This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
DVP-MVS++98.92 199.18 198.61 499.47 599.61 299.39 397.82 198.80 196.86 898.90 299.92 198.67 1799.02 298.20 1999.43 4599.82 1
MSP-MVS98.73 698.93 598.50 699.44 1199.57 499.36 497.65 998.14 1296.51 1498.49 799.65 898.67 1798.60 1498.42 1199.40 5199.63 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS98.52 898.77 998.23 1598.15 4899.26 2698.79 2697.59 1598.52 396.25 1597.99 1599.75 699.01 398.27 3297.97 3199.59 799.63 2
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DVP-MVScopyleft98.86 498.97 398.75 299.43 1299.63 199.25 1297.81 298.62 297.69 197.59 2099.90 298.93 598.99 498.42 1199.37 5799.62 4
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CSCG97.44 3297.18 4397.75 2799.47 599.52 898.55 3195.41 4097.69 2395.72 1994.29 5495.53 6298.10 3396.20 10797.38 5599.24 7699.62 4
SED-MVS98.90 299.07 298.69 399.38 1899.61 299.33 897.80 498.25 897.60 298.87 499.89 398.67 1799.02 298.26 1799.36 5999.61 6
TSAR-MVS + MP.98.49 998.78 898.15 1998.14 4999.17 3399.34 697.18 2998.44 595.72 1997.84 1699.28 1298.87 799.05 198.05 2699.66 299.60 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
TSAR-MVS + ACMM97.71 2898.60 1296.66 3998.64 4099.05 3798.85 2597.23 2798.45 489.40 8797.51 2499.27 1496.88 5998.53 1597.81 4198.96 12099.59 8
APDe-MVS98.87 398.96 498.77 199.58 299.53 799.44 197.81 298.22 1097.33 498.70 599.33 1098.86 898.96 698.40 1399.63 599.57 9
DROMVSNet96.49 4997.63 3495.16 6494.75 11098.69 7097.39 5488.97 11896.34 5792.02 5196.04 3796.46 5098.21 2698.41 2497.96 3299.61 699.55 10
SteuartSystems-ACMMP98.38 1498.71 1097.99 2399.34 2099.46 1099.34 697.33 2497.31 3594.25 2998.06 1399.17 1998.13 3198.98 598.46 999.55 1899.54 11
Skip Steuart: Steuart Systems R&D Blog.
CS-MVS96.87 4397.41 3996.24 4597.42 5999.48 997.30 5591.83 8097.17 3993.02 4094.80 5194.45 6698.16 3098.61 1397.85 3999.69 199.50 12
canonicalmvs95.25 6595.45 6995.00 6895.27 9498.72 6896.89 6489.82 10696.51 5490.84 6493.72 5786.01 11897.66 4195.78 11997.94 3499.54 1999.50 12
DPE-MVScopyleft98.75 598.91 698.57 599.21 2399.54 699.42 297.78 697.49 3196.84 998.94 199.82 598.59 2198.90 1098.22 1899.56 1799.48 14
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
EPP-MVSNet95.27 6496.18 6094.20 8794.88 10498.64 7594.97 11390.70 9595.34 8689.67 8391.66 7893.84 6995.42 8897.32 6497.00 6599.58 1199.47 15
CS-MVS-test97.00 3997.85 3396.00 5097.77 5499.56 596.35 8591.95 7597.54 2992.20 4896.14 3596.00 6098.19 2898.46 1997.78 4299.57 1499.45 16
PVSNet_Blended_VisFu94.77 7395.54 6793.87 9196.48 7198.97 4994.33 12691.84 7894.93 9990.37 7285.04 13394.99 6390.87 15498.12 4197.30 5899.30 6899.45 16
SMA-MVScopyleft98.66 798.89 798.39 999.60 199.41 1299.00 2097.63 1297.78 1895.83 1898.33 1199.83 498.85 998.93 898.56 699.41 4899.40 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MVS_030496.31 5196.91 4995.62 5597.21 6499.20 3198.55 3193.10 5997.04 4589.73 8190.30 9396.35 5295.71 7898.14 3997.93 3699.38 5499.40 18
MSLP-MVS++98.04 2397.93 3298.18 1699.10 2799.09 3698.34 3696.99 3297.54 2996.60 1294.82 5098.45 3498.89 697.46 6198.77 499.17 9199.37 20
DeepC-MVS94.87 496.76 4896.50 5497.05 3598.21 4799.28 2498.67 2797.38 2097.31 3590.36 7389.19 10193.58 7198.19 2898.31 2798.50 799.51 2599.36 21
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet96.84 4597.20 4196.42 4097.92 5299.24 3098.60 2993.51 5197.11 4293.07 3691.16 8397.24 4496.21 7298.24 3598.05 2699.22 8299.35 22
3Dnovator+93.91 797.23 3597.22 4097.24 3298.89 3598.85 6198.26 3893.25 5697.99 1595.56 2290.01 9798.03 4098.05 3497.91 4798.43 1099.44 4299.35 22
DCV-MVSNet94.76 7495.12 7794.35 8595.10 10095.81 15596.46 8289.49 11296.33 5890.16 7492.55 6790.26 8995.83 7795.52 12596.03 9099.06 10999.33 24
TSAR-MVS + GP.97.45 3198.36 1996.39 4195.56 8698.93 5397.74 4893.31 5397.61 2794.24 3098.44 999.19 1798.03 3597.60 5697.41 5399.44 4299.33 24
UGNet94.92 6696.63 5292.93 10496.03 8098.63 7794.53 12391.52 8696.23 6090.03 7692.87 6496.10 5886.28 18696.68 8596.60 7599.16 9499.32 26
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MCST-MVS98.20 1898.36 1998.01 2299.40 1499.05 3799.00 2097.62 1397.59 2893.70 3397.42 2799.30 1198.77 1398.39 2697.48 5099.59 799.31 27
FC-MVSNet-train93.85 9693.91 9893.78 9394.94 10396.79 12494.29 12791.13 9093.84 11888.26 9990.40 9285.23 12594.65 10196.54 9195.31 11199.38 5499.28 28
X-MVS97.84 2498.19 2797.42 3099.40 1499.35 1799.06 1797.25 2597.38 3490.85 6196.06 3698.72 2998.53 2498.41 2498.15 2299.46 3299.28 28
EPNet96.27 5396.97 4695.46 5998.47 4298.28 8697.41 5293.67 4995.86 7492.86 4297.51 2493.79 7091.76 13997.03 7497.03 6498.61 15399.28 28
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CP-MVS98.32 1798.34 2298.29 1299.34 2099.30 2299.15 1497.35 2197.49 3195.58 2197.72 1898.62 3398.82 1198.29 2897.67 4599.51 2599.28 28
DELS-MVS96.06 5496.04 6196.07 4997.77 5499.25 2898.10 4193.26 5494.42 10792.79 4388.52 10893.48 7295.06 9398.51 1698.83 199.45 3699.28 28
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HFP-MVS98.48 1098.62 1198.32 1199.39 1799.33 2199.27 1097.42 1898.27 795.25 2398.34 1098.83 2699.08 198.26 3398.08 2599.48 2899.26 33
HPM-MVS++copyleft98.34 1698.47 1598.18 1699.46 899.15 3499.10 1697.69 897.67 2494.93 2697.62 1999.70 798.60 2098.45 2097.46 5199.31 6699.26 33
3Dnovator93.79 897.08 3797.20 4196.95 3799.09 2899.03 4398.20 3993.33 5297.99 1593.82 3290.61 9196.80 4897.82 3797.90 4898.78 399.47 3199.26 33
Anonymous2023121193.49 10592.33 13294.84 7594.78 10998.00 9696.11 9091.85 7794.86 10090.91 6074.69 17789.18 9896.73 6294.82 14095.51 10698.67 14799.24 36
MP-MVScopyleft98.09 2298.30 2497.84 2699.34 2099.19 3299.23 1397.40 1997.09 4393.03 3997.58 2298.85 2598.57 2398.44 2297.69 4499.48 2899.23 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
IS_MVSNet95.28 6396.43 5693.94 8995.30 9299.01 4795.90 9791.12 9194.13 11387.50 10491.23 8294.45 6694.17 10898.45 2098.50 799.65 399.23 37
ACMMPR98.40 1298.49 1398.28 1399.41 1399.40 1399.36 497.35 2198.30 695.02 2597.79 1798.39 3699.04 298.26 3398.10 2399.50 2799.22 39
APD-MVScopyleft98.36 1598.32 2398.41 899.47 599.26 2699.12 1597.77 796.73 5096.12 1697.27 2898.88 2498.46 2598.47 1898.39 1499.52 2099.22 39
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
UniMVSNet (Re)90.03 14889.61 15790.51 13189.97 17196.12 14292.32 15789.26 11490.99 15880.95 13478.25 16675.08 17391.14 14693.78 15593.87 15299.41 4899.21 41
DeepPCF-MVS95.28 297.00 3998.35 2195.42 6097.30 6298.94 5194.82 11796.03 3898.24 992.11 5095.80 4098.64 3295.51 8598.95 798.66 596.78 18999.20 42
SF-MVS98.39 1398.45 1798.33 1099.45 999.05 3798.27 3797.65 997.73 1997.02 798.18 1299.25 1598.11 3298.15 3897.62 4699.45 3699.19 43
ACMMP_NAP98.20 1898.49 1397.85 2599.50 499.40 1399.26 1197.64 1197.47 3392.62 4697.59 2099.09 2298.71 1598.82 1297.86 3899.40 5199.19 43
train_agg97.65 2998.06 2997.18 3398.94 3298.91 5698.98 2497.07 3196.71 5190.66 6697.43 2699.08 2398.20 2797.96 4697.14 6299.22 8299.19 43
ETV-MVS96.31 5197.47 3894.96 7094.79 10798.78 6496.08 9191.41 8896.16 6290.50 6895.76 4196.20 5697.39 4598.42 2397.82 4099.57 1499.18 46
QAPM96.78 4797.14 4496.36 4299.05 2999.14 3598.02 4293.26 5497.27 3790.84 6491.16 8397.31 4397.64 4297.70 5498.20 1999.33 6199.18 46
anonymousdsp88.90 16291.00 14786.44 18788.74 19795.97 14690.40 18682.86 17988.77 17667.33 19981.18 15481.44 14790.22 16596.23 10494.27 14399.12 10099.16 48
EIA-MVS95.50 5696.19 5994.69 7994.83 10698.88 6095.93 9691.50 8794.47 10689.43 8593.14 6092.72 7697.05 5597.82 5297.13 6399.43 4599.15 49
Anonymous20240521192.18 13395.04 10198.20 9096.14 8991.79 8293.93 11474.60 17888.38 10696.48 6895.17 13595.82 10099.00 11599.15 49
ACMMPcopyleft97.37 3397.48 3797.25 3198.88 3699.28 2498.47 3496.86 3497.04 4592.15 4997.57 2396.05 5997.67 4097.27 6595.99 9299.46 3299.14 51
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CHOSEN 1792x268892.66 11492.49 12492.85 10597.13 6598.89 5995.90 9788.50 12495.32 8783.31 12171.99 19588.96 10194.10 11096.69 8496.49 7698.15 17099.10 52
DeepC-MVS_fast96.13 198.13 2098.27 2597.97 2499.16 2699.03 4399.05 1897.24 2698.22 1094.17 3195.82 3998.07 3898.69 1698.83 1198.80 299.52 2099.10 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PGM-MVS97.81 2598.11 2897.46 2999.55 399.34 2099.32 994.51 4596.21 6193.07 3698.05 1497.95 4198.82 1198.22 3697.89 3799.48 2899.09 54
CNVR-MVS98.47 1198.46 1698.48 799.40 1499.05 3799.02 1997.54 1697.73 1996.65 1197.20 2999.13 2098.85 998.91 998.10 2399.41 4899.08 55
PVSNet_BlendedMVS95.41 6195.28 7195.57 5697.42 5999.02 4595.89 9993.10 5996.16 6293.12 3491.99 7185.27 12394.66 9998.09 4397.34 5699.24 7699.08 55
PVSNet_Blended95.41 6195.28 7195.57 5697.42 5999.02 4595.89 9993.10 5996.16 6293.12 3491.99 7185.27 12394.66 9998.09 4397.34 5699.24 7699.08 55
IB-MVS89.56 1591.71 12392.50 12390.79 12895.94 8298.44 8387.05 19891.38 8993.15 12692.98 4184.78 13485.14 12678.27 20592.47 17794.44 14099.10 10299.08 55
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GeoE92.52 11692.64 11992.39 10993.96 12697.76 10096.01 9585.60 15593.23 12583.94 11781.56 15184.80 12995.63 8196.22 10595.83 9999.19 8999.07 59
ACMP92.88 994.43 8294.38 8794.50 8296.01 8197.69 10195.85 10292.09 7395.74 7789.12 9395.14 4782.62 14394.77 9595.73 12194.67 12899.14 9799.06 60
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CLD-MVS94.79 7194.36 8895.30 6295.21 9697.46 10697.23 5692.24 7296.43 5591.77 5392.69 6584.31 13196.06 7395.52 12595.03 11999.31 6699.06 60
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_NR-MVSNet90.35 14189.96 15490.80 12789.66 17495.83 15492.48 15390.53 9890.96 15979.57 13879.33 16377.14 16493.21 12692.91 17194.50 13999.37 5799.05 62
DU-MVS89.67 15188.84 16290.63 13089.26 18495.61 16092.48 15389.91 10391.22 15579.57 13877.72 16771.18 19093.21 12692.53 17594.57 13399.35 6099.05 62
CPTT-MVS97.78 2697.54 3598.05 2198.91 3499.05 3799.00 2096.96 3397.14 4195.92 1795.50 4398.78 2898.99 497.20 6796.07 8798.54 15799.04 64
tfpnnormal88.50 16587.01 18790.23 13391.36 15495.78 15792.74 14890.09 10183.65 20476.33 15671.46 19869.58 19991.84 13795.54 12494.02 14899.06 10999.03 65
LGP-MVS_train94.12 8994.62 8293.53 9696.44 7297.54 10397.40 5391.84 7894.66 10281.09 13395.70 4283.36 13995.10 9296.36 10095.71 10199.32 6399.03 65
PHI-MVS97.78 2698.44 1897.02 3698.73 3799.25 2898.11 4095.54 3996.66 5392.79 4398.52 699.38 997.50 4497.84 4998.39 1499.45 3699.03 65
MVS_111021_HR97.04 3898.20 2695.69 5498.44 4499.29 2396.59 7793.20 5797.70 2289.94 7998.46 896.89 4696.71 6398.11 4297.95 3399.27 7299.01 68
HQP-MVS94.43 8294.57 8394.27 8696.41 7397.23 11296.89 6493.98 4795.94 7183.68 11995.01 4984.46 13095.58 8395.47 12794.85 12799.07 10699.00 69
NR-MVSNet89.34 15488.66 16390.13 13890.40 16395.61 16093.04 14589.91 10391.22 15578.96 14177.72 16768.90 20289.16 17294.24 15293.95 14999.32 6398.99 70
MAR-MVS95.50 5695.60 6595.39 6198.67 3998.18 9295.89 9989.81 10794.55 10591.97 5292.99 6190.21 9097.30 4796.79 8097.49 4998.72 14398.99 70
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Effi-MVS+92.93 11193.86 10091.86 11294.07 12598.09 9595.59 10485.98 15094.27 11179.54 14091.12 8681.81 14596.71 6396.67 8696.06 8899.27 7298.98 72
CP-MVSNet87.89 17687.27 18288.62 15289.30 18295.06 17790.60 18485.78 15287.43 18975.98 15874.60 17868.14 20590.76 15593.07 16993.60 15799.30 6898.98 72
NCCC98.10 2198.05 3098.17 1899.38 1899.05 3799.00 2097.53 1798.04 1495.12 2494.80 5199.18 1898.58 2298.49 1797.78 4299.39 5398.98 72
ACMH90.77 1391.51 12891.63 14191.38 11995.62 8596.87 11991.76 17189.66 10991.58 15278.67 14286.73 11678.12 15893.77 11694.59 14294.54 13698.78 14098.98 72
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline94.83 6895.82 6393.68 9494.75 11097.80 9996.51 8088.53 12397.02 4789.34 8992.93 6292.18 7894.69 9895.78 11996.08 8698.27 16898.97 76
HyFIR lowres test92.03 11891.55 14292.58 10697.13 6598.72 6894.65 12186.54 14393.58 12282.56 12467.75 20690.47 8895.67 7995.87 11595.54 10598.91 12598.93 77
UniMVSNet_ETH3D88.47 16686.00 19691.35 12091.55 15296.29 13892.53 15288.81 11985.58 19982.33 12567.63 20766.87 20894.04 11191.49 19095.24 11398.84 13198.92 78
CDPH-MVS96.84 4597.49 3696.09 4798.92 3398.85 6198.61 2895.09 4196.00 6987.29 10595.45 4597.42 4297.16 5097.83 5097.94 3499.44 4298.92 78
TranMVSNet+NR-MVSNet89.23 15788.48 16690.11 13989.07 19095.25 17492.91 14690.43 9990.31 16577.10 15076.62 17071.57 18891.83 13892.12 18194.59 13299.32 6398.92 78
PS-CasMVS87.33 18386.68 19288.10 15989.22 18994.93 18290.35 18785.70 15386.44 19474.01 17373.43 18866.59 21190.04 16692.92 17093.52 15899.28 7098.91 81
Vis-MVSNetpermissive92.77 11295.00 8090.16 13594.10 12498.79 6394.76 11988.26 12592.37 14279.95 13688.19 11091.58 8084.38 19797.59 5797.58 4899.52 2098.91 81
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Baseline_NR-MVSNet89.27 15688.01 17290.73 12989.26 18493.71 20092.71 15089.78 10890.73 16081.28 13273.53 18772.85 18292.30 13392.53 17593.84 15499.07 10698.88 83
OpenMVScopyleft92.33 1195.50 5695.22 7395.82 5398.98 3098.97 4997.67 4993.04 6294.64 10389.18 9284.44 13894.79 6496.79 6097.23 6697.61 4799.24 7698.88 83
tttt051794.52 8095.44 7093.44 9994.51 11798.68 7194.61 12290.72 9395.61 8286.84 10993.78 5689.26 9794.74 9697.02 7594.86 12499.20 8898.87 85
LTVRE_ROB87.32 1687.55 17988.25 16886.73 18490.66 16095.80 15693.05 14484.77 16683.35 20560.32 21383.12 14567.39 20693.32 12394.36 14994.86 12498.28 16798.87 85
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
thisisatest053094.54 7995.47 6893.46 9894.51 11798.65 7494.66 12090.72 9395.69 8086.90 10893.80 5589.44 9494.74 9696.98 7694.86 12499.19 8998.85 87
MVS_111021_LR97.16 3698.01 3196.16 4698.47 4298.98 4896.94 6393.89 4897.64 2691.44 5498.89 396.41 5197.20 4998.02 4597.29 6099.04 11498.85 87
WR-MVS_H87.93 17387.85 17688.03 16589.62 17595.58 16490.47 18585.55 15687.20 19076.83 15274.42 18172.67 18486.37 18593.22 16693.04 16699.33 6198.83 89
casdiffmvs_mvgpermissive94.55 7894.26 9094.88 7294.96 10298.51 8197.11 5791.82 8194.28 11089.20 9186.60 11986.85 11196.56 6797.47 6097.25 6199.64 498.83 89
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WR-MVS87.93 17388.09 17087.75 17089.26 18495.28 17190.81 18286.69 14188.90 17375.29 16474.31 18273.72 17985.19 19392.26 17893.32 16299.27 7298.81 91
diffmvspermissive94.31 8794.21 9194.42 8494.64 11598.28 8696.36 8491.56 8496.77 4988.89 9588.97 10284.23 13296.01 7696.05 11196.41 7899.05 11398.79 92
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DI_MVS_plusplus_trai94.01 9193.63 10594.44 8394.54 11698.26 8897.51 5190.63 9695.88 7389.34 8980.54 15989.36 9595.48 8696.33 10196.27 8299.17 9198.78 93
v7n86.43 18986.52 19386.33 18887.91 20194.93 18290.15 18883.05 17786.57 19270.21 18971.48 19766.78 20987.72 17794.19 15492.96 16898.92 12498.76 94
Effi-MVS+-dtu91.78 12293.59 10789.68 14392.44 14797.11 11494.40 12584.94 16592.43 13875.48 16191.09 8783.75 13693.55 12096.61 8795.47 10797.24 18598.67 95
casdiffmvspermissive94.38 8594.15 9694.64 8194.70 11498.51 8196.03 9491.66 8395.70 7889.36 8886.48 12285.03 12896.60 6697.40 6297.30 5899.52 2098.67 95
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
thres600view793.49 10592.37 13194.79 7795.42 8798.93 5396.58 7892.31 6893.04 12787.88 10186.62 11876.94 16697.09 5496.82 7795.63 10299.45 3698.63 97
IterMVS-LS92.56 11593.18 11291.84 11393.90 12794.97 18094.99 11286.20 14794.18 11282.68 12385.81 12987.36 11094.43 10395.31 13196.02 9198.87 12898.60 98
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tfpn200view993.64 10092.57 12094.89 7195.33 9098.94 5196.82 6792.31 6892.63 13388.29 9687.21 11278.01 16097.12 5396.82 7795.85 9799.45 3698.56 99
thres40093.56 10392.43 12894.87 7495.40 8898.91 5696.70 7492.38 6792.93 12988.19 10086.69 11777.35 16397.13 5196.75 8295.85 9799.42 4798.56 99
MVS_Test94.82 6995.66 6493.84 9294.79 10798.35 8596.49 8189.10 11796.12 6587.09 10792.58 6690.61 8796.48 6896.51 9596.89 6999.11 10198.54 101
Vis-MVSNet (Re-imp)94.46 8196.24 5892.40 10895.23 9598.64 7595.56 10590.99 9294.42 10785.02 11490.88 8994.65 6588.01 17698.17 3798.37 1699.57 1498.53 102
Fast-Effi-MVS+91.87 12092.08 13591.62 11892.91 14197.21 11394.93 11484.60 16993.61 12181.49 13183.50 14378.95 15596.62 6596.55 9096.22 8499.16 9498.51 103
MVSTER94.89 6795.07 7894.68 8094.71 11296.68 12797.00 5990.57 9795.18 9593.05 3895.21 4686.41 11593.72 11797.59 5795.88 9699.00 11598.50 104
thres20093.62 10192.54 12194.88 7295.36 8998.93 5396.75 7292.31 6892.84 13088.28 9886.99 11477.81 16297.13 5196.82 7795.92 9399.45 3698.49 105
v192192087.31 18487.13 18587.52 17788.87 19494.72 18691.96 16984.59 17088.28 18069.86 19372.50 19370.03 19891.10 14793.33 16492.61 17798.71 14498.44 106
thisisatest051590.12 14692.06 13687.85 16990.03 16996.17 14187.83 19587.45 13391.71 15177.15 14985.40 13184.01 13485.74 18995.41 12993.30 16398.88 12798.43 107
v14419287.40 18287.20 18487.64 17288.89 19294.88 18491.65 17284.70 16887.80 18471.17 18573.20 19070.91 19190.75 15692.69 17392.49 17898.71 14498.43 107
v119287.51 18087.31 18187.74 17189.04 19194.87 18592.07 16485.03 16388.49 17970.32 18772.65 19270.35 19591.21 14593.59 15792.80 17298.78 14098.42 109
v1088.00 17187.96 17388.05 16389.44 17994.68 18792.36 15683.35 17689.37 17172.96 17673.98 18472.79 18391.35 14493.59 15792.88 17098.81 13598.42 109
thres100view90093.55 10492.47 12794.81 7695.33 9098.74 6696.78 7192.30 7192.63 13388.29 9687.21 11278.01 16096.78 6196.38 9795.92 9399.38 5498.40 111
AdaColmapbinary97.53 3096.93 4798.24 1499.21 2398.77 6598.47 3497.34 2396.68 5296.52 1395.11 4896.12 5798.72 1497.19 6996.24 8399.17 9198.39 112
FA-MVS(training)93.94 9395.16 7492.53 10794.87 10598.57 8095.42 10779.49 19195.37 8590.98 5986.54 12094.26 6895.44 8797.80 5395.19 11698.97 11898.38 113
PCF-MVS93.95 695.65 5595.14 7596.25 4397.73 5798.73 6797.59 5097.13 3092.50 13789.09 9489.85 9896.65 4996.90 5894.97 13994.89 12399.08 10498.38 113
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Fast-Effi-MVS+-dtu91.19 13093.64 10488.33 15692.19 14996.46 13393.99 13081.52 18692.59 13571.82 18092.17 7085.54 12191.68 14095.73 12194.64 13098.80 13798.34 115
v114487.92 17587.79 17788.07 16089.27 18395.15 17692.17 16285.62 15488.52 17871.52 18173.80 18572.40 18591.06 14893.54 16192.80 17298.81 13598.33 116
V4288.31 16887.95 17488.73 15189.44 17995.34 17092.23 16187.21 13688.83 17474.49 17174.89 17673.43 18190.41 16492.08 18492.77 17498.60 15598.33 116
CDS-MVSNet92.77 11293.60 10691.80 11492.63 14596.80 12195.24 10989.14 11690.30 16684.58 11586.76 11590.65 8690.42 16295.89 11496.49 7698.79 13998.32 118
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PEN-MVS87.22 18586.50 19488.07 16088.88 19394.44 19290.99 18186.21 14586.53 19373.66 17474.97 17566.56 21289.42 17191.20 19293.48 15999.24 7698.31 119
v124086.89 18686.75 19187.06 18288.75 19694.65 18991.30 17884.05 17287.49 18868.94 19771.96 19668.86 20390.65 15993.33 16492.72 17698.67 14798.24 120
v888.21 17087.94 17588.51 15389.62 17595.01 17992.31 15884.99 16488.94 17274.70 17075.03 17473.51 18090.67 15892.11 18292.74 17598.80 13798.24 120
baseline293.01 11094.17 9491.64 11692.83 14397.49 10593.40 13887.53 13293.67 12086.07 11091.83 7686.58 11291.36 14396.38 9795.06 11898.67 14798.20 122
ET-MVSNet_ETH3D93.34 10794.33 8992.18 11183.26 21297.66 10296.72 7389.89 10595.62 8187.17 10696.00 3883.69 13796.99 5693.78 15595.34 11099.06 10998.18 123
CNLPA96.90 4296.28 5797.64 2898.56 4198.63 7796.85 6696.60 3697.73 1997.08 689.78 9996.28 5597.80 3996.73 8396.63 7498.94 12298.14 124
test111193.94 9392.78 11795.29 6396.14 7899.42 1196.79 7092.85 6395.08 9791.39 5680.69 15779.86 15295.00 9498.28 3198.00 2899.58 1198.11 125
test250694.32 8693.00 11595.87 5196.16 7699.39 1596.96 6192.80 6495.22 9394.47 2791.55 8070.45 19395.25 9098.29 2897.98 2999.59 798.10 126
ECVR-MVScopyleft94.14 8892.96 11695.52 5896.16 7699.39 1596.96 6192.80 6495.22 9392.38 4781.48 15280.31 14995.25 9098.29 2897.98 2999.59 798.05 127
PLCcopyleft94.95 397.37 3396.77 5198.07 2098.97 3198.21 8997.94 4596.85 3597.66 2597.58 393.33 5896.84 4798.01 3697.13 7196.20 8599.09 10398.01 128
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v2v48288.25 16987.71 17988.88 14989.23 18895.28 17192.10 16387.89 13088.69 17773.31 17575.32 17371.64 18791.89 13692.10 18392.92 16998.86 13097.99 129
ACMH+90.88 1291.41 12991.13 14591.74 11595.11 9996.95 11693.13 14389.48 11392.42 13979.93 13785.13 13278.02 15993.82 11593.49 16293.88 15198.94 12297.99 129
v14887.51 18086.79 18988.36 15589.39 18195.21 17589.84 18988.20 12787.61 18777.56 14673.38 18970.32 19686.80 18290.70 19492.31 18198.37 16697.98 131
TAPA-MVS94.18 596.38 5096.49 5596.25 4398.26 4698.66 7298.00 4394.96 4397.17 3989.48 8492.91 6396.35 5297.53 4396.59 8895.90 9599.28 7097.82 132
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CANet_DTU93.92 9596.57 5390.83 12695.63 8498.39 8496.99 6087.38 13496.26 5971.97 17996.31 3393.02 7394.53 10297.38 6396.83 7198.49 16097.79 133
GBi-Net93.81 9794.18 9293.38 10091.34 15595.86 15196.22 8688.68 12095.23 9090.40 6986.39 12391.16 8194.40 10596.52 9296.30 7999.21 8597.79 133
test193.81 9794.18 9293.38 10091.34 15595.86 15196.22 8688.68 12095.23 9090.40 6986.39 12391.16 8194.40 10596.52 9296.30 7999.21 8597.79 133
FMVSNet393.79 9994.17 9493.35 10291.21 15895.99 14496.62 7588.68 12095.23 9090.40 6986.39 12391.16 8194.11 10995.96 11296.67 7399.07 10697.79 133
FMVSNet293.30 10893.36 11193.22 10391.34 15595.86 15196.22 8688.24 12695.15 9689.92 8081.64 15089.36 9594.40 10596.77 8196.98 6699.21 8597.79 133
pm-mvs189.19 15889.02 16189.38 14690.40 16395.74 15892.05 16588.10 12886.13 19577.70 14573.72 18679.44 15488.97 17395.81 11894.51 13899.08 10497.78 138
FMVSNet191.54 12790.93 14892.26 11090.35 16595.27 17395.22 11087.16 13791.37 15487.62 10375.45 17283.84 13594.43 10396.52 9296.30 7998.82 13297.74 139
LS3D95.46 5995.14 7595.84 5297.91 5398.90 5898.58 3097.79 597.07 4483.65 12088.71 10488.64 10397.82 3797.49 5997.42 5299.26 7597.72 140
OMC-MVS97.00 3996.92 4897.09 3498.69 3898.66 7297.85 4695.02 4298.09 1394.47 2793.15 5996.90 4597.38 4697.16 7096.82 7299.13 9897.65 141
IterMVS-SCA-FT90.24 14292.48 12687.63 17392.85 14294.30 19693.79 13281.47 18792.66 13269.95 19184.66 13688.38 10689.99 16795.39 13094.34 14197.74 18297.63 142
DTE-MVSNet86.67 18886.09 19587.35 17988.45 19994.08 19890.65 18386.05 14986.13 19572.19 17874.58 18066.77 21087.61 17990.31 19593.12 16599.13 9897.62 143
DPM-MVS96.86 4496.82 5096.91 3898.08 5098.20 9098.52 3397.20 2897.24 3891.42 5591.84 7598.45 3497.25 4897.07 7297.40 5498.95 12197.55 144
CHOSEN 280x42095.46 5997.01 4593.66 9597.28 6397.98 9796.40 8385.39 15896.10 6691.07 5896.53 3296.34 5495.61 8297.65 5596.95 6796.21 19097.49 145
IterMVS90.20 14392.43 12887.61 17492.82 14494.31 19594.11 12881.54 18592.97 12869.90 19284.71 13588.16 10989.96 16895.25 13294.17 14497.31 18497.46 146
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FC-MVSNet-test91.63 12493.82 10289.08 14892.02 15096.40 13693.26 14187.26 13593.72 11977.26 14888.61 10789.86 9285.50 19095.72 12395.02 12099.16 9497.44 147
gg-mvs-nofinetune86.17 19188.57 16583.36 19893.44 13498.15 9396.58 7872.05 21274.12 21649.23 22064.81 21090.85 8589.90 16997.83 5096.84 7098.97 11897.41 148
test-mter90.95 13293.54 11087.93 16890.28 16696.80 12191.44 17382.68 18192.15 14774.37 17289.57 10088.23 10890.88 15396.37 9994.31 14297.93 17797.37 149
ACMM92.75 1094.41 8493.84 10195.09 6696.41 7396.80 12194.88 11693.54 5096.41 5690.16 7492.31 6983.11 14096.32 7096.22 10594.65 12999.22 8297.35 150
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GA-MVS89.28 15590.75 15187.57 17591.77 15196.48 13292.29 15987.58 13190.61 16365.77 20184.48 13776.84 16789.46 17095.84 11693.68 15698.52 15897.34 151
pmmvs685.98 19384.89 20187.25 18088.83 19594.35 19489.36 19185.30 16178.51 21375.44 16262.71 21275.41 17087.65 17893.58 15992.40 18096.89 18797.29 152
OPM-MVS93.61 10292.43 12895.00 6896.94 6797.34 10997.78 4794.23 4689.64 16985.53 11288.70 10582.81 14196.28 7196.28 10395.00 12299.24 7697.22 153
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
SixPastTwentyTwo88.37 16789.47 15887.08 18190.01 17095.93 15087.41 19685.32 15990.26 16770.26 18886.34 12671.95 18690.93 15092.89 17291.72 18698.55 15697.22 153
pmmvs587.83 17788.09 17087.51 17889.59 17795.48 16589.75 19084.73 16786.07 19771.44 18280.57 15870.09 19790.74 15794.47 14592.87 17198.82 13297.10 155
CVMVSNet89.77 15091.66 14087.56 17693.21 13995.45 16791.94 17089.22 11589.62 17069.34 19683.99 14185.90 11984.81 19594.30 15095.28 11296.85 18897.09 156
PMMVS94.61 7695.56 6693.50 9794.30 12196.74 12594.91 11589.56 11195.58 8387.72 10296.15 3492.86 7496.06 7395.47 12795.02 12098.43 16597.09 156
CR-MVSNet90.16 14591.96 13888.06 16293.32 13695.95 14893.36 13975.99 20492.40 14075.19 16583.18 14485.37 12292.05 13495.21 13394.56 13498.47 16297.08 158
PatchT89.13 15991.71 13986.11 19092.92 14095.59 16283.64 20675.09 20791.87 14975.19 16582.63 14785.06 12792.05 13495.21 13394.56 13497.76 17997.08 158
baseline194.59 7794.47 8594.72 7895.16 9797.97 9896.07 9291.94 7694.86 10089.98 7791.60 7985.87 12095.64 8097.07 7296.90 6899.52 2097.06 160
UA-Net93.96 9295.95 6291.64 11696.06 7998.59 7995.29 10890.00 10291.06 15782.87 12290.64 9098.06 3986.06 18798.14 3998.20 1999.58 1196.96 161
tpm87.95 17289.44 15986.21 18992.53 14694.62 19091.40 17476.36 20191.46 15369.80 19487.43 11175.14 17191.55 14189.85 20090.60 19095.61 19796.96 161
RPMNet90.19 14492.03 13788.05 16393.46 13395.95 14893.41 13774.59 20992.40 14075.91 15984.22 13986.41 11592.49 13094.42 14793.85 15398.44 16396.96 161
test-LLR91.62 12593.56 10889.35 14793.31 13796.57 13092.02 16787.06 13892.34 14375.05 16890.20 9488.64 10390.93 15096.19 10894.07 14697.75 18096.90 164
TESTMET0.1,191.07 13193.56 10888.17 15890.43 16296.57 13092.02 16782.83 18092.34 14375.05 16890.20 9488.64 10390.93 15096.19 10894.07 14697.75 18096.90 164
pmmvs490.55 13889.91 15591.30 12190.26 16794.95 18192.73 14987.94 12993.44 12485.35 11382.28 14976.09 16893.02 12893.56 16092.26 18398.51 15996.77 166
TSAR-MVS + COLMAP94.79 7194.51 8495.11 6596.50 7097.54 10397.99 4494.54 4497.81 1785.88 11196.73 3181.28 14896.99 5696.29 10295.21 11598.76 14296.73 167
PatchMatch-RL94.69 7594.41 8695.02 6797.63 5898.15 9394.50 12491.99 7495.32 8791.31 5795.47 4483.44 13896.02 7596.56 8995.23 11498.69 14696.67 168
PM-MVS84.72 19884.47 20285.03 19384.67 20891.57 20786.27 20082.31 18387.65 18670.62 18676.54 17156.41 21988.75 17592.59 17489.85 19597.54 18396.66 169
test0.0.03 191.97 11993.91 9889.72 14093.31 13796.40 13691.34 17687.06 13893.86 11681.67 12991.15 8589.16 9986.02 18895.08 13695.09 11798.91 12596.64 170
testgi89.42 15291.50 14387.00 18392.40 14895.59 16289.15 19285.27 16292.78 13172.42 17791.75 7776.00 16984.09 19994.38 14893.82 15598.65 15196.15 171
CostFormer90.69 13590.48 15390.93 12494.18 12296.08 14394.03 12978.20 19493.47 12389.96 7890.97 8880.30 15093.72 11787.66 20688.75 19895.51 19996.12 172
EU-MVSNet85.62 19487.65 18083.24 19988.54 19892.77 20487.12 19785.32 15986.71 19164.54 20478.52 16575.11 17278.35 20492.25 17992.28 18295.58 19895.93 173
TransMVSNet (Re)87.73 17886.79 18988.83 15090.76 15994.40 19391.33 17789.62 11084.73 20175.41 16372.73 19171.41 18986.80 18294.53 14493.93 15099.06 10995.83 174
EPNet_dtu92.45 11795.02 7989.46 14498.02 5195.47 16694.79 11892.62 6694.97 9870.11 19094.76 5392.61 7784.07 20095.94 11395.56 10497.15 18695.82 175
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSDG94.82 6993.73 10396.09 4798.34 4597.43 10897.06 5896.05 3795.84 7590.56 6786.30 12789.10 10095.55 8496.13 11095.61 10399.00 11595.73 176
pmmvs-eth3d84.33 19982.94 20485.96 19284.16 20990.94 20886.55 19983.79 17384.25 20275.85 16070.64 20056.43 21887.44 18192.20 18090.41 19297.97 17695.68 177
GG-mvs-BLEND66.17 21294.91 8132.63 2171.32 22596.64 12891.40 1740.85 22394.39 1092.20 22690.15 9695.70 612.27 22296.39 9695.44 10897.78 17895.68 177
gm-plane-assit83.26 20185.29 19880.89 20189.52 17889.89 21170.26 21778.24 19377.11 21458.01 21774.16 18366.90 20790.63 16097.20 6796.05 8998.66 15095.68 177
TAMVS90.54 13990.87 15090.16 13591.48 15396.61 12993.26 14186.08 14887.71 18581.66 13083.11 14684.04 13390.42 16294.54 14394.60 13198.04 17595.48 180
EG-PatchMatch MVS86.68 18787.24 18386.02 19190.58 16196.26 13991.08 18081.59 18484.96 20069.80 19471.35 19975.08 17384.23 19894.24 15293.35 16198.82 13295.46 181
COLMAP_ROBcopyleft90.49 1493.27 10992.71 11893.93 9097.75 5697.44 10796.07 9293.17 5895.40 8483.86 11883.76 14288.72 10293.87 11394.25 15194.11 14598.87 12895.28 182
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ambc73.83 21276.23 21685.13 21582.27 20984.16 20365.58 20352.82 21523.31 22673.55 20991.41 19185.26 20992.97 21294.70 183
MS-PatchMatch91.82 12192.51 12291.02 12295.83 8396.88 11795.05 11184.55 17193.85 11782.01 12682.51 14891.71 7990.52 16195.07 13793.03 16798.13 17194.52 184
TDRefinement89.07 16088.15 16990.14 13795.16 9796.88 11795.55 10690.20 10089.68 16876.42 15576.67 16974.30 17684.85 19493.11 16791.91 18598.64 15294.47 185
MDTV_nov1_ep1391.57 12693.18 11289.70 14193.39 13596.97 11593.53 13580.91 18895.70 7881.86 12792.40 6889.93 9193.25 12591.97 18690.80 18995.25 20394.46 186
dps90.11 14789.37 16090.98 12393.89 12896.21 14093.49 13677.61 19691.95 14892.74 4588.85 10378.77 15792.37 13287.71 20587.71 20295.80 19594.38 187
Anonymous2023120683.84 20085.19 19982.26 20087.38 20492.87 20285.49 20283.65 17486.07 19763.44 20868.42 20369.01 20175.45 20893.34 16392.44 17998.12 17394.20 188
USDC90.69 13590.52 15290.88 12594.17 12396.43 13495.82 10386.76 14093.92 11576.27 15786.49 12174.30 17693.67 11995.04 13893.36 16098.61 15394.13 189
pmnet_mix0286.12 19287.12 18684.96 19489.82 17294.12 19784.88 20486.63 14291.78 15065.60 20280.76 15676.98 16586.61 18487.29 20784.80 21096.21 19094.09 190
tpm cat188.90 16287.78 17890.22 13493.88 12995.39 16993.79 13278.11 19592.55 13689.43 8581.31 15379.84 15391.40 14284.95 20986.34 20794.68 20994.09 190
SCA90.92 13393.04 11488.45 15493.72 13297.33 11092.77 14776.08 20396.02 6878.26 14491.96 7390.86 8493.99 11290.98 19390.04 19495.88 19494.06 192
RPSCF94.05 9094.00 9794.12 8896.20 7596.41 13596.61 7691.54 8595.83 7689.73 8196.94 3092.80 7595.35 8991.63 18990.44 19195.27 20293.94 193
tpmrst88.86 16489.62 15687.97 16794.33 12095.98 14592.62 15176.36 20194.62 10476.94 15185.98 12882.80 14292.80 12986.90 20887.15 20494.77 20793.93 194
MDTV_nov1_ep13_2view86.30 19088.27 16784.01 19687.71 20394.67 18888.08 19476.78 19990.59 16468.66 19880.46 16080.12 15187.58 18089.95 19988.20 20095.25 20393.90 195
ADS-MVSNet89.80 14991.33 14488.00 16694.43 11996.71 12692.29 15974.95 20896.07 6777.39 14788.67 10686.09 11793.26 12488.44 20289.57 19695.68 19693.81 196
PatchmatchNetpermissive90.56 13792.49 12488.31 15793.83 13096.86 12092.42 15576.50 20095.96 7078.31 14391.96 7389.66 9393.48 12190.04 19889.20 19795.32 20093.73 197
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MIMVSNet88.99 16191.07 14686.57 18686.78 20695.62 15991.20 17975.40 20690.65 16276.57 15384.05 14082.44 14491.01 14995.84 11695.38 10998.48 16193.50 198
EPMVS90.88 13492.12 13489.44 14594.71 11297.24 11193.55 13476.81 19895.89 7281.77 12891.49 8186.47 11493.87 11390.21 19690.07 19395.92 19393.49 199
TinyColmap89.42 15288.58 16490.40 13293.80 13195.45 16793.96 13186.54 14392.24 14576.49 15480.83 15570.44 19493.37 12294.45 14693.30 16398.26 16993.37 200
test_method72.96 20978.68 20966.28 21250.17 22264.90 22075.45 21650.90 21987.89 18262.54 20962.98 21168.34 20470.45 21091.90 18782.41 21188.19 21692.35 201
MDA-MVSNet-bldmvs80.11 20480.24 20779.94 20377.01 21593.21 20178.86 21385.94 15182.71 20860.86 21079.71 16251.77 22183.71 20175.60 21486.37 20693.28 21192.35 201
N_pmnet84.80 19685.10 20084.45 19589.25 18792.86 20384.04 20586.21 14588.78 17566.73 20072.41 19474.87 17585.21 19288.32 20386.45 20595.30 20192.04 203
test20.0382.92 20285.52 19779.90 20487.75 20291.84 20682.80 20882.99 17882.65 20960.32 21378.90 16470.50 19267.10 21292.05 18590.89 18898.44 16391.80 204
pmmvs379.16 20680.12 20878.05 20779.36 21386.59 21478.13 21473.87 21076.42 21557.51 21870.59 20157.02 21784.66 19690.10 19788.32 19994.75 20891.77 205
FMVSNet590.36 14090.93 14889.70 14187.99 20092.25 20592.03 16683.51 17592.20 14684.13 11685.59 13086.48 11392.43 13194.61 14194.52 13798.13 17190.85 206
new-patchmatchnet78.49 20778.19 21078.84 20684.13 21090.06 21077.11 21580.39 18979.57 21259.64 21666.01 20855.65 22075.62 20784.55 21080.70 21296.14 19290.77 207
MIMVSNet180.03 20580.93 20678.97 20572.46 21890.73 20980.81 21182.44 18280.39 21063.64 20657.57 21364.93 21376.37 20691.66 18891.55 18798.07 17489.70 208
MVS-HIRNet85.36 19586.89 18883.57 19790.13 16894.51 19183.57 20772.61 21188.27 18171.22 18468.97 20281.81 14588.91 17493.08 16891.94 18494.97 20689.64 209
CMPMVSbinary65.18 1784.76 19783.10 20386.69 18595.29 9395.05 17888.37 19385.51 15780.27 21171.31 18368.37 20473.85 17885.25 19187.72 20487.75 20194.38 21088.70 210
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new_pmnet81.53 20382.68 20580.20 20283.47 21189.47 21282.21 21078.36 19287.86 18360.14 21567.90 20569.43 20082.03 20289.22 20187.47 20394.99 20587.39 211
DeepMVS_CXcopyleft86.86 21379.50 21270.43 21490.73 16063.66 20580.36 16160.83 21479.68 20376.23 21389.46 21486.53 212
PMMVS264.36 21365.94 21562.52 21367.37 21977.44 21764.39 21969.32 21761.47 21834.59 22146.09 21641.03 22248.02 21974.56 21678.23 21391.43 21382.76 213
FPMVS75.84 20874.59 21177.29 20886.92 20583.89 21685.01 20380.05 19082.91 20760.61 21265.25 20960.41 21563.86 21375.60 21473.60 21687.29 21780.47 214
Gipumacopyleft68.35 21066.71 21370.27 20974.16 21768.78 21963.93 22071.77 21383.34 20654.57 21934.37 21731.88 22368.69 21183.30 21185.53 20888.48 21579.78 215
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft63.12 1867.27 21166.39 21468.30 21077.98 21460.24 22159.53 22176.82 19766.65 21760.74 21154.39 21459.82 21651.24 21673.92 21770.52 21783.48 21879.17 216
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive50.86 1949.54 21651.43 21647.33 21644.14 22359.20 22236.45 22460.59 21841.47 22131.14 22229.58 21817.06 22748.52 21862.22 21874.63 21563.12 22275.87 217
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN50.67 21447.85 21753.96 21464.13 22150.98 22438.06 22269.51 21551.40 22024.60 22329.46 22024.39 22556.07 21548.17 21959.70 21871.40 22070.84 218
EMVS49.98 21546.76 21853.74 21564.96 22051.29 22337.81 22369.35 21651.83 21922.69 22429.57 21925.06 22457.28 21444.81 22056.11 21970.32 22168.64 219
testmvs12.09 21716.94 2196.42 2183.15 2246.08 2259.51 2263.84 22121.46 2225.31 22527.49 2216.76 22810.89 22017.06 22115.01 2205.84 22324.75 220
test1239.58 21813.53 2204.97 2191.31 2265.47 2268.32 2272.95 22218.14 2232.03 22720.82 2222.34 22910.60 22110.00 22214.16 2214.60 22423.77 221
uanet_test0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
RE-MVS-def63.50 207
9.1499.28 12
SR-MVS99.45 997.61 1499.20 16
our_test_389.78 17393.84 19985.59 201
MTAPA96.83 1099.12 21
MTMP97.18 598.83 26
Patchmatch-RL test34.61 225
tmp_tt66.88 21186.07 20773.86 21868.22 21833.38 22096.88 4880.67 13588.23 10978.82 15649.78 21782.68 21277.47 21483.19 219
XVS96.60 6899.35 1796.82 6790.85 6198.72 2999.46 32
X-MVStestdata96.60 6899.35 1796.82 6790.85 6198.72 2999.46 32
mPP-MVS99.21 2398.29 37
NP-MVS95.32 87
Patchmtry95.96 14793.36 13975.99 20475.19 165