This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
CS-MVS96.87 4397.41 3996.24 4597.42 5999.48 997.30 5591.83 8097.17 3993.02 4094.80 5194.45 6698.16 3098.61 1397.85 3999.69 199.50 12
TSAR-MVS + MP.98.49 998.78 898.15 1998.14 4999.17 3399.34 697.18 2998.44 595.72 1997.84 1699.28 1298.87 799.05 198.05 2699.66 299.60 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
IS_MVSNet95.28 6396.43 5693.94 8995.30 9299.01 4795.90 9791.12 9194.13 11387.50 10491.23 8294.45 6694.17 10898.45 2098.50 799.65 399.23 37
casdiffmvs_mvgpermissive94.55 7894.26 9094.88 7294.96 10298.51 8197.11 5791.82 8194.28 11089.20 9186.60 11986.85 11196.56 6797.47 6097.25 6199.64 498.83 89
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APDe-MVS98.87 398.96 498.77 199.58 299.53 799.44 197.81 298.22 1097.33 498.70 599.33 1098.86 898.96 698.40 1399.63 599.57 9
DROMVSNet96.49 4997.63 3495.16 6494.75 11098.69 7097.39 5488.97 11896.34 5792.02 5196.04 3796.46 5098.21 2698.41 2497.96 3299.61 699.55 10
test250694.32 8693.00 11595.87 5196.16 7699.39 1596.96 6192.80 6495.22 9394.47 2791.55 8070.45 19395.25 9098.29 2897.98 2999.59 798.10 126
ECVR-MVScopyleft94.14 8892.96 11695.52 5896.16 7699.39 1596.96 6192.80 6495.22 9392.38 4781.48 15280.31 14995.25 9098.29 2897.98 2999.59 798.05 127
SD-MVS98.52 898.77 998.23 1598.15 4899.26 2698.79 2697.59 1598.52 396.25 1597.99 1599.75 699.01 398.27 3297.97 3199.59 799.63 2
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MCST-MVS98.20 1898.36 1998.01 2299.40 1499.05 3799.00 2097.62 1397.59 2893.70 3397.42 2799.30 1198.77 1398.39 2697.48 5099.59 799.31 27
test111193.94 9392.78 11795.29 6396.14 7899.42 1196.79 7092.85 6395.08 9791.39 5680.69 15779.86 15295.00 9498.28 3198.00 2899.58 1198.11 125
UA-Net93.96 9295.95 6291.64 11696.06 7998.59 7995.29 10890.00 10291.06 15782.87 12290.64 9098.06 3986.06 18798.14 3998.20 1999.58 1196.96 161
EPP-MVSNet95.27 6496.18 6094.20 8794.88 10498.64 7594.97 11390.70 9595.34 8689.67 8391.66 7893.84 6995.42 8897.32 6497.00 6599.58 1199.47 15
ETV-MVS96.31 5197.47 3894.96 7094.79 10798.78 6496.08 9191.41 8896.16 6290.50 6895.76 4196.20 5697.39 4598.42 2397.82 4099.57 1499.18 46
CS-MVS-test97.00 3997.85 3396.00 5097.77 5499.56 596.35 8591.95 7597.54 2992.20 4896.14 3596.00 6098.19 2898.46 1997.78 4299.57 1499.45 16
Vis-MVSNet (Re-imp)94.46 8196.24 5892.40 10895.23 9598.64 7595.56 10590.99 9294.42 10785.02 11490.88 8994.65 6588.01 17698.17 3798.37 1699.57 1498.53 102
DPE-MVScopyleft98.75 598.91 698.57 599.21 2399.54 699.42 297.78 697.49 3196.84 998.94 199.82 598.59 2198.90 1098.22 1899.56 1799.48 14
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SteuartSystems-ACMMP98.38 1498.71 1097.99 2399.34 2099.46 1099.34 697.33 2497.31 3594.25 2998.06 1399.17 1998.13 3198.98 598.46 999.55 1899.54 11
Skip Steuart: Steuart Systems R&D Blog.
canonicalmvs95.25 6595.45 6995.00 6895.27 9498.72 6896.89 6489.82 10696.51 5490.84 6493.72 5786.01 11897.66 4195.78 11997.94 3499.54 1999.50 12
casdiffmvspermissive94.38 8594.15 9694.64 8194.70 11498.51 8196.03 9491.66 8395.70 7889.36 8886.48 12285.03 12896.60 6697.40 6297.30 5899.52 2098.67 95
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline194.59 7794.47 8594.72 7895.16 9797.97 9896.07 9291.94 7694.86 10089.98 7791.60 7985.87 12095.64 8097.07 7296.90 6899.52 2097.06 160
APD-MVScopyleft98.36 1598.32 2398.41 899.47 599.26 2699.12 1597.77 796.73 5096.12 1697.27 2898.88 2498.46 2598.47 1898.39 1499.52 2099.22 39
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Vis-MVSNetpermissive92.77 11295.00 8090.16 13594.10 12498.79 6394.76 11988.26 12592.37 14279.95 13688.19 11091.58 8084.38 19797.59 5797.58 4899.52 2098.91 81
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DeepC-MVS_fast96.13 198.13 2098.27 2597.97 2499.16 2699.03 4399.05 1897.24 2698.22 1094.17 3195.82 3998.07 3898.69 1698.83 1198.80 299.52 2099.10 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CP-MVS98.32 1798.34 2298.29 1299.34 2099.30 2299.15 1497.35 2197.49 3195.58 2197.72 1898.62 3398.82 1198.29 2897.67 4599.51 2599.28 28
DeepC-MVS94.87 496.76 4896.50 5497.05 3598.21 4799.28 2498.67 2797.38 2097.31 3590.36 7389.19 10193.58 7198.19 2898.31 2798.50 799.51 2599.36 21
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPR98.40 1298.49 1398.28 1399.41 1399.40 1399.36 497.35 2198.30 695.02 2597.79 1798.39 3699.04 298.26 3398.10 2399.50 2799.22 39
HFP-MVS98.48 1098.62 1198.32 1199.39 1799.33 2199.27 1097.42 1898.27 795.25 2398.34 1098.83 2699.08 198.26 3398.08 2599.48 2899.26 33
MP-MVScopyleft98.09 2298.30 2497.84 2699.34 2099.19 3299.23 1397.40 1997.09 4393.03 3997.58 2298.85 2598.57 2398.44 2297.69 4499.48 2899.23 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS97.81 2598.11 2897.46 2999.55 399.34 2099.32 994.51 4596.21 6193.07 3698.05 1497.95 4198.82 1198.22 3697.89 3799.48 2899.09 54
3Dnovator93.79 897.08 3797.20 4196.95 3799.09 2899.03 4398.20 3993.33 5297.99 1593.82 3290.61 9196.80 4897.82 3797.90 4898.78 399.47 3199.26 33
XVS96.60 6899.35 1796.82 6790.85 6198.72 2999.46 32
X-MVStestdata96.60 6899.35 1796.82 6790.85 6198.72 2999.46 32
X-MVS97.84 2498.19 2797.42 3099.40 1499.35 1799.06 1797.25 2597.38 3490.85 6196.06 3698.72 2998.53 2498.41 2498.15 2299.46 3299.28 28
ACMMPcopyleft97.37 3397.48 3797.25 3198.88 3699.28 2498.47 3496.86 3497.04 4592.15 4997.57 2396.05 5997.67 4097.27 6595.99 9299.46 3299.14 51
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SF-MVS98.39 1398.45 1798.33 1099.45 999.05 3798.27 3797.65 997.73 1997.02 798.18 1299.25 1598.11 3298.15 3897.62 4699.45 3699.19 43
tfpn200view993.64 10092.57 12094.89 7195.33 9098.94 5196.82 6792.31 6892.63 13388.29 9687.21 11278.01 16097.12 5396.82 7795.85 9799.45 3698.56 99
thres600view793.49 10592.37 13194.79 7795.42 8798.93 5396.58 7892.31 6893.04 12787.88 10186.62 11876.94 16697.09 5496.82 7795.63 10299.45 3698.63 97
thres20093.62 10192.54 12194.88 7295.36 8998.93 5396.75 7292.31 6892.84 13088.28 9886.99 11477.81 16297.13 5196.82 7795.92 9399.45 3698.49 105
DELS-MVS96.06 5496.04 6196.07 4997.77 5499.25 2898.10 4193.26 5494.42 10792.79 4388.52 10893.48 7295.06 9398.51 1698.83 199.45 3699.28 28
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PHI-MVS97.78 2698.44 1897.02 3698.73 3799.25 2898.11 4095.54 3996.66 5392.79 4398.52 699.38 997.50 4497.84 4998.39 1499.45 3699.03 65
CDPH-MVS96.84 4597.49 3696.09 4798.92 3398.85 6198.61 2895.09 4196.00 6987.29 10595.45 4597.42 4297.16 5097.83 5097.94 3499.44 4298.92 78
TSAR-MVS + GP.97.45 3198.36 1996.39 4195.56 8698.93 5397.74 4893.31 5397.61 2794.24 3098.44 999.19 1798.03 3597.60 5697.41 5399.44 4299.33 24
3Dnovator+93.91 797.23 3597.22 4097.24 3298.89 3598.85 6198.26 3893.25 5697.99 1595.56 2290.01 9798.03 4098.05 3497.91 4798.43 1099.44 4299.35 22
DVP-MVS++98.92 199.18 198.61 499.47 599.61 299.39 397.82 198.80 196.86 898.90 299.92 198.67 1799.02 298.20 1999.43 4599.82 1
EIA-MVS95.50 5696.19 5994.69 7994.83 10698.88 6095.93 9691.50 8794.47 10689.43 8593.14 6092.72 7697.05 5597.82 5297.13 6399.43 4599.15 49
thres40093.56 10392.43 12894.87 7495.40 8898.91 5696.70 7492.38 6792.93 12988.19 10086.69 11777.35 16397.13 5196.75 8295.85 9799.42 4798.56 99
SMA-MVScopyleft98.66 798.89 798.39 999.60 199.41 1299.00 2097.63 1297.78 1895.83 1898.33 1199.83 498.85 998.93 898.56 699.41 4899.40 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
UniMVSNet (Re)90.03 14889.61 15790.51 13189.97 17196.12 14292.32 15789.26 11490.99 15880.95 13478.25 16675.08 17391.14 14693.78 15593.87 15299.41 4899.21 41
CNVR-MVS98.47 1198.46 1698.48 799.40 1499.05 3799.02 1997.54 1697.73 1996.65 1197.20 2999.13 2098.85 998.91 998.10 2399.41 4899.08 55
MSP-MVS98.73 698.93 598.50 699.44 1199.57 499.36 497.65 998.14 1296.51 1498.49 799.65 898.67 1798.60 1498.42 1199.40 5199.63 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ACMMP_NAP98.20 1898.49 1397.85 2599.50 499.40 1399.26 1197.64 1197.47 3392.62 4697.59 2099.09 2298.71 1598.82 1297.86 3899.40 5199.19 43
NCCC98.10 2198.05 3098.17 1899.38 1899.05 3799.00 2097.53 1798.04 1495.12 2494.80 5199.18 1898.58 2298.49 1797.78 4299.39 5398.98 72
thres100view90093.55 10492.47 12794.81 7695.33 9098.74 6696.78 7192.30 7192.63 13388.29 9687.21 11278.01 16096.78 6196.38 9795.92 9399.38 5498.40 111
MVS_030496.31 5196.91 4995.62 5597.21 6499.20 3198.55 3193.10 5997.04 4589.73 8190.30 9396.35 5295.71 7898.14 3997.93 3699.38 5499.40 18
FC-MVSNet-train93.85 9693.91 9893.78 9394.94 10396.79 12494.29 12791.13 9093.84 11888.26 9990.40 9285.23 12594.65 10196.54 9195.31 11199.38 5499.28 28
DVP-MVScopyleft98.86 498.97 398.75 299.43 1299.63 199.25 1297.81 298.62 297.69 197.59 2099.90 298.93 598.99 498.42 1199.37 5799.62 4
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
UniMVSNet_NR-MVSNet90.35 14189.96 15490.80 12789.66 17495.83 15492.48 15390.53 9890.96 15979.57 13879.33 16377.14 16493.21 12692.91 17194.50 13999.37 5799.05 62
SED-MVS98.90 299.07 298.69 399.38 1899.61 299.33 897.80 498.25 897.60 298.87 499.89 398.67 1799.02 298.26 1799.36 5999.61 6
DU-MVS89.67 15188.84 16290.63 13089.26 18495.61 16092.48 15389.91 10391.22 15579.57 13877.72 16771.18 19093.21 12692.53 17594.57 13399.35 6099.05 62
WR-MVS_H87.93 17387.85 17688.03 16589.62 17595.58 16490.47 18585.55 15687.20 19076.83 15274.42 18172.67 18486.37 18593.22 16693.04 16699.33 6198.83 89
QAPM96.78 4797.14 4496.36 4299.05 2999.14 3598.02 4293.26 5497.27 3790.84 6491.16 8397.31 4397.64 4297.70 5498.20 1999.33 6199.18 46
NR-MVSNet89.34 15488.66 16390.13 13890.40 16395.61 16093.04 14589.91 10391.22 15578.96 14177.72 16768.90 20289.16 17294.24 15293.95 14999.32 6398.99 70
TranMVSNet+NR-MVSNet89.23 15788.48 16690.11 13989.07 19095.25 17492.91 14690.43 9990.31 16577.10 15076.62 17071.57 18891.83 13892.12 18194.59 13299.32 6398.92 78
LGP-MVS_train94.12 8994.62 8293.53 9696.44 7297.54 10397.40 5391.84 7894.66 10281.09 13395.70 4283.36 13995.10 9296.36 10095.71 10199.32 6399.03 65
HPM-MVS++copyleft98.34 1698.47 1598.18 1699.46 899.15 3499.10 1697.69 897.67 2494.93 2697.62 1999.70 798.60 2098.45 2097.46 5199.31 6699.26 33
CLD-MVS94.79 7194.36 8895.30 6295.21 9697.46 10697.23 5692.24 7296.43 5591.77 5392.69 6584.31 13196.06 7395.52 12595.03 11999.31 6699.06 60
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CP-MVSNet87.89 17687.27 18288.62 15289.30 18295.06 17790.60 18485.78 15287.43 18975.98 15874.60 17868.14 20590.76 15593.07 16993.60 15799.30 6898.98 72
PVSNet_Blended_VisFu94.77 7395.54 6793.87 9196.48 7198.97 4994.33 12691.84 7894.93 9990.37 7285.04 13394.99 6390.87 15498.12 4197.30 5899.30 6899.45 16
PS-CasMVS87.33 18386.68 19288.10 15989.22 18994.93 18290.35 18785.70 15386.44 19474.01 17373.43 18866.59 21190.04 16692.92 17093.52 15899.28 7098.91 81
TAPA-MVS94.18 596.38 5096.49 5596.25 4398.26 4698.66 7298.00 4394.96 4397.17 3989.48 8492.91 6396.35 5297.53 4396.59 8895.90 9599.28 7097.82 132
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Effi-MVS+92.93 11193.86 10091.86 11294.07 12598.09 9595.59 10485.98 15094.27 11179.54 14091.12 8681.81 14596.71 6396.67 8696.06 8899.27 7298.98 72
WR-MVS87.93 17388.09 17087.75 17089.26 18495.28 17190.81 18286.69 14188.90 17375.29 16474.31 18273.72 17985.19 19392.26 17893.32 16299.27 7298.81 91
MVS_111021_HR97.04 3898.20 2695.69 5498.44 4499.29 2396.59 7793.20 5797.70 2289.94 7998.46 896.89 4696.71 6398.11 4297.95 3399.27 7299.01 68
LS3D95.46 5995.14 7595.84 5297.91 5398.90 5898.58 3097.79 597.07 4483.65 12088.71 10488.64 10397.82 3797.49 5997.42 5299.26 7597.72 140
OPM-MVS93.61 10292.43 12895.00 6896.94 6797.34 10997.78 4794.23 4689.64 16985.53 11288.70 10582.81 14196.28 7196.28 10395.00 12299.24 7697.22 153
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PEN-MVS87.22 18586.50 19488.07 16088.88 19394.44 19290.99 18186.21 14586.53 19373.66 17474.97 17566.56 21289.42 17191.20 19293.48 15999.24 7698.31 119
PVSNet_BlendedMVS95.41 6195.28 7195.57 5697.42 5999.02 4595.89 9993.10 5996.16 6293.12 3491.99 7185.27 12394.66 9998.09 4397.34 5699.24 7699.08 55
PVSNet_Blended95.41 6195.28 7195.57 5697.42 5999.02 4595.89 9993.10 5996.16 6293.12 3491.99 7185.27 12394.66 9998.09 4397.34 5699.24 7699.08 55
CSCG97.44 3297.18 4397.75 2799.47 599.52 898.55 3195.41 4097.69 2395.72 1994.29 5495.53 6298.10 3396.20 10797.38 5599.24 7699.62 4
OpenMVScopyleft92.33 1195.50 5695.22 7395.82 5398.98 3098.97 4997.67 4993.04 6294.64 10389.18 9284.44 13894.79 6496.79 6097.23 6697.61 4799.24 7698.88 83
CANet96.84 4597.20 4196.42 4097.92 5299.24 3098.60 2993.51 5197.11 4293.07 3691.16 8397.24 4496.21 7298.24 3598.05 2699.22 8299.35 22
train_agg97.65 2998.06 2997.18 3398.94 3298.91 5698.98 2497.07 3196.71 5190.66 6697.43 2699.08 2398.20 2797.96 4697.14 6299.22 8299.19 43
ACMM92.75 1094.41 8493.84 10195.09 6696.41 7396.80 12194.88 11693.54 5096.41 5690.16 7492.31 6983.11 14096.32 7096.22 10594.65 12999.22 8297.35 150
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GBi-Net93.81 9794.18 9293.38 10091.34 15595.86 15196.22 8688.68 12095.23 9090.40 6986.39 12391.16 8194.40 10596.52 9296.30 7999.21 8597.79 133
test193.81 9794.18 9293.38 10091.34 15595.86 15196.22 8688.68 12095.23 9090.40 6986.39 12391.16 8194.40 10596.52 9296.30 7999.21 8597.79 133
FMVSNet293.30 10893.36 11193.22 10391.34 15595.86 15196.22 8688.24 12695.15 9689.92 8081.64 15089.36 9594.40 10596.77 8196.98 6699.21 8597.79 133
tttt051794.52 8095.44 7093.44 9994.51 11798.68 7194.61 12290.72 9395.61 8286.84 10993.78 5689.26 9794.74 9697.02 7594.86 12499.20 8898.87 85
GeoE92.52 11692.64 11992.39 10993.96 12697.76 10096.01 9585.60 15593.23 12583.94 11781.56 15184.80 12995.63 8196.22 10595.83 9999.19 8999.07 59
thisisatest053094.54 7995.47 6893.46 9894.51 11798.65 7494.66 12090.72 9395.69 8086.90 10893.80 5589.44 9494.74 9696.98 7694.86 12499.19 8998.85 87
DI_MVS_plusplus_trai94.01 9193.63 10594.44 8394.54 11698.26 8897.51 5190.63 9695.88 7389.34 8980.54 15989.36 9595.48 8696.33 10196.27 8299.17 9198.78 93
MSLP-MVS++98.04 2397.93 3298.18 1699.10 2799.09 3698.34 3696.99 3297.54 2996.60 1294.82 5098.45 3498.89 697.46 6198.77 499.17 9199.37 20
AdaColmapbinary97.53 3096.93 4798.24 1499.21 2398.77 6598.47 3497.34 2396.68 5296.52 1395.11 4896.12 5798.72 1497.19 6996.24 8399.17 9198.39 112
Fast-Effi-MVS+91.87 12092.08 13591.62 11892.91 14197.21 11394.93 11484.60 16993.61 12181.49 13183.50 14378.95 15596.62 6596.55 9096.22 8499.16 9498.51 103
FC-MVSNet-test91.63 12493.82 10289.08 14892.02 15096.40 13693.26 14187.26 13593.72 11977.26 14888.61 10789.86 9285.50 19095.72 12395.02 12099.16 9497.44 147
UGNet94.92 6696.63 5292.93 10496.03 8098.63 7794.53 12391.52 8696.23 6090.03 7692.87 6496.10 5886.28 18696.68 8596.60 7599.16 9499.32 26
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ACMP92.88 994.43 8294.38 8794.50 8296.01 8197.69 10195.85 10292.09 7395.74 7789.12 9395.14 4782.62 14394.77 9595.73 12194.67 12899.14 9799.06 60
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DTE-MVSNet86.67 18886.09 19587.35 17988.45 19994.08 19890.65 18386.05 14986.13 19572.19 17874.58 18066.77 21087.61 17990.31 19593.12 16599.13 9897.62 143
OMC-MVS97.00 3996.92 4897.09 3498.69 3898.66 7297.85 4695.02 4298.09 1394.47 2793.15 5996.90 4597.38 4697.16 7096.82 7299.13 9897.65 141
anonymousdsp88.90 16291.00 14786.44 18788.74 19795.97 14690.40 18682.86 17988.77 17667.33 19981.18 15481.44 14790.22 16596.23 10494.27 14399.12 10099.16 48
MVS_Test94.82 6995.66 6493.84 9294.79 10798.35 8596.49 8189.10 11796.12 6587.09 10792.58 6690.61 8796.48 6896.51 9596.89 6999.11 10198.54 101
IB-MVS89.56 1591.71 12392.50 12390.79 12895.94 8298.44 8387.05 19891.38 8993.15 12692.98 4184.78 13485.14 12678.27 20592.47 17794.44 14099.10 10299.08 55
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PLCcopyleft94.95 397.37 3396.77 5198.07 2098.97 3198.21 8997.94 4596.85 3597.66 2597.58 393.33 5896.84 4798.01 3697.13 7196.20 8599.09 10398.01 128
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
pm-mvs189.19 15889.02 16189.38 14690.40 16395.74 15892.05 16588.10 12886.13 19577.70 14573.72 18679.44 15488.97 17395.81 11894.51 13899.08 10497.78 138
PCF-MVS93.95 695.65 5595.14 7596.25 4397.73 5798.73 6797.59 5097.13 3092.50 13789.09 9489.85 9896.65 4996.90 5894.97 13994.89 12399.08 10498.38 113
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Baseline_NR-MVSNet89.27 15688.01 17290.73 12989.26 18493.71 20092.71 15089.78 10890.73 16081.28 13273.53 18772.85 18292.30 13392.53 17593.84 15499.07 10698.88 83
FMVSNet393.79 9994.17 9493.35 10291.21 15895.99 14496.62 7588.68 12095.23 9090.40 6986.39 12391.16 8194.11 10995.96 11296.67 7399.07 10697.79 133
HQP-MVS94.43 8294.57 8394.27 8696.41 7397.23 11296.89 6493.98 4795.94 7183.68 11995.01 4984.46 13095.58 8395.47 12794.85 12799.07 10699.00 69
ET-MVSNet_ETH3D93.34 10794.33 8992.18 11183.26 21297.66 10296.72 7389.89 10595.62 8187.17 10696.00 3883.69 13796.99 5693.78 15595.34 11099.06 10998.18 123
DCV-MVSNet94.76 7495.12 7794.35 8595.10 10095.81 15596.46 8289.49 11296.33 5890.16 7492.55 6790.26 8995.83 7795.52 12596.03 9099.06 10999.33 24
tfpnnormal88.50 16587.01 18790.23 13391.36 15495.78 15792.74 14890.09 10183.65 20476.33 15671.46 19869.58 19991.84 13795.54 12494.02 14899.06 10999.03 65
TransMVSNet (Re)87.73 17886.79 18988.83 15090.76 15994.40 19391.33 17789.62 11084.73 20175.41 16372.73 19171.41 18986.80 18294.53 14493.93 15099.06 10995.83 174
diffmvspermissive94.31 8794.21 9194.42 8494.64 11598.28 8696.36 8491.56 8496.77 4988.89 9588.97 10284.23 13296.01 7696.05 11196.41 7899.05 11398.79 92
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_111021_LR97.16 3698.01 3196.16 4698.47 4298.98 4896.94 6393.89 4897.64 2691.44 5498.89 396.41 5197.20 4998.02 4597.29 6099.04 11498.85 87
Anonymous20240521192.18 13395.04 10198.20 9096.14 8991.79 8293.93 11474.60 17888.38 10696.48 6895.17 13595.82 10099.00 11599.15 49
MVSTER94.89 6795.07 7894.68 8094.71 11296.68 12797.00 5990.57 9795.18 9593.05 3895.21 4686.41 11593.72 11797.59 5795.88 9699.00 11598.50 104
MSDG94.82 6993.73 10396.09 4798.34 4597.43 10897.06 5896.05 3795.84 7590.56 6786.30 12789.10 10095.55 8496.13 11095.61 10399.00 11595.73 176
FA-MVS(training)93.94 9395.16 7492.53 10794.87 10598.57 8095.42 10779.49 19195.37 8590.98 5986.54 12094.26 6895.44 8797.80 5395.19 11698.97 11898.38 113
gg-mvs-nofinetune86.17 19188.57 16583.36 19893.44 13498.15 9396.58 7872.05 21274.12 21649.23 22064.81 21090.85 8589.90 16997.83 5096.84 7098.97 11897.41 148
TSAR-MVS + ACMM97.71 2898.60 1296.66 3998.64 4099.05 3798.85 2597.23 2798.45 489.40 8797.51 2499.27 1496.88 5998.53 1597.81 4198.96 12099.59 8
DPM-MVS96.86 4496.82 5096.91 3898.08 5098.20 9098.52 3397.20 2897.24 3891.42 5591.84 7598.45 3497.25 4897.07 7297.40 5498.95 12197.55 144
CNLPA96.90 4296.28 5797.64 2898.56 4198.63 7796.85 6696.60 3697.73 1997.08 689.78 9996.28 5597.80 3996.73 8396.63 7498.94 12298.14 124
ACMH+90.88 1291.41 12991.13 14591.74 11595.11 9996.95 11693.13 14389.48 11392.42 13979.93 13785.13 13278.02 15993.82 11593.49 16293.88 15198.94 12297.99 129
v7n86.43 18986.52 19386.33 18887.91 20194.93 18290.15 18883.05 17786.57 19270.21 18971.48 19766.78 20987.72 17794.19 15492.96 16898.92 12498.76 94
test0.0.03 191.97 11993.91 9889.72 14093.31 13796.40 13691.34 17687.06 13893.86 11681.67 12991.15 8589.16 9986.02 18895.08 13695.09 11798.91 12596.64 170
HyFIR lowres test92.03 11891.55 14292.58 10697.13 6598.72 6894.65 12186.54 14393.58 12282.56 12467.75 20690.47 8895.67 7995.87 11595.54 10598.91 12598.93 77
thisisatest051590.12 14692.06 13687.85 16990.03 16996.17 14187.83 19587.45 13391.71 15177.15 14985.40 13184.01 13485.74 18995.41 12993.30 16398.88 12798.43 107
IterMVS-LS92.56 11593.18 11291.84 11393.90 12794.97 18094.99 11286.20 14794.18 11282.68 12385.81 12987.36 11094.43 10395.31 13196.02 9198.87 12898.60 98
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
COLMAP_ROBcopyleft90.49 1493.27 10992.71 11893.93 9097.75 5697.44 10796.07 9293.17 5895.40 8483.86 11883.76 14288.72 10293.87 11394.25 15194.11 14598.87 12895.28 182
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v2v48288.25 16987.71 17988.88 14989.23 18895.28 17192.10 16387.89 13088.69 17773.31 17575.32 17371.64 18791.89 13692.10 18392.92 16998.86 13097.99 129
UniMVSNet_ETH3D88.47 16686.00 19691.35 12091.55 15296.29 13892.53 15288.81 11985.58 19982.33 12567.63 20766.87 20894.04 11191.49 19095.24 11398.84 13198.92 78
pmmvs587.83 17788.09 17087.51 17889.59 17795.48 16589.75 19084.73 16786.07 19771.44 18280.57 15870.09 19790.74 15794.47 14592.87 17198.82 13297.10 155
EG-PatchMatch MVS86.68 18787.24 18386.02 19190.58 16196.26 13991.08 18081.59 18484.96 20069.80 19471.35 19975.08 17384.23 19894.24 15293.35 16198.82 13295.46 181
FMVSNet191.54 12790.93 14892.26 11090.35 16595.27 17395.22 11087.16 13791.37 15487.62 10375.45 17283.84 13594.43 10396.52 9296.30 7998.82 13297.74 139
v114487.92 17587.79 17788.07 16089.27 18395.15 17692.17 16285.62 15488.52 17871.52 18173.80 18572.40 18591.06 14893.54 16192.80 17298.81 13598.33 116
v1088.00 17187.96 17388.05 16389.44 17994.68 18792.36 15683.35 17689.37 17172.96 17673.98 18472.79 18391.35 14493.59 15792.88 17098.81 13598.42 109
Fast-Effi-MVS+-dtu91.19 13093.64 10488.33 15692.19 14996.46 13393.99 13081.52 18692.59 13571.82 18092.17 7085.54 12191.68 14095.73 12194.64 13098.80 13798.34 115
v888.21 17087.94 17588.51 15389.62 17595.01 17992.31 15884.99 16488.94 17274.70 17075.03 17473.51 18090.67 15892.11 18292.74 17598.80 13798.24 120
CDS-MVSNet92.77 11293.60 10691.80 11492.63 14596.80 12195.24 10989.14 11690.30 16684.58 11586.76 11590.65 8690.42 16295.89 11496.49 7698.79 13998.32 118
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v119287.51 18087.31 18187.74 17189.04 19194.87 18592.07 16485.03 16388.49 17970.32 18772.65 19270.35 19591.21 14593.59 15792.80 17298.78 14098.42 109
ACMH90.77 1391.51 12891.63 14191.38 11995.62 8596.87 11991.76 17189.66 10991.58 15278.67 14286.73 11678.12 15893.77 11694.59 14294.54 13698.78 14098.98 72
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TSAR-MVS + COLMAP94.79 7194.51 8495.11 6596.50 7097.54 10397.99 4494.54 4497.81 1785.88 11196.73 3181.28 14896.99 5696.29 10295.21 11598.76 14296.73 167
MAR-MVS95.50 5695.60 6595.39 6198.67 3998.18 9295.89 9989.81 10794.55 10591.97 5292.99 6190.21 9097.30 4796.79 8097.49 4998.72 14398.99 70
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
v14419287.40 18287.20 18487.64 17288.89 19294.88 18491.65 17284.70 16887.80 18471.17 18573.20 19070.91 19190.75 15692.69 17392.49 17898.71 14498.43 107
v192192087.31 18487.13 18587.52 17788.87 19494.72 18691.96 16984.59 17088.28 18069.86 19372.50 19370.03 19891.10 14793.33 16492.61 17798.71 14498.44 106
PatchMatch-RL94.69 7594.41 8695.02 6797.63 5898.15 9394.50 12491.99 7495.32 8791.31 5795.47 4483.44 13896.02 7596.56 8995.23 11498.69 14696.67 168
Anonymous2023121193.49 10592.33 13294.84 7594.78 10998.00 9696.11 9091.85 7794.86 10090.91 6074.69 17789.18 9896.73 6294.82 14095.51 10698.67 14799.24 36
v124086.89 18686.75 19187.06 18288.75 19694.65 18991.30 17884.05 17287.49 18868.94 19771.96 19668.86 20390.65 15993.33 16492.72 17698.67 14798.24 120
baseline293.01 11094.17 9491.64 11692.83 14397.49 10593.40 13887.53 13293.67 12086.07 11091.83 7686.58 11291.36 14396.38 9795.06 11898.67 14798.20 122
gm-plane-assit83.26 20185.29 19880.89 20189.52 17889.89 21170.26 21778.24 19377.11 21458.01 21774.16 18366.90 20790.63 16097.20 6796.05 8998.66 15095.68 177
testgi89.42 15291.50 14387.00 18392.40 14895.59 16289.15 19285.27 16292.78 13172.42 17791.75 7776.00 16984.09 19994.38 14893.82 15598.65 15196.15 171
TDRefinement89.07 16088.15 16990.14 13795.16 9796.88 11795.55 10690.20 10089.68 16876.42 15576.67 16974.30 17684.85 19493.11 16791.91 18598.64 15294.47 185
EPNet96.27 5396.97 4695.46 5998.47 4298.28 8697.41 5293.67 4995.86 7492.86 4297.51 2493.79 7091.76 13997.03 7497.03 6498.61 15399.28 28
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
USDC90.69 13590.52 15290.88 12594.17 12396.43 13495.82 10386.76 14093.92 11576.27 15786.49 12174.30 17693.67 11995.04 13893.36 16098.61 15394.13 189
V4288.31 16887.95 17488.73 15189.44 17995.34 17092.23 16187.21 13688.83 17474.49 17174.89 17673.43 18190.41 16492.08 18492.77 17498.60 15598.33 116
SixPastTwentyTwo88.37 16789.47 15887.08 18190.01 17095.93 15087.41 19685.32 15990.26 16770.26 18886.34 12671.95 18690.93 15092.89 17291.72 18698.55 15697.22 153
CPTT-MVS97.78 2697.54 3598.05 2198.91 3499.05 3799.00 2096.96 3397.14 4195.92 1795.50 4398.78 2898.99 497.20 6796.07 8798.54 15799.04 64
GA-MVS89.28 15590.75 15187.57 17591.77 15196.48 13292.29 15987.58 13190.61 16365.77 20184.48 13776.84 16789.46 17095.84 11693.68 15698.52 15897.34 151
pmmvs490.55 13889.91 15591.30 12190.26 16794.95 18192.73 14987.94 12993.44 12485.35 11382.28 14976.09 16893.02 12893.56 16092.26 18398.51 15996.77 166
CANet_DTU93.92 9596.57 5390.83 12695.63 8498.39 8496.99 6087.38 13496.26 5971.97 17996.31 3393.02 7394.53 10297.38 6396.83 7198.49 16097.79 133
MIMVSNet88.99 16191.07 14686.57 18686.78 20695.62 15991.20 17975.40 20690.65 16276.57 15384.05 14082.44 14491.01 14995.84 11695.38 10998.48 16193.50 198
CR-MVSNet90.16 14591.96 13888.06 16293.32 13695.95 14893.36 13975.99 20492.40 14075.19 16583.18 14485.37 12292.05 13495.21 13394.56 13498.47 16297.08 158
test20.0382.92 20285.52 19779.90 20487.75 20291.84 20682.80 20882.99 17882.65 20960.32 21378.90 16470.50 19267.10 21292.05 18590.89 18898.44 16391.80 204
RPMNet90.19 14492.03 13788.05 16393.46 13395.95 14893.41 13774.59 20992.40 14075.91 15984.22 13986.41 11592.49 13094.42 14793.85 15398.44 16396.96 161
PMMVS94.61 7695.56 6693.50 9794.30 12196.74 12594.91 11589.56 11195.58 8387.72 10296.15 3492.86 7496.06 7395.47 12795.02 12098.43 16597.09 156
v14887.51 18086.79 18988.36 15589.39 18195.21 17589.84 18988.20 12787.61 18777.56 14673.38 18970.32 19686.80 18290.70 19492.31 18198.37 16697.98 131
LTVRE_ROB87.32 1687.55 17988.25 16886.73 18490.66 16095.80 15693.05 14484.77 16683.35 20560.32 21383.12 14567.39 20693.32 12394.36 14994.86 12498.28 16798.87 85
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
baseline94.83 6895.82 6393.68 9494.75 11097.80 9996.51 8088.53 12397.02 4789.34 8992.93 6292.18 7894.69 9895.78 11996.08 8698.27 16898.97 76
TinyColmap89.42 15288.58 16490.40 13293.80 13195.45 16793.96 13186.54 14392.24 14576.49 15480.83 15570.44 19493.37 12294.45 14693.30 16398.26 16993.37 200
CHOSEN 1792x268892.66 11492.49 12492.85 10597.13 6598.89 5995.90 9788.50 12495.32 8783.31 12171.99 19588.96 10194.10 11096.69 8496.49 7698.15 17099.10 52
MS-PatchMatch91.82 12192.51 12291.02 12295.83 8396.88 11795.05 11184.55 17193.85 11782.01 12682.51 14891.71 7990.52 16195.07 13793.03 16798.13 17194.52 184
FMVSNet590.36 14090.93 14889.70 14187.99 20092.25 20592.03 16683.51 17592.20 14684.13 11685.59 13086.48 11392.43 13194.61 14194.52 13798.13 17190.85 206
Anonymous2023120683.84 20085.19 19982.26 20087.38 20492.87 20285.49 20283.65 17486.07 19763.44 20868.42 20369.01 20175.45 20893.34 16392.44 17998.12 17394.20 188
MIMVSNet180.03 20580.93 20678.97 20572.46 21890.73 20980.81 21182.44 18280.39 21063.64 20657.57 21364.93 21376.37 20691.66 18891.55 18798.07 17489.70 208
TAMVS90.54 13990.87 15090.16 13591.48 15396.61 12993.26 14186.08 14887.71 18581.66 13083.11 14684.04 13390.42 16294.54 14394.60 13198.04 17595.48 180
pmmvs-eth3d84.33 19982.94 20485.96 19284.16 20990.94 20886.55 19983.79 17384.25 20275.85 16070.64 20056.43 21887.44 18192.20 18090.41 19297.97 17695.68 177
test-mter90.95 13293.54 11087.93 16890.28 16696.80 12191.44 17382.68 18192.15 14774.37 17289.57 10088.23 10890.88 15396.37 9994.31 14297.93 17797.37 149
GG-mvs-BLEND66.17 21294.91 8132.63 2171.32 22596.64 12891.40 1740.85 22394.39 1092.20 22690.15 9695.70 612.27 22296.39 9695.44 10897.78 17895.68 177
PatchT89.13 15991.71 13986.11 19092.92 14095.59 16283.64 20675.09 20791.87 14975.19 16582.63 14785.06 12792.05 13495.21 13394.56 13497.76 17997.08 158
test-LLR91.62 12593.56 10889.35 14793.31 13796.57 13092.02 16787.06 13892.34 14375.05 16890.20 9488.64 10390.93 15096.19 10894.07 14697.75 18096.90 164
TESTMET0.1,191.07 13193.56 10888.17 15890.43 16296.57 13092.02 16782.83 18092.34 14375.05 16890.20 9488.64 10390.93 15096.19 10894.07 14697.75 18096.90 164
IterMVS-SCA-FT90.24 14292.48 12687.63 17392.85 14294.30 19693.79 13281.47 18792.66 13269.95 19184.66 13688.38 10689.99 16795.39 13094.34 14197.74 18297.63 142
PM-MVS84.72 19884.47 20285.03 19384.67 20891.57 20786.27 20082.31 18387.65 18670.62 18676.54 17156.41 21988.75 17592.59 17489.85 19597.54 18396.66 169
IterMVS90.20 14392.43 12887.61 17492.82 14494.31 19594.11 12881.54 18592.97 12869.90 19284.71 13588.16 10989.96 16895.25 13294.17 14497.31 18497.46 146
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+-dtu91.78 12293.59 10789.68 14392.44 14797.11 11494.40 12584.94 16592.43 13875.48 16191.09 8783.75 13693.55 12096.61 8795.47 10797.24 18598.67 95
EPNet_dtu92.45 11795.02 7989.46 14498.02 5195.47 16694.79 11892.62 6694.97 9870.11 19094.76 5392.61 7784.07 20095.94 11395.56 10497.15 18695.82 175
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs685.98 19384.89 20187.25 18088.83 19594.35 19489.36 19185.30 16178.51 21375.44 16262.71 21275.41 17087.65 17893.58 15992.40 18096.89 18797.29 152
CVMVSNet89.77 15091.66 14087.56 17693.21 13995.45 16791.94 17089.22 11589.62 17069.34 19683.99 14185.90 11984.81 19594.30 15095.28 11296.85 18897.09 156
DeepPCF-MVS95.28 297.00 3998.35 2195.42 6097.30 6298.94 5194.82 11796.03 3898.24 992.11 5095.80 4098.64 3295.51 8598.95 798.66 596.78 18999.20 42
pmnet_mix0286.12 19287.12 18684.96 19489.82 17294.12 19784.88 20486.63 14291.78 15065.60 20280.76 15676.98 16586.61 18487.29 20784.80 21096.21 19094.09 190
CHOSEN 280x42095.46 5997.01 4593.66 9597.28 6397.98 9796.40 8385.39 15896.10 6691.07 5896.53 3296.34 5495.61 8297.65 5596.95 6796.21 19097.49 145
new-patchmatchnet78.49 20778.19 21078.84 20684.13 21090.06 21077.11 21580.39 18979.57 21259.64 21666.01 20855.65 22075.62 20784.55 21080.70 21296.14 19290.77 207
EPMVS90.88 13492.12 13489.44 14594.71 11297.24 11193.55 13476.81 19895.89 7281.77 12891.49 8186.47 11493.87 11390.21 19690.07 19395.92 19393.49 199
SCA90.92 13393.04 11488.45 15493.72 13297.33 11092.77 14776.08 20396.02 6878.26 14491.96 7390.86 8493.99 11290.98 19390.04 19495.88 19494.06 192
dps90.11 14789.37 16090.98 12393.89 12896.21 14093.49 13677.61 19691.95 14892.74 4588.85 10378.77 15792.37 13287.71 20587.71 20295.80 19594.38 187
ADS-MVSNet89.80 14991.33 14488.00 16694.43 11996.71 12692.29 15974.95 20896.07 6777.39 14788.67 10686.09 11793.26 12488.44 20289.57 19695.68 19693.81 196
tpm87.95 17289.44 15986.21 18992.53 14694.62 19091.40 17476.36 20191.46 15369.80 19487.43 11175.14 17191.55 14189.85 20090.60 19095.61 19796.96 161
EU-MVSNet85.62 19487.65 18083.24 19988.54 19892.77 20487.12 19785.32 15986.71 19164.54 20478.52 16575.11 17278.35 20492.25 17992.28 18295.58 19895.93 173
CostFormer90.69 13590.48 15390.93 12494.18 12296.08 14394.03 12978.20 19493.47 12389.96 7890.97 8880.30 15093.72 11787.66 20688.75 19895.51 19996.12 172
PatchmatchNetpermissive90.56 13792.49 12488.31 15793.83 13096.86 12092.42 15576.50 20095.96 7078.31 14391.96 7389.66 9393.48 12190.04 19889.20 19795.32 20093.73 197
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
N_pmnet84.80 19685.10 20084.45 19589.25 18792.86 20384.04 20586.21 14588.78 17566.73 20072.41 19474.87 17585.21 19288.32 20386.45 20595.30 20192.04 203
RPSCF94.05 9094.00 9794.12 8896.20 7596.41 13596.61 7691.54 8595.83 7689.73 8196.94 3092.80 7595.35 8991.63 18990.44 19195.27 20293.94 193
MDTV_nov1_ep13_2view86.30 19088.27 16784.01 19687.71 20394.67 18888.08 19476.78 19990.59 16468.66 19880.46 16080.12 15187.58 18089.95 19988.20 20095.25 20393.90 195
MDTV_nov1_ep1391.57 12693.18 11289.70 14193.39 13596.97 11593.53 13580.91 18895.70 7881.86 12792.40 6889.93 9193.25 12591.97 18690.80 18995.25 20394.46 186
new_pmnet81.53 20382.68 20580.20 20283.47 21189.47 21282.21 21078.36 19287.86 18360.14 21567.90 20569.43 20082.03 20289.22 20187.47 20394.99 20587.39 211
MVS-HIRNet85.36 19586.89 18883.57 19790.13 16894.51 19183.57 20772.61 21188.27 18171.22 18468.97 20281.81 14588.91 17493.08 16891.94 18494.97 20689.64 209
tpmrst88.86 16489.62 15687.97 16794.33 12095.98 14592.62 15176.36 20194.62 10476.94 15185.98 12882.80 14292.80 12986.90 20887.15 20494.77 20793.93 194
pmmvs379.16 20680.12 20878.05 20779.36 21386.59 21478.13 21473.87 21076.42 21557.51 21870.59 20157.02 21784.66 19690.10 19788.32 19994.75 20891.77 205
tpm cat188.90 16287.78 17890.22 13493.88 12995.39 16993.79 13278.11 19592.55 13689.43 8581.31 15379.84 15391.40 14284.95 20986.34 20794.68 20994.09 190
CMPMVSbinary65.18 1784.76 19783.10 20386.69 18595.29 9395.05 17888.37 19385.51 15780.27 21171.31 18368.37 20473.85 17885.25 19187.72 20487.75 20194.38 21088.70 210
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MDA-MVSNet-bldmvs80.11 20480.24 20779.94 20377.01 21593.21 20178.86 21385.94 15182.71 20860.86 21079.71 16251.77 22183.71 20175.60 21486.37 20693.28 21192.35 201
ambc73.83 21276.23 21685.13 21582.27 20984.16 20365.58 20352.82 21523.31 22673.55 20991.41 19185.26 20992.97 21294.70 183
PMMVS264.36 21365.94 21562.52 21367.37 21977.44 21764.39 21969.32 21761.47 21834.59 22146.09 21641.03 22248.02 21974.56 21678.23 21391.43 21382.76 213
DeepMVS_CXcopyleft86.86 21379.50 21270.43 21490.73 16063.66 20580.36 16160.83 21479.68 20376.23 21389.46 21486.53 212
Gipumacopyleft68.35 21066.71 21370.27 20974.16 21768.78 21963.93 22071.77 21383.34 20654.57 21934.37 21731.88 22368.69 21183.30 21185.53 20888.48 21579.78 215
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method72.96 20978.68 20966.28 21250.17 22264.90 22075.45 21650.90 21987.89 18262.54 20962.98 21168.34 20470.45 21091.90 18782.41 21188.19 21692.35 201
FPMVS75.84 20874.59 21177.29 20886.92 20583.89 21685.01 20380.05 19082.91 20760.61 21265.25 20960.41 21563.86 21375.60 21473.60 21687.29 21780.47 214
PMVScopyleft63.12 1867.27 21166.39 21468.30 21077.98 21460.24 22159.53 22176.82 19766.65 21760.74 21154.39 21459.82 21651.24 21673.92 21770.52 21783.48 21879.17 216
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt66.88 21186.07 20773.86 21868.22 21833.38 22096.88 4880.67 13588.23 10978.82 15649.78 21782.68 21277.47 21483.19 219
E-PMN50.67 21447.85 21753.96 21464.13 22150.98 22438.06 22269.51 21551.40 22024.60 22329.46 22024.39 22556.07 21548.17 21959.70 21871.40 22070.84 218
EMVS49.98 21546.76 21853.74 21564.96 22051.29 22337.81 22369.35 21651.83 21922.69 22429.57 21925.06 22457.28 21444.81 22056.11 21970.32 22168.64 219
MVEpermissive50.86 1949.54 21651.43 21647.33 21644.14 22359.20 22236.45 22460.59 21841.47 22131.14 22229.58 21817.06 22748.52 21862.22 21874.63 21563.12 22275.87 217
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs12.09 21716.94 2196.42 2183.15 2246.08 2259.51 2263.84 22121.46 2225.31 22527.49 2216.76 22810.89 22017.06 22115.01 2205.84 22324.75 220
test1239.58 21813.53 2204.97 2191.31 2265.47 2268.32 2272.95 22218.14 2232.03 22720.82 2222.34 22910.60 22110.00 22214.16 2214.60 22423.77 221
uanet_test0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
RE-MVS-def63.50 207
9.1499.28 12
SR-MVS99.45 997.61 1499.20 16
our_test_389.78 17393.84 19985.59 201
MTAPA96.83 1099.12 21
MTMP97.18 598.83 26
Patchmatch-RL test34.61 225
mPP-MVS99.21 2398.29 37
NP-MVS95.32 87
Patchmtry95.96 14793.36 13975.99 20475.19 165