This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS88.67 291.62 185.22 390.47 1792.36 190.69 976.15 393.08 182.75 492.19 590.71 280.45 589.27 587.91 890.82 1195.84 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS88.85 191.59 285.67 190.54 1592.29 291.71 376.40 292.41 283.24 292.50 390.64 381.10 289.53 288.02 791.00 895.73 2
MSP-MVS88.09 490.84 484.88 690.00 2391.80 591.63 475.80 691.99 381.23 992.54 289.18 580.89 387.99 1487.91 889.70 4394.51 6
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVS88.00 590.50 585.08 490.95 791.58 692.03 175.53 1291.15 480.10 1592.27 488.34 1080.80 488.00 1386.99 1891.09 695.16 5
DeepPCF-MVS79.04 185.30 2188.93 1181.06 3288.77 3690.48 1085.46 4673.08 2990.97 573.77 3784.81 2285.95 2077.43 2388.22 1087.73 1087.85 7994.34 8
SMA-MVScopyleft87.56 690.17 684.52 991.71 290.57 990.77 875.19 1390.67 680.50 1486.59 1788.86 778.09 1689.92 189.41 190.84 1095.19 4
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft88.63 391.29 385.53 290.87 892.20 391.98 276.00 590.55 782.09 693.85 190.75 181.25 188.62 787.59 1390.96 995.48 3
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
xxxxxxxxxxxxxcwj85.35 1985.76 3084.86 791.26 591.10 790.90 575.65 789.21 881.25 791.12 761.35 11678.82 987.42 1986.23 3091.28 393.90 12
SF-MVS87.47 789.70 784.86 791.26 591.10 790.90 575.65 789.21 881.25 791.12 788.93 678.82 987.42 1986.23 3091.28 393.90 12
SD-MVS86.96 989.45 884.05 1590.13 2089.23 2289.77 1874.59 1489.17 1080.70 1189.93 1189.67 478.47 1287.57 1886.79 2290.67 1793.76 16
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.86.88 1089.23 984.14 1389.78 2688.67 3190.59 1073.46 2788.99 1180.52 1391.26 688.65 879.91 786.96 3086.22 3290.59 1893.83 14
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft87.09 888.92 1284.95 592.61 187.91 4090.23 1576.06 488.85 1281.20 1087.33 1387.93 1179.47 888.59 888.23 590.15 3493.60 20
zzz-MVS85.71 1686.88 2284.34 1190.54 1587.11 4489.77 1874.17 1888.54 1383.08 378.60 3286.10 1978.11 1587.80 1687.46 1490.35 2992.56 26
ACMMP_NAP86.52 1289.01 1083.62 1790.28 1990.09 1390.32 1374.05 2088.32 1479.74 1687.04 1585.59 2376.97 2989.35 388.44 490.35 2994.27 10
HFP-MVS86.15 1487.95 1784.06 1490.80 989.20 2389.62 2074.26 1687.52 1580.63 1286.82 1684.19 2978.22 1487.58 1787.19 1690.81 1293.13 24
TSAR-MVS + ACMM85.10 2488.81 1480.77 3589.55 2988.53 3388.59 2872.55 3187.39 1671.90 4390.95 987.55 1274.57 3487.08 2786.54 2687.47 8693.67 17
APD-MVScopyleft86.84 1188.91 1384.41 1090.66 1190.10 1290.78 775.64 987.38 1778.72 1990.68 1086.82 1680.15 687.13 2586.45 2890.51 2093.83 14
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS86.36 1388.19 1684.23 1291.33 489.84 1490.34 1175.56 1087.36 1878.97 1881.19 2886.76 1778.74 1189.30 488.58 290.45 2694.33 9
OMC-MVS80.26 4282.59 4277.54 5283.04 6385.54 5483.25 5865.05 7887.32 1972.42 4272.04 5078.97 4773.30 4383.86 5381.60 6588.15 7088.83 55
ACMMPR85.52 1787.53 1983.17 2290.13 2089.27 2089.30 2173.97 2186.89 2077.14 2586.09 1883.18 3277.74 2087.42 1987.20 1590.77 1392.63 25
NCCC85.34 2086.59 2483.88 1691.48 388.88 2589.79 1775.54 1186.67 2177.94 2376.55 3584.99 2578.07 1788.04 1187.68 1190.46 2593.31 21
CSCG85.28 2287.68 1882.49 2589.95 2491.99 488.82 2571.20 3886.41 2279.63 1779.26 2988.36 973.94 3986.64 3286.67 2591.40 294.41 7
DeepC-MVS78.47 284.81 2686.03 2883.37 1989.29 3290.38 1188.61 2776.50 186.25 2377.22 2475.12 3980.28 4577.59 2288.39 988.17 691.02 793.66 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CNLPA77.20 6177.54 6676.80 5682.63 6584.31 6379.77 7264.64 8085.17 2473.18 3956.37 12569.81 8374.53 3581.12 8678.69 11086.04 12687.29 68
CP-MVS84.74 2786.43 2682.77 2489.48 3088.13 3988.64 2673.93 2284.92 2576.77 2681.94 2683.50 3077.29 2686.92 3186.49 2790.49 2193.14 23
DeepC-MVS_fast78.24 384.27 2985.50 3182.85 2390.46 1889.24 2187.83 3374.24 1784.88 2676.23 2875.26 3881.05 4377.62 2188.02 1287.62 1290.69 1692.41 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TAPA-MVS71.42 977.69 5980.05 5574.94 6680.68 8084.52 6281.36 6063.14 9384.77 2764.82 7368.72 6575.91 5671.86 5581.62 7179.55 9987.80 8185.24 89
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TSAR-MVS + COLMAP78.34 5781.64 4474.48 7280.13 8885.01 6081.73 5965.93 7384.75 2861.68 8285.79 1966.27 10271.39 6182.91 6380.78 7486.01 12785.98 77
TSAR-MVS + GP.83.69 3086.58 2580.32 3685.14 5586.96 4584.91 5070.25 4284.71 2973.91 3685.16 2185.63 2277.92 1885.44 4185.71 3789.77 4092.45 27
SteuartSystems-ACMMP85.99 1588.31 1583.27 2190.73 1089.84 1490.27 1474.31 1584.56 3075.88 3087.32 1485.04 2477.31 2489.01 688.46 391.14 593.96 11
Skip Steuart: Steuart Systems R&D Blog.
MCST-MVS85.13 2386.62 2383.39 1890.55 1489.82 1689.29 2273.89 2384.38 3176.03 2979.01 3185.90 2178.47 1287.81 1586.11 3492.11 193.29 22
train_agg84.86 2587.21 2182.11 2790.59 1385.47 5589.81 1673.55 2683.95 3273.30 3889.84 1287.23 1475.61 3286.47 3485.46 3989.78 3992.06 32
DPM-MVS83.30 3284.33 3582.11 2789.56 2888.49 3490.33 1273.24 2883.85 3376.46 2772.43 4882.65 3373.02 4786.37 3686.91 1990.03 3689.62 51
MP-MVScopyleft85.50 1887.40 2083.28 2090.65 1289.51 1989.16 2474.11 1983.70 3478.06 2285.54 2084.89 2777.31 2487.40 2287.14 1790.41 2793.65 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMMPcopyleft83.42 3185.27 3281.26 3188.47 3788.49 3488.31 3172.09 3383.42 3572.77 4182.65 2478.22 4975.18 3386.24 3885.76 3690.74 1492.13 31
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
canonicalmvs79.16 5282.37 4375.41 6282.33 6986.38 5180.80 6363.18 9282.90 3667.34 6372.79 4776.07 5569.62 6883.46 6084.41 4689.20 5290.60 44
PGM-MVS84.42 2886.29 2782.23 2690.04 2288.82 2789.23 2371.74 3682.82 3774.61 3384.41 2382.09 3577.03 2887.13 2586.73 2490.73 1592.06 32
X-MVS83.23 3385.20 3380.92 3489.71 2788.68 2888.21 3273.60 2482.57 3871.81 4677.07 3381.92 3771.72 5886.98 2986.86 2090.47 2292.36 29
CPTT-MVS81.77 3883.10 3980.21 3785.93 5186.45 5087.72 3470.98 3982.54 3971.53 4974.23 4481.49 4076.31 3182.85 6481.87 6188.79 6192.26 30
PHI-MVS82.36 3685.89 2978.24 4986.40 4889.52 1885.52 4469.52 4982.38 4065.67 6981.35 2782.36 3473.07 4587.31 2486.76 2389.24 5091.56 35
abl_679.05 4387.27 4288.85 2683.62 5668.25 5581.68 4172.94 4073.79 4584.45 2872.55 5089.66 4590.64 43
HQP-MVS81.19 4183.27 3878.76 4687.40 4185.45 5686.95 3570.47 4181.31 4266.91 6579.24 3076.63 5371.67 5984.43 5083.78 5089.19 5392.05 34
3Dnovator+75.73 482.40 3582.76 4081.97 2988.02 3889.67 1786.60 3771.48 3781.28 4378.18 2164.78 8377.96 5177.13 2787.32 2386.83 2190.41 2791.48 36
MSLP-MVS++82.09 3782.66 4181.42 3087.03 4487.22 4385.82 4270.04 4380.30 4478.66 2068.67 6781.04 4477.81 1985.19 4684.88 4489.19 5391.31 37
CDPH-MVS82.64 3485.03 3479.86 3989.41 3188.31 3688.32 3071.84 3580.11 4567.47 6282.09 2581.44 4171.85 5685.89 4086.15 3390.24 3291.25 38
NP-MVS80.10 46
CLD-MVS79.35 5081.23 4677.16 5485.01 5886.92 4685.87 4160.89 12780.07 4775.35 3272.96 4673.21 6568.43 7685.41 4384.63 4587.41 8785.44 86
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
AdaColmapbinary79.74 4778.62 5981.05 3389.23 3386.06 5284.95 4971.96 3479.39 4875.51 3163.16 8968.84 9376.51 3083.55 5782.85 5588.13 7186.46 75
3Dnovator73.76 579.75 4680.52 5178.84 4584.94 6087.35 4184.43 5265.54 7478.29 4973.97 3563.00 9175.62 5774.07 3885.00 4785.34 4090.11 3589.04 53
LGP-MVS_train79.83 4481.22 4778.22 5086.28 4985.36 5886.76 3669.59 4777.34 5065.14 7175.68 3770.79 7571.37 6284.60 4884.01 4790.18 3390.74 42
ACMP73.23 779.79 4580.53 5078.94 4485.61 5385.68 5385.61 4369.59 4777.33 5171.00 5274.45 4269.16 8871.88 5483.15 6183.37 5389.92 3790.57 45
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PLCcopyleft68.99 1175.68 6875.31 8076.12 5982.94 6481.26 9079.94 7066.10 6977.15 5266.86 6659.13 10868.53 9573.73 4080.38 9579.04 10587.13 9481.68 125
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CANet81.62 4083.41 3779.53 4187.06 4388.59 3285.47 4567.96 5976.59 5374.05 3474.69 4081.98 3672.98 4886.14 3985.47 3889.68 4490.42 46
MVS_111021_LR78.13 5879.85 5676.13 5881.12 7681.50 8680.28 6765.25 7676.09 5471.32 5176.49 3672.87 6772.21 5182.79 6581.29 6786.59 11287.91 61
MVS_030481.73 3983.86 3679.26 4286.22 5089.18 2486.41 3867.15 6375.28 5570.75 5374.59 4183.49 3174.42 3687.05 2886.34 2990.58 1991.08 40
ACMM72.26 878.86 5578.13 6179.71 4086.89 4583.40 7386.02 4070.50 4075.28 5571.49 5063.01 9069.26 8773.57 4184.11 5283.98 4889.76 4187.84 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PCF-MVS73.28 679.42 4980.41 5278.26 4884.88 6188.17 3786.08 3969.85 4475.23 5768.43 5768.03 7078.38 4871.76 5781.26 8280.65 8388.56 6491.18 39
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EPNet79.08 5480.62 4977.28 5388.90 3583.17 7683.65 5572.41 3274.41 5867.15 6476.78 3474.37 6064.43 9683.70 5683.69 5187.15 9088.19 59
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MAR-MVS79.21 5180.32 5377.92 5187.46 4088.15 3883.95 5367.48 6274.28 5968.25 5864.70 8477.04 5272.17 5285.42 4285.00 4388.22 6787.62 64
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
RPSCF67.64 13671.25 10463.43 15761.86 19670.73 17167.26 16450.86 18474.20 6058.91 8967.49 7369.33 8664.10 9971.41 17068.45 18477.61 17577.17 156
MVS_111021_HR80.13 4381.46 4578.58 4785.77 5285.17 5983.45 5769.28 5074.08 6170.31 5474.31 4375.26 5873.13 4486.46 3585.15 4289.53 4689.81 49
QAPM78.47 5680.22 5476.43 5785.03 5786.75 4880.62 6666.00 7173.77 6265.35 7065.54 7978.02 5072.69 4983.71 5583.36 5488.87 5990.41 47
casdiffmvs76.76 6378.46 6074.77 6880.32 8583.73 6980.65 6563.24 9173.58 6366.11 6769.39 6274.09 6269.49 7082.52 6779.35 10488.84 6086.52 74
LS3D74.08 7773.39 8974.88 6785.05 5682.62 7979.71 7468.66 5372.82 6458.80 9057.61 11961.31 11771.07 6480.32 9678.87 10986.00 12880.18 137
diffmvs74.86 7377.37 7071.93 8075.62 12180.35 10179.42 7760.15 13772.81 6564.63 7471.51 5373.11 6666.53 8979.02 11577.98 11885.25 14186.83 73
OpenMVScopyleft70.44 1076.15 6776.82 7575.37 6385.01 5884.79 6178.99 8262.07 11671.27 6667.88 6057.91 11872.36 6870.15 6682.23 6981.41 6688.12 7287.78 63
DELS-MVS79.15 5381.07 4876.91 5583.54 6287.31 4284.45 5164.92 7969.98 6769.34 5571.62 5276.26 5469.84 6786.57 3385.90 3589.39 4889.88 48
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PVSNet_BlendedMVS76.21 6577.52 6774.69 6979.46 9183.79 6777.50 9564.34 8469.88 6871.88 4468.54 6870.42 7867.05 7983.48 5879.63 9587.89 7786.87 71
PVSNet_Blended76.21 6577.52 6774.69 6979.46 9183.79 6777.50 9564.34 8469.88 6871.88 4468.54 6870.42 7867.05 7983.48 5879.63 9587.89 7786.87 71
MVS_Test75.37 7077.13 7373.31 7779.07 9481.32 8979.98 6860.12 13869.72 7064.11 7570.53 5773.22 6468.90 7280.14 10279.48 10187.67 8385.50 84
ETV-MVS77.32 6078.81 5875.58 6182.24 7083.64 7079.98 6864.02 8669.64 7163.90 7670.89 5669.94 8273.41 4285.39 4483.91 4989.92 3788.31 58
DI_MVS_plusplus_trai75.13 7276.12 7873.96 7478.18 9981.55 8480.97 6262.54 10868.59 7265.13 7261.43 9374.81 5969.32 7181.01 8879.59 9787.64 8485.89 78
CS-MVS76.92 6278.01 6275.64 6081.47 7383.59 7180.68 6462.47 11168.39 7365.83 6867.84 7270.74 7673.07 4585.31 4582.79 5690.33 3187.42 65
baseline70.45 10174.09 8566.20 14070.95 16775.67 14774.26 12653.57 16768.33 7458.42 9369.87 6071.45 7061.55 11974.84 15174.76 15478.42 17383.72 108
CANet_DTU73.29 8176.96 7469.00 10777.04 11182.06 8279.49 7656.30 16367.85 7553.29 12371.12 5570.37 8061.81 11881.59 7280.96 7286.09 12184.73 97
USDC67.36 14067.90 14066.74 13871.72 15775.23 15471.58 14760.28 13467.45 7650.54 13960.93 9445.20 19862.08 11076.56 14274.50 15584.25 15075.38 169
GeoE74.23 7674.84 8273.52 7580.42 8481.46 8779.77 7261.06 12567.23 7763.67 7759.56 10568.74 9467.90 7780.25 10079.37 10388.31 6687.26 69
DCV-MVSNet73.65 7975.78 7971.16 8480.19 8679.27 11077.45 9761.68 12266.73 7858.72 9165.31 8069.96 8162.19 10981.29 8180.97 7186.74 10586.91 70
Effi-MVS+75.28 7176.20 7774.20 7381.15 7583.24 7481.11 6163.13 9466.37 7960.27 8664.30 8768.88 9270.93 6581.56 7381.69 6388.61 6287.35 66
EPNet_dtu68.08 12671.00 10564.67 14879.64 9068.62 17975.05 11463.30 9066.36 8045.27 16667.40 7466.84 10143.64 18475.37 14774.98 15381.15 16377.44 154
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSDG71.52 9169.87 11473.44 7682.21 7179.35 10979.52 7564.59 8166.15 8161.87 8153.21 14956.09 14165.85 9378.94 11678.50 11286.60 11176.85 159
FC-MVSNet-train72.60 8575.07 8169.71 9981.10 7778.79 11673.74 13665.23 7766.10 8253.34 12270.36 5863.40 11156.92 14781.44 7580.96 7287.93 7584.46 101
EIA-MVS75.64 6976.60 7674.53 7182.43 6883.84 6678.32 8862.28 11565.96 8363.28 8068.95 6367.54 9871.61 6082.55 6681.63 6489.24 5085.72 80
CostFormer68.92 11869.58 11968.15 11375.98 11876.17 14578.22 9051.86 17965.80 8461.56 8363.57 8862.83 11261.85 11670.40 18368.67 18079.42 16979.62 142
IS_MVSNet73.33 8077.34 7168.65 11081.29 7483.47 7274.45 11963.58 8965.75 8548.49 14667.11 7670.61 7754.63 16284.51 4983.58 5289.48 4786.34 76
Vis-MVSNet (Re-imp)67.83 13173.52 8761.19 16478.37 9876.72 14066.80 16962.96 9565.50 8634.17 19067.19 7569.68 8539.20 19379.39 11179.44 10285.68 13376.73 160
Fast-Effi-MVS+73.11 8273.66 8672.48 7977.72 10580.88 9678.55 8558.83 15365.19 8760.36 8559.98 10262.42 11471.22 6381.66 7080.61 8588.20 6884.88 96
EPP-MVSNet74.00 7877.41 6970.02 9680.53 8283.91 6574.99 11562.68 10665.06 8849.77 14268.68 6672.09 6963.06 10482.49 6880.73 7589.12 5588.91 54
UGNet72.78 8377.67 6567.07 13271.65 15983.24 7475.20 10963.62 8864.93 8956.72 10371.82 5173.30 6349.02 17581.02 8780.70 8186.22 11888.67 56
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet_Blended_VisFu76.57 6477.90 6375.02 6580.56 8186.58 4979.24 7866.18 6864.81 9068.18 5965.61 7771.45 7067.05 7984.16 5181.80 6288.90 5790.92 41
pmmvs467.89 12967.39 14668.48 11171.60 16173.57 16174.45 11960.98 12664.65 9157.97 9754.95 13351.73 17661.88 11573.78 15775.11 15183.99 15377.91 151
MVSTER72.06 8774.24 8369.51 10270.39 17075.97 14676.91 10157.36 16064.64 9261.39 8468.86 6463.76 10963.46 10181.44 7579.70 9487.56 8585.31 88
OPM-MVS79.68 4879.28 5780.15 3887.99 3986.77 4788.52 2972.72 3064.55 9367.65 6167.87 7174.33 6174.31 3786.37 3685.25 4189.73 4289.81 49
ET-MVSNet_ETH3D72.46 8674.19 8470.44 9162.50 19481.17 9179.90 7162.46 11264.52 9457.52 9971.49 5459.15 12672.08 5378.61 12081.11 6988.16 6983.29 111
Anonymous2023121171.90 8872.48 9771.21 8380.14 8781.53 8576.92 10062.89 9764.46 9558.94 8843.80 18670.98 7462.22 10880.70 9080.19 9086.18 11985.73 79
thisisatest053071.48 9273.01 9269.70 10073.83 14078.62 11874.53 11859.12 14764.13 9658.63 9264.60 8558.63 12864.27 9780.28 9880.17 9187.82 8084.64 99
GBi-Net70.78 9673.37 9067.76 11572.95 14778.00 12375.15 11062.72 10164.13 9651.44 13158.37 11369.02 8957.59 13981.33 7880.72 7686.70 10682.02 117
test170.78 9673.37 9067.76 11572.95 14778.00 12375.15 11062.72 10164.13 9651.44 13158.37 11369.02 8957.59 13981.33 7880.72 7686.70 10682.02 117
FMVSNet370.49 10072.90 9467.67 12072.88 15077.98 12674.96 11662.72 10164.13 9651.44 13158.37 11369.02 8957.43 14279.43 11079.57 9886.59 11281.81 124
tttt051771.41 9372.95 9369.60 10173.70 14278.70 11774.42 12259.12 14763.89 10058.35 9564.56 8658.39 13064.27 9780.29 9780.17 9187.74 8284.69 98
SCA65.40 14966.58 15264.02 15270.65 16873.37 16267.35 16353.46 16963.66 10154.14 11460.84 9560.20 12161.50 12069.96 18468.14 18577.01 18069.91 184
COLMAP_ROBcopyleft62.73 1567.66 13466.76 15068.70 10980.49 8377.98 12675.29 10862.95 9663.62 10249.96 14047.32 18150.72 18158.57 13276.87 13875.50 15084.94 14675.33 170
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EPMVS60.00 18261.97 18357.71 18068.46 18063.17 19864.54 18048.23 19763.30 10344.72 16860.19 9956.05 14250.85 17265.27 19762.02 19969.44 20363.81 197
FMVSNet270.39 10272.67 9667.72 11872.95 14778.00 12375.15 11062.69 10563.29 10451.25 13555.64 12768.49 9657.59 13980.91 8980.35 8886.70 10682.02 117
PatchmatchNetpermissive64.21 15764.65 16563.69 15471.29 16668.66 17869.63 15451.70 18163.04 10553.77 11959.83 10458.34 13160.23 12968.54 19066.06 19275.56 18668.08 190
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpm cat165.41 14863.81 17167.28 12875.61 12272.88 16375.32 10752.85 17362.97 10663.66 7853.24 14853.29 16661.83 11765.54 19464.14 19674.43 19174.60 172
PatchMatch-RL67.78 13266.65 15169.10 10573.01 14672.69 16468.49 15961.85 11962.93 10760.20 8756.83 12450.42 18269.52 6975.62 14674.46 15681.51 16173.62 178
Anonymous20240521172.16 10080.85 7981.85 8376.88 10265.40 7562.89 10846.35 18267.99 9762.05 11181.15 8580.38 8785.97 12984.50 100
baseline170.10 10672.17 9967.69 11979.74 8976.80 13873.91 13064.38 8362.74 10948.30 14864.94 8164.08 10854.17 16481.46 7478.92 10785.66 13476.22 161
PMMVS65.06 15169.17 12560.26 16955.25 20863.43 19566.71 17043.01 20462.41 11050.64 13769.44 6167.04 10063.29 10274.36 15473.54 16082.68 15873.99 177
MS-PatchMatch70.17 10570.49 10969.79 9880.98 7877.97 12877.51 9458.95 15062.33 11155.22 11153.14 15065.90 10362.03 11279.08 11477.11 13484.08 15177.91 151
tpmrst62.00 17162.35 18261.58 16271.62 16064.14 19169.07 15748.22 19862.21 11253.93 11758.26 11755.30 14555.81 15563.22 19962.62 19870.85 20070.70 183
UniMVSNet_NR-MVSNet70.59 9972.19 9868.72 10877.72 10580.72 9773.81 13469.65 4661.99 11343.23 17160.54 9857.50 13358.57 13279.56 10881.07 7089.34 4983.97 103
GG-mvs-BLEND46.86 20367.51 14322.75 2090.05 22076.21 14464.69 1790.04 21761.90 1140.09 22155.57 12871.32 720.08 21670.54 17967.19 18871.58 19869.86 185
CHOSEN 1792x268869.20 11669.26 12369.13 10476.86 11278.93 11277.27 9860.12 13861.86 11554.42 11242.54 19061.61 11566.91 8478.55 12178.14 11779.23 17183.23 112
UniMVSNet (Re)69.53 11171.90 10166.76 13776.42 11480.93 9372.59 14468.03 5861.75 11641.68 17658.34 11657.23 13553.27 16779.53 10980.62 8488.57 6384.90 95
ACMH+66.54 1371.36 9470.09 11272.85 7882.59 6681.13 9278.56 8468.04 5761.55 11752.52 12951.50 16454.14 15168.56 7578.85 11779.50 10086.82 10283.94 105
IterMVS-LS71.69 9072.82 9570.37 9277.54 10776.34 14375.13 11360.46 13361.53 11857.57 9864.89 8267.33 9966.04 9277.09 13677.37 13085.48 13785.18 90
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
baseline269.69 10970.27 11169.01 10675.72 12077.13 13673.82 13358.94 15161.35 11957.09 10161.68 9257.17 13661.99 11378.10 12576.58 14186.48 11579.85 139
Baseline_NR-MVSNet67.53 13868.77 13066.09 14175.99 11674.75 15772.43 14568.41 5461.33 12038.33 18351.31 16554.13 15356.03 15279.22 11278.19 11685.37 13982.45 115
DU-MVS69.63 11070.91 10668.13 11475.99 11679.54 10673.81 13469.20 5161.20 12143.23 17158.52 11053.50 15858.57 13279.22 11280.45 8687.97 7483.97 103
NR-MVSNet68.79 12070.56 10866.71 13977.48 10879.54 10673.52 13869.20 5161.20 12139.76 17858.52 11050.11 18451.37 17180.26 9980.71 8088.97 5683.59 109
test_part174.24 7573.44 8875.18 6482.02 7282.34 8183.88 5462.40 11360.93 12368.68 5649.25 17569.71 8465.73 9481.26 8281.98 6088.35 6588.60 57
Effi-MVS+-dtu71.82 8971.86 10271.78 8178.77 9580.47 9978.55 8561.67 12360.68 12455.49 10858.48 11265.48 10468.85 7376.92 13775.55 14987.35 8885.46 85
UA-Net74.47 7477.80 6470.59 9085.33 5485.40 5773.54 13765.98 7260.65 12556.00 10772.11 4979.15 4654.63 16283.13 6282.25 5888.04 7381.92 123
Vis-MVSNetpermissive72.77 8477.20 7267.59 12274.19 13584.01 6476.61 10561.69 12160.62 12650.61 13870.25 5971.31 7355.57 15883.85 5482.28 5786.90 9988.08 60
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TranMVSNet+NR-MVSNet69.25 11570.81 10767.43 12377.23 11079.46 10873.48 13969.66 4560.43 12739.56 17958.82 10953.48 16055.74 15679.59 10681.21 6888.89 5882.70 113
TDRefinement66.09 14665.03 16367.31 12669.73 17476.75 13975.33 10664.55 8260.28 12849.72 14345.63 18442.83 20160.46 12875.75 14575.95 14684.08 15178.04 150
MDTV_nov1_ep1364.37 15565.24 15963.37 15868.94 17970.81 17072.40 14650.29 18860.10 12953.91 11860.07 10159.15 12657.21 14369.43 18767.30 18777.47 17669.78 186
IB-MVS66.94 1271.21 9571.66 10370.68 8779.18 9382.83 7872.61 14361.77 12059.66 13063.44 7953.26 14759.65 12459.16 13176.78 14082.11 5987.90 7687.33 67
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ADS-MVSNet55.94 19158.01 19253.54 19462.48 19558.48 20459.12 19746.20 20159.65 13142.88 17452.34 16153.31 16546.31 17962.00 20160.02 20264.23 20860.24 204
FC-MVSNet-test56.90 18965.20 16047.21 20066.98 18263.20 19749.11 20858.60 15459.38 13211.50 21565.60 7856.68 13924.66 20771.17 17371.36 17072.38 19769.02 188
HyFIR lowres test69.47 11368.94 12770.09 9576.77 11382.93 7776.63 10460.17 13659.00 13354.03 11640.54 19565.23 10567.89 7876.54 14378.30 11585.03 14480.07 138
v870.23 10369.86 11570.67 8874.69 13079.82 10578.79 8359.18 14658.80 13458.20 9655.00 13257.33 13466.31 9177.51 13076.71 13986.82 10283.88 106
V4268.76 12169.63 11867.74 11764.93 19078.01 12278.30 8956.48 16258.65 13556.30 10654.26 13857.03 13764.85 9577.47 13177.01 13585.60 13584.96 94
Fast-Effi-MVS+-dtu68.34 12369.47 12067.01 13375.15 12477.97 12877.12 9955.40 16557.87 13646.68 15856.17 12660.39 11862.36 10776.32 14476.25 14585.35 14081.34 127
tpm62.41 16763.15 17361.55 16372.24 15363.79 19471.31 14946.12 20257.82 13755.33 10959.90 10354.74 14853.63 16567.24 19364.29 19570.65 20174.25 176
CR-MVSNet64.83 15265.54 15764.01 15370.64 16969.41 17465.97 17452.74 17457.81 13852.65 12654.27 13656.31 14060.92 12472.20 16673.09 16281.12 16475.69 166
RPMNet61.71 17762.88 17560.34 16869.51 17669.41 17463.48 18449.23 19057.81 13845.64 16550.51 16850.12 18353.13 16868.17 19268.49 18381.07 16575.62 168
dps64.00 15862.99 17465.18 14373.29 14472.07 16668.98 15853.07 17257.74 14058.41 9455.55 12947.74 19160.89 12669.53 18667.14 18976.44 18371.19 182
v1070.22 10469.76 11770.74 8574.79 12980.30 10379.22 7959.81 14157.71 14156.58 10554.22 14055.31 14466.95 8278.28 12377.47 12787.12 9685.07 92
IterMVS-SCA-FT66.89 14469.22 12464.17 15071.30 16575.64 14871.33 14853.17 17157.63 14249.08 14560.72 9660.05 12263.09 10374.99 15073.92 15777.07 17981.57 126
v2v48270.05 10769.46 12170.74 8574.62 13180.32 10279.00 8160.62 13057.41 14356.89 10255.43 13155.14 14666.39 9077.25 13377.14 13386.90 9983.57 110
IterMVS66.36 14568.30 13764.10 15169.48 17774.61 15873.41 14050.79 18557.30 14448.28 14960.64 9759.92 12360.85 12774.14 15572.66 16481.80 16078.82 147
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet168.84 11970.47 11066.94 13471.35 16477.68 13174.71 11762.35 11456.93 14549.94 14150.01 17064.59 10657.07 14481.33 7880.72 7686.25 11782.00 120
PatchT61.97 17264.04 16959.55 17460.49 19867.40 18256.54 19948.65 19456.69 14652.65 12651.10 16752.14 17460.92 12472.20 16673.09 16278.03 17475.69 166
thres100view90067.60 13768.02 13867.12 13177.83 10377.75 13073.90 13162.52 10956.64 14746.82 15652.65 15753.47 16155.92 15378.77 11877.62 12485.72 13279.23 144
tfpn200view968.11 12568.72 13167.40 12477.83 10378.93 11274.28 12462.81 9856.64 14746.82 15652.65 15753.47 16156.59 14880.41 9278.43 11386.11 12080.52 134
MIMVSNet58.52 18661.34 18655.22 18860.76 19767.01 18466.81 16849.02 19256.43 14938.90 18140.59 19454.54 15040.57 19173.16 15971.65 16775.30 18966.00 193
thres20067.98 12768.55 13467.30 12777.89 10278.86 11474.18 12862.75 9956.35 15046.48 15952.98 15353.54 15756.46 14980.41 9277.97 11986.05 12479.78 141
thres40067.95 12868.62 13367.17 12977.90 10078.59 11974.27 12562.72 10156.34 15145.77 16453.00 15253.35 16456.46 14980.21 10178.43 11385.91 13180.43 135
ACMH65.37 1470.71 9870.00 11371.54 8282.51 6782.47 8077.78 9268.13 5656.19 15246.06 16254.30 13551.20 17868.68 7480.66 9180.72 7686.07 12284.45 102
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thres600view767.68 13368.43 13566.80 13677.90 10078.86 11473.84 13262.75 9956.07 15344.70 16952.85 15552.81 16855.58 15780.41 9277.77 12186.05 12480.28 136
v114469.93 10869.36 12270.61 8974.89 12880.93 9379.11 8060.64 12955.97 15455.31 11053.85 14254.14 15166.54 8878.10 12577.44 12887.14 9385.09 91
v14867.85 13067.53 14268.23 11273.25 14577.57 13474.26 12657.36 16055.70 15557.45 10053.53 14355.42 14361.96 11475.23 14873.92 15785.08 14381.32 128
TinyColmap62.84 16261.03 18764.96 14669.61 17571.69 16768.48 16059.76 14255.41 15647.69 15347.33 18034.20 21062.76 10674.52 15272.59 16581.44 16271.47 181
CHOSEN 280x42058.70 18561.88 18454.98 18955.45 20750.55 21064.92 17840.36 20555.21 15738.13 18448.31 17763.76 10963.03 10573.73 15868.58 18268.00 20673.04 179
FMVSNet557.24 18760.02 19053.99 19256.45 20562.74 19965.27 17747.03 19955.14 15839.55 18040.88 19253.42 16341.83 18572.35 16271.10 17173.79 19364.50 196
GA-MVS68.14 12469.17 12566.93 13573.77 14178.50 12074.45 11958.28 15555.11 15948.44 14760.08 10053.99 15461.50 12078.43 12277.57 12585.13 14280.54 133
v119269.50 11268.83 12870.29 9374.49 13280.92 9578.55 8560.54 13155.04 16054.21 11352.79 15652.33 17166.92 8377.88 12777.35 13187.04 9785.51 83
PM-MVS60.48 18060.94 18859.94 17058.85 20166.83 18564.27 18251.39 18255.03 16148.03 15050.00 17240.79 20558.26 13569.20 18867.13 19078.84 17277.60 153
v14419269.34 11468.68 13270.12 9474.06 13680.54 9878.08 9160.54 13154.99 16254.13 11552.92 15452.80 16966.73 8677.13 13576.72 13887.15 9085.63 81
thisisatest051567.40 13968.78 12965.80 14270.02 17275.24 15369.36 15657.37 15954.94 16353.67 12055.53 13054.85 14758.00 13778.19 12478.91 10886.39 11683.78 107
v192192069.03 11768.32 13669.86 9774.03 13780.37 10077.55 9360.25 13554.62 16453.59 12152.36 16051.50 17766.75 8577.17 13476.69 14086.96 9885.56 82
test-LLR64.42 15464.36 16764.49 14975.02 12663.93 19266.61 17161.96 11754.41 16547.77 15157.46 12060.25 11955.20 16070.80 17769.33 17580.40 16774.38 174
TESTMET0.1,161.10 17864.36 16757.29 18157.53 20363.93 19266.61 17136.22 20854.41 16547.77 15157.46 12060.25 11955.20 16070.80 17769.33 17580.40 16774.38 174
test-mter60.84 17964.62 16656.42 18455.99 20664.18 19065.39 17634.23 20954.39 16746.21 16157.40 12259.49 12555.86 15471.02 17669.65 17480.87 16676.20 162
pmmvs-eth3d63.52 15962.44 18164.77 14766.82 18570.12 17369.41 15559.48 14454.34 16852.71 12546.24 18344.35 20056.93 14672.37 16173.77 15983.30 15575.91 163
WR-MVS63.03 16067.40 14557.92 17975.14 12577.60 13360.56 19266.10 6954.11 16923.88 20153.94 14153.58 15634.50 19773.93 15677.71 12287.35 8880.94 130
CDS-MVSNet67.65 13569.83 11665.09 14475.39 12376.55 14174.42 12263.75 8753.55 17049.37 14459.41 10662.45 11344.44 18279.71 10579.82 9383.17 15777.36 155
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
pmnet_mix0255.30 19257.01 19653.30 19564.14 19159.09 20358.39 19850.24 18953.47 17138.68 18249.75 17345.86 19640.14 19265.38 19660.22 20168.19 20565.33 194
v124068.64 12267.89 14169.51 10273.89 13980.26 10476.73 10359.97 14053.43 17253.08 12451.82 16350.84 18066.62 8776.79 13976.77 13786.78 10485.34 87
test0.0.03 158.80 18461.58 18555.56 18775.02 12668.45 18059.58 19661.96 11752.74 17329.57 19449.75 17354.56 14931.46 20071.19 17269.77 17375.75 18464.57 195
CP-MVSNet62.68 16365.49 15859.40 17571.84 15575.34 15162.87 18767.04 6452.64 17427.19 19853.38 14548.15 18941.40 18871.26 17175.68 14786.07 12282.00 120
PEN-MVS62.96 16165.77 15559.70 17273.98 13875.45 15063.39 18567.61 6152.49 17525.49 20053.39 14449.12 18740.85 19071.94 16877.26 13286.86 10180.72 132
CVMVSNet62.55 16465.89 15358.64 17766.95 18369.15 17666.49 17356.29 16452.46 17632.70 19159.27 10758.21 13250.09 17371.77 16971.39 16979.31 17078.99 146
UniMVSNet_ETH3D67.18 14267.03 14767.36 12574.44 13378.12 12174.07 12966.38 6652.22 17746.87 15548.64 17651.84 17556.96 14577.29 13278.53 11185.42 13882.59 114
MDTV_nov1_ep13_2view60.16 18160.51 18959.75 17165.39 18769.05 17768.00 16148.29 19651.99 17845.95 16348.01 17949.64 18653.39 16668.83 18966.52 19177.47 17669.55 187
CMPMVSbinary47.78 1762.49 16662.52 17962.46 15970.01 17370.66 17262.97 18651.84 18051.98 17956.71 10442.87 18853.62 15557.80 13872.23 16470.37 17275.45 18875.91 163
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
WR-MVS_H61.83 17565.87 15457.12 18271.72 15776.87 13761.45 19066.19 6751.97 18022.92 20553.13 15152.30 17333.80 19871.03 17575.00 15286.65 11080.78 131
PS-CasMVS62.38 16965.06 16159.25 17671.73 15675.21 15562.77 18866.99 6551.94 18126.96 19952.00 16247.52 19241.06 18971.16 17475.60 14885.97 12981.97 122
DTE-MVSNet61.85 17364.96 16458.22 17874.32 13474.39 15961.01 19167.85 6051.76 18221.91 20853.28 14648.17 18837.74 19472.22 16576.44 14286.52 11478.49 148
v7n67.05 14366.94 14867.17 12972.35 15278.97 11173.26 14258.88 15251.16 18350.90 13648.21 17850.11 18460.96 12377.70 12877.38 12986.68 10985.05 93
pmmvs562.37 17064.04 16960.42 16765.03 18871.67 16867.17 16552.70 17650.30 18444.80 16754.23 13951.19 17949.37 17472.88 16073.48 16183.45 15474.55 173
FPMVS51.87 19850.00 20354.07 19166.83 18457.25 20560.25 19450.91 18350.25 18534.36 18936.04 20032.02 21241.49 18758.98 20556.07 20470.56 20259.36 205
TAMVS59.58 18362.81 17755.81 18666.03 18665.64 18963.86 18348.74 19349.95 18637.07 18754.77 13458.54 12944.44 18272.29 16371.79 16674.70 19066.66 192
pm-mvs165.62 14767.42 14463.53 15673.66 14376.39 14269.66 15360.87 12849.73 18743.97 17051.24 16657.00 13848.16 17679.89 10377.84 12084.85 14879.82 140
N_pmnet47.35 20150.13 20244.11 20359.98 19951.64 20951.86 20444.80 20349.58 18820.76 20940.65 19340.05 20729.64 20159.84 20355.15 20557.63 20954.00 207
Anonymous2023120656.36 19057.80 19454.67 19070.08 17166.39 18660.46 19357.54 15749.50 18929.30 19533.86 20246.64 19335.18 19670.44 18168.88 17975.47 18768.88 189
anonymousdsp65.28 15067.98 13962.13 16058.73 20273.98 16067.10 16650.69 18648.41 19047.66 15454.27 13652.75 17061.45 12276.71 14180.20 8987.13 9489.53 52
tfpnnormal64.27 15663.64 17265.02 14575.84 11975.61 14971.24 15062.52 10947.79 19142.97 17342.65 18944.49 19952.66 16978.77 11876.86 13684.88 14779.29 143
TransMVSNet (Re)64.74 15365.66 15663.66 15577.40 10975.33 15269.86 15262.67 10747.63 19241.21 17750.01 17052.33 17145.31 18179.57 10777.69 12385.49 13677.07 158
ambc53.42 19864.99 18963.36 19649.96 20647.07 19337.12 18628.97 20616.36 21841.82 18675.10 14967.34 18671.55 19975.72 165
EG-PatchMatch MVS67.24 14166.94 14867.60 12178.73 9681.35 8873.28 14159.49 14346.89 19451.42 13443.65 18753.49 15955.50 15981.38 7780.66 8287.15 9081.17 129
SixPastTwentyTwo61.84 17462.45 18061.12 16569.20 17872.20 16562.03 18957.40 15846.54 19538.03 18557.14 12341.72 20358.12 13669.67 18571.58 16881.94 15978.30 149
MVS-HIRNet54.41 19452.10 20157.11 18358.99 20056.10 20749.68 20749.10 19146.18 19652.15 13033.18 20346.11 19556.10 15163.19 20059.70 20376.64 18260.25 203
EU-MVSNet54.63 19358.69 19149.90 19856.99 20462.70 20056.41 20050.64 18745.95 19723.14 20450.42 16946.51 19436.63 19565.51 19564.85 19475.57 18574.91 171
MDA-MVSNet-bldmvs53.37 19753.01 20053.79 19343.67 21267.95 18159.69 19557.92 15643.69 19832.41 19241.47 19127.89 21552.38 17056.97 20765.99 19376.68 18167.13 191
testgi54.39 19557.86 19350.35 19771.59 16267.24 18354.95 20153.25 17043.36 19923.78 20244.64 18547.87 19024.96 20570.45 18068.66 18173.60 19462.78 200
test20.0353.93 19656.28 19751.19 19672.19 15465.83 18753.20 20361.08 12442.74 20022.08 20637.07 19845.76 19724.29 20870.44 18169.04 17774.31 19263.05 199
new-patchmatchnet46.97 20249.47 20444.05 20462.82 19356.55 20645.35 21052.01 17842.47 20117.04 21335.73 20135.21 20921.84 21161.27 20254.83 20665.26 20760.26 202
pmmvs662.41 16762.88 17561.87 16171.38 16375.18 15667.76 16259.45 14541.64 20242.52 17537.33 19752.91 16746.87 17877.67 12976.26 14483.23 15679.18 145
MIMVSNet149.27 19953.25 19944.62 20244.61 21061.52 20253.61 20252.18 17741.62 20318.68 21128.14 20841.58 20425.50 20368.46 19169.04 17773.15 19562.37 201
new_pmnet38.40 20542.64 20733.44 20637.54 21545.00 21136.60 21232.72 21140.27 20412.72 21429.89 20528.90 21424.78 20653.17 20852.90 20856.31 21048.34 208
Gipumacopyleft36.38 20635.80 20837.07 20545.76 20933.90 21329.81 21348.47 19539.91 20518.02 2128.00 2168.14 22025.14 20459.29 20461.02 20055.19 21140.31 209
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
gg-mvs-nofinetune62.55 16465.05 16259.62 17378.72 9777.61 13270.83 15153.63 16639.71 20622.04 20736.36 19964.32 10747.53 17781.16 8479.03 10685.00 14577.17 156
tmp_tt14.50 21314.68 2177.17 21910.46 2202.21 21637.73 20728.71 19625.26 20916.98 2164.37 21531.49 21129.77 21126.56 216
test_method22.26 20825.94 21017.95 2113.24 2197.17 21923.83 2147.27 21537.35 20820.44 21021.87 21139.16 20818.67 21234.56 21020.84 21434.28 21320.64 215
pmmvs347.65 20049.08 20545.99 20144.61 21054.79 20850.04 20531.95 21233.91 20929.90 19330.37 20433.53 21146.31 17963.50 19863.67 19773.14 19663.77 198
gm-plane-assit57.00 18857.62 19556.28 18576.10 11562.43 20147.62 20946.57 20033.84 21023.24 20337.52 19640.19 20659.61 13079.81 10477.55 12684.55 14972.03 180
LTVRE_ROB59.44 1661.82 17662.64 17860.87 16672.83 15177.19 13564.37 18158.97 14933.56 21128.00 19752.59 15942.21 20263.93 10074.52 15276.28 14377.15 17882.13 116
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PMVScopyleft39.38 1846.06 20443.30 20649.28 19962.93 19238.75 21241.88 21153.50 16833.33 21235.46 18828.90 20731.01 21333.04 19958.61 20654.63 20768.86 20457.88 206
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepMVS_CXcopyleft18.74 21818.55 2168.02 21426.96 2137.33 21623.81 21013.05 21925.99 20225.17 21322.45 21836.25 212
PMMVS225.60 20729.75 20920.76 21028.00 21630.93 21423.10 21529.18 21323.14 2141.46 22018.23 21216.54 2175.08 21440.22 20941.40 21037.76 21237.79 211
EMVS20.98 21017.15 21325.44 20839.51 21419.37 21712.66 21739.59 20719.10 2156.62 2189.27 2144.40 22222.43 20917.99 21524.40 21331.81 21525.53 214
E-PMN21.77 20918.24 21225.89 20740.22 21319.58 21612.46 21839.87 20618.68 2166.71 2179.57 2134.31 22322.36 21019.89 21427.28 21233.73 21428.34 213
MVEpermissive19.12 1920.47 21123.27 21117.20 21212.66 21825.41 21510.52 21934.14 21014.79 2176.53 2198.79 2154.68 22116.64 21329.49 21241.63 20922.73 21738.11 210
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs0.09 2120.15 2140.02 2140.01 2210.02 2210.05 2220.01 2180.11 2180.01 2220.26 2180.01 2240.06 2180.10 2160.10 2150.01 2190.43 217
test1230.09 2120.14 2150.02 2140.00 2220.02 2210.02 2230.01 2180.09 2190.00 2230.30 2170.00 2250.08 2160.03 2170.09 2160.01 2190.45 216
uanet_test0.00 2140.00 2160.00 2160.00 2220.00 2230.00 2240.00 2200.00 2200.00 2230.00 2190.00 2250.00 2190.00 2180.00 2170.00 2210.00 218
sosnet-low-res0.00 2140.00 2160.00 2160.00 2220.00 2230.00 2240.00 2200.00 2200.00 2230.00 2190.00 2250.00 2190.00 2180.00 2170.00 2210.00 218
sosnet0.00 2140.00 2160.00 2160.00 2220.00 2230.00 2240.00 2200.00 2200.00 2230.00 2190.00 2250.00 2190.00 2180.00 2170.00 2210.00 218
RE-MVS-def46.24 160
9.1486.88 15
SR-MVS88.99 3473.57 2587.54 13
our_test_367.93 18170.99 16966.89 167
MTAPA83.48 186.45 18
MTMP82.66 584.91 26
Patchmatch-RL test2.85 221
XVS86.63 4688.68 2885.00 4771.81 4681.92 3790.47 22
X-MVStestdata86.63 4688.68 2885.00 4771.81 4681.92 3790.47 22
mPP-MVS89.90 2581.29 42
Patchmtry65.80 18865.97 17452.74 17452.65 126