This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
CSCG74.68 1679.22 1669.40 1775.69 1280.01 979.12 2352.83 4179.34 1763.99 970.49 2582.02 1260.35 3277.48 2477.22 1984.38 187.97 15
MCST-MVS73.67 2477.39 2569.33 1876.26 978.19 1778.77 2554.54 3075.33 2759.99 2467.96 3179.23 2262.43 1678.00 1875.71 2984.02 287.30 19
SteuartSystems-ACMMP75.23 1379.60 1570.13 1376.81 678.92 1281.74 857.99 675.30 2959.83 2575.69 1878.45 2460.48 2980.58 279.77 283.94 388.52 10
Skip Steuart: Steuart Systems R&D Blog.
SMA-MVScopyleft77.32 782.51 771.26 775.43 1480.19 882.22 758.26 384.83 764.36 778.19 1583.46 663.61 881.00 180.28 183.66 489.62 6
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DeepC-MVS66.32 273.85 2278.10 2368.90 2267.92 4879.31 1178.16 2859.28 178.24 2161.13 1967.36 3576.10 3263.40 979.11 978.41 1183.52 588.16 13
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVS77.58 682.93 671.35 677.86 480.55 683.38 157.61 1085.57 561.11 2086.10 782.98 864.76 478.29 1576.78 2283.40 690.20 5
SF-MVS77.13 881.70 871.79 379.32 180.76 582.96 257.49 1182.82 964.79 583.69 1084.46 562.83 1377.13 2675.21 3183.35 787.85 16
CNVR-MVS75.62 1279.91 1470.61 1075.76 1078.82 1481.66 957.12 1379.77 1663.04 1370.69 2481.15 1662.99 1180.23 579.54 383.11 889.16 8
HFP-MVS74.87 1578.86 2070.21 1273.99 2177.91 1880.36 1656.63 1678.41 1964.27 874.54 2077.75 2762.96 1278.70 1277.82 1383.02 986.91 21
NCCC74.27 1977.83 2470.13 1375.70 1177.41 2280.51 1557.09 1478.25 2062.28 1765.54 3778.26 2562.18 1879.13 878.51 1083.01 1087.68 17
ACMMP_NAP76.15 981.17 970.30 1174.09 2079.47 1081.59 1257.09 1481.38 1163.89 1079.02 1380.48 1962.24 1780.05 679.12 482.94 1188.64 9
ACMP61.42 568.72 4271.37 4365.64 3769.06 4374.45 4175.88 3753.30 3768.10 4855.74 3761.53 5862.29 7656.97 5174.70 4674.23 4182.88 1284.31 34
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LGP-MVS_train68.87 3972.03 4165.18 3969.33 4274.03 4376.67 3353.88 3568.46 4752.05 5963.21 4863.89 6956.31 5575.99 3674.43 3982.83 1384.18 35
ACMMPcopyleft71.57 3075.84 3066.59 3070.30 3976.85 2878.46 2753.95 3473.52 3555.56 3870.13 2671.36 4758.55 4077.00 2776.23 2682.71 1485.81 27
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMMPR73.79 2378.41 2168.40 2472.35 2777.79 1979.32 2056.38 1877.67 2358.30 3174.16 2176.66 2861.40 2278.32 1477.80 1482.68 1586.51 22
SED-MVS79.21 184.74 272.75 178.66 281.96 282.94 458.16 486.82 267.66 188.29 486.15 366.42 280.41 478.65 682.65 1690.92 2
CDPH-MVS71.47 3175.82 3166.41 3172.97 2577.15 2478.14 2954.71 2769.88 4653.07 5570.98 2374.83 3656.95 5276.22 3376.57 2482.62 1785.09 33
DPM-MVS72.80 2675.90 2969.19 2075.51 1377.68 2081.62 1154.83 2675.96 2562.06 1863.96 4676.58 2958.55 4076.66 3276.77 2382.60 1883.68 40
PGM-MVS72.89 2577.13 2667.94 2572.47 2677.25 2379.27 2154.63 2973.71 3457.95 3372.38 2275.33 3460.75 2778.25 1677.36 1882.57 1985.62 28
DROMVSNet67.01 5070.27 5263.21 4767.21 5170.47 5669.01 5546.96 7159.16 6653.23 5464.01 4569.71 5360.37 3174.92 4471.24 5582.50 2082.41 44
SD-MVS74.43 1778.87 1869.26 1974.39 1973.70 4479.06 2455.24 2581.04 1262.71 1480.18 1282.61 1061.70 2175.43 4073.92 4382.44 2185.22 31
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DVP-MVScopyleft78.77 284.89 171.62 478.04 382.05 181.64 1057.96 787.53 166.64 288.77 186.31 163.16 1079.99 778.56 782.31 2291.03 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft78.11 483.84 471.42 577.82 581.32 482.92 557.81 984.04 863.19 1288.63 286.00 464.52 578.71 1177.63 1582.26 2390.57 3
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
XVS70.49 3776.96 2574.36 4454.48 4774.47 3782.24 24
X-MVStestdata70.49 3776.96 2574.36 4454.48 4774.47 3782.24 24
X-MVS71.18 3275.66 3265.96 3571.71 2976.96 2577.26 3255.88 2272.75 3754.48 4764.39 4374.47 3754.19 6577.84 2077.37 1782.21 2685.85 26
DVP-MVS++78.76 384.44 372.14 276.63 781.93 382.92 558.10 585.86 466.53 387.86 586.16 266.45 180.46 378.53 982.19 2790.29 4
OPM-MVS69.33 3771.05 4567.32 2772.34 2875.70 3279.57 1956.34 1955.21 7453.81 5259.51 6368.96 5559.67 3477.61 2376.44 2582.19 2783.88 38
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MP-MVScopyleft74.31 1878.87 1868.99 2173.49 2378.56 1579.25 2256.51 1775.33 2760.69 2275.30 1979.12 2361.81 2077.78 2177.93 1282.18 2988.06 14
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS_fast65.08 372.00 2976.11 2867.21 2868.93 4477.46 2176.54 3454.35 3174.92 3158.64 3065.18 3974.04 4262.62 1477.92 1977.02 2182.16 3086.21 23
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMM60.30 767.58 4768.82 5966.13 3370.59 3672.01 5276.54 3454.26 3265.64 5254.78 4650.35 10561.72 8058.74 3875.79 3875.03 3381.88 3181.17 51
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVS++copyleft76.01 1080.47 1270.81 976.60 874.96 3580.18 1758.36 281.96 1063.50 1178.80 1482.53 1164.40 678.74 1078.84 581.81 3287.46 18
HQP-MVS70.88 3375.02 3366.05 3471.69 3074.47 4077.51 3153.17 3872.89 3654.88 4470.03 2770.48 4957.26 4876.02 3575.01 3581.78 3386.21 23
TSAR-MVS + MP.75.22 1480.06 1369.56 1674.61 1872.74 4880.59 1455.70 2380.80 1362.65 1586.25 682.92 962.07 1976.89 2875.66 3081.77 3485.19 32
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
train_agg73.89 2178.25 2268.80 2375.25 1772.27 5079.75 1856.05 2074.87 3258.97 2781.83 1179.76 2161.05 2577.39 2576.01 2881.71 3585.61 29
CP-MVS72.63 2776.95 2767.59 2670.67 3575.53 3377.95 3056.01 2175.65 2658.82 2869.16 2976.48 3060.46 3077.66 2277.20 2081.65 3686.97 20
MVS_030469.49 3673.96 3564.28 4467.92 4876.13 3174.90 4147.60 6863.29 5754.09 5167.44 3476.35 3159.53 3575.81 3775.03 3381.62 3783.70 39
APD-MVScopyleft75.80 1180.90 1169.86 1575.42 1578.48 1681.43 1357.44 1280.45 1459.32 2685.28 880.82 1863.96 776.89 2876.08 2781.58 3888.30 12
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CS-MVS65.88 5269.71 5461.41 5261.76 8068.14 6767.65 6144.00 10559.14 6752.69 5665.19 3868.13 6060.90 2674.74 4571.58 5181.46 3981.04 52
3Dnovator60.86 666.99 5170.32 5063.11 4866.63 5474.52 3871.56 5145.76 7767.37 5055.00 4354.31 8768.19 5958.49 4273.97 4973.63 4681.22 4080.23 54
3Dnovator+62.63 469.51 3572.62 3965.88 3668.21 4776.47 2973.50 4852.74 4270.85 4258.65 2955.97 7669.95 5061.11 2476.80 3075.09 3281.09 4183.23 43
CS-MVS-test65.18 5768.70 6061.07 5361.92 7768.06 6967.09 6945.18 8558.47 6852.02 6065.76 3666.44 6559.24 3772.71 5570.05 6380.98 4279.40 58
CANet68.77 4073.01 3763.83 4568.30 4575.19 3473.73 4747.90 6763.86 5354.84 4567.51 3374.36 4057.62 4474.22 4873.57 4780.56 4382.36 45
ETV-MVS63.23 6366.08 6859.91 5963.13 7468.13 6867.62 6244.62 9253.39 8246.23 7858.74 6558.19 9457.45 4673.60 5071.38 5480.39 4479.13 59
MSP-MVS77.82 583.46 571.24 875.26 1680.22 782.95 357.85 885.90 364.79 588.54 383.43 766.24 378.21 1778.56 780.34 4589.39 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TSAR-MVS + GP.69.71 3473.92 3664.80 4268.27 4670.56 5571.90 4950.75 5171.38 4157.46 3568.68 3075.42 3360.10 3373.47 5173.99 4280.32 4683.97 37
MVS_111021_HR67.62 4670.39 4964.39 4369.77 4070.45 5771.44 5251.72 4760.77 6355.06 4262.14 5566.40 6658.13 4376.13 3474.79 3780.19 4782.04 48
DeepPCF-MVS66.49 174.25 2080.97 1066.41 3167.75 5078.87 1375.61 3854.16 3384.86 658.22 3277.94 1681.01 1762.52 1578.34 1377.38 1680.16 4888.40 11
EIA-MVS61.53 7463.79 8258.89 6563.82 7267.61 7665.35 8742.15 13649.98 10145.66 8257.47 7256.62 10156.59 5470.91 6969.15 7079.78 4974.80 96
MAR-MVS68.04 4470.74 4764.90 4171.68 3176.33 3074.63 4350.48 5563.81 5455.52 3954.88 8269.90 5157.39 4775.42 4174.79 3779.71 5080.03 55
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MSLP-MVS++68.17 4370.72 4865.19 3869.41 4170.64 5474.99 4045.76 7770.20 4560.17 2356.42 7473.01 4361.14 2372.80 5470.54 5879.70 5181.42 50
DELS-MVS65.87 5370.30 5160.71 5464.05 7072.68 4970.90 5345.43 8157.49 6949.05 6964.43 4268.66 5655.11 6374.31 4773.02 4879.70 5181.51 49
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
AdaColmapbinary67.89 4568.85 5866.77 2973.73 2274.30 4275.28 3953.58 3670.24 4457.59 3451.19 10259.19 9160.74 2875.33 4273.72 4579.69 5377.96 69
Effi-MVS+63.28 6265.96 6960.17 5764.26 6668.06 6968.78 5845.71 7954.08 7746.64 7655.92 7763.13 7355.94 5970.38 7571.43 5279.68 5478.70 62
casdiffmvs_mvgpermissive65.26 5669.48 5760.33 5662.99 7569.34 6069.80 5445.27 8363.38 5651.11 6165.12 4069.75 5253.51 7371.74 5968.86 7579.33 5578.19 68
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu63.65 6166.92 6259.83 6060.03 9273.44 4666.33 7548.95 6252.20 9350.81 6356.07 7560.25 8753.56 7173.23 5370.01 6479.30 5683.24 42
GeoE62.43 6864.79 7759.68 6164.15 6967.17 8268.80 5744.42 9655.65 7347.38 7151.54 9962.51 7454.04 6869.99 7868.07 8379.28 5778.57 63
EPP-MVSNet59.39 8165.45 7252.32 11460.96 8567.70 7458.42 12444.75 9049.71 10327.23 16759.03 6462.20 7743.34 13170.71 7069.13 7179.25 5879.63 57
CPTT-MVS68.76 4173.01 3763.81 4665.42 6073.66 4576.39 3652.08 4372.61 3850.33 6460.73 5972.65 4559.43 3673.32 5272.12 4979.19 5985.99 25
Fast-Effi-MVS+60.36 7663.35 8356.87 8258.70 9965.86 9465.08 9037.11 17253.00 8745.36 8452.12 9656.07 10756.27 5671.28 6469.42 6878.71 6075.69 90
PCF-MVS59.98 867.32 4871.04 4662.97 4964.77 6274.49 3974.78 4249.54 5767.44 4954.39 5058.35 6872.81 4455.79 6171.54 6169.24 6978.57 6183.41 41
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
casdiffmvspermissive64.09 6068.13 6159.37 6361.81 7868.32 6668.48 5944.45 9561.95 6049.12 6863.04 4969.67 5453.83 6970.46 7266.06 11678.55 6277.43 71
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet_NR-MVSNet56.94 10861.14 9152.05 11660.02 9365.21 10257.44 12852.93 4049.37 10724.31 17954.62 8650.54 12839.04 14968.69 8868.84 7678.53 6370.72 115
canonicalmvs65.62 5472.06 4058.11 6863.94 7171.05 5364.49 9443.18 12674.08 3347.35 7264.17 4471.97 4651.17 9471.87 5870.74 5678.51 6480.56 53
IS_MVSNet57.95 10064.26 8050.60 12161.62 8265.25 10157.18 13045.42 8250.79 9726.49 17257.81 7060.05 8834.51 17371.24 6570.20 6278.36 6574.44 98
PHI-MVS69.27 3874.84 3462.76 5066.83 5374.83 3673.88 4649.32 6070.61 4350.93 6269.62 2874.84 3557.25 4975.53 3974.32 4078.35 6684.17 36
EG-PatchMatch MVS56.98 10658.24 13055.50 9164.66 6368.62 6361.48 10543.63 11438.44 19141.44 10238.05 18146.18 15843.95 12771.71 6070.61 5777.87 6774.08 102
OpenMVScopyleft57.13 962.81 6565.75 7059.39 6266.47 5669.52 5964.26 9643.07 12861.34 6250.19 6547.29 12364.41 6854.60 6470.18 7768.62 7977.73 6878.89 61
NR-MVSNet55.35 12359.46 11850.56 12261.33 8362.97 11757.91 12751.80 4548.62 12120.59 18651.99 9744.73 17334.10 17668.58 9168.64 7877.66 6970.67 119
QAPM65.27 5569.49 5660.35 5565.43 5972.20 5165.69 8447.23 6963.46 5549.14 6753.56 8871.04 4857.01 5072.60 5671.41 5377.62 7082.14 47
IB-MVS54.11 1158.36 9560.70 9655.62 9058.67 10068.02 7161.56 10343.15 12746.09 13844.06 9044.24 15250.99 12748.71 10366.70 12770.33 5977.60 7178.50 64
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ACMH+53.71 1259.26 8260.28 10158.06 6964.17 6868.46 6467.51 6450.93 5052.46 9135.83 13140.83 17445.12 16752.32 8669.88 7969.00 7477.59 7276.21 86
TranMVSNet+NR-MVSNet55.87 11660.14 10650.88 12059.46 9863.82 11357.93 12652.98 3948.94 11320.52 18752.87 9147.33 14536.81 16569.12 8569.03 7377.56 7369.89 121
MSDG58.46 9258.97 12357.85 7666.27 5866.23 9267.72 6042.33 13253.43 8143.68 9143.39 16045.35 16349.75 9868.66 9067.77 8877.38 7467.96 137
Effi-MVS+-dtu60.34 7762.32 8758.03 7164.31 6467.44 7965.99 7942.26 13349.55 10442.00 10148.92 11359.79 8956.27 5668.07 10367.03 9777.35 7575.45 92
ET-MVSNet_ETH3D58.38 9461.57 8954.67 9542.15 19865.26 9965.70 8243.82 10748.84 11442.34 9859.76 6247.76 13956.68 5367.02 12468.60 8077.33 7673.73 105
DI_MVS_plusplus_trai61.88 7065.17 7458.06 6960.05 9165.26 9966.03 7844.22 9755.75 7246.73 7454.64 8568.12 6154.13 6769.13 8466.66 10577.18 7776.61 79
v114458.88 8560.16 10557.39 7858.03 10467.26 8067.14 6744.46 9445.17 14444.33 8947.81 12049.92 13253.20 8167.77 10966.62 10877.15 7876.58 80
v119258.51 8959.66 11257.17 7957.82 10667.72 7366.21 7744.83 8944.15 15243.49 9246.68 12547.94 13653.55 7267.39 11666.51 11077.13 7977.20 74
UniMVSNet (Re)55.15 12860.39 10049.03 13655.31 13064.59 10655.77 14450.63 5248.66 12020.95 18551.47 10050.40 12934.41 17567.81 10867.89 8577.11 8071.88 109
v1059.17 8460.60 9757.50 7757.95 10566.73 8667.09 6944.11 9846.85 13245.42 8348.18 11951.07 12453.63 7067.84 10766.59 10976.79 8176.92 76
MVS_Test62.40 6966.23 6757.94 7259.77 9664.77 10566.50 7441.76 13757.26 7049.33 6662.68 5267.47 6453.50 7568.57 9266.25 11376.77 8276.58 80
FA-MVS(training)60.00 7963.14 8556.33 8659.50 9764.30 11065.15 8938.75 16356.20 7145.77 8053.08 8956.45 10252.10 8969.04 8667.67 9176.69 8375.27 95
v14419258.23 9859.40 11956.87 8257.56 10766.89 8465.70 8245.01 8744.06 15342.88 9446.61 12748.09 13553.49 7666.94 12565.90 12076.61 8477.29 72
v2v48258.69 8860.12 10857.03 8057.16 12266.05 9367.17 6643.52 11746.33 13645.19 8549.46 10951.02 12552.51 8467.30 11766.03 11776.61 8474.62 97
ACMH52.42 1358.24 9759.56 11756.70 8466.34 5769.59 5866.71 7249.12 6146.08 13928.90 15942.67 16941.20 18652.60 8371.39 6270.28 6076.51 8675.72 89
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PVSNet_BlendedMVS61.63 7264.82 7557.91 7457.21 12067.55 7763.47 10046.08 7554.72 7552.46 5758.59 6660.73 8351.82 9270.46 7265.20 13076.44 8776.50 83
PVSNet_Blended61.63 7264.82 7557.91 7457.21 12067.55 7763.47 10046.08 7554.72 7552.46 5758.59 6660.73 8351.82 9270.46 7265.20 13076.44 8776.50 83
v192192057.89 10159.02 12256.58 8557.55 10866.66 9064.72 9344.70 9143.55 15642.73 9546.17 13546.93 14953.51 7366.78 12665.75 12276.29 8977.28 73
EPNet65.14 5969.54 5560.00 5866.61 5567.67 7567.53 6355.32 2462.67 5946.22 7967.74 3265.93 6748.07 10972.17 5772.12 4976.28 9078.47 65
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v858.88 8560.57 9956.92 8157.35 11565.69 9666.69 7342.64 13047.89 12745.77 8049.04 11052.98 11752.77 8267.51 11465.57 12376.26 9175.30 94
DCV-MVSNet59.49 8064.00 8154.23 9661.81 7864.33 10961.42 10643.77 10852.85 8838.94 11955.62 7962.15 7843.24 13469.39 8267.66 9276.22 9275.97 87
v124057.55 10358.63 12656.29 8757.30 11866.48 9163.77 9844.56 9342.77 16642.48 9745.64 14146.28 15653.46 7766.32 13265.80 12176.16 9377.13 75
CLD-MVS67.02 4971.57 4261.71 5171.01 3474.81 3771.62 5038.91 15871.86 4060.70 2164.97 4167.88 6351.88 9176.77 3174.98 3676.11 9469.75 122
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test250655.82 11859.57 11651.46 11760.39 8964.55 10758.69 12248.87 6353.91 7826.99 16848.97 11141.72 18537.71 15770.96 6769.49 6676.08 9567.37 142
ECVR-MVScopyleft56.44 11360.74 9551.42 11860.39 8964.55 10758.69 12248.87 6353.91 7826.76 17045.55 14353.43 11537.71 15770.96 6769.49 6676.08 9567.32 144
v7n55.67 11957.46 13853.59 10256.06 12665.29 9861.06 10943.26 12540.17 18237.99 12340.79 17545.27 16647.09 11367.67 11166.21 11476.08 9576.82 77
OMC-MVS65.16 5871.35 4457.94 7252.95 14868.82 6269.00 5638.28 16679.89 1555.20 4162.76 5168.31 5856.14 5871.30 6368.70 7776.06 9879.67 56
DU-MVS55.41 12259.59 11350.54 12354.60 13662.97 11757.44 12851.80 4548.62 12124.31 17951.99 9747.00 14839.04 14968.11 10167.75 8976.03 9970.72 115
FC-MVSNet-train58.40 9363.15 8452.85 11064.29 6561.84 12355.98 14346.47 7353.06 8534.96 13461.95 5756.37 10539.49 14768.67 8968.36 8175.92 10071.81 110
Anonymous2023121157.71 10260.79 9454.13 9861.68 8165.81 9560.81 11143.70 11251.97 9439.67 11434.82 18963.59 7043.31 13268.55 9366.63 10775.59 10174.13 101
MVSTER57.19 10461.11 9252.62 11250.82 16858.79 15061.55 10437.86 16948.81 11641.31 10457.43 7352.10 12048.60 10468.19 10066.75 10375.56 10275.68 91
Anonymous20240521160.60 9763.44 7366.71 8961.00 11047.23 6950.62 9936.85 18460.63 8643.03 13569.17 8367.72 9075.41 10372.54 107
thisisatest053056.68 11059.68 11153.19 10652.97 14760.96 13359.41 11740.51 14848.26 12441.06 10752.67 9246.30 15549.78 9667.66 11267.83 8675.39 10474.07 103
Fast-Effi-MVS+-dtu56.30 11459.29 12052.82 11158.64 10164.89 10365.56 8532.89 19545.80 14135.04 13345.89 13854.14 11249.41 9967.16 12066.45 11275.37 10570.69 117
TSAR-MVS + ACMM72.56 2879.07 1764.96 4073.24 2473.16 4778.50 2648.80 6679.34 1755.32 4085.04 981.49 1558.57 3975.06 4373.75 4475.35 10685.61 29
tttt051756.53 11259.59 11352.95 10952.66 15060.99 13259.21 11940.51 14847.89 12740.40 11052.50 9546.04 15949.78 9667.75 11067.83 8675.15 10774.17 100
test111155.24 12459.98 10949.71 12759.80 9564.10 11256.48 13749.34 5952.27 9221.56 18444.49 15051.96 12135.93 16870.59 7169.07 7275.13 10867.40 140
LS3D60.20 7861.70 8858.45 6764.18 6767.77 7267.19 6548.84 6561.67 6141.27 10545.89 13851.81 12254.18 6668.78 8766.50 11175.03 10969.48 128
baseline255.89 11557.82 13353.64 10057.36 11461.09 13159.75 11540.45 15047.38 13041.26 10651.23 10146.90 15048.11 10765.63 14264.38 13974.90 11068.16 136
HyFIR lowres test56.87 10958.60 12754.84 9356.62 12569.27 6164.77 9242.21 13445.66 14237.50 12633.08 19257.47 9953.33 7865.46 14467.94 8474.60 11171.35 112
PLCcopyleft52.09 1459.21 8362.47 8655.41 9253.24 14664.84 10464.47 9540.41 15265.92 5144.53 8846.19 13455.69 10855.33 6268.24 9865.30 12774.50 11271.09 113
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
GA-MVS55.67 11958.33 12852.58 11355.23 13363.09 11661.08 10840.15 15442.95 16137.02 12952.61 9347.68 14047.51 11165.92 13865.35 12574.49 11370.68 118
MVS_111021_LR63.05 6466.43 6559.10 6461.33 8363.77 11465.87 8143.58 11560.20 6453.70 5362.09 5662.38 7555.84 6070.24 7668.08 8274.30 11478.28 67
anonymousdsp52.84 13857.78 13447.06 15640.24 20158.95 14953.70 15833.54 19136.51 19832.69 14143.88 15445.40 16247.97 11067.17 11970.28 6074.22 11582.29 46
CANet_DTU58.88 8564.68 7852.12 11555.77 12866.75 8563.92 9737.04 17353.32 8337.45 12759.81 6161.81 7944.43 12668.25 9667.47 9574.12 11675.33 93
UA-Net58.50 9064.68 7851.30 11966.97 5267.13 8353.68 15945.65 8049.51 10631.58 14662.91 5068.47 5735.85 16968.20 9967.28 9674.03 11769.24 132
WR-MVS48.78 16855.06 15041.45 18255.50 12960.40 13643.77 19749.99 5641.92 1708.10 21345.24 14745.56 16117.47 20261.57 16164.60 13573.85 11866.14 153
v14855.58 12157.61 13753.20 10554.59 13861.86 12261.18 10738.70 16444.30 15142.25 9947.53 12150.24 13148.73 10265.15 14662.61 15673.79 11971.61 111
PEN-MVS49.21 16454.32 15443.24 17654.33 13959.26 14647.04 18351.37 4941.67 1729.97 20846.22 13341.80 18422.97 19860.52 16464.03 14173.73 12066.75 145
GBi-Net55.20 12560.25 10249.31 13052.42 15161.44 12557.03 13144.04 10149.18 11030.47 14848.28 11558.19 9438.22 15268.05 10466.96 9873.69 12169.65 123
test155.20 12560.25 10249.31 13052.42 15161.44 12557.03 13144.04 10149.18 11030.47 14848.28 11558.19 9438.22 15268.05 10466.96 9873.69 12169.65 123
FMVSNet255.04 12959.95 11049.31 13052.42 15161.44 12557.03 13144.08 10049.55 10430.40 15146.89 12458.84 9238.22 15267.07 12366.21 11473.69 12169.65 123
FMVSNet154.08 13358.68 12548.71 14050.90 16761.35 12856.73 13543.94 10645.91 14029.32 15842.72 16856.26 10637.70 15968.05 10466.96 9873.69 12169.50 127
MS-PatchMatch58.19 9960.20 10455.85 8965.17 6164.16 11164.82 9141.48 14050.95 9642.17 10045.38 14456.42 10348.08 10868.30 9566.70 10473.39 12569.46 130
TAPA-MVS54.74 1060.85 7566.61 6354.12 9947.38 18165.33 9765.35 8736.51 17575.16 3048.82 7054.70 8463.51 7153.31 7968.36 9464.97 13473.37 12674.27 99
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thisisatest051553.85 13456.84 14150.37 12450.25 17158.17 15855.99 14239.90 15541.88 17138.16 12245.91 13745.30 16444.58 12566.15 13666.89 10173.36 12773.57 106
FMVSNet354.78 13059.58 11549.17 13352.37 15461.31 12956.72 13644.04 10149.18 11030.47 14848.28 11558.19 9438.09 15565.48 14365.20 13073.31 12869.45 131
WR-MVS_H47.65 17553.67 15740.63 18551.45 15959.74 14344.71 19549.37 5840.69 1787.61 21546.04 13644.34 17817.32 20357.79 18061.18 16173.30 12965.86 155
TransMVSNet (Re)51.92 14855.38 14747.88 15260.95 8659.90 14153.95 15645.14 8639.47 18524.85 17643.87 15546.51 15429.15 18567.55 11365.23 12973.26 13065.16 161
diffmvspermissive61.64 7166.55 6455.90 8856.63 12463.71 11567.13 6841.27 14259.49 6546.70 7563.93 4768.01 6250.46 9567.30 11765.51 12473.24 13177.87 70
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IterMVS-LS58.30 9661.39 9054.71 9459.92 9458.40 15459.42 11643.64 11348.71 11840.25 11257.53 7158.55 9352.15 8865.42 14565.34 12672.85 13275.77 88
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Baseline_NR-MVSNet53.50 13557.89 13248.37 14654.60 13659.25 14756.10 13951.84 4449.32 10817.92 19445.38 14447.68 14036.93 16468.11 10165.95 11872.84 13369.57 126
Vis-MVSNetpermissive58.48 9165.70 7150.06 12653.40 14567.20 8160.24 11443.32 12348.83 11530.23 15262.38 5461.61 8140.35 14571.03 6669.77 6572.82 13479.11 60
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_ETH3D52.62 13955.98 14348.70 14151.04 16560.71 13556.87 13446.74 7242.52 16826.96 16942.50 17045.95 16037.87 15666.22 13465.15 13372.74 13568.78 135
V4256.97 10760.14 10653.28 10448.16 17762.78 12066.30 7637.93 16847.44 12942.68 9648.19 11852.59 11951.90 9067.46 11565.94 11972.72 13676.55 82
tfpn200view952.53 14055.51 14549.06 13557.31 11660.24 13755.42 14943.77 10842.85 16427.81 16343.00 16645.06 16937.32 16166.38 12964.54 13672.71 13766.54 146
CNLPA62.78 6666.31 6658.65 6658.47 10268.41 6565.98 8041.22 14378.02 2256.04 3646.65 12659.50 9057.50 4569.67 8065.27 12872.70 13876.67 78
thres600view751.91 14955.14 14948.14 14857.43 11260.18 13854.60 15443.73 11042.61 16725.20 17543.10 16544.47 17635.19 17166.36 13063.28 14872.66 13966.01 154
thres40052.38 14355.51 14548.74 13957.49 11160.10 14055.45 14843.54 11642.90 16326.72 17143.34 16245.03 17136.61 16666.20 13564.53 13772.66 13966.43 147
thres20052.39 14255.37 14848.90 13757.39 11360.18 13855.60 14643.73 11042.93 16227.41 16543.35 16145.09 16836.61 16666.36 13063.92 14372.66 13965.78 156
thres100view90052.04 14654.81 15248.80 13857.31 11659.33 14555.30 15042.92 12942.85 16427.81 16343.00 16645.06 16936.99 16364.74 14863.51 14572.47 14265.21 160
TSAR-MVS + COLMAP62.65 6769.90 5354.19 9746.31 18566.73 8665.49 8641.36 14176.57 2446.31 7776.80 1756.68 10053.27 8069.50 8166.65 10672.40 14376.36 85
pmmvs454.66 13156.07 14253.00 10854.63 13557.08 16560.43 11344.10 9951.69 9540.55 10946.55 13044.79 17245.95 11962.54 15563.66 14472.36 14466.20 151
DTE-MVSNet48.03 17453.28 16141.91 18054.64 13457.50 16344.63 19651.66 4841.02 1767.97 21446.26 13240.90 18720.24 20060.45 16562.89 15272.33 14563.97 166
UGNet57.03 10565.25 7347.44 15546.54 18466.73 8656.30 13843.28 12450.06 10032.99 13862.57 5363.26 7233.31 17868.25 9667.58 9372.20 14678.29 66
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
COLMAP_ROBcopyleft46.52 1551.99 14754.86 15148.63 14249.13 17561.73 12460.53 11236.57 17453.14 8432.95 13937.10 18238.68 19740.49 14465.72 14063.08 14972.11 14764.60 164
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CP-MVSNet48.37 16953.53 15842.34 17851.35 16158.01 16046.56 18450.54 5341.62 17310.61 20446.53 13140.68 19023.18 19658.71 17461.83 15871.81 14867.36 143
pmmvs-eth3d51.33 15052.25 16950.26 12550.82 16854.65 17056.03 14143.45 12243.51 15737.20 12839.20 17839.04 19642.28 13761.85 16062.78 15371.78 14964.72 163
PS-CasMVS48.18 17153.25 16242.27 17951.26 16257.94 16146.51 18550.52 5441.30 17410.56 20545.35 14640.34 19223.04 19758.66 17561.79 15971.74 15067.38 141
gm-plane-assit44.74 18645.95 19443.33 17460.88 8746.79 19936.97 20832.24 19824.15 21311.79 20329.26 20232.97 20846.64 11465.09 14762.95 15171.45 15160.42 181
tfpnnormal50.16 15852.19 17047.78 15456.86 12358.37 15554.15 15544.01 10438.35 19325.94 17336.10 18537.89 19934.50 17465.93 13763.42 14671.26 15265.28 159
baseline154.48 13258.69 12449.57 12860.63 8858.29 15755.70 14544.95 8849.20 10929.62 15554.77 8354.75 11035.29 17067.15 12164.08 14071.21 15362.58 174
gg-mvs-nofinetune49.07 16652.56 16645.00 16661.99 7659.78 14253.55 16141.63 13831.62 20712.08 20229.56 20153.28 11629.57 18466.27 13364.49 13871.19 15462.92 170
pm-mvs151.02 15255.55 14445.73 16154.16 14058.52 15250.92 16642.56 13140.32 18025.67 17443.66 15750.34 13030.06 18365.85 13963.97 14270.99 15566.21 150
TDRefinement49.31 16152.44 16745.67 16330.44 21159.42 14459.24 11839.78 15648.76 11731.20 14735.73 18629.90 21142.81 13664.24 15062.59 15770.55 15666.43 147
IterMVS53.45 13657.12 13949.17 13349.23 17460.93 13459.05 12034.63 18344.53 14733.22 13651.09 10451.01 12648.38 10562.43 15760.79 16470.54 15769.05 133
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
USDC51.11 15153.71 15648.08 15044.76 19055.99 16853.01 16340.90 14452.49 9036.14 13044.67 14933.66 20743.27 13363.23 15161.10 16270.39 15864.82 162
pmmvs648.35 17051.64 17244.51 16951.92 15757.94 16149.44 17242.17 13534.45 20024.62 17828.87 20346.90 15029.07 18764.60 14963.08 14969.83 15965.68 157
SixPastTwentyTwo47.55 17750.25 18244.41 17047.30 18254.31 17247.81 17840.36 15333.76 20119.93 18943.75 15632.77 20942.07 13859.82 16760.94 16368.98 16066.37 149
pmmvs547.07 17951.02 17842.46 17745.18 18951.47 18148.23 17733.09 19438.17 19428.62 16146.60 12843.48 18030.74 18158.28 17758.63 17268.92 16160.48 180
Vis-MVSNet (Re-imp)50.37 15657.73 13641.80 18157.53 10954.35 17145.70 18945.24 8449.80 10213.43 20058.23 6956.42 10320.11 20162.96 15363.36 14768.76 16258.96 186
CDS-MVSNet52.42 14157.06 14047.02 15753.92 14358.30 15655.50 14746.47 7342.52 16829.38 15749.50 10852.85 11828.49 18866.70 12766.89 10168.34 16362.63 173
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CostFormer56.57 11159.13 12153.60 10157.52 11061.12 13066.94 7135.95 17753.44 8044.68 8755.87 7854.44 11148.21 10660.37 16658.33 17368.27 16470.33 120
PMMVS49.20 16554.28 15543.28 17534.13 20645.70 20148.98 17326.09 20846.31 13734.92 13555.22 8053.47 11447.48 11259.43 16859.04 17168.05 16560.77 179
EPNet_dtu52.05 14558.26 12944.81 16754.10 14150.09 18652.01 16440.82 14653.03 8627.41 16554.90 8157.96 9826.72 19062.97 15262.70 15567.78 16666.19 152
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TinyColmap47.08 17847.56 19246.52 15842.35 19753.44 17451.77 16540.70 14743.44 15831.92 14429.78 20023.72 21745.04 12461.99 15959.54 17067.35 16761.03 178
CHOSEN 1792x268855.85 11758.01 13153.33 10357.26 11962.82 11963.29 10241.55 13946.65 13438.34 12034.55 19053.50 11352.43 8567.10 12267.56 9467.13 16873.92 104
test-LLR49.28 16250.29 18048.10 14955.26 13147.16 19449.52 17043.48 12039.22 18631.98 14243.65 15847.93 13741.29 14256.80 18455.36 18367.08 16961.94 175
TESTMET0.1,146.09 18450.29 18041.18 18336.91 20447.16 19449.52 17020.32 21339.22 18631.98 14243.65 15847.93 13741.29 14256.80 18455.36 18367.08 16961.94 175
test-mter45.30 18550.37 17939.38 18833.65 20846.99 19647.59 17918.59 21438.75 18928.00 16243.28 16346.82 15241.50 14157.28 18255.78 18066.93 17163.70 168
PatchMatch-RL50.11 15951.56 17348.43 14446.23 18651.94 17950.21 16938.62 16546.62 13537.51 12542.43 17139.38 19452.24 8760.98 16359.56 16965.76 17260.01 184
CR-MVSNet50.47 15452.61 16547.98 15149.03 17652.94 17548.27 17538.86 16044.41 14839.59 11544.34 15144.65 17546.63 11558.97 17160.31 16665.48 17362.66 171
RPMNet46.41 18148.72 18743.72 17147.77 18052.94 17546.02 18833.92 18744.41 14831.82 14536.89 18337.42 20237.41 16053.88 19954.02 19265.37 17461.47 177
MDTV_nov1_ep13_2view47.62 17649.72 18545.18 16548.05 17853.70 17354.90 15333.80 18939.90 18429.79 15438.85 17941.89 18339.17 14858.99 17055.55 18265.34 17559.17 185
MDTV_nov1_ep1350.32 15752.43 16847.86 15349.87 17254.70 16958.10 12534.29 18545.59 14337.71 12447.44 12247.42 14441.86 13958.07 17955.21 18565.34 17558.56 187
MVS-HIRNet42.24 19341.15 20643.51 17244.06 19440.74 20635.77 21035.35 17835.38 19938.34 12025.63 20738.55 19843.48 13050.77 20447.03 20764.07 17749.98 202
MDA-MVSNet-bldmvs41.36 19443.15 20439.27 18928.74 21352.68 17744.95 19440.84 14532.89 20318.13 19331.61 19522.09 21838.97 15150.45 20656.11 17864.01 17856.23 192
CVMVSNet46.38 18352.01 17139.81 18742.40 19650.26 18446.15 18637.68 17040.03 18315.09 19746.56 12947.56 14233.72 17756.50 18855.65 18163.80 17967.53 138
PatchT48.08 17251.03 17744.64 16842.96 19550.12 18540.36 20435.09 17943.17 15939.59 11542.00 17239.96 19346.63 11558.97 17160.31 16663.21 18062.66 171
baseline55.19 12760.88 9348.55 14349.87 17258.10 15958.70 12134.75 18152.82 8939.48 11860.18 6060.86 8245.41 12161.05 16260.74 16563.10 18172.41 108
dps50.42 15551.20 17649.51 12955.88 12756.07 16753.73 15738.89 15943.66 15440.36 11145.66 14037.63 20145.23 12259.05 16956.18 17762.94 18260.16 182
SCA50.99 15353.22 16348.40 14551.07 16456.78 16650.25 16839.05 15748.31 12341.38 10349.54 10746.70 15346.00 11858.31 17656.28 17662.65 18356.60 191
tpm cat153.30 13753.41 15953.17 10758.16 10359.15 14863.73 9938.27 16750.73 9846.98 7345.57 14244.00 17949.20 10055.90 19354.02 19262.65 18364.50 165
LTVRE_ROB44.17 1647.06 18050.15 18343.44 17351.39 16058.42 15342.90 19943.51 11822.27 21514.85 19841.94 17334.57 20545.43 12062.28 15862.77 15462.56 18568.83 134
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PM-MVS44.55 18848.13 19040.37 18632.85 21046.82 19846.11 18729.28 20140.48 17929.99 15339.98 17734.39 20641.80 14056.08 19153.88 19662.19 18665.31 158
EU-MVSNet40.63 19845.65 19734.78 20139.11 20246.94 19740.02 20534.03 18633.50 20210.37 20635.57 18737.80 20023.65 19551.90 20150.21 20261.49 18763.62 169
PatchmatchNetpermissive49.92 16051.29 17448.32 14751.83 15851.86 18053.38 16237.63 17147.90 12640.83 10848.54 11445.30 16445.19 12356.86 18353.99 19461.08 18854.57 194
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CMPMVSbinary37.70 1749.24 16352.71 16445.19 16445.97 18751.23 18247.44 18129.31 20043.04 16044.69 8634.45 19148.35 13443.64 12862.59 15459.82 16860.08 18969.48 128
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test0.0.03 143.15 19146.95 19338.72 19055.26 13150.56 18342.48 20043.48 12038.16 19515.11 19635.07 18844.69 17416.47 20455.95 19254.34 19159.54 19049.87 204
Anonymous2023120642.28 19245.89 19538.07 19251.96 15648.98 18843.66 19838.81 16238.74 19014.32 19926.74 20540.90 18720.94 19956.64 18754.67 18958.71 19154.59 193
TAMVS44.02 18949.18 18637.99 19347.03 18345.97 20045.04 19228.47 20339.11 18820.23 18843.22 16448.52 13328.49 18858.15 17857.95 17558.71 19151.36 197
ambc45.54 19850.66 17052.63 17840.99 20338.36 19224.67 17722.62 21013.94 22029.14 18665.71 14158.06 17458.60 19367.43 139
pmmvs335.10 20638.47 20831.17 20426.37 21740.47 20734.51 21218.09 21524.75 21216.88 19523.05 20926.69 21332.69 17950.73 20551.60 19958.46 19451.98 196
test20.0340.38 20044.20 20035.92 19853.73 14449.05 18738.54 20643.49 11932.55 2049.54 20927.88 20439.12 19512.24 20956.28 18954.69 18857.96 19549.83 205
MIMVSNet43.79 19048.53 18838.27 19141.46 19948.97 18950.81 16732.88 19644.55 14622.07 18232.05 19347.15 14624.76 19358.73 17356.09 17957.63 19652.14 195
tpmrst48.08 17249.88 18445.98 15952.71 14948.11 19153.62 16033.70 19048.70 11939.74 11348.96 11246.23 15740.29 14650.14 20749.28 20355.80 19757.71 189
FPMVS38.36 20340.41 20735.97 19738.92 20339.85 20945.50 19025.79 20941.13 17518.70 19130.10 19824.56 21531.86 18049.42 20946.80 20855.04 19851.03 198
FMVSNet540.96 19545.81 19635.29 20034.30 20544.55 20447.28 18228.84 20240.76 17721.62 18329.85 19942.44 18124.77 19257.53 18155.00 18654.93 19950.56 200
tpm48.82 16751.27 17545.96 16054.10 14147.35 19356.05 14030.23 19946.70 13343.21 9352.54 9447.55 14337.28 16254.11 19850.50 20154.90 20060.12 183
PMVScopyleft27.84 1833.81 20735.28 21132.09 20334.13 20624.81 21632.51 21326.48 20726.41 21119.37 19023.76 20824.02 21625.18 19150.78 20347.24 20654.89 20149.95 203
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testgi38.71 20243.64 20232.95 20252.30 15548.63 19035.59 21135.05 18031.58 2089.03 21230.29 19740.75 18911.19 21555.30 19453.47 19754.53 20245.48 208
GG-mvs-BLEND36.62 20453.39 16017.06 2120.01 22458.61 15148.63 1740.01 22147.13 1310.02 22543.98 15360.64 850.03 22054.92 19751.47 20053.64 20356.99 190
MIMVSNet135.51 20541.41 20528.63 20627.53 21543.36 20538.09 20733.82 18832.01 2056.77 21621.63 21135.43 20411.97 21155.05 19653.99 19453.59 20448.36 207
EPMVS44.66 18747.86 19140.92 18447.97 17944.70 20347.58 18033.27 19248.11 12529.58 15649.65 10644.38 17734.65 17251.71 20247.90 20552.49 20548.57 206
RPSCF46.41 18154.42 15337.06 19525.70 21845.14 20245.39 19120.81 21262.79 5835.10 13244.92 14855.60 10943.56 12956.12 19052.45 19851.80 20663.91 167
IterMVS-SCA-FT52.18 14457.75 13545.68 16251.01 16662.06 12155.10 15234.75 18144.85 14532.86 14051.13 10351.22 12348.74 10162.47 15661.51 16051.61 20771.02 114
pmnet_mix0240.48 19943.80 20136.61 19645.79 18840.45 20842.12 20133.18 19340.30 18124.11 18138.76 18037.11 20324.30 19452.97 20046.66 20950.17 20850.33 201
FC-MVSNet-test39.65 20148.35 18929.49 20544.43 19139.28 21130.23 21440.44 15143.59 1553.12 22153.00 9042.03 18210.02 21755.09 19554.77 18748.66 20950.71 199
CHOSEN 280x42040.80 19645.05 19935.84 19932.95 20929.57 21444.98 19323.71 21137.54 19618.42 19231.36 19647.07 14746.41 11756.71 18654.65 19048.55 21058.47 188
ADS-MVSNet40.67 19743.38 20337.50 19444.36 19239.79 21042.09 20232.67 19744.34 15028.87 16040.76 17640.37 19130.22 18248.34 21145.87 21046.81 21144.21 210
new-patchmatchnet33.24 20837.20 20928.62 20744.32 19338.26 21229.68 21536.05 17631.97 2066.33 21726.59 20627.33 21211.12 21650.08 20841.05 21244.23 21245.15 209
Gipumacopyleft25.87 21026.91 21324.66 20928.98 21220.17 21720.46 21634.62 18429.55 2099.10 2104.91 2205.31 22415.76 20649.37 21049.10 20439.03 21329.95 213
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
N_pmnet32.67 20936.85 21027.79 20840.55 20032.13 21335.80 20926.79 20637.24 1979.10 21032.02 19430.94 21016.30 20547.22 21241.21 21138.21 21437.21 211
new_pmnet23.19 21128.17 21217.37 21017.03 21924.92 21519.66 21716.16 21727.05 2104.42 21820.77 21219.20 21912.19 21037.71 21336.38 21334.77 21531.17 212
E-PMN15.09 21313.19 21717.30 21127.80 21412.62 2207.81 22127.54 20414.62 2193.19 2196.89 2172.52 22715.09 20715.93 21720.22 21622.38 21619.53 216
EMVS14.49 21412.45 21816.87 21327.02 21612.56 2218.13 22027.19 20515.05 2183.14 2206.69 2182.67 22615.08 20814.60 21918.05 21720.67 21717.56 218
test_method12.44 21614.66 2169.85 2161.30 2233.32 22313.00 2193.21 21822.42 21410.22 20714.13 21325.64 21411.43 21419.75 21611.61 21919.96 2185.79 219
PMMVS215.84 21219.68 21411.35 21415.74 22016.95 21813.31 21817.64 21616.08 2170.36 22413.12 21411.47 2211.69 21928.82 21427.24 21519.38 21924.09 215
MVEpermissive12.28 1913.53 21515.72 21510.96 2157.39 22115.71 2196.05 22223.73 21010.29 2213.01 2225.77 2193.41 22511.91 21220.11 21529.79 21413.67 22024.98 214
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt5.40 2173.97 2222.35 2243.26 2240.44 22017.56 21612.09 20111.48 2167.14 2221.98 21815.68 21815.49 21810.69 221
DeepMVS_CXcopyleft6.95 2225.98 2232.25 21911.73 2202.07 22311.85 2155.43 22311.75 21311.40 2208.10 22218.38 217
uanet_test0.00 2190.00 2210.00 2180.00 2250.00 2250.00 2270.00 2220.00 2240.00 2260.00 2230.00 2280.00 2230.00 2220.00 2220.00 2230.00 222
sosnet-low-res0.00 2190.00 2210.00 2180.00 2250.00 2250.00 2270.00 2220.00 2240.00 2260.00 2230.00 2280.00 2230.00 2220.00 2220.00 2230.00 222
sosnet0.00 2190.00 2210.00 2180.00 2250.00 2250.00 2270.00 2220.00 2240.00 2260.00 2230.00 2280.00 2230.00 2220.00 2220.00 2230.00 222
testmvs0.01 2170.02 2190.00 2180.00 2250.00 2250.01 2260.00 2220.01 2220.00 2260.03 2220.00 2280.01 2210.01 2210.01 2200.00 2230.06 221
test1230.01 2170.02 2190.00 2180.00 2250.00 2250.00 2270.00 2220.01 2220.00 2260.04 2210.00 2280.01 2210.00 2220.01 2200.00 2230.07 220
RE-MVS-def33.01 137
9.1481.81 13
SR-MVS71.46 3354.67 2881.54 14
our_test_351.15 16357.31 16455.12 151
MTAPA65.14 480.20 20
MTMP62.63 1678.04 26
Patchmatch-RL test1.04 225
mPP-MVS71.67 3274.36 40
NP-MVS72.00 39
Patchmtry47.61 19248.27 17538.86 16039.59 115