This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++89.14 191.86 185.97 192.55 292.38 191.69 476.31 393.31 183.11 392.44 491.18 181.17 289.55 287.93 891.01 796.21 1
DVP-MVScopyleft88.67 391.62 285.22 490.47 1692.36 290.69 976.15 493.08 282.75 492.19 690.71 380.45 689.27 687.91 990.82 1195.84 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS88.85 291.59 385.67 290.54 1592.29 391.71 376.40 292.41 383.24 292.50 390.64 481.10 389.53 388.02 791.00 895.73 3
MSP-MVS88.09 590.84 584.88 790.00 2391.80 691.63 575.80 791.99 481.23 892.54 289.18 680.89 487.99 1587.91 989.70 4594.51 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVS88.00 690.50 685.08 590.95 791.58 792.03 175.53 1291.15 580.10 1492.27 588.34 1180.80 588.00 1486.99 1891.09 595.16 6
DeepPCF-MVS79.04 185.30 2088.93 1281.06 3188.77 3690.48 1085.46 4673.08 2890.97 673.77 3784.81 2285.95 2077.43 2288.22 1187.73 1187.85 8494.34 9
SMA-MVScopyleft87.56 790.17 784.52 991.71 390.57 990.77 875.19 1390.67 780.50 1386.59 1788.86 878.09 1589.92 189.41 190.84 1095.19 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft88.63 491.29 485.53 390.87 892.20 491.98 276.00 690.55 882.09 693.85 190.75 281.25 188.62 887.59 1490.96 995.48 4
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SF-MVS87.47 889.70 884.86 891.26 691.10 890.90 675.65 889.21 981.25 791.12 888.93 778.82 1087.42 1986.23 3091.28 393.90 13
SD-MVS86.96 1089.45 984.05 1490.13 1989.23 2289.77 1874.59 1489.17 1080.70 1089.93 1189.67 578.47 1287.57 1886.79 2290.67 1793.76 16
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.86.88 1189.23 1084.14 1289.78 2688.67 3090.59 1073.46 2688.99 1180.52 1291.26 788.65 979.91 886.96 2986.22 3190.59 1993.83 14
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft87.09 988.92 1384.95 692.61 187.91 4090.23 1576.06 588.85 1281.20 987.33 1387.93 1279.47 988.59 988.23 590.15 3493.60 20
ACMMP_NAP86.52 1389.01 1183.62 1690.28 1890.09 1390.32 1374.05 1988.32 1379.74 1587.04 1585.59 2376.97 2889.35 488.44 490.35 3094.27 11
HFP-MVS86.15 1587.95 1884.06 1390.80 989.20 2389.62 1974.26 1687.52 1480.63 1186.82 1684.19 2878.22 1487.58 1787.19 1690.81 1293.13 24
TSAR-MVS + ACMM85.10 2388.81 1580.77 3489.55 2988.53 3288.59 2772.55 3087.39 1571.90 4290.95 987.55 1374.57 3687.08 2686.54 2687.47 9193.67 17
APD-MVScopyleft86.84 1288.91 1484.41 1090.66 1190.10 1290.78 775.64 987.38 1678.72 1890.68 1086.82 1780.15 787.13 2486.45 2890.51 2193.83 14
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS86.36 1488.19 1784.23 1191.33 589.84 1490.34 1175.56 1087.36 1778.97 1781.19 2886.76 1878.74 1189.30 588.58 290.45 2794.33 10
OMC-MVS80.26 4182.59 4177.54 5083.04 6285.54 5383.25 5665.05 7987.32 1872.42 4172.04 5278.97 4773.30 4583.86 5781.60 6988.15 7388.83 56
ACMMPR85.52 1787.53 2083.17 2190.13 1989.27 2089.30 2073.97 2086.89 1977.14 2486.09 1883.18 3277.74 1987.42 1987.20 1590.77 1392.63 25
NCCC85.34 1986.59 2483.88 1591.48 488.88 2589.79 1775.54 1186.67 2077.94 2276.55 3484.99 2578.07 1688.04 1287.68 1290.46 2693.31 21
CSCG85.28 2187.68 1982.49 2489.95 2491.99 588.82 2471.20 3786.41 2179.63 1679.26 2988.36 1073.94 4186.64 3186.67 2591.40 294.41 8
DeepC-MVS78.47 284.81 2586.03 2883.37 1889.29 3290.38 1188.61 2676.50 186.25 2277.22 2375.12 4080.28 4577.59 2188.39 1088.17 691.02 693.66 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CNLPA77.20 6477.54 6876.80 5682.63 6584.31 6479.77 7264.64 8185.17 2373.18 3956.37 12969.81 8674.53 3781.12 9078.69 11586.04 13187.29 68
CP-MVS84.74 2686.43 2682.77 2389.48 3088.13 3988.64 2573.93 2184.92 2476.77 2681.94 2683.50 3077.29 2586.92 3086.49 2790.49 2293.14 23
DeepC-MVS_fast78.24 384.27 2885.50 3082.85 2290.46 1789.24 2187.83 3374.24 1784.88 2576.23 2875.26 3981.05 4377.62 2088.02 1387.62 1390.69 1692.41 27
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TAPA-MVS71.42 977.69 6280.05 5774.94 6680.68 8484.52 6381.36 5963.14 9984.77 2664.82 7568.72 6875.91 5971.86 5581.62 7679.55 10487.80 8685.24 90
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TSAR-MVS + COLMAP78.34 5981.64 4374.48 7280.13 9285.01 5981.73 5865.93 7484.75 2761.68 8485.79 1966.27 10571.39 6182.91 6880.78 7886.01 13285.98 78
TSAR-MVS + GP.83.69 2986.58 2580.32 3585.14 5486.96 4484.91 5070.25 4184.71 2873.91 3685.16 2185.63 2277.92 1785.44 4285.71 3689.77 4192.45 26
SteuartSystems-ACMMP85.99 1688.31 1683.27 2090.73 1089.84 1490.27 1474.31 1584.56 2975.88 3087.32 1485.04 2477.31 2389.01 788.46 391.14 493.96 12
Skip Steuart: Steuart Systems R&D Blog.
MCST-MVS85.13 2286.62 2383.39 1790.55 1489.82 1689.29 2173.89 2284.38 3076.03 2979.01 3185.90 2178.47 1287.81 1686.11 3392.11 193.29 22
train_agg84.86 2487.21 2282.11 2690.59 1385.47 5489.81 1673.55 2583.95 3173.30 3889.84 1287.23 1575.61 3386.47 3385.46 3889.78 4092.06 31
DPM-MVS83.30 3184.33 3482.11 2689.56 2888.49 3390.33 1273.24 2783.85 3276.46 2772.43 5082.65 3373.02 4886.37 3586.91 1990.03 3689.62 51
MP-MVScopyleft85.50 1887.40 2183.28 1990.65 1289.51 1989.16 2374.11 1883.70 3378.06 2185.54 2084.89 2777.31 2387.40 2187.14 1790.41 2893.65 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMMPcopyleft83.42 3085.27 3181.26 3088.47 3788.49 3388.31 3172.09 3283.42 3472.77 4082.65 2478.22 5075.18 3486.24 3885.76 3590.74 1492.13 30
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
canonicalmvs79.16 5382.37 4275.41 6382.33 6986.38 5080.80 6363.18 9882.90 3567.34 6572.79 4976.07 5769.62 6983.46 6484.41 4589.20 5490.60 43
PGM-MVS84.42 2786.29 2782.23 2590.04 2288.82 2689.23 2271.74 3582.82 3674.61 3384.41 2382.09 3577.03 2787.13 2486.73 2490.73 1592.06 31
X-MVS83.23 3285.20 3280.92 3389.71 2788.68 2788.21 3273.60 2382.57 3771.81 4577.07 3281.92 3771.72 5886.98 2886.86 2090.47 2392.36 28
CPTT-MVS81.77 3783.10 3880.21 3685.93 5086.45 4987.72 3470.98 3882.54 3871.53 4874.23 4581.49 4076.31 3182.85 6981.87 6588.79 6392.26 29
PHI-MVS82.36 3585.89 2978.24 4786.40 4789.52 1885.52 4469.52 4882.38 3965.67 7081.35 2782.36 3473.07 4787.31 2386.76 2389.24 5291.56 34
HQP-MVS81.19 4083.27 3778.76 4487.40 4185.45 5586.95 3570.47 4081.31 4066.91 6779.24 3076.63 5471.67 5984.43 5483.78 5189.19 5592.05 33
3Dnovator+75.73 482.40 3482.76 3981.97 2888.02 3889.67 1786.60 3771.48 3681.28 4178.18 2064.78 8577.96 5277.13 2687.32 2286.83 2190.41 2891.48 35
MSLP-MVS++82.09 3682.66 4081.42 2987.03 4387.22 4385.82 4270.04 4280.30 4278.66 1968.67 7081.04 4477.81 1885.19 4684.88 4389.19 5591.31 36
CDPH-MVS82.64 3385.03 3379.86 3889.41 3188.31 3688.32 3071.84 3480.11 4367.47 6482.09 2581.44 4171.85 5685.89 4186.15 3290.24 3291.25 37
NP-MVS80.10 44
CLD-MVS79.35 5081.23 4677.16 5385.01 5786.92 4585.87 4160.89 13180.07 4575.35 3272.96 4873.21 6968.43 7885.41 4484.63 4487.41 9285.44 87
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
AdaColmapbinary79.74 4678.62 6281.05 3289.23 3386.06 5184.95 4971.96 3379.39 4675.51 3163.16 9168.84 9576.51 2983.55 6182.85 5888.13 7486.46 76
3Dnovator73.76 579.75 4580.52 5378.84 4384.94 5987.35 4184.43 5265.54 7578.29 4773.97 3563.00 9375.62 6074.07 4085.00 4785.34 3990.11 3589.04 54
LGP-MVS_train79.83 4381.22 4778.22 4886.28 4885.36 5786.76 3669.59 4677.34 4865.14 7375.68 3670.79 7971.37 6284.60 5084.01 4690.18 3390.74 42
ACMP73.23 779.79 4480.53 5278.94 4285.61 5285.68 5285.61 4369.59 4677.33 4971.00 5174.45 4369.16 9071.88 5483.15 6683.37 5489.92 3790.57 44
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PLCcopyleft68.99 1175.68 7075.31 8276.12 6082.94 6481.26 9479.94 7066.10 7077.15 5066.86 6859.13 11268.53 9773.73 4280.38 10079.04 11087.13 9981.68 127
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CANet81.62 3983.41 3679.53 4087.06 4288.59 3185.47 4567.96 5776.59 5174.05 3474.69 4181.98 3672.98 4986.14 3985.47 3789.68 4690.42 45
MVS_111021_LR78.13 6079.85 5876.13 5981.12 7981.50 9080.28 6765.25 7776.09 5271.32 5076.49 3572.87 7172.21 5182.79 7081.29 7186.59 11787.91 62
MVS_030481.73 3883.86 3579.26 4186.22 4989.18 2486.41 3867.15 6475.28 5370.75 5274.59 4283.49 3174.42 3887.05 2786.34 2990.58 2091.08 39
ACMM72.26 878.86 5678.13 6479.71 3986.89 4483.40 7586.02 4070.50 3975.28 5371.49 4963.01 9269.26 8973.57 4384.11 5683.98 4789.76 4287.84 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PCF-MVS73.28 679.42 4980.41 5478.26 4684.88 6088.17 3786.08 3969.85 4375.23 5568.43 5868.03 7378.38 4871.76 5781.26 8780.65 8788.56 6691.18 38
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EPNet79.08 5580.62 5177.28 5188.90 3583.17 8083.65 5472.41 3174.41 5667.15 6676.78 3374.37 6464.43 9883.70 6083.69 5287.15 9588.19 60
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MAR-MVS79.21 5280.32 5577.92 4987.46 4088.15 3883.95 5367.48 6374.28 5768.25 5964.70 8677.04 5372.17 5285.42 4385.00 4288.22 7087.62 65
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
casdiffmvs_mvgpermissive77.79 6179.55 5975.73 6181.56 7284.70 6182.12 5764.26 8774.27 5867.93 6170.83 5974.66 6369.19 7383.33 6581.94 6489.29 5187.14 70
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
RPSCF67.64 14171.25 10963.43 16261.86 20270.73 17667.26 17050.86 18974.20 5958.91 9167.49 7569.33 8864.10 10171.41 17668.45 19077.61 18177.17 162
MVS_111021_HR80.13 4281.46 4478.58 4585.77 5185.17 5883.45 5569.28 4974.08 6070.31 5474.31 4475.26 6173.13 4686.46 3485.15 4189.53 4789.81 49
CS-MVS-test78.79 5780.72 5076.53 5781.11 8083.88 6879.69 7563.72 9173.80 6169.95 5575.40 3876.17 5674.85 3584.50 5382.78 5989.87 3988.54 58
QAPM78.47 5880.22 5676.43 5885.03 5686.75 4780.62 6566.00 7273.77 6265.35 7265.54 8178.02 5172.69 5083.71 5983.36 5588.87 6190.41 46
casdiffmvspermissive76.76 6578.46 6374.77 6880.32 8983.73 7280.65 6463.24 9773.58 6366.11 6969.39 6574.09 6669.49 7182.52 7279.35 10988.84 6286.52 75
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS79.22 5181.11 4877.01 5481.36 7584.03 6580.35 6663.25 9673.43 6470.37 5374.10 4676.03 5876.40 3086.32 3783.95 4990.34 3189.93 47
LS3D74.08 7873.39 9374.88 6785.05 5582.62 8479.71 7468.66 5272.82 6558.80 9257.61 12361.31 12071.07 6580.32 10178.87 11486.00 13380.18 142
diffmvspermissive74.86 7577.37 7271.93 8175.62 12780.35 10679.42 7860.15 14172.81 6664.63 7671.51 5573.11 7066.53 9279.02 12177.98 12385.25 14686.83 74
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EC-MVSNet79.44 4881.35 4577.22 5282.95 6384.67 6281.31 6063.65 9272.47 6768.75 5773.15 4778.33 4975.99 3286.06 4083.96 4890.67 1790.79 41
OpenMVScopyleft70.44 1076.15 6976.82 7775.37 6485.01 5784.79 6078.99 8362.07 12071.27 6867.88 6257.91 12272.36 7270.15 6782.23 7481.41 7088.12 7587.78 64
DELS-MVS79.15 5481.07 4976.91 5583.54 6187.31 4284.45 5164.92 8069.98 6969.34 5671.62 5476.26 5569.84 6886.57 3285.90 3489.39 4989.88 48
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PVSNet_BlendedMVS76.21 6777.52 6974.69 6979.46 9583.79 7077.50 9764.34 8569.88 7071.88 4368.54 7170.42 8167.05 8283.48 6279.63 10087.89 8286.87 72
PVSNet_Blended76.21 6777.52 6974.69 6979.46 9583.79 7077.50 9764.34 8569.88 7071.88 4368.54 7170.42 8167.05 8283.48 6279.63 10087.89 8286.87 72
MVS_Test75.37 7277.13 7573.31 7779.07 9881.32 9379.98 6860.12 14269.72 7264.11 7770.53 6073.22 6868.90 7480.14 10779.48 10687.67 8885.50 85
FA-MVS(training)73.66 8074.95 8472.15 8078.63 10280.46 10478.92 8454.79 17069.71 7365.37 7162.04 9466.89 10367.10 8180.72 9479.87 9788.10 7784.97 95
ETV-MVS77.32 6378.81 6175.58 6282.24 7083.64 7379.98 6864.02 8869.64 7463.90 7870.89 5869.94 8573.41 4485.39 4583.91 5089.92 3788.31 59
DI_MVS_plusplus_trai75.13 7476.12 8073.96 7478.18 10481.55 8880.97 6262.54 11468.59 7565.13 7461.43 9674.81 6269.32 7281.01 9279.59 10287.64 8985.89 79
baseline70.45 10674.09 8866.20 14570.95 17375.67 15274.26 13253.57 17268.33 7658.42 9569.87 6371.45 7461.55 12174.84 15774.76 16078.42 17983.72 110
test250671.72 9372.95 9770.29 9481.49 7383.27 7675.74 10867.59 6168.19 7749.81 14461.15 9749.73 19158.82 13484.76 4882.94 5688.27 6880.63 136
ECVR-MVScopyleft72.20 8973.91 8970.20 9681.49 7383.27 7675.74 10867.59 6168.19 7749.31 14855.77 13162.00 11858.82 13484.76 4882.94 5688.27 6880.41 140
CANet_DTU73.29 8376.96 7669.00 11177.04 11682.06 8679.49 7756.30 16767.85 7953.29 12571.12 5770.37 8361.81 12081.59 7780.96 7686.09 12684.73 99
USDC67.36 14567.90 14666.74 14271.72 16375.23 15971.58 15360.28 13867.45 8050.54 14160.93 9845.20 20462.08 11276.56 14874.50 16184.25 15575.38 175
GeoE74.23 7774.84 8573.52 7580.42 8881.46 9179.77 7261.06 12967.23 8163.67 7959.56 10968.74 9667.90 7980.25 10579.37 10888.31 6787.26 69
test111171.56 9573.44 9269.38 10781.16 7782.95 8174.99 11967.68 5966.89 8246.33 16455.19 13760.91 12157.99 14284.59 5182.70 6088.12 7580.85 133
DCV-MVSNet73.65 8175.78 8171.16 8580.19 9079.27 11577.45 9961.68 12666.73 8358.72 9365.31 8269.96 8462.19 11181.29 8680.97 7586.74 11086.91 71
Effi-MVS+75.28 7376.20 7974.20 7381.15 7883.24 7881.11 6163.13 10066.37 8460.27 8864.30 8968.88 9470.93 6681.56 7881.69 6788.61 6487.35 66
EPNet_dtu68.08 13171.00 11064.67 15379.64 9468.62 18575.05 11863.30 9566.36 8545.27 17167.40 7666.84 10443.64 19075.37 15374.98 15981.15 16977.44 160
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSDG71.52 9669.87 11973.44 7682.21 7179.35 11479.52 7664.59 8266.15 8661.87 8353.21 15656.09 14665.85 9678.94 12278.50 11786.60 11676.85 165
FC-MVSNet-train72.60 8775.07 8369.71 10281.10 8178.79 12173.74 14265.23 7866.10 8753.34 12470.36 6163.40 11456.92 15281.44 8080.96 7687.93 8084.46 103
EIA-MVS75.64 7176.60 7874.53 7182.43 6883.84 6978.32 9062.28 11965.96 8863.28 8268.95 6667.54 10071.61 6082.55 7181.63 6889.24 5285.72 81
CostFormer68.92 12369.58 12468.15 11775.98 12376.17 15078.22 9251.86 18465.80 8961.56 8563.57 9062.83 11561.85 11870.40 18968.67 18679.42 17579.62 148
IS_MVSNet73.33 8277.34 7368.65 11481.29 7683.47 7474.45 12563.58 9465.75 9048.49 15067.11 7870.61 8054.63 16884.51 5283.58 5389.48 4886.34 77
Vis-MVSNet (Re-imp)67.83 13673.52 9161.19 16978.37 10376.72 14566.80 17562.96 10165.50 9134.17 19667.19 7769.68 8739.20 19979.39 11779.44 10785.68 13876.73 166
Fast-Effi-MVS+73.11 8473.66 9072.48 7977.72 11080.88 10078.55 8758.83 15765.19 9260.36 8759.98 10662.42 11771.22 6481.66 7580.61 8988.20 7184.88 98
EPP-MVSNet74.00 7977.41 7170.02 9980.53 8683.91 6774.99 11962.68 11265.06 9349.77 14568.68 6972.09 7363.06 10682.49 7380.73 7989.12 5788.91 55
UGNet72.78 8577.67 6767.07 13671.65 16583.24 7875.20 11363.62 9364.93 9456.72 10571.82 5373.30 6749.02 18181.02 9180.70 8586.22 12388.67 57
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet_Blended_VisFu76.57 6677.90 6575.02 6580.56 8586.58 4879.24 7966.18 6964.81 9568.18 6065.61 7971.45 7467.05 8284.16 5581.80 6688.90 5990.92 40
pmmvs467.89 13467.39 15268.48 11571.60 16773.57 16674.45 12560.98 13064.65 9657.97 9954.95 13951.73 18161.88 11773.78 16375.11 15783.99 15977.91 157
MVSTER72.06 9074.24 8669.51 10570.39 17675.97 15176.91 10357.36 16464.64 9761.39 8668.86 6763.76 11263.46 10381.44 8079.70 9987.56 9085.31 89
OPM-MVS79.68 4779.28 6080.15 3787.99 3986.77 4688.52 2872.72 2964.55 9867.65 6367.87 7474.33 6574.31 3986.37 3585.25 4089.73 4489.81 49
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ET-MVSNet_ETH3D72.46 8874.19 8770.44 9262.50 20081.17 9579.90 7162.46 11764.52 9957.52 10171.49 5659.15 13072.08 5378.61 12681.11 7388.16 7283.29 113
Anonymous2023121171.90 9172.48 10271.21 8480.14 9181.53 8976.92 10262.89 10364.46 10058.94 9043.80 19270.98 7862.22 11080.70 9580.19 9486.18 12485.73 80
thisisatest053071.48 9773.01 9669.70 10373.83 14678.62 12374.53 12459.12 15164.13 10158.63 9464.60 8758.63 13264.27 9980.28 10380.17 9587.82 8584.64 101
GBi-Net70.78 10173.37 9467.76 11972.95 15378.00 12875.15 11462.72 10764.13 10151.44 13358.37 11769.02 9157.59 14481.33 8380.72 8086.70 11182.02 119
test170.78 10173.37 9467.76 11972.95 15378.00 12875.15 11462.72 10764.13 10151.44 13358.37 11769.02 9157.59 14481.33 8380.72 8086.70 11182.02 119
FMVSNet370.49 10572.90 9967.67 12472.88 15677.98 13174.96 12262.72 10764.13 10151.44 13358.37 11769.02 9157.43 14779.43 11679.57 10386.59 11781.81 126
tttt051771.41 9872.95 9769.60 10473.70 14878.70 12274.42 12859.12 15163.89 10558.35 9764.56 8858.39 13464.27 9980.29 10280.17 9587.74 8784.69 100
SCA65.40 15566.58 15864.02 15770.65 17473.37 16767.35 16953.46 17463.66 10654.14 11660.84 9960.20 12561.50 12269.96 19068.14 19177.01 18669.91 190
COLMAP_ROBcopyleft62.73 1567.66 13966.76 15668.70 11380.49 8777.98 13175.29 11262.95 10263.62 10749.96 14247.32 18750.72 18658.57 13676.87 14475.50 15684.94 15175.33 176
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EPMVS60.00 18861.97 18957.71 18568.46 18663.17 20464.54 18648.23 20263.30 10844.72 17460.19 10356.05 14750.85 17865.27 20362.02 20569.44 20963.81 203
FMVSNet270.39 10772.67 10167.72 12272.95 15378.00 12875.15 11462.69 11163.29 10951.25 13755.64 13268.49 9857.59 14480.91 9380.35 9286.70 11182.02 119
PatchmatchNetpermissive64.21 16364.65 17163.69 15971.29 17268.66 18469.63 16051.70 18663.04 11053.77 12159.83 10858.34 13560.23 13168.54 19666.06 19875.56 19268.08 196
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpm cat165.41 15463.81 17767.28 13275.61 12872.88 16875.32 11152.85 17862.97 11163.66 8053.24 15553.29 17161.83 11965.54 20064.14 20274.43 19774.60 178
PatchMatch-RL67.78 13766.65 15769.10 10973.01 15272.69 16968.49 16561.85 12362.93 11260.20 8956.83 12850.42 18769.52 7075.62 15274.46 16281.51 16773.62 184
Anonymous20240521172.16 10580.85 8381.85 8776.88 10465.40 7662.89 11346.35 18867.99 9962.05 11381.15 8980.38 9185.97 13484.50 102
baseline170.10 11172.17 10467.69 12379.74 9376.80 14373.91 13664.38 8462.74 11448.30 15264.94 8364.08 11154.17 17081.46 7978.92 11285.66 13976.22 167
PMMVS65.06 15769.17 13060.26 17455.25 21463.43 20166.71 17643.01 20962.41 11550.64 13969.44 6467.04 10263.29 10474.36 16073.54 16682.68 16473.99 183
MS-PatchMatch70.17 11070.49 11469.79 10180.98 8277.97 13377.51 9658.95 15462.33 11655.22 11353.14 15765.90 10662.03 11479.08 12077.11 14084.08 15777.91 157
tpmrst62.00 17762.35 18861.58 16771.62 16664.14 19769.07 16348.22 20362.21 11753.93 11958.26 12155.30 15055.81 16063.22 20562.62 20470.85 20670.70 189
UniMVSNet_NR-MVSNet70.59 10472.19 10368.72 11277.72 11080.72 10173.81 14069.65 4561.99 11843.23 17760.54 10257.50 13758.57 13679.56 11381.07 7489.34 5083.97 105
GG-mvs-BLEND46.86 20967.51 14922.75 2140.05 22676.21 14964.69 1850.04 22261.90 1190.09 22755.57 13371.32 760.08 22270.54 18567.19 19471.58 20469.86 191
CHOSEN 1792x268869.20 12169.26 12869.13 10876.86 11778.93 11777.27 10060.12 14261.86 12054.42 11442.54 19661.61 11966.91 8778.55 12778.14 12279.23 17783.23 114
UniMVSNet (Re)69.53 11671.90 10666.76 14176.42 11980.93 9772.59 15068.03 5661.75 12141.68 18258.34 12057.23 13953.27 17379.53 11480.62 8888.57 6584.90 97
ACMH+66.54 1371.36 9970.09 11772.85 7882.59 6681.13 9678.56 8668.04 5561.55 12252.52 13151.50 17154.14 15668.56 7778.85 12379.50 10586.82 10783.94 107
IterMVS-LS71.69 9472.82 10070.37 9377.54 11276.34 14875.13 11760.46 13761.53 12357.57 10064.89 8467.33 10166.04 9577.09 14277.37 13685.48 14285.18 91
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
baseline269.69 11470.27 11669.01 11075.72 12677.13 14173.82 13958.94 15561.35 12457.09 10361.68 9557.17 14061.99 11578.10 13176.58 14786.48 12079.85 144
Baseline_NR-MVSNet67.53 14368.77 13566.09 14675.99 12174.75 16272.43 15168.41 5361.33 12538.33 18951.31 17254.13 15856.03 15779.22 11878.19 12185.37 14482.45 117
DU-MVS69.63 11570.91 11168.13 11875.99 12179.54 11173.81 14069.20 5061.20 12643.23 17758.52 11453.50 16358.57 13679.22 11880.45 9087.97 7983.97 105
NR-MVSNet68.79 12570.56 11366.71 14377.48 11379.54 11173.52 14469.20 5061.20 12639.76 18458.52 11450.11 18951.37 17780.26 10480.71 8488.97 5883.59 111
Effi-MVS+-dtu71.82 9271.86 10771.78 8278.77 9980.47 10378.55 8761.67 12760.68 12855.49 11058.48 11665.48 10768.85 7576.92 14375.55 15587.35 9385.46 86
UA-Net74.47 7677.80 6670.59 9185.33 5385.40 5673.54 14365.98 7360.65 12956.00 10972.11 5179.15 4654.63 16883.13 6782.25 6288.04 7881.92 125
Vis-MVSNetpermissive72.77 8677.20 7467.59 12674.19 14184.01 6676.61 10761.69 12560.62 13050.61 14070.25 6271.31 7755.57 16383.85 5882.28 6186.90 10488.08 61
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TranMVSNet+NR-MVSNet69.25 12070.81 11267.43 12777.23 11579.46 11373.48 14569.66 4460.43 13139.56 18558.82 11353.48 16555.74 16179.59 11181.21 7288.89 6082.70 115
TDRefinement66.09 15265.03 16967.31 13069.73 18076.75 14475.33 11064.55 8360.28 13249.72 14645.63 19042.83 20760.46 13075.75 15175.95 15284.08 15778.04 156
MDTV_nov1_ep1364.37 16165.24 16563.37 16368.94 18570.81 17572.40 15250.29 19360.10 13353.91 12060.07 10559.15 13057.21 14869.43 19367.30 19377.47 18269.78 192
IB-MVS66.94 1271.21 10071.66 10870.68 8879.18 9782.83 8372.61 14961.77 12459.66 13463.44 8153.26 15459.65 12859.16 13376.78 14682.11 6387.90 8187.33 67
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ADS-MVSNet55.94 19758.01 19853.54 19962.48 20158.48 21059.12 20346.20 20659.65 13542.88 18052.34 16853.31 17046.31 18562.00 20760.02 20864.23 21460.24 210
FC-MVSNet-test56.90 19565.20 16647.21 20566.98 18863.20 20349.11 21458.60 15859.38 13611.50 22165.60 8056.68 14424.66 21371.17 17971.36 17672.38 20369.02 194
HyFIR lowres test69.47 11868.94 13270.09 9876.77 11882.93 8276.63 10660.17 14059.00 13754.03 11840.54 20165.23 10867.89 8076.54 14978.30 12085.03 14980.07 143
v870.23 10869.86 12070.67 8974.69 13679.82 11078.79 8559.18 15058.80 13858.20 9855.00 13857.33 13866.31 9477.51 13676.71 14586.82 10783.88 108
V4268.76 12669.63 12367.74 12164.93 19678.01 12778.30 9156.48 16658.65 13956.30 10854.26 14557.03 14164.85 9777.47 13777.01 14185.60 14084.96 96
Fast-Effi-MVS+-dtu68.34 12869.47 12567.01 13775.15 13077.97 13377.12 10155.40 16957.87 14046.68 16256.17 13060.39 12262.36 10976.32 15076.25 15185.35 14581.34 129
tpm62.41 17363.15 17961.55 16872.24 15963.79 20071.31 15546.12 20757.82 14155.33 11159.90 10754.74 15353.63 17167.24 19964.29 20170.65 20774.25 182
CR-MVSNet64.83 15865.54 16364.01 15870.64 17569.41 18065.97 18052.74 17957.81 14252.65 12854.27 14356.31 14560.92 12672.20 17273.09 16881.12 17075.69 172
RPMNet61.71 18362.88 18160.34 17369.51 18269.41 18063.48 19049.23 19557.81 14245.64 17050.51 17550.12 18853.13 17468.17 19868.49 18981.07 17175.62 174
dps64.00 16462.99 18065.18 14873.29 15072.07 17168.98 16453.07 17757.74 14458.41 9655.55 13447.74 19760.89 12869.53 19267.14 19576.44 18971.19 188
v1070.22 10969.76 12270.74 8674.79 13580.30 10879.22 8059.81 14557.71 14556.58 10754.22 14755.31 14966.95 8578.28 12977.47 13387.12 10185.07 93
IterMVS-SCA-FT66.89 15069.22 12964.17 15571.30 17175.64 15371.33 15453.17 17657.63 14649.08 14960.72 10060.05 12663.09 10574.99 15673.92 16377.07 18581.57 128
v2v48270.05 11269.46 12670.74 8674.62 13780.32 10779.00 8260.62 13457.41 14756.89 10455.43 13655.14 15166.39 9377.25 13977.14 13986.90 10483.57 112
IterMVS66.36 15168.30 14264.10 15669.48 18374.61 16373.41 14650.79 19057.30 14848.28 15360.64 10159.92 12760.85 12974.14 16172.66 17081.80 16678.82 153
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dmvs_re67.22 14767.92 14566.40 14475.94 12470.55 17874.97 12163.87 8957.07 14944.75 17354.29 14256.72 14354.65 16779.53 11477.51 13284.20 15679.78 146
FMVSNet168.84 12470.47 11566.94 13871.35 17077.68 13674.71 12362.35 11856.93 15049.94 14350.01 17764.59 10957.07 14981.33 8380.72 8086.25 12282.00 122
PatchT61.97 17864.04 17559.55 17960.49 20467.40 18856.54 20548.65 19956.69 15152.65 12851.10 17452.14 17960.92 12672.20 17273.09 16878.03 18075.69 172
thres100view90067.60 14268.02 14367.12 13577.83 10877.75 13573.90 13762.52 11556.64 15246.82 16052.65 16453.47 16655.92 15878.77 12477.62 12985.72 13779.23 150
tfpn200view968.11 13068.72 13667.40 12877.83 10878.93 11774.28 13062.81 10456.64 15246.82 16052.65 16453.47 16656.59 15380.41 9778.43 11886.11 12580.52 138
MIMVSNet58.52 19261.34 19255.22 19360.76 20367.01 19066.81 17449.02 19756.43 15438.90 18740.59 20054.54 15540.57 19773.16 16571.65 17375.30 19566.00 199
thres20067.98 13268.55 13967.30 13177.89 10778.86 11974.18 13462.75 10556.35 15546.48 16352.98 16053.54 16256.46 15480.41 9777.97 12486.05 12979.78 146
thres40067.95 13368.62 13867.17 13377.90 10578.59 12474.27 13162.72 10756.34 15645.77 16953.00 15953.35 16956.46 15480.21 10678.43 11885.91 13680.43 139
ACMH65.37 1470.71 10370.00 11871.54 8382.51 6782.47 8577.78 9468.13 5456.19 15746.06 16754.30 14151.20 18368.68 7680.66 9680.72 8086.07 12784.45 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thres600view767.68 13868.43 14066.80 14077.90 10578.86 11973.84 13862.75 10556.07 15844.70 17552.85 16252.81 17355.58 16280.41 9777.77 12686.05 12980.28 141
v114469.93 11369.36 12770.61 9074.89 13480.93 9779.11 8160.64 13355.97 15955.31 11253.85 14954.14 15666.54 9178.10 13177.44 13487.14 9885.09 92
v14867.85 13567.53 14868.23 11673.25 15177.57 13974.26 13257.36 16455.70 16057.45 10253.53 15055.42 14861.96 11675.23 15473.92 16385.08 14881.32 130
TinyColmap62.84 16861.03 19364.96 15169.61 18171.69 17268.48 16659.76 14655.41 16147.69 15747.33 18634.20 21662.76 10874.52 15872.59 17181.44 16871.47 187
CHOSEN 280x42058.70 19161.88 19054.98 19455.45 21350.55 21664.92 18440.36 21055.21 16238.13 19048.31 18363.76 11263.03 10773.73 16468.58 18868.00 21273.04 185
FMVSNet557.24 19360.02 19653.99 19756.45 21162.74 20565.27 18347.03 20455.14 16339.55 18640.88 19853.42 16841.83 19172.35 16871.10 17773.79 19964.50 202
GA-MVS68.14 12969.17 13066.93 13973.77 14778.50 12574.45 12558.28 15955.11 16448.44 15160.08 10453.99 15961.50 12278.43 12877.57 13085.13 14780.54 137
v119269.50 11768.83 13370.29 9474.49 13880.92 9978.55 8760.54 13555.04 16554.21 11552.79 16352.33 17666.92 8677.88 13377.35 13787.04 10285.51 84
PM-MVS60.48 18660.94 19459.94 17558.85 20766.83 19164.27 18851.39 18755.03 16648.03 15450.00 17940.79 21158.26 13969.20 19467.13 19678.84 17877.60 159
v14419269.34 11968.68 13770.12 9774.06 14280.54 10278.08 9360.54 13554.99 16754.13 11752.92 16152.80 17466.73 8977.13 14176.72 14487.15 9585.63 82
thisisatest051567.40 14468.78 13465.80 14770.02 17875.24 15869.36 16257.37 16354.94 16853.67 12255.53 13554.85 15258.00 14178.19 13078.91 11386.39 12183.78 109
v192192069.03 12268.32 14169.86 10074.03 14380.37 10577.55 9560.25 13954.62 16953.59 12352.36 16751.50 18266.75 8877.17 14076.69 14686.96 10385.56 83
test-LLR64.42 16064.36 17364.49 15475.02 13263.93 19866.61 17761.96 12154.41 17047.77 15557.46 12460.25 12355.20 16570.80 18369.33 18180.40 17374.38 180
TESTMET0.1,161.10 18464.36 17357.29 18657.53 20963.93 19866.61 17736.22 21354.41 17047.77 15557.46 12460.25 12355.20 16570.80 18369.33 18180.40 17374.38 180
test-mter60.84 18564.62 17256.42 18955.99 21264.18 19665.39 18234.23 21454.39 17246.21 16657.40 12659.49 12955.86 15971.02 18269.65 18080.87 17276.20 168
pmmvs-eth3d63.52 16562.44 18764.77 15266.82 19170.12 17969.41 16159.48 14854.34 17352.71 12746.24 18944.35 20656.93 15172.37 16773.77 16583.30 16175.91 169
WR-MVS63.03 16667.40 15157.92 18475.14 13177.60 13860.56 19866.10 7054.11 17423.88 20753.94 14853.58 16134.50 20373.93 16277.71 12787.35 9380.94 132
CDS-MVSNet67.65 14069.83 12165.09 14975.39 12976.55 14674.42 12863.75 9053.55 17549.37 14759.41 11062.45 11644.44 18879.71 11079.82 9883.17 16377.36 161
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
pmnet_mix0255.30 19857.01 20253.30 20064.14 19759.09 20958.39 20450.24 19453.47 17638.68 18849.75 18045.86 20240.14 19865.38 20260.22 20768.19 21165.33 200
v124068.64 12767.89 14769.51 10573.89 14580.26 10976.73 10559.97 14453.43 17753.08 12651.82 17050.84 18566.62 9076.79 14576.77 14386.78 10985.34 88
test0.0.03 158.80 19061.58 19155.56 19275.02 13268.45 18659.58 20261.96 12152.74 17829.57 20049.75 18054.56 15431.46 20671.19 17869.77 17975.75 19064.57 201
CP-MVSNet62.68 16965.49 16459.40 18071.84 16175.34 15662.87 19367.04 6552.64 17927.19 20453.38 15248.15 19541.40 19471.26 17775.68 15386.07 12782.00 122
PEN-MVS62.96 16765.77 16159.70 17773.98 14475.45 15563.39 19167.61 6052.49 18025.49 20653.39 15149.12 19340.85 19671.94 17477.26 13886.86 10680.72 135
CVMVSNet62.55 17065.89 15958.64 18266.95 18969.15 18266.49 17956.29 16852.46 18132.70 19759.27 11158.21 13650.09 17971.77 17571.39 17579.31 17678.99 152
UniMVSNet_ETH3D67.18 14867.03 15367.36 12974.44 13978.12 12674.07 13566.38 6752.22 18246.87 15948.64 18251.84 18056.96 15077.29 13878.53 11685.42 14382.59 116
MDTV_nov1_ep13_2view60.16 18760.51 19559.75 17665.39 19369.05 18368.00 16748.29 20151.99 18345.95 16848.01 18549.64 19253.39 17268.83 19566.52 19777.47 18269.55 193
CMPMVSbinary47.78 1762.49 17262.52 18562.46 16470.01 17970.66 17762.97 19251.84 18551.98 18456.71 10642.87 19453.62 16057.80 14372.23 17070.37 17875.45 19475.91 169
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
WR-MVS_H61.83 18165.87 16057.12 18771.72 16376.87 14261.45 19666.19 6851.97 18522.92 21153.13 15852.30 17833.80 20471.03 18175.00 15886.65 11580.78 134
PS-CasMVS62.38 17565.06 16759.25 18171.73 16275.21 16062.77 19466.99 6651.94 18626.96 20552.00 16947.52 19841.06 19571.16 18075.60 15485.97 13481.97 124
DTE-MVSNet61.85 17964.96 17058.22 18374.32 14074.39 16461.01 19767.85 5851.76 18721.91 21453.28 15348.17 19437.74 20072.22 17176.44 14886.52 11978.49 154
v7n67.05 14966.94 15467.17 13372.35 15878.97 11673.26 14858.88 15651.16 18850.90 13848.21 18450.11 18960.96 12577.70 13477.38 13586.68 11485.05 94
pmmvs562.37 17664.04 17560.42 17265.03 19471.67 17367.17 17152.70 18150.30 18944.80 17254.23 14651.19 18449.37 18072.88 16673.48 16783.45 16074.55 179
FPMVS51.87 20450.00 20954.07 19666.83 19057.25 21160.25 20050.91 18850.25 19034.36 19536.04 20632.02 21841.49 19358.98 21156.07 21070.56 20859.36 211
TAMVS59.58 18962.81 18355.81 19166.03 19265.64 19563.86 18948.74 19849.95 19137.07 19354.77 14058.54 13344.44 18872.29 16971.79 17274.70 19666.66 198
pm-mvs165.62 15367.42 15063.53 16173.66 14976.39 14769.66 15960.87 13249.73 19243.97 17651.24 17357.00 14248.16 18279.89 10877.84 12584.85 15379.82 145
N_pmnet47.35 20750.13 20844.11 20859.98 20551.64 21551.86 21044.80 20849.58 19320.76 21540.65 19940.05 21329.64 20759.84 20955.15 21157.63 21554.00 213
Anonymous2023120656.36 19657.80 20054.67 19570.08 17766.39 19260.46 19957.54 16149.50 19429.30 20133.86 20846.64 19935.18 20270.44 18768.88 18575.47 19368.88 195
anonymousdsp65.28 15667.98 14462.13 16558.73 20873.98 16567.10 17250.69 19148.41 19547.66 15854.27 14352.75 17561.45 12476.71 14780.20 9387.13 9989.53 53
tfpnnormal64.27 16263.64 17865.02 15075.84 12575.61 15471.24 15662.52 11547.79 19642.97 17942.65 19544.49 20552.66 17578.77 12476.86 14284.88 15279.29 149
TransMVSNet (Re)64.74 15965.66 16263.66 16077.40 11475.33 15769.86 15862.67 11347.63 19741.21 18350.01 17752.33 17645.31 18779.57 11277.69 12885.49 14177.07 164
ambc53.42 20464.99 19563.36 20249.96 21247.07 19837.12 19228.97 21216.36 22441.82 19275.10 15567.34 19271.55 20575.72 171
EG-PatchMatch MVS67.24 14666.94 15467.60 12578.73 10081.35 9273.28 14759.49 14746.89 19951.42 13643.65 19353.49 16455.50 16481.38 8280.66 8687.15 9581.17 131
SixPastTwentyTwo61.84 18062.45 18661.12 17069.20 18472.20 17062.03 19557.40 16246.54 20038.03 19157.14 12741.72 20958.12 14069.67 19171.58 17481.94 16578.30 155
MVS-HIRNet54.41 20052.10 20757.11 18858.99 20656.10 21349.68 21349.10 19646.18 20152.15 13233.18 20946.11 20156.10 15663.19 20659.70 20976.64 18860.25 209
EU-MVSNet54.63 19958.69 19749.90 20356.99 21062.70 20656.41 20650.64 19245.95 20223.14 21050.42 17646.51 20036.63 20165.51 20164.85 20075.57 19174.91 177
MDA-MVSNet-bldmvs53.37 20353.01 20653.79 19843.67 21867.95 18759.69 20157.92 16043.69 20332.41 19841.47 19727.89 22152.38 17656.97 21365.99 19976.68 18767.13 197
testgi54.39 20157.86 19950.35 20271.59 16867.24 18954.95 20753.25 17543.36 20423.78 20844.64 19147.87 19624.96 21170.45 18668.66 18773.60 20062.78 206
test20.0353.93 20256.28 20351.19 20172.19 16065.83 19353.20 20961.08 12842.74 20522.08 21237.07 20445.76 20324.29 21470.44 18769.04 18374.31 19863.05 205
new-patchmatchnet46.97 20849.47 21044.05 20962.82 19956.55 21245.35 21652.01 18342.47 20617.04 21935.73 20735.21 21521.84 21761.27 20854.83 21265.26 21360.26 208
pmmvs662.41 17362.88 18161.87 16671.38 16975.18 16167.76 16859.45 14941.64 20742.52 18137.33 20352.91 17246.87 18477.67 13576.26 15083.23 16279.18 151
MIMVSNet149.27 20553.25 20544.62 20744.61 21661.52 20853.61 20852.18 18241.62 20818.68 21728.14 21441.58 21025.50 20968.46 19769.04 18373.15 20162.37 207
new_pmnet38.40 21142.64 21333.44 21137.54 22145.00 21736.60 21832.72 21640.27 20912.72 22029.89 21128.90 22024.78 21253.17 21452.90 21456.31 21648.34 214
Gipumacopyleft36.38 21235.80 21437.07 21045.76 21533.90 21929.81 21948.47 20039.91 21018.02 2188.00 2228.14 22625.14 21059.29 21061.02 20655.19 21740.31 215
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
gg-mvs-nofinetune62.55 17065.05 16859.62 17878.72 10177.61 13770.83 15753.63 17139.71 21122.04 21336.36 20564.32 11047.53 18381.16 8879.03 11185.00 15077.17 162
tmp_tt14.50 21814.68 2237.17 22510.46 2262.21 22137.73 21228.71 20225.26 21516.98 2224.37 22131.49 21729.77 21726.56 222
test_method22.26 21425.94 21617.95 2163.24 2257.17 22523.83 2207.27 22037.35 21320.44 21621.87 21739.16 21418.67 21834.56 21620.84 22034.28 21920.64 221
pmmvs347.65 20649.08 21145.99 20644.61 21654.79 21450.04 21131.95 21733.91 21429.90 19930.37 21033.53 21746.31 18563.50 20463.67 20373.14 20263.77 204
gm-plane-assit57.00 19457.62 20156.28 19076.10 12062.43 20747.62 21546.57 20533.84 21523.24 20937.52 20240.19 21259.61 13279.81 10977.55 13184.55 15472.03 186
LTVRE_ROB59.44 1661.82 18262.64 18460.87 17172.83 15777.19 14064.37 18758.97 15333.56 21628.00 20352.59 16642.21 20863.93 10274.52 15876.28 14977.15 18482.13 118
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PMVScopyleft39.38 1846.06 21043.30 21249.28 20462.93 19838.75 21841.88 21753.50 17333.33 21735.46 19428.90 21331.01 21933.04 20558.61 21254.63 21368.86 21057.88 212
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepMVS_CXcopyleft18.74 22418.55 2228.02 21926.96 2187.33 22223.81 21613.05 22525.99 20825.17 21922.45 22436.25 218
PMMVS225.60 21329.75 21520.76 21528.00 22230.93 22023.10 22129.18 21823.14 2191.46 22618.23 21816.54 2235.08 22040.22 21541.40 21637.76 21837.79 217
EMVS20.98 21617.15 21925.44 21339.51 22019.37 22312.66 22339.59 21219.10 2206.62 2249.27 2204.40 22822.43 21517.99 22124.40 21931.81 22125.53 220
E-PMN21.77 21518.24 21825.89 21240.22 21919.58 22212.46 22439.87 21118.68 2216.71 2239.57 2194.31 22922.36 21619.89 22027.28 21833.73 22028.34 219
MVEpermissive19.12 1920.47 21723.27 21717.20 21712.66 22425.41 22110.52 22534.14 21514.79 2226.53 2258.79 2214.68 22716.64 21929.49 21841.63 21522.73 22338.11 216
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs0.09 2180.15 2200.02 2190.01 2270.02 2270.05 2280.01 2230.11 2230.01 2280.26 2240.01 2300.06 2240.10 2220.10 2210.01 2250.43 223
test1230.09 2180.14 2210.02 2190.00 2280.02 2270.02 2290.01 2230.09 2240.00 2290.30 2230.00 2310.08 2220.03 2230.09 2220.01 2250.45 222
uanet_test0.00 2200.00 2220.00 2210.00 2280.00 2290.00 2300.00 2250.00 2250.00 2290.00 2250.00 2310.00 2250.00 2240.00 2230.00 2270.00 224
sosnet-low-res0.00 2200.00 2220.00 2210.00 2280.00 2290.00 2300.00 2250.00 2250.00 2290.00 2250.00 2310.00 2250.00 2240.00 2230.00 2270.00 224
sosnet0.00 2200.00 2220.00 2210.00 2280.00 2290.00 2300.00 2250.00 2250.00 2290.00 2250.00 2310.00 2250.00 2240.00 2230.00 2270.00 224
TPM-MVS90.07 2188.36 3588.45 2977.10 2575.60 3783.98 2971.33 6389.75 4389.62 51
RE-MVS-def46.24 165
9.1486.88 16
SR-MVS88.99 3473.57 2487.54 14
our_test_367.93 18770.99 17466.89 173
MTAPA83.48 186.45 19
MTMP82.66 584.91 26
Patchmatch-RL test2.85 227
XVS86.63 4588.68 2785.00 4771.81 4581.92 3790.47 23
X-MVStestdata86.63 4588.68 2785.00 4771.81 4581.92 3790.47 23
mPP-MVS89.90 2581.29 42
Patchmtry65.80 19465.97 18052.74 17952.65 128