This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVScopyleft78.77 284.89 171.62 478.04 382.05 181.64 1057.96 787.53 166.64 288.77 186.31 163.16 1079.99 778.56 782.31 2291.03 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS79.21 184.74 272.75 178.66 281.96 282.94 458.16 486.82 267.66 188.29 486.15 366.42 280.41 478.65 682.65 1690.92 2
MSP-MVS77.82 583.46 571.24 875.26 1680.22 782.95 357.85 885.90 364.79 588.54 383.43 766.24 378.21 1778.56 780.34 4589.39 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVS++78.76 384.44 372.14 276.63 781.93 382.92 558.10 585.86 466.53 387.86 586.16 266.45 180.46 378.53 982.19 2790.29 4
APDe-MVS77.58 682.93 671.35 677.86 480.55 683.38 157.61 1085.57 561.11 2086.10 782.98 864.76 478.29 1576.78 2283.40 690.20 5
DeepPCF-MVS66.49 174.25 2080.97 1066.41 3167.75 5078.87 1375.61 3854.16 3384.86 658.22 3277.94 1681.01 1762.52 1578.34 1377.38 1680.16 4888.40 11
SMA-MVScopyleft77.32 782.51 771.26 775.43 1480.19 882.22 758.26 384.83 764.36 778.19 1583.46 663.61 881.00 180.28 183.66 489.62 6
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft78.11 483.84 471.42 577.82 581.32 482.92 557.81 984.04 863.19 1288.63 286.00 464.52 578.71 1177.63 1582.26 2390.57 3
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SF-MVS77.13 881.70 871.79 379.32 180.76 582.96 257.49 1182.82 964.79 583.69 1084.46 562.83 1377.13 2675.21 3183.35 787.85 16
HPM-MVS++copyleft76.01 1080.47 1270.81 976.60 874.96 3580.18 1758.36 281.96 1063.50 1178.80 1482.53 1164.40 678.74 1078.84 581.81 3287.46 18
ACMMP_NAP76.15 981.17 970.30 1174.09 2079.47 1081.59 1257.09 1481.38 1163.89 1079.02 1380.48 1962.24 1780.05 679.12 482.94 1188.64 9
SD-MVS74.43 1778.87 1869.26 1974.39 1973.70 4479.06 2455.24 2581.04 1262.71 1480.18 1282.61 1061.70 2175.43 4073.92 4382.44 2185.22 31
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.75.22 1480.06 1369.56 1674.61 1872.74 4880.59 1455.70 2380.80 1362.65 1586.25 682.92 962.07 1976.89 2875.66 3081.77 3485.19 32
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APD-MVScopyleft75.80 1180.90 1169.86 1575.42 1578.48 1681.43 1357.44 1280.45 1459.32 2685.28 880.82 1863.96 776.89 2876.08 2781.58 3888.30 12
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
OMC-MVS65.16 5871.35 4457.94 7252.95 14868.82 6269.00 5638.28 16679.89 1555.20 4162.76 5168.31 5856.14 5871.30 6368.70 7776.06 9879.67 56
CNVR-MVS75.62 1279.91 1470.61 1075.76 1078.82 1481.66 957.12 1379.77 1663.04 1370.69 2481.15 1662.99 1180.23 579.54 383.11 889.16 8
TSAR-MVS + ACMM72.56 2879.07 1764.96 4073.24 2473.16 4778.50 2648.80 6679.34 1755.32 4085.04 981.49 1558.57 3975.06 4373.75 4475.35 10685.61 29
CSCG74.68 1679.22 1669.40 1775.69 1280.01 979.12 2352.83 4179.34 1763.99 970.49 2582.02 1260.35 3277.48 2477.22 1984.38 187.97 15
HFP-MVS74.87 1578.86 2070.21 1273.99 2177.91 1880.36 1656.63 1678.41 1964.27 874.54 2077.75 2762.96 1278.70 1277.82 1383.02 986.91 21
NCCC74.27 1977.83 2470.13 1375.70 1177.41 2280.51 1557.09 1478.25 2062.28 1765.54 3778.26 2562.18 1879.13 878.51 1083.01 1087.68 17
DeepC-MVS66.32 273.85 2278.10 2368.90 2267.92 4879.31 1178.16 2859.28 178.24 2161.13 1967.36 3576.10 3263.40 979.11 978.41 1183.52 588.16 13
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CNLPA62.78 6666.31 6658.65 6658.47 10268.41 6565.98 8041.22 14378.02 2256.04 3646.65 12659.50 9057.50 4569.67 8065.27 12872.70 13876.67 78
ACMMPR73.79 2378.41 2168.40 2472.35 2777.79 1979.32 2056.38 1877.67 2358.30 3174.16 2176.66 2861.40 2278.32 1477.80 1482.68 1586.51 22
TSAR-MVS + COLMAP62.65 6769.90 5354.19 9746.31 18566.73 8665.49 8641.36 14176.57 2446.31 7776.80 1756.68 10053.27 8069.50 8166.65 10672.40 14376.36 85
DPM-MVS72.80 2675.90 2969.19 2075.51 1377.68 2081.62 1154.83 2675.96 2562.06 1863.96 4676.58 2958.55 4076.66 3276.77 2382.60 1883.68 40
CP-MVS72.63 2776.95 2767.59 2670.67 3575.53 3377.95 3056.01 2175.65 2658.82 2869.16 2976.48 3060.46 3077.66 2277.20 2081.65 3686.97 20
MP-MVScopyleft74.31 1878.87 1868.99 2173.49 2378.56 1579.25 2256.51 1775.33 2760.69 2275.30 1979.12 2361.81 2077.78 2177.93 1282.18 2988.06 14
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MCST-MVS73.67 2477.39 2569.33 1876.26 978.19 1778.77 2554.54 3075.33 2759.99 2467.96 3179.23 2262.43 1678.00 1875.71 2984.02 287.30 19
SteuartSystems-ACMMP75.23 1379.60 1570.13 1376.81 678.92 1281.74 857.99 675.30 2959.83 2575.69 1878.45 2460.48 2980.58 279.77 283.94 388.52 10
Skip Steuart: Steuart Systems R&D Blog.
TAPA-MVS54.74 1060.85 7566.61 6354.12 9947.38 18165.33 9765.35 8736.51 17575.16 3048.82 7054.70 8463.51 7153.31 7968.36 9464.97 13473.37 12674.27 99
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DeepC-MVS_fast65.08 372.00 2976.11 2867.21 2868.93 4477.46 2176.54 3454.35 3174.92 3158.64 3065.18 3974.04 4262.62 1477.92 1977.02 2182.16 3086.21 23
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
train_agg73.89 2178.25 2268.80 2375.25 1772.27 5079.75 1856.05 2074.87 3258.97 2781.83 1179.76 2161.05 2577.39 2576.01 2881.71 3585.61 29
canonicalmvs65.62 5472.06 4058.11 6863.94 7171.05 5364.49 9443.18 12674.08 3347.35 7264.17 4471.97 4651.17 9471.87 5870.74 5678.51 6480.56 53
PGM-MVS72.89 2577.13 2667.94 2572.47 2677.25 2379.27 2154.63 2973.71 3457.95 3372.38 2275.33 3460.75 2778.25 1677.36 1882.57 1985.62 28
ACMMPcopyleft71.57 3075.84 3066.59 3070.30 3976.85 2878.46 2753.95 3473.52 3555.56 3870.13 2671.36 4758.55 4077.00 2776.23 2682.71 1485.81 27
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HQP-MVS70.88 3375.02 3366.05 3471.69 3074.47 4077.51 3153.17 3872.89 3654.88 4470.03 2770.48 4957.26 4876.02 3575.01 3581.78 3386.21 23
X-MVS71.18 3275.66 3265.96 3571.71 2976.96 2577.26 3255.88 2272.75 3754.48 4764.39 4374.47 3754.19 6577.84 2077.37 1782.21 2685.85 26
CPTT-MVS68.76 4173.01 3763.81 4665.42 6073.66 4576.39 3652.08 4372.61 3850.33 6460.73 5972.65 4559.43 3673.32 5272.12 4979.19 5985.99 25
NP-MVS72.00 39
CLD-MVS67.02 4971.57 4261.71 5171.01 3474.81 3771.62 5038.91 15871.86 4060.70 2164.97 4167.88 6351.88 9176.77 3174.98 3676.11 9469.75 122
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TSAR-MVS + GP.69.71 3473.92 3664.80 4268.27 4670.56 5571.90 4950.75 5171.38 4157.46 3568.68 3075.42 3360.10 3373.47 5173.99 4280.32 4683.97 37
3Dnovator+62.63 469.51 3572.62 3965.88 3668.21 4776.47 2973.50 4852.74 4270.85 4258.65 2955.97 7669.95 5061.11 2476.80 3075.09 3281.09 4183.23 43
PHI-MVS69.27 3874.84 3462.76 5066.83 5374.83 3673.88 4649.32 6070.61 4350.93 6269.62 2874.84 3557.25 4975.53 3974.32 4078.35 6684.17 36
AdaColmapbinary67.89 4568.85 5866.77 2973.73 2274.30 4275.28 3953.58 3670.24 4457.59 3451.19 10259.19 9160.74 2875.33 4273.72 4579.69 5377.96 69
MSLP-MVS++68.17 4370.72 4865.19 3869.41 4170.64 5474.99 4045.76 7770.20 4560.17 2356.42 7473.01 4361.14 2372.80 5470.54 5879.70 5181.42 50
CDPH-MVS71.47 3175.82 3166.41 3172.97 2577.15 2478.14 2954.71 2769.88 4653.07 5570.98 2374.83 3656.95 5276.22 3376.57 2482.62 1785.09 33
LGP-MVS_train68.87 3972.03 4165.18 3969.33 4274.03 4376.67 3353.88 3568.46 4752.05 5963.21 4863.89 6956.31 5575.99 3674.43 3982.83 1384.18 35
ACMP61.42 568.72 4271.37 4365.64 3769.06 4374.45 4175.88 3753.30 3768.10 4855.74 3761.53 5862.29 7656.97 5174.70 4674.23 4182.88 1284.31 34
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PCF-MVS59.98 867.32 4871.04 4662.97 4964.77 6274.49 3974.78 4249.54 5767.44 4954.39 5058.35 6872.81 4455.79 6171.54 6169.24 6978.57 6183.41 41
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
3Dnovator60.86 666.99 5170.32 5063.11 4866.63 5474.52 3871.56 5145.76 7767.37 5055.00 4354.31 8768.19 5958.49 4273.97 4973.63 4681.22 4080.23 54
PLCcopyleft52.09 1459.21 8362.47 8655.41 9253.24 14664.84 10464.47 9540.41 15265.92 5144.53 8846.19 13455.69 10855.33 6268.24 9865.30 12774.50 11271.09 113
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ACMM60.30 767.58 4768.82 5966.13 3370.59 3672.01 5276.54 3454.26 3265.64 5254.78 4650.35 10561.72 8058.74 3875.79 3875.03 3381.88 3181.17 51
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CANet68.77 4073.01 3763.83 4568.30 4575.19 3473.73 4747.90 6763.86 5354.84 4567.51 3374.36 4057.62 4474.22 4873.57 4780.56 4382.36 45
MAR-MVS68.04 4470.74 4764.90 4171.68 3176.33 3074.63 4350.48 5563.81 5455.52 3954.88 8269.90 5157.39 4775.42 4174.79 3779.71 5080.03 55
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
QAPM65.27 5569.49 5660.35 5565.43 5972.20 5165.69 8447.23 6963.46 5549.14 6753.56 8871.04 4857.01 5072.60 5671.41 5377.62 7082.14 47
casdiffmvs_mvgpermissive65.26 5669.48 5760.33 5662.99 7569.34 6069.80 5445.27 8363.38 5651.11 6165.12 4069.75 5253.51 7371.74 5968.86 7579.33 5578.19 68
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_030469.49 3673.96 3564.28 4467.92 4876.13 3174.90 4147.60 6863.29 5754.09 5167.44 3476.35 3159.53 3575.81 3775.03 3381.62 3783.70 39
RPSCF46.41 18154.42 15337.06 19525.70 21845.14 20245.39 19120.81 21262.79 5835.10 13244.92 14855.60 10943.56 12956.12 19052.45 19851.80 20663.91 167
EPNet65.14 5969.54 5560.00 5866.61 5567.67 7567.53 6355.32 2462.67 5946.22 7967.74 3265.93 6748.07 10972.17 5772.12 4976.28 9078.47 65
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
casdiffmvspermissive64.09 6068.13 6159.37 6361.81 7868.32 6668.48 5944.45 9561.95 6049.12 6863.04 4969.67 5453.83 6970.46 7266.06 11678.55 6277.43 71
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LS3D60.20 7861.70 8858.45 6764.18 6767.77 7267.19 6548.84 6561.67 6141.27 10545.89 13851.81 12254.18 6668.78 8766.50 11175.03 10969.48 128
OpenMVScopyleft57.13 962.81 6565.75 7059.39 6266.47 5669.52 5964.26 9643.07 12861.34 6250.19 6547.29 12364.41 6854.60 6470.18 7768.62 7977.73 6878.89 61
MVS_111021_HR67.62 4670.39 4964.39 4369.77 4070.45 5771.44 5251.72 4760.77 6355.06 4262.14 5566.40 6658.13 4376.13 3474.79 3780.19 4782.04 48
MVS_111021_LR63.05 6466.43 6559.10 6461.33 8363.77 11465.87 8143.58 11560.20 6453.70 5362.09 5662.38 7555.84 6070.24 7668.08 8274.30 11478.28 67
diffmvspermissive61.64 7166.55 6455.90 8856.63 12463.71 11567.13 6841.27 14259.49 6546.70 7563.93 4768.01 6250.46 9567.30 11765.51 12473.24 13177.87 70
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DROMVSNet67.01 5070.27 5263.21 4767.21 5170.47 5669.01 5546.96 7159.16 6653.23 5464.01 4569.71 5360.37 3174.92 4471.24 5582.50 2082.41 44
CS-MVS65.88 5269.71 5461.41 5261.76 8068.14 6767.65 6144.00 10559.14 6752.69 5665.19 3868.13 6060.90 2674.74 4571.58 5181.46 3981.04 52
CS-MVS-test65.18 5768.70 6061.07 5361.92 7768.06 6967.09 6945.18 8558.47 6852.02 6065.76 3666.44 6559.24 3772.71 5570.05 6380.98 4279.40 58
DELS-MVS65.87 5370.30 5160.71 5464.05 7072.68 4970.90 5345.43 8157.49 6949.05 6964.43 4268.66 5655.11 6374.31 4773.02 4879.70 5181.51 49
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_Test62.40 6966.23 6757.94 7259.77 9664.77 10566.50 7441.76 13757.26 7049.33 6662.68 5267.47 6453.50 7568.57 9266.25 11376.77 8276.58 80
FA-MVS(training)60.00 7963.14 8556.33 8659.50 9764.30 11065.15 8938.75 16356.20 7145.77 8053.08 8956.45 10252.10 8969.04 8667.67 9176.69 8375.27 95
DI_MVS_plusplus_trai61.88 7065.17 7458.06 6960.05 9165.26 9966.03 7844.22 9755.75 7246.73 7454.64 8568.12 6154.13 6769.13 8466.66 10577.18 7776.61 79
GeoE62.43 6864.79 7759.68 6164.15 6967.17 8268.80 5744.42 9655.65 7347.38 7151.54 9962.51 7454.04 6869.99 7868.07 8379.28 5778.57 63
OPM-MVS69.33 3771.05 4567.32 2772.34 2875.70 3279.57 1956.34 1955.21 7453.81 5259.51 6368.96 5559.67 3477.61 2376.44 2582.19 2783.88 38
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PVSNet_BlendedMVS61.63 7264.82 7557.91 7457.21 12067.55 7763.47 10046.08 7554.72 7552.46 5758.59 6660.73 8351.82 9270.46 7265.20 13076.44 8776.50 83
PVSNet_Blended61.63 7264.82 7557.91 7457.21 12067.55 7763.47 10046.08 7554.72 7552.46 5758.59 6660.73 8351.82 9270.46 7265.20 13076.44 8776.50 83
Effi-MVS+63.28 6265.96 6960.17 5764.26 6668.06 6968.78 5845.71 7954.08 7746.64 7655.92 7763.13 7355.94 5970.38 7571.43 5279.68 5478.70 62
test250655.82 11859.57 11651.46 11760.39 8964.55 10758.69 12248.87 6353.91 7826.99 16848.97 11141.72 18537.71 15770.96 6769.49 6676.08 9567.37 142
ECVR-MVScopyleft56.44 11360.74 9551.42 11860.39 8964.55 10758.69 12248.87 6353.91 7826.76 17045.55 14353.43 11537.71 15770.96 6769.49 6676.08 9567.32 144
CostFormer56.57 11159.13 12153.60 10157.52 11061.12 13066.94 7135.95 17753.44 8044.68 8755.87 7854.44 11148.21 10660.37 16658.33 17368.27 16470.33 120
MSDG58.46 9258.97 12357.85 7666.27 5866.23 9267.72 6042.33 13253.43 8143.68 9143.39 16045.35 16349.75 9868.66 9067.77 8877.38 7467.96 137
ETV-MVS63.23 6366.08 6859.91 5963.13 7468.13 6867.62 6244.62 9253.39 8246.23 7858.74 6558.19 9457.45 4673.60 5071.38 5480.39 4479.13 59
CANet_DTU58.88 8564.68 7852.12 11555.77 12866.75 8563.92 9737.04 17353.32 8337.45 12759.81 6161.81 7944.43 12668.25 9667.47 9574.12 11675.33 93
COLMAP_ROBcopyleft46.52 1551.99 14754.86 15148.63 14249.13 17561.73 12460.53 11236.57 17453.14 8432.95 13937.10 18238.68 19740.49 14465.72 14063.08 14972.11 14764.60 164
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FC-MVSNet-train58.40 9363.15 8452.85 11064.29 6561.84 12355.98 14346.47 7353.06 8534.96 13461.95 5756.37 10539.49 14768.67 8968.36 8175.92 10071.81 110
EPNet_dtu52.05 14558.26 12944.81 16754.10 14150.09 18652.01 16440.82 14653.03 8627.41 16554.90 8157.96 9826.72 19062.97 15262.70 15567.78 16666.19 152
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Fast-Effi-MVS+60.36 7663.35 8356.87 8258.70 9965.86 9465.08 9037.11 17253.00 8745.36 8452.12 9656.07 10756.27 5671.28 6469.42 6878.71 6075.69 90
DCV-MVSNet59.49 8064.00 8154.23 9661.81 7864.33 10961.42 10643.77 10852.85 8838.94 11955.62 7962.15 7843.24 13469.39 8267.66 9276.22 9275.97 87
baseline55.19 12760.88 9348.55 14349.87 17258.10 15958.70 12134.75 18152.82 8939.48 11860.18 6060.86 8245.41 12161.05 16260.74 16563.10 18172.41 108
USDC51.11 15153.71 15648.08 15044.76 19055.99 16853.01 16340.90 14452.49 9036.14 13044.67 14933.66 20743.27 13363.23 15161.10 16270.39 15864.82 162
ACMH+53.71 1259.26 8260.28 10158.06 6964.17 6868.46 6467.51 6450.93 5052.46 9135.83 13140.83 17445.12 16752.32 8669.88 7969.00 7477.59 7276.21 86
test111155.24 12459.98 10949.71 12759.80 9564.10 11256.48 13749.34 5952.27 9221.56 18444.49 15051.96 12135.93 16870.59 7169.07 7275.13 10867.40 140
PVSNet_Blended_VisFu63.65 6166.92 6259.83 6060.03 9273.44 4666.33 7548.95 6252.20 9350.81 6356.07 7560.25 8753.56 7173.23 5370.01 6479.30 5683.24 42
Anonymous2023121157.71 10260.79 9454.13 9861.68 8165.81 9560.81 11143.70 11251.97 9439.67 11434.82 18963.59 7043.31 13268.55 9366.63 10775.59 10174.13 101
pmmvs454.66 13156.07 14253.00 10854.63 13557.08 16560.43 11344.10 9951.69 9540.55 10946.55 13044.79 17245.95 11962.54 15563.66 14472.36 14466.20 151
MS-PatchMatch58.19 9960.20 10455.85 8965.17 6164.16 11164.82 9141.48 14050.95 9642.17 10045.38 14456.42 10348.08 10868.30 9566.70 10473.39 12569.46 130
IS_MVSNet57.95 10064.26 8050.60 12161.62 8265.25 10157.18 13045.42 8250.79 9726.49 17257.81 7060.05 8834.51 17371.24 6570.20 6278.36 6574.44 98
tpm cat153.30 13753.41 15953.17 10758.16 10359.15 14863.73 9938.27 16750.73 9846.98 7345.57 14244.00 17949.20 10055.90 19354.02 19262.65 18364.50 165
Anonymous20240521160.60 9763.44 7366.71 8961.00 11047.23 6950.62 9936.85 18460.63 8643.03 13569.17 8367.72 9075.41 10372.54 107
UGNet57.03 10565.25 7347.44 15546.54 18466.73 8656.30 13843.28 12450.06 10032.99 13862.57 5363.26 7233.31 17868.25 9667.58 9372.20 14678.29 66
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EIA-MVS61.53 7463.79 8258.89 6563.82 7267.61 7665.35 8742.15 13649.98 10145.66 8257.47 7256.62 10156.59 5470.91 6969.15 7079.78 4974.80 96
Vis-MVSNet (Re-imp)50.37 15657.73 13641.80 18157.53 10954.35 17145.70 18945.24 8449.80 10213.43 20058.23 6956.42 10320.11 20162.96 15363.36 14768.76 16258.96 186
EPP-MVSNet59.39 8165.45 7252.32 11460.96 8567.70 7458.42 12444.75 9049.71 10327.23 16759.03 6462.20 7743.34 13170.71 7069.13 7179.25 5879.63 57
Effi-MVS+-dtu60.34 7762.32 8758.03 7164.31 6467.44 7965.99 7942.26 13349.55 10442.00 10148.92 11359.79 8956.27 5668.07 10367.03 9777.35 7575.45 92
FMVSNet255.04 12959.95 11049.31 13052.42 15161.44 12557.03 13144.08 10049.55 10430.40 15146.89 12458.84 9238.22 15267.07 12366.21 11473.69 12169.65 123
UA-Net58.50 9064.68 7851.30 11966.97 5267.13 8353.68 15945.65 8049.51 10631.58 14662.91 5068.47 5735.85 16968.20 9967.28 9674.03 11769.24 132
UniMVSNet_NR-MVSNet56.94 10861.14 9152.05 11660.02 9365.21 10257.44 12852.93 4049.37 10724.31 17954.62 8650.54 12839.04 14968.69 8868.84 7678.53 6370.72 115
Baseline_NR-MVSNet53.50 13557.89 13248.37 14654.60 13659.25 14756.10 13951.84 4449.32 10817.92 19445.38 14447.68 14036.93 16468.11 10165.95 11872.84 13369.57 126
baseline154.48 13258.69 12449.57 12860.63 8858.29 15755.70 14544.95 8849.20 10929.62 15554.77 8354.75 11035.29 17067.15 12164.08 14071.21 15362.58 174
GBi-Net55.20 12560.25 10249.31 13052.42 15161.44 12557.03 13144.04 10149.18 11030.47 14848.28 11558.19 9438.22 15268.05 10466.96 9873.69 12169.65 123
test155.20 12560.25 10249.31 13052.42 15161.44 12557.03 13144.04 10149.18 11030.47 14848.28 11558.19 9438.22 15268.05 10466.96 9873.69 12169.65 123
FMVSNet354.78 13059.58 11549.17 13352.37 15461.31 12956.72 13644.04 10149.18 11030.47 14848.28 11558.19 9438.09 15565.48 14365.20 13073.31 12869.45 131
TranMVSNet+NR-MVSNet55.87 11660.14 10650.88 12059.46 9863.82 11357.93 12652.98 3948.94 11320.52 18752.87 9147.33 14536.81 16569.12 8569.03 7377.56 7369.89 121
ET-MVSNet_ETH3D58.38 9461.57 8954.67 9542.15 19865.26 9965.70 8243.82 10748.84 11442.34 9859.76 6247.76 13956.68 5367.02 12468.60 8077.33 7673.73 105
Vis-MVSNetpermissive58.48 9165.70 7150.06 12653.40 14567.20 8160.24 11443.32 12348.83 11530.23 15262.38 5461.61 8140.35 14571.03 6669.77 6572.82 13479.11 60
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVSTER57.19 10461.11 9252.62 11250.82 16858.79 15061.55 10437.86 16948.81 11641.31 10457.43 7352.10 12048.60 10468.19 10066.75 10375.56 10275.68 91
TDRefinement49.31 16152.44 16745.67 16330.44 21159.42 14459.24 11839.78 15648.76 11731.20 14735.73 18629.90 21142.81 13664.24 15062.59 15770.55 15666.43 147
IterMVS-LS58.30 9661.39 9054.71 9459.92 9458.40 15459.42 11643.64 11348.71 11840.25 11257.53 7158.55 9352.15 8865.42 14565.34 12672.85 13275.77 88
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tpmrst48.08 17249.88 18445.98 15952.71 14948.11 19153.62 16033.70 19048.70 11939.74 11348.96 11246.23 15740.29 14650.14 20749.28 20355.80 19757.71 189
UniMVSNet (Re)55.15 12860.39 10049.03 13655.31 13064.59 10655.77 14450.63 5248.66 12020.95 18551.47 10050.40 12934.41 17567.81 10867.89 8577.11 8071.88 109
DU-MVS55.41 12259.59 11350.54 12354.60 13662.97 11757.44 12851.80 4548.62 12124.31 17951.99 9747.00 14839.04 14968.11 10167.75 8976.03 9970.72 115
NR-MVSNet55.35 12359.46 11850.56 12261.33 8362.97 11757.91 12751.80 4548.62 12120.59 18651.99 9744.73 17334.10 17668.58 9168.64 7877.66 6970.67 119
SCA50.99 15353.22 16348.40 14551.07 16456.78 16650.25 16839.05 15748.31 12341.38 10349.54 10746.70 15346.00 11858.31 17656.28 17662.65 18356.60 191
thisisatest053056.68 11059.68 11153.19 10652.97 14760.96 13359.41 11740.51 14848.26 12441.06 10752.67 9246.30 15549.78 9667.66 11267.83 8675.39 10474.07 103
EPMVS44.66 18747.86 19140.92 18447.97 17944.70 20347.58 18033.27 19248.11 12529.58 15649.65 10644.38 17734.65 17251.71 20247.90 20552.49 20548.57 206
PatchmatchNetpermissive49.92 16051.29 17448.32 14751.83 15851.86 18053.38 16237.63 17147.90 12640.83 10848.54 11445.30 16445.19 12356.86 18353.99 19461.08 18854.57 194
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tttt051756.53 11259.59 11352.95 10952.66 15060.99 13259.21 11940.51 14847.89 12740.40 11052.50 9546.04 15949.78 9667.75 11067.83 8675.15 10774.17 100
v858.88 8560.57 9956.92 8157.35 11565.69 9666.69 7342.64 13047.89 12745.77 8049.04 11052.98 11752.77 8267.51 11465.57 12376.26 9175.30 94
V4256.97 10760.14 10653.28 10448.16 17762.78 12066.30 7637.93 16847.44 12942.68 9648.19 11852.59 11951.90 9067.46 11565.94 11972.72 13676.55 82
baseline255.89 11557.82 13353.64 10057.36 11461.09 13159.75 11540.45 15047.38 13041.26 10651.23 10146.90 15048.11 10765.63 14264.38 13974.90 11068.16 136
GG-mvs-BLEND36.62 20453.39 16017.06 2120.01 22458.61 15148.63 1740.01 22147.13 1310.02 22543.98 15360.64 850.03 22054.92 19751.47 20053.64 20356.99 190
v1059.17 8460.60 9757.50 7757.95 10566.73 8667.09 6944.11 9846.85 13245.42 8348.18 11951.07 12453.63 7067.84 10766.59 10976.79 8176.92 76
tpm48.82 16751.27 17545.96 16054.10 14147.35 19356.05 14030.23 19946.70 13343.21 9352.54 9447.55 14337.28 16254.11 19850.50 20154.90 20060.12 183
CHOSEN 1792x268855.85 11758.01 13153.33 10357.26 11962.82 11963.29 10241.55 13946.65 13438.34 12034.55 19053.50 11352.43 8567.10 12267.56 9467.13 16873.92 104
PatchMatch-RL50.11 15951.56 17348.43 14446.23 18651.94 17950.21 16938.62 16546.62 13537.51 12542.43 17139.38 19452.24 8760.98 16359.56 16965.76 17260.01 184
v2v48258.69 8860.12 10857.03 8057.16 12266.05 9367.17 6643.52 11746.33 13645.19 8549.46 10951.02 12552.51 8467.30 11766.03 11776.61 8474.62 97
PMMVS49.20 16554.28 15543.28 17534.13 20645.70 20148.98 17326.09 20846.31 13734.92 13555.22 8053.47 11447.48 11259.43 16859.04 17168.05 16560.77 179
IB-MVS54.11 1158.36 9560.70 9655.62 9058.67 10068.02 7161.56 10343.15 12746.09 13844.06 9044.24 15250.99 12748.71 10366.70 12770.33 5977.60 7178.50 64
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ACMH52.42 1358.24 9759.56 11756.70 8466.34 5769.59 5866.71 7249.12 6146.08 13928.90 15942.67 16941.20 18652.60 8371.39 6270.28 6076.51 8675.72 89
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet154.08 13358.68 12548.71 14050.90 16761.35 12856.73 13543.94 10645.91 14029.32 15842.72 16856.26 10637.70 15968.05 10466.96 9873.69 12169.50 127
Fast-Effi-MVS+-dtu56.30 11459.29 12052.82 11158.64 10164.89 10365.56 8532.89 19545.80 14135.04 13345.89 13854.14 11249.41 9967.16 12066.45 11275.37 10570.69 117
HyFIR lowres test56.87 10958.60 12754.84 9356.62 12569.27 6164.77 9242.21 13445.66 14237.50 12633.08 19257.47 9953.33 7865.46 14467.94 8474.60 11171.35 112
MDTV_nov1_ep1350.32 15752.43 16847.86 15349.87 17254.70 16958.10 12534.29 18545.59 14337.71 12447.44 12247.42 14441.86 13958.07 17955.21 18565.34 17558.56 187
v114458.88 8560.16 10557.39 7858.03 10467.26 8067.14 6744.46 9445.17 14444.33 8947.81 12049.92 13253.20 8167.77 10966.62 10877.15 7876.58 80
IterMVS-SCA-FT52.18 14457.75 13545.68 16251.01 16662.06 12155.10 15234.75 18144.85 14532.86 14051.13 10351.22 12348.74 10162.47 15661.51 16051.61 20771.02 114
MIMVSNet43.79 19048.53 18838.27 19141.46 19948.97 18950.81 16732.88 19644.55 14622.07 18232.05 19347.15 14624.76 19358.73 17356.09 17957.63 19652.14 195
IterMVS53.45 13657.12 13949.17 13349.23 17460.93 13459.05 12034.63 18344.53 14733.22 13651.09 10451.01 12648.38 10562.43 15760.79 16470.54 15769.05 133
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CR-MVSNet50.47 15452.61 16547.98 15149.03 17652.94 17548.27 17538.86 16044.41 14839.59 11544.34 15144.65 17546.63 11558.97 17160.31 16665.48 17362.66 171
RPMNet46.41 18148.72 18743.72 17147.77 18052.94 17546.02 18833.92 18744.41 14831.82 14536.89 18337.42 20237.41 16053.88 19954.02 19265.37 17461.47 177
ADS-MVSNet40.67 19743.38 20337.50 19444.36 19239.79 21042.09 20232.67 19744.34 15028.87 16040.76 17640.37 19130.22 18248.34 21145.87 21046.81 21144.21 210
v14855.58 12157.61 13753.20 10554.59 13861.86 12261.18 10738.70 16444.30 15142.25 9947.53 12150.24 13148.73 10265.15 14662.61 15673.79 11971.61 111
v119258.51 8959.66 11257.17 7957.82 10667.72 7366.21 7744.83 8944.15 15243.49 9246.68 12547.94 13653.55 7267.39 11666.51 11077.13 7977.20 74
v14419258.23 9859.40 11956.87 8257.56 10766.89 8465.70 8245.01 8744.06 15342.88 9446.61 12748.09 13553.49 7666.94 12565.90 12076.61 8477.29 72
dps50.42 15551.20 17649.51 12955.88 12756.07 16753.73 15738.89 15943.66 15440.36 11145.66 14037.63 20145.23 12259.05 16956.18 17762.94 18260.16 182
FC-MVSNet-test39.65 20148.35 18929.49 20544.43 19139.28 21130.23 21440.44 15143.59 1553.12 22153.00 9042.03 18210.02 21755.09 19554.77 18748.66 20950.71 199
v192192057.89 10159.02 12256.58 8557.55 10866.66 9064.72 9344.70 9143.55 15642.73 9546.17 13546.93 14953.51 7366.78 12665.75 12276.29 8977.28 73
pmmvs-eth3d51.33 15052.25 16950.26 12550.82 16854.65 17056.03 14143.45 12243.51 15737.20 12839.20 17839.04 19642.28 13761.85 16062.78 15371.78 14964.72 163
TinyColmap47.08 17847.56 19246.52 15842.35 19753.44 17451.77 16540.70 14743.44 15831.92 14429.78 20023.72 21745.04 12461.99 15959.54 17067.35 16761.03 178
PatchT48.08 17251.03 17744.64 16842.96 19550.12 18540.36 20435.09 17943.17 15939.59 11542.00 17239.96 19346.63 11558.97 17160.31 16663.21 18062.66 171
CMPMVSbinary37.70 1749.24 16352.71 16445.19 16445.97 18751.23 18247.44 18129.31 20043.04 16044.69 8634.45 19148.35 13443.64 12862.59 15459.82 16860.08 18969.48 128
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
GA-MVS55.67 11958.33 12852.58 11355.23 13363.09 11661.08 10840.15 15442.95 16137.02 12952.61 9347.68 14047.51 11165.92 13865.35 12574.49 11370.68 118
thres20052.39 14255.37 14848.90 13757.39 11360.18 13855.60 14643.73 11042.93 16227.41 16543.35 16145.09 16836.61 16666.36 13063.92 14372.66 13965.78 156
thres40052.38 14355.51 14548.74 13957.49 11160.10 14055.45 14843.54 11642.90 16326.72 17143.34 16245.03 17136.61 16666.20 13564.53 13772.66 13966.43 147
thres100view90052.04 14654.81 15248.80 13857.31 11659.33 14555.30 15042.92 12942.85 16427.81 16343.00 16645.06 16936.99 16364.74 14863.51 14572.47 14265.21 160
tfpn200view952.53 14055.51 14549.06 13557.31 11660.24 13755.42 14943.77 10842.85 16427.81 16343.00 16645.06 16937.32 16166.38 12964.54 13672.71 13766.54 146
v124057.55 10358.63 12656.29 8757.30 11866.48 9163.77 9844.56 9342.77 16642.48 9745.64 14146.28 15653.46 7766.32 13265.80 12176.16 9377.13 75
thres600view751.91 14955.14 14948.14 14857.43 11260.18 13854.60 15443.73 11042.61 16725.20 17543.10 16544.47 17635.19 17166.36 13063.28 14872.66 13966.01 154
UniMVSNet_ETH3D52.62 13955.98 14348.70 14151.04 16560.71 13556.87 13446.74 7242.52 16826.96 16942.50 17045.95 16037.87 15666.22 13465.15 13372.74 13568.78 135
CDS-MVSNet52.42 14157.06 14047.02 15753.92 14358.30 15655.50 14746.47 7342.52 16829.38 15749.50 10852.85 11828.49 18866.70 12766.89 10168.34 16362.63 173
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
WR-MVS48.78 16855.06 15041.45 18255.50 12960.40 13643.77 19749.99 5641.92 1708.10 21345.24 14745.56 16117.47 20261.57 16164.60 13573.85 11866.14 153
thisisatest051553.85 13456.84 14150.37 12450.25 17158.17 15855.99 14239.90 15541.88 17138.16 12245.91 13745.30 16444.58 12566.15 13666.89 10173.36 12773.57 106
PEN-MVS49.21 16454.32 15443.24 17654.33 13959.26 14647.04 18351.37 4941.67 1729.97 20846.22 13341.80 18422.97 19860.52 16464.03 14173.73 12066.75 145
CP-MVSNet48.37 16953.53 15842.34 17851.35 16158.01 16046.56 18450.54 5341.62 17310.61 20446.53 13140.68 19023.18 19658.71 17461.83 15871.81 14867.36 143
PS-CasMVS48.18 17153.25 16242.27 17951.26 16257.94 16146.51 18550.52 5441.30 17410.56 20545.35 14640.34 19223.04 19758.66 17561.79 15971.74 15067.38 141
FPMVS38.36 20340.41 20735.97 19738.92 20339.85 20945.50 19025.79 20941.13 17518.70 19130.10 19824.56 21531.86 18049.42 20946.80 20855.04 19851.03 198
DTE-MVSNet48.03 17453.28 16141.91 18054.64 13457.50 16344.63 19651.66 4841.02 1767.97 21446.26 13240.90 18720.24 20060.45 16562.89 15272.33 14563.97 166
FMVSNet540.96 19545.81 19635.29 20034.30 20544.55 20447.28 18228.84 20240.76 17721.62 18329.85 19942.44 18124.77 19257.53 18155.00 18654.93 19950.56 200
WR-MVS_H47.65 17553.67 15740.63 18551.45 15959.74 14344.71 19549.37 5840.69 1787.61 21546.04 13644.34 17817.32 20357.79 18061.18 16173.30 12965.86 155
PM-MVS44.55 18848.13 19040.37 18632.85 21046.82 19846.11 18729.28 20140.48 17929.99 15339.98 17734.39 20641.80 14056.08 19153.88 19662.19 18665.31 158
pm-mvs151.02 15255.55 14445.73 16154.16 14058.52 15250.92 16642.56 13140.32 18025.67 17443.66 15750.34 13030.06 18365.85 13963.97 14270.99 15566.21 150
pmnet_mix0240.48 19943.80 20136.61 19645.79 18840.45 20842.12 20133.18 19340.30 18124.11 18138.76 18037.11 20324.30 19452.97 20046.66 20950.17 20850.33 201
v7n55.67 11957.46 13853.59 10256.06 12665.29 9861.06 10943.26 12540.17 18237.99 12340.79 17545.27 16647.09 11367.67 11166.21 11476.08 9576.82 77
CVMVSNet46.38 18352.01 17139.81 18742.40 19650.26 18446.15 18637.68 17040.03 18315.09 19746.56 12947.56 14233.72 17756.50 18855.65 18163.80 17967.53 138
MDTV_nov1_ep13_2view47.62 17649.72 18545.18 16548.05 17853.70 17354.90 15333.80 18939.90 18429.79 15438.85 17941.89 18339.17 14858.99 17055.55 18265.34 17559.17 185
TransMVSNet (Re)51.92 14855.38 14747.88 15260.95 8659.90 14153.95 15645.14 8639.47 18524.85 17643.87 15546.51 15429.15 18567.55 11365.23 12973.26 13065.16 161
test-LLR49.28 16250.29 18048.10 14955.26 13147.16 19449.52 17043.48 12039.22 18631.98 14243.65 15847.93 13741.29 14256.80 18455.36 18367.08 16961.94 175
TESTMET0.1,146.09 18450.29 18041.18 18336.91 20447.16 19449.52 17020.32 21339.22 18631.98 14243.65 15847.93 13741.29 14256.80 18455.36 18367.08 16961.94 175
TAMVS44.02 18949.18 18637.99 19347.03 18345.97 20045.04 19228.47 20339.11 18820.23 18843.22 16448.52 13328.49 18858.15 17857.95 17558.71 19151.36 197
test-mter45.30 18550.37 17939.38 18833.65 20846.99 19647.59 17918.59 21438.75 18928.00 16243.28 16346.82 15241.50 14157.28 18255.78 18066.93 17163.70 168
Anonymous2023120642.28 19245.89 19538.07 19251.96 15648.98 18843.66 19838.81 16238.74 19014.32 19926.74 20540.90 18720.94 19956.64 18754.67 18958.71 19154.59 193
EG-PatchMatch MVS56.98 10658.24 13055.50 9164.66 6368.62 6361.48 10543.63 11438.44 19141.44 10238.05 18146.18 15843.95 12771.71 6070.61 5777.87 6774.08 102
ambc45.54 19850.66 17052.63 17840.99 20338.36 19224.67 17722.62 21013.94 22029.14 18665.71 14158.06 17458.60 19367.43 139
tfpnnormal50.16 15852.19 17047.78 15456.86 12358.37 15554.15 15544.01 10438.35 19325.94 17336.10 18537.89 19934.50 17465.93 13763.42 14671.26 15265.28 159
pmmvs547.07 17951.02 17842.46 17745.18 18951.47 18148.23 17733.09 19438.17 19428.62 16146.60 12843.48 18030.74 18158.28 17758.63 17268.92 16160.48 180
test0.0.03 143.15 19146.95 19338.72 19055.26 13150.56 18342.48 20043.48 12038.16 19515.11 19635.07 18844.69 17416.47 20455.95 19254.34 19159.54 19049.87 204
CHOSEN 280x42040.80 19645.05 19935.84 19932.95 20929.57 21444.98 19323.71 21137.54 19618.42 19231.36 19647.07 14746.41 11756.71 18654.65 19048.55 21058.47 188
N_pmnet32.67 20936.85 21027.79 20840.55 20032.13 21335.80 20926.79 20637.24 1979.10 21032.02 19430.94 21016.30 20547.22 21241.21 21138.21 21437.21 211
anonymousdsp52.84 13857.78 13447.06 15640.24 20158.95 14953.70 15833.54 19136.51 19832.69 14143.88 15445.40 16247.97 11067.17 11970.28 6074.22 11582.29 46
MVS-HIRNet42.24 19341.15 20643.51 17244.06 19440.74 20635.77 21035.35 17835.38 19938.34 12025.63 20738.55 19843.48 13050.77 20447.03 20764.07 17749.98 202
pmmvs648.35 17051.64 17244.51 16951.92 15757.94 16149.44 17242.17 13534.45 20024.62 17828.87 20346.90 15029.07 18764.60 14963.08 14969.83 15965.68 157
SixPastTwentyTwo47.55 17750.25 18244.41 17047.30 18254.31 17247.81 17840.36 15333.76 20119.93 18943.75 15632.77 20942.07 13859.82 16760.94 16368.98 16066.37 149
EU-MVSNet40.63 19845.65 19734.78 20139.11 20246.94 19740.02 20534.03 18633.50 20210.37 20635.57 18737.80 20023.65 19551.90 20150.21 20261.49 18763.62 169
MDA-MVSNet-bldmvs41.36 19443.15 20439.27 18928.74 21352.68 17744.95 19440.84 14532.89 20318.13 19331.61 19522.09 21838.97 15150.45 20656.11 17864.01 17856.23 192
test20.0340.38 20044.20 20035.92 19853.73 14449.05 18738.54 20643.49 11932.55 2049.54 20927.88 20439.12 19512.24 20956.28 18954.69 18857.96 19549.83 205
MIMVSNet135.51 20541.41 20528.63 20627.53 21543.36 20538.09 20733.82 18832.01 2056.77 21621.63 21135.43 20411.97 21155.05 19653.99 19453.59 20448.36 207
new-patchmatchnet33.24 20837.20 20928.62 20744.32 19338.26 21229.68 21536.05 17631.97 2066.33 21726.59 20627.33 21211.12 21650.08 20841.05 21244.23 21245.15 209
gg-mvs-nofinetune49.07 16652.56 16645.00 16661.99 7659.78 14253.55 16141.63 13831.62 20712.08 20229.56 20153.28 11629.57 18466.27 13364.49 13871.19 15462.92 170
testgi38.71 20243.64 20232.95 20252.30 15548.63 19035.59 21135.05 18031.58 2089.03 21230.29 19740.75 18911.19 21555.30 19453.47 19754.53 20245.48 208
Gipumacopyleft25.87 21026.91 21324.66 20928.98 21220.17 21720.46 21634.62 18429.55 2099.10 2104.91 2205.31 22415.76 20649.37 21049.10 20439.03 21329.95 213
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
new_pmnet23.19 21128.17 21217.37 21017.03 21924.92 21519.66 21716.16 21727.05 2104.42 21820.77 21219.20 21912.19 21037.71 21336.38 21334.77 21531.17 212
PMVScopyleft27.84 1833.81 20735.28 21132.09 20334.13 20624.81 21632.51 21326.48 20726.41 21119.37 19023.76 20824.02 21625.18 19150.78 20347.24 20654.89 20149.95 203
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
pmmvs335.10 20638.47 20831.17 20426.37 21740.47 20734.51 21218.09 21524.75 21216.88 19523.05 20926.69 21332.69 17950.73 20551.60 19958.46 19451.98 196
gm-plane-assit44.74 18645.95 19443.33 17460.88 8746.79 19936.97 20832.24 19824.15 21311.79 20329.26 20232.97 20846.64 11465.09 14762.95 15171.45 15160.42 181
test_method12.44 21614.66 2169.85 2161.30 2233.32 22313.00 2193.21 21822.42 21410.22 20714.13 21325.64 21411.43 21419.75 21611.61 21919.96 2185.79 219
LTVRE_ROB44.17 1647.06 18050.15 18343.44 17351.39 16058.42 15342.90 19943.51 11822.27 21514.85 19841.94 17334.57 20545.43 12062.28 15862.77 15462.56 18568.83 134
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tmp_tt5.40 2173.97 2222.35 2243.26 2240.44 22017.56 21612.09 20111.48 2167.14 2221.98 21815.68 21815.49 21810.69 221
PMMVS215.84 21219.68 21411.35 21415.74 22016.95 21813.31 21817.64 21616.08 2170.36 22413.12 21411.47 2211.69 21928.82 21427.24 21519.38 21924.09 215
EMVS14.49 21412.45 21816.87 21327.02 21612.56 2218.13 22027.19 20515.05 2183.14 2206.69 2182.67 22615.08 20814.60 21918.05 21720.67 21717.56 218
E-PMN15.09 21313.19 21717.30 21127.80 21412.62 2207.81 22127.54 20414.62 2193.19 2196.89 2172.52 22715.09 20715.93 21720.22 21622.38 21619.53 216
DeepMVS_CXcopyleft6.95 2225.98 2232.25 21911.73 2202.07 22311.85 2155.43 22311.75 21311.40 2208.10 22218.38 217
MVEpermissive12.28 1913.53 21515.72 21510.96 2157.39 22115.71 2196.05 22223.73 21010.29 2213.01 2225.77 2193.41 22511.91 21220.11 21529.79 21413.67 22024.98 214
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs0.01 2170.02 2190.00 2180.00 2250.00 2250.01 2260.00 2220.01 2220.00 2260.03 2220.00 2280.01 2210.01 2210.01 2200.00 2230.06 221
test1230.01 2170.02 2190.00 2180.00 2250.00 2250.00 2270.00 2220.01 2220.00 2260.04 2210.00 2280.01 2210.00 2220.01 2200.00 2230.07 220
uanet_test0.00 2190.00 2210.00 2180.00 2250.00 2250.00 2270.00 2220.00 2240.00 2260.00 2230.00 2280.00 2230.00 2220.00 2220.00 2230.00 222
sosnet-low-res0.00 2190.00 2210.00 2180.00 2250.00 2250.00 2270.00 2220.00 2240.00 2260.00 2230.00 2280.00 2230.00 2220.00 2220.00 2230.00 222
sosnet0.00 2190.00 2210.00 2180.00 2250.00 2250.00 2270.00 2220.00 2240.00 2260.00 2230.00 2280.00 2230.00 2220.00 2220.00 2230.00 222
RE-MVS-def33.01 137
9.1481.81 13
SR-MVS71.46 3354.67 2881.54 14
our_test_351.15 16357.31 16455.12 151
MTAPA65.14 480.20 20
MTMP62.63 1678.04 26
Patchmatch-RL test1.04 225
XVS70.49 3776.96 2574.36 4454.48 4774.47 3782.24 24
X-MVStestdata70.49 3776.96 2574.36 4454.48 4774.47 3782.24 24
mPP-MVS71.67 3274.36 40
Patchmtry47.61 19248.27 17538.86 16039.59 115