This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
MCST-MVS85.13 2286.62 2383.39 1790.55 1489.82 1689.29 2173.89 2284.38 3076.03 2879.01 3185.90 2178.47 1287.81 1686.11 3392.11 193.29 22
CSCG85.28 2187.68 1982.49 2489.95 2391.99 588.82 2471.20 3786.41 2179.63 1679.26 2988.36 1073.94 4186.64 3186.67 2591.40 294.41 8
SF-MVS87.47 889.70 884.86 891.26 691.10 890.90 675.65 889.21 981.25 791.12 888.93 778.82 1087.42 1986.23 3091.28 393.90 13
SteuartSystems-ACMMP85.99 1688.31 1683.27 2090.73 1089.84 1490.27 1474.31 1584.56 2975.88 2987.32 1485.04 2477.31 2389.01 788.46 391.14 493.96 12
Skip Steuart: Steuart Systems R&D Blog.
APDe-MVS88.00 690.50 685.08 590.95 791.58 792.03 175.53 1291.15 580.10 1492.27 588.34 1180.80 588.00 1486.99 1891.09 595.16 6
DeepC-MVS78.47 284.81 2586.03 2883.37 1889.29 3190.38 1188.61 2676.50 186.25 2277.22 2375.12 3980.28 4477.59 2188.39 1088.17 691.02 693.66 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DVP-MVS++89.14 191.86 185.97 192.55 292.38 191.69 476.31 393.31 183.11 392.44 491.18 181.17 289.55 287.93 891.01 796.21 1
SED-MVS88.85 291.59 385.67 290.54 1592.29 391.71 376.40 292.41 383.24 292.50 390.64 481.10 389.53 388.02 791.00 895.73 3
DPE-MVScopyleft88.63 491.29 485.53 390.87 892.20 491.98 276.00 690.55 882.09 693.85 190.75 281.25 188.62 887.59 1490.96 995.48 4
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SMA-MVScopyleft87.56 790.17 784.52 991.71 390.57 990.77 875.19 1390.67 780.50 1386.59 1788.86 878.09 1589.92 189.41 190.84 1095.19 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVScopyleft88.67 391.62 285.22 490.47 1692.36 290.69 976.15 493.08 282.75 492.19 690.71 380.45 689.27 687.91 990.82 1195.84 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
HFP-MVS86.15 1587.95 1884.06 1390.80 989.20 2389.62 1974.26 1687.52 1480.63 1186.82 1684.19 2878.22 1487.58 1787.19 1690.81 1293.13 24
ACMMPR85.52 1787.53 2083.17 2190.13 1989.27 2089.30 2073.97 2086.89 1977.14 2486.09 1883.18 3177.74 1987.42 1987.20 1590.77 1392.63 25
ACMMPcopyleft83.42 3085.27 3181.26 3088.47 3688.49 3388.31 3072.09 3283.42 3472.77 3982.65 2478.22 4975.18 3486.24 3885.76 3590.74 1492.13 30
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PGM-MVS84.42 2786.29 2782.23 2590.04 2188.82 2689.23 2271.74 3582.82 3674.61 3284.41 2382.09 3477.03 2787.13 2486.73 2490.73 1592.06 31
DeepC-MVS_fast78.24 384.27 2885.50 3082.85 2290.46 1789.24 2187.83 3274.24 1784.88 2576.23 2775.26 3881.05 4277.62 2088.02 1387.62 1390.69 1692.41 27
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SD-MVS86.96 1089.45 984.05 1490.13 1989.23 2289.77 1874.59 1489.17 1080.70 1089.93 1189.67 578.47 1287.57 1886.79 2290.67 1793.76 16
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DROMVSNet79.44 4881.35 4577.22 5282.95 6284.67 6181.31 5963.65 9172.47 6768.75 5673.15 4678.33 4875.99 3286.06 4083.96 4890.67 1790.79 41
TSAR-MVS + MP.86.88 1189.23 1084.14 1289.78 2588.67 3090.59 1073.46 2688.99 1180.52 1291.26 788.65 979.91 886.96 2986.22 3190.59 1993.83 14
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MVS_030481.73 3883.86 3579.26 4186.22 4889.18 2486.41 3767.15 6475.28 5370.75 5174.59 4183.49 3074.42 3887.05 2786.34 2990.58 2091.08 39
APD-MVScopyleft86.84 1288.91 1484.41 1090.66 1190.10 1290.78 775.64 987.38 1678.72 1890.68 1086.82 1780.15 787.13 2486.45 2890.51 2193.83 14
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS84.74 2686.43 2682.77 2389.48 2988.13 3888.64 2573.93 2184.92 2476.77 2581.94 2683.50 2977.29 2586.92 3086.49 2790.49 2293.14 23
XVS86.63 4488.68 2785.00 4671.81 4481.92 3690.47 23
X-MVStestdata86.63 4488.68 2785.00 4671.81 4481.92 3690.47 23
X-MVS83.23 3285.20 3280.92 3389.71 2688.68 2788.21 3173.60 2382.57 3771.81 4477.07 3281.92 3671.72 5886.98 2886.86 2090.47 2392.36 28
NCCC85.34 1986.59 2483.88 1591.48 488.88 2589.79 1775.54 1186.67 2077.94 2276.55 3484.99 2578.07 1688.04 1287.68 1290.46 2693.31 21
CNVR-MVS86.36 1488.19 1784.23 1191.33 589.84 1490.34 1175.56 1087.36 1778.97 1781.19 2886.76 1878.74 1189.30 588.58 290.45 2794.33 10
MP-MVScopyleft85.50 1887.40 2183.28 1990.65 1289.51 1989.16 2374.11 1883.70 3378.06 2185.54 2084.89 2777.31 2387.40 2187.14 1790.41 2893.65 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
3Dnovator+75.73 482.40 3482.76 3981.97 2888.02 3789.67 1786.60 3671.48 3681.28 4178.18 2064.78 8477.96 5177.13 2687.32 2286.83 2190.41 2891.48 35
ACMMP_NAP86.52 1389.01 1183.62 1690.28 1890.09 1390.32 1374.05 1988.32 1379.74 1587.04 1585.59 2376.97 2889.35 488.44 490.35 3094.27 11
CS-MVS79.22 5181.11 4877.01 5481.36 7484.03 6480.35 6563.25 9573.43 6470.37 5274.10 4576.03 5776.40 3086.32 3783.95 4990.34 3189.93 47
CDPH-MVS82.64 3385.03 3379.86 3889.41 3088.31 3588.32 2971.84 3480.11 4367.47 6382.09 2581.44 4071.85 5685.89 4186.15 3290.24 3291.25 37
LGP-MVS_train79.83 4381.22 4778.22 4886.28 4785.36 5686.76 3569.59 4677.34 4865.14 7275.68 3670.79 7871.37 6284.60 5084.01 4690.18 3390.74 42
HPM-MVS++copyleft87.09 988.92 1384.95 692.61 187.91 3990.23 1576.06 588.85 1281.20 987.33 1387.93 1279.47 988.59 988.23 590.15 3493.60 20
3Dnovator73.76 579.75 4580.52 5378.84 4384.94 5887.35 4084.43 5165.54 7578.29 4773.97 3463.00 9275.62 5974.07 4085.00 4785.34 3990.11 3589.04 53
DPM-MVS83.30 3184.33 3482.11 2689.56 2788.49 3390.33 1273.24 2783.85 3276.46 2672.43 4982.65 3273.02 4886.37 3586.91 1990.03 3689.62 51
ETV-MVS77.32 6378.81 6175.58 6282.24 6983.64 7279.98 6764.02 8869.64 7463.90 7770.89 5769.94 8473.41 4485.39 4583.91 5089.92 3788.31 58
ACMP73.23 779.79 4480.53 5278.94 4285.61 5185.68 5185.61 4269.59 4677.33 4971.00 5074.45 4269.16 8971.88 5483.15 6683.37 5489.92 3790.57 44
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CS-MVS-test78.79 5780.72 5076.53 5781.11 7983.88 6779.69 7463.72 9073.80 6169.95 5475.40 3776.17 5574.85 3584.50 5382.78 5989.87 3988.54 57
train_agg84.86 2487.21 2282.11 2690.59 1385.47 5389.81 1673.55 2583.95 3173.30 3789.84 1287.23 1575.61 3386.47 3385.46 3889.78 4092.06 31
TSAR-MVS + GP.83.69 2986.58 2580.32 3585.14 5386.96 4384.91 4970.25 4184.71 2873.91 3585.16 2185.63 2277.92 1785.44 4285.71 3689.77 4192.45 26
ACMM72.26 878.86 5678.13 6479.71 3986.89 4383.40 7486.02 3970.50 3975.28 5371.49 4863.01 9169.26 8873.57 4384.11 5683.98 4789.76 4287.84 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OPM-MVS79.68 4779.28 6080.15 3787.99 3886.77 4588.52 2872.72 2964.55 9867.65 6267.87 7374.33 6474.31 3986.37 3585.25 4089.73 4389.81 49
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MSP-MVS88.09 590.84 584.88 790.00 2291.80 691.63 575.80 791.99 481.23 892.54 289.18 680.89 487.99 1587.91 989.70 4494.51 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CANet81.62 3983.41 3679.53 4087.06 4188.59 3185.47 4467.96 5776.59 5174.05 3374.69 4081.98 3572.98 4986.14 3985.47 3789.68 4590.42 45
MVS_111021_HR80.13 4281.46 4478.58 4585.77 5085.17 5783.45 5469.28 4974.08 6070.31 5374.31 4375.26 6073.13 4686.46 3485.15 4189.53 4689.81 49
IS_MVSNet73.33 8277.34 7368.65 11481.29 7583.47 7374.45 12363.58 9365.75 9048.49 14967.11 7770.61 7954.63 16684.51 5283.58 5389.48 4786.34 76
DELS-MVS79.15 5481.07 4976.91 5583.54 6087.31 4184.45 5064.92 8069.98 6969.34 5571.62 5376.26 5469.84 6786.57 3285.90 3489.39 4889.88 48
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
UniMVSNet_NR-MVSNet70.59 10472.19 10368.72 11277.72 10980.72 10073.81 13869.65 4561.99 11843.23 17560.54 10157.50 13658.57 13579.56 11381.07 7489.34 4983.97 104
casdiffmvs_mvgpermissive77.79 6179.55 5975.73 6181.56 7184.70 6082.12 5664.26 8774.27 5867.93 6070.83 5874.66 6269.19 7283.33 6581.94 6489.29 5087.14 69
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EIA-MVS75.64 7176.60 7874.53 7182.43 6783.84 6878.32 8962.28 11865.96 8863.28 8168.95 6567.54 9971.61 6082.55 7181.63 6889.24 5185.72 80
PHI-MVS82.36 3585.89 2978.24 4786.40 4689.52 1885.52 4369.52 4882.38 3965.67 6981.35 2782.36 3373.07 4787.31 2386.76 2389.24 5191.56 34
canonicalmvs79.16 5382.37 4275.41 6382.33 6886.38 4980.80 6263.18 9782.90 3567.34 6472.79 4876.07 5669.62 6883.46 6484.41 4589.20 5390.60 43
MSLP-MVS++82.09 3682.66 4081.42 2987.03 4287.22 4285.82 4170.04 4280.30 4278.66 1968.67 6981.04 4377.81 1885.19 4684.88 4389.19 5491.31 36
HQP-MVS81.19 4083.27 3778.76 4487.40 4085.45 5486.95 3470.47 4081.31 4066.91 6679.24 3076.63 5371.67 5984.43 5483.78 5189.19 5492.05 33
EPP-MVSNet74.00 7977.41 7170.02 9980.53 8583.91 6674.99 11862.68 11165.06 9349.77 14468.68 6872.09 7263.06 10582.49 7380.73 7989.12 5688.91 54
NR-MVSNet68.79 12570.56 11366.71 14377.48 11279.54 11073.52 14269.20 5061.20 12639.76 18258.52 11350.11 18751.37 17580.26 10480.71 8488.97 5783.59 110
PVSNet_Blended_VisFu76.57 6677.90 6575.02 6580.56 8486.58 4779.24 7866.18 6964.81 9568.18 5965.61 7871.45 7367.05 8184.16 5581.80 6688.90 5890.92 40
TranMVSNet+NR-MVSNet69.25 12070.81 11267.43 12777.23 11479.46 11273.48 14369.66 4460.43 13139.56 18358.82 11253.48 16355.74 16079.59 11181.21 7288.89 5982.70 114
QAPM78.47 5880.22 5676.43 5885.03 5586.75 4680.62 6466.00 7273.77 6265.35 7165.54 8078.02 5072.69 5083.71 5983.36 5588.87 6090.41 46
casdiffmvspermissive76.76 6578.46 6374.77 6880.32 8883.73 7180.65 6363.24 9673.58 6366.11 6869.39 6474.09 6569.49 7082.52 7279.35 10988.84 6186.52 74
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CPTT-MVS81.77 3783.10 3880.21 3685.93 4986.45 4887.72 3370.98 3882.54 3871.53 4774.23 4481.49 3976.31 3182.85 6981.87 6588.79 6292.26 29
Effi-MVS+75.28 7376.20 7974.20 7381.15 7783.24 7781.11 6063.13 9966.37 8460.27 8764.30 8868.88 9370.93 6581.56 7881.69 6788.61 6387.35 65
UniMVSNet (Re)69.53 11671.90 10666.76 14176.42 11880.93 9672.59 14868.03 5661.75 12141.68 18058.34 11957.23 13853.27 17179.53 11480.62 8888.57 6484.90 96
PCF-MVS73.28 679.42 4980.41 5478.26 4684.88 5988.17 3686.08 3869.85 4375.23 5568.43 5768.03 7278.38 4771.76 5781.26 8780.65 8788.56 6591.18 38
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GeoE74.23 7774.84 8573.52 7580.42 8781.46 9079.77 7161.06 12867.23 8163.67 7859.56 10868.74 9567.90 7880.25 10579.37 10888.31 6687.26 68
test250671.72 9372.95 9770.29 9481.49 7283.27 7575.74 10767.59 6168.19 7749.81 14361.15 9649.73 18958.82 13384.76 4882.94 5688.27 6780.63 135
ECVR-MVScopyleft72.20 8973.91 8970.20 9681.49 7283.27 7575.74 10767.59 6168.19 7749.31 14755.77 13062.00 11758.82 13384.76 4882.94 5688.27 6780.41 139
MAR-MVS79.21 5280.32 5577.92 4987.46 3988.15 3783.95 5267.48 6374.28 5768.25 5864.70 8577.04 5272.17 5285.42 4385.00 4288.22 6987.62 64
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Fast-Effi-MVS+73.11 8473.66 9072.48 7977.72 10980.88 9978.55 8658.83 15665.19 9260.36 8659.98 10562.42 11671.22 6381.66 7580.61 8988.20 7084.88 97
ET-MVSNet_ETH3D72.46 8874.19 8770.44 9262.50 19881.17 9479.90 7062.46 11664.52 9957.52 10071.49 5559.15 12972.08 5378.61 12581.11 7388.16 7183.29 112
OMC-MVS80.26 4182.59 4177.54 5083.04 6185.54 5283.25 5565.05 7987.32 1872.42 4072.04 5178.97 4673.30 4583.86 5781.60 6988.15 7288.83 55
AdaColmapbinary79.74 4678.62 6281.05 3289.23 3286.06 5084.95 4871.96 3379.39 4675.51 3063.16 9068.84 9476.51 2983.55 6182.85 5888.13 7386.46 75
test111171.56 9573.44 9269.38 10781.16 7682.95 8074.99 11867.68 5966.89 8246.33 16355.19 13660.91 12057.99 14184.59 5182.70 6088.12 7480.85 132
OpenMVScopyleft70.44 1076.15 6976.82 7775.37 6485.01 5684.79 5978.99 8262.07 11971.27 6867.88 6157.91 12172.36 7170.15 6682.23 7481.41 7088.12 7487.78 63
FA-MVS(training)73.66 8074.95 8472.15 8078.63 10180.46 10378.92 8354.79 16969.71 7365.37 7062.04 9366.89 10267.10 8080.72 9479.87 9788.10 7684.97 94
UA-Net74.47 7677.80 6670.59 9185.33 5285.40 5573.54 14165.98 7360.65 12956.00 10872.11 5079.15 4554.63 16683.13 6782.25 6288.04 7781.92 124
DU-MVS69.63 11570.91 11168.13 11875.99 12079.54 11073.81 13869.20 5061.20 12643.23 17558.52 11353.50 16158.57 13579.22 11780.45 9087.97 7883.97 104
FC-MVSNet-train72.60 8775.07 8369.71 10281.10 8078.79 12073.74 14065.23 7866.10 8753.34 12370.36 6063.40 11356.92 15181.44 8080.96 7687.93 7984.46 102
IB-MVS66.94 1271.21 10071.66 10870.68 8879.18 9682.83 8272.61 14761.77 12359.66 13463.44 8053.26 15259.65 12759.16 13276.78 14582.11 6387.90 8087.33 66
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PVSNet_BlendedMVS76.21 6777.52 6974.69 6979.46 9483.79 6977.50 9664.34 8569.88 7071.88 4268.54 7070.42 8067.05 8183.48 6279.63 10087.89 8186.87 71
PVSNet_Blended76.21 6777.52 6974.69 6979.46 9483.79 6977.50 9664.34 8569.88 7071.88 4268.54 7070.42 8067.05 8183.48 6279.63 10087.89 8186.87 71
DeepPCF-MVS79.04 185.30 2088.93 1281.06 3188.77 3590.48 1085.46 4573.08 2890.97 673.77 3684.81 2285.95 2077.43 2288.22 1187.73 1187.85 8394.34 9
thisisatest053071.48 9773.01 9669.70 10373.83 14478.62 12274.53 12259.12 15064.13 10158.63 9364.60 8658.63 13164.27 9880.28 10380.17 9587.82 8484.64 100
TAPA-MVS71.42 977.69 6280.05 5774.94 6680.68 8384.52 6281.36 5863.14 9884.77 2664.82 7468.72 6775.91 5871.86 5581.62 7679.55 10487.80 8585.24 89
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tttt051771.41 9872.95 9769.60 10473.70 14678.70 12174.42 12659.12 15063.89 10558.35 9664.56 8758.39 13364.27 9880.29 10280.17 9587.74 8684.69 99
MVS_Test75.37 7277.13 7573.31 7779.07 9781.32 9279.98 6760.12 14169.72 7264.11 7670.53 5973.22 6768.90 7380.14 10779.48 10687.67 8785.50 84
DI_MVS_plusplus_trai75.13 7476.12 8073.96 7478.18 10381.55 8780.97 6162.54 11368.59 7565.13 7361.43 9574.81 6169.32 7181.01 9279.59 10287.64 8885.89 78
MVSTER72.06 9074.24 8669.51 10570.39 17475.97 15076.91 10257.36 16364.64 9761.39 8568.86 6663.76 11163.46 10281.44 8079.70 9987.56 8985.31 88
TSAR-MVS + ACMM85.10 2388.81 1580.77 3489.55 2888.53 3288.59 2772.55 3087.39 1571.90 4190.95 987.55 1374.57 3687.08 2686.54 2687.47 9093.67 17
CLD-MVS79.35 5081.23 4677.16 5385.01 5686.92 4485.87 4060.89 13080.07 4575.35 3172.96 4773.21 6868.43 7785.41 4484.63 4487.41 9185.44 86
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Effi-MVS+-dtu71.82 9271.86 10771.78 8278.77 9880.47 10278.55 8661.67 12660.68 12855.49 10958.48 11565.48 10668.85 7476.92 14275.55 15487.35 9285.46 85
WR-MVS63.03 16567.40 15057.92 18375.14 12977.60 13760.56 19666.10 7054.11 17323.88 20553.94 14653.58 15934.50 20173.93 16177.71 12787.35 9280.94 131
v14419269.34 11968.68 13770.12 9774.06 14080.54 10178.08 9260.54 13454.99 16654.13 11652.92 15952.80 17266.73 8877.13 14076.72 14387.15 9485.63 81
EPNet79.08 5580.62 5177.28 5188.90 3483.17 7983.65 5372.41 3174.41 5667.15 6576.78 3374.37 6364.43 9783.70 6083.69 5287.15 9488.19 59
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EG-PatchMatch MVS67.24 14666.94 15367.60 12578.73 9981.35 9173.28 14559.49 14646.89 19851.42 13543.65 19153.49 16255.50 16381.38 8280.66 8687.15 9481.17 130
v114469.93 11369.36 12770.61 9074.89 13280.93 9679.11 8060.64 13255.97 15855.31 11153.85 14754.14 15466.54 9078.10 13077.44 13387.14 9785.09 91
anonymousdsp65.28 15567.98 14462.13 16458.73 20673.98 16467.10 17050.69 19048.41 19447.66 15754.27 14152.75 17361.45 12376.71 14680.20 9387.13 9889.53 52
PLCcopyleft68.99 1175.68 7075.31 8276.12 6082.94 6381.26 9379.94 6966.10 7077.15 5066.86 6759.13 11168.53 9673.73 4280.38 10079.04 11087.13 9881.68 126
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v1070.22 10969.76 12270.74 8674.79 13380.30 10779.22 7959.81 14457.71 14556.58 10654.22 14555.31 14766.95 8478.28 12877.47 13287.12 10085.07 92
v119269.50 11768.83 13370.29 9474.49 13680.92 9878.55 8660.54 13455.04 16454.21 11452.79 16152.33 17466.92 8577.88 13277.35 13687.04 10185.51 83
v192192069.03 12268.32 14169.86 10074.03 14180.37 10477.55 9460.25 13854.62 16853.59 12252.36 16551.50 18066.75 8777.17 13976.69 14586.96 10285.56 82
v2v48270.05 11269.46 12670.74 8674.62 13580.32 10679.00 8160.62 13357.41 14756.89 10355.43 13555.14 14966.39 9277.25 13877.14 13886.90 10383.57 111
Vis-MVSNetpermissive72.77 8677.20 7467.59 12674.19 13984.01 6576.61 10661.69 12460.62 13050.61 13970.25 6171.31 7655.57 16283.85 5882.28 6186.90 10388.08 60
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PEN-MVS62.96 16665.77 16059.70 17673.98 14275.45 15463.39 18967.61 6052.49 17925.49 20453.39 14949.12 19140.85 19471.94 17377.26 13786.86 10580.72 134
v870.23 10869.86 12070.67 8974.69 13479.82 10978.79 8459.18 14958.80 13858.20 9755.00 13757.33 13766.31 9377.51 13576.71 14486.82 10683.88 107
ACMH+66.54 1371.36 9970.09 11772.85 7882.59 6581.13 9578.56 8568.04 5561.55 12252.52 13051.50 16954.14 15468.56 7678.85 12279.50 10586.82 10683.94 106
v124068.64 12767.89 14669.51 10573.89 14380.26 10876.73 10459.97 14353.43 17653.08 12551.82 16850.84 18366.62 8976.79 14476.77 14286.78 10885.34 87
DCV-MVSNet73.65 8175.78 8171.16 8580.19 8979.27 11477.45 9861.68 12566.73 8358.72 9265.31 8169.96 8362.19 11081.29 8680.97 7586.74 10986.91 70
GBi-Net70.78 10173.37 9467.76 11972.95 15178.00 12775.15 11362.72 10664.13 10151.44 13258.37 11669.02 9057.59 14381.33 8380.72 8086.70 11082.02 118
test170.78 10173.37 9467.76 11972.95 15178.00 12775.15 11362.72 10664.13 10151.44 13258.37 11669.02 9057.59 14381.33 8380.72 8086.70 11082.02 118
FMVSNet270.39 10772.67 10167.72 12272.95 15178.00 12775.15 11362.69 11063.29 10951.25 13655.64 13168.49 9757.59 14380.91 9380.35 9286.70 11082.02 118
v7n67.05 14866.94 15367.17 13372.35 15678.97 11573.26 14658.88 15551.16 18750.90 13748.21 18250.11 18760.96 12477.70 13377.38 13486.68 11385.05 93
WR-MVS_H61.83 18065.87 15957.12 18671.72 16176.87 14161.45 19466.19 6851.97 18422.92 20953.13 15652.30 17633.80 20271.03 18075.00 15786.65 11480.78 133
MSDG71.52 9669.87 11973.44 7682.21 7079.35 11379.52 7564.59 8266.15 8661.87 8253.21 15456.09 14465.85 9578.94 12178.50 11786.60 11576.85 163
FMVSNet370.49 10572.90 9967.67 12472.88 15477.98 13074.96 12062.72 10664.13 10151.44 13258.37 11669.02 9057.43 14679.43 11579.57 10386.59 11681.81 125
MVS_111021_LR78.13 6079.85 5876.13 5981.12 7881.50 8980.28 6665.25 7776.09 5271.32 4976.49 3572.87 7072.21 5182.79 7081.29 7186.59 11687.91 61
DTE-MVSNet61.85 17864.96 16958.22 18274.32 13874.39 16361.01 19567.85 5851.76 18621.91 21253.28 15148.17 19237.74 19872.22 17076.44 14786.52 11878.49 152
baseline269.69 11470.27 11669.01 11075.72 12477.13 14073.82 13758.94 15461.35 12457.09 10261.68 9457.17 13961.99 11478.10 13076.58 14686.48 11979.85 143
thisisatest051567.40 14468.78 13465.80 14670.02 17675.24 15769.36 16057.37 16254.94 16753.67 12155.53 13454.85 15058.00 14078.19 12978.91 11386.39 12083.78 108
FMVSNet168.84 12470.47 11566.94 13871.35 16877.68 13574.71 12162.35 11756.93 14949.94 14250.01 17564.59 10857.07 14881.33 8380.72 8086.25 12182.00 121
UGNet72.78 8577.67 6767.07 13671.65 16383.24 7775.20 11263.62 9264.93 9456.72 10471.82 5273.30 6649.02 17981.02 9180.70 8586.22 12288.67 56
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Anonymous2023121171.90 9172.48 10271.21 8480.14 9081.53 8876.92 10162.89 10264.46 10058.94 8943.80 19070.98 7762.22 10980.70 9580.19 9486.18 12385.73 79
tfpn200view968.11 13068.72 13667.40 12877.83 10778.93 11674.28 12862.81 10356.64 15146.82 15952.65 16253.47 16456.59 15280.41 9778.43 11886.11 12480.52 137
CANet_DTU73.29 8376.96 7669.00 11177.04 11582.06 8579.49 7656.30 16667.85 7953.29 12471.12 5670.37 8261.81 11981.59 7780.96 7686.09 12584.73 98
CP-MVSNet62.68 16865.49 16359.40 17971.84 15975.34 15562.87 19167.04 6552.64 17827.19 20253.38 15048.15 19341.40 19271.26 17675.68 15286.07 12682.00 121
ACMH65.37 1470.71 10370.00 11871.54 8382.51 6682.47 8477.78 9368.13 5456.19 15646.06 16654.30 14051.20 18168.68 7580.66 9680.72 8086.07 12684.45 103
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thres600view767.68 13868.43 14066.80 14077.90 10478.86 11873.84 13662.75 10456.07 15744.70 17352.85 16052.81 17155.58 16180.41 9777.77 12686.05 12880.28 140
thres20067.98 13268.55 13967.30 13177.89 10678.86 11874.18 13262.75 10456.35 15446.48 16252.98 15853.54 16056.46 15380.41 9777.97 12486.05 12879.78 145
CNLPA77.20 6477.54 6876.80 5682.63 6484.31 6379.77 7164.64 8185.17 2373.18 3856.37 12869.81 8574.53 3781.12 9078.69 11586.04 13087.29 67
TSAR-MVS + COLMAP78.34 5981.64 4374.48 7280.13 9185.01 5881.73 5765.93 7484.75 2761.68 8385.79 1966.27 10471.39 6182.91 6880.78 7886.01 13185.98 77
LS3D74.08 7873.39 9374.88 6785.05 5482.62 8379.71 7368.66 5272.82 6558.80 9157.61 12261.31 11971.07 6480.32 10178.87 11486.00 13280.18 141
Anonymous20240521172.16 10580.85 8281.85 8676.88 10365.40 7662.89 11346.35 18667.99 9862.05 11281.15 8980.38 9185.97 13384.50 101
PS-CasMVS62.38 17465.06 16659.25 18071.73 16075.21 15962.77 19266.99 6651.94 18526.96 20352.00 16747.52 19641.06 19371.16 17975.60 15385.97 13381.97 123
thres40067.95 13368.62 13867.17 13377.90 10478.59 12374.27 12962.72 10656.34 15545.77 16853.00 15753.35 16756.46 15380.21 10678.43 11885.91 13580.43 138
thres100view90067.60 14268.02 14367.12 13577.83 10777.75 13473.90 13562.52 11456.64 15146.82 15952.65 16253.47 16455.92 15778.77 12377.62 12985.72 13679.23 148
Vis-MVSNet (Re-imp)67.83 13673.52 9161.19 16878.37 10276.72 14466.80 17362.96 10065.50 9134.17 19467.19 7669.68 8639.20 19779.39 11679.44 10785.68 13776.73 164
baseline170.10 11172.17 10467.69 12379.74 9276.80 14273.91 13464.38 8462.74 11448.30 15164.94 8264.08 11054.17 16881.46 7978.92 11285.66 13876.22 165
V4268.76 12669.63 12367.74 12164.93 19478.01 12678.30 9056.48 16558.65 13956.30 10754.26 14357.03 14064.85 9677.47 13677.01 14085.60 13984.96 95
TransMVSNet (Re)64.74 15865.66 16163.66 15977.40 11375.33 15669.86 15662.67 11247.63 19641.21 18150.01 17552.33 17445.31 18579.57 11277.69 12885.49 14077.07 162
IterMVS-LS71.69 9472.82 10070.37 9377.54 11176.34 14775.13 11660.46 13661.53 12357.57 9964.89 8367.33 10066.04 9477.09 14177.37 13585.48 14185.18 90
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_ETH3D67.18 14767.03 15267.36 12974.44 13778.12 12574.07 13366.38 6752.22 18146.87 15848.64 18051.84 17856.96 14977.29 13778.53 11685.42 14282.59 115
Baseline_NR-MVSNet67.53 14368.77 13566.09 14575.99 12074.75 16172.43 14968.41 5361.33 12538.33 18751.31 17054.13 15656.03 15679.22 11778.19 12185.37 14382.45 116
Fast-Effi-MVS+-dtu68.34 12869.47 12567.01 13775.15 12877.97 13277.12 10055.40 16857.87 14046.68 16156.17 12960.39 12162.36 10876.32 14976.25 15085.35 14481.34 128
diffmvspermissive74.86 7577.37 7271.93 8175.62 12580.35 10579.42 7760.15 14072.81 6664.63 7571.51 5473.11 6966.53 9179.02 12077.98 12385.25 14586.83 73
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GA-MVS68.14 12969.17 13066.93 13973.77 14578.50 12474.45 12358.28 15855.11 16348.44 15060.08 10353.99 15761.50 12178.43 12777.57 13085.13 14680.54 136
v14867.85 13567.53 14768.23 11673.25 14977.57 13874.26 13057.36 16355.70 15957.45 10153.53 14855.42 14661.96 11575.23 15373.92 16285.08 14781.32 129
HyFIR lowres test69.47 11868.94 13270.09 9876.77 11782.93 8176.63 10560.17 13959.00 13754.03 11740.54 19965.23 10767.89 7976.54 14878.30 12085.03 14880.07 142
gg-mvs-nofinetune62.55 16965.05 16759.62 17778.72 10077.61 13670.83 15553.63 17039.71 21022.04 21136.36 20364.32 10947.53 18181.16 8879.03 11185.00 14977.17 160
COLMAP_ROBcopyleft62.73 1567.66 13966.76 15568.70 11380.49 8677.98 13075.29 11162.95 10163.62 10749.96 14147.32 18550.72 18458.57 13576.87 14375.50 15584.94 15075.33 174
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tfpnnormal64.27 16163.64 17765.02 14975.84 12375.61 15371.24 15462.52 11447.79 19542.97 17742.65 19344.49 20352.66 17378.77 12376.86 14184.88 15179.29 147
pm-mvs165.62 15267.42 14963.53 16073.66 14776.39 14669.66 15760.87 13149.73 19143.97 17451.24 17157.00 14148.16 18079.89 10877.84 12584.85 15279.82 144
gm-plane-assit57.00 19357.62 20056.28 18976.10 11962.43 20547.62 21346.57 20433.84 21423.24 20737.52 20040.19 21059.61 13179.81 10977.55 13184.55 15372.03 184
USDC67.36 14567.90 14566.74 14271.72 16175.23 15871.58 15160.28 13767.45 8050.54 14060.93 9745.20 20262.08 11176.56 14774.50 16084.25 15475.38 173
MS-PatchMatch70.17 11070.49 11469.79 10180.98 8177.97 13277.51 9558.95 15362.33 11655.22 11253.14 15565.90 10562.03 11379.08 11977.11 13984.08 15577.91 155
TDRefinement66.09 15165.03 16867.31 13069.73 17876.75 14375.33 10964.55 8360.28 13249.72 14545.63 18842.83 20560.46 12975.75 15075.95 15184.08 15578.04 154
pmmvs467.89 13467.39 15168.48 11571.60 16573.57 16574.45 12360.98 12964.65 9657.97 9854.95 13851.73 17961.88 11673.78 16275.11 15683.99 15777.91 155
pmmvs562.37 17564.04 17460.42 17165.03 19271.67 17267.17 16952.70 18050.30 18844.80 17154.23 14451.19 18249.37 17872.88 16573.48 16683.45 15874.55 177
pmmvs-eth3d63.52 16462.44 18664.77 15166.82 18970.12 17769.41 15959.48 14754.34 17252.71 12646.24 18744.35 20456.93 15072.37 16673.77 16483.30 15975.91 167
pmmvs662.41 17262.88 18061.87 16571.38 16775.18 16067.76 16659.45 14841.64 20642.52 17937.33 20152.91 17046.87 18277.67 13476.26 14983.23 16079.18 149
CDS-MVSNet67.65 14069.83 12165.09 14875.39 12776.55 14574.42 12663.75 8953.55 17449.37 14659.41 10962.45 11544.44 18679.71 11079.82 9883.17 16177.36 159
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PMMVS65.06 15669.17 13060.26 17355.25 21263.43 19966.71 17443.01 20862.41 11550.64 13869.44 6367.04 10163.29 10374.36 15973.54 16582.68 16273.99 181
SixPastTwentyTwo61.84 17962.45 18561.12 16969.20 18272.20 16962.03 19357.40 16146.54 19938.03 18957.14 12641.72 20758.12 13969.67 19071.58 17381.94 16378.30 153
IterMVS66.36 15068.30 14264.10 15569.48 18174.61 16273.41 14450.79 18957.30 14848.28 15260.64 10059.92 12660.85 12874.14 16072.66 16981.80 16478.82 151
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PatchMatch-RL67.78 13766.65 15669.10 10973.01 15072.69 16868.49 16361.85 12262.93 11260.20 8856.83 12750.42 18569.52 6975.62 15174.46 16181.51 16573.62 182
TinyColmap62.84 16761.03 19264.96 15069.61 17971.69 17168.48 16459.76 14555.41 16047.69 15647.33 18434.20 21462.76 10774.52 15772.59 17081.44 16671.47 185
EPNet_dtu68.08 13171.00 11064.67 15279.64 9368.62 18375.05 11763.30 9466.36 8545.27 17067.40 7566.84 10343.64 18875.37 15274.98 15881.15 16777.44 158
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CR-MVSNet64.83 15765.54 16264.01 15770.64 17369.41 17865.97 17852.74 17857.81 14252.65 12754.27 14156.31 14360.92 12572.20 17173.09 16781.12 16875.69 170
RPMNet61.71 18262.88 18060.34 17269.51 18069.41 17863.48 18849.23 19457.81 14245.64 16950.51 17350.12 18653.13 17268.17 19768.49 18881.07 16975.62 172
test-mter60.84 18464.62 17156.42 18855.99 21064.18 19465.39 18034.23 21354.39 17146.21 16557.40 12559.49 12855.86 15871.02 18169.65 17980.87 17076.20 166
test-LLR64.42 15964.36 17264.49 15375.02 13063.93 19666.61 17561.96 12054.41 16947.77 15457.46 12360.25 12255.20 16470.80 18269.33 18080.40 17174.38 178
TESTMET0.1,161.10 18364.36 17257.29 18557.53 20763.93 19666.61 17536.22 21254.41 16947.77 15457.46 12360.25 12255.20 16470.80 18269.33 18080.40 17174.38 178
CostFormer68.92 12369.58 12468.15 11775.98 12276.17 14978.22 9151.86 18365.80 8961.56 8463.57 8962.83 11461.85 11770.40 18868.67 18579.42 17379.62 146
CVMVSNet62.55 16965.89 15858.64 18166.95 18769.15 18066.49 17756.29 16752.46 18032.70 19559.27 11058.21 13550.09 17771.77 17471.39 17479.31 17478.99 150
CHOSEN 1792x268869.20 12169.26 12869.13 10876.86 11678.93 11677.27 9960.12 14161.86 12054.42 11342.54 19461.61 11866.91 8678.55 12678.14 12279.23 17583.23 113
PM-MVS60.48 18560.94 19359.94 17458.85 20566.83 18964.27 18651.39 18655.03 16548.03 15350.00 17740.79 20958.26 13869.20 19367.13 19578.84 17677.60 157
baseline70.45 10674.09 8866.20 14470.95 17175.67 15174.26 13053.57 17168.33 7658.42 9469.87 6271.45 7361.55 12074.84 15674.76 15978.42 17783.72 109
PatchT61.97 17764.04 17459.55 17860.49 20267.40 18656.54 20348.65 19856.69 15052.65 12751.10 17252.14 17760.92 12572.20 17173.09 16778.03 17875.69 170
RPSCF67.64 14171.25 10963.43 16161.86 20070.73 17567.26 16850.86 18874.20 5958.91 9067.49 7469.33 8764.10 10071.41 17568.45 18977.61 17977.17 160
MDTV_nov1_ep13_2view60.16 18660.51 19459.75 17565.39 19169.05 18168.00 16548.29 20051.99 18245.95 16748.01 18349.64 19053.39 17068.83 19466.52 19677.47 18069.55 191
MDTV_nov1_ep1364.37 16065.24 16463.37 16268.94 18370.81 17472.40 15050.29 19260.10 13353.91 11960.07 10459.15 12957.21 14769.43 19267.30 19277.47 18069.78 190
LTVRE_ROB59.44 1661.82 18162.64 18360.87 17072.83 15577.19 13964.37 18558.97 15233.56 21528.00 20152.59 16442.21 20663.93 10174.52 15776.28 14877.15 18282.13 117
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
IterMVS-SCA-FT66.89 14969.22 12964.17 15471.30 16975.64 15271.33 15253.17 17557.63 14649.08 14860.72 9960.05 12563.09 10474.99 15573.92 16277.07 18381.57 127
SCA65.40 15466.58 15764.02 15670.65 17273.37 16667.35 16753.46 17363.66 10654.14 11560.84 9860.20 12461.50 12169.96 18968.14 19077.01 18469.91 188
MDA-MVSNet-bldmvs53.37 20253.01 20553.79 19743.67 21667.95 18559.69 19957.92 15943.69 20232.41 19641.47 19527.89 21952.38 17456.97 21265.99 19876.68 18567.13 195
MVS-HIRNet54.41 19952.10 20657.11 18758.99 20456.10 21149.68 21149.10 19546.18 20052.15 13133.18 20746.11 19956.10 15563.19 20559.70 20876.64 18660.25 207
dps64.00 16362.99 17965.18 14773.29 14872.07 17068.98 16253.07 17657.74 14458.41 9555.55 13347.74 19560.89 12769.53 19167.14 19476.44 18771.19 186
test0.0.03 158.80 18961.58 19055.56 19175.02 13068.45 18459.58 20061.96 12052.74 17729.57 19849.75 17854.56 15231.46 20471.19 17769.77 17875.75 18864.57 199
EU-MVSNet54.63 19858.69 19649.90 20256.99 20862.70 20456.41 20450.64 19145.95 20123.14 20850.42 17446.51 19836.63 19965.51 20064.85 19975.57 18974.91 175
PatchmatchNetpermissive64.21 16264.65 17063.69 15871.29 17068.66 18269.63 15851.70 18563.04 11053.77 12059.83 10758.34 13460.23 13068.54 19566.06 19775.56 19068.08 194
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Anonymous2023120656.36 19557.80 19954.67 19470.08 17566.39 19060.46 19757.54 16049.50 19329.30 19933.86 20646.64 19735.18 20070.44 18668.88 18475.47 19168.88 193
CMPMVSbinary47.78 1762.49 17162.52 18462.46 16370.01 17770.66 17662.97 19051.84 18451.98 18356.71 10542.87 19253.62 15857.80 14272.23 16970.37 17775.45 19275.91 167
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet58.52 19161.34 19155.22 19260.76 20167.01 18866.81 17249.02 19656.43 15338.90 18540.59 19854.54 15340.57 19573.16 16471.65 17275.30 19366.00 197
TAMVS59.58 18862.81 18255.81 19066.03 19065.64 19363.86 18748.74 19749.95 19037.07 19154.77 13958.54 13244.44 18672.29 16871.79 17174.70 19466.66 196
tpm cat165.41 15363.81 17667.28 13275.61 12672.88 16775.32 11052.85 17762.97 11163.66 7953.24 15353.29 16961.83 11865.54 19964.14 20174.43 19574.60 176
test20.0353.93 20156.28 20251.19 20072.19 15865.83 19153.20 20761.08 12742.74 20422.08 21037.07 20245.76 20124.29 21270.44 18669.04 18274.31 19663.05 203
FMVSNet557.24 19260.02 19553.99 19656.45 20962.74 20365.27 18147.03 20355.14 16239.55 18440.88 19653.42 16641.83 18972.35 16771.10 17673.79 19764.50 200
testgi54.39 20057.86 19850.35 20171.59 16667.24 18754.95 20553.25 17443.36 20323.78 20644.64 18947.87 19424.96 20970.45 18568.66 18673.60 19862.78 204
MIMVSNet149.27 20453.25 20444.62 20644.61 21461.52 20653.61 20652.18 18141.62 20718.68 21528.14 21241.58 20825.50 20768.46 19669.04 18273.15 19962.37 205
pmmvs347.65 20549.08 21045.99 20544.61 21454.79 21250.04 20931.95 21633.91 21329.90 19730.37 20833.53 21546.31 18363.50 20363.67 20273.14 20063.77 202
FC-MVSNet-test56.90 19465.20 16547.21 20466.98 18663.20 20149.11 21258.60 15759.38 13611.50 21965.60 7956.68 14224.66 21171.17 17871.36 17572.38 20169.02 192
GG-mvs-BLEND46.86 20867.51 14822.75 2130.05 22476.21 14864.69 1830.04 22161.90 1190.09 22555.57 13271.32 750.08 22070.54 18467.19 19371.58 20269.86 189
ambc53.42 20364.99 19363.36 20049.96 21047.07 19737.12 19028.97 21016.36 22241.82 19075.10 15467.34 19171.55 20375.72 169
tpmrst62.00 17662.35 18761.58 16671.62 16464.14 19569.07 16148.22 20262.21 11753.93 11858.26 12055.30 14855.81 15963.22 20462.62 20370.85 20470.70 187
tpm62.41 17263.15 17861.55 16772.24 15763.79 19871.31 15346.12 20657.82 14155.33 11059.90 10654.74 15153.63 16967.24 19864.29 20070.65 20574.25 180
FPMVS51.87 20350.00 20854.07 19566.83 18857.25 20960.25 19850.91 18750.25 18934.36 19336.04 20432.02 21641.49 19158.98 21056.07 20970.56 20659.36 209
EPMVS60.00 18761.97 18857.71 18468.46 18463.17 20264.54 18448.23 20163.30 10844.72 17260.19 10256.05 14550.85 17665.27 20262.02 20469.44 20763.81 201
PMVScopyleft39.38 1846.06 20943.30 21149.28 20362.93 19638.75 21641.88 21553.50 17233.33 21635.46 19228.90 21131.01 21733.04 20358.61 21154.63 21268.86 20857.88 210
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
pmnet_mix0255.30 19757.01 20153.30 19964.14 19559.09 20758.39 20250.24 19353.47 17538.68 18649.75 17845.86 20040.14 19665.38 20160.22 20668.19 20965.33 198
CHOSEN 280x42058.70 19061.88 18954.98 19355.45 21150.55 21464.92 18240.36 20955.21 16138.13 18848.31 18163.76 11163.03 10673.73 16368.58 18768.00 21073.04 183
new-patchmatchnet46.97 20749.47 20944.05 20862.82 19756.55 21045.35 21452.01 18242.47 20517.04 21735.73 20535.21 21321.84 21561.27 20754.83 21165.26 21160.26 206
ADS-MVSNet55.94 19658.01 19753.54 19862.48 19958.48 20859.12 20146.20 20559.65 13542.88 17852.34 16653.31 16846.31 18362.00 20660.02 20764.23 21260.24 208
N_pmnet47.35 20650.13 20744.11 20759.98 20351.64 21351.86 20844.80 20749.58 19220.76 21340.65 19740.05 21129.64 20559.84 20855.15 21057.63 21354.00 211
new_pmnet38.40 21042.64 21233.44 21037.54 21945.00 21536.60 21632.72 21540.27 20812.72 21829.89 20928.90 21824.78 21053.17 21352.90 21356.31 21448.34 212
Gipumacopyleft36.38 21135.80 21337.07 20945.76 21333.90 21729.81 21748.47 19939.91 20918.02 2168.00 2208.14 22425.14 20859.29 20961.02 20555.19 21540.31 213
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS225.60 21229.75 21420.76 21428.00 22030.93 21823.10 21929.18 21723.14 2181.46 22418.23 21616.54 2215.08 21840.22 21441.40 21537.76 21637.79 215
test_method22.26 21325.94 21517.95 2153.24 2237.17 22323.83 2187.27 21937.35 21220.44 21421.87 21539.16 21218.67 21634.56 21520.84 21934.28 21720.64 219
E-PMN21.77 21418.24 21725.89 21140.22 21719.58 22012.46 22239.87 21018.68 2206.71 2219.57 2174.31 22722.36 21419.89 21927.28 21733.73 21828.34 217
EMVS20.98 21517.15 21825.44 21239.51 21819.37 22112.66 22139.59 21119.10 2196.62 2229.27 2184.40 22622.43 21317.99 22024.40 21831.81 21925.53 218
tmp_tt14.50 21714.68 2217.17 22310.46 2242.21 22037.73 21128.71 20025.26 21316.98 2204.37 21931.49 21629.77 21626.56 220
MVEpermissive19.12 1920.47 21623.27 21617.20 21612.66 22225.41 21910.52 22334.14 21414.79 2216.53 2238.79 2194.68 22516.64 21729.49 21741.63 21422.73 22138.11 214
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft18.74 22218.55 2208.02 21826.96 2177.33 22023.81 21413.05 22325.99 20625.17 21822.45 22236.25 216
testmvs0.09 2170.15 2190.02 2180.01 2250.02 2250.05 2260.01 2220.11 2220.01 2260.26 2220.01 2280.06 2220.10 2210.10 2200.01 2230.43 221
test1230.09 2170.14 2200.02 2180.00 2260.02 2250.02 2270.01 2220.09 2230.00 2270.30 2210.00 2290.08 2200.03 2220.09 2210.01 2230.45 220
uanet_test0.00 2190.00 2210.00 2200.00 2260.00 2270.00 2280.00 2240.00 2240.00 2270.00 2230.00 2290.00 2230.00 2230.00 2220.00 2250.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2260.00 2270.00 2280.00 2240.00 2240.00 2270.00 2230.00 2290.00 2230.00 2230.00 2220.00 2250.00 222
sosnet0.00 2190.00 2210.00 2200.00 2260.00 2270.00 2280.00 2240.00 2240.00 2270.00 2230.00 2290.00 2230.00 2230.00 2220.00 2250.00 222
RE-MVS-def46.24 164
9.1486.88 16
SR-MVS88.99 3373.57 2487.54 14
our_test_367.93 18570.99 17366.89 171
MTAPA83.48 186.45 19
MTMP82.66 584.91 26
Patchmatch-RL test2.85 225
mPP-MVS89.90 2481.29 41
NP-MVS80.10 44
Patchmtry65.80 19265.97 17852.74 17852.65 127