80 354
LCM-MVSNet78.70 33476.24 33986.08 34977.26 38071.99 37594.34 36196.72 34061.62 37176.53 36689.33 36533.91 38092.78 37181.85 35574.60 36793.46 363
TinyColmap92.31 30291.53 30394.65 31496.92 27589.75 32596.92 31696.68 34290.45 31389.62 33697.85 22076.06 35198.81 23486.74 33292.51 27295.41 342
Baseline_NR-MVSNet94.35 25593.81 25595.96 27296.20 31494.05 24398.61 15896.67 34391.44 28993.85 25997.60 24288.57 20998.14 30694.39 19986.93 33995.68 339
SixPastTwentyTwo93.34 28792.86 28694.75 31195.67 33289.41 33398.75 12696.67 34393.89 19490.15 33398.25 18880.87 32198.27 30090.90 28990.64 29396.57 298
EGC-MVSNET75.22 33869.54 34192.28 34194.81 34989.58 32997.64 27196.50 3451.82 3815.57 38295.74 33468.21 36596.26 35973.80 37091.71 28090.99 366
LFMVS95.86 16794.98 19498.47 10098.87 13296.32 14198.84 10996.02 34693.40 22398.62 7399.20 5974.99 35599.63 13397.72 6597.20 18899.46 111
IB-MVS91.98 1793.27 28991.97 30097.19 18297.47 23993.41 26697.09 30895.99 34793.32 22692.47 30695.73 33678.06 33999.53 14894.59 19582.98 35098.62 193
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test0.0.03 194.08 27493.51 27395.80 27995.53 33792.89 28097.38 28595.97 34895.11 14592.51 30496.66 31087.71 23196.94 34787.03 33193.67 24997.57 226
FPMVS77.62 33777.14 33779.05 35579.25 37860.97 37995.79 34795.94 34965.96 36967.93 37294.40 35137.73 37888.88 37468.83 37188.46 32287.29 368
Patchmatch-RL test91.49 30790.85 30893.41 33191.37 36784.40 36292.81 36495.93 35091.87 27787.25 34994.87 34888.99 19796.53 35692.54 25982.00 35299.30 130
tpm94.13 26993.80 25695.12 29896.50 30087.91 35497.44 28095.89 35192.62 25096.37 18696.30 32284.13 29798.30 29593.24 23591.66 28299.14 152
LCM-MVSNet-Re95.22 20395.32 17794.91 30498.18 19187.85 35598.75 12695.66 35295.11 14588.96 34196.85 30390.26 17297.65 33395.65 16598.44 15299.22 138
ET-MVSNet_ETH3D94.13 26992.98 28497.58 16498.22 18596.20 14597.31 29495.37 35394.53 17079.56 36597.63 24186.51 25297.53 33896.91 10790.74 29299.02 165
test-LLR95.10 21094.87 19995.80 27996.77 28389.70 32696.91 31895.21 35495.11 14594.83 21495.72 33887.71 23198.97 20993.06 24098.50 14998.72 184
test-mter94.08 27493.51 27395.80 27996.77 28389.70 32696.91 31895.21 35492.89 24394.83 21495.72 33877.69 34198.97 20993.06 24098.50 14998.72 184
PM-MVS87.77 32986.55 33391.40 34591.03 36983.36 36696.92 31695.18 35691.28 29886.48 35493.42 35753.27 37396.74 35089.43 31581.97 35394.11 358
DeepMVS_CXcopyleft86.78 34897.09 26872.30 37495.17 35775.92 36684.34 36095.19 34470.58 36395.35 36279.98 36189.04 31692.68 365
K. test v392.55 30091.91 30294.48 31995.64 33389.24 33499.07 6294.88 35894.04 18586.78 35197.59 24377.64 34497.64 33492.08 26789.43 31096.57 298
TESTMET0.1,194.18 26793.69 26695.63 28496.92 27589.12 33696.91 31894.78 35993.17 23294.88 21196.45 31978.52 33498.92 21993.09 23998.50 14998.85 177
pmmvs386.67 33284.86 33592.11 34388.16 37187.19 35996.63 33494.75 36079.88 36387.22 35092.75 36066.56 36895.20 36581.24 35776.56 36593.96 361
door94.64 361
thisisatest051595.61 18394.89 19897.76 14998.15 19595.15 19596.77 32994.41 36292.95 24197.18 14697.43 25584.78 28499.45 16194.63 19097.73 17898.68 187
door-mid94.37 363
tttt051796.07 15395.51 16797.78 14798.41 16894.84 20999.28 2594.33 36494.26 18097.64 13498.64 14184.05 29899.47 15995.34 17197.60 18299.03 164
DSMNet-mixed92.52 30192.58 29292.33 34094.15 35482.65 36798.30 20394.26 36589.08 33592.65 29895.73 33685.01 28095.76 36186.24 33597.76 17698.59 194
thisisatest053096.01 15695.36 17397.97 13598.38 16995.52 18098.88 10094.19 36694.04 18597.64 13498.31 18183.82 30599.46 16095.29 17597.70 17998.93 174
MTMP98.89 9794.14 367
baseline295.11 20994.52 21396.87 20796.65 29293.56 25898.27 20894.10 36893.45 22192.02 31697.43 25587.45 23999.19 17993.88 21797.41 18697.87 217
PMVScopyleft61.03 2365.95 34163.57 34573.09 35857.90 38351.22 38485.05 37193.93 36954.45 37244.32 37883.57 36813.22 38289.15 37358.68 37481.00 35778.91 372
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS277.95 33675.44 34085.46 35082.54 37574.95 37394.23 36293.08 37072.80 36874.68 36787.38 36636.36 37991.56 37273.95 36963.94 37289.87 367
MVS-HIRNet89.46 32688.40 32592.64 33897.58 22982.15 36894.16 36393.05 37175.73 36790.90 32582.52 36979.42 33098.33 29083.53 35298.68 13897.43 227
test111195.94 16295.78 15296.41 25198.99 12490.12 32299.04 6692.45 37296.99 5798.03 10299.27 4681.40 31599.48 15796.87 11799.04 12199.63 79
ECVR-MVScopyleft95.95 16095.71 15896.65 22199.02 11890.86 30999.03 6991.80 37396.96 5898.10 9699.26 4781.31 31699.51 15296.90 11099.04 12199.59 87
EPMVS94.99 21694.48 21596.52 24197.22 25691.75 29497.23 29891.66 37494.11 18297.28 14296.81 30585.70 26898.84 23093.04 24297.28 18798.97 170
lessismore_v094.45 32294.93 34788.44 34891.03 37586.77 35297.64 23976.23 35098.42 27490.31 29785.64 34896.51 311
ANet_high69.08 33965.37 34380.22 35465.99 38271.96 37690.91 36890.09 37682.62 35949.93 37778.39 37229.36 38181.75 37562.49 37338.52 37686.95 370
gg-mvs-nofinetune92.21 30390.58 31097.13 18796.75 28695.09 19795.85 34689.40 37785.43 35594.50 22381.98 37080.80 32398.40 28892.16 26598.33 15897.88 216
GG-mvs-BLEND96.59 23096.34 31094.98 20396.51 33888.58 37893.10 28794.34 35480.34 32698.05 31589.53 31296.99 19196.74 276
E-PMN64.94 34264.25 34467.02 35982.28 37659.36 38191.83 36785.63 37952.69 37360.22 37477.28 37341.06 37780.12 37746.15 37641.14 37461.57 375
EMVS64.07 34363.26 34666.53 36081.73 37758.81 38291.85 36684.75 38051.93 37559.09 37575.13 37443.32 37679.09 37842.03 37739.47 37561.69 374
tmp_tt68.90 34066.97 34274.68 35750.78 38459.95 38087.13 36983.47 38138.80 37762.21 37396.23 32564.70 37076.91 37988.91 32030.49 37787.19 369
MVEpermissive62.14 2263.28 34459.38 34774.99 35674.33 38165.47 37785.55 37080.50 38252.02 37451.10 37675.00 37510.91 38580.50 37651.60 37553.40 37378.99 371
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test250694.44 25193.91 24896.04 26799.02 11888.99 34099.06 6379.47 38396.96 5898.36 8799.26 4777.21 34699.52 15196.78 12499.04 12199.59 87
N_pmnet87.12 33187.77 33085.17 35195.46 33961.92 37897.37 28770.66 38485.83 35288.73 34596.04 33185.33 27797.76 33280.02 35990.48 29495.84 335
wuyk23d30.17 34530.18 34930.16 36178.61 37943.29 38566.79 37414.21 38517.31 37814.82 38111.93 38111.55 38441.43 38037.08 37819.30 3785.76 378
testmvs21.48 34724.95 35011.09 36314.89 3856.47 38796.56 3369.87 3867.55 37917.93 37939.02 3779.43 3865.90 38216.56 38012.72 37920.91 377
test12320.95 34823.72 35112.64 36213.54 3868.19 38696.55 3376.13 3877.48 38016.74 38037.98 37812.97 3836.05 38116.69 3795.43 38023.68 376
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas7.88 35010.50 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38294.51 910.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
n20.00 388
nn0.00 388
ab-mvs-re8.20 34910.94 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38398.43 1640.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
PC_three_145295.08 14999.60 599.16 6897.86 298.47 26797.52 8599.72 5499.74 37
eth-test20.00 387
eth-test0.00 387
OPU-MVS99.37 2399.24 9699.05 1499.02 7399.16 6897.81 399.37 16597.24 9399.73 4799.70 54
test_0728_THIRD97.32 3399.45 1199.46 1397.88 199.94 498.47 2299.86 199.85 4
GSMVS99.20 139
test_part299.63 3199.18 1099.27 21
sam_mvs189.45 18399.20 139
sam_mvs88.99 197
test_post196.68 33330.43 38087.85 22998.69 24192.59 255
test_post31.83 37988.83 20598.91 220
patchmatchnet-post95.10 34689.42 18498.89 224
gm-plane-assit95.88 32787.47 35689.74 32796.94 29799.19 17993.32 234
test9_res96.39 13999.57 8199.69 57
agg_prior295.87 15499.57 8199.68 63
test_prior498.01 6797.86 255
test_prior297.80 26096.12 9497.89 11998.69 13495.96 4096.89 11199.60 74
旧先验297.57 27791.30 29698.67 6799.80 8495.70 164
新几何297.64 271
原ACMM297.67 269
testdata299.89 3991.65 280
segment_acmp96.85 14
testdata197.32 29396.34 86
plane_prior797.42 24594.63 218
plane_prior697.35 25094.61 22187.09 242
plane_prior498.28 183
plane_prior394.61 22197.02 5595.34 202
plane_prior298.80 12097.28 36
plane_prior197.37 249
plane_prior94.60 22398.44 18296.74 6894.22 232
HQP5-MVS94.25 238
HQP-NCC97.20 25898.05 23596.43 8194.45 225
ACMP_Plane97.20 25898.05 23596.43 8194.45 225
BP-MVS95.30 173
HQP4-MVS94.45 22598.96 21396.87 262
HQP2-MVS86.75 248
NP-MVS97.28 25294.51 22797.73 230
MDTV_nov1_ep13_2view84.26 36396.89 32390.97 30697.90 11889.89 17693.91 21699.18 148
ACMMP++_ref92.97 268
ACMMP++93.61 254
Test By Simon94.64 87