This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
DPE-MVScopyleft97.86 497.65 598.47 599.17 3495.78 797.21 14698.35 2095.16 1898.71 1298.80 1195.05 1099.89 496.70 2799.73 199.73 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_0728_THIRD94.78 3798.73 1098.87 695.87 499.84 2397.45 999.72 299.77 1
APDe-MVS97.82 597.73 498.08 1899.15 3594.82 2998.81 798.30 2594.76 3998.30 1798.90 393.77 1799.68 5197.93 199.69 399.75 5
SMA-MVScopyleft97.35 1397.03 1998.30 899.06 4295.42 1097.94 6698.18 5090.57 18398.85 998.94 193.33 2199.83 2696.72 2699.68 499.63 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CP-MVS97.02 2796.81 3397.64 4999.33 2393.54 6598.80 898.28 2892.99 9996.45 7798.30 5391.90 5099.85 1895.61 7099.68 499.54 34
MSC_two_6792asdad98.86 198.67 6696.94 197.93 10799.86 997.68 299.67 699.77 1
No_MVS98.86 198.67 6696.94 197.93 10799.86 997.68 299.67 699.77 1
DVP-MVScopyleft97.91 397.81 398.22 1299.45 395.36 1398.21 4597.85 11894.92 2898.73 1098.87 695.08 899.84 2397.52 599.67 699.48 47
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.51 499.45 395.93 598.21 4598.28 2899.86 997.52 599.67 699.75 5
SED-MVS98.05 297.99 198.24 1099.42 795.30 1898.25 3898.27 3195.13 1999.19 198.89 495.54 599.85 1897.52 599.66 1099.56 27
IU-MVS99.42 795.39 1197.94 10690.40 18798.94 597.41 1299.66 1099.74 7
test_241102_TWO98.27 3195.13 1998.93 698.89 494.99 1199.85 1897.52 599.65 1299.74 7
SD-MVS97.41 1097.53 797.06 7498.57 7994.46 3497.92 6898.14 5794.82 3499.01 398.55 2294.18 1497.41 31496.94 1799.64 1399.32 66
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS_fast96.51 5596.27 5997.22 6799.32 2492.74 8698.74 998.06 7790.57 18396.77 5798.35 4290.21 8699.53 9394.80 9799.63 1499.38 62
SteuartSystems-ACMMP97.62 797.53 797.87 2798.39 8794.25 4298.43 2498.27 3195.34 1198.11 2098.56 2094.53 1299.71 4296.57 3199.62 1599.65 12
Skip Steuart: Steuart Systems R&D Blog.
HPM-MVScopyleft96.69 4996.45 5597.40 5699.36 2093.11 7898.87 698.06 7791.17 16296.40 7897.99 7890.99 7499.58 7595.61 7099.61 1699.49 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
OPU-MVS98.55 398.82 6096.86 398.25 3898.26 5896.04 299.24 12695.36 7899.59 1799.56 27
HFP-MVS97.14 2096.92 2597.83 2999.42 794.12 4898.52 1698.32 2293.21 9097.18 4498.29 5492.08 4499.83 2695.63 6899.59 1799.54 34
region2R97.07 2396.84 3097.77 3899.46 293.79 5898.52 1698.24 3893.19 9397.14 4798.34 4591.59 6099.87 895.46 7699.59 1799.64 13
#test#97.02 2796.75 3897.83 2999.42 794.12 4898.15 5098.32 2292.57 11997.18 4498.29 5492.08 4499.83 2695.12 8499.59 1799.54 34
ACMMPR97.07 2396.84 3097.79 3599.44 693.88 5598.52 1698.31 2493.21 9097.15 4698.33 4891.35 6599.86 995.63 6899.59 1799.62 16
DVP-MVS++98.06 197.99 198.28 998.67 6695.39 1199.29 198.28 2894.78 3798.93 698.87 696.04 299.86 997.45 999.58 2299.59 20
PC_three_145290.77 17098.89 898.28 5796.24 198.35 20895.76 6199.58 2299.59 20
mPP-MVS96.86 3996.60 4597.64 4999.40 1293.44 6898.50 1998.09 6793.27 8995.95 9598.33 4891.04 7399.88 595.20 8199.57 2499.60 19
ZNCC-MVS96.96 3196.67 4397.85 2899.37 1794.12 4898.49 2098.18 5092.64 11896.39 7998.18 6691.61 5899.88 595.59 7399.55 2599.57 24
MP-MVS-pluss96.70 4896.27 5997.98 2499.23 3294.71 3096.96 16898.06 7790.67 17495.55 11098.78 1291.07 7299.86 996.58 3099.55 2599.38 62
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft96.77 4696.45 5597.72 4299.39 1493.80 5798.41 2598.06 7793.37 8595.54 11298.34 4590.59 8299.88 594.83 9499.54 2799.49 45
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS96.77 4696.46 5497.71 4498.40 8594.07 5198.21 4598.45 1689.86 19597.11 5098.01 7792.52 3799.69 4896.03 5399.53 2899.36 64
xxxxxxxxxxxxxcwj97.36 1297.20 1297.83 2998.91 5394.28 3997.02 15997.22 19195.35 998.27 1898.65 1693.33 2199.72 3996.49 3399.52 2999.51 39
SF-MVS97.39 1197.13 1398.17 1499.02 4695.28 2098.23 4298.27 3192.37 12598.27 1898.65 1693.33 2199.72 3996.49 3399.52 2999.51 39
ACMMP_NAP97.20 1696.86 2798.23 1199.09 3895.16 2497.60 10598.19 4892.82 11097.93 2598.74 1391.60 5999.86 996.26 3899.52 2999.67 11
DeepC-MVS_fast93.89 296.93 3496.64 4497.78 3698.64 7494.30 3897.41 12298.04 8594.81 3596.59 6998.37 4091.24 6799.64 6595.16 8299.52 2999.42 58
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETH3D-3000-0.197.07 2396.71 4198.14 1698.90 5595.33 1797.68 9498.24 3891.57 14697.90 2698.37 4092.61 3499.66 5695.59 7399.51 3399.43 55
HPM-MVS++copyleft97.34 1496.97 2298.47 599.08 4096.16 497.55 11197.97 10395.59 596.61 6797.89 8292.57 3599.84 2395.95 5499.51 3399.40 59
APD-MVScopyleft96.95 3296.60 4598.01 2299.03 4594.93 2897.72 8998.10 6591.50 14898.01 2298.32 5092.33 4099.58 7594.85 9299.51 3399.53 38
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
patch_mono-296.83 4397.44 995.01 17199.05 4385.39 29696.98 16698.77 594.70 4197.99 2398.66 1493.61 1999.91 197.67 499.50 3699.72 10
dcpmvs_296.37 6197.05 1794.31 21198.96 5084.11 31497.56 10997.51 15393.92 6197.43 3698.52 2592.75 2899.32 12097.32 1399.50 3699.51 39
zzz-MVS97.07 2396.77 3797.97 2599.37 1794.42 3697.15 15298.08 6895.07 2496.11 8698.59 1890.88 7799.90 296.18 4799.50 3699.58 22
MTAPA97.08 2296.78 3697.97 2599.37 1794.42 3697.24 13998.08 6895.07 2496.11 8698.59 1890.88 7799.90 296.18 4799.50 3699.58 22
CNVR-MVS97.68 697.44 998.37 798.90 5595.86 697.27 13798.08 6895.81 497.87 2898.31 5194.26 1399.68 5197.02 1699.49 4099.57 24
DeepPCF-MVS93.97 196.61 5297.09 1495.15 16498.09 11486.63 27696.00 24898.15 5595.43 797.95 2498.56 2093.40 2099.36 11796.77 2599.48 4199.45 51
ETH3 D test640096.16 6795.52 7398.07 1998.90 5595.06 2697.03 15698.21 4488.16 24896.64 6597.70 9991.18 7099.67 5392.44 14299.47 4299.48 47
9.1496.75 3898.93 5197.73 8698.23 4291.28 15897.88 2798.44 3293.00 2599.65 5795.76 6199.47 42
TSAR-MVS + MP.97.42 997.33 1197.69 4599.25 2994.24 4398.07 5597.85 11893.72 6998.57 1398.35 4293.69 1899.40 11397.06 1599.46 4499.44 53
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSLP-MVS++96.94 3397.06 1596.59 8698.72 6391.86 11697.67 9598.49 1394.66 4397.24 4298.41 3892.31 4298.94 15896.61 2999.46 4498.96 101
PGM-MVS96.81 4496.53 4997.65 4799.35 2293.53 6697.65 9898.98 192.22 12797.14 4798.44 3291.17 7199.85 1894.35 10599.46 4499.57 24
CDPH-MVS95.97 7295.38 7997.77 3898.93 5194.44 3596.35 22397.88 11186.98 27896.65 6497.89 8291.99 4899.47 10492.26 14399.46 4499.39 60
DELS-MVS96.61 5296.38 5797.30 6097.79 13093.19 7695.96 25098.18 5095.23 1495.87 9697.65 10591.45 6199.70 4795.87 5599.44 4899.00 99
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CPTT-MVS95.57 8195.19 8496.70 8099.27 2891.48 12898.33 2898.11 6387.79 25995.17 11898.03 7487.09 12599.61 6693.51 12299.42 4999.02 92
MVS_111021_HR96.68 5196.58 4796.99 7698.46 8192.31 10196.20 23898.90 294.30 5395.86 9797.74 9792.33 4099.38 11696.04 5299.42 4999.28 71
XVS97.18 1796.96 2397.81 3399.38 1594.03 5398.59 1298.20 4694.85 3096.59 6998.29 5491.70 5699.80 3195.66 6399.40 5199.62 16
X-MVStestdata91.71 21089.67 26797.81 3399.38 1594.03 5398.59 1298.20 4694.85 3096.59 6932.69 37691.70 5699.80 3195.66 6399.40 5199.62 16
MCST-MVS97.18 1796.84 3098.20 1399.30 2695.35 1597.12 15498.07 7493.54 7796.08 8897.69 10093.86 1699.71 4296.50 3299.39 5399.55 31
test9_res94.81 9699.38 5499.45 51
agg_prior293.94 11499.38 5499.50 43
test_prior396.46 5796.20 6297.23 6598.67 6692.99 8096.35 22398.00 9792.80 11196.03 8997.59 11292.01 4699.41 11195.01 8799.38 5499.29 68
test_prior296.35 22392.80 11196.03 8997.59 11292.01 4695.01 8799.38 54
train_agg96.30 6395.83 6997.72 4298.70 6494.19 4496.41 21598.02 9288.58 23596.03 8997.56 11692.73 3099.59 7295.04 8699.37 5899.39 60
CS-MVS-test96.89 3797.04 1896.45 9798.29 9691.66 12199.03 497.85 11895.84 396.90 5697.97 8091.24 6798.75 17496.92 1899.33 5998.94 104
agg_prior196.22 6695.77 7097.56 5198.67 6693.79 5896.28 23198.00 9788.76 23295.68 10497.55 11892.70 3299.57 8395.01 8799.32 6099.32 66
3Dnovator91.36 595.19 9294.44 10597.44 5596.56 19093.36 7298.65 1198.36 1794.12 5689.25 25898.06 7282.20 20499.77 3393.41 12699.32 6099.18 78
ZD-MVS99.05 4394.59 3298.08 6889.22 21397.03 5498.10 6892.52 3799.65 5794.58 10399.31 62
test117296.93 3496.86 2797.15 7099.10 3692.34 9897.96 6598.04 8593.79 6797.35 3998.53 2491.40 6399.56 8596.30 3799.30 6399.55 31
Regformer-197.10 2196.96 2397.54 5298.32 9393.48 6796.83 17997.99 10195.20 1597.46 3298.25 5992.48 3999.58 7596.79 2499.29 6499.55 31
Regformer-297.16 1996.99 2197.67 4698.32 9393.84 5696.83 17998.10 6595.24 1397.49 3198.25 5992.57 3599.61 6696.80 2299.29 6499.56 27
ETH3D cwj APD-0.1696.56 5496.06 6498.05 2098.26 10095.19 2296.99 16498.05 8489.85 19797.26 4198.22 6191.80 5299.69 4894.84 9399.28 6699.27 73
GST-MVS96.85 4196.52 5097.82 3299.36 2094.14 4798.29 3198.13 5892.72 11596.70 6098.06 7291.35 6599.86 994.83 9499.28 6699.47 50
SR-MVS97.01 2996.86 2797.47 5499.09 3893.27 7597.98 6098.07 7493.75 6897.45 3398.48 2991.43 6299.59 7296.22 4199.27 6899.54 34
CSCG96.05 6995.91 6796.46 9699.24 3090.47 16898.30 3098.57 1289.01 21893.97 13997.57 11492.62 3399.76 3494.66 10199.27 6899.15 81
SR-MVS-dyc-post96.88 3896.80 3497.11 7399.02 4692.34 9897.98 6098.03 8893.52 7997.43 3698.51 2691.40 6399.56 8596.05 5099.26 7099.43 55
RE-MVS-def96.72 4099.02 4692.34 9897.98 6098.03 8893.52 7997.43 3698.51 2690.71 8096.05 5099.26 7099.43 55
testtj96.93 3496.56 4898.05 2099.10 3694.66 3197.78 8198.22 4392.74 11497.59 2998.20 6591.96 4999.86 994.21 10899.25 7299.63 14
APD-MVS_3200maxsize96.81 4496.71 4197.12 7299.01 4992.31 10197.98 6098.06 7793.11 9697.44 3498.55 2290.93 7599.55 8896.06 4999.25 7299.51 39
test1297.65 4798.46 8194.26 4197.66 13795.52 11390.89 7699.46 10599.25 7299.22 76
DeepC-MVS93.07 396.06 6895.66 7197.29 6197.96 11893.17 7797.30 13598.06 7793.92 6193.38 15298.66 1486.83 12799.73 3695.60 7299.22 7598.96 101
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSP-MVS97.59 897.54 697.73 4199.40 1293.77 6198.53 1598.29 2695.55 698.56 1497.81 9293.90 1599.65 5796.62 2899.21 7699.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CANet96.39 6096.02 6597.50 5397.62 14093.38 7097.02 15997.96 10495.42 894.86 12197.81 9287.38 12199.82 2996.88 2099.20 7799.29 68
MVS_111021_LR96.24 6596.19 6396.39 10298.23 10591.35 13396.24 23698.79 493.99 6095.80 9997.65 10589.92 9099.24 12695.87 5599.20 7798.58 131
CS-MVS96.86 3997.06 1596.26 11298.16 11191.16 14699.09 397.87 11395.30 1297.06 5398.03 7491.72 5398.71 18097.10 1499.17 7998.90 109
NCCC97.30 1597.03 1998.11 1798.77 6195.06 2697.34 13098.04 8595.96 297.09 5197.88 8493.18 2499.71 4295.84 5999.17 7999.56 27
test22298.24 10192.21 10495.33 27497.60 14379.22 35395.25 11597.84 9188.80 9999.15 8198.72 124
114514_t93.95 12593.06 13996.63 8399.07 4191.61 12297.46 12197.96 10477.99 35793.00 16097.57 11486.14 13999.33 11889.22 20799.15 8198.94 104
Regformer-396.85 4196.80 3497.01 7598.34 9092.02 11296.96 16897.76 12395.01 2697.08 5298.42 3591.71 5599.54 9096.80 2299.13 8399.48 47
Regformer-496.97 3096.87 2697.25 6498.34 9092.66 8996.96 16898.01 9595.12 2297.14 4798.42 3591.82 5199.61 6696.90 1999.13 8399.50 43
新几何197.32 5998.60 7593.59 6497.75 12481.58 34095.75 10197.85 8890.04 8899.67 5386.50 25899.13 8398.69 127
原ACMM196.38 10398.59 7691.09 14897.89 10987.41 27095.22 11797.68 10190.25 8499.54 9087.95 22699.12 8698.49 140
112194.71 10793.83 11297.34 5898.57 7993.64 6396.04 24497.73 12781.56 34195.68 10497.85 8890.23 8599.65 5787.68 23699.12 8698.73 123
DROMVSNet96.42 5896.47 5296.26 11297.01 16891.52 12798.89 597.75 12494.42 4896.64 6597.68 10189.32 9298.60 18997.45 999.11 8898.67 129
abl_696.40 5996.21 6196.98 7798.89 5892.20 10697.89 7098.03 8893.34 8897.22 4398.42 3587.93 11099.72 3995.10 8599.07 8999.02 92
MVSFormer95.37 8495.16 8595.99 12696.34 20391.21 13998.22 4397.57 14791.42 15296.22 8397.32 12586.20 13797.92 26894.07 11099.05 9098.85 115
lupinMVS94.99 9894.56 9896.29 11096.34 20391.21 13995.83 25596.27 26188.93 22396.22 8396.88 15186.20 13798.85 16595.27 8099.05 9098.82 118
旧先验198.38 8893.38 7097.75 12498.09 7092.30 4399.01 9299.16 79
testdata95.46 15798.18 11088.90 22097.66 13782.73 33397.03 5498.07 7190.06 8798.85 16589.67 19498.98 9398.64 130
3Dnovator+91.43 495.40 8394.48 10398.16 1596.90 17295.34 1698.48 2197.87 11394.65 4488.53 27398.02 7683.69 16899.71 4293.18 13098.96 9499.44 53
DPM-MVS95.69 7694.92 8998.01 2298.08 11595.71 995.27 27997.62 14290.43 18695.55 11097.07 13991.72 5399.50 10189.62 19698.94 9598.82 118
CHOSEN 280x42093.12 15792.72 15494.34 20996.71 18287.27 25890.29 35497.72 13086.61 28591.34 19595.29 23684.29 16298.41 20293.25 12998.94 9597.35 196
jason94.84 10394.39 10696.18 11795.52 23590.93 15396.09 24296.52 25189.28 21196.01 9397.32 12584.70 15498.77 17295.15 8398.91 9798.85 115
jason: jason.
QAPM93.45 14492.27 17196.98 7796.77 17992.62 9198.39 2698.12 6084.50 31588.27 27997.77 9582.39 20199.81 3085.40 27798.81 9898.51 137
MG-MVS95.61 7995.38 7996.31 10798.42 8490.53 16696.04 24497.48 15693.47 8195.67 10798.10 6889.17 9499.25 12591.27 17098.77 9999.13 83
API-MVS94.84 10394.49 10295.90 12897.90 12492.00 11397.80 7997.48 15689.19 21494.81 12296.71 15688.84 9899.17 13288.91 21498.76 10096.53 214
CHOSEN 1792x268894.15 11593.51 12496.06 12198.27 9789.38 20395.18 28398.48 1585.60 29893.76 14397.11 13783.15 17899.61 6691.33 16898.72 10199.19 77
EIA-MVS95.53 8295.47 7595.71 13997.06 16389.63 18997.82 7797.87 11393.57 7393.92 14095.04 24590.61 8198.95 15794.62 10298.68 10298.54 133
OpenMVScopyleft89.19 1292.86 17291.68 18996.40 10095.34 24692.73 8798.27 3498.12 6084.86 31085.78 31697.75 9678.89 26499.74 3587.50 24398.65 10396.73 211
EPNet95.20 9194.56 9897.14 7192.80 33892.68 8897.85 7594.87 32496.64 192.46 16897.80 9486.23 13499.65 5793.72 12098.62 10499.10 88
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DP-MVS Recon95.68 7795.12 8797.37 5799.19 3394.19 4497.03 15698.08 6888.35 24295.09 11997.65 10589.97 8999.48 10392.08 15298.59 10598.44 148
Vis-MVSNetpermissive95.23 8994.81 9196.51 9197.18 15391.58 12598.26 3698.12 6094.38 5194.90 12098.15 6782.28 20298.92 15991.45 16798.58 10699.01 96
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test250691.60 21490.78 22294.04 22297.66 13783.81 31798.27 3475.53 38093.43 8395.23 11698.21 6267.21 34499.07 14793.01 13798.49 10799.25 74
ECVR-MVScopyleft93.19 15292.73 15394.57 20097.66 13785.41 29498.21 4588.23 36993.43 8394.70 12498.21 6272.57 31599.07 14793.05 13498.49 10799.25 74
test111193.19 15292.82 14694.30 21297.58 14584.56 30998.21 4589.02 36893.53 7894.58 12698.21 6272.69 31499.05 15093.06 13398.48 10999.28 71
UGNet94.04 12393.28 13496.31 10796.85 17391.19 14297.88 7197.68 13594.40 4993.00 16096.18 19173.39 31399.61 6691.72 15898.46 11098.13 162
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CANet_DTU94.37 11093.65 11896.55 8796.46 19792.13 10896.21 23796.67 24294.38 5193.53 14897.03 14279.34 25299.71 4290.76 17698.45 11197.82 178
TAPA-MVS90.10 792.30 19191.22 20895.56 14698.33 9289.60 19196.79 18397.65 13981.83 33891.52 19197.23 13087.94 10998.91 16171.31 36098.37 11298.17 161
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
EI-MVSNet-Vis-set96.51 5596.47 5296.63 8398.24 10191.20 14196.89 17497.73 12794.74 4096.49 7398.49 2890.88 7799.58 7596.44 3598.32 11399.13 83
PS-MVSNAJ95.37 8495.33 8195.49 15397.35 14890.66 16495.31 27697.48 15693.85 6496.51 7295.70 22188.65 10199.65 5794.80 9798.27 11496.17 223
LS3D93.57 14192.61 15996.47 9497.59 14391.61 12297.67 9597.72 13085.17 30590.29 21798.34 4584.60 15599.73 3683.85 29698.27 11498.06 167
ETV-MVS96.02 7095.89 6896.40 10097.16 15492.44 9697.47 11997.77 12294.55 4596.48 7494.51 26791.23 6998.92 15995.65 6698.19 11697.82 178
PVSNet_Blended94.87 10294.56 9895.81 13198.27 9789.46 20095.47 26998.36 1788.84 22694.36 13096.09 19988.02 10799.58 7593.44 12498.18 11798.40 151
MAR-MVS94.22 11393.46 12696.51 9198.00 11792.19 10797.67 9597.47 15988.13 25093.00 16095.84 20884.86 15399.51 9887.99 22598.17 11897.83 177
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MS-PatchMatch90.27 26789.77 26391.78 30294.33 30084.72 30795.55 26596.73 23386.17 29186.36 31295.28 23871.28 32297.80 27984.09 29198.14 11992.81 343
AdaColmapbinary94.34 11193.68 11796.31 10798.59 7691.68 12096.59 20697.81 12189.87 19492.15 17897.06 14083.62 17199.54 9089.34 20298.07 12097.70 182
MVP-Stereo90.74 25690.08 25192.71 28093.19 33288.20 23995.86 25496.27 26186.07 29284.86 32594.76 25777.84 28197.75 28483.88 29598.01 12192.17 354
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Vis-MVSNet (Re-imp)94.15 11593.88 11194.95 17797.61 14187.92 24798.10 5295.80 27892.22 12793.02 15997.45 12084.53 15797.91 27188.24 22297.97 12299.02 92
EI-MVSNet-UG-set96.34 6296.30 5896.47 9498.20 10690.93 15396.86 17597.72 13094.67 4296.16 8598.46 3090.43 8399.58 7596.23 4097.96 12398.90 109
IS-MVSNet94.90 10094.52 10196.05 12297.67 13590.56 16598.44 2396.22 26493.21 9093.99 13797.74 9785.55 14598.45 20189.98 18597.86 12499.14 82
CNLPA94.28 11293.53 12296.52 8898.38 8892.55 9396.59 20696.88 22690.13 19191.91 18497.24 12985.21 14899.09 14287.64 23997.83 12597.92 170
xiu_mvs_v2_base95.32 8695.29 8295.40 15897.22 15090.50 16795.44 27097.44 17093.70 7196.46 7696.18 19188.59 10499.53 9394.79 9997.81 12696.17 223
PAPM_NR95.01 9494.59 9796.26 11298.89 5890.68 16397.24 13997.73 12791.80 14192.93 16596.62 17389.13 9599.14 13689.21 20897.78 12798.97 100
PVSNet_Blended_VisFu95.27 8794.91 9096.38 10398.20 10690.86 15597.27 13798.25 3690.21 18894.18 13497.27 12787.48 11999.73 3693.53 12197.77 12898.55 132
TSAR-MVS + GP.96.69 4996.49 5197.27 6398.31 9593.39 6996.79 18396.72 23494.17 5597.44 3497.66 10492.76 2799.33 11896.86 2197.76 12999.08 89
ACMMPcopyleft96.27 6495.93 6697.28 6299.24 3092.62 9198.25 3898.81 392.99 9994.56 12798.39 3988.96 9699.85 1894.57 10497.63 13099.36 64
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
BH-RMVSNet92.72 17891.97 17994.97 17597.16 15487.99 24696.15 24095.60 28790.62 17991.87 18597.15 13678.41 27098.57 19383.16 29897.60 13198.36 155
PatchMatch-RL92.90 17092.02 17795.56 14698.19 10890.80 15895.27 27997.18 19287.96 25291.86 18695.68 22280.44 23298.99 15584.01 29297.54 13296.89 206
xiu_mvs_v1_base_debu95.01 9494.76 9295.75 13496.58 18791.71 11796.25 23397.35 18292.99 9996.70 6096.63 17082.67 19299.44 10896.22 4197.46 13396.11 228
xiu_mvs_v1_base95.01 9494.76 9295.75 13496.58 18791.71 11796.25 23397.35 18292.99 9996.70 6096.63 17082.67 19299.44 10896.22 4197.46 13396.11 228
xiu_mvs_v1_base_debi95.01 9494.76 9295.75 13496.58 18791.71 11796.25 23397.35 18292.99 9996.70 6096.63 17082.67 19299.44 10896.22 4197.46 13396.11 228
MVS91.71 21090.44 23495.51 15095.20 25991.59 12496.04 24497.45 16673.44 36487.36 29895.60 22585.42 14699.10 13985.97 26997.46 13395.83 237
PVSNet86.66 1892.24 19591.74 18793.73 24097.77 13183.69 32192.88 33696.72 23487.91 25493.00 16094.86 25278.51 26899.05 15086.53 25697.45 13798.47 143
PAPR94.18 11493.42 13196.48 9397.64 13991.42 13295.55 26597.71 13488.99 21992.34 17495.82 21089.19 9399.11 13886.14 26497.38 13898.90 109
LCM-MVSNet-Re92.50 18092.52 16592.44 28596.82 17781.89 33396.92 17293.71 34392.41 12484.30 32994.60 26585.08 15097.03 32591.51 16497.36 13998.40 151
UA-Net95.95 7395.53 7297.20 6997.67 13592.98 8297.65 9898.13 5894.81 3596.61 6798.35 4288.87 9799.51 9890.36 18297.35 14099.11 87
casdiffmvs95.64 7895.49 7496.08 11996.76 18190.45 16997.29 13697.44 17094.00 5995.46 11497.98 7987.52 11898.73 17695.64 6797.33 14199.08 89
PCF-MVS89.48 1191.56 21889.95 25696.36 10596.60 18592.52 9492.51 34197.26 18879.41 35288.90 26196.56 17584.04 16599.55 8877.01 34297.30 14297.01 200
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
BH-untuned92.94 16892.62 15893.92 23497.22 15086.16 28596.40 21896.25 26390.06 19289.79 23896.17 19383.19 17698.35 20887.19 24997.27 14397.24 198
baseline95.58 8095.42 7896.08 11996.78 17890.41 17197.16 15097.45 16693.69 7295.65 10897.85 8887.29 12298.68 18295.66 6397.25 14499.13 83
gg-mvs-nofinetune87.82 30085.61 30994.44 20394.46 29589.27 21191.21 34984.61 37580.88 34489.89 23674.98 36871.50 32097.53 30385.75 27397.21 14596.51 215
diffmvs95.25 8895.13 8695.63 14296.43 19989.34 20595.99 24997.35 18292.83 10996.31 8097.37 12486.44 13298.67 18396.26 3897.19 14698.87 114
MVS_Test94.89 10194.62 9695.68 14096.83 17689.55 19496.70 19197.17 19491.17 16295.60 10996.11 19887.87 11198.76 17393.01 13797.17 14798.72 124
PLCcopyleft91.00 694.11 11993.43 12996.13 11898.58 7891.15 14796.69 19397.39 17687.29 27391.37 19496.71 15688.39 10599.52 9787.33 24697.13 14897.73 180
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
131492.81 17692.03 17695.14 16595.33 24989.52 19796.04 24497.44 17087.72 26386.25 31395.33 23583.84 16698.79 16989.26 20597.05 14997.11 199
EPNet_dtu91.71 21091.28 20492.99 27193.76 31783.71 32096.69 19395.28 30293.15 9487.02 30595.95 20383.37 17597.38 31679.46 32896.84 15097.88 173
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Effi-MVS+94.93 9994.45 10496.36 10596.61 18491.47 12996.41 21597.41 17591.02 16794.50 12895.92 20487.53 11798.78 17093.89 11696.81 15198.84 117
OMC-MVS95.09 9394.70 9596.25 11598.46 8191.28 13596.43 21397.57 14792.04 13694.77 12397.96 8187.01 12699.09 14291.31 16996.77 15298.36 155
test-LLR91.42 22591.19 20992.12 29194.59 29080.66 34094.29 30492.98 34991.11 16490.76 20992.37 32779.02 25998.07 24188.81 21596.74 15397.63 184
test-mter90.19 27189.54 27092.12 29194.59 29080.66 34094.29 30492.98 34987.68 26490.76 20992.37 32767.67 34098.07 24188.81 21596.74 15397.63 184
F-COLMAP93.58 14092.98 14195.37 15998.40 8588.98 21897.18 14897.29 18787.75 26290.49 21297.10 13885.21 14899.50 10186.70 25596.72 15597.63 184
mvs_anonymous93.82 13193.74 11494.06 22096.44 19885.41 29495.81 25697.05 20789.85 19790.09 22996.36 18587.44 12097.75 28493.97 11296.69 15699.02 92
DP-MVS92.76 17791.51 19796.52 8898.77 6190.99 14997.38 12896.08 26982.38 33489.29 25597.87 8583.77 16799.69 4881.37 31696.69 15698.89 112
TESTMET0.1,190.06 27389.42 27191.97 29494.41 29880.62 34294.29 30491.97 35887.28 27490.44 21492.47 32668.79 33597.67 28988.50 22196.60 15897.61 188
mvs-test193.63 13793.69 11693.46 25596.02 21984.61 30897.24 13996.72 23493.85 6492.30 17595.76 21683.08 18098.89 16391.69 16196.54 15996.87 207
GeoE93.89 12793.28 13495.72 13896.96 17189.75 18798.24 4196.92 22289.47 20692.12 18097.21 13184.42 15898.39 20687.71 23296.50 16099.01 96
EPP-MVSNet95.22 9095.04 8895.76 13297.49 14789.56 19398.67 1097.00 21390.69 17394.24 13397.62 11089.79 9198.81 16893.39 12896.49 16198.92 107
PMMVS92.86 17292.34 16994.42 20594.92 27186.73 27294.53 29396.38 25784.78 31294.27 13295.12 24483.13 17998.40 20391.47 16696.49 16198.12 163
Fast-Effi-MVS+93.46 14392.75 15195.59 14596.77 17990.03 17596.81 18297.13 19788.19 24591.30 19894.27 28386.21 13698.63 18687.66 23896.46 16398.12 163
BH-w/o92.14 20191.75 18593.31 26096.99 17085.73 28995.67 26095.69 28288.73 23389.26 25794.82 25582.97 18698.07 24185.26 27996.32 16496.13 227
sss94.51 10993.80 11396.64 8197.07 16091.97 11496.32 22798.06 7788.94 22294.50 12896.78 15384.60 15599.27 12491.90 15396.02 16598.68 128
SCA91.84 20791.18 21093.83 23695.59 23184.95 30494.72 28895.58 28990.82 16892.25 17693.69 30575.80 29798.10 23486.20 26295.98 16698.45 145
CDS-MVSNet94.14 11893.54 12195.93 12796.18 21091.46 13096.33 22697.04 20988.97 22193.56 14596.51 17787.55 11697.89 27289.80 19095.95 16798.44 148
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPM91.52 22190.30 24095.20 16295.30 25289.83 18593.38 32896.85 22986.26 28988.59 27195.80 21184.88 15298.15 22475.67 34695.93 16897.63 184
LFMVS93.60 13892.63 15696.52 8898.13 11391.27 13697.94 6693.39 34790.57 18396.29 8198.31 5169.00 33499.16 13394.18 10995.87 16999.12 86
thisisatest051592.29 19291.30 20395.25 16196.60 18588.90 22094.36 30092.32 35487.92 25393.43 15194.57 26677.28 28599.00 15489.42 20095.86 17097.86 174
CVMVSNet91.23 23691.75 18589.67 33495.77 22774.69 36596.44 21194.88 32185.81 29592.18 17797.64 10879.07 25695.58 35188.06 22495.86 17098.74 122
TAMVS94.01 12493.46 12695.64 14196.16 21290.45 16996.71 19096.89 22589.27 21293.46 15096.92 14987.29 12297.94 26488.70 21895.74 17298.53 134
Effi-MVS+-dtu93.08 15993.21 13692.68 28296.02 21983.25 32497.14 15396.72 23493.85 6491.20 20593.44 31483.08 18098.30 21291.69 16195.73 17396.50 216
HyFIR lowres test93.66 13692.92 14395.87 12998.24 10189.88 18494.58 29198.49 1385.06 30793.78 14295.78 21582.86 18898.67 18391.77 15795.71 17499.07 91
thisisatest053093.03 16392.21 17295.49 15397.07 16089.11 21697.49 11892.19 35590.16 19094.09 13596.41 18276.43 29299.05 15090.38 18195.68 17598.31 157
MVS-HIRNet82.47 32981.21 33186.26 34695.38 24169.21 37288.96 36289.49 36766.28 36680.79 34874.08 37068.48 33797.39 31571.93 35895.47 17692.18 353
tttt051792.96 16692.33 17094.87 18197.11 15887.16 26497.97 6492.09 35690.63 17893.88 14197.01 14376.50 28999.06 14990.29 18495.45 17798.38 153
GG-mvs-BLEND93.62 24693.69 31989.20 21292.39 34383.33 37687.98 28889.84 35171.00 32496.87 33282.08 30995.40 17894.80 304
PatchmatchNetpermissive91.91 20591.35 19993.59 24895.38 24184.11 31493.15 33295.39 29589.54 20392.10 18193.68 30782.82 19098.13 22684.81 28395.32 17998.52 135
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
VNet95.89 7495.45 7697.21 6898.07 11692.94 8397.50 11498.15 5593.87 6397.52 3097.61 11185.29 14799.53 9395.81 6095.27 18099.16 79
DSMNet-mixed86.34 31186.12 30787.00 34489.88 36070.43 36994.93 28690.08 36677.97 35885.42 32192.78 32174.44 30593.96 36174.43 34995.14 18196.62 213
test_yl94.78 10594.23 10796.43 9897.74 13291.22 13796.85 17697.10 20091.23 16095.71 10296.93 14684.30 16099.31 12193.10 13195.12 18298.75 120
DCV-MVSNet94.78 10594.23 10796.43 9897.74 13291.22 13796.85 17697.10 20091.23 16095.71 10296.93 14684.30 16099.31 12193.10 13195.12 18298.75 120
alignmvs95.87 7595.23 8397.78 3697.56 14695.19 2297.86 7297.17 19494.39 5096.47 7596.40 18385.89 14099.20 12896.21 4595.11 18498.95 103
MSDG91.42 22590.24 24494.96 17697.15 15688.91 21993.69 32196.32 25985.72 29786.93 30796.47 17980.24 23798.98 15680.57 31995.05 18596.98 201
VDD-MVS93.82 13193.08 13896.02 12497.88 12589.96 18297.72 8995.85 27692.43 12395.86 9798.44 3268.42 33899.39 11496.31 3694.85 18698.71 126
VDDNet93.05 16292.07 17496.02 12496.84 17490.39 17298.08 5495.85 27686.22 29095.79 10098.46 3067.59 34199.19 12994.92 9194.85 18698.47 143
canonicalmvs96.02 7095.45 7697.75 4097.59 14395.15 2598.28 3297.60 14394.52 4696.27 8296.12 19587.65 11499.18 13196.20 4694.82 18898.91 108
Patchmatch-test89.42 28287.99 28993.70 24395.27 25385.11 30088.98 36194.37 33581.11 34287.10 30393.69 30582.28 20297.50 30674.37 35094.76 18998.48 142
cascas91.20 23890.08 25194.58 19994.97 26789.16 21593.65 32397.59 14579.90 35089.40 25092.92 32075.36 30198.36 20792.14 14894.75 19096.23 220
Fast-Effi-MVS+-dtu92.29 19291.99 17893.21 26595.27 25385.52 29297.03 15696.63 24692.09 13489.11 26095.14 24280.33 23698.08 23887.54 24294.74 19196.03 231
WTY-MVS94.71 10794.02 10996.79 7997.71 13492.05 11096.59 20697.35 18290.61 18094.64 12596.93 14686.41 13399.39 11491.20 17294.71 19298.94 104
baseline291.63 21390.86 21793.94 23194.33 30086.32 27995.92 25291.64 36089.37 20986.94 30694.69 26081.62 21598.69 18188.64 21994.57 19396.81 209
HY-MVS89.66 993.87 12892.95 14296.63 8397.10 15992.49 9595.64 26396.64 24389.05 21793.00 16095.79 21485.77 14399.45 10789.16 21194.35 19497.96 168
MDTV_nov1_ep1390.76 22395.22 25780.33 34593.03 33595.28 30288.14 24992.84 16693.83 29981.34 21798.08 23882.86 30194.34 195
thres20092.23 19691.39 19894.75 19297.61 14189.03 21796.60 20595.09 31292.08 13593.28 15594.00 29578.39 27199.04 15381.26 31794.18 19696.19 222
thres100view90092.43 18391.58 19294.98 17497.92 12289.37 20497.71 9194.66 32692.20 12993.31 15494.90 25078.06 27899.08 14481.40 31394.08 19796.48 217
tfpn200view992.38 18691.52 19594.95 17797.85 12689.29 20897.41 12294.88 32192.19 13193.27 15694.46 27278.17 27499.08 14481.40 31394.08 19796.48 217
thres40092.42 18491.52 19595.12 16797.85 12689.29 20897.41 12294.88 32192.19 13193.27 15694.46 27278.17 27499.08 14481.40 31394.08 19796.98 201
thres600view792.49 18291.60 19195.18 16397.91 12389.47 19897.65 9894.66 32692.18 13393.33 15394.91 24978.06 27899.10 13981.61 31094.06 20096.98 201
CR-MVSNet90.82 25389.77 26393.95 22994.45 29687.19 26290.23 35595.68 28486.89 28092.40 16992.36 33080.91 22397.05 32481.09 31893.95 20197.60 189
RPMNet88.98 28587.05 30094.77 19094.45 29687.19 26290.23 35598.03 8877.87 35992.40 16987.55 36180.17 23999.51 9868.84 36493.95 20197.60 189
1112_ss93.37 14692.42 16896.21 11697.05 16590.99 14996.31 22896.72 23486.87 28189.83 23796.69 16086.51 13199.14 13688.12 22393.67 20398.50 138
PatchT88.87 28987.42 29493.22 26494.08 30885.10 30189.51 35994.64 32881.92 33792.36 17288.15 35880.05 24197.01 32872.43 35693.65 20497.54 192
COLMAP_ROBcopyleft87.81 1590.40 26589.28 27493.79 23997.95 11987.13 26596.92 17295.89 27582.83 33286.88 30997.18 13273.77 31199.29 12378.44 33393.62 20594.95 288
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GA-MVS91.38 22790.31 23994.59 19594.65 28687.62 25494.34 30196.19 26690.73 17290.35 21693.83 29971.84 31897.96 26187.22 24893.61 20698.21 160
TR-MVS91.48 22390.59 23094.16 21696.40 20087.33 25695.67 26095.34 30187.68 26491.46 19295.52 23076.77 28898.35 20882.85 30293.61 20696.79 210
Test_1112_low_res92.84 17491.84 18395.85 13097.04 16689.97 18195.53 26796.64 24385.38 30189.65 24395.18 24085.86 14199.10 13987.70 23393.58 20898.49 140
ab-mvs93.57 14192.55 16196.64 8197.28 14991.96 11595.40 27197.45 16689.81 19993.22 15896.28 18879.62 24999.46 10590.74 17793.11 20998.50 138
AllTest90.23 26988.98 27893.98 22597.94 12086.64 27396.51 21095.54 29085.38 30185.49 31996.77 15470.28 32899.15 13480.02 32392.87 21096.15 225
TestCases93.98 22597.94 12086.64 27395.54 29085.38 30185.49 31996.77 15470.28 32899.15 13480.02 32392.87 21096.15 225
MIMVSNet88.50 29486.76 30293.72 24294.84 27787.77 25291.39 34594.05 33986.41 28787.99 28792.59 32463.27 35895.82 34777.44 33692.84 21297.57 191
Anonymous20240521192.07 20290.83 22195.76 13298.19 10888.75 22297.58 10795.00 31586.00 29393.64 14497.45 12066.24 35199.53 9390.68 17992.71 21399.01 96
EPMVS90.70 25889.81 26193.37 25894.73 28384.21 31293.67 32288.02 37089.50 20592.38 17193.49 31277.82 28297.78 28186.03 26892.68 21498.11 166
XVG-OURS93.72 13593.35 13294.80 18897.07 16088.61 22694.79 28797.46 16191.97 13993.99 13797.86 8781.74 21398.88 16492.64 14192.67 21596.92 205
MVS_030488.79 29087.57 29292.46 28494.65 28686.15 28696.40 21897.17 19486.44 28688.02 28691.71 33956.68 36697.03 32584.47 28892.58 21694.19 326
XVG-OURS-SEG-HR93.86 12993.55 12094.81 18597.06 16388.53 23095.28 27797.45 16691.68 14494.08 13697.68 10182.41 20098.90 16293.84 11892.47 21796.98 201
CLD-MVS92.98 16592.53 16494.32 21096.12 21689.20 21295.28 27797.47 15992.66 11689.90 23495.62 22480.58 22998.40 20392.73 14092.40 21895.38 269
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
OPM-MVS93.28 14992.76 14994.82 18394.63 28990.77 16096.65 19797.18 19293.72 6991.68 18797.26 12879.33 25398.63 18692.13 14992.28 21995.07 284
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP_MVS93.78 13393.43 12994.82 18396.21 20789.99 17897.74 8497.51 15394.85 3091.34 19596.64 16481.32 21898.60 18993.02 13592.23 22095.86 233
plane_prior597.51 15398.60 18993.02 13592.23 22095.86 233
RPSCF90.75 25590.86 21790.42 32796.84 17476.29 36395.61 26496.34 25883.89 32191.38 19397.87 8576.45 29098.78 17087.16 25192.23 22096.20 221
CostFormer91.18 24190.70 22692.62 28394.84 27781.76 33494.09 31094.43 33284.15 31892.72 16793.77 30379.43 25198.20 21890.70 17892.18 22397.90 171
plane_prior89.99 17897.24 13994.06 5792.16 224
HQP3-MVS97.39 17692.10 225
HQP-MVS93.19 15292.74 15294.54 20195.86 22289.33 20696.65 19797.39 17693.55 7490.14 22095.87 20680.95 22198.50 19792.13 14992.10 22595.78 241
tpm289.96 27489.21 27592.23 29094.91 27381.25 33793.78 31894.42 33380.62 34791.56 19093.44 31476.44 29197.94 26485.60 27492.08 22797.49 193
LPG-MVS_test92.94 16892.56 16094.10 21896.16 21288.26 23697.65 9897.46 16191.29 15590.12 22697.16 13379.05 25798.73 17692.25 14591.89 22895.31 273
LGP-MVS_train94.10 21896.16 21288.26 23697.46 16191.29 15590.12 22697.16 13379.05 25798.73 17692.25 14591.89 22895.31 273
ACMM89.79 892.96 16692.50 16694.35 20896.30 20588.71 22397.58 10797.36 18191.40 15490.53 21196.65 16379.77 24698.75 17491.24 17191.64 23095.59 256
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
JIA-IIPM88.26 29787.04 30191.91 29593.52 32381.42 33689.38 36094.38 33480.84 34590.93 20780.74 36679.22 25597.92 26882.76 30391.62 23196.38 219
test_djsdf93.07 16092.76 14994.00 22493.49 32588.70 22498.22 4397.57 14791.42 15290.08 23095.55 22882.85 18997.92 26894.07 11091.58 23295.40 267
jajsoiax92.42 18491.89 18294.03 22393.33 33088.50 23197.73 8697.53 15192.00 13888.85 26496.50 17875.62 30098.11 23393.88 11791.56 23395.48 258
iter_conf_final93.60 13893.11 13795.04 16897.13 15791.30 13497.92 6895.65 28692.98 10491.60 18896.64 16479.28 25498.13 22695.34 7991.49 23495.70 251
mvs_tets92.31 19091.76 18493.94 23193.41 32788.29 23497.63 10397.53 15192.04 13688.76 26896.45 18074.62 30498.09 23793.91 11591.48 23595.45 263
ACMP89.59 1092.62 17992.14 17394.05 22196.40 20088.20 23997.36 12997.25 19091.52 14788.30 27796.64 16478.46 26998.72 17991.86 15691.48 23595.23 280
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
iter_conf0593.18 15592.63 15694.83 18296.64 18390.69 16297.60 10595.53 29292.52 12191.58 18996.64 16476.35 29398.13 22695.43 7791.42 23795.68 254
ADS-MVSNet289.45 28188.59 28392.03 29395.86 22282.26 33190.93 35094.32 33783.23 33091.28 20291.81 33779.01 26195.99 34279.52 32591.39 23897.84 175
ADS-MVSNet89.89 27688.68 28293.53 25195.86 22284.89 30590.93 35095.07 31383.23 33091.28 20291.81 33779.01 26197.85 27479.52 32591.39 23897.84 175
anonymousdsp92.16 19991.55 19393.97 22792.58 34289.55 19497.51 11397.42 17489.42 20888.40 27494.84 25380.66 22797.88 27391.87 15591.28 24094.48 316
CMPMVSbinary62.92 2185.62 31984.92 31687.74 34189.14 36473.12 36894.17 30796.80 23273.98 36273.65 36394.93 24866.36 34897.61 29683.95 29491.28 24092.48 349
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
mvsmamba93.83 13093.46 12694.93 18094.88 27590.85 15698.55 1495.49 29394.24 5491.29 20196.97 14583.04 18398.14 22595.56 7591.17 24295.78 241
test_low_dy_conf_00193.13 15692.80 14894.14 21794.47 29488.64 22598.26 3696.94 21692.53 12090.93 20797.16 13380.39 23497.99 25293.40 12791.12 24395.77 246
Anonymous2024052991.98 20490.73 22595.73 13798.14 11289.40 20297.99 5997.72 13079.63 35193.54 14797.41 12369.94 33299.56 8591.04 17391.11 24498.22 159
bld_raw_conf00593.06 16192.54 16394.60 19494.64 28889.95 18398.28 3294.50 33194.06 5790.23 21896.99 14478.34 27298.12 23194.73 10091.09 24595.74 249
XVG-ACMP-BASELINE90.93 25090.21 24893.09 26894.31 30285.89 28795.33 27497.26 18891.06 16689.38 25195.44 23368.61 33698.60 18989.46 19991.05 24694.79 306
ACMMP++91.02 247
UniMVSNet_ETH3D91.34 23290.22 24794.68 19394.86 27687.86 25097.23 14497.46 16187.99 25189.90 23496.92 14966.35 34998.23 21590.30 18390.99 24897.96 168
D2MVS91.30 23490.95 21492.35 28794.71 28485.52 29296.18 23998.21 4488.89 22486.60 31093.82 30179.92 24497.95 26389.29 20490.95 24993.56 334
PS-MVSNAJss93.74 13493.51 12494.44 20393.91 31289.28 21097.75 8397.56 15092.50 12289.94 23396.54 17688.65 10198.18 22193.83 11990.90 25095.86 233
bld_raw_dy_0_6492.37 18791.69 18894.39 20694.28 30489.73 18897.71 9193.65 34492.78 11390.46 21396.67 16275.88 29597.97 25692.92 13990.89 25195.48 258
EG-PatchMatch MVS87.02 30685.44 31091.76 30492.67 34085.00 30296.08 24396.45 25483.41 32979.52 35593.49 31257.10 36597.72 28679.34 33090.87 25292.56 347
PVSNet_BlendedMVS94.06 12193.92 11094.47 20298.27 9789.46 20096.73 18798.36 1790.17 18994.36 13095.24 23988.02 10799.58 7593.44 12490.72 25394.36 320
EI-MVSNet93.03 16392.88 14493.48 25395.77 22786.98 26796.44 21197.12 19890.66 17691.30 19897.64 10886.56 12998.05 24489.91 18790.55 25495.41 264
MVSTER93.20 15192.81 14794.37 20796.56 19089.59 19297.06 15597.12 19891.24 15991.30 19895.96 20282.02 20798.05 24493.48 12390.55 25495.47 261
FIs94.09 12093.70 11595.27 16095.70 22992.03 11198.10 5298.68 893.36 8790.39 21596.70 15887.63 11597.94 26492.25 14590.50 25695.84 236
FC-MVSNet-test93.94 12693.57 11995.04 16895.48 23791.45 13198.12 5198.71 693.37 8590.23 21896.70 15887.66 11397.85 27491.49 16590.39 25795.83 237
ACMMP++_ref90.30 258
RRT_MVS93.10 15892.83 14593.93 23394.76 28088.04 24498.47 2296.55 25093.44 8290.01 23297.04 14180.64 22897.93 26794.33 10690.21 25995.83 237
LTVRE_ROB88.41 1390.99 24689.92 25794.19 21496.18 21089.55 19496.31 22897.09 20287.88 25585.67 31795.91 20578.79 26598.57 19381.50 31189.98 26094.44 318
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tpmvs89.83 27989.15 27791.89 29694.92 27180.30 34693.11 33395.46 29486.28 28888.08 28492.65 32280.44 23298.52 19681.47 31289.92 26196.84 208
ITE_SJBPF92.43 28695.34 24685.37 29795.92 27291.47 14987.75 29196.39 18471.00 32497.96 26182.36 30789.86 26293.97 330
ET-MVSNet_ETH3D91.49 22290.11 25095.63 14296.40 20091.57 12695.34 27393.48 34690.60 18275.58 36195.49 23180.08 24096.79 33494.25 10789.76 26398.52 135
USDC88.94 28687.83 29192.27 28994.66 28584.96 30393.86 31695.90 27487.34 27283.40 33895.56 22767.43 34298.19 22082.64 30689.67 26493.66 333
ACMH87.59 1690.53 26289.42 27193.87 23596.21 20787.92 24797.24 13996.94 21688.45 23983.91 33696.27 18971.92 31798.62 18884.43 28989.43 26595.05 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpmrst91.44 22491.32 20191.79 30195.15 26079.20 35693.42 32795.37 29788.55 23893.49 14993.67 30882.49 19898.27 21390.41 18089.34 26697.90 171
test0.0.03 189.37 28388.70 28191.41 31192.47 34485.63 29095.22 28292.70 35291.11 16486.91 30893.65 30979.02 25993.19 36678.00 33589.18 26795.41 264
OpenMVS_ROBcopyleft81.14 2084.42 32582.28 32890.83 31990.06 35884.05 31695.73 25994.04 34073.89 36380.17 35491.53 34159.15 36397.64 29266.92 36689.05 26890.80 361
GBi-Net91.35 23090.27 24294.59 19596.51 19391.18 14397.50 11496.93 21888.82 22889.35 25294.51 26773.87 30897.29 32086.12 26588.82 26995.31 273
test191.35 23090.27 24294.59 19596.51 19391.18 14397.50 11496.93 21888.82 22889.35 25294.51 26773.87 30897.29 32086.12 26588.82 26995.31 273
FMVSNet391.78 20890.69 22795.03 17096.53 19292.27 10397.02 15996.93 21889.79 20089.35 25294.65 26377.01 28697.47 30886.12 26588.82 26995.35 271
tpm cat188.36 29587.21 29891.81 30095.13 26280.55 34392.58 34095.70 28174.97 36187.45 29491.96 33578.01 28098.17 22380.39 32188.74 27296.72 212
test_040286.46 30984.79 31791.45 30995.02 26685.55 29196.29 23094.89 32080.90 34382.21 34393.97 29768.21 33997.29 32062.98 36888.68 27391.51 357
FMVSNet291.31 23390.08 25194.99 17296.51 19392.21 10497.41 12296.95 21588.82 22888.62 27094.75 25873.87 30897.42 31385.20 28088.55 27495.35 271
testgi87.97 29887.21 29890.24 32992.86 33680.76 33996.67 19694.97 31791.74 14285.52 31895.83 20962.66 36094.47 35976.25 34388.36 27595.48 258
ACMH+87.92 1490.20 27089.18 27693.25 26296.48 19686.45 27896.99 16496.68 24088.83 22784.79 32696.22 19070.16 33098.53 19584.42 29088.04 27694.77 309
tpm90.25 26889.74 26691.76 30493.92 31179.73 35293.98 31193.54 34588.28 24391.99 18393.25 31777.51 28497.44 31187.30 24787.94 27798.12 163
pmmvs490.93 25089.85 25994.17 21593.34 32990.79 15994.60 29096.02 27084.62 31387.45 29495.15 24181.88 21197.45 31087.70 23387.87 27894.27 325
XXY-MVS92.16 19991.23 20794.95 17794.75 28290.94 15297.47 11997.43 17389.14 21588.90 26196.43 18179.71 24798.24 21489.56 19787.68 27995.67 255
pmmvs589.86 27888.87 28092.82 27792.86 33686.23 28296.26 23295.39 29584.24 31787.12 30194.51 26774.27 30697.36 31787.61 24187.57 28094.86 297
LF4IMVS87.94 29987.25 29689.98 33192.38 34780.05 35094.38 29995.25 30587.59 26684.34 32894.74 25964.31 35697.66 29184.83 28287.45 28192.23 351
FMVSNet189.88 27788.31 28694.59 19595.41 23991.18 14397.50 11496.93 21886.62 28487.41 29694.51 26765.94 35397.29 32083.04 30087.43 28295.31 273
dp88.90 28888.26 28890.81 32094.58 29276.62 36292.85 33794.93 31985.12 30690.07 23193.07 31875.81 29698.12 23180.53 32087.42 28397.71 181
OurMVSNet-221017-090.51 26390.19 24991.44 31093.41 32781.25 33796.98 16696.28 26091.68 14486.55 31196.30 18774.20 30797.98 25388.96 21387.40 28495.09 283
TinyColmap86.82 30785.35 31391.21 31494.91 27382.99 32593.94 31494.02 34183.58 32681.56 34594.68 26162.34 36198.13 22675.78 34487.35 28592.52 348
cl2291.21 23790.56 23293.14 26796.09 21886.80 27094.41 29896.58 24987.80 25888.58 27293.99 29680.85 22697.62 29589.87 18986.93 28694.99 287
miper_ehance_all_eth91.59 21591.13 21192.97 27295.55 23486.57 27794.47 29496.88 22687.77 26088.88 26394.01 29486.22 13597.54 30189.49 19886.93 28694.79 306
miper_enhance_ethall91.54 22091.01 21393.15 26695.35 24587.07 26693.97 31296.90 22386.79 28289.17 25993.43 31686.55 13097.64 29289.97 18686.93 28694.74 310
IterMVS90.15 27289.67 26791.61 30695.48 23783.72 31994.33 30296.12 26889.99 19387.31 30094.15 29175.78 29996.27 34086.97 25386.89 28994.83 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT90.31 26689.81 26191.82 29995.52 23584.20 31394.30 30396.15 26790.61 18087.39 29794.27 28375.80 29796.44 33787.34 24586.88 29094.82 301
our_test_388.78 29187.98 29091.20 31592.45 34582.53 32793.61 32595.69 28285.77 29684.88 32493.71 30479.99 24296.78 33579.47 32786.24 29194.28 324
EU-MVSNet88.72 29288.90 27988.20 33993.15 33374.21 36696.63 20294.22 33885.18 30487.32 29995.97 20176.16 29494.98 35585.27 27886.17 29295.41 264
Anonymous2023120687.09 30586.14 30689.93 33291.22 35280.35 34496.11 24195.35 29883.57 32784.16 33193.02 31973.54 31295.61 34972.16 35786.14 29393.84 332
IterMVS-LS92.29 19291.94 18093.34 25996.25 20686.97 26896.57 20997.05 20790.67 17489.50 24994.80 25686.59 12897.64 29289.91 18786.11 29495.40 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VPA-MVSNet93.24 15092.48 16795.51 15095.70 22992.39 9797.86 7298.66 1092.30 12692.09 18295.37 23480.49 23198.40 20393.95 11385.86 29595.75 247
nrg03094.05 12293.31 13396.27 11195.22 25794.59 3298.34 2797.46 16192.93 10791.21 20496.64 16487.23 12498.22 21694.99 9085.80 29695.98 232
cl____90.96 24990.32 23892.89 27495.37 24386.21 28394.46 29696.64 24387.82 25688.15 28394.18 28982.98 18597.54 30187.70 23385.59 29794.92 294
DIV-MVS_self_test90.97 24890.33 23792.88 27595.36 24486.19 28494.46 29696.63 24687.82 25688.18 28294.23 28682.99 18497.53 30387.72 23085.57 29894.93 292
v119291.07 24290.23 24593.58 24993.70 31887.82 25196.73 18797.07 20487.77 26089.58 24494.32 28080.90 22597.97 25686.52 25785.48 29994.95 288
v124090.70 25889.85 25993.23 26393.51 32486.80 27096.61 20397.02 21287.16 27689.58 24494.31 28179.55 25097.98 25385.52 27585.44 30094.90 295
v114491.37 22990.60 22993.68 24593.89 31388.23 23896.84 17897.03 21188.37 24189.69 24194.39 27482.04 20697.98 25387.80 22985.37 30194.84 298
Anonymous2024052186.42 31085.44 31089.34 33590.33 35679.79 35196.73 18795.92 27283.71 32583.25 33991.36 34263.92 35796.01 34178.39 33485.36 30292.22 352
FMVSNet587.29 30485.79 30891.78 30294.80 27987.28 25795.49 26895.28 30284.09 31983.85 33791.82 33662.95 35994.17 36078.48 33285.34 30393.91 331
WR-MVS92.34 18891.53 19494.77 19095.13 26290.83 15796.40 21897.98 10291.88 14089.29 25595.54 22982.50 19797.80 27989.79 19185.27 30495.69 252
v192192090.85 25290.03 25593.29 26193.55 32186.96 26996.74 18697.04 20987.36 27189.52 24894.34 27780.23 23897.97 25686.27 26085.21 30594.94 290
Anonymous2023121190.63 26089.42 27194.27 21398.24 10189.19 21498.05 5697.89 10979.95 34988.25 28094.96 24672.56 31698.13 22689.70 19385.14 30695.49 257
Patchmtry88.64 29387.25 29692.78 27994.09 30786.64 27389.82 35895.68 28480.81 34687.63 29392.36 33080.91 22397.03 32578.86 33185.12 30794.67 312
V4291.58 21790.87 21693.73 24094.05 30988.50 23197.32 13396.97 21488.80 23189.71 23994.33 27882.54 19698.05 24489.01 21285.07 30894.64 314
SixPastTwentyTwo89.15 28488.54 28490.98 31793.49 32580.28 34796.70 19194.70 32590.78 16984.15 33295.57 22671.78 31997.71 28784.63 28685.07 30894.94 290
v2v48291.59 21590.85 21993.80 23893.87 31488.17 24196.94 17196.88 22689.54 20389.53 24794.90 25081.70 21498.02 24989.25 20685.04 31095.20 281
ppachtmachnet_test88.35 29687.29 29591.53 30792.45 34583.57 32293.75 31995.97 27184.28 31685.32 32294.18 28979.00 26396.93 33075.71 34584.99 31194.10 327
v14419291.06 24390.28 24193.39 25793.66 32087.23 26196.83 17997.07 20487.43 26989.69 24194.28 28281.48 21698.00 25187.18 25084.92 31294.93 292
CP-MVSNet91.89 20691.24 20693.82 23795.05 26588.57 22897.82 7798.19 4891.70 14388.21 28195.76 21681.96 20897.52 30587.86 22784.65 31395.37 270
c3_l91.38 22790.89 21592.88 27595.58 23286.30 28094.68 28996.84 23088.17 24688.83 26694.23 28685.65 14497.47 30889.36 20184.63 31494.89 296
miper_lstm_enhance90.50 26490.06 25491.83 29895.33 24983.74 31893.86 31696.70 23987.56 26787.79 28993.81 30283.45 17496.92 33187.39 24484.62 31594.82 301
tfpnnormal89.70 28088.40 28593.60 24795.15 26090.10 17497.56 10998.16 5487.28 27486.16 31494.63 26477.57 28398.05 24474.48 34884.59 31692.65 346
EGC-MVSNET68.77 33663.01 34186.07 34792.49 34382.24 33293.96 31390.96 3640.71 3812.62 38290.89 34353.66 36893.46 36357.25 37084.55 31782.51 367
PS-CasMVS91.55 21990.84 22093.69 24494.96 26888.28 23597.84 7698.24 3891.46 15088.04 28595.80 21179.67 24897.48 30787.02 25284.54 31895.31 273
N_pmnet78.73 33278.71 33478.79 35092.80 33846.50 38194.14 30843.71 38478.61 35580.83 34791.66 34074.94 30396.36 33867.24 36584.45 31993.50 335
eth_miper_zixun_eth91.02 24590.59 23092.34 28895.33 24984.35 31094.10 30996.90 22388.56 23788.84 26594.33 27884.08 16497.60 29788.77 21784.37 32095.06 285
WR-MVS_H92.00 20391.35 19993.95 22995.09 26489.47 19898.04 5798.68 891.46 15088.34 27594.68 26185.86 14197.56 29985.77 27284.24 32194.82 301
v1091.04 24490.23 24593.49 25294.12 30688.16 24297.32 13397.08 20388.26 24488.29 27894.22 28882.17 20597.97 25686.45 25984.12 32294.33 321
test_part192.21 19891.10 21295.51 15097.80 12992.66 8998.02 5897.68 13589.79 20088.80 26796.02 20076.85 28798.18 22190.86 17484.11 32395.69 252
UniMVSNet (Re)93.31 14892.55 16195.61 14495.39 24093.34 7397.39 12698.71 693.14 9590.10 22894.83 25487.71 11298.03 24891.67 16383.99 32495.46 262
UniMVSNet_NR-MVSNet93.37 14692.67 15595.47 15695.34 24692.83 8497.17 14998.58 1192.98 10490.13 22495.80 21188.37 10697.85 27491.71 15983.93 32595.73 250
DU-MVS92.90 17092.04 17595.49 15394.95 26992.83 8497.16 15098.24 3893.02 9890.13 22495.71 21983.47 17297.85 27491.71 15983.93 32595.78 241
v891.29 23590.53 23393.57 25094.15 30588.12 24397.34 13097.06 20688.99 21988.32 27694.26 28583.08 18098.01 25087.62 24083.92 32794.57 315
baseline192.82 17591.90 18195.55 14897.20 15290.77 16097.19 14794.58 32992.20 12992.36 17296.34 18684.16 16398.21 21789.20 20983.90 32897.68 183
v7n90.76 25489.86 25893.45 25693.54 32287.60 25597.70 9397.37 17988.85 22587.65 29294.08 29381.08 22098.10 23484.68 28583.79 32994.66 313
VPNet92.23 19691.31 20294.99 17295.56 23390.96 15197.22 14597.86 11792.96 10690.96 20696.62 17375.06 30298.20 21891.90 15383.65 33095.80 240
NR-MVSNet92.34 18891.27 20595.53 14994.95 26993.05 7997.39 12698.07 7492.65 11784.46 32795.71 21985.00 15197.77 28389.71 19283.52 33195.78 241
v14890.99 24690.38 23692.81 27893.83 31585.80 28896.78 18596.68 24089.45 20788.75 26993.93 29882.96 18797.82 27887.83 22883.25 33294.80 304
Baseline_NR-MVSNet91.20 23890.62 22892.95 27393.83 31588.03 24597.01 16395.12 31188.42 24089.70 24095.13 24383.47 17297.44 31189.66 19583.24 33393.37 338
TranMVSNet+NR-MVSNet92.50 18091.63 19095.14 16594.76 28092.07 10997.53 11298.11 6392.90 10889.56 24696.12 19583.16 17797.60 29789.30 20383.20 33495.75 247
PEN-MVS91.20 23890.44 23493.48 25394.49 29387.91 24997.76 8298.18 5091.29 15587.78 29095.74 21880.35 23597.33 31885.46 27682.96 33595.19 282
new_pmnet82.89 32881.12 33288.18 34089.63 36180.18 34891.77 34492.57 35376.79 36075.56 36288.23 35761.22 36294.48 35871.43 35982.92 33689.87 363
FPMVS71.27 33469.85 33675.50 35274.64 37559.03 37791.30 34691.50 36158.80 36957.92 37188.28 35629.98 37785.53 37253.43 37182.84 33781.95 368
MIMVSNet184.93 32283.05 32490.56 32589.56 36284.84 30695.40 27195.35 29883.91 32080.38 35192.21 33457.23 36493.34 36570.69 36382.75 33893.50 335
pm-mvs190.72 25789.65 26993.96 22894.29 30389.63 18997.79 8096.82 23189.07 21686.12 31595.48 23278.61 26797.78 28186.97 25381.67 33994.46 317
DTE-MVSNet90.56 26189.75 26593.01 27093.95 31087.25 25997.64 10297.65 13990.74 17187.12 30195.68 22279.97 24397.00 32983.33 29781.66 34094.78 308
IB-MVS87.33 1789.91 27588.28 28794.79 18995.26 25687.70 25395.12 28593.95 34289.35 21087.03 30492.49 32570.74 32699.19 12989.18 21081.37 34197.49 193
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test20.0386.14 31485.40 31288.35 33790.12 35780.06 34995.90 25395.20 30788.59 23481.29 34693.62 31071.43 32192.65 36771.26 36181.17 34292.34 350
K. test v387.64 30286.75 30390.32 32893.02 33579.48 35496.61 20392.08 35790.66 17680.25 35394.09 29267.21 34496.65 33685.96 27080.83 34394.83 299
MDA-MVSNet_test_wron85.87 31784.23 32190.80 32292.38 34782.57 32693.17 33095.15 30982.15 33567.65 36592.33 33378.20 27395.51 35277.33 33779.74 34494.31 323
h-mvs3394.15 11593.52 12396.04 12397.81 12890.22 17397.62 10497.58 14695.19 1696.74 5897.45 12083.67 16999.61 6695.85 5779.73 34598.29 158
YYNet185.87 31784.23 32190.78 32392.38 34782.46 32993.17 33095.14 31082.12 33667.69 36492.36 33078.16 27695.50 35377.31 33879.73 34594.39 319
pmmvs687.81 30186.19 30592.69 28191.32 35186.30 28097.34 13096.41 25680.59 34884.05 33594.37 27667.37 34397.67 28984.75 28479.51 34794.09 329
AUN-MVS91.76 20990.75 22494.81 18597.00 16988.57 22896.65 19796.49 25289.63 20292.15 17896.12 19578.66 26698.50 19790.83 17579.18 34897.36 195
hse-mvs293.45 14492.99 14094.81 18597.02 16788.59 22796.69 19396.47 25395.19 1696.74 5896.16 19483.67 16998.48 20095.85 5779.13 34997.35 196
Gipumacopyleft67.86 33765.41 33975.18 35392.66 34173.45 36766.50 37294.52 33053.33 37157.80 37266.07 37230.81 37589.20 36948.15 37378.88 35062.90 372
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MDA-MVSNet-bldmvs85.00 32182.95 32591.17 31693.13 33483.33 32394.56 29295.00 31584.57 31465.13 36992.65 32270.45 32795.85 34573.57 35377.49 35194.33 321
Patchmatch-RL test87.38 30386.24 30490.81 32088.74 36678.40 36088.12 36393.17 34887.11 27782.17 34489.29 35381.95 20995.60 35088.64 21977.02 35298.41 150
lessismore_v090.45 32691.96 35079.09 35887.19 37380.32 35294.39 27466.31 35097.55 30084.00 29376.84 35394.70 311
pmmvs-eth3d86.22 31384.45 31991.53 30788.34 36787.25 25994.47 29495.01 31483.47 32879.51 35689.61 35269.75 33395.71 34883.13 29976.73 35491.64 355
PM-MVS83.48 32681.86 33088.31 33887.83 36977.59 36193.43 32691.75 35986.91 27980.63 34989.91 35044.42 37295.84 34685.17 28176.73 35491.50 358
ambc86.56 34583.60 37170.00 37185.69 36594.97 31780.60 35088.45 35437.42 37496.84 33382.69 30575.44 35692.86 342
TDRefinement86.53 30884.76 31891.85 29782.23 37384.25 31196.38 22195.35 29884.97 30984.09 33394.94 24765.76 35498.34 21184.60 28774.52 35792.97 340
TransMVSNet (Re)88.94 28687.56 29393.08 26994.35 29988.45 23397.73 8695.23 30687.47 26884.26 33095.29 23679.86 24597.33 31879.44 32974.44 35893.45 337
PMVScopyleft53.92 2258.58 34055.40 34368.12 35651.00 38348.64 37978.86 36987.10 37446.77 37235.84 37874.28 3698.76 38286.34 37142.07 37473.91 35969.38 370
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepMVS_CXcopyleft74.68 35490.84 35564.34 37681.61 37865.34 36767.47 36688.01 36048.60 37180.13 37562.33 36973.68 36079.58 369
KD-MVS_self_test85.95 31684.95 31588.96 33689.55 36379.11 35795.13 28496.42 25585.91 29484.07 33490.48 34570.03 33194.82 35680.04 32272.94 36192.94 341
CL-MVSNet_self_test86.31 31285.15 31489.80 33388.83 36581.74 33593.93 31596.22 26486.67 28385.03 32390.80 34478.09 27794.50 35774.92 34771.86 36293.15 339
UnsupCasMVSNet_eth85.99 31584.45 31990.62 32489.97 35982.40 33093.62 32497.37 17989.86 19578.59 35892.37 32765.25 35595.35 35482.27 30870.75 36394.10 327
new-patchmatchnet83.18 32781.87 32987.11 34386.88 37075.99 36493.70 32095.18 30885.02 30877.30 35988.40 35565.99 35293.88 36274.19 35270.18 36491.47 359
pmmvs379.97 33177.50 33587.39 34282.80 37279.38 35592.70 33990.75 36570.69 36578.66 35787.47 36251.34 37093.40 36473.39 35469.65 36589.38 364
LCM-MVSNet72.55 33369.39 33782.03 34870.81 38065.42 37590.12 35794.36 33655.02 37065.88 36781.72 36524.16 38189.96 36874.32 35168.10 36690.71 362
UnsupCasMVSNet_bld82.13 33079.46 33390.14 33088.00 36882.47 32890.89 35296.62 24878.94 35475.61 36084.40 36456.63 36796.31 33977.30 33966.77 36791.63 356
test_method66.11 33864.89 34069.79 35572.62 37835.23 38565.19 37392.83 35120.35 37665.20 36888.08 35943.14 37382.70 37373.12 35563.46 36891.45 360
KD-MVS_2432*160084.81 32382.64 32691.31 31291.07 35385.34 29891.22 34795.75 27985.56 29983.09 34090.21 34767.21 34495.89 34377.18 34062.48 36992.69 344
miper_refine_blended84.81 32382.64 32691.31 31291.07 35385.34 29891.22 34795.75 27985.56 29983.09 34090.21 34767.21 34495.89 34377.18 34062.48 36992.69 344
PVSNet_082.17 1985.46 32083.64 32390.92 31895.27 25379.49 35390.55 35395.60 28783.76 32483.00 34289.95 34971.09 32397.97 25682.75 30460.79 37195.31 273
PMMVS270.19 33566.92 33880.01 34976.35 37465.67 37486.22 36487.58 37264.83 36862.38 37080.29 36726.78 37988.49 37063.79 36754.07 37285.88 365
MVEpermissive50.73 2353.25 34248.81 34766.58 35765.34 38157.50 37872.49 37170.94 38240.15 37539.28 37763.51 3736.89 38473.48 37838.29 37542.38 37368.76 371
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN53.28 34152.56 34555.43 35874.43 37647.13 38083.63 36876.30 37942.23 37342.59 37562.22 37428.57 37874.40 37631.53 37631.51 37444.78 373
ANet_high63.94 33959.58 34277.02 35161.24 38266.06 37385.66 36687.93 37178.53 35642.94 37471.04 37125.42 38080.71 37452.60 37230.83 37584.28 366
EMVS52.08 34351.31 34654.39 35972.62 37845.39 38283.84 36775.51 38141.13 37440.77 37659.65 37530.08 37673.60 37728.31 37729.90 37644.18 374
tmp_tt51.94 34453.82 34446.29 36033.73 38445.30 38378.32 37067.24 38318.02 37750.93 37387.05 36352.99 36953.11 37970.76 36225.29 37740.46 375
wuyk23d25.11 34524.57 34926.74 36173.98 37739.89 38457.88 3749.80 38512.27 37810.39 3796.97 3817.03 38336.44 38025.43 37817.39 3783.89 378
testmvs13.36 34716.33 3504.48 3635.04 3852.26 38793.18 3293.28 3862.70 3798.24 38021.66 3772.29 3862.19 3817.58 3792.96 3799.00 377
test12313.04 34815.66 3515.18 3624.51 3863.45 38692.50 3421.81 3872.50 3807.58 38120.15 3783.67 3852.18 3827.13 3801.07 3809.90 376
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
cdsmvs_eth3d_5k23.24 34630.99 3480.00 3640.00 3870.00 3880.00 37597.63 1410.00 3820.00 38396.88 15184.38 1590.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas7.39 3509.85 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38288.65 1010.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re8.06 34910.74 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38396.69 1600.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
FOURS199.55 193.34 7399.29 198.35 2094.98 2798.49 15
test_one_060199.32 2495.20 2198.25 3695.13 1998.48 1698.87 695.16 7
eth-test20.00 387
eth-test0.00 387
test_241102_ONE99.42 795.30 1898.27 3195.09 2399.19 198.81 1095.54 599.65 57
save fliter98.91 5394.28 3997.02 15998.02 9295.35 9
test072699.45 395.36 1398.31 2998.29 2694.92 2898.99 498.92 295.08 8
GSMVS98.45 145
test_part299.28 2795.74 898.10 21
sam_mvs182.76 19198.45 145
sam_mvs81.94 210
MTGPAbinary98.08 68
test_post192.81 33816.58 38080.53 23097.68 28886.20 262
test_post17.58 37981.76 21298.08 238
patchmatchnet-post90.45 34682.65 19598.10 234
MTMP97.86 7282.03 377
gm-plane-assit93.22 33178.89 35984.82 31193.52 31198.64 18587.72 230
TEST998.70 6494.19 4496.41 21598.02 9288.17 24696.03 8997.56 11692.74 2999.59 72
test_898.67 6694.06 5296.37 22298.01 9588.58 23595.98 9497.55 11892.73 3099.58 75
agg_prior98.67 6693.79 5898.00 9795.68 10499.57 83
test_prior493.66 6296.42 214
test_prior97.23 6598.67 6692.99 8098.00 9799.41 11199.29 68
旧先验295.94 25181.66 33997.34 4098.82 16792.26 143
新几何295.79 257
无先验95.79 25797.87 11383.87 32399.65 5787.68 23698.89 112
原ACMM295.67 260
testdata299.67 5385.96 270
segment_acmp92.89 26
testdata195.26 28193.10 97
plane_prior796.21 20789.98 180
plane_prior696.10 21790.00 17681.32 218
plane_prior496.64 164
plane_prior390.00 17694.46 4791.34 195
plane_prior297.74 8494.85 30
plane_prior196.14 215
n20.00 388
nn0.00 388
door-mid91.06 363
test1197.88 111
door91.13 362
HQP5-MVS89.33 206
HQP-NCC95.86 22296.65 19793.55 7490.14 220
ACMP_Plane95.86 22296.65 19793.55 7490.14 220
BP-MVS92.13 149
HQP4-MVS90.14 22098.50 19795.78 241
HQP2-MVS80.95 221
NP-MVS95.99 22189.81 18695.87 206
MDTV_nov1_ep13_2view70.35 37093.10 33483.88 32293.55 14682.47 19986.25 26198.38 153
Test By Simon88.73 100