This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
patch_mono-298.36 4898.87 396.82 21099.53 3990.68 31498.64 15399.29 897.88 599.19 2999.52 396.80 1599.97 199.11 199.86 199.82 10
zzz-MVS98.55 3198.25 4399.46 1599.76 298.64 2798.55 16898.74 10897.27 4098.02 10499.39 1894.81 8499.96 297.91 4999.79 2399.77 23
MTAPA98.58 2498.29 4099.46 1599.76 298.64 2798.90 9398.74 10897.27 4098.02 10499.39 1894.81 8499.96 297.91 4999.79 2399.77 23
DVP-MVS++99.08 298.89 299.64 399.17 10399.23 799.69 198.88 5197.32 3399.53 999.47 1097.81 399.94 498.47 2299.72 5499.74 37
MSC_two_6792asdad99.62 699.17 10399.08 1198.63 14399.94 498.53 1499.80 1999.86 2
No_MVS99.62 699.17 10399.08 1198.63 14399.94 498.53 1499.80 1999.86 2
SED-MVS99.09 198.91 199.63 499.71 2199.24 599.02 7398.87 5897.65 1099.73 199.48 897.53 799.94 498.43 2699.81 1299.70 54
test_241102_TWO98.87 5897.65 1099.53 999.48 897.34 1199.94 498.43 2699.80 1999.83 7
DVP-MVScopyleft99.03 398.83 599.63 499.72 1399.25 298.97 8398.58 15397.62 1299.45 1199.46 1397.42 999.94 498.47 2299.81 1299.69 57
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD97.32 3399.45 1199.46 1397.88 199.94 498.47 2299.86 199.85 4
test_0728_SECOND99.71 199.72 1399.35 198.97 8398.88 5199.94 498.47 2299.81 1299.84 6
DPE-MVScopyleft98.92 598.67 899.65 299.58 3499.20 998.42 18698.91 4597.58 1599.54 899.46 1397.10 1299.94 497.64 7399.84 1099.83 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
region2R98.61 1898.38 2599.29 3499.74 898.16 6099.23 3098.93 3996.15 9198.94 4599.17 6395.91 4399.94 497.55 8299.79 2399.78 16
ACMMPR98.59 2198.36 2799.29 3499.74 898.15 6199.23 3098.95 3596.10 9698.93 5099.19 6295.70 5099.94 497.62 7499.79 2399.78 16
MP-MVScopyleft98.33 5498.01 5899.28 3899.75 498.18 5899.22 3498.79 9696.13 9397.92 11799.23 5294.54 9099.94 496.74 12699.78 2799.73 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS98.49 3798.23 4799.27 4199.72 1398.08 6498.99 7999.49 595.43 12699.03 3999.32 3795.56 5399.94 496.80 12299.77 3099.78 16
mPP-MVS98.51 3698.26 4299.25 4299.75 498.04 6599.28 2598.81 8096.24 8898.35 8999.23 5295.46 5799.94 497.42 8899.81 1299.77 23
CP-MVS98.57 2798.36 2799.19 4699.66 2897.86 7399.34 1998.87 5895.96 10198.60 7599.13 7396.05 3699.94 497.77 6299.86 199.77 23
ZNCC-MVS98.49 3798.20 4999.35 2599.73 1298.39 3999.19 4198.86 6495.77 10998.31 9299.10 7895.46 5799.93 1997.57 8099.81 1299.74 37
testtj98.33 5497.95 6199.47 1499.49 4998.70 2398.83 11098.86 6495.48 12398.91 5299.17 6395.48 5699.93 1995.80 15799.53 9299.76 30
GST-MVS98.43 4398.12 5299.34 2699.72 1398.38 4099.09 5898.82 7495.71 11298.73 6499.06 8895.27 7099.93 1997.07 10099.63 7099.72 46
abl_698.30 5798.03 5799.13 5799.56 3797.76 8099.13 5098.82 7496.14 9299.26 2299.37 2693.33 10999.93 1996.96 10599.67 6099.69 57
QAPM96.29 14595.40 16898.96 7097.85 21397.60 8599.23 3098.93 3989.76 32693.11 28699.02 9089.11 19499.93 1991.99 27299.62 7299.34 121
ACMMPcopyleft98.23 5897.95 6199.09 6299.74 897.62 8499.03 6999.41 695.98 9997.60 13799.36 3094.45 9599.93 1997.14 9798.85 13399.70 54
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CANet98.05 6297.76 6798.90 7498.73 14297.27 9598.35 19398.78 9997.37 3297.72 12798.96 10391.53 14599.92 2598.79 699.65 6499.51 98
MP-MVS-pluss98.31 5697.92 6399.49 1299.72 1398.88 1898.43 18498.78 9994.10 18397.69 12999.42 1695.25 7299.92 2598.09 4099.80 1999.67 67
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP98.61 1898.30 3999.55 999.62 3298.95 1798.82 11398.81 8095.80 10899.16 3299.47 1095.37 6399.92 2597.89 5299.75 4299.79 13
HFP-MVS98.63 1798.40 2399.32 3199.72 1398.29 5199.23 3098.96 3396.10 9698.94 4599.17 6396.06 3499.92 2597.62 7499.78 2799.75 32
#test#98.54 3398.27 4199.32 3199.72 1398.29 5198.98 8298.96 3395.65 11798.94 4599.17 6396.06 3499.92 2597.21 9699.78 2799.75 32
HPM-MVS++copyleft98.58 2498.25 4399.55 999.50 4599.08 1198.72 13798.66 13697.51 1898.15 9398.83 11995.70 5099.92 2597.53 8499.67 6099.66 71
CPTT-MVS97.72 7797.32 8998.92 7299.64 3097.10 10499.12 5298.81 8092.34 26198.09 9799.08 8693.01 11399.92 2596.06 14799.77 3099.75 32
3Dnovator94.51 597.46 9296.93 10599.07 6397.78 21697.64 8299.35 1899.06 2397.02 5593.75 26499.16 6889.25 18999.92 2597.22 9599.75 4299.64 76
OpenMVScopyleft93.04 1395.83 16995.00 19298.32 11197.18 26297.32 9399.21 3798.97 3189.96 32291.14 32399.05 8986.64 25099.92 2593.38 23099.47 9997.73 222
CANet_DTU96.96 11996.55 12498.21 11998.17 19396.07 15097.98 24298.21 22297.24 4297.13 14798.93 10786.88 24799.91 3495.00 18299.37 11098.66 190
PVSNet_Blended_VisFu97.70 7897.46 8298.44 10399.27 8795.91 16598.63 15599.16 1894.48 17497.67 13098.88 11292.80 11599.91 3497.11 9899.12 11999.50 100
CSCG97.85 7297.74 6898.20 12099.67 2795.16 19399.22 3499.32 793.04 23797.02 15498.92 10995.36 6499.91 3497.43 8799.64 6899.52 94
PS-MVSNAJ97.73 7697.77 6697.62 16298.68 15095.58 17697.34 29198.51 16797.29 3598.66 7197.88 21794.51 9199.90 3797.87 5499.17 11897.39 230
UGNet96.78 12696.30 13398.19 12298.24 18395.89 16798.88 10098.93 3997.39 2996.81 16597.84 22182.60 30999.90 3796.53 13199.49 9698.79 181
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
SMA-MVScopyleft98.58 2498.25 4399.56 899.51 4399.04 1598.95 8798.80 9193.67 21399.37 1699.52 396.52 2199.89 3998.06 4199.81 1299.76 30
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVS98.70 1098.49 2099.34 2699.70 2498.35 4899.29 2398.88 5197.40 2798.46 7999.20 5995.90 4499.89 3997.85 5699.74 4599.78 16
X-MVStestdata94.06 27692.30 29699.34 2699.70 2498.35 4899.29 2398.88 5197.40 2798.46 7943.50 37695.90 4499.89 3997.85 5699.74 4599.78 16
新几何199.16 5399.34 6698.01 6798.69 12290.06 32198.13 9498.95 10594.60 8999.89 3991.97 27399.47 9999.59 87
testdata299.89 3991.65 280
CHOSEN 1792x268897.12 11496.80 10998.08 12999.30 7994.56 22698.05 23599.71 193.57 21797.09 14898.91 11088.17 21899.89 3996.87 11799.56 8699.81 11
EPNet97.28 10596.87 10898.51 9594.98 34596.14 14898.90 9397.02 32698.28 195.99 19599.11 7691.36 14799.89 3996.98 10299.19 11799.50 100
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
3Dnovator+94.38 697.43 9796.78 11299.38 2097.83 21498.52 3299.37 1598.71 11897.09 5392.99 28999.13 7389.36 18599.89 3996.97 10399.57 8199.71 50
DELS-MVS98.40 4598.20 4998.99 6699.00 12197.66 8197.75 26498.89 4897.71 998.33 9098.97 9794.97 8199.88 4798.42 2899.76 3699.42 117
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
无先验97.58 27698.72 11491.38 29099.87 4893.36 23299.60 85
112197.37 10296.77 11699.16 5399.34 6697.99 7098.19 21998.68 12590.14 32098.01 10898.97 9794.80 8699.87 4893.36 23299.46 10299.61 82
SteuartSystems-ACMMP98.90 698.75 699.36 2499.22 9898.43 3899.10 5798.87 5897.38 3099.35 1799.40 1797.78 599.87 4897.77 6299.85 599.78 16
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS95.98 397.88 7097.58 7298.77 7899.25 9096.93 11098.83 11098.75 10696.96 5896.89 16199.50 590.46 16799.87 4897.84 5899.76 3699.52 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D97.16 11296.66 12198.68 8298.53 16197.19 10298.93 9198.90 4692.83 24695.99 19599.37 2692.12 12999.87 4893.67 22499.57 8198.97 170
h-mvs3396.17 15095.62 16497.81 14599.03 11794.45 22898.64 15398.75 10697.48 2098.67 6798.72 13289.76 17799.86 5397.95 4681.59 35599.11 155
Anonymous2024052995.10 21094.22 22797.75 15099.01 12094.26 23798.87 10398.83 7285.79 35396.64 17098.97 9778.73 33399.85 5496.27 14094.89 22799.12 154
sss97.39 10096.98 10498.61 8698.60 15796.61 12498.22 21198.93 3993.97 19198.01 10898.48 15891.98 13399.85 5496.45 13498.15 16299.39 118
DP-MVS96.59 13295.93 14698.57 8899.34 6696.19 14798.70 14298.39 19289.45 33194.52 22299.35 3291.85 13599.85 5492.89 24998.88 13099.68 63
xxxxxxxxxxxxxcwj98.70 1098.50 1799.30 3399.46 5598.38 4098.21 21298.52 16497.95 399.32 1899.39 1896.22 2499.84 5797.72 6599.73 4799.67 67
SF-MVS98.59 2198.32 3899.41 1999.54 3898.71 2299.04 6698.81 8095.12 14499.32 1899.39 1896.22 2499.84 5797.72 6599.73 4799.67 67
APDe-MVS99.02 498.84 499.55 999.57 3598.96 1699.39 1398.93 3997.38 3099.41 1399.54 196.66 1799.84 5798.86 499.85 599.87 1
ZD-MVS99.46 5598.70 2398.79 9693.21 23098.67 6798.97 9795.70 5099.83 6096.07 14499.58 80
ETH3D cwj APD-0.1697.96 6497.52 7799.29 3499.05 11498.52 3298.33 19598.68 12593.18 23198.68 6699.13 7394.62 8899.83 6096.45 13499.55 9099.52 94
Anonymous20240521195.28 20094.49 21497.67 15899.00 12193.75 25298.70 14297.04 32390.66 30896.49 18198.80 12278.13 33899.83 6096.21 14395.36 22699.44 114
原ACMM198.65 8499.32 7296.62 12298.67 13393.27 22997.81 12198.97 9795.18 7599.83 6093.84 21899.46 10299.50 100
VNet97.79 7497.40 8698.96 7098.88 13197.55 8698.63 15598.93 3996.74 6899.02 4098.84 11790.33 17099.83 6098.53 1496.66 19899.50 100
MCST-MVS98.65 1498.37 2699.48 1399.60 3398.87 1998.41 18798.68 12597.04 5498.52 7898.80 12296.78 1699.83 6097.93 4899.61 7399.74 37
NCCC98.61 1898.35 2999.38 2099.28 8698.61 2998.45 17998.76 10397.82 698.45 8298.93 10796.65 1899.83 6097.38 9099.41 10699.71 50
PHI-MVS98.34 5298.06 5599.18 5099.15 10998.12 6399.04 6699.09 2193.32 22698.83 5799.10 7896.54 2099.83 6097.70 7099.76 3699.59 87
test117298.56 2998.35 2999.16 5399.53 3997.94 7199.09 5898.83 7296.52 7799.05 3899.34 3595.34 6599.82 6897.86 5599.64 6899.73 42
SR-MVS-dyc-post98.54 3398.35 2999.13 5799.49 4997.86 7399.11 5498.80 9196.49 7899.17 3099.35 3295.34 6599.82 6897.72 6599.65 6499.71 50
ETH3 D test640097.59 8697.01 10199.34 2699.40 6398.56 3098.20 21598.81 8091.63 28498.44 8398.85 11593.98 10499.82 6894.11 21199.69 5899.64 76
SR-MVS98.57 2798.35 2999.24 4399.53 3998.18 5899.09 5898.82 7496.58 7499.10 3599.32 3795.39 6199.82 6897.70 7099.63 7099.72 46
testdata98.26 11699.20 10195.36 18698.68 12591.89 27698.60 7599.10 7894.44 9699.82 6894.27 20599.44 10499.58 91
RPMNet92.81 29791.34 30597.24 17997.00 27093.43 26494.96 35498.80 9182.27 36096.93 15792.12 36386.98 24599.82 6876.32 36896.65 19998.46 199
DeepC-MVS_fast96.70 198.55 3198.34 3399.18 5099.25 9098.04 6598.50 17598.78 9997.72 798.92 5199.28 4495.27 7099.82 6897.55 8299.77 3099.69 57
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
9.1498.06 5599.47 5298.71 13898.82 7494.36 17799.16 3299.29 4396.05 3699.81 7597.00 10199.71 56
ETH3D-3000-0.198.35 5098.00 5999.38 2099.47 5298.68 2598.67 14898.84 6994.66 16799.11 3499.25 5095.46 5799.81 7596.80 12299.73 4799.63 79
agg_prior197.95 6797.51 7999.28 3899.30 7998.38 4097.81 25998.72 11493.16 23397.57 13898.66 13996.14 3099.81 7596.63 12799.56 8699.66 71
agg_prior99.30 7998.38 4098.72 11497.57 13899.81 75
UA-Net97.96 6497.62 7098.98 6898.86 13397.47 8998.89 9799.08 2296.67 7198.72 6599.54 193.15 11299.81 7594.87 18398.83 13499.65 73
PVSNet_BlendedMVS96.73 12796.60 12297.12 18899.25 9095.35 18898.26 20999.26 994.28 17897.94 11497.46 25192.74 11699.81 7596.88 11493.32 26396.20 327
PVSNet_Blended97.38 10197.12 9598.14 12399.25 9095.35 18897.28 29699.26 993.13 23497.94 11498.21 19092.74 11699.81 7596.88 11499.40 10899.27 134
F-COLMAP97.09 11696.80 10997.97 13599.45 5994.95 20698.55 16898.62 14593.02 23896.17 19098.58 14994.01 10299.81 7593.95 21598.90 12899.14 152
PCF-MVS93.45 1194.68 23293.43 27698.42 10698.62 15596.77 11795.48 35298.20 22484.63 35793.34 27798.32 18088.55 21199.81 7584.80 34798.96 12698.68 187
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
xiu_mvs_v1_base_debu97.60 8397.56 7497.72 15298.35 17195.98 15297.86 25598.51 16797.13 5099.01 4198.40 16891.56 14199.80 8498.53 1498.68 13897.37 232
xiu_mvs_v2_base97.66 8097.70 6997.56 16698.61 15695.46 18297.44 28098.46 17997.15 4898.65 7298.15 19494.33 9799.80 8497.84 5898.66 14297.41 228
xiu_mvs_v1_base97.60 8397.56 7497.72 15298.35 17195.98 15297.86 25598.51 16797.13 5099.01 4198.40 16891.56 14199.80 8498.53 1498.68 13897.37 232
xiu_mvs_v1_base_debi97.60 8397.56 7497.72 15298.35 17195.98 15297.86 25598.51 16797.13 5099.01 4198.40 16891.56 14199.80 8498.53 1498.68 13897.37 232
TEST999.31 7498.50 3497.92 24698.73 11292.63 24997.74 12598.68 13696.20 2799.80 84
train_agg97.97 6397.52 7799.33 3099.31 7498.50 3497.92 24698.73 11292.98 23997.74 12598.68 13696.20 2799.80 8496.59 12899.57 8199.68 63
test_899.29 8298.44 3697.89 25298.72 11492.98 23997.70 12898.66 13996.20 2799.80 84
Regformer-498.64 1598.53 1498.99 6699.43 6197.37 9298.40 18898.79 9697.46 2399.09 3699.31 3995.86 4699.80 8498.64 899.76 3699.79 13
Regformer-298.69 1298.52 1599.19 4699.35 6498.01 6798.37 19098.81 8097.48 2099.21 2599.21 5596.13 3199.80 8498.40 3099.73 4799.75 32
旧先验297.57 27791.30 29698.67 6799.80 8495.70 164
APD-MVS_3200maxsize98.53 3598.33 3799.15 5699.50 4597.92 7299.15 4598.81 8096.24 8899.20 2699.37 2695.30 6899.80 8497.73 6499.67 6099.72 46
APD-MVScopyleft98.35 5098.00 5999.42 1899.51 4398.72 2198.80 12098.82 7494.52 17299.23 2499.25 5095.54 5599.80 8496.52 13299.77 3099.74 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MSP-MVS98.74 998.55 1399.29 3499.75 498.23 5499.26 2798.88 5197.52 1799.41 1398.78 12496.00 3899.79 9697.79 6199.59 7799.85 4
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
EI-MVSNet-UG-set98.41 4498.34 3398.61 8699.45 5996.32 14198.28 20698.68 12597.17 4698.74 6299.37 2695.25 7299.79 9698.57 1299.54 9199.73 42
Regformer-198.66 1398.51 1699.12 6099.35 6497.81 7998.37 19098.76 10397.49 1999.20 2699.21 5596.08 3399.79 9698.42 2899.73 4799.75 32
COLMAP_ROBcopyleft93.27 1295.33 19894.87 19996.71 21599.29 8293.24 27398.58 16198.11 24389.92 32393.57 26899.10 7886.37 25799.79 9690.78 29198.10 16497.09 237
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EI-MVSNet-Vis-set98.47 4098.39 2498.69 8199.46 5596.49 13298.30 20398.69 12297.21 4398.84 5599.36 3095.41 6099.78 10098.62 1099.65 6499.80 12
VDD-MVS95.82 17095.23 18297.61 16398.84 13693.98 24498.68 14597.40 30895.02 15197.95 11299.34 3574.37 35999.78 10098.64 896.80 19499.08 161
CNVR-MVS98.78 798.56 1299.45 1799.32 7298.87 1998.47 17898.81 8097.72 798.76 6199.16 6897.05 1399.78 10098.06 4199.66 6399.69 57
WTY-MVS97.37 10296.92 10698.72 8098.86 13396.89 11498.31 20198.71 11895.26 13797.67 13098.56 15292.21 12699.78 10095.89 15296.85 19399.48 105
PLCcopyleft95.07 497.20 11096.78 11298.44 10399.29 8296.31 14398.14 22698.76 10392.41 25996.39 18598.31 18194.92 8399.78 10094.06 21398.77 13799.23 137
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Regformer-398.59 2198.50 1798.86 7699.43 6197.05 10598.40 18898.68 12597.43 2699.06 3799.31 3995.80 4799.77 10598.62 1099.76 3699.78 16
HPM-MVScopyleft98.36 4898.10 5499.13 5799.74 897.82 7799.53 898.80 9194.63 16898.61 7498.97 9795.13 7799.77 10597.65 7299.83 1199.79 13
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HY-MVS93.96 896.82 12596.23 13798.57 8898.46 16597.00 10798.14 22698.21 22293.95 19296.72 16897.99 20691.58 14099.76 10794.51 19796.54 20398.95 173
AdaColmapbinary97.15 11396.70 11798.48 9999.16 10796.69 12198.01 23998.89 4894.44 17696.83 16298.68 13690.69 16499.76 10794.36 20099.29 11498.98 169
ab-mvs96.42 14095.71 15898.55 9098.63 15496.75 11897.88 25398.74 10893.84 19796.54 17898.18 19385.34 27699.75 10995.93 15196.35 20899.15 150
MAR-MVS96.91 12196.40 12998.45 10298.69 14996.90 11298.66 15198.68 12592.40 26097.07 15197.96 20991.54 14499.75 10993.68 22298.92 12798.69 186
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_241102_ONE99.71 2199.24 598.87 5897.62 1299.73 199.39 1897.53 799.74 111
HPM-MVS_fast98.38 4698.13 5199.12 6099.75 497.86 7399.44 1298.82 7494.46 17598.94 4599.20 5995.16 7699.74 11197.58 7799.85 599.77 23
AllTest95.24 20294.65 20796.99 19599.25 9093.21 27498.59 15998.18 22891.36 29193.52 27098.77 12684.67 28699.72 11389.70 30997.87 17198.02 214
TestCases96.99 19599.25 9093.21 27498.18 22891.36 29193.52 27098.77 12684.67 28699.72 11389.70 30997.87 17198.02 214
CDPH-MVS97.94 6897.49 8099.28 3899.47 5298.44 3697.91 24898.67 13392.57 25398.77 6098.85 11595.93 4299.72 11395.56 16799.69 5899.68 63
test1299.18 5099.16 10798.19 5798.53 16298.07 9895.13 7799.72 11399.56 8699.63 79
CNLPA97.45 9597.03 10098.73 7999.05 11497.44 9198.07 23398.53 16295.32 13496.80 16698.53 15393.32 11099.72 11394.31 20499.31 11399.02 165
DPM-MVS97.55 9096.99 10399.23 4599.04 11698.55 3197.17 30498.35 19994.85 15997.93 11698.58 14995.07 7999.71 11892.60 25399.34 11199.43 115
test_yl97.22 10796.78 11298.54 9298.73 14296.60 12598.45 17998.31 20594.70 16198.02 10498.42 16690.80 16199.70 11996.81 12096.79 19599.34 121
DCV-MVSNet97.22 10796.78 11298.54 9298.73 14296.60 12598.45 17998.31 20594.70 16198.02 10498.42 16690.80 16199.70 11996.81 12096.79 19599.34 121
TSAR-MVS + MP.98.78 798.62 999.24 4399.69 2698.28 5399.14 4798.66 13696.84 6299.56 699.31 3996.34 2399.70 11998.32 3399.73 4799.73 42
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_prior398.22 5997.90 6499.19 4699.31 7498.22 5597.80 26098.84 6996.12 9497.89 11998.69 13495.96 4099.70 11996.89 11199.60 7499.65 73
test_prior99.19 4699.31 7498.22 5598.84 6999.70 11999.65 73
PVSNet91.96 1896.35 14396.15 13896.96 20099.17 10392.05 28896.08 34198.68 12593.69 20997.75 12497.80 22788.86 20499.69 12494.26 20699.01 12499.15 150
MG-MVS97.81 7397.60 7198.44 10399.12 11195.97 15797.75 26498.78 9996.89 6198.46 7999.22 5493.90 10599.68 12594.81 18799.52 9499.67 67
TSAR-MVS + GP.98.38 4698.24 4698.81 7799.22 9897.25 10098.11 23198.29 21397.19 4598.99 4499.02 9096.22 2499.67 12698.52 2098.56 14699.51 98
114514_t96.93 12096.27 13498.92 7299.50 4597.63 8398.85 10698.90 4684.80 35697.77 12299.11 7692.84 11499.66 12794.85 18499.77 3099.47 107
DP-MVS Recon97.86 7197.46 8299.06 6499.53 3998.35 4898.33 19598.89 4892.62 25098.05 9998.94 10695.34 6599.65 12896.04 14899.42 10599.19 143
PatchMatch-RL96.59 13296.03 14498.27 11499.31 7496.51 13197.91 24899.06 2393.72 20596.92 15998.06 20088.50 21399.65 12891.77 27799.00 12598.66 190
VDDNet95.36 19594.53 21297.86 14098.10 19895.13 19698.85 10697.75 27990.46 31298.36 8799.39 1873.27 36199.64 13097.98 4496.58 20198.81 180
MVS_111021_HR98.47 4098.34 3398.88 7599.22 9897.32 9397.91 24899.58 397.20 4498.33 9099.00 9595.99 3999.64 13098.05 4399.76 3699.69 57
DeepPCF-MVS96.37 297.93 6998.48 2296.30 25999.00 12189.54 33097.43 28298.87 5898.16 299.26 2299.38 2596.12 3299.64 13098.30 3499.77 3099.72 46
LFMVS95.86 16794.98 19498.47 10098.87 13296.32 14198.84 10996.02 34693.40 22398.62 7399.20 5974.99 35599.63 13397.72 6597.20 18899.46 111
MVS94.67 23593.54 27298.08 12996.88 27996.56 12898.19 21998.50 17278.05 36592.69 29798.02 20291.07 15699.63 13390.09 29998.36 15798.04 213
MVS_111021_LR98.34 5298.23 4798.67 8399.27 8796.90 11297.95 24499.58 397.14 4998.44 8399.01 9495.03 8099.62 13597.91 4999.75 4299.50 100
MSDG95.93 16395.30 18097.83 14298.90 12995.36 18696.83 32898.37 19691.32 29594.43 22998.73 13090.27 17199.60 13690.05 30298.82 13598.52 197
thres600view795.49 18494.77 20197.67 15898.98 12595.02 19998.85 10696.90 33295.38 12996.63 17196.90 29984.29 29199.59 13788.65 32296.33 20998.40 201
1112_ss96.63 12996.00 14598.50 9698.56 15896.37 13898.18 22398.10 24592.92 24294.84 21298.43 16492.14 12899.58 13894.35 20196.51 20499.56 93
dcpmvs_298.08 6198.59 1096.56 23499.57 3590.34 32099.15 4598.38 19596.82 6499.29 2099.49 795.78 4899.57 13998.94 299.86 199.77 23
PAPM_NR97.46 9297.11 9698.50 9699.50 4596.41 13798.63 15598.60 14695.18 14197.06 15298.06 20094.26 9999.57 13993.80 22098.87 13299.52 94
API-MVS97.41 9997.25 9197.91 13898.70 14796.80 11598.82 11398.69 12294.53 17098.11 9598.28 18394.50 9499.57 13994.12 21099.49 9697.37 232
thres100view90095.38 19294.70 20597.41 17198.98 12594.92 20798.87 10396.90 33295.38 12996.61 17296.88 30084.29 29199.56 14288.11 32396.29 21197.76 219
tfpn200view995.32 19994.62 20897.43 17098.94 12794.98 20398.68 14596.93 33095.33 13296.55 17696.53 31684.23 29499.56 14288.11 32396.29 21197.76 219
thres40095.38 19294.62 20897.65 16198.94 12794.98 20398.68 14596.93 33095.33 13296.55 17696.53 31684.23 29499.56 14288.11 32396.29 21198.40 201
Test_1112_low_res96.34 14495.66 16398.36 10998.56 15895.94 16097.71 26698.07 25392.10 27194.79 21697.29 26291.75 13799.56 14294.17 20896.50 20599.58 91
PAPR96.84 12496.24 13698.65 8498.72 14696.92 11197.36 28998.57 15493.33 22596.67 16997.57 24594.30 9899.56 14291.05 28898.59 14499.47 107
XVG-OURS-SEG-HR96.51 13796.34 13097.02 19498.77 14093.76 25097.79 26298.50 17295.45 12596.94 15699.09 8487.87 22899.55 14796.76 12595.83 22497.74 221
thres20095.25 20194.57 21097.28 17898.81 13894.92 20798.20 21597.11 31995.24 14096.54 17896.22 32784.58 28899.53 14887.93 32796.50 20597.39 230
XVG-OURS96.55 13696.41 12896.99 19598.75 14193.76 25097.50 27998.52 16495.67 11596.83 16299.30 4288.95 20299.53 14895.88 15396.26 21597.69 224
IB-MVS91.98 1793.27 28991.97 30097.19 18297.47 23993.41 26697.09 30895.99 34793.32 22692.47 30695.73 33678.06 33999.53 14894.59 19582.98 35098.62 193
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test250694.44 25193.91 24896.04 26799.02 11888.99 34099.06 6379.47 38396.96 5898.36 8799.26 4777.21 34699.52 15196.78 12499.04 12199.59 87
ECVR-MVScopyleft95.95 16095.71 15896.65 22199.02 11890.86 30999.03 6991.80 37396.96 5898.10 9699.26 4781.31 31699.51 15296.90 11099.04 12199.59 87
canonicalmvs97.67 7997.23 9298.98 6898.70 14798.38 4099.34 1998.39 19296.76 6797.67 13097.40 25792.26 12399.49 15398.28 3596.28 21499.08 161
131496.25 14995.73 15497.79 14697.13 26595.55 17998.19 21998.59 14893.47 22092.03 31597.82 22591.33 14999.49 15394.62 19298.44 15298.32 206
RPSCF94.87 22495.40 16893.26 33598.89 13082.06 36998.33 19598.06 25890.30 31796.56 17499.26 4787.09 24299.49 15393.82 21996.32 21098.24 207
OMC-MVS97.55 9097.34 8898.20 12099.33 6995.92 16498.28 20698.59 14895.52 12297.97 11199.10 7893.28 11199.49 15395.09 18098.88 13099.19 143
test111195.94 16295.78 15296.41 25198.99 12490.12 32299.04 6692.45 37296.99 5798.03 10299.27 4681.40 31599.48 15796.87 11799.04 12199.63 79
alignmvs97.56 8997.07 9999.01 6598.66 15198.37 4698.83 11098.06 25896.74 6898.00 11097.65 23790.80 16199.48 15798.37 3196.56 20299.19 143
tttt051796.07 15395.51 16797.78 14798.41 16894.84 20999.28 2594.33 36494.26 18097.64 13498.64 14184.05 29899.47 15995.34 17197.60 18299.03 164
thisisatest053096.01 15695.36 17397.97 13598.38 16995.52 18098.88 10094.19 36694.04 18597.64 13498.31 18183.82 30599.46 16095.29 17597.70 17998.93 174
thisisatest051595.61 18394.89 19897.76 14998.15 19595.15 19596.77 32994.41 36292.95 24197.18 14697.43 25584.78 28499.45 16194.63 19097.73 17898.68 187
mvs-test196.60 13096.68 12096.37 25497.89 21191.81 29198.56 16698.10 24596.57 7596.52 18097.94 21190.81 15999.45 16195.72 16098.01 16697.86 218
MSLP-MVS++98.56 2998.57 1198.55 9099.26 8996.80 11598.71 13899.05 2597.28 3698.84 5599.28 4496.47 2299.40 16398.52 2099.70 5799.47 107
PVSNet_088.72 1991.28 30990.03 31595.00 30297.99 20587.29 35894.84 35798.50 17292.06 27289.86 33495.19 34479.81 32899.39 16492.27 26469.79 36998.33 205
OPU-MVS99.37 2399.24 9699.05 1499.02 7399.16 6897.81 399.37 16597.24 9399.73 4799.70 54
ETV-MVS97.96 6497.81 6598.40 10798.42 16797.27 9598.73 13398.55 15896.84 6298.38 8697.44 25495.39 6199.35 16697.62 7498.89 12998.58 196
Vis-MVSNetpermissive97.42 9897.11 9698.34 11098.66 15196.23 14499.22 3499.00 2896.63 7398.04 10199.21 5588.05 22399.35 16696.01 15099.21 11599.45 113
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EIA-MVS97.75 7597.58 7298.27 11498.38 16996.44 13499.01 7598.60 14695.88 10597.26 14397.53 24894.97 8199.33 16897.38 9099.20 11699.05 163
lupinMVS97.44 9697.22 9398.12 12798.07 19995.76 17197.68 26897.76 27894.50 17398.79 5898.61 14492.34 12099.30 16997.58 7799.59 7799.31 127
TAPA-MVS93.98 795.35 19694.56 21197.74 15199.13 11094.83 21198.33 19598.64 14186.62 34596.29 18798.61 14494.00 10399.29 17080.00 36099.41 10699.09 157
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MVS_Test97.28 10597.00 10298.13 12598.33 17895.97 15798.74 12998.07 25394.27 17998.44 8398.07 19992.48 11899.26 17196.43 13698.19 16199.16 149
Effi-MVS+97.12 11496.69 11898.39 10898.19 18996.72 12097.37 28798.43 18693.71 20697.65 13398.02 20292.20 12799.25 17296.87 11797.79 17499.19 143
diffmvs97.58 8797.40 8698.13 12598.32 18095.81 17098.06 23498.37 19696.20 9098.74 6298.89 11191.31 15099.25 17298.16 3798.52 14799.34 121
tpmvs94.60 23894.36 22495.33 29397.46 24088.60 34596.88 32497.68 28191.29 29793.80 26296.42 32088.58 20899.24 17491.06 28696.04 22298.17 210
casdiffmvs97.63 8297.41 8598.28 11398.33 17896.14 14898.82 11398.32 20396.38 8597.95 11299.21 5591.23 15299.23 17598.12 3898.37 15599.48 105
jason97.32 10497.08 9898.06 13197.45 24495.59 17597.87 25497.91 27394.79 16098.55 7798.83 11991.12 15399.23 17597.58 7799.60 7499.34 121
jason: jason.
EPP-MVSNet97.46 9297.28 9097.99 13498.64 15395.38 18599.33 2298.31 20593.61 21697.19 14599.07 8794.05 10199.23 17596.89 11198.43 15499.37 120
PMMVS96.60 13096.33 13197.41 17197.90 21093.93 24597.35 29098.41 18892.84 24597.76 12397.45 25391.10 15599.20 17896.26 14197.91 16999.11 155
gm-plane-assit95.88 32787.47 35689.74 32796.94 29799.19 17993.32 234
baseline295.11 20994.52 21396.87 20796.65 29293.56 25898.27 20894.10 36893.45 22192.02 31697.43 25587.45 23999.19 17993.88 21797.41 18697.87 217
baseline195.84 16895.12 18798.01 13398.49 16495.98 15298.73 13397.03 32495.37 13196.22 18898.19 19289.96 17599.16 18194.60 19387.48 33298.90 176
baseline97.64 8197.44 8498.25 11798.35 17196.20 14599.00 7798.32 20396.33 8798.03 10299.17 6391.35 14899.16 18198.10 3998.29 16099.39 118
tpmrst95.63 18095.69 16195.44 29097.54 23488.54 34696.97 31397.56 28993.50 21997.52 14096.93 29889.49 18199.16 18195.25 17796.42 20798.64 192
CS-MVS-test98.49 3798.50 1798.46 10199.20 10197.05 10599.64 498.50 17297.45 2598.88 5399.14 7295.25 7299.15 18498.83 599.56 8699.20 139
Fast-Effi-MVS+96.28 14795.70 16098.03 13298.29 18295.97 15798.58 16198.25 22091.74 27995.29 20497.23 26691.03 15799.15 18492.90 24797.96 16898.97 170
ACMP93.49 1095.34 19794.98 19496.43 25097.67 22393.48 26398.73 13398.44 18394.94 15792.53 30298.53 15384.50 29099.14 18695.48 17094.00 24196.66 289
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CS-MVS98.44 4298.49 2098.31 11299.08 11396.73 11999.67 398.47 17897.17 4698.94 4599.10 7895.73 4999.13 18798.71 799.49 9699.09 157
tpm cat193.36 28592.80 28795.07 30197.58 22987.97 35396.76 33097.86 27582.17 36193.53 26996.04 33186.13 26099.13 18789.24 31795.87 22398.10 212
BH-RMVSNet95.92 16495.32 17797.69 15698.32 18094.64 21798.19 21997.45 30394.56 16996.03 19398.61 14485.02 27999.12 18990.68 29399.06 12099.30 130
ACMM93.85 995.69 17895.38 17296.61 22797.61 22793.84 24898.91 9298.44 18395.25 13894.28 23698.47 16086.04 26499.12 18995.50 16993.95 24396.87 262
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-ACMP-BASELINE94.54 24394.14 23395.75 28296.55 29691.65 29798.11 23198.44 18394.96 15494.22 24097.90 21479.18 33299.11 19194.05 21493.85 24596.48 315
LPG-MVS_test95.62 18195.34 17496.47 24597.46 24093.54 25998.99 7998.54 16094.67 16594.36 23298.77 12685.39 27399.11 19195.71 16294.15 23696.76 274
LGP-MVS_train96.47 24597.46 24093.54 25998.54 16094.67 16594.36 23298.77 12685.39 27399.11 19195.71 16294.15 23696.76 274
HyFIR lowres test96.90 12296.49 12798.14 12399.33 6995.56 17797.38 28599.65 292.34 26197.61 13698.20 19189.29 18799.10 19496.97 10397.60 18299.77 23
TDRefinement91.06 31289.68 31795.21 29585.35 37491.49 30098.51 17497.07 32191.47 28788.83 34497.84 22177.31 34599.09 19592.79 25077.98 36295.04 350
ACMH92.88 1694.55 24293.95 24596.34 25797.63 22693.26 27298.81 11998.49 17793.43 22289.74 33598.53 15381.91 31299.08 19693.69 22193.30 26496.70 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CHOSEN 280x42097.18 11197.18 9497.20 18198.81 13893.27 27195.78 34899.15 1995.25 13896.79 16798.11 19792.29 12299.07 19798.56 1399.85 599.25 136
OPM-MVS95.69 17895.33 17696.76 21396.16 31894.63 21898.43 18498.39 19296.64 7295.02 20998.78 12485.15 27899.05 19895.21 17994.20 23396.60 294
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MDTV_nov1_ep1395.40 16897.48 23888.34 34996.85 32697.29 31393.74 20397.48 14197.26 26389.18 19199.05 19891.92 27497.43 185
ACMH+92.99 1494.30 25893.77 25995.88 27797.81 21592.04 28998.71 13898.37 19693.99 19090.60 32998.47 16080.86 32299.05 19892.75 25192.40 27396.55 302
LTVRE_ROB92.95 1594.60 23893.90 24996.68 22097.41 24894.42 23098.52 17098.59 14891.69 28291.21 32298.35 17484.87 28299.04 20191.06 28693.44 26196.60 294
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
AUN-MVS94.53 24493.73 26396.92 20598.50 16293.52 26298.34 19498.10 24593.83 19995.94 19797.98 20885.59 27099.03 20294.35 20180.94 35898.22 208
HQP_MVS96.14 15195.90 14796.85 20897.42 24594.60 22398.80 12098.56 15697.28 3695.34 20298.28 18387.09 24299.03 20296.07 14494.27 23096.92 251
plane_prior598.56 15699.03 20296.07 14494.27 23096.92 251
hse-mvs295.71 17595.30 18096.93 20298.50 16293.53 26198.36 19298.10 24597.48 2098.67 6797.99 20689.76 17799.02 20597.95 4680.91 35998.22 208
dp94.15 26893.90 24994.90 30597.31 25186.82 36096.97 31397.19 31891.22 30196.02 19496.61 31585.51 27299.02 20590.00 30494.30 22998.85 177
DROMVSNet98.21 6098.11 5398.49 9898.34 17697.26 9999.61 598.43 18696.78 6598.87 5498.84 11793.72 10699.01 20798.91 399.50 9599.19 143
BH-untuned95.95 16095.72 15596.65 22198.55 16092.26 28498.23 21097.79 27793.73 20494.62 21998.01 20488.97 20199.00 20893.04 24298.51 14898.68 187
GeoE96.58 13496.07 14198.10 12898.35 17195.89 16799.34 1998.12 24093.12 23596.09 19198.87 11389.71 17998.97 20992.95 24598.08 16599.43 115
test-LLR95.10 21094.87 19995.80 27996.77 28389.70 32696.91 31895.21 35495.11 14594.83 21495.72 33887.71 23198.97 20993.06 24098.50 14998.72 184
test-mter94.08 27493.51 27395.80 27996.77 28389.70 32696.91 31895.21 35492.89 24394.83 21495.72 33877.69 34198.97 20993.06 24098.50 14998.72 184
CLD-MVS95.62 18195.34 17496.46 24897.52 23793.75 25297.27 29798.46 17995.53 12194.42 23098.00 20586.21 25998.97 20996.25 14294.37 22896.66 289
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ADS-MVSNet95.00 21594.45 21996.63 22598.00 20391.91 29096.04 34297.74 28090.15 31896.47 18296.64 31387.89 22698.96 21390.08 30097.06 18999.02 165
HQP4-MVS94.45 22598.96 21396.87 262
TR-MVS94.94 22294.20 22897.17 18497.75 21794.14 24197.59 27597.02 32692.28 26695.75 19897.64 23983.88 30298.96 21389.77 30696.15 21998.40 201
HQP-MVS95.72 17495.40 16896.69 21897.20 25894.25 23898.05 23598.46 17996.43 8194.45 22597.73 23086.75 24898.96 21395.30 17394.18 23496.86 265
CostFormer94.95 22094.73 20495.60 28597.28 25289.06 33797.53 27896.89 33489.66 32896.82 16496.72 30886.05 26298.95 21795.53 16896.13 22098.79 181
IS-MVSNet97.22 10796.88 10798.25 11798.85 13596.36 13999.19 4197.97 26695.39 12897.23 14498.99 9691.11 15498.93 21894.60 19398.59 14499.47 107
TESTMET0.1,194.18 26793.69 26695.63 28496.92 27589.12 33696.91 31894.78 35993.17 23294.88 21196.45 31978.52 33498.92 21993.09 23998.50 14998.85 177
Effi-MVS+-dtu96.29 14596.56 12395.51 28697.89 21190.22 32198.80 12098.10 24596.57 7596.45 18496.66 31090.81 15998.91 22095.72 16097.99 16797.40 229
test_post31.83 37988.83 20598.91 220
VPA-MVSNet95.75 17295.11 18897.69 15697.24 25497.27 9598.94 8999.23 1395.13 14395.51 20197.32 26085.73 26798.91 22097.33 9289.55 30796.89 259
PatchmatchNetpermissive95.71 17595.52 16696.29 26097.58 22990.72 31396.84 32797.52 29694.06 18497.08 14996.96 29489.24 19098.90 22392.03 27198.37 15599.26 135
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
patchmatchnet-post95.10 34689.42 18498.89 224
SCA95.46 18595.13 18696.46 24897.67 22391.29 30497.33 29297.60 28794.68 16496.92 15997.10 27283.97 30098.89 22492.59 25598.32 15999.20 139
ITE_SJBPF95.44 29097.42 24591.32 30397.50 29895.09 14893.59 26698.35 17481.70 31398.88 22689.71 30893.39 26296.12 329
cascas94.63 23793.86 25296.93 20296.91 27794.27 23696.00 34598.51 16785.55 35494.54 22196.23 32584.20 29698.87 22795.80 15796.98 19297.66 225
XXY-MVS95.20 20594.45 21997.46 16896.75 28696.56 12898.86 10598.65 14093.30 22893.27 27998.27 18684.85 28398.87 22794.82 18691.26 28796.96 247
PAPM94.95 22094.00 24197.78 14797.04 26995.65 17496.03 34498.25 22091.23 30094.19 24297.80 22791.27 15198.86 22982.61 35497.61 18198.84 179
BH-w/o95.38 19295.08 18996.26 26198.34 17691.79 29297.70 26797.43 30592.87 24494.24 23997.22 26788.66 20798.84 23091.55 28197.70 17998.16 211
EPMVS94.99 21694.48 21596.52 24197.22 25691.75 29497.23 29891.66 37494.11 18297.28 14296.81 30585.70 26898.84 23093.04 24297.28 18798.97 170
Patchmatch-test94.42 25293.68 26796.63 22597.60 22891.76 29394.83 35897.49 30089.45 33194.14 24497.10 27288.99 19798.83 23285.37 34398.13 16399.29 132
USDC93.33 28892.71 28995.21 29596.83 28290.83 31196.91 31897.50 29893.84 19790.72 32798.14 19577.69 34198.82 23389.51 31393.21 26695.97 333
TinyColmap92.31 30291.53 30394.65 31496.92 27589.75 32596.92 31696.68 34290.45 31389.62 33697.85 22076.06 35198.81 23486.74 33292.51 27295.41 342
LF4IMVS93.14 29492.79 28894.20 32495.88 32788.67 34497.66 27097.07 32193.81 20091.71 31897.65 23777.96 34098.81 23491.47 28291.92 27895.12 347
Fast-Effi-MVS+-dtu95.87 16695.85 14995.91 27497.74 22091.74 29598.69 14498.15 23695.56 12094.92 21097.68 23688.98 20098.79 23693.19 23797.78 17597.20 236
JIA-IIPM93.35 28692.49 29395.92 27396.48 30290.65 31595.01 35396.96 32885.93 35196.08 19287.33 36787.70 23398.78 23791.35 28395.58 22598.34 204
UniMVSNet_ETH3D94.24 26293.33 27896.97 19997.19 26193.38 26898.74 12998.57 15491.21 30293.81 26198.58 14972.85 36298.77 23895.05 18193.93 24498.77 183
tpm294.19 26593.76 26195.46 28997.23 25589.04 33897.31 29496.85 33887.08 34496.21 18996.79 30683.75 30698.74 23992.43 26396.23 21798.59 194
D2MVS95.18 20695.08 18995.48 28797.10 26792.07 28798.30 20399.13 2094.02 18792.90 29096.73 30789.48 18298.73 24094.48 19893.60 25595.65 340
test_post196.68 33330.43 38087.85 22998.69 24192.59 255
MS-PatchMatch93.84 28093.63 26894.46 32196.18 31589.45 33197.76 26398.27 21492.23 26792.13 31397.49 24979.50 32998.69 24189.75 30799.38 10995.25 344
nrg03096.28 14795.72 15597.96 13796.90 27898.15 6199.39 1398.31 20595.47 12494.42 23098.35 17492.09 13098.69 24197.50 8689.05 31597.04 239
Anonymous2023121194.10 27293.26 28196.61 22799.11 11294.28 23599.01 7598.88 5186.43 34792.81 29297.57 24581.66 31498.68 24494.83 18589.02 31796.88 260
test_part194.82 22593.82 25497.82 14498.84 13697.82 7799.03 6998.81 8092.31 26592.51 30497.89 21681.96 31198.67 24594.80 18888.24 32496.98 244
VPNet94.99 21694.19 22997.40 17397.16 26396.57 12798.71 13898.97 3195.67 11594.84 21298.24 18980.36 32598.67 24596.46 13387.32 33596.96 247
jajsoiax95.45 18795.03 19196.73 21495.42 34294.63 21899.14 4798.52 16495.74 11093.22 28098.36 17383.87 30398.65 24796.95 10694.04 23996.91 256
mvs_tets95.41 19195.00 19296.65 22195.58 33594.42 23099.00 7798.55 15895.73 11193.21 28198.38 17183.45 30798.63 24897.09 9994.00 24196.91 256
tfpnnormal93.66 28192.70 29096.55 23996.94 27495.94 16098.97 8399.19 1691.04 30591.38 32197.34 25884.94 28198.61 24985.45 34289.02 31795.11 348
PS-MVSNAJss96.43 13996.26 13596.92 20595.84 32995.08 19899.16 4498.50 17295.87 10693.84 26098.34 17894.51 9198.61 24996.88 11493.45 26097.06 238
CMPMVSbinary66.06 2189.70 32289.67 31889.78 34693.19 36176.56 37197.00 31298.35 19980.97 36281.57 36397.75 22974.75 35698.61 24989.85 30593.63 25294.17 357
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
iter_conf_final96.42 14096.12 13997.34 17698.46 16596.55 13099.08 6198.06 25896.03 9895.63 19998.46 16287.72 23098.59 25297.84 5893.80 24796.87 262
iter_conf0596.13 15295.79 15197.15 18598.16 19495.99 15198.88 10097.98 26495.91 10295.58 20098.46 16285.53 27198.59 25297.88 5393.75 24896.86 265
OurMVSNet-221017-094.21 26394.00 24194.85 30795.60 33489.22 33598.89 9797.43 30595.29 13592.18 31298.52 15682.86 30898.59 25293.46 22991.76 27996.74 276
Vis-MVSNet (Re-imp)96.87 12396.55 12497.83 14298.73 14295.46 18299.20 3998.30 21194.96 15496.60 17398.87 11390.05 17398.59 25293.67 22498.60 14399.46 111
V4294.78 22894.14 23396.70 21796.33 31195.22 19298.97 8398.09 25092.32 26394.31 23597.06 28288.39 21498.55 25692.90 24788.87 31996.34 321
mvsmamba96.57 13596.32 13297.32 17796.60 29396.43 13599.54 797.98 26496.49 7895.20 20698.64 14190.82 15898.55 25697.97 4593.65 25196.98 244
EI-MVSNet95.96 15995.83 15096.36 25597.93 20893.70 25698.12 22998.27 21493.70 20895.07 20799.02 9092.23 12598.54 25894.68 18993.46 25896.84 267
bld_raw_conf00595.91 16595.56 16596.99 19596.51 29995.46 18299.21 3797.42 30796.41 8494.10 24698.63 14386.59 25198.54 25897.56 8193.59 25696.96 247
MVSTER96.06 15495.72 15597.08 19198.23 18495.93 16398.73 13398.27 21494.86 15895.07 20798.09 19888.21 21798.54 25896.59 12893.46 25896.79 271
v7n94.19 26593.43 27696.47 24595.90 32694.38 23399.26 2798.34 20191.99 27392.76 29497.13 27188.31 21598.52 26189.48 31487.70 33096.52 308
TAMVS97.02 11796.79 11197.70 15598.06 20195.31 19098.52 17098.31 20593.95 19297.05 15398.61 14493.49 10898.52 26195.33 17297.81 17399.29 132
bld_raw_dy_0_6495.74 17395.31 17997.03 19396.35 30995.76 17199.12 5297.37 31095.97 10094.70 21898.48 15885.80 26698.49 26396.55 13093.48 25796.84 267
v894.47 24993.77 25996.57 23396.36 30894.83 21199.05 6598.19 22591.92 27593.16 28296.97 29288.82 20698.48 26491.69 27987.79 32996.39 319
GA-MVS94.81 22694.03 23797.14 18697.15 26493.86 24796.76 33097.58 28894.00 18994.76 21797.04 28580.91 32098.48 26491.79 27696.25 21699.09 157
UniMVSNet (Re)95.78 17195.19 18497.58 16496.99 27297.47 8998.79 12499.18 1795.60 11893.92 25597.04 28591.68 13898.48 26495.80 15787.66 33196.79 271
test_low_dy_conf_00196.06 15495.86 14896.69 21896.39 30694.58 22599.47 998.26 21895.68 11395.23 20598.73 13088.90 20398.47 26796.43 13693.62 25397.02 241
PC_three_145295.08 14999.60 599.16 6897.86 298.47 26797.52 8599.72 5499.74 37
mvs_anonymous96.70 12896.53 12697.18 18398.19 18993.78 24998.31 20198.19 22594.01 18894.47 22498.27 18692.08 13198.46 26997.39 8997.91 16999.31 127
v14419294.39 25493.70 26596.48 24496.06 32194.35 23498.58 16198.16 23591.45 28894.33 23497.02 28787.50 23798.45 27091.08 28589.11 31496.63 291
v2v48294.69 23094.03 23796.65 22196.17 31694.79 21498.67 14898.08 25192.72 24794.00 25297.16 27087.69 23498.45 27092.91 24688.87 31996.72 279
FIs96.51 13796.12 13997.67 15897.13 26597.54 8799.36 1699.22 1595.89 10394.03 25198.35 17491.98 13398.44 27296.40 13892.76 27097.01 242
v119294.32 25793.58 27096.53 24096.10 31994.45 22898.50 17598.17 23391.54 28694.19 24297.06 28286.95 24698.43 27390.14 29889.57 30596.70 283
MVP-Stereo94.28 26193.92 24695.35 29294.95 34692.60 28297.97 24397.65 28391.61 28590.68 32897.09 27686.32 25898.42 27489.70 30999.34 11195.02 351
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v192192094.20 26493.47 27596.40 25395.98 32494.08 24298.52 17098.15 23691.33 29494.25 23897.20 26986.41 25698.42 27490.04 30389.39 31196.69 288
RRT_MVS95.98 15895.78 15296.56 23496.48 30294.22 24099.57 697.92 27195.89 10393.95 25398.70 13389.27 18898.42 27497.23 9493.02 26797.04 239
v124094.06 27693.29 28096.34 25796.03 32393.90 24698.44 18298.17 23391.18 30394.13 24597.01 28986.05 26298.42 27489.13 31989.50 30996.70 283
lessismore_v094.45 32294.93 34788.44 34891.03 37586.77 35297.64 23976.23 35098.42 27490.31 29785.64 34896.51 311
EPNet_dtu95.21 20494.95 19695.99 26996.17 31690.45 31898.16 22597.27 31596.77 6693.14 28598.33 17990.34 16998.42 27485.57 34098.81 13699.09 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EG-PatchMatch MVS91.13 31190.12 31494.17 32694.73 35189.00 33998.13 22897.81 27689.22 33485.32 35896.46 31867.71 36698.42 27487.89 32893.82 24695.08 349
CDS-MVSNet96.99 11896.69 11897.90 13998.05 20295.98 15298.20 21598.33 20293.67 21396.95 15598.49 15793.54 10798.42 27495.24 17897.74 17799.31 127
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
anonymousdsp95.42 18994.91 19796.94 20195.10 34495.90 16699.14 4798.41 18893.75 20193.16 28297.46 25187.50 23798.41 28295.63 16694.03 24096.50 313
v114494.59 24093.92 24696.60 22996.21 31394.78 21598.59 15998.14 23891.86 27894.21 24197.02 28787.97 22498.41 28291.72 27889.57 30596.61 293
pm-mvs193.94 27993.06 28396.59 23096.49 30195.16 19398.95 8798.03 26192.32 26391.08 32497.84 22184.54 28998.41 28292.16 26586.13 34796.19 328
v1094.29 25993.55 27196.51 24296.39 30694.80 21398.99 7998.19 22591.35 29393.02 28896.99 29088.09 22198.41 28290.50 29588.41 32396.33 323
MVSFormer97.57 8897.49 8097.84 14198.07 19995.76 17199.47 998.40 19094.98 15298.79 5898.83 11992.34 12098.41 28296.91 10799.59 7799.34 121
test_djsdf96.00 15795.69 16196.93 20295.72 33195.49 18199.47 998.40 19094.98 15294.58 22097.86 21889.16 19298.41 28296.91 10794.12 23896.88 260
gg-mvs-nofinetune92.21 30390.58 31097.13 18796.75 28695.09 19795.85 34689.40 37785.43 35594.50 22381.98 37080.80 32398.40 28892.16 26598.33 15897.88 216
pmmvs691.77 30590.63 30995.17 29794.69 35291.24 30598.67 14897.92 27186.14 34989.62 33697.56 24775.79 35298.34 28990.75 29284.56 34995.94 334
MVS-HIRNet89.46 32688.40 32592.64 33897.58 22982.15 36894.16 36393.05 37175.73 36790.90 32582.52 36979.42 33098.33 29083.53 35298.68 13897.43 227
FC-MVSNet-test96.42 14096.05 14297.53 16796.95 27397.27 9599.36 1699.23 1395.83 10793.93 25498.37 17292.00 13298.32 29196.02 14992.72 27197.00 243
v14894.29 25993.76 26195.91 27496.10 31992.93 27998.58 16197.97 26692.59 25293.47 27496.95 29688.53 21298.32 29192.56 25787.06 33896.49 314
UniMVSNet_NR-MVSNet95.71 17595.15 18597.40 17396.84 28196.97 10898.74 12999.24 1195.16 14293.88 25797.72 23291.68 13898.31 29395.81 15587.25 33696.92 251
DU-MVS95.42 18994.76 20297.40 17396.53 29796.97 10898.66 15198.99 3095.43 12693.88 25797.69 23388.57 20998.31 29395.81 15587.25 33696.92 251
miper_enhance_ethall95.10 21094.75 20396.12 26697.53 23693.73 25496.61 33598.08 25192.20 27093.89 25696.65 31292.44 11998.30 29594.21 20791.16 28896.34 321
WR-MVS95.15 20794.46 21797.22 18096.67 29196.45 13398.21 21298.81 8094.15 18193.16 28297.69 23387.51 23598.30 29595.29 17588.62 32196.90 258
tpm94.13 26993.80 25695.12 29896.50 30087.91 35497.44 28095.89 35192.62 25096.37 18696.30 32284.13 29798.30 29593.24 23591.66 28299.14 152
OpenMVS_ROBcopyleft86.42 2089.00 32787.43 33293.69 32893.08 36289.42 33297.91 24896.89 33478.58 36485.86 35594.69 34969.48 36498.29 29877.13 36793.29 26593.36 364
cl2294.68 23294.19 22996.13 26598.11 19793.60 25796.94 31598.31 20592.43 25893.32 27896.87 30286.51 25298.28 29994.10 21291.16 28896.51 311
SixPastTwentyTwo93.34 28792.86 28694.75 31195.67 33289.41 33398.75 12696.67 34393.89 19490.15 33398.25 18880.87 32198.27 30090.90 28990.64 29396.57 298
WR-MVS_H95.05 21394.46 21796.81 21196.86 28095.82 16999.24 2999.24 1193.87 19692.53 30296.84 30490.37 16898.24 30193.24 23587.93 32896.38 320
pmmvs494.69 23093.99 24396.81 21195.74 33095.94 16097.40 28397.67 28290.42 31493.37 27697.59 24389.08 19598.20 30292.97 24491.67 28196.30 325
NR-MVSNet94.98 21894.16 23197.44 16996.53 29797.22 10198.74 12998.95 3594.96 15489.25 34097.69 23389.32 18698.18 30394.59 19587.40 33496.92 251
eth_miper_zixun_eth94.68 23294.41 22295.47 28897.64 22591.71 29696.73 33298.07 25392.71 24893.64 26597.21 26890.54 16698.17 30493.38 23089.76 30296.54 303
miper_ehance_all_eth95.01 21494.69 20695.97 27197.70 22293.31 27097.02 31198.07 25392.23 26793.51 27296.96 29491.85 13598.15 30593.68 22291.16 28896.44 318
Baseline_NR-MVSNet94.35 25593.81 25595.96 27296.20 31494.05 24398.61 15896.67 34391.44 28993.85 25997.60 24288.57 20998.14 30694.39 19986.93 33995.68 339
cl____94.51 24694.01 24096.02 26897.58 22993.40 26797.05 30997.96 26891.73 28192.76 29497.08 27889.06 19698.13 30792.61 25290.29 29796.52 308
CP-MVSNet94.94 22294.30 22596.83 20996.72 28895.56 17799.11 5498.95 3593.89 19492.42 30897.90 21487.19 24198.12 30894.32 20388.21 32596.82 270
PS-CasMVS94.67 23593.99 24396.71 21596.68 29095.26 19199.13 5099.03 2693.68 21192.33 30997.95 21085.35 27598.10 30993.59 22688.16 32796.79 271
IterMVS-LS95.46 18595.21 18396.22 26298.12 19693.72 25598.32 20098.13 23993.71 20694.26 23797.31 26192.24 12498.10 30994.63 19090.12 29896.84 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs593.65 28392.97 28595.68 28395.49 33892.37 28398.20 21597.28 31489.66 32892.58 30097.26 26382.14 31098.09 31193.18 23890.95 29196.58 296
TransMVSNet (Re)92.67 29991.51 30496.15 26396.58 29594.65 21698.90 9396.73 33990.86 30789.46 33997.86 21885.62 26998.09 31186.45 33481.12 35695.71 338
DIV-MVS_self_test94.52 24594.03 23795.99 26997.57 23393.38 26897.05 30997.94 26991.74 27992.81 29297.10 27289.12 19398.07 31392.60 25390.30 29696.53 305
MVS_030492.81 29792.01 29995.23 29497.46 24091.33 30298.17 22498.81 8091.13 30493.80 26295.68 34166.08 36998.06 31490.79 29096.13 22096.32 324
GG-mvs-BLEND96.59 23096.34 31094.98 20396.51 33888.58 37893.10 28794.34 35480.34 32698.05 31589.53 31296.99 19196.74 276
TranMVSNet+NR-MVSNet95.14 20894.48 21597.11 18996.45 30496.36 13999.03 6999.03 2695.04 15093.58 26797.93 21288.27 21698.03 31694.13 20986.90 34196.95 250
c3_l94.79 22794.43 22195.89 27697.75 21793.12 27797.16 30598.03 26192.23 26793.46 27597.05 28491.39 14698.01 31793.58 22789.21 31396.53 305
FMVSNet394.97 21994.26 22697.11 18998.18 19196.62 12298.56 16698.26 21893.67 21394.09 24797.10 27284.25 29398.01 31792.08 26792.14 27496.70 283
FMVSNet294.47 24993.61 26997.04 19298.21 18696.43 13598.79 12498.27 21492.46 25493.50 27397.09 27681.16 31798.00 31991.09 28491.93 27796.70 283
test_040291.32 30890.27 31394.48 31996.60 29391.12 30698.50 17597.22 31786.10 35088.30 34696.98 29177.65 34397.99 32078.13 36692.94 26994.34 355
GBi-Net94.49 24793.80 25696.56 23498.21 18695.00 20098.82 11398.18 22892.46 25494.09 24797.07 27981.16 31797.95 32192.08 26792.14 27496.72 279
test194.49 24793.80 25696.56 23498.21 18695.00 20098.82 11398.18 22892.46 25494.09 24797.07 27981.16 31797.95 32192.08 26792.14 27496.72 279
FMVSNet193.19 29392.07 29896.56 23497.54 23495.00 20098.82 11398.18 22890.38 31592.27 31097.07 27973.68 36097.95 32189.36 31691.30 28596.72 279
our_test_393.65 28393.30 27994.69 31295.45 34089.68 32896.91 31897.65 28391.97 27491.66 31996.88 30089.67 18097.93 32488.02 32691.49 28396.48 315
ambc89.49 34786.66 37275.78 37292.66 36596.72 34086.55 35392.50 36146.01 37497.90 32590.32 29682.09 35194.80 354
PEN-MVS94.42 25293.73 26396.49 24396.28 31294.84 20999.17 4399.00 2893.51 21892.23 31197.83 22486.10 26197.90 32592.55 25886.92 34096.74 276
Patchmtry93.22 29192.35 29595.84 27896.77 28393.09 27894.66 35997.56 28987.37 34392.90 29096.24 32388.15 21997.90 32587.37 33090.10 29996.53 305
PatchT93.06 29591.97 30096.35 25696.69 28992.67 28194.48 36097.08 32086.62 34597.08 14992.23 36287.94 22597.90 32578.89 36496.69 19798.49 198
CR-MVSNet94.76 22994.15 23296.59 23097.00 27093.43 26494.96 35497.56 28992.46 25496.93 15796.24 32388.15 21997.88 32987.38 32996.65 19998.46 199
ppachtmachnet_test93.22 29192.63 29194.97 30395.45 34090.84 31096.88 32497.88 27490.60 30992.08 31497.26 26388.08 22297.86 33085.12 34490.33 29596.22 326
miper_lstm_enhance94.33 25694.07 23695.11 29997.75 21790.97 30897.22 29998.03 26191.67 28392.76 29496.97 29290.03 17497.78 33192.51 26089.64 30496.56 300
N_pmnet87.12 33187.77 33085.17 35195.46 33961.92 37897.37 28770.66 38485.83 35288.73 34596.04 33185.33 27797.76 33280.02 35990.48 29495.84 335
LCM-MVSNet-Re95.22 20395.32 17794.91 30498.18 19187.85 35598.75 12695.66 35295.11 14588.96 34196.85 30390.26 17297.65 33395.65 16598.44 15299.22 138
K. test v392.55 30091.91 30294.48 31995.64 33389.24 33499.07 6294.88 35894.04 18586.78 35197.59 24377.64 34497.64 33492.08 26789.43 31096.57 298
SD-MVS98.64 1598.68 798.53 9499.33 6998.36 4798.90 9398.85 6897.28 3699.72 399.39 1896.63 1997.60 33598.17 3699.85 599.64 76
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DTE-MVSNet93.98 27893.26 28196.14 26496.06 32194.39 23299.20 3998.86 6493.06 23691.78 31797.81 22685.87 26597.58 33690.53 29486.17 34596.46 317
ADS-MVSNet294.58 24194.40 22395.11 29998.00 20388.74 34396.04 34297.30 31290.15 31896.47 18296.64 31387.89 22697.56 33790.08 30097.06 18999.02 165
ET-MVSNet_ETH3D94.13 26992.98 28497.58 16498.22 18596.20 14597.31 29495.37 35394.53 17079.56 36597.63 24186.51 25297.53 33896.91 10790.74 29299.02 165
CVMVSNet95.43 18896.04 14393.57 32997.93 20883.62 36498.12 22998.59 14895.68 11396.56 17499.02 9087.51 23597.51 33993.56 22897.44 18499.60 85
IterMVS-SCA-FT94.11 27193.87 25194.85 30797.98 20790.56 31797.18 30298.11 24393.75 20192.58 30097.48 25083.97 30097.41 34092.48 26291.30 28596.58 296
IterMVS94.09 27393.85 25394.80 31097.99 20590.35 31997.18 30298.12 24093.68 21192.46 30797.34 25884.05 29897.41 34092.51 26091.33 28496.62 292
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UnsupCasMVSNet_bld87.17 33085.12 33493.31 33491.94 36588.77 34294.92 35698.30 21184.30 35882.30 36290.04 36463.96 37197.25 34285.85 33974.47 36893.93 362
MIMVSNet93.26 29092.21 29796.41 25197.73 22193.13 27695.65 34997.03 32491.27 29994.04 25096.06 33075.33 35397.19 34386.56 33396.23 21798.92 175
new_pmnet90.06 32089.00 32493.22 33694.18 35388.32 35096.42 34096.89 33486.19 34885.67 35793.62 35677.18 34797.10 34481.61 35689.29 31294.23 356
testgi93.06 29592.45 29494.88 30696.43 30589.90 32398.75 12697.54 29595.60 11891.63 32097.91 21374.46 35897.02 34586.10 33693.67 24997.72 223
Anonymous2024052191.18 31090.44 31193.42 33093.70 35988.47 34798.94 8997.56 28988.46 33889.56 33895.08 34777.15 34896.97 34683.92 35089.55 30794.82 353
test0.0.03 194.08 27493.51 27395.80 27995.53 33792.89 28097.38 28595.97 34895.11 14592.51 30496.66 31087.71 23196.94 34787.03 33193.67 24997.57 226
KD-MVS_2432*160089.61 32487.96 32894.54 31694.06 35691.59 29895.59 35097.63 28589.87 32488.95 34294.38 35278.28 33696.82 34884.83 34568.05 37095.21 345
miper_refine_blended89.61 32487.96 32894.54 31694.06 35691.59 29895.59 35097.63 28589.87 32488.95 34294.38 35278.28 33696.82 34884.83 34568.05 37095.21 345
pmmvs-eth3d90.36 31889.05 32394.32 32391.10 36892.12 28597.63 27496.95 32988.86 33684.91 35993.13 35878.32 33596.74 35088.70 32181.81 35494.09 359
PM-MVS87.77 32986.55 33391.40 34591.03 36983.36 36696.92 31695.18 35691.28 29886.48 35493.42 35753.27 37396.74 35089.43 31581.97 35394.11 358
UnsupCasMVSNet_eth90.99 31389.92 31694.19 32594.08 35589.83 32497.13 30798.67 13393.69 20985.83 35696.19 32875.15 35496.74 35089.14 31879.41 36096.00 332
MDA-MVSNet_test_wron90.71 31589.38 32094.68 31394.83 34890.78 31297.19 30197.46 30187.60 34172.41 37095.72 33886.51 25296.71 35385.92 33886.80 34296.56 300
YYNet190.70 31689.39 31994.62 31594.79 35090.65 31597.20 30097.46 30187.54 34272.54 36995.74 33486.51 25296.66 35486.00 33786.76 34396.54 303
MDA-MVSNet-bldmvs89.97 32188.35 32694.83 30995.21 34391.34 30197.64 27197.51 29788.36 33971.17 37196.13 32979.22 33196.63 35583.65 35186.27 34496.52 308
Anonymous2023120691.66 30691.10 30693.33 33394.02 35887.35 35798.58 16197.26 31690.48 31190.16 33296.31 32183.83 30496.53 35679.36 36289.90 30196.12 329
Patchmatch-RL test91.49 30790.85 30893.41 33191.37 36784.40 36292.81 36495.93 35091.87 27787.25 34994.87 34888.99 19796.53 35692.54 25982.00 35299.30 130
EU-MVSNet93.66 28194.14 23392.25 34295.96 32583.38 36598.52 17098.12 24094.69 16392.61 29998.13 19687.36 24096.39 35891.82 27590.00 30096.98 244
EGC-MVSNET75.22 33869.54 34192.28 34194.81 34989.58 32997.64 27196.50 3451.82 3815.57 38295.74 33468.21 36596.26 35973.80 37091.71 28090.99 366
KD-MVS_self_test90.38 31789.38 32093.40 33292.85 36388.94 34197.95 24497.94 26990.35 31690.25 33193.96 35579.82 32795.94 36084.62 34976.69 36495.33 343
DSMNet-mixed92.52 30192.58 29292.33 34094.15 35482.65 36798.30 20394.26 36589.08 33592.65 29895.73 33685.01 28095.76 36186.24 33597.76 17698.59 194
DeepMVS_CXcopyleft86.78 34897.09 26872.30 37495.17 35775.92 36684.34 36095.19 34470.58 36395.35 36279.98 36189.04 31692.68 365
CL-MVSNet_self_test90.11 31989.14 32293.02 33791.86 36688.23 35196.51 33898.07 25390.49 31090.49 33094.41 35084.75 28595.34 36380.79 35874.95 36695.50 341
FMVSNet591.81 30490.92 30794.49 31897.21 25792.09 28698.00 24197.55 29489.31 33390.86 32695.61 34274.48 35795.32 36485.57 34089.70 30396.07 331
pmmvs386.67 33284.86 33592.11 34388.16 37187.19 35996.63 33494.75 36079.88 36387.22 35092.75 36066.56 36895.20 36581.24 35776.56 36593.96 361
new-patchmatchnet88.50 32887.45 33191.67 34490.31 37085.89 36197.16 30597.33 31189.47 33083.63 36192.77 35976.38 34995.06 36682.70 35377.29 36394.06 360
test_method79.03 33378.17 33681.63 35386.06 37354.40 38382.75 37296.89 33439.54 37680.98 36495.57 34358.37 37294.73 36784.74 34878.61 36195.75 337
MIMVSNet189.67 32388.28 32793.82 32792.81 36491.08 30798.01 23997.45 30387.95 34087.90 34895.87 33367.63 36794.56 36878.73 36588.18 32695.83 336
test20.0390.89 31490.38 31292.43 33993.48 36088.14 35298.33 19597.56 28993.40 22387.96 34796.71 30980.69 32494.13 36979.15 36386.17 34595.01 352
Gipumacopyleft78.40 33576.75 33883.38 35295.54 33680.43 37079.42 37397.40 30864.67 37073.46 36880.82 37145.65 37593.14 37066.32 37287.43 33376.56 373
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet78.70 33476.24 33986.08 34977.26 38071.99 37594.34 36196.72 34061.62 37176.53 36689.33 36533.91 38092.78 37181.85 35574.60 36793.46 363
PMMVS277.95 33675.44 34085.46 35082.54 37574.95 37394.23 36293.08 37072.80 36874.68 36787.38 36636.36 37991.56 37273.95 36963.94 37289.87 367
PMVScopyleft61.03 2365.95 34163.57 34573.09 35857.90 38351.22 38485.05 37193.93 36954.45 37244.32 37883.57 36813.22 38289.15 37358.68 37481.00 35778.91 372
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FPMVS77.62 33777.14 33779.05 35579.25 37860.97 37995.79 34795.94 34965.96 36967.93 37294.40 35137.73 37888.88 37468.83 37188.46 32287.29 368
ANet_high69.08 33965.37 34380.22 35465.99 38271.96 37690.91 36890.09 37682.62 35949.93 37778.39 37229.36 38181.75 37562.49 37338.52 37686.95 370
MVEpermissive62.14 2263.28 34459.38 34774.99 35674.33 38165.47 37785.55 37080.50 38252.02 37451.10 37675.00 37510.91 38580.50 37651.60 37553.40 37378.99 371
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN64.94 34264.25 34467.02 35982.28 37659.36 38191.83 36785.63 37952.69 37360.22 37477.28 37341.06 37780.12 37746.15 37641.14 37461.57 375
EMVS64.07 34363.26 34666.53 36081.73 37758.81 38291.85 36684.75 38051.93 37559.09 37575.13 37443.32 37679.09 37842.03 37739.47 37561.69 374
tmp_tt68.90 34066.97 34274.68 35750.78 38459.95 38087.13 36983.47 38138.80 37762.21 37396.23 32564.70 37076.91 37988.91 32030.49 37787.19 369
wuyk23d30.17 34530.18 34930.16 36178.61 37943.29 38566.79 37414.21 38517.31 37814.82 38111.93 38111.55 38441.43 38037.08 37819.30 3785.76 378
test12320.95 34823.72 35112.64 36213.54 3868.19 38696.55 3376.13 3877.48 38016.74 38037.98 37812.97 3836.05 38116.69 3795.43 38023.68 376
testmvs21.48 34724.95 35011.09 36314.89 3856.47 38796.56 3369.87 3867.55 37917.93 37939.02 3779.43 3865.90 38216.56 38012.72 37920.91 377
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
cdsmvs_eth3d_5k23.98 34631.98 3480.00 3640.00 3870.00 3880.00 37598.59 1480.00 3820.00 38398.61 14490.60 1650.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas7.88 35010.50 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38294.51 910.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re8.20 34910.94 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38398.43 1640.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
FOURS199.82 198.66 2699.69 198.95 3597.46 2399.39 15
test_one_060199.66 2899.25 298.86 6497.55 1699.20 2699.47 1097.57 6
eth-test20.00 387
eth-test0.00 387
RE-MVS-def98.34 3399.49 4997.86 7399.11 5498.80 9196.49 7899.17 3099.35 3295.29 6997.72 6599.65 6499.71 50
IU-MVS99.71 2199.23 798.64 14195.28 13699.63 498.35 3299.81 1299.83 7
save fliter99.46 5598.38 4098.21 21298.71 11897.95 3
test072699.72 1399.25 299.06 6398.88 5197.62 1299.56 699.50 597.42 9
GSMVS99.20 139
test_part299.63 3199.18 1099.27 21
sam_mvs189.45 18399.20 139
sam_mvs88.99 197
MTGPAbinary98.74 108
MTMP98.89 9794.14 367
test9_res96.39 13999.57 8199.69 57
agg_prior295.87 15499.57 8199.68 63
test_prior498.01 6797.86 255
test_prior297.80 26096.12 9497.89 11998.69 13495.96 4096.89 11199.60 74
新几何297.64 271
旧先验199.29 8297.48 8898.70 12199.09 8495.56 5399.47 9999.61 82
原ACMM297.67 269
test22299.23 9797.17 10397.40 28398.66 13688.68 33798.05 9998.96 10394.14 10099.53 9299.61 82
segment_acmp96.85 14
testdata197.32 29396.34 86
plane_prior797.42 24594.63 218
plane_prior697.35 25094.61 22187.09 242
plane_prior498.28 183
plane_prior394.61 22197.02 5595.34 202
plane_prior298.80 12097.28 36
plane_prior197.37 249
plane_prior94.60 22398.44 18296.74 6894.22 232
n20.00 388
nn0.00 388
door-mid94.37 363
test1198.66 136
door94.64 361
HQP5-MVS94.25 238
HQP-NCC97.20 25898.05 23596.43 8194.45 225
ACMP_Plane97.20 25898.05 23596.43 8194.45 225
BP-MVS95.30 173
HQP3-MVS98.46 17994.18 234
HQP2-MVS86.75 248
NP-MVS97.28 25294.51 22797.73 230
MDTV_nov1_ep13_2view84.26 36396.89 32390.97 30697.90 11889.89 17693.91 21699.18 148
ACMMP++_ref92.97 268
ACMMP++93.61 254
Test By Simon94.64 87