This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
APDe-MVS98.87 398.96 498.77 199.58 299.53 799.44 197.81 298.22 1097.33 498.70 599.33 1098.86 898.96 698.40 1399.63 599.57 9
DVP-MVScopyleft98.86 498.97 398.75 299.43 1299.63 199.25 1297.81 298.62 297.69 197.59 2099.90 298.93 598.99 498.42 1199.37 5799.62 4
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS98.90 299.07 298.69 399.38 1899.61 299.33 897.80 498.25 897.60 298.87 499.89 398.67 1799.02 298.26 1799.36 5999.61 6
DVP-MVS++98.92 199.18 198.61 499.47 599.61 299.39 397.82 198.80 196.86 898.90 299.92 198.67 1799.02 298.20 1999.43 4599.82 1
DPE-MVScopyleft98.75 598.91 698.57 599.21 2399.54 699.42 297.78 697.49 3196.84 998.94 199.82 598.59 2198.90 1098.22 1899.56 1799.48 14
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS98.73 698.93 598.50 699.44 1199.57 499.36 497.65 998.14 1296.51 1498.49 799.65 898.67 1798.60 1498.42 1199.40 5199.63 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS98.47 1198.46 1698.48 799.40 1499.05 3799.02 1997.54 1697.73 1996.65 1197.20 2999.13 2098.85 998.91 998.10 2399.41 4899.08 55
APD-MVScopyleft98.36 1598.32 2398.41 899.47 599.26 2699.12 1597.77 796.73 5096.12 1697.27 2898.88 2498.46 2598.47 1898.39 1499.52 2099.22 39
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SMA-MVScopyleft98.66 798.89 798.39 999.60 199.41 1299.00 2097.63 1297.78 1895.83 1898.33 1199.83 498.85 998.93 898.56 699.41 4899.40 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SF-MVS98.39 1398.45 1798.33 1099.45 999.05 3798.27 3797.65 997.73 1997.02 798.18 1299.25 1598.11 3298.15 3897.62 4699.45 3699.19 43
HFP-MVS98.48 1098.62 1198.32 1199.39 1799.33 2199.27 1097.42 1898.27 795.25 2398.34 1098.83 2699.08 198.26 3398.08 2599.48 2899.26 33
CP-MVS98.32 1798.34 2298.29 1299.34 2099.30 2299.15 1497.35 2197.49 3195.58 2197.72 1898.62 3398.82 1198.29 2897.67 4599.51 2599.28 28
ACMMPR98.40 1298.49 1398.28 1399.41 1399.40 1399.36 497.35 2198.30 695.02 2597.79 1798.39 3699.04 298.26 3398.10 2399.50 2799.22 39
AdaColmapbinary97.53 3096.93 4798.24 1499.21 2398.77 6598.47 3497.34 2396.68 5296.52 1395.11 4896.12 5798.72 1497.19 6996.24 8399.17 9198.39 112
SD-MVS98.52 898.77 998.23 1598.15 4899.26 2698.79 2697.59 1598.52 396.25 1597.99 1599.75 699.01 398.27 3297.97 3199.59 799.63 2
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS++copyleft98.34 1698.47 1598.18 1699.46 899.15 3499.10 1697.69 897.67 2494.93 2697.62 1999.70 798.60 2098.45 2097.46 5199.31 6699.26 33
MSLP-MVS++98.04 2397.93 3298.18 1699.10 2799.09 3698.34 3696.99 3297.54 2996.60 1294.82 5098.45 3498.89 697.46 6198.77 499.17 9199.37 20
NCCC98.10 2198.05 3098.17 1899.38 1899.05 3799.00 2097.53 1798.04 1495.12 2494.80 5199.18 1898.58 2298.49 1797.78 4299.39 5398.98 72
TSAR-MVS + MP.98.49 998.78 898.15 1998.14 4999.17 3399.34 697.18 2998.44 595.72 1997.84 1699.28 1298.87 799.05 198.05 2699.66 299.60 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PLCcopyleft94.95 397.37 3396.77 5198.07 2098.97 3198.21 8997.94 4596.85 3597.66 2597.58 393.33 5896.84 4798.01 3697.13 7196.20 8599.09 10398.01 128
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CPTT-MVS97.78 2697.54 3598.05 2198.91 3499.05 3799.00 2096.96 3397.14 4195.92 1795.50 4398.78 2898.99 497.20 6796.07 8798.54 15799.04 64
MCST-MVS98.20 1898.36 1998.01 2299.40 1499.05 3799.00 2097.62 1397.59 2893.70 3397.42 2799.30 1198.77 1398.39 2697.48 5099.59 799.31 27
SteuartSystems-ACMMP98.38 1498.71 1097.99 2399.34 2099.46 1099.34 697.33 2497.31 3594.25 2998.06 1399.17 1998.13 3198.98 598.46 999.55 1899.54 11
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS_fast96.13 198.13 2098.27 2597.97 2499.16 2699.03 4399.05 1897.24 2698.22 1094.17 3195.82 3998.07 3898.69 1698.83 1198.80 299.52 2099.10 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMP_NAP98.20 1898.49 1397.85 2599.50 499.40 1399.26 1197.64 1197.47 3392.62 4697.59 2099.09 2298.71 1598.82 1297.86 3899.40 5199.19 43
MP-MVScopyleft98.09 2298.30 2497.84 2699.34 2099.19 3299.23 1397.40 1997.09 4393.03 3997.58 2298.85 2598.57 2398.44 2297.69 4499.48 2899.23 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CSCG97.44 3297.18 4397.75 2799.47 599.52 898.55 3195.41 4097.69 2395.72 1994.29 5495.53 6298.10 3396.20 10797.38 5599.24 7699.62 4
CNLPA96.90 4296.28 5797.64 2898.56 4198.63 7796.85 6696.60 3697.73 1997.08 689.78 9996.28 5597.80 3996.73 8396.63 7498.94 12298.14 124
PGM-MVS97.81 2598.11 2897.46 2999.55 399.34 2099.32 994.51 4596.21 6193.07 3698.05 1497.95 4198.82 1198.22 3697.89 3799.48 2899.09 54
X-MVS97.84 2498.19 2797.42 3099.40 1499.35 1799.06 1797.25 2597.38 3490.85 6196.06 3698.72 2998.53 2498.41 2498.15 2299.46 3299.28 28
ACMMPcopyleft97.37 3397.48 3797.25 3198.88 3699.28 2498.47 3496.86 3497.04 4592.15 4997.57 2396.05 5997.67 4097.27 6595.99 9299.46 3299.14 51
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
3Dnovator+93.91 797.23 3597.22 4097.24 3298.89 3598.85 6198.26 3893.25 5697.99 1595.56 2290.01 9798.03 4098.05 3497.91 4798.43 1099.44 4299.35 22
train_agg97.65 2998.06 2997.18 3398.94 3298.91 5698.98 2497.07 3196.71 5190.66 6697.43 2699.08 2398.20 2797.96 4697.14 6299.22 8299.19 43
OMC-MVS97.00 3996.92 4897.09 3498.69 3898.66 7297.85 4695.02 4298.09 1394.47 2793.15 5996.90 4597.38 4697.16 7096.82 7299.13 9897.65 141
DeepC-MVS94.87 496.76 4896.50 5497.05 3598.21 4799.28 2498.67 2797.38 2097.31 3590.36 7389.19 10193.58 7198.19 2898.31 2798.50 799.51 2599.36 21
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PHI-MVS97.78 2698.44 1897.02 3698.73 3799.25 2898.11 4095.54 3996.66 5392.79 4398.52 699.38 997.50 4497.84 4998.39 1499.45 3699.03 65
3Dnovator93.79 897.08 3797.20 4196.95 3799.09 2899.03 4398.20 3993.33 5297.99 1593.82 3290.61 9196.80 4897.82 3797.90 4898.78 399.47 3199.26 33
DPM-MVS96.86 4496.82 5096.91 3898.08 5098.20 9098.52 3397.20 2897.24 3891.42 5591.84 7598.45 3497.25 4897.07 7297.40 5498.95 12197.55 144
TSAR-MVS + ACMM97.71 2898.60 1296.66 3998.64 4099.05 3798.85 2597.23 2798.45 489.40 8797.51 2499.27 1496.88 5998.53 1597.81 4198.96 12099.59 8
CANet96.84 4597.20 4196.42 4097.92 5299.24 3098.60 2993.51 5197.11 4293.07 3691.16 8397.24 4496.21 7298.24 3598.05 2699.22 8299.35 22
TSAR-MVS + GP.97.45 3198.36 1996.39 4195.56 8698.93 5397.74 4893.31 5397.61 2794.24 3098.44 999.19 1798.03 3597.60 5697.41 5399.44 4299.33 24
QAPM96.78 4797.14 4496.36 4299.05 2999.14 3598.02 4293.26 5497.27 3790.84 6491.16 8397.31 4397.64 4297.70 5498.20 1999.33 6199.18 46
PCF-MVS93.95 695.65 5595.14 7596.25 4397.73 5798.73 6797.59 5097.13 3092.50 13789.09 9489.85 9896.65 4996.90 5894.97 13994.89 12399.08 10498.38 113
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TAPA-MVS94.18 596.38 5096.49 5596.25 4398.26 4698.66 7298.00 4394.96 4397.17 3989.48 8492.91 6396.35 5297.53 4396.59 8895.90 9599.28 7097.82 132
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CS-MVS96.87 4397.41 3996.24 4597.42 5999.48 997.30 5591.83 8097.17 3993.02 4094.80 5194.45 6698.16 3098.61 1397.85 3999.69 199.50 12
MVS_111021_LR97.16 3698.01 3196.16 4698.47 4298.98 4896.94 6393.89 4897.64 2691.44 5498.89 396.41 5197.20 4998.02 4597.29 6099.04 11498.85 87
CDPH-MVS96.84 4597.49 3696.09 4798.92 3398.85 6198.61 2895.09 4196.00 6987.29 10595.45 4597.42 4297.16 5097.83 5097.94 3499.44 4298.92 78
MSDG94.82 6993.73 10396.09 4798.34 4597.43 10897.06 5896.05 3795.84 7590.56 6786.30 12789.10 10095.55 8496.13 11095.61 10399.00 11595.73 176
DELS-MVS96.06 5496.04 6196.07 4997.77 5499.25 2898.10 4193.26 5494.42 10792.79 4388.52 10893.48 7295.06 9398.51 1698.83 199.45 3699.28 28
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CS-MVS-test97.00 3997.85 3396.00 5097.77 5499.56 596.35 8591.95 7597.54 2992.20 4896.14 3596.00 6098.19 2898.46 1997.78 4299.57 1499.45 16
test250694.32 8693.00 11595.87 5196.16 7699.39 1596.96 6192.80 6495.22 9394.47 2791.55 8070.45 19395.25 9098.29 2897.98 2999.59 798.10 126
LS3D95.46 5995.14 7595.84 5297.91 5398.90 5898.58 3097.79 597.07 4483.65 12088.71 10488.64 10397.82 3797.49 5997.42 5299.26 7597.72 140
OpenMVScopyleft92.33 1195.50 5695.22 7395.82 5398.98 3098.97 4997.67 4993.04 6294.64 10389.18 9284.44 13894.79 6496.79 6097.23 6697.61 4799.24 7698.88 83
MVS_111021_HR97.04 3898.20 2695.69 5498.44 4499.29 2396.59 7793.20 5797.70 2289.94 7998.46 896.89 4696.71 6398.11 4297.95 3399.27 7299.01 68
MVS_030496.31 5196.91 4995.62 5597.21 6499.20 3198.55 3193.10 5997.04 4589.73 8190.30 9396.35 5295.71 7898.14 3997.93 3699.38 5499.40 18
PVSNet_BlendedMVS95.41 6195.28 7195.57 5697.42 5999.02 4595.89 9993.10 5996.16 6293.12 3491.99 7185.27 12394.66 9998.09 4397.34 5699.24 7699.08 55
PVSNet_Blended95.41 6195.28 7195.57 5697.42 5999.02 4595.89 9993.10 5996.16 6293.12 3491.99 7185.27 12394.66 9998.09 4397.34 5699.24 7699.08 55
ECVR-MVScopyleft94.14 8892.96 11695.52 5896.16 7699.39 1596.96 6192.80 6495.22 9392.38 4781.48 15280.31 14995.25 9098.29 2897.98 2999.59 798.05 127
EPNet96.27 5396.97 4695.46 5998.47 4298.28 8697.41 5293.67 4995.86 7492.86 4297.51 2493.79 7091.76 13997.03 7497.03 6498.61 15399.28 28
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepPCF-MVS95.28 297.00 3998.35 2195.42 6097.30 6298.94 5194.82 11796.03 3898.24 992.11 5095.80 4098.64 3295.51 8598.95 798.66 596.78 18999.20 42
MAR-MVS95.50 5695.60 6595.39 6198.67 3998.18 9295.89 9989.81 10794.55 10591.97 5292.99 6190.21 9097.30 4796.79 8097.49 4998.72 14398.99 70
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CLD-MVS94.79 7194.36 8895.30 6295.21 9697.46 10697.23 5692.24 7296.43 5591.77 5392.69 6584.31 13196.06 7395.52 12595.03 11999.31 6699.06 60
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test111193.94 9392.78 11795.29 6396.14 7899.42 1196.79 7092.85 6395.08 9791.39 5680.69 15779.86 15295.00 9498.28 3198.00 2899.58 1198.11 125
DROMVSNet96.49 4997.63 3495.16 6494.75 11098.69 7097.39 5488.97 11896.34 5792.02 5196.04 3796.46 5098.21 2698.41 2497.96 3299.61 699.55 10
TSAR-MVS + COLMAP94.79 7194.51 8495.11 6596.50 7097.54 10397.99 4494.54 4497.81 1785.88 11196.73 3181.28 14896.99 5696.29 10295.21 11598.76 14296.73 167
ACMM92.75 1094.41 8493.84 10195.09 6696.41 7396.80 12194.88 11693.54 5096.41 5690.16 7492.31 6983.11 14096.32 7096.22 10594.65 12999.22 8297.35 150
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PatchMatch-RL94.69 7594.41 8695.02 6797.63 5898.15 9394.50 12491.99 7495.32 8791.31 5795.47 4483.44 13896.02 7596.56 8995.23 11498.69 14696.67 168
OPM-MVS93.61 10292.43 12895.00 6896.94 6797.34 10997.78 4794.23 4689.64 16985.53 11288.70 10582.81 14196.28 7196.28 10395.00 12299.24 7697.22 153
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
canonicalmvs95.25 6595.45 6995.00 6895.27 9498.72 6896.89 6489.82 10696.51 5490.84 6493.72 5786.01 11897.66 4195.78 11997.94 3499.54 1999.50 12
ETV-MVS96.31 5197.47 3894.96 7094.79 10798.78 6496.08 9191.41 8896.16 6290.50 6895.76 4196.20 5697.39 4598.42 2397.82 4099.57 1499.18 46
tfpn200view993.64 10092.57 12094.89 7195.33 9098.94 5196.82 6792.31 6892.63 13388.29 9687.21 11278.01 16097.12 5396.82 7795.85 9799.45 3698.56 99
thres20093.62 10192.54 12194.88 7295.36 8998.93 5396.75 7292.31 6892.84 13088.28 9886.99 11477.81 16297.13 5196.82 7795.92 9399.45 3698.49 105
casdiffmvs_mvgpermissive94.55 7894.26 9094.88 7294.96 10298.51 8197.11 5791.82 8194.28 11089.20 9186.60 11986.85 11196.56 6797.47 6097.25 6199.64 498.83 89
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
thres40093.56 10392.43 12894.87 7495.40 8898.91 5696.70 7492.38 6792.93 12988.19 10086.69 11777.35 16397.13 5196.75 8295.85 9799.42 4798.56 99
Anonymous2023121193.49 10592.33 13294.84 7594.78 10998.00 9696.11 9091.85 7794.86 10090.91 6074.69 17789.18 9896.73 6294.82 14095.51 10698.67 14799.24 36
thres100view90093.55 10492.47 12794.81 7695.33 9098.74 6696.78 7192.30 7192.63 13388.29 9687.21 11278.01 16096.78 6196.38 9795.92 9399.38 5498.40 111
thres600view793.49 10592.37 13194.79 7795.42 8798.93 5396.58 7892.31 6893.04 12787.88 10186.62 11876.94 16697.09 5496.82 7795.63 10299.45 3698.63 97
baseline194.59 7794.47 8594.72 7895.16 9797.97 9896.07 9291.94 7694.86 10089.98 7791.60 7985.87 12095.64 8097.07 7296.90 6899.52 2097.06 160
EIA-MVS95.50 5696.19 5994.69 7994.83 10698.88 6095.93 9691.50 8794.47 10689.43 8593.14 6092.72 7697.05 5597.82 5297.13 6399.43 4599.15 49
MVSTER94.89 6795.07 7894.68 8094.71 11296.68 12797.00 5990.57 9795.18 9593.05 3895.21 4686.41 11593.72 11797.59 5795.88 9699.00 11598.50 104
casdiffmvspermissive94.38 8594.15 9694.64 8194.70 11498.51 8196.03 9491.66 8395.70 7889.36 8886.48 12285.03 12896.60 6697.40 6297.30 5899.52 2098.67 95
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMP92.88 994.43 8294.38 8794.50 8296.01 8197.69 10195.85 10292.09 7395.74 7789.12 9395.14 4782.62 14394.77 9595.73 12194.67 12899.14 9799.06 60
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DI_MVS_plusplus_trai94.01 9193.63 10594.44 8394.54 11698.26 8897.51 5190.63 9695.88 7389.34 8980.54 15989.36 9595.48 8696.33 10196.27 8299.17 9198.78 93
diffmvspermissive94.31 8794.21 9194.42 8494.64 11598.28 8696.36 8491.56 8496.77 4988.89 9588.97 10284.23 13296.01 7696.05 11196.41 7899.05 11398.79 92
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DCV-MVSNet94.76 7495.12 7794.35 8595.10 10095.81 15596.46 8289.49 11296.33 5890.16 7492.55 6790.26 8995.83 7795.52 12596.03 9099.06 10999.33 24
HQP-MVS94.43 8294.57 8394.27 8696.41 7397.23 11296.89 6493.98 4795.94 7183.68 11995.01 4984.46 13095.58 8395.47 12794.85 12799.07 10699.00 69
EPP-MVSNet95.27 6496.18 6094.20 8794.88 10498.64 7594.97 11390.70 9595.34 8689.67 8391.66 7893.84 6995.42 8897.32 6497.00 6599.58 1199.47 15
RPSCF94.05 9094.00 9794.12 8896.20 7596.41 13596.61 7691.54 8595.83 7689.73 8196.94 3092.80 7595.35 8991.63 18990.44 19195.27 20293.94 193
IS_MVSNet95.28 6396.43 5693.94 8995.30 9299.01 4795.90 9791.12 9194.13 11387.50 10491.23 8294.45 6694.17 10898.45 2098.50 799.65 399.23 37
COLMAP_ROBcopyleft90.49 1493.27 10992.71 11893.93 9097.75 5697.44 10796.07 9293.17 5895.40 8483.86 11883.76 14288.72 10293.87 11394.25 15194.11 14598.87 12895.28 182
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PVSNet_Blended_VisFu94.77 7395.54 6793.87 9196.48 7198.97 4994.33 12691.84 7894.93 9990.37 7285.04 13394.99 6390.87 15498.12 4197.30 5899.30 6899.45 16
MVS_Test94.82 6995.66 6493.84 9294.79 10798.35 8596.49 8189.10 11796.12 6587.09 10792.58 6690.61 8796.48 6896.51 9596.89 6999.11 10198.54 101
FC-MVSNet-train93.85 9693.91 9893.78 9394.94 10396.79 12494.29 12791.13 9093.84 11888.26 9990.40 9285.23 12594.65 10196.54 9195.31 11199.38 5499.28 28
baseline94.83 6895.82 6393.68 9494.75 11097.80 9996.51 8088.53 12397.02 4789.34 8992.93 6292.18 7894.69 9895.78 11996.08 8698.27 16898.97 76
CHOSEN 280x42095.46 5997.01 4593.66 9597.28 6397.98 9796.40 8385.39 15896.10 6691.07 5896.53 3296.34 5495.61 8297.65 5596.95 6796.21 19097.49 145
LGP-MVS_train94.12 8994.62 8293.53 9696.44 7297.54 10397.40 5391.84 7894.66 10281.09 13395.70 4283.36 13995.10 9296.36 10095.71 10199.32 6399.03 65
PMMVS94.61 7695.56 6693.50 9794.30 12196.74 12594.91 11589.56 11195.58 8387.72 10296.15 3492.86 7496.06 7395.47 12795.02 12098.43 16597.09 156
thisisatest053094.54 7995.47 6893.46 9894.51 11798.65 7494.66 12090.72 9395.69 8086.90 10893.80 5589.44 9494.74 9696.98 7694.86 12499.19 8998.85 87
tttt051794.52 8095.44 7093.44 9994.51 11798.68 7194.61 12290.72 9395.61 8286.84 10993.78 5689.26 9794.74 9697.02 7594.86 12499.20 8898.87 85
GBi-Net93.81 9794.18 9293.38 10091.34 15595.86 15196.22 8688.68 12095.23 9090.40 6986.39 12391.16 8194.40 10596.52 9296.30 7999.21 8597.79 133
test193.81 9794.18 9293.38 10091.34 15595.86 15196.22 8688.68 12095.23 9090.40 6986.39 12391.16 8194.40 10596.52 9296.30 7999.21 8597.79 133
FMVSNet393.79 9994.17 9493.35 10291.21 15895.99 14496.62 7588.68 12095.23 9090.40 6986.39 12391.16 8194.11 10995.96 11296.67 7399.07 10697.79 133
FMVSNet293.30 10893.36 11193.22 10391.34 15595.86 15196.22 8688.24 12695.15 9689.92 8081.64 15089.36 9594.40 10596.77 8196.98 6699.21 8597.79 133
UGNet94.92 6696.63 5292.93 10496.03 8098.63 7794.53 12391.52 8696.23 6090.03 7692.87 6496.10 5886.28 18696.68 8596.60 7599.16 9499.32 26
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CHOSEN 1792x268892.66 11492.49 12492.85 10597.13 6598.89 5995.90 9788.50 12495.32 8783.31 12171.99 19588.96 10194.10 11096.69 8496.49 7698.15 17099.10 52
HyFIR lowres test92.03 11891.55 14292.58 10697.13 6598.72 6894.65 12186.54 14393.58 12282.56 12467.75 20690.47 8895.67 7995.87 11595.54 10598.91 12598.93 77
FA-MVS(training)93.94 9395.16 7492.53 10794.87 10598.57 8095.42 10779.49 19195.37 8590.98 5986.54 12094.26 6895.44 8797.80 5395.19 11698.97 11898.38 113
Vis-MVSNet (Re-imp)94.46 8196.24 5892.40 10895.23 9598.64 7595.56 10590.99 9294.42 10785.02 11490.88 8994.65 6588.01 17698.17 3798.37 1699.57 1498.53 102
GeoE92.52 11692.64 11992.39 10993.96 12697.76 10096.01 9585.60 15593.23 12583.94 11781.56 15184.80 12995.63 8196.22 10595.83 9999.19 8999.07 59
FMVSNet191.54 12790.93 14892.26 11090.35 16595.27 17395.22 11087.16 13791.37 15487.62 10375.45 17283.84 13594.43 10396.52 9296.30 7998.82 13297.74 139
ET-MVSNet_ETH3D93.34 10794.33 8992.18 11183.26 21297.66 10296.72 7389.89 10595.62 8187.17 10696.00 3883.69 13796.99 5693.78 15595.34 11099.06 10998.18 123
Effi-MVS+92.93 11193.86 10091.86 11294.07 12598.09 9595.59 10485.98 15094.27 11179.54 14091.12 8681.81 14596.71 6396.67 8696.06 8899.27 7298.98 72
IterMVS-LS92.56 11593.18 11291.84 11393.90 12794.97 18094.99 11286.20 14794.18 11282.68 12385.81 12987.36 11094.43 10395.31 13196.02 9198.87 12898.60 98
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet92.77 11293.60 10691.80 11492.63 14596.80 12195.24 10989.14 11690.30 16684.58 11586.76 11590.65 8690.42 16295.89 11496.49 7698.79 13998.32 118
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMH+90.88 1291.41 12991.13 14591.74 11595.11 9996.95 11693.13 14389.48 11392.42 13979.93 13785.13 13278.02 15993.82 11593.49 16293.88 15198.94 12297.99 129
UA-Net93.96 9295.95 6291.64 11696.06 7998.59 7995.29 10890.00 10291.06 15782.87 12290.64 9098.06 3986.06 18798.14 3998.20 1999.58 1196.96 161
baseline293.01 11094.17 9491.64 11692.83 14397.49 10593.40 13887.53 13293.67 12086.07 11091.83 7686.58 11291.36 14396.38 9795.06 11898.67 14798.20 122
Fast-Effi-MVS+91.87 12092.08 13591.62 11892.91 14197.21 11394.93 11484.60 16993.61 12181.49 13183.50 14378.95 15596.62 6596.55 9096.22 8499.16 9498.51 103
ACMH90.77 1391.51 12891.63 14191.38 11995.62 8596.87 11991.76 17189.66 10991.58 15278.67 14286.73 11678.12 15893.77 11694.59 14294.54 13698.78 14098.98 72
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_ETH3D88.47 16686.00 19691.35 12091.55 15296.29 13892.53 15288.81 11985.58 19982.33 12567.63 20766.87 20894.04 11191.49 19095.24 11398.84 13198.92 78
pmmvs490.55 13889.91 15591.30 12190.26 16794.95 18192.73 14987.94 12993.44 12485.35 11382.28 14976.09 16893.02 12893.56 16092.26 18398.51 15996.77 166
MS-PatchMatch91.82 12192.51 12291.02 12295.83 8396.88 11795.05 11184.55 17193.85 11782.01 12682.51 14891.71 7990.52 16195.07 13793.03 16798.13 17194.52 184
dps90.11 14789.37 16090.98 12393.89 12896.21 14093.49 13677.61 19691.95 14892.74 4588.85 10378.77 15792.37 13287.71 20587.71 20295.80 19594.38 187
CostFormer90.69 13590.48 15390.93 12494.18 12296.08 14394.03 12978.20 19493.47 12389.96 7890.97 8880.30 15093.72 11787.66 20688.75 19895.51 19996.12 172
USDC90.69 13590.52 15290.88 12594.17 12396.43 13495.82 10386.76 14093.92 11576.27 15786.49 12174.30 17693.67 11995.04 13893.36 16098.61 15394.13 189
CANet_DTU93.92 9596.57 5390.83 12695.63 8498.39 8496.99 6087.38 13496.26 5971.97 17996.31 3393.02 7394.53 10297.38 6396.83 7198.49 16097.79 133
UniMVSNet_NR-MVSNet90.35 14189.96 15490.80 12789.66 17495.83 15492.48 15390.53 9890.96 15979.57 13879.33 16377.14 16493.21 12692.91 17194.50 13999.37 5799.05 62
IB-MVS89.56 1591.71 12392.50 12390.79 12895.94 8298.44 8387.05 19891.38 8993.15 12692.98 4184.78 13485.14 12678.27 20592.47 17794.44 14099.10 10299.08 55
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Baseline_NR-MVSNet89.27 15688.01 17290.73 12989.26 18493.71 20092.71 15089.78 10890.73 16081.28 13273.53 18772.85 18292.30 13392.53 17593.84 15499.07 10698.88 83
DU-MVS89.67 15188.84 16290.63 13089.26 18495.61 16092.48 15389.91 10391.22 15579.57 13877.72 16771.18 19093.21 12692.53 17594.57 13399.35 6099.05 62
UniMVSNet (Re)90.03 14889.61 15790.51 13189.97 17196.12 14292.32 15789.26 11490.99 15880.95 13478.25 16675.08 17391.14 14693.78 15593.87 15299.41 4899.21 41
TinyColmap89.42 15288.58 16490.40 13293.80 13195.45 16793.96 13186.54 14392.24 14576.49 15480.83 15570.44 19493.37 12294.45 14693.30 16398.26 16993.37 200
tfpnnormal88.50 16587.01 18790.23 13391.36 15495.78 15792.74 14890.09 10183.65 20476.33 15671.46 19869.58 19991.84 13795.54 12494.02 14899.06 10999.03 65
tpm cat188.90 16287.78 17890.22 13493.88 12995.39 16993.79 13278.11 19592.55 13689.43 8581.31 15379.84 15391.40 14284.95 20986.34 20794.68 20994.09 190
Vis-MVSNetpermissive92.77 11295.00 8090.16 13594.10 12498.79 6394.76 11988.26 12592.37 14279.95 13688.19 11091.58 8084.38 19797.59 5797.58 4899.52 2098.91 81
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAMVS90.54 13990.87 15090.16 13591.48 15396.61 12993.26 14186.08 14887.71 18581.66 13083.11 14684.04 13390.42 16294.54 14394.60 13198.04 17595.48 180
TDRefinement89.07 16088.15 16990.14 13795.16 9796.88 11795.55 10690.20 10089.68 16876.42 15576.67 16974.30 17684.85 19493.11 16791.91 18598.64 15294.47 185
NR-MVSNet89.34 15488.66 16390.13 13890.40 16395.61 16093.04 14589.91 10391.22 15578.96 14177.72 16768.90 20289.16 17294.24 15293.95 14999.32 6398.99 70
TranMVSNet+NR-MVSNet89.23 15788.48 16690.11 13989.07 19095.25 17492.91 14690.43 9990.31 16577.10 15076.62 17071.57 18891.83 13892.12 18194.59 13299.32 6398.92 78
test0.0.03 191.97 11993.91 9889.72 14093.31 13796.40 13691.34 17687.06 13893.86 11681.67 12991.15 8589.16 9986.02 18895.08 13695.09 11798.91 12596.64 170
FMVSNet590.36 14090.93 14889.70 14187.99 20092.25 20592.03 16683.51 17592.20 14684.13 11685.59 13086.48 11392.43 13194.61 14194.52 13798.13 17190.85 206
MDTV_nov1_ep1391.57 12693.18 11289.70 14193.39 13596.97 11593.53 13580.91 18895.70 7881.86 12792.40 6889.93 9193.25 12591.97 18690.80 18995.25 20394.46 186
Effi-MVS+-dtu91.78 12293.59 10789.68 14392.44 14797.11 11494.40 12584.94 16592.43 13875.48 16191.09 8783.75 13693.55 12096.61 8795.47 10797.24 18598.67 95
EPNet_dtu92.45 11795.02 7989.46 14498.02 5195.47 16694.79 11892.62 6694.97 9870.11 19094.76 5392.61 7784.07 20095.94 11395.56 10497.15 18695.82 175
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPMVS90.88 13492.12 13489.44 14594.71 11297.24 11193.55 13476.81 19895.89 7281.77 12891.49 8186.47 11493.87 11390.21 19690.07 19395.92 19393.49 199
pm-mvs189.19 15889.02 16189.38 14690.40 16395.74 15892.05 16588.10 12886.13 19577.70 14573.72 18679.44 15488.97 17395.81 11894.51 13899.08 10497.78 138
test-LLR91.62 12593.56 10889.35 14793.31 13796.57 13092.02 16787.06 13892.34 14375.05 16890.20 9488.64 10390.93 15096.19 10894.07 14697.75 18096.90 164
FC-MVSNet-test91.63 12493.82 10289.08 14892.02 15096.40 13693.26 14187.26 13593.72 11977.26 14888.61 10789.86 9285.50 19095.72 12395.02 12099.16 9497.44 147
v2v48288.25 16987.71 17988.88 14989.23 18895.28 17192.10 16387.89 13088.69 17773.31 17575.32 17371.64 18791.89 13692.10 18392.92 16998.86 13097.99 129
TransMVSNet (Re)87.73 17886.79 18988.83 15090.76 15994.40 19391.33 17789.62 11084.73 20175.41 16372.73 19171.41 18986.80 18294.53 14493.93 15099.06 10995.83 174
V4288.31 16887.95 17488.73 15189.44 17995.34 17092.23 16187.21 13688.83 17474.49 17174.89 17673.43 18190.41 16492.08 18492.77 17498.60 15598.33 116
CP-MVSNet87.89 17687.27 18288.62 15289.30 18295.06 17790.60 18485.78 15287.43 18975.98 15874.60 17868.14 20590.76 15593.07 16993.60 15799.30 6898.98 72
v888.21 17087.94 17588.51 15389.62 17595.01 17992.31 15884.99 16488.94 17274.70 17075.03 17473.51 18090.67 15892.11 18292.74 17598.80 13798.24 120
SCA90.92 13393.04 11488.45 15493.72 13297.33 11092.77 14776.08 20396.02 6878.26 14491.96 7390.86 8493.99 11290.98 19390.04 19495.88 19494.06 192
v14887.51 18086.79 18988.36 15589.39 18195.21 17589.84 18988.20 12787.61 18777.56 14673.38 18970.32 19686.80 18290.70 19492.31 18198.37 16697.98 131
Fast-Effi-MVS+-dtu91.19 13093.64 10488.33 15692.19 14996.46 13393.99 13081.52 18692.59 13571.82 18092.17 7085.54 12191.68 14095.73 12194.64 13098.80 13798.34 115
PatchmatchNetpermissive90.56 13792.49 12488.31 15793.83 13096.86 12092.42 15576.50 20095.96 7078.31 14391.96 7389.66 9393.48 12190.04 19889.20 19795.32 20093.73 197
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TESTMET0.1,191.07 13193.56 10888.17 15890.43 16296.57 13092.02 16782.83 18092.34 14375.05 16890.20 9488.64 10390.93 15096.19 10894.07 14697.75 18096.90 164
PS-CasMVS87.33 18386.68 19288.10 15989.22 18994.93 18290.35 18785.70 15386.44 19474.01 17373.43 18866.59 21190.04 16692.92 17093.52 15899.28 7098.91 81
v114487.92 17587.79 17788.07 16089.27 18395.15 17692.17 16285.62 15488.52 17871.52 18173.80 18572.40 18591.06 14893.54 16192.80 17298.81 13598.33 116
PEN-MVS87.22 18586.50 19488.07 16088.88 19394.44 19290.99 18186.21 14586.53 19373.66 17474.97 17566.56 21289.42 17191.20 19293.48 15999.24 7698.31 119
CR-MVSNet90.16 14591.96 13888.06 16293.32 13695.95 14893.36 13975.99 20492.40 14075.19 16583.18 14485.37 12292.05 13495.21 13394.56 13498.47 16297.08 158
v1088.00 17187.96 17388.05 16389.44 17994.68 18792.36 15683.35 17689.37 17172.96 17673.98 18472.79 18391.35 14493.59 15792.88 17098.81 13598.42 109
RPMNet90.19 14492.03 13788.05 16393.46 13395.95 14893.41 13774.59 20992.40 14075.91 15984.22 13986.41 11592.49 13094.42 14793.85 15398.44 16396.96 161
WR-MVS_H87.93 17387.85 17688.03 16589.62 17595.58 16490.47 18585.55 15687.20 19076.83 15274.42 18172.67 18486.37 18593.22 16693.04 16699.33 6198.83 89
ADS-MVSNet89.80 14991.33 14488.00 16694.43 11996.71 12692.29 15974.95 20896.07 6777.39 14788.67 10686.09 11793.26 12488.44 20289.57 19695.68 19693.81 196
tpmrst88.86 16489.62 15687.97 16794.33 12095.98 14592.62 15176.36 20194.62 10476.94 15185.98 12882.80 14292.80 12986.90 20887.15 20494.77 20793.93 194
test-mter90.95 13293.54 11087.93 16890.28 16696.80 12191.44 17382.68 18192.15 14774.37 17289.57 10088.23 10890.88 15396.37 9994.31 14297.93 17797.37 149
thisisatest051590.12 14692.06 13687.85 16990.03 16996.17 14187.83 19587.45 13391.71 15177.15 14985.40 13184.01 13485.74 18995.41 12993.30 16398.88 12798.43 107
WR-MVS87.93 17388.09 17087.75 17089.26 18495.28 17190.81 18286.69 14188.90 17375.29 16474.31 18273.72 17985.19 19392.26 17893.32 16299.27 7298.81 91
v119287.51 18087.31 18187.74 17189.04 19194.87 18592.07 16485.03 16388.49 17970.32 18772.65 19270.35 19591.21 14593.59 15792.80 17298.78 14098.42 109
v14419287.40 18287.20 18487.64 17288.89 19294.88 18491.65 17284.70 16887.80 18471.17 18573.20 19070.91 19190.75 15692.69 17392.49 17898.71 14498.43 107
IterMVS-SCA-FT90.24 14292.48 12687.63 17392.85 14294.30 19693.79 13281.47 18792.66 13269.95 19184.66 13688.38 10689.99 16795.39 13094.34 14197.74 18297.63 142
IterMVS90.20 14392.43 12887.61 17492.82 14494.31 19594.11 12881.54 18592.97 12869.90 19284.71 13588.16 10989.96 16895.25 13294.17 14497.31 18497.46 146
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GA-MVS89.28 15590.75 15187.57 17591.77 15196.48 13292.29 15987.58 13190.61 16365.77 20184.48 13776.84 16789.46 17095.84 11693.68 15698.52 15897.34 151
CVMVSNet89.77 15091.66 14087.56 17693.21 13995.45 16791.94 17089.22 11589.62 17069.34 19683.99 14185.90 11984.81 19594.30 15095.28 11296.85 18897.09 156
v192192087.31 18487.13 18587.52 17788.87 19494.72 18691.96 16984.59 17088.28 18069.86 19372.50 19370.03 19891.10 14793.33 16492.61 17798.71 14498.44 106
pmmvs587.83 17788.09 17087.51 17889.59 17795.48 16589.75 19084.73 16786.07 19771.44 18280.57 15870.09 19790.74 15794.47 14592.87 17198.82 13297.10 155
DTE-MVSNet86.67 18886.09 19587.35 17988.45 19994.08 19890.65 18386.05 14986.13 19572.19 17874.58 18066.77 21087.61 17990.31 19593.12 16599.13 9897.62 143
pmmvs685.98 19384.89 20187.25 18088.83 19594.35 19489.36 19185.30 16178.51 21375.44 16262.71 21275.41 17087.65 17893.58 15992.40 18096.89 18797.29 152
SixPastTwentyTwo88.37 16789.47 15887.08 18190.01 17095.93 15087.41 19685.32 15990.26 16770.26 18886.34 12671.95 18690.93 15092.89 17291.72 18698.55 15697.22 153
v124086.89 18686.75 19187.06 18288.75 19694.65 18991.30 17884.05 17287.49 18868.94 19771.96 19668.86 20390.65 15993.33 16492.72 17698.67 14798.24 120
testgi89.42 15291.50 14387.00 18392.40 14895.59 16289.15 19285.27 16292.78 13172.42 17791.75 7776.00 16984.09 19994.38 14893.82 15598.65 15196.15 171
LTVRE_ROB87.32 1687.55 17988.25 16886.73 18490.66 16095.80 15693.05 14484.77 16683.35 20560.32 21383.12 14567.39 20693.32 12394.36 14994.86 12498.28 16798.87 85
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CMPMVSbinary65.18 1784.76 19783.10 20386.69 18595.29 9395.05 17888.37 19385.51 15780.27 21171.31 18368.37 20473.85 17885.25 19187.72 20487.75 20194.38 21088.70 210
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet88.99 16191.07 14686.57 18686.78 20695.62 15991.20 17975.40 20690.65 16276.57 15384.05 14082.44 14491.01 14995.84 11695.38 10998.48 16193.50 198
anonymousdsp88.90 16291.00 14786.44 18788.74 19795.97 14690.40 18682.86 17988.77 17667.33 19981.18 15481.44 14790.22 16596.23 10494.27 14399.12 10099.16 48
v7n86.43 18986.52 19386.33 18887.91 20194.93 18290.15 18883.05 17786.57 19270.21 18971.48 19766.78 20987.72 17794.19 15492.96 16898.92 12498.76 94
tpm87.95 17289.44 15986.21 18992.53 14694.62 19091.40 17476.36 20191.46 15369.80 19487.43 11175.14 17191.55 14189.85 20090.60 19095.61 19796.96 161
PatchT89.13 15991.71 13986.11 19092.92 14095.59 16283.64 20675.09 20791.87 14975.19 16582.63 14785.06 12792.05 13495.21 13394.56 13497.76 17997.08 158
EG-PatchMatch MVS86.68 18787.24 18386.02 19190.58 16196.26 13991.08 18081.59 18484.96 20069.80 19471.35 19975.08 17384.23 19894.24 15293.35 16198.82 13295.46 181
pmmvs-eth3d84.33 19982.94 20485.96 19284.16 20990.94 20886.55 19983.79 17384.25 20275.85 16070.64 20056.43 21887.44 18192.20 18090.41 19297.97 17695.68 177
PM-MVS84.72 19884.47 20285.03 19384.67 20891.57 20786.27 20082.31 18387.65 18670.62 18676.54 17156.41 21988.75 17592.59 17489.85 19597.54 18396.66 169
pmnet_mix0286.12 19287.12 18684.96 19489.82 17294.12 19784.88 20486.63 14291.78 15065.60 20280.76 15676.98 16586.61 18487.29 20784.80 21096.21 19094.09 190
N_pmnet84.80 19685.10 20084.45 19589.25 18792.86 20384.04 20586.21 14588.78 17566.73 20072.41 19474.87 17585.21 19288.32 20386.45 20595.30 20192.04 203
MDTV_nov1_ep13_2view86.30 19088.27 16784.01 19687.71 20394.67 18888.08 19476.78 19990.59 16468.66 19880.46 16080.12 15187.58 18089.95 19988.20 20095.25 20393.90 195
MVS-HIRNet85.36 19586.89 18883.57 19790.13 16894.51 19183.57 20772.61 21188.27 18171.22 18468.97 20281.81 14588.91 17493.08 16891.94 18494.97 20689.64 209
gg-mvs-nofinetune86.17 19188.57 16583.36 19893.44 13498.15 9396.58 7872.05 21274.12 21649.23 22064.81 21090.85 8589.90 16997.83 5096.84 7098.97 11897.41 148
EU-MVSNet85.62 19487.65 18083.24 19988.54 19892.77 20487.12 19785.32 15986.71 19164.54 20478.52 16575.11 17278.35 20492.25 17992.28 18295.58 19895.93 173
Anonymous2023120683.84 20085.19 19982.26 20087.38 20492.87 20285.49 20283.65 17486.07 19763.44 20868.42 20369.01 20175.45 20893.34 16392.44 17998.12 17394.20 188
gm-plane-assit83.26 20185.29 19880.89 20189.52 17889.89 21170.26 21778.24 19377.11 21458.01 21774.16 18366.90 20790.63 16097.20 6796.05 8998.66 15095.68 177
new_pmnet81.53 20382.68 20580.20 20283.47 21189.47 21282.21 21078.36 19287.86 18360.14 21567.90 20569.43 20082.03 20289.22 20187.47 20394.99 20587.39 211
MDA-MVSNet-bldmvs80.11 20480.24 20779.94 20377.01 21593.21 20178.86 21385.94 15182.71 20860.86 21079.71 16251.77 22183.71 20175.60 21486.37 20693.28 21192.35 201
test20.0382.92 20285.52 19779.90 20487.75 20291.84 20682.80 20882.99 17882.65 20960.32 21378.90 16470.50 19267.10 21292.05 18590.89 18898.44 16391.80 204
MIMVSNet180.03 20580.93 20678.97 20572.46 21890.73 20980.81 21182.44 18280.39 21063.64 20657.57 21364.93 21376.37 20691.66 18891.55 18798.07 17489.70 208
new-patchmatchnet78.49 20778.19 21078.84 20684.13 21090.06 21077.11 21580.39 18979.57 21259.64 21666.01 20855.65 22075.62 20784.55 21080.70 21296.14 19290.77 207
pmmvs379.16 20680.12 20878.05 20779.36 21386.59 21478.13 21473.87 21076.42 21557.51 21870.59 20157.02 21784.66 19690.10 19788.32 19994.75 20891.77 205
FPMVS75.84 20874.59 21177.29 20886.92 20583.89 21685.01 20380.05 19082.91 20760.61 21265.25 20960.41 21563.86 21375.60 21473.60 21687.29 21780.47 214
Gipumacopyleft68.35 21066.71 21370.27 20974.16 21768.78 21963.93 22071.77 21383.34 20654.57 21934.37 21731.88 22368.69 21183.30 21185.53 20888.48 21579.78 215
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft63.12 1867.27 21166.39 21468.30 21077.98 21460.24 22159.53 22176.82 19766.65 21760.74 21154.39 21459.82 21651.24 21673.92 21770.52 21783.48 21879.17 216
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt66.88 21186.07 20773.86 21868.22 21833.38 22096.88 4880.67 13588.23 10978.82 15649.78 21782.68 21277.47 21483.19 219
test_method72.96 20978.68 20966.28 21250.17 22264.90 22075.45 21650.90 21987.89 18262.54 20962.98 21168.34 20470.45 21091.90 18782.41 21188.19 21692.35 201
PMMVS264.36 21365.94 21562.52 21367.37 21977.44 21764.39 21969.32 21761.47 21834.59 22146.09 21641.03 22248.02 21974.56 21678.23 21391.43 21382.76 213
E-PMN50.67 21447.85 21753.96 21464.13 22150.98 22438.06 22269.51 21551.40 22024.60 22329.46 22024.39 22556.07 21548.17 21959.70 21871.40 22070.84 218
EMVS49.98 21546.76 21853.74 21564.96 22051.29 22337.81 22369.35 21651.83 21922.69 22429.57 21925.06 22457.28 21444.81 22056.11 21970.32 22168.64 219
MVEpermissive50.86 1949.54 21651.43 21647.33 21644.14 22359.20 22236.45 22460.59 21841.47 22131.14 22229.58 21817.06 22748.52 21862.22 21874.63 21563.12 22275.87 217
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
GG-mvs-BLEND66.17 21294.91 8132.63 2171.32 22596.64 12891.40 1740.85 22394.39 1092.20 22690.15 9695.70 612.27 22296.39 9695.44 10897.78 17895.68 177
testmvs12.09 21716.94 2196.42 2183.15 2246.08 2259.51 2263.84 22121.46 2225.31 22527.49 2216.76 22810.89 22017.06 22115.01 2205.84 22324.75 220
test1239.58 21813.53 2204.97 2191.31 2265.47 2268.32 2272.95 22218.14 2232.03 22720.82 2222.34 22910.60 22110.00 22214.16 2214.60 22423.77 221
uanet_test0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
RE-MVS-def63.50 207
9.1499.28 12
SR-MVS99.45 997.61 1499.20 16
Anonymous20240521192.18 13395.04 10198.20 9096.14 8991.79 8293.93 11474.60 17888.38 10696.48 6895.17 13595.82 10099.00 11599.15 49
our_test_389.78 17393.84 19985.59 201
ambc73.83 21276.23 21685.13 21582.27 20984.16 20365.58 20352.82 21523.31 22673.55 20991.41 19185.26 20992.97 21294.70 183
MTAPA96.83 1099.12 21
MTMP97.18 598.83 26
Patchmatch-RL test34.61 225
XVS96.60 6899.35 1796.82 6790.85 6198.72 2999.46 32
X-MVStestdata96.60 6899.35 1796.82 6790.85 6198.72 2999.46 32
mPP-MVS99.21 2398.29 37
NP-MVS95.32 87
Patchmtry95.96 14793.36 13975.99 20475.19 165
DeepMVS_CXcopyleft86.86 21379.50 21270.43 21490.73 16063.66 20580.36 16160.83 21479.68 20376.23 21389.46 21486.53 212