This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
APDe-MVScopyleft98.87 398.96 498.77 199.58 299.53 799.44 197.81 298.22 1097.33 498.70 599.33 1098.86 898.96 698.40 1399.63 599.57 9
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DVP-MVScopyleft98.86 498.97 398.75 299.43 1299.63 199.25 1297.81 298.62 297.69 197.59 2099.90 298.93 598.99 498.42 1199.37 5999.62 4
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS98.90 299.07 298.69 399.38 1899.61 299.33 897.80 498.25 897.60 298.87 499.89 398.67 1799.02 298.26 1799.36 6199.61 6
DVP-MVS++98.92 199.18 198.61 499.47 599.61 299.39 397.82 198.80 196.86 898.90 299.92 198.67 1799.02 298.20 1999.43 4799.82 1
DPE-MVScopyleft98.75 598.91 698.57 599.21 2399.54 699.42 297.78 697.49 3196.84 998.94 199.82 598.59 2198.90 1098.22 1899.56 1799.48 16
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS98.73 698.93 598.50 699.44 1199.57 499.36 497.65 998.14 1296.51 1498.49 799.65 898.67 1798.60 1498.42 1199.40 5399.63 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS98.47 1198.46 1698.48 799.40 1499.05 3799.02 1997.54 1697.73 1996.65 1197.20 2999.13 2098.85 998.91 998.10 2399.41 5099.08 57
APD-MVScopyleft98.36 1598.32 2398.41 899.47 599.26 2699.12 1597.77 796.73 5096.12 1697.27 2898.88 2498.46 2598.47 1898.39 1499.52 2299.22 41
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SMA-MVScopyleft98.66 798.89 798.39 999.60 199.41 1299.00 2097.63 1297.78 1895.83 1898.33 1199.83 498.85 998.93 898.56 699.41 5099.40 20
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SF-MVS98.39 1398.45 1798.33 1099.45 999.05 3798.27 3797.65 997.73 1997.02 798.18 1299.25 1598.11 3298.15 3897.62 4899.45 3899.19 45
HFP-MVS98.48 1098.62 1198.32 1199.39 1799.33 2199.27 1097.42 1898.27 795.25 2398.34 1098.83 2699.08 198.26 3398.08 2599.48 3099.26 35
CP-MVS98.32 1798.34 2298.29 1299.34 2099.30 2299.15 1497.35 2197.49 3195.58 2197.72 1898.62 3498.82 1198.29 2897.67 4799.51 2799.28 30
ACMMPR98.40 1298.49 1398.28 1399.41 1399.40 1399.36 497.35 2198.30 695.02 2597.79 1798.39 3799.04 298.26 3398.10 2399.50 2999.22 41
AdaColmapbinary97.53 3096.93 4798.24 1499.21 2398.77 6598.47 3497.34 2396.68 5296.52 1395.11 4996.12 5898.72 1497.19 6996.24 8599.17 9498.39 115
SD-MVS98.52 898.77 998.23 1598.15 4999.26 2698.79 2697.59 1598.52 396.25 1597.99 1599.75 699.01 398.27 3297.97 3199.59 799.63 2
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS++copyleft98.34 1698.47 1598.18 1699.46 899.15 3499.10 1697.69 897.67 2494.93 2697.62 1999.70 798.60 2098.45 2097.46 5399.31 6899.26 35
MSLP-MVS++98.04 2397.93 3298.18 1699.10 2799.09 3698.34 3696.99 3297.54 2996.60 1294.82 5198.45 3598.89 697.46 6198.77 499.17 9499.37 22
NCCC98.10 2198.05 3098.17 1899.38 1899.05 3799.00 2097.53 1798.04 1495.12 2494.80 5299.18 1898.58 2298.49 1797.78 4499.39 5598.98 74
TSAR-MVS + MP.98.49 998.78 898.15 1998.14 5099.17 3399.34 697.18 2998.44 595.72 1997.84 1699.28 1298.87 799.05 198.05 2699.66 299.60 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PLCcopyleft94.95 397.37 3396.77 5198.07 2098.97 3198.21 9297.94 4696.85 3597.66 2597.58 393.33 6196.84 4898.01 3697.13 7196.20 8799.09 10698.01 131
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CPTT-MVS97.78 2697.54 3598.05 2198.91 3599.05 3799.00 2096.96 3397.14 4195.92 1795.50 4498.78 2898.99 497.20 6796.07 8998.54 16199.04 66
MCST-MVS98.20 1898.36 1998.01 2299.40 1499.05 3799.00 2097.62 1397.59 2893.70 3397.42 2799.30 1198.77 1398.39 2697.48 5299.59 799.31 29
SteuartSystems-ACMMP98.38 1498.71 1097.99 2399.34 2099.46 1099.34 697.33 2497.31 3594.25 2998.06 1399.17 1998.13 3198.98 598.46 999.55 1899.54 11
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS_fast96.13 198.13 2098.27 2597.97 2499.16 2699.03 4399.05 1897.24 2698.22 1094.17 3195.82 4098.07 3998.69 1698.83 1198.80 299.52 2299.10 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMP_NAP98.20 1898.49 1397.85 2599.50 499.40 1399.26 1197.64 1197.47 3392.62 4697.59 2099.09 2298.71 1598.82 1297.86 4099.40 5399.19 45
MP-MVScopyleft98.09 2298.30 2497.84 2699.34 2099.19 3299.23 1397.40 1997.09 4393.03 3997.58 2298.85 2598.57 2398.44 2297.69 4699.48 3099.23 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CSCG97.44 3297.18 4397.75 2799.47 599.52 898.55 3195.41 4097.69 2395.72 1994.29 5595.53 6398.10 3396.20 10797.38 5799.24 7899.62 4
CNLPA96.90 4296.28 5797.64 2898.56 4298.63 7996.85 6896.60 3697.73 1997.08 689.78 10296.28 5697.80 3996.73 8396.63 7698.94 12598.14 127
PGM-MVS97.81 2598.11 2897.46 2999.55 399.34 2099.32 994.51 4596.21 6393.07 3698.05 1497.95 4298.82 1198.22 3697.89 3999.48 3099.09 56
X-MVS97.84 2498.19 2797.42 3099.40 1499.35 1799.06 1797.25 2597.38 3490.85 6296.06 3798.72 3098.53 2498.41 2498.15 2299.46 3499.28 30
ACMMPcopyleft97.37 3397.48 3797.25 3198.88 3799.28 2498.47 3496.86 3497.04 4592.15 5097.57 2396.05 6097.67 4097.27 6595.99 9499.46 3499.14 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
3Dnovator+93.91 797.23 3597.22 4097.24 3298.89 3698.85 6198.26 3893.25 5697.99 1595.56 2290.01 10098.03 4198.05 3497.91 4798.43 1099.44 4499.35 24
train_agg97.65 2998.06 2997.18 3398.94 3298.91 5698.98 2497.07 3196.71 5190.66 6897.43 2699.08 2398.20 2797.96 4697.14 6499.22 8499.19 45
OMC-MVS97.00 3996.92 4897.09 3498.69 3998.66 7497.85 4795.02 4298.09 1394.47 2793.15 6296.90 4697.38 4797.16 7096.82 7499.13 10197.65 144
DeepC-MVS94.87 496.76 4896.50 5497.05 3598.21 4899.28 2498.67 2797.38 2097.31 3590.36 7589.19 10493.58 7298.19 2898.31 2798.50 799.51 2799.36 23
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PHI-MVS97.78 2698.44 1897.02 3698.73 3899.25 2898.11 4095.54 3996.66 5392.79 4398.52 699.38 997.50 4597.84 4998.39 1499.45 3899.03 67
3Dnovator93.79 897.08 3797.20 4196.95 3799.09 2899.03 4398.20 3993.33 5297.99 1593.82 3290.61 9496.80 4997.82 3797.90 4898.78 399.47 3399.26 35
DPM-MVS96.86 4496.82 5096.91 3898.08 5198.20 9398.52 3397.20 2897.24 3891.42 5691.84 7898.45 3597.25 5097.07 7297.40 5698.95 12497.55 147
TSAR-MVS + ACMM97.71 2898.60 1296.66 3998.64 4199.05 3798.85 2597.23 2798.45 489.40 9097.51 2499.27 1496.88 6198.53 1597.81 4398.96 12399.59 8
CANet96.84 4597.20 4196.42 4097.92 5399.24 3098.60 2993.51 5197.11 4293.07 3691.16 8697.24 4596.21 7498.24 3598.05 2699.22 8499.35 24
TSAR-MVS + GP.97.45 3198.36 1996.39 4195.56 8798.93 5397.74 4993.31 5397.61 2794.24 3098.44 999.19 1798.03 3597.60 5697.41 5599.44 4499.33 26
QAPM96.78 4797.14 4496.36 4299.05 2999.14 3598.02 4393.26 5497.27 3790.84 6591.16 8697.31 4497.64 4397.70 5498.20 1999.33 6399.18 48
PCF-MVS93.95 695.65 5595.14 7796.25 4397.73 5898.73 6797.59 5197.13 3092.50 13989.09 9789.85 10196.65 5096.90 6094.97 14194.89 12699.08 10798.38 116
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TAPA-MVS94.18 596.38 5096.49 5596.25 4398.26 4798.66 7498.00 4494.96 4397.17 3989.48 8792.91 6696.35 5397.53 4496.59 8895.90 9799.28 7297.82 135
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CS-MVS96.87 4397.41 3996.24 4597.42 6099.48 997.30 5691.83 8197.17 3993.02 4094.80 5294.45 6798.16 3098.61 1397.85 4199.69 199.50 12
MVS_111021_LR97.16 3698.01 3196.16 4698.47 4398.98 4896.94 6493.89 4897.64 2691.44 5598.89 396.41 5297.20 5198.02 4597.29 6299.04 11798.85 89
CDPH-MVS96.84 4597.49 3696.09 4798.92 3498.85 6198.61 2895.09 4196.00 7187.29 10895.45 4697.42 4397.16 5297.83 5097.94 3499.44 4498.92 80
MSDG94.82 7193.73 10596.09 4798.34 4697.43 11197.06 5996.05 3795.84 7790.56 6986.30 13189.10 10195.55 8796.13 11095.61 10599.00 11895.73 180
DELS-MVS96.06 5496.04 6196.07 4997.77 5599.25 2898.10 4193.26 5494.42 10992.79 4388.52 11193.48 7395.06 9698.51 1698.83 199.45 3899.28 30
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CS-MVS-test97.00 3997.85 3396.00 5097.77 5599.56 596.35 8891.95 7697.54 2992.20 4996.14 3696.00 6198.19 2898.46 1997.78 4499.57 1499.45 18
test250694.32 8893.00 11795.87 5196.16 7799.39 1596.96 6292.80 6495.22 9594.47 2791.55 8370.45 19795.25 9398.29 2897.98 2999.59 798.10 129
LS3D95.46 5995.14 7795.84 5297.91 5498.90 5898.58 3097.79 597.07 4483.65 12388.71 10788.64 10497.82 3797.49 5997.42 5499.26 7797.72 143
OpenMVScopyleft92.33 1195.50 5695.22 7595.82 5398.98 3098.97 4997.67 5093.04 6294.64 10589.18 9584.44 14294.79 6596.79 6297.23 6697.61 4999.24 7898.88 85
MVS_111021_HR97.04 3898.20 2695.69 5498.44 4599.29 2396.59 8093.20 5797.70 2289.94 8298.46 896.89 4796.71 6598.11 4297.95 3399.27 7499.01 70
MVS_030496.31 5196.91 4995.62 5597.21 6599.20 3198.55 3193.10 5997.04 4589.73 8490.30 9696.35 5395.71 8198.14 3997.93 3799.38 5699.40 20
PVSNet_BlendedMVS95.41 6195.28 7395.57 5697.42 6099.02 4595.89 10293.10 5996.16 6493.12 3491.99 7485.27 12694.66 10298.09 4397.34 5899.24 7899.08 57
PVSNet_Blended95.41 6195.28 7395.57 5697.42 6099.02 4595.89 10293.10 5996.16 6493.12 3491.99 7485.27 12694.66 10298.09 4397.34 5899.24 7899.08 57
ECVR-MVScopyleft94.14 9092.96 11895.52 5896.16 7799.39 1596.96 6292.80 6495.22 9592.38 4881.48 15680.31 15295.25 9398.29 2897.98 2999.59 798.05 130
EPNet96.27 5396.97 4695.46 5998.47 4398.28 8997.41 5393.67 4995.86 7692.86 4297.51 2493.79 7191.76 14397.03 7497.03 6698.61 15799.28 30
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepPCF-MVS95.28 297.00 3998.35 2195.42 6097.30 6398.94 5194.82 12196.03 3898.24 992.11 5195.80 4198.64 3395.51 8898.95 798.66 596.78 19399.20 44
MAR-MVS95.50 5695.60 6595.39 6198.67 4098.18 9595.89 10289.81 10994.55 10791.97 5392.99 6490.21 9197.30 4996.79 8097.49 5198.72 14798.99 72
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CLD-MVS94.79 7394.36 9095.30 6295.21 9997.46 10997.23 5792.24 7296.43 5791.77 5492.69 6884.31 13496.06 7595.52 12795.03 12299.31 6899.06 62
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test111193.94 9592.78 11995.29 6396.14 7999.42 1196.79 7392.85 6395.08 9991.39 5780.69 16179.86 15595.00 9798.28 3198.00 2899.58 1198.11 128
EC-MVSNet96.49 4997.63 3495.16 6494.75 11398.69 7197.39 5588.97 12196.34 5992.02 5296.04 3896.46 5198.21 2698.41 2497.96 3299.61 699.55 10
TSAR-MVS + COLMAP94.79 7394.51 8695.11 6596.50 7197.54 10697.99 4594.54 4497.81 1785.88 11496.73 3181.28 15196.99 5896.29 10295.21 11798.76 14696.73 171
ACMM92.75 1094.41 8693.84 10395.09 6696.41 7496.80 12594.88 12093.54 5096.41 5890.16 7692.31 7283.11 14396.32 7296.22 10594.65 13299.22 8497.35 154
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PatchMatch-RL94.69 7794.41 8895.02 6797.63 5998.15 9694.50 12891.99 7495.32 8991.31 5895.47 4583.44 14196.02 7796.56 8995.23 11698.69 15096.67 172
sasdasda95.25 6595.45 6995.00 6895.27 9598.72 6896.89 6589.82 10796.51 5490.84 6593.72 5886.01 11997.66 4195.78 11997.94 3499.54 1999.50 12
OPM-MVS93.61 10492.43 13095.00 6896.94 6897.34 11297.78 4894.23 4689.64 17285.53 11588.70 10882.81 14496.28 7396.28 10395.00 12599.24 7897.22 157
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
canonicalmvs95.25 6595.45 6995.00 6895.27 9598.72 6896.89 6589.82 10796.51 5490.84 6593.72 5886.01 11997.66 4195.78 11997.94 3499.54 1999.50 12
ETV-MVS96.31 5197.47 3894.96 7194.79 11098.78 6496.08 9491.41 8996.16 6490.50 7095.76 4296.20 5797.39 4698.42 2397.82 4299.57 1499.18 48
tfpn200view993.64 10292.57 12294.89 7295.33 9198.94 5196.82 6992.31 6892.63 13588.29 9987.21 11578.01 16397.12 5596.82 7795.85 9999.45 3898.56 102
thres20093.62 10392.54 12394.88 7395.36 9098.93 5396.75 7592.31 6892.84 13288.28 10186.99 11777.81 16697.13 5396.82 7795.92 9599.45 3898.49 108
casdiffmvs_mvgpermissive94.55 8094.26 9294.88 7394.96 10598.51 8397.11 5891.82 8294.28 11289.20 9486.60 12286.85 11296.56 6997.47 6097.25 6399.64 498.83 91
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
thres40093.56 10592.43 13094.87 7595.40 8998.91 5696.70 7792.38 6792.93 13188.19 10386.69 12077.35 16797.13 5396.75 8295.85 9999.42 4998.56 102
Anonymous2023121193.49 10792.33 13494.84 7694.78 11298.00 9996.11 9391.85 7894.86 10290.91 6174.69 18289.18 9996.73 6494.82 14295.51 10898.67 15199.24 38
thres100view90093.55 10692.47 12994.81 7795.33 9198.74 6696.78 7492.30 7192.63 13588.29 9987.21 11578.01 16396.78 6396.38 9795.92 9599.38 5698.40 114
MGCFI-Net95.12 6795.39 7294.79 7895.24 9798.68 7296.80 7289.72 11196.48 5690.11 7893.64 6085.86 12397.36 4895.69 12597.92 3899.53 2199.49 15
thres600view793.49 10792.37 13394.79 7895.42 8898.93 5396.58 8192.31 6893.04 12987.88 10486.62 12176.94 17097.09 5696.82 7795.63 10499.45 3898.63 99
baseline194.59 7994.47 8794.72 8095.16 10097.97 10196.07 9591.94 7794.86 10289.98 8091.60 8285.87 12295.64 8397.07 7296.90 7099.52 2297.06 164
EIA-MVS95.50 5696.19 5994.69 8194.83 10998.88 6095.93 9991.50 8894.47 10889.43 8893.14 6392.72 7797.05 5797.82 5297.13 6599.43 4799.15 51
MVSTER94.89 6995.07 8094.68 8294.71 11596.68 13197.00 6090.57 9895.18 9793.05 3895.21 4786.41 11693.72 12197.59 5795.88 9899.00 11898.50 107
casdiffmvspermissive94.38 8794.15 9894.64 8394.70 11798.51 8396.03 9791.66 8495.70 8089.36 9186.48 12685.03 13196.60 6897.40 6297.30 6099.52 2298.67 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMP92.88 994.43 8494.38 8994.50 8496.01 8297.69 10495.85 10592.09 7395.74 7989.12 9695.14 4882.62 14694.77 9895.73 12294.67 13199.14 10099.06 62
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DI_MVS_plusplus_trai94.01 9393.63 10794.44 8594.54 11998.26 9197.51 5290.63 9795.88 7589.34 9280.54 16389.36 9695.48 8996.33 10196.27 8499.17 9498.78 95
diffmvspermissive94.31 8994.21 9394.42 8694.64 11898.28 8996.36 8791.56 8596.77 4988.89 9888.97 10584.23 13596.01 7896.05 11196.41 8099.05 11698.79 94
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DCV-MVSNet94.76 7695.12 7994.35 8795.10 10395.81 15996.46 8589.49 11596.33 6090.16 7692.55 7090.26 9095.83 8095.52 12796.03 9299.06 11299.33 26
HQP-MVS94.43 8494.57 8594.27 8896.41 7497.23 11696.89 6593.98 4795.94 7383.68 12295.01 5084.46 13395.58 8695.47 12994.85 13099.07 10999.00 71
EPP-MVSNet95.27 6496.18 6094.20 8994.88 10798.64 7794.97 11790.70 9695.34 8889.67 8691.66 8193.84 7095.42 9197.32 6497.00 6799.58 1199.47 17
RPSCF94.05 9294.00 9994.12 9096.20 7696.41 13996.61 7991.54 8695.83 7889.73 8496.94 3092.80 7695.35 9291.63 19290.44 19495.27 20693.94 197
IS_MVSNet95.28 6396.43 5693.94 9195.30 9399.01 4795.90 10091.12 9294.13 11587.50 10791.23 8594.45 6794.17 11198.45 2098.50 799.65 399.23 39
COLMAP_ROBcopyleft90.49 1493.27 11192.71 12093.93 9297.75 5797.44 11096.07 9593.17 5895.40 8683.86 12183.76 14688.72 10393.87 11694.25 15494.11 14898.87 13295.28 186
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PVSNet_Blended_VisFu94.77 7595.54 6793.87 9396.48 7298.97 4994.33 13091.84 7994.93 10190.37 7485.04 13794.99 6490.87 15898.12 4197.30 6099.30 7099.45 18
MVS_Test94.82 7195.66 6493.84 9494.79 11098.35 8896.49 8489.10 12096.12 6787.09 11092.58 6990.61 8896.48 7096.51 9596.89 7199.11 10498.54 104
FC-MVSNet-train93.85 9893.91 10093.78 9594.94 10696.79 12894.29 13191.13 9193.84 12088.26 10290.40 9585.23 12894.65 10496.54 9195.31 11399.38 5699.28 30
baseline94.83 7095.82 6393.68 9694.75 11397.80 10296.51 8388.53 12697.02 4789.34 9292.93 6592.18 7994.69 10195.78 11996.08 8898.27 17298.97 78
CHOSEN 280x42095.46 5997.01 4593.66 9797.28 6497.98 10096.40 8685.39 16196.10 6891.07 5996.53 3296.34 5595.61 8597.65 5596.95 6996.21 19497.49 149
LGP-MVS_train94.12 9194.62 8493.53 9896.44 7397.54 10697.40 5491.84 7994.66 10481.09 13695.70 4383.36 14295.10 9596.36 10095.71 10399.32 6599.03 67
PMMVS94.61 7895.56 6693.50 9994.30 12496.74 12994.91 11989.56 11495.58 8587.72 10596.15 3592.86 7596.06 7595.47 12995.02 12398.43 16997.09 160
thisisatest053094.54 8195.47 6893.46 10094.51 12098.65 7694.66 12490.72 9495.69 8286.90 11193.80 5689.44 9594.74 9996.98 7694.86 12799.19 9298.85 89
tttt051794.52 8295.44 7193.44 10194.51 12098.68 7294.61 12690.72 9495.61 8486.84 11293.78 5789.26 9894.74 9997.02 7594.86 12799.20 9198.87 87
GBi-Net93.81 9994.18 9493.38 10291.34 15995.86 15596.22 8988.68 12395.23 9290.40 7186.39 12791.16 8294.40 10896.52 9296.30 8199.21 8897.79 136
test193.81 9994.18 9493.38 10291.34 15995.86 15596.22 8988.68 12395.23 9290.40 7186.39 12791.16 8294.40 10896.52 9296.30 8199.21 8897.79 136
FMVSNet393.79 10194.17 9693.35 10491.21 16295.99 14896.62 7888.68 12395.23 9290.40 7186.39 12791.16 8294.11 11295.96 11296.67 7599.07 10997.79 136
FMVSNet293.30 11093.36 11393.22 10591.34 15995.86 15596.22 8988.24 12995.15 9889.92 8381.64 15489.36 9694.40 10896.77 8196.98 6899.21 8897.79 136
UGNet94.92 6896.63 5292.93 10696.03 8198.63 7994.53 12791.52 8796.23 6290.03 7992.87 6796.10 5986.28 19096.68 8596.60 7799.16 9799.32 28
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CHOSEN 1792x268892.66 11692.49 12692.85 10797.13 6698.89 5995.90 10088.50 12795.32 8983.31 12471.99 20088.96 10294.10 11396.69 8496.49 7898.15 17499.10 54
HyFIR lowres test92.03 12091.55 14592.58 10897.13 6698.72 6894.65 12586.54 14693.58 12482.56 12767.75 21190.47 8995.67 8295.87 11595.54 10798.91 12998.93 79
FA-MVS(training)93.94 9595.16 7692.53 10994.87 10898.57 8295.42 11079.49 19595.37 8790.98 6086.54 12494.26 6995.44 9097.80 5395.19 11898.97 12198.38 116
Vis-MVSNet (Re-imp)94.46 8396.24 5892.40 11095.23 9898.64 7795.56 10890.99 9394.42 10985.02 11790.88 9294.65 6688.01 18098.17 3798.37 1699.57 1498.53 105
GeoE92.52 11892.64 12192.39 11193.96 12997.76 10396.01 9885.60 15893.23 12783.94 12081.56 15584.80 13295.63 8496.22 10595.83 10199.19 9299.07 61
FMVSNet191.54 13090.93 15192.26 11290.35 16995.27 17795.22 11387.16 14091.37 15687.62 10675.45 17783.84 13894.43 10696.52 9296.30 8198.82 13697.74 142
ET-MVSNet_ETH3D93.34 10994.33 9192.18 11383.26 21797.66 10596.72 7689.89 10695.62 8387.17 10996.00 3983.69 14096.99 5893.78 15895.34 11299.06 11298.18 126
dmvs_re91.84 12391.60 14492.12 11491.60 15597.26 11495.14 11491.96 7591.02 16080.98 13786.56 12377.96 16593.84 11894.71 14395.08 12099.22 8498.62 100
Effi-MVS+92.93 11393.86 10291.86 11594.07 12898.09 9895.59 10785.98 15394.27 11379.54 14491.12 8981.81 14896.71 6596.67 8696.06 9099.27 7498.98 74
IterMVS-LS92.56 11793.18 11491.84 11693.90 13094.97 18494.99 11686.20 15094.18 11482.68 12685.81 13387.36 11194.43 10695.31 13396.02 9398.87 13298.60 101
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet92.77 11493.60 10891.80 11792.63 14896.80 12595.24 11289.14 11990.30 16984.58 11886.76 11890.65 8790.42 16695.89 11496.49 7898.79 14398.32 121
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMH+90.88 1291.41 13291.13 14891.74 11895.11 10296.95 12093.13 14789.48 11692.42 14179.93 14185.13 13678.02 16293.82 11993.49 16593.88 15498.94 12597.99 132
UA-Net93.96 9495.95 6291.64 11996.06 8098.59 8195.29 11190.00 10391.06 15982.87 12590.64 9398.06 4086.06 19198.14 3998.20 1999.58 1196.96 165
baseline293.01 11294.17 9691.64 11992.83 14697.49 10893.40 14287.53 13593.67 12286.07 11391.83 7986.58 11391.36 14796.38 9795.06 12198.67 15198.20 125
Fast-Effi-MVS+91.87 12292.08 13791.62 12192.91 14497.21 11794.93 11884.60 17393.61 12381.49 13483.50 14778.95 15896.62 6796.55 9096.22 8699.16 9798.51 106
ACMH90.77 1391.51 13191.63 14391.38 12295.62 8696.87 12391.76 17589.66 11291.58 15478.67 14686.73 11978.12 16193.77 12094.59 14594.54 13998.78 14498.98 74
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_ETH3D88.47 16986.00 19991.35 12391.55 15696.29 14292.53 15688.81 12285.58 20282.33 12867.63 21266.87 21294.04 11491.49 19395.24 11598.84 13598.92 80
pmmvs490.55 14189.91 15891.30 12490.26 17194.95 18592.73 15387.94 13293.44 12685.35 11682.28 15376.09 17293.02 13293.56 16392.26 18698.51 16396.77 170
MS-PatchMatch91.82 12492.51 12491.02 12595.83 8496.88 12195.05 11584.55 17593.85 11982.01 12982.51 15291.71 8090.52 16595.07 13993.03 17098.13 17594.52 188
dps90.11 15089.37 16390.98 12693.89 13196.21 14493.49 14077.61 20091.95 15092.74 4588.85 10678.77 16092.37 13687.71 20887.71 20595.80 19994.38 191
CostFormer90.69 13890.48 15690.93 12794.18 12596.08 14794.03 13378.20 19893.47 12589.96 8190.97 9180.30 15393.72 12187.66 20988.75 20195.51 20396.12 176
USDC90.69 13890.52 15590.88 12894.17 12696.43 13895.82 10686.76 14393.92 11776.27 16186.49 12574.30 18093.67 12395.04 14093.36 16398.61 15794.13 193
CANet_DTU93.92 9796.57 5390.83 12995.63 8598.39 8796.99 6187.38 13796.26 6171.97 18396.31 3493.02 7494.53 10597.38 6396.83 7398.49 16497.79 136
UniMVSNet_NR-MVSNet90.35 14489.96 15790.80 13089.66 17895.83 15892.48 15790.53 9990.96 16279.57 14279.33 16777.14 16893.21 13092.91 17494.50 14299.37 5999.05 64
IB-MVS89.56 1591.71 12692.50 12590.79 13195.94 8398.44 8687.05 20291.38 9093.15 12892.98 4184.78 13885.14 12978.27 20992.47 18094.44 14399.10 10599.08 57
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Baseline_NR-MVSNet89.27 15988.01 17590.73 13289.26 18893.71 20492.71 15489.78 11090.73 16381.28 13573.53 19272.85 18692.30 13792.53 17893.84 15799.07 10998.88 85
DU-MVS89.67 15488.84 16590.63 13389.26 18895.61 16492.48 15789.91 10491.22 15779.57 14277.72 17171.18 19493.21 13092.53 17894.57 13699.35 6299.05 64
UniMVSNet (Re)90.03 15189.61 16090.51 13489.97 17596.12 14692.32 16189.26 11790.99 16180.95 13878.25 17075.08 17791.14 15093.78 15893.87 15599.41 5099.21 43
TinyColmap89.42 15588.58 16790.40 13593.80 13495.45 17193.96 13586.54 14692.24 14776.49 15880.83 15970.44 19893.37 12694.45 14993.30 16698.26 17393.37 204
tfpnnormal88.50 16887.01 19090.23 13691.36 15895.78 16192.74 15290.09 10283.65 20776.33 16071.46 20369.58 20391.84 14195.54 12694.02 15199.06 11299.03 67
tpm cat188.90 16587.78 18190.22 13793.88 13295.39 17393.79 13678.11 19992.55 13889.43 8881.31 15779.84 15691.40 14684.95 21286.34 21094.68 21394.09 194
Vis-MVSNetpermissive92.77 11495.00 8290.16 13894.10 12798.79 6394.76 12388.26 12892.37 14479.95 14088.19 11391.58 8184.38 20197.59 5797.58 5099.52 2298.91 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAMVS90.54 14290.87 15390.16 13891.48 15796.61 13393.26 14586.08 15187.71 18881.66 13383.11 15084.04 13690.42 16694.54 14694.60 13498.04 17995.48 184
TDRefinement89.07 16388.15 17290.14 14095.16 10096.88 12195.55 10990.20 10189.68 17176.42 15976.67 17474.30 18084.85 19893.11 17091.91 18898.64 15694.47 189
NR-MVSNet89.34 15788.66 16690.13 14190.40 16795.61 16493.04 14989.91 10491.22 15778.96 14577.72 17168.90 20689.16 17694.24 15593.95 15299.32 6598.99 72
TranMVSNet+NR-MVSNet89.23 16088.48 16990.11 14289.07 19495.25 17892.91 15090.43 10090.31 16877.10 15476.62 17571.57 19291.83 14292.12 18494.59 13599.32 6598.92 80
test0.0.03 191.97 12193.91 10089.72 14393.31 14096.40 14091.34 18087.06 14193.86 11881.67 13291.15 8889.16 10086.02 19295.08 13895.09 11998.91 12996.64 174
FMVSNet590.36 14390.93 15189.70 14487.99 20492.25 20992.03 17083.51 17992.20 14884.13 11985.59 13486.48 11492.43 13594.61 14494.52 14098.13 17590.85 210
MDTV_nov1_ep1391.57 12993.18 11489.70 14493.39 13896.97 11993.53 13980.91 19295.70 8081.86 13092.40 7189.93 9293.25 12991.97 18990.80 19295.25 20794.46 190
Effi-MVS+-dtu91.78 12593.59 10989.68 14692.44 15097.11 11894.40 12984.94 16992.43 14075.48 16591.09 9083.75 13993.55 12496.61 8795.47 10997.24 18998.67 97
EPNet_dtu92.45 11995.02 8189.46 14798.02 5295.47 17094.79 12292.62 6694.97 10070.11 19494.76 5492.61 7884.07 20495.94 11395.56 10697.15 19095.82 179
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPMVS90.88 13792.12 13689.44 14894.71 11597.24 11593.55 13876.81 20295.89 7481.77 13191.49 8486.47 11593.87 11690.21 19990.07 19695.92 19793.49 203
pm-mvs189.19 16189.02 16489.38 14990.40 16795.74 16292.05 16988.10 13186.13 19877.70 14973.72 19179.44 15788.97 17795.81 11894.51 14199.08 10797.78 141
test-LLR91.62 12893.56 11089.35 15093.31 14096.57 13492.02 17187.06 14192.34 14575.05 17290.20 9788.64 10490.93 15496.19 10894.07 14997.75 18496.90 168
FC-MVSNet-test91.63 12793.82 10489.08 15192.02 15396.40 14093.26 14587.26 13893.72 12177.26 15288.61 11089.86 9385.50 19495.72 12495.02 12399.16 9797.44 151
v2v48288.25 17287.71 18288.88 15289.23 19295.28 17592.10 16787.89 13388.69 18073.31 17975.32 17871.64 19191.89 14092.10 18692.92 17298.86 13497.99 132
TransMVSNet (Re)87.73 18186.79 19288.83 15390.76 16394.40 19791.33 18189.62 11384.73 20475.41 16772.73 19671.41 19386.80 18694.53 14793.93 15399.06 11295.83 178
V4288.31 17187.95 17788.73 15489.44 18395.34 17492.23 16587.21 13988.83 17774.49 17574.89 18173.43 18590.41 16892.08 18792.77 17798.60 15998.33 119
CP-MVSNet87.89 17987.27 18588.62 15589.30 18695.06 18190.60 18885.78 15587.43 19275.98 16274.60 18368.14 20990.76 15993.07 17293.60 16099.30 7098.98 74
v888.21 17387.94 17888.51 15689.62 17995.01 18392.31 16284.99 16788.94 17574.70 17475.03 17973.51 18490.67 16292.11 18592.74 17898.80 14198.24 123
SCA90.92 13693.04 11688.45 15793.72 13597.33 11392.77 15176.08 20796.02 7078.26 14891.96 7690.86 8593.99 11590.98 19690.04 19795.88 19894.06 196
v14887.51 18386.79 19288.36 15889.39 18595.21 17989.84 19388.20 13087.61 19077.56 15073.38 19470.32 20086.80 18690.70 19792.31 18498.37 17097.98 134
Fast-Effi-MVS+-dtu91.19 13393.64 10688.33 15992.19 15296.46 13793.99 13481.52 19092.59 13771.82 18492.17 7385.54 12491.68 14495.73 12294.64 13398.80 14198.34 118
PatchmatchNetpermissive90.56 14092.49 12688.31 16093.83 13396.86 12492.42 15976.50 20495.96 7278.31 14791.96 7689.66 9493.48 12590.04 20189.20 20095.32 20493.73 201
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TESTMET0.1,191.07 13493.56 11088.17 16190.43 16696.57 13492.02 17182.83 18492.34 14575.05 17290.20 9788.64 10490.93 15496.19 10894.07 14997.75 18496.90 168
PS-CasMVS87.33 18686.68 19588.10 16289.22 19394.93 18690.35 19185.70 15686.44 19774.01 17773.43 19366.59 21590.04 17092.92 17393.52 16199.28 7298.91 83
v114487.92 17887.79 18088.07 16389.27 18795.15 18092.17 16685.62 15788.52 18171.52 18573.80 19072.40 18991.06 15293.54 16492.80 17598.81 13998.33 119
PEN-MVS87.22 18886.50 19788.07 16388.88 19794.44 19690.99 18586.21 14886.53 19673.66 17874.97 18066.56 21689.42 17591.20 19593.48 16299.24 7898.31 122
CR-MVSNet90.16 14891.96 14088.06 16593.32 13995.95 15293.36 14375.99 20892.40 14275.19 16983.18 14885.37 12592.05 13895.21 13594.56 13798.47 16697.08 162
v1088.00 17487.96 17688.05 16689.44 18394.68 19192.36 16083.35 18089.37 17472.96 18073.98 18972.79 18791.35 14893.59 16092.88 17398.81 13998.42 112
RPMNet90.19 14792.03 13988.05 16693.46 13695.95 15293.41 14174.59 21392.40 14275.91 16384.22 14386.41 11692.49 13494.42 15093.85 15698.44 16796.96 165
WR-MVS_H87.93 17687.85 17988.03 16889.62 17995.58 16890.47 18985.55 15987.20 19376.83 15674.42 18672.67 18886.37 18993.22 16993.04 16999.33 6398.83 91
ADS-MVSNet89.80 15291.33 14788.00 16994.43 12296.71 13092.29 16374.95 21296.07 6977.39 15188.67 10986.09 11893.26 12888.44 20589.57 19995.68 20093.81 200
tpmrst88.86 16789.62 15987.97 17094.33 12395.98 14992.62 15576.36 20594.62 10676.94 15585.98 13282.80 14592.80 13386.90 21187.15 20794.77 21193.93 198
test-mter90.95 13593.54 11287.93 17190.28 17096.80 12591.44 17782.68 18592.15 14974.37 17689.57 10388.23 10990.88 15796.37 9994.31 14597.93 18197.37 153
thisisatest051590.12 14992.06 13887.85 17290.03 17396.17 14587.83 19987.45 13691.71 15377.15 15385.40 13584.01 13785.74 19395.41 13193.30 16698.88 13198.43 110
WR-MVS87.93 17688.09 17387.75 17389.26 18895.28 17590.81 18686.69 14488.90 17675.29 16874.31 18773.72 18385.19 19792.26 18193.32 16599.27 7498.81 93
v119287.51 18387.31 18487.74 17489.04 19594.87 18992.07 16885.03 16688.49 18270.32 19172.65 19770.35 19991.21 14993.59 16092.80 17598.78 14498.42 112
v14419287.40 18587.20 18787.64 17588.89 19694.88 18891.65 17684.70 17287.80 18771.17 18973.20 19570.91 19590.75 16092.69 17692.49 18198.71 14898.43 110
IterMVS-SCA-FT90.24 14592.48 12887.63 17692.85 14594.30 20093.79 13681.47 19192.66 13469.95 19584.66 14088.38 10789.99 17195.39 13294.34 14497.74 18697.63 145
IterMVS90.20 14692.43 13087.61 17792.82 14794.31 19994.11 13281.54 18992.97 13069.90 19684.71 13988.16 11089.96 17295.25 13494.17 14797.31 18897.46 150
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GA-MVS89.28 15890.75 15487.57 17891.77 15496.48 13692.29 16387.58 13490.61 16665.77 20584.48 14176.84 17189.46 17495.84 11693.68 15998.52 16297.34 155
CVMVSNet89.77 15391.66 14287.56 17993.21 14295.45 17191.94 17489.22 11889.62 17369.34 20083.99 14585.90 12184.81 19994.30 15395.28 11496.85 19297.09 160
v192192087.31 18787.13 18887.52 18088.87 19894.72 19091.96 17384.59 17488.28 18369.86 19772.50 19870.03 20291.10 15193.33 16792.61 18098.71 14898.44 109
pmmvs587.83 18088.09 17387.51 18189.59 18195.48 16989.75 19484.73 17186.07 20071.44 18680.57 16270.09 20190.74 16194.47 14892.87 17498.82 13697.10 159
DTE-MVSNet86.67 19186.09 19887.35 18288.45 20394.08 20290.65 18786.05 15286.13 19872.19 18274.58 18566.77 21487.61 18390.31 19893.12 16899.13 10197.62 146
pmmvs685.98 19684.89 20487.25 18388.83 19994.35 19889.36 19585.30 16478.51 21775.44 16662.71 21775.41 17487.65 18293.58 16292.40 18396.89 19197.29 156
SixPastTwentyTwo88.37 17089.47 16187.08 18490.01 17495.93 15487.41 20085.32 16290.26 17070.26 19286.34 13071.95 19090.93 15492.89 17591.72 18998.55 16097.22 157
v124086.89 18986.75 19487.06 18588.75 20094.65 19391.30 18284.05 17687.49 19168.94 20171.96 20168.86 20790.65 16393.33 16792.72 17998.67 15198.24 123
testgi89.42 15591.50 14687.00 18692.40 15195.59 16689.15 19685.27 16592.78 13372.42 18191.75 8076.00 17384.09 20394.38 15193.82 15898.65 15596.15 175
LTVRE_ROB87.32 1687.55 18288.25 17186.73 18790.66 16495.80 16093.05 14884.77 17083.35 20860.32 21783.12 14967.39 21093.32 12794.36 15294.86 12798.28 17198.87 87
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CMPMVSbinary65.18 1784.76 20083.10 20686.69 18895.29 9495.05 18288.37 19785.51 16080.27 21571.31 18768.37 20973.85 18285.25 19587.72 20787.75 20494.38 21488.70 214
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet88.99 16491.07 14986.57 18986.78 21095.62 16391.20 18375.40 21090.65 16576.57 15784.05 14482.44 14791.01 15395.84 11695.38 11198.48 16593.50 202
anonymousdsp88.90 16591.00 15086.44 19088.74 20195.97 15090.40 19082.86 18388.77 17967.33 20381.18 15881.44 15090.22 16996.23 10494.27 14699.12 10399.16 50
v7n86.43 19286.52 19686.33 19187.91 20594.93 18690.15 19283.05 18186.57 19570.21 19371.48 20266.78 21387.72 18194.19 15792.96 17198.92 12798.76 96
tpm87.95 17589.44 16286.21 19292.53 14994.62 19491.40 17876.36 20591.46 15569.80 19887.43 11475.14 17591.55 14589.85 20390.60 19395.61 20196.96 165
PatchT89.13 16291.71 14186.11 19392.92 14395.59 16683.64 21075.09 21191.87 15175.19 16982.63 15185.06 13092.05 13895.21 13594.56 13797.76 18397.08 162
EG-PatchMatch MVS86.68 19087.24 18686.02 19490.58 16596.26 14391.08 18481.59 18884.96 20369.80 19871.35 20475.08 17784.23 20294.24 15593.35 16498.82 13695.46 185
pmmvs-eth3d84.33 20282.94 20785.96 19584.16 21490.94 21286.55 20383.79 17784.25 20575.85 16470.64 20556.43 22387.44 18592.20 18390.41 19597.97 18095.68 181
PM-MVS84.72 20184.47 20585.03 19684.67 21391.57 21186.27 20482.31 18787.65 18970.62 19076.54 17656.41 22488.75 17992.59 17789.85 19897.54 18796.66 173
pmnet_mix0286.12 19587.12 18984.96 19789.82 17694.12 20184.88 20886.63 14591.78 15265.60 20680.76 16076.98 16986.61 18887.29 21084.80 21396.21 19494.09 194
N_pmnet84.80 19985.10 20384.45 19889.25 19192.86 20784.04 20986.21 14888.78 17866.73 20472.41 19974.87 17985.21 19688.32 20686.45 20895.30 20592.04 207
MDTV_nov1_ep13_2view86.30 19388.27 17084.01 19987.71 20794.67 19288.08 19876.78 20390.59 16768.66 20280.46 16480.12 15487.58 18489.95 20288.20 20395.25 20793.90 199
MVS-HIRNet85.36 19886.89 19183.57 20090.13 17294.51 19583.57 21172.61 21588.27 18471.22 18868.97 20781.81 14888.91 17893.08 17191.94 18794.97 21089.64 213
gg-mvs-nofinetune86.17 19488.57 16883.36 20193.44 13798.15 9696.58 8172.05 21674.12 22049.23 22464.81 21590.85 8689.90 17397.83 5096.84 7298.97 12197.41 152
EU-MVSNet85.62 19787.65 18383.24 20288.54 20292.77 20887.12 20185.32 16286.71 19464.54 20878.52 16975.11 17678.35 20892.25 18292.28 18595.58 20295.93 177
Anonymous2023120683.84 20385.19 20282.26 20387.38 20892.87 20685.49 20683.65 17886.07 20063.44 21268.42 20869.01 20575.45 21293.34 16692.44 18298.12 17794.20 192
gm-plane-assit83.26 20485.29 20180.89 20489.52 18289.89 21570.26 22178.24 19777.11 21858.01 22174.16 18866.90 21190.63 16497.20 6796.05 9198.66 15495.68 181
new_pmnet81.53 20682.68 20880.20 20583.47 21689.47 21682.21 21478.36 19687.86 18660.14 21967.90 21069.43 20482.03 20689.22 20487.47 20694.99 20987.39 215
MDA-MVSNet-bldmvs80.11 20780.24 21079.94 20677.01 22093.21 20578.86 21785.94 15482.71 21160.86 21479.71 16651.77 22683.71 20575.60 21886.37 20993.28 21592.35 205
test20.0382.92 20585.52 20079.90 20787.75 20691.84 21082.80 21282.99 18282.65 21260.32 21778.90 16870.50 19667.10 21692.05 18890.89 19198.44 16791.80 208
MIMVSNet180.03 20880.93 20978.97 20872.46 22390.73 21380.81 21582.44 18680.39 21463.64 21057.57 21864.93 21776.37 21091.66 19191.55 19098.07 17889.70 212
new-patchmatchnet78.49 21078.19 21378.84 20984.13 21590.06 21477.11 21980.39 19379.57 21659.64 22066.01 21355.65 22575.62 21184.55 21380.70 21696.14 19690.77 211
pmmvs379.16 20980.12 21178.05 21079.36 21886.59 21878.13 21873.87 21476.42 21957.51 22270.59 20657.02 22284.66 20090.10 20088.32 20294.75 21291.77 209
FPMVS75.84 21174.59 21577.29 21186.92 20983.89 22085.01 20780.05 19482.91 21060.61 21665.25 21460.41 22063.86 21775.60 21873.60 22087.29 22180.47 218
Gipumacopyleft68.35 21466.71 21770.27 21274.16 22268.78 22463.93 22471.77 21783.34 20954.57 22334.37 22231.88 22868.69 21583.30 21485.53 21188.48 21979.78 219
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft63.12 1867.27 21566.39 21868.30 21377.98 21960.24 22659.53 22576.82 20166.65 22160.74 21554.39 21959.82 22151.24 22073.92 22170.52 22183.48 22279.17 220
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt66.88 21486.07 21173.86 22368.22 22233.38 22496.88 4880.67 13988.23 11278.82 15949.78 22182.68 21577.47 21883.19 223
test_method72.96 21278.68 21266.28 21550.17 22764.90 22575.45 22050.90 22387.89 18562.54 21362.98 21668.34 20870.45 21491.90 19082.41 21488.19 22092.35 205
PMMVS264.36 21765.94 21962.52 21667.37 22477.44 22264.39 22369.32 22161.47 22234.59 22546.09 22141.03 22748.02 22374.56 22078.23 21791.43 21782.76 217
WB-MVS69.22 21376.91 21460.24 21785.80 21279.37 22156.86 22684.96 16881.50 21318.16 22976.85 17361.07 21834.23 22482.46 21681.81 21581.43 22475.31 222
E-PMN50.67 21847.85 22153.96 21864.13 22650.98 22938.06 22769.51 21951.40 22424.60 22729.46 22524.39 23056.07 21948.17 22359.70 22271.40 22570.84 223
EMVS49.98 21946.76 22253.74 21964.96 22551.29 22837.81 22869.35 22051.83 22322.69 22829.57 22425.06 22957.28 21844.81 22456.11 22370.32 22668.64 224
MVEpermissive50.86 1949.54 22051.43 22047.33 22044.14 22859.20 22736.45 22960.59 22241.47 22531.14 22629.58 22317.06 23248.52 22262.22 22274.63 21963.12 22775.87 221
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
GG-mvs-BLEND66.17 21694.91 8332.63 2211.32 23096.64 13291.40 1780.85 22794.39 1112.20 23190.15 9995.70 622.27 22796.39 9695.44 11097.78 18295.68 181
testmvs12.09 22116.94 2236.42 2223.15 2296.08 2309.51 2313.84 22521.46 2265.31 23027.49 2266.76 23310.89 22517.06 22515.01 2245.84 22824.75 225
test1239.58 22213.53 2244.97 2231.31 2315.47 2318.32 2322.95 22618.14 2272.03 23220.82 2272.34 23410.60 22610.00 22614.16 2254.60 22923.77 226
uanet_test0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet-low-res0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
TPM-MVS98.94 3298.47 8598.04 4292.62 4696.51 3398.76 2995.94 7998.92 12797.55 147
Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025
RE-MVS-def63.50 211
9.1499.28 12
SR-MVS99.45 997.61 1499.20 16
Anonymous20240521192.18 13595.04 10498.20 9396.14 9291.79 8393.93 11674.60 18388.38 10796.48 7095.17 13795.82 10299.00 11899.15 51
our_test_389.78 17793.84 20385.59 205
ambc73.83 21676.23 22185.13 21982.27 21384.16 20665.58 20752.82 22023.31 23173.55 21391.41 19485.26 21292.97 21694.70 187
MTAPA96.83 1099.12 21
MTMP97.18 598.83 26
Patchmatch-RL test34.61 230
XVS96.60 6999.35 1796.82 6990.85 6298.72 3099.46 34
X-MVStestdata96.60 6999.35 1796.82 6990.85 6298.72 3099.46 34
mPP-MVS99.21 2398.29 38
NP-MVS95.32 89
Patchmtry95.96 15193.36 14375.99 20875.19 169
DeepMVS_CXcopyleft86.86 21779.50 21670.43 21890.73 16363.66 20980.36 16560.83 21979.68 20776.23 21789.46 21886.53 216