This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB86.82 191.55 394.43 388.19 1083.19 11286.35 6593.60 3778.79 1895.48 391.79 293.08 2797.21 2086.34 397.06 296.27 395.46 2395.56 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
COLMAP_ROBcopyleft85.66 291.85 295.01 288.16 1188.98 5192.86 295.51 1972.17 6294.95 491.27 394.11 1797.77 1184.22 896.49 495.27 596.79 293.60 12
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
3Dnovator+83.71 388.13 4490.00 5085.94 2986.82 7191.06 1394.26 3375.39 4688.85 4185.76 3785.74 11086.92 14878.02 4593.03 4092.21 3495.39 2592.21 34
DeepC-MVS83.59 490.37 1292.56 1887.82 1491.26 2792.33 394.72 3080.04 990.01 3284.61 4293.33 2394.22 7980.59 2792.90 4392.52 2895.69 2192.57 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast81.78 587.38 4989.64 5184.75 4189.89 4290.70 2292.74 4374.45 5086.02 6682.16 6486.05 10791.99 11175.84 6591.16 6390.44 4993.41 5191.09 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS81.61 687.95 4790.29 4985.22 3887.48 6590.01 3193.79 3473.54 5488.93 3983.89 4589.40 6890.84 12480.26 3190.62 7290.19 5392.36 7092.03 35
ACMM80.67 790.67 792.46 1988.57 791.35 2289.93 3296.34 1177.36 3090.17 2986.88 2987.32 9396.63 2383.32 1395.79 1094.49 996.19 992.91 26
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP80.00 890.12 1692.30 2687.58 1890.83 3491.10 1294.96 2876.06 4087.47 5285.33 3988.91 7797.65 1482.13 1995.31 1793.44 1996.14 1092.22 33
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PMVScopyleft79.51 990.23 1492.67 1487.39 2090.16 3988.75 4293.64 3675.78 4490.00 3383.70 4792.97 2992.22 10486.13 497.01 396.79 294.94 2890.96 45
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
3Dnovator79.41 1082.21 9586.07 8477.71 10679.31 14584.61 7387.18 9961.02 16385.65 6976.11 9785.07 11685.38 15770.96 10487.22 10686.47 8591.66 7788.12 71
ACMH+79.05 1189.62 2693.08 885.58 3288.58 5589.26 3992.18 4574.23 5293.55 882.66 5892.32 3798.35 780.29 2995.28 1892.34 3195.52 2290.43 48
ACMH78.40 1288.94 3892.62 1684.65 4286.45 7487.16 5991.47 4968.79 8795.49 289.74 693.55 2098.50 277.96 4694.14 3189.57 6193.49 4789.94 52
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TAPA-MVS78.00 1385.88 5888.37 6182.96 6084.69 8788.62 4390.62 5864.22 13189.15 3888.05 1478.83 14993.71 8376.20 6190.11 8088.22 7194.00 4189.97 51
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PCF-MVS76.59 1484.11 7485.27 9482.76 6486.12 7888.30 4591.24 5169.10 8282.36 9884.45 4377.56 15990.40 12972.91 8885.88 11883.88 11592.72 6488.53 65
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PLCcopyleft76.06 1585.38 6387.46 7182.95 6185.79 8188.84 4188.86 8368.70 8887.06 5783.60 4879.02 14590.05 13077.37 5290.88 7089.66 5993.37 5286.74 79
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
OpenMVScopyleft75.38 1678.44 13281.39 13874.99 12880.46 13579.85 11679.99 15358.31 17977.34 13773.85 11277.19 16282.33 16968.60 11684.67 13481.95 13288.72 11986.40 82
IB-MVS71.28 1775.21 15377.00 15973.12 14276.76 16677.45 13583.05 13058.92 17663.01 19964.31 16159.99 21887.57 14668.64 11586.26 11682.34 13187.05 14082.36 118
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CMPMVSbinary55.74 1871.56 17276.26 16566.08 18268.11 20063.91 19763.17 21450.52 20568.79 17675.49 10170.78 20185.67 15463.54 14481.58 15777.20 16575.63 18685.86 84
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVEpermissive41.12 1951.80 21760.92 21341.16 21635.21 22634.14 22648.45 22641.39 21369.11 17419.53 22563.33 21473.80 19663.56 14367.19 20861.51 20738.85 22357.38 213
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MGCFI-Net79.42 12285.64 9272.15 14582.80 12082.09 9676.92 17465.46 12086.31 6357.48 17578.15 15391.38 11959.10 16088.23 9984.47 11191.14 8888.88 62
sasdasda81.22 10886.04 8575.60 11983.17 11383.18 8580.29 15065.82 11685.97 6767.98 14977.74 15691.51 11665.17 13588.62 9186.15 9191.17 8689.09 58
WB-MVS72.91 16782.95 12961.21 19568.59 19873.96 16573.65 19261.48 15990.88 2042.55 21194.18 1695.80 4353.02 18885.42 12375.73 17567.97 20664.65 191
dmvs_re68.11 18670.60 18765.21 18777.91 16063.73 19876.72 17559.65 17255.93 21547.79 20659.79 21979.91 17549.72 19882.48 15076.98 16879.48 18075.41 162
TPM-MVS86.18 7783.43 8487.57 9378.77 8769.75 20684.63 16062.24 14989.88 10088.48 66
Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025
FA-MVS(training)78.93 13080.63 14076.93 11179.79 14175.57 15485.44 11361.95 15577.19 13878.97 8584.82 11982.47 16666.43 13084.09 13880.13 14989.02 11380.15 139
test250675.32 15276.87 16173.50 13784.55 9180.37 11179.63 15973.23 5782.64 9355.41 18476.87 16545.42 22959.61 15790.35 7686.46 8688.58 12375.98 157
test111179.67 11884.40 11074.16 13385.29 8479.56 12081.16 14473.13 5984.65 8056.08 18088.38 8286.14 15260.49 15389.78 8285.59 9888.79 11776.68 154
ECVR-MVScopyleft79.31 12684.20 11673.60 13584.55 9180.37 11179.63 15973.23 5782.64 9355.98 18187.50 8986.85 14959.61 15790.35 7686.46 8688.58 12375.26 164
DVP-MVS++90.50 1094.18 486.21 2792.52 790.29 2895.29 2276.02 4194.24 582.82 5595.84 597.56 1576.82 5593.13 3891.20 4493.78 4597.01 1
GeoE81.92 10083.87 12079.66 9484.64 8879.87 11589.75 7465.90 11476.12 14275.87 9984.62 12292.23 10371.96 9686.83 11083.60 11889.83 10283.81 101
test_method22.69 22026.99 22217.67 2202.13 2284.31 22927.50 2274.53 22337.94 22324.52 22436.20 22451.40 22715.26 22229.86 22317.09 22332.07 22512.16 224
pmnet_mix0262.60 20070.81 18653.02 21066.56 20750.44 21762.81 21546.84 20879.13 13143.76 21087.45 9090.75 12639.85 21170.48 20157.09 21258.27 21560.32 206
RE-MVS-def87.10 28
SED-MVS88.96 3792.37 2284.99 4088.64 5489.65 3795.11 2575.98 4290.73 2480.15 7794.21 1594.51 7576.59 5692.94 4191.17 4593.46 5093.37 22
SF-MVS87.85 4890.95 4484.22 4988.17 6087.90 5390.80 5671.80 6589.28 3582.70 5789.90 6195.37 5577.91 4791.69 5490.04 5493.95 4492.47 29
9.1489.43 133
uanet_test0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
ET-MVSNet_ETH3D74.71 15674.19 17775.31 12379.22 14775.29 15582.70 13464.05 13465.45 18870.96 13277.15 16357.70 21765.89 13184.40 13681.65 13689.03 11277.67 152
UniMVSNet_ETH3D85.39 6291.12 4378.71 9990.48 3783.72 7981.76 14082.41 693.84 664.43 16095.41 798.76 163.72 14293.63 3389.74 5789.47 10882.74 114
EIA-MVS78.57 13177.90 15279.35 9787.24 6980.71 10886.16 10964.03 13562.63 20373.49 11573.60 18776.12 19173.83 8288.49 9484.93 10591.36 8178.78 146
ETV-MVS79.01 12977.98 15180.22 9186.69 7279.73 11888.80 8468.27 9463.22 19871.56 12770.25 20473.63 19773.66 8490.30 7886.77 8492.33 7181.95 121
CS-MVS83.57 8084.79 10582.14 6883.83 10481.48 10087.29 9766.54 10572.73 15680.05 7884.04 12593.12 9480.35 2889.50 8386.34 8894.76 3486.32 83
DVP-MVScopyleft89.40 2792.69 1385.56 3489.01 5089.85 3393.72 3575.42 4592.28 1180.49 7294.36 1394.87 6681.46 2492.49 4991.42 4193.27 5393.54 17
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SR-MVS91.82 1380.80 795.53 50
DPM-MVS81.42 10482.11 13480.62 8687.54 6485.30 7190.18 7168.96 8481.00 11779.15 8470.45 20283.29 16367.67 12182.81 14683.46 11990.19 9588.48 66
thisisatest053075.54 15175.95 17075.05 12575.08 17973.56 16682.15 13860.31 16669.17 17269.32 13879.02 14558.78 21672.17 9283.88 13983.08 12691.30 8384.20 97
Anonymous20240521184.68 10783.92 10179.45 12179.03 16367.79 9882.01 10188.77 8092.58 9855.93 17386.68 11184.26 11288.92 11578.98 144
DCV-MVSNet80.04 11485.67 9173.48 13882.91 11781.11 10680.44 14966.06 11085.01 7662.53 16778.84 14894.43 7758.51 16388.66 9085.91 9490.41 9385.73 86
tttt051775.86 14976.23 16675.42 12175.55 17874.06 16482.73 13360.31 16669.24 17170.24 13579.18 14458.79 21572.17 9284.49 13583.08 12691.54 7884.80 90
our_test_373.27 18370.91 17483.26 128
thisisatest051581.18 11084.32 11277.52 11076.73 17274.84 16085.06 11961.37 16081.05 11673.95 11188.79 7989.25 13675.49 6885.98 11784.78 10792.53 6885.56 88
SMA-MVScopyleft90.13 1592.26 2787.64 1791.68 1690.44 2695.22 2477.34 3290.79 2387.80 1690.42 5792.05 10979.05 3593.89 3293.59 1894.77 3294.62 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft89.81 2292.34 2486.86 2389.69 4491.00 1695.53 1876.91 3388.18 4683.43 5393.48 2195.19 5881.07 2692.75 4592.07 3694.55 3693.74 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
thres100view90069.86 17772.97 18466.24 17977.97 15872.49 17073.29 19359.12 17466.81 18050.82 20267.30 20975.67 19350.54 19778.24 17479.40 15385.71 15770.88 176
tfpnnormal77.16 13784.26 11368.88 16681.02 13375.02 15776.52 17763.30 14487.29 5452.40 19591.24 5193.97 8054.85 17985.46 12281.08 13985.18 16175.76 160
tfpn200view972.01 17075.40 17268.06 17177.97 15876.44 14477.04 17262.67 15066.81 18050.82 20267.30 20975.67 19352.46 19485.06 12682.64 12987.41 13673.86 168
CHOSEN 280x42056.32 21458.85 22053.36 20951.63 22039.91 22469.12 20838.61 21556.29 21436.79 22048.84 22162.59 20763.39 14673.61 19367.66 19660.61 21163.07 198
CANet82.84 9084.60 10880.78 8187.30 6785.20 7290.23 6969.00 8372.16 16078.73 8884.49 12390.70 12769.54 11287.65 10186.17 9089.87 10185.84 85
Fast-Effi-MVS+-dtu76.92 13877.18 15776.62 11479.55 14279.17 12284.80 12077.40 2964.46 19368.75 14470.81 20086.57 15063.36 14781.74 15681.76 13585.86 15475.78 159
Effi-MVS+-dtu82.04 9883.39 12780.48 8985.48 8386.57 6488.40 8668.28 9369.04 17573.13 11876.26 17091.11 12374.74 7588.40 9587.76 7392.84 6384.57 93
CANet_DTU75.04 15478.45 14771.07 14977.27 16377.96 13183.88 12658.00 18064.11 19468.67 14575.65 17788.37 14253.92 18482.05 15381.11 13884.67 16379.88 140
MVS_030484.73 7086.19 8183.02 5788.32 5686.71 6291.55 4870.87 7073.79 15082.88 5485.13 11493.35 8972.55 8988.62 9187.69 7491.93 7588.05 72
MSP-MVS88.51 4291.36 4085.19 3990.63 3692.01 495.29 2277.52 2790.48 2780.21 7690.21 5896.08 3476.38 5988.30 9791.42 4191.12 8991.01 44
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
IterMVS-SCA-FT77.23 13679.18 14674.96 12976.67 17379.85 11675.58 18761.34 16173.10 15173.79 11386.23 10479.61 17679.00 3680.28 16775.50 17683.41 17279.70 141
TSAR-MVS + MP.89.67 2492.25 2886.65 2591.53 1890.98 1796.15 1373.30 5687.88 4981.83 6692.92 3095.15 6182.23 1893.58 3492.25 3394.87 2993.01 25
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OPM-MVS89.82 2192.24 2986.99 2290.86 3389.35 3895.07 2775.91 4391.16 1686.87 3091.07 5297.29 1879.13 3493.32 3591.99 3794.12 4091.49 40
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP89.86 1991.96 3387.42 1991.00 3090.08 3096.00 1576.61 3689.28 3587.73 1790.04 5991.80 11378.71 3894.36 2893.82 1794.48 3794.32 6
ambc88.38 6091.62 1787.97 5284.48 12388.64 4487.93 1587.38 9294.82 6974.53 7689.14 8883.86 11785.94 15386.84 78
CS-MVS-test83.59 7984.86 10382.10 6983.04 11581.05 10791.58 4767.48 10272.52 15778.42 9084.75 12091.82 11278.62 4191.98 5087.54 7693.48 4884.35 95
Effi-MVS+82.33 9483.87 12080.52 8884.51 9481.32 10287.53 9468.05 9674.94 14879.67 8082.37 13592.31 10272.21 9185.06 12686.91 8191.18 8584.20 97
new-patchmatchnet62.59 20173.79 18049.53 21476.98 16553.57 21153.46 22354.64 18985.43 7228.81 22291.94 3996.41 2825.28 22076.80 17853.66 21857.99 21658.69 209
pmmvs680.46 11188.34 6371.26 14881.96 12777.51 13477.54 16868.83 8693.72 755.92 18293.94 1998.03 955.94 17289.21 8785.61 9787.36 13780.38 132
pmmvs568.91 18174.35 17662.56 19267.45 20466.78 18971.70 19651.47 20267.17 17956.25 17982.41 13388.59 14147.21 20473.21 19574.23 17881.30 17868.03 186
Fast-Effi-MVS+81.42 10483.82 12278.62 10182.24 12580.62 10987.72 9163.51 14273.01 15274.75 10783.80 12892.70 9773.44 8688.15 10085.26 10190.05 9683.17 106
Anonymous2023121179.37 12385.78 8871.89 14682.87 11979.66 11978.77 16563.93 13983.36 8759.39 17190.54 5494.66 7156.46 17087.38 10384.12 11389.92 9980.74 129
pmmvs-eth3d79.64 11982.06 13576.83 11280.05 13872.64 16987.47 9566.59 10480.83 11873.50 11489.32 7093.20 9167.78 11980.78 16381.64 13785.58 15876.01 156
GG-mvs-BLEND41.63 21960.36 21419.78 2190.14 23166.04 19155.66 2220.17 22757.64 2132.42 23051.82 22069.42 2020.28 22764.11 21658.29 21060.02 21255.18 214
Anonymous2023120667.28 18873.41 18260.12 19776.45 17563.61 19974.21 19056.52 18376.35 13942.23 21275.81 17690.47 12841.51 21074.52 18669.97 19269.83 20163.17 197
MTAPA89.37 994.85 67
MTMP90.54 595.16 60
gm-plane-assit71.56 17269.99 18873.39 13984.43 9573.21 16790.42 6851.36 20384.08 8376.00 9891.30 4937.09 23059.01 16173.65 19270.24 19179.09 18360.37 205
train_agg86.67 5387.73 6985.43 3591.51 1982.72 8994.47 3174.22 5381.71 10381.54 7089.20 7292.87 9578.33 4390.12 7988.47 6892.51 6989.04 60
gg-mvs-nofinetune72.68 16875.21 17469.73 16081.48 13069.04 18270.48 20076.67 3586.92 5867.80 15288.06 8564.67 20542.12 20977.60 17573.65 18079.81 17966.57 187
SCA68.54 18467.52 19569.73 16067.79 20175.04 15676.96 17368.94 8566.41 18267.86 15174.03 18460.96 20865.55 13468.99 20565.67 19971.30 19761.54 204
MS-PatchMatch71.18 17573.99 17967.89 17477.16 16471.76 17277.18 17156.38 18467.35 17855.04 18774.63 18275.70 19262.38 14876.62 18075.97 17379.22 18275.90 158
Patchmatch-RL test4.13 230
tmp_tt13.54 22116.73 2276.42 2288.49 2292.36 22428.69 22527.44 22318.40 22513.51 2323.70 22433.23 22236.26 22222.54 227
canonicalmvs81.22 10886.04 8575.60 11983.17 11383.18 8580.29 15065.82 11685.97 6767.98 14977.74 15691.51 11665.17 13588.62 9186.15 9191.17 8689.09 58
anonymousdsp85.62 5990.53 4679.88 9264.64 21276.35 14596.28 1253.53 19685.63 7081.59 6992.81 3197.71 1286.88 294.56 2592.83 2496.35 693.84 9
v14419283.43 8384.97 10081.63 7583.43 10881.23 10489.42 7966.04 11281.45 11186.40 3491.46 4795.70 4775.76 6682.14 15180.23 14888.74 11882.57 115
v192192083.49 8284.94 10181.80 7283.78 10581.20 10589.50 7765.91 11381.64 10587.18 2491.70 4495.39 5475.85 6481.56 15880.27 14788.60 12182.80 112
FC-MVSNet-train79.20 12786.29 8070.94 15284.06 9777.67 13385.68 11064.11 13382.90 9152.22 19792.57 3693.69 8449.52 19988.30 9786.93 8090.03 9781.95 121
UA-Net89.02 3391.44 3986.20 2894.88 189.84 3494.76 2977.45 2885.41 7374.79 10688.83 7888.90 13978.67 4096.06 795.45 496.66 395.58 2
v119283.61 7885.23 9581.72 7384.05 9882.15 9589.54 7666.20 10881.38 11286.76 3291.79 4396.03 3674.88 7481.81 15580.92 14188.91 11682.50 116
FC-MVSNet-test75.91 14883.59 12566.95 17776.63 17469.07 18185.33 11764.97 12484.87 7841.95 21393.17 2587.04 14747.78 20291.09 6685.56 9985.06 16274.34 165
v114483.22 8585.01 9881.14 7783.76 10681.60 9988.95 8265.58 11981.89 10285.80 3691.68 4595.84 4174.04 8082.12 15280.56 14488.70 12081.41 125
sosnet-low-res0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
HFP-MVS90.32 1392.37 2287.94 1391.46 2190.91 1895.69 1779.49 1289.94 3483.50 5089.06 7394.44 7681.68 2294.17 3094.19 1395.81 1793.87 7
v14879.33 12582.32 13375.84 11880.14 13775.74 15081.98 13957.06 18281.51 10979.36 8389.42 6796.42 2771.32 9981.54 15975.29 17785.20 16076.32 155
sosnet0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
v7n87.11 5090.46 4883.19 5685.22 8583.69 8090.03 7368.20 9591.01 1986.71 3394.80 1098.46 477.69 4891.10 6585.98 9391.30 8388.19 68
DI_MVS_plusplus_trai77.64 13579.64 14375.31 12379.87 14076.89 14281.55 14363.64 14076.21 14172.03 12485.59 11182.97 16566.63 12679.27 17177.78 16088.14 12978.76 147
HPM-MVS++copyleft88.74 4089.54 5287.80 1592.58 685.69 6995.10 2678.01 2287.08 5687.66 1987.89 8692.07 10780.28 3090.97 6991.41 4393.17 5791.69 37
XVS91.28 2591.23 896.89 287.14 2594.53 7295.84 15
v124083.57 8084.94 10181.97 7084.05 9881.27 10389.46 7866.06 11081.31 11387.50 2091.88 4295.46 5276.25 6081.16 16080.51 14588.52 12682.98 110
pm-mvs178.21 13385.68 9069.50 16380.38 13675.73 15176.25 17865.04 12387.59 5154.47 18893.16 2695.99 4054.20 18186.37 11482.98 12886.64 14277.96 151
X-MVStestdata91.28 2591.23 896.89 287.14 2594.53 7295.84 15
X-MVS89.36 2890.73 4587.77 1691.50 2091.23 896.76 478.88 1787.29 5487.14 2578.98 14794.53 7276.47 5795.25 1994.28 1195.85 1493.55 16
v882.20 9684.56 10979.45 9582.42 12381.65 9887.26 9864.27 13079.36 12981.70 6891.04 5395.75 4573.30 8782.82 14579.18 15587.74 13382.09 119
v1083.17 8785.22 9680.78 8183.26 11182.99 8788.66 8566.49 10679.24 13083.60 4891.46 4795.47 5174.12 7882.60 14980.66 14288.53 12584.11 99
v2v48282.20 9684.26 11379.81 9382.67 12280.18 11487.67 9263.96 13881.69 10484.73 4191.27 5096.33 3172.05 9581.94 15479.56 15287.79 13278.84 145
V4279.59 12183.59 12574.93 13069.61 19577.05 14186.59 10755.84 18578.42 13477.29 9489.84 6395.08 6374.12 7883.05 14280.11 15086.12 14981.59 124
SD-MVS89.91 1892.23 3087.19 2191.31 2489.79 3594.31 3275.34 4789.26 3781.79 6792.68 3295.08 6383.88 1193.10 3992.69 2596.54 493.02 24
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS75.01 15576.39 16473.39 13978.37 15375.66 15280.03 15258.40 17870.51 16675.85 10083.24 12976.14 19063.75 14177.28 17776.62 17083.97 16775.30 163
MSLP-MVS++86.29 5789.10 5583.01 5885.71 8289.79 3587.04 10474.39 5185.17 7578.92 8677.59 15893.57 8682.60 1793.23 3691.88 3989.42 10992.46 30
APDe-MVScopyleft89.85 2092.91 1086.29 2690.47 3891.34 796.04 1476.41 3991.11 1778.50 8993.44 2295.82 4281.55 2393.16 3791.90 3894.77 3293.58 15
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
TSAR-MVS + COLMAP85.51 6088.36 6282.19 6786.05 7987.69 5490.50 6570.60 7286.40 6182.33 5989.69 6592.52 9974.01 8187.53 10286.84 8389.63 10487.80 74
CVMVSNet75.65 15077.62 15573.35 14171.95 18869.89 17883.04 13160.84 16569.12 17368.76 14379.92 14378.93 17973.64 8581.02 16181.01 14081.86 17783.43 104
TSAR-MVS + ACMM89.14 2992.11 3285.67 3189.27 4790.61 2490.98 5279.48 1388.86 4079.80 7993.01 2893.53 8883.17 1592.75 4592.45 2991.32 8293.59 13
pmmvs475.92 14777.48 15674.10 13478.21 15670.94 17384.06 12464.78 12575.13 14768.47 14784.12 12483.32 16264.74 13975.93 18579.14 15684.31 16573.77 169
EU-MVSNet76.48 14280.53 14171.75 14767.62 20270.30 17681.74 14154.06 19375.47 14571.01 13180.10 14093.17 9373.67 8383.73 14077.85 15982.40 17483.07 107
test-LLR62.15 20259.46 21865.29 18679.07 14852.66 21369.46 20662.93 14750.76 22153.81 19063.11 21558.91 21352.87 18966.54 21162.34 20373.59 18861.87 201
TESTMET0.1,157.21 21059.46 21854.60 20850.95 22152.66 21369.46 20626.91 22050.76 22153.81 19063.11 21558.91 21352.87 18966.54 21162.34 20373.59 18861.87 201
test-mter59.39 20761.59 21156.82 20253.21 21954.82 20973.12 19526.57 22153.19 21956.31 17864.71 21260.47 20956.36 17168.69 20664.27 20175.38 18765.00 189
ACMMPR91.30 492.88 1189.46 491.92 1191.61 596.60 579.46 1490.08 3188.53 1389.54 6695.57 4884.25 795.24 2094.27 1295.97 1193.85 8
testgi68.20 18576.05 16859.04 19879.99 13967.32 18881.16 14451.78 20184.91 7739.36 21873.42 18895.19 5832.79 21876.54 18270.40 19069.14 20364.55 192
test20.0369.91 17676.20 16762.58 19184.01 10067.34 18775.67 18665.88 11579.98 12540.28 21782.65 13189.31 13539.63 21277.41 17673.28 18169.98 20063.40 196
thres600view774.34 15878.43 14869.56 16280.47 13476.28 14678.65 16662.56 15177.39 13652.53 19374.03 18476.78 18855.90 17485.06 12685.19 10287.25 13874.29 166
ADS-MVSNet56.89 21161.09 21252.00 21259.48 21548.10 21958.02 21954.37 19272.82 15449.19 20475.32 17965.97 20437.96 21359.34 22054.66 21652.99 22151.42 217
MP-MVScopyleft90.84 691.95 3489.55 392.92 490.90 1996.56 679.60 1186.83 5988.75 1289.00 7494.38 7884.01 994.94 2494.34 1095.45 2493.24 23
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs0.93 2221.37 2240.41 2230.36 2300.36 2310.62 2310.39 2251.48 2260.18 2322.41 2261.31 2340.41 2261.25 2261.08 2250.48 2281.68 225
thres40073.13 16476.99 16068.62 16779.46 14374.93 15977.23 17061.23 16275.54 14452.31 19672.20 19177.10 18654.89 17782.92 14382.62 13086.57 14473.66 171
test1231.06 2211.41 2230.64 2220.39 2290.48 2300.52 2320.25 2261.11 2271.37 2312.01 2271.98 2330.87 2251.43 2251.27 2240.46 2291.62 226
thres20072.41 16976.00 16968.21 17078.28 15476.28 14674.94 18862.56 15172.14 16151.35 20169.59 20776.51 18954.89 17785.06 12680.51 14587.25 13871.92 174
test0.0.03 161.79 20465.33 20057.65 20179.07 14864.09 19668.51 20962.93 14761.59 20633.71 22161.58 21771.58 20133.43 21770.95 20068.68 19568.26 20558.82 208
pmmvs362.72 19968.71 19255.74 20450.74 22257.10 20670.05 20228.82 21961.57 20757.39 17671.19 19885.73 15353.96 18373.36 19469.43 19473.47 19062.55 199
EMVS58.97 20962.63 21054.70 20766.26 21148.71 21861.74 21642.71 21172.80 15546.00 20873.01 19071.66 19957.91 16680.41 16650.68 22153.55 22041.11 222
E-PMN59.07 20862.79 20854.72 20667.01 20647.81 22060.44 21843.40 21072.95 15344.63 20970.42 20373.17 19858.73 16280.97 16251.98 21954.14 21942.26 221
PGM-MVS90.42 1191.58 3789.05 591.77 1491.06 1396.51 778.94 1685.41 7387.67 1887.02 9795.26 5783.62 1295.01 2393.94 1595.79 1993.40 20
MCST-MVS84.79 6986.48 7782.83 6387.30 6787.03 6190.46 6769.33 8183.14 8982.21 6381.69 13892.14 10675.09 7287.27 10584.78 10792.58 6589.30 57
MVS_Test76.72 14079.40 14573.60 13578.85 15174.99 15879.91 15461.56 15869.67 16972.44 12085.98 10890.78 12563.50 14578.30 17375.74 17485.33 15980.31 137
MDA-MVSNet-bldmvs76.51 14182.87 13169.09 16550.71 22374.72 16284.05 12560.27 16881.62 10671.16 13088.21 8491.58 11469.62 11192.78 4477.48 16378.75 18473.69 170
CDPH-MVS86.66 5488.52 5984.48 4589.61 4588.27 4692.86 4272.69 6180.55 12182.71 5686.92 9993.32 9075.55 6791.00 6889.85 5693.47 4989.71 53
casdiffmvspermissive79.93 11584.11 11875.05 12581.41 13278.99 12482.95 13262.90 14981.53 10768.60 14691.94 3996.03 3665.84 13282.89 14477.07 16688.59 12280.34 136
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive76.74 13981.61 13771.06 15075.64 17774.45 16380.68 14857.57 18177.48 13567.62 15388.95 7593.94 8161.98 15079.74 16876.18 17182.85 17380.50 131
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline268.71 18368.34 19369.14 16475.69 17669.70 18076.60 17655.53 18760.13 20862.07 16966.76 21160.35 21060.77 15276.53 18374.03 17984.19 16670.88 176
baseline169.62 17873.55 18165.02 18978.95 15070.39 17571.38 19962.03 15470.97 16547.95 20578.47 15268.19 20347.77 20379.65 17076.94 16982.05 17570.27 178
PMMVS248.13 21864.06 20329.55 21844.06 22536.69 22551.95 22429.97 21874.75 1498.90 22976.02 17491.24 1227.53 22373.78 19155.91 21334.87 22440.01 223
PM-MVS80.42 11383.63 12476.67 11378.04 15772.37 17187.14 10060.18 16980.13 12371.75 12686.12 10693.92 8277.08 5386.56 11285.12 10385.83 15581.18 126
PS-CasMVS89.07 3293.23 784.21 5092.44 888.23 4890.54 6282.95 390.50 2675.31 10395.80 698.37 671.16 10096.30 593.32 2192.88 6190.11 50
UniMVSNet_NR-MVSNet84.62 7188.00 6780.68 8588.18 5983.83 7787.06 10276.47 3881.46 11070.49 13393.24 2495.56 4968.13 11790.43 7388.47 6893.78 4583.02 108
PEN-MVS88.86 3992.92 984.11 5292.92 488.05 5190.83 5582.67 591.04 1874.83 10595.97 398.47 370.38 10795.70 1392.43 3093.05 6088.78 64
TransMVSNet (Re)79.05 12886.66 7570.18 15883.32 11075.99 14877.54 16863.98 13790.68 2555.84 18394.80 1096.06 3553.73 18586.27 11583.22 12586.65 14179.61 142
DTE-MVSNet88.99 3592.77 1284.59 4393.31 288.10 4990.96 5383.09 291.38 1476.21 9696.03 298.04 870.78 10695.65 1492.32 3293.18 5687.84 73
DU-MVS84.88 6888.27 6480.92 7988.30 5783.59 8187.06 10278.35 1980.64 11970.49 13392.67 3396.91 2168.13 11791.79 5189.29 6493.20 5583.02 108
UniMVSNet (Re)84.95 6788.53 5880.78 8187.82 6384.21 7588.03 8876.50 3781.18 11469.29 13992.63 3596.83 2269.07 11491.23 6289.60 6093.97 4384.00 100
CP-MVSNet88.71 4192.63 1584.13 5192.39 988.09 5090.47 6682.86 488.79 4275.16 10494.87 997.68 1371.05 10296.16 693.18 2392.85 6289.64 54
WR-MVS_H88.99 3593.28 683.99 5391.92 1189.13 4091.95 4683.23 190.14 3071.92 12595.85 498.01 1071.83 9795.82 993.19 2293.07 5990.83 47
WR-MVS89.79 2393.66 585.27 3791.32 2388.27 4693.49 3879.86 1092.75 975.37 10296.86 198.38 575.10 7195.93 894.07 1496.46 589.39 56
NR-MVSNet82.89 8987.43 7277.59 10883.91 10283.59 8187.10 10178.35 1980.64 11968.85 14292.67 3396.50 2454.19 18287.19 10888.68 6793.16 5882.75 113
Baseline_NR-MVSNet82.79 9186.51 7678.44 10388.30 5775.62 15387.81 9074.97 4881.53 10766.84 15594.71 1296.46 2566.90 12591.79 5183.37 12485.83 15582.09 119
TranMVSNet+NR-MVSNet85.23 6589.38 5380.39 9088.78 5383.77 7887.40 9676.75 3485.47 7168.99 14195.18 897.55 1667.13 12491.61 5689.13 6593.26 5482.95 111
TSAR-MVS + GP.85.32 6487.41 7382.89 6290.07 4185.69 6989.07 8172.99 6082.45 9674.52 10985.09 11587.67 14579.24 3391.11 6490.41 5091.45 7989.45 55
mPP-MVS93.05 395.77 44
SixPastTwentyTwo89.14 2992.19 3185.58 3284.62 8982.56 9290.53 6371.93 6491.95 1285.89 3594.22 1497.25 1985.42 595.73 1291.71 4095.08 2791.89 36
casdiffmvs_mvgpermissive81.50 10385.70 8976.60 11582.68 12180.54 11083.50 12764.49 12983.40 8672.53 11992.15 3895.40 5365.84 13284.69 13381.89 13490.59 9281.86 123
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LGP-MVS_train90.56 992.38 2188.43 990.88 3291.15 1195.35 2177.65 2586.26 6587.23 2390.45 5697.35 1783.20 1495.44 1693.41 2096.28 892.63 27
baseline69.33 18075.37 17362.28 19366.54 20866.67 19073.95 19148.07 20666.10 18359.26 17282.45 13286.30 15154.44 18074.42 18873.25 18271.42 19578.43 150
EPNet_dtu71.90 17173.03 18370.59 15478.28 15461.64 20182.44 13664.12 13263.26 19769.74 13671.47 19482.41 16751.89 19578.83 17278.01 15777.07 18575.60 161
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268868.80 18271.09 18566.13 18169.11 19768.89 18378.98 16454.68 18861.63 20556.69 17771.56 19378.39 18167.69 12072.13 19672.01 18669.63 20273.02 173
EPNet79.36 12479.44 14479.27 9889.51 4677.20 13988.35 8777.35 3168.27 17774.29 11076.31 16879.22 17759.63 15685.02 13085.45 10086.49 14584.61 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
APD-MVScopyleft89.14 2991.25 4286.67 2491.73 1591.02 1595.50 2077.74 2484.04 8579.47 8291.48 4694.85 6781.14 2592.94 4192.20 3594.47 3892.24 32
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS86.93 5188.98 5684.54 4490.11 4087.41 5793.23 4073.47 5586.31 6382.25 6182.96 13092.15 10576.04 6291.69 5490.69 4792.17 7391.64 39
NCCC86.74 5287.97 6885.31 3690.64 3587.25 5893.27 3974.59 4986.50 6083.72 4675.92 17592.39 10177.08 5391.72 5390.68 4892.57 6791.30 42
CP-MVS91.09 592.33 2589.65 292.16 1090.41 2796.46 1080.38 888.26 4589.17 1087.00 9896.34 3083.95 1095.77 1194.72 795.81 1793.78 10
NP-MVS78.65 133
EG-PatchMatch MVS84.35 7287.55 7080.62 8686.38 7582.24 9486.75 10564.02 13684.24 8178.17 9289.38 6995.03 6578.78 3789.95 8186.33 8989.59 10585.65 87
tpm cat164.79 19562.74 20967.17 17574.61 18165.91 19276.18 17959.32 17364.88 19266.41 15771.21 19753.56 22559.17 15961.53 21758.16 21167.33 20763.95 193
SteuartSystems-ACMMP90.00 1791.73 3587.97 1291.21 2990.29 2896.51 778.00 2386.33 6285.32 4088.23 8394.67 7082.08 2095.13 2293.88 1694.72 3593.59 13
Skip Steuart: Steuart Systems R&D Blog.
CostFormer66.81 19066.94 19666.67 17872.79 18668.25 18479.55 16255.57 18665.52 18762.77 16576.98 16460.09 21156.73 16965.69 21362.35 20272.59 19169.71 181
CR-MVSNet69.56 17968.34 19370.99 15172.78 18767.63 18564.47 21267.74 9959.93 20972.30 12180.10 14056.77 21965.04 13771.64 19772.91 18383.61 17069.40 182
Patchmtry56.88 20864.47 21267.74 9972.30 121
PatchT66.25 19166.76 19765.67 18555.87 21860.75 20270.17 20159.00 17559.80 21172.30 12178.68 15054.12 22465.04 13771.64 19772.91 18371.63 19469.40 182
tpmrst59.42 20660.02 21658.71 19967.56 20353.10 21266.99 21051.88 20063.80 19657.68 17476.73 16656.49 22148.73 20056.47 22155.55 21459.43 21458.02 211
tpm62.79 19863.25 20662.26 19470.09 19453.78 21071.65 19747.31 20765.72 18676.70 9580.62 13956.40 22248.11 20164.20 21558.54 20959.70 21363.47 195
DELS-MVS79.71 11783.74 12375.01 12779.31 14582.68 9084.79 12160.06 17075.43 14669.09 14086.13 10589.38 13467.16 12385.12 12583.87 11689.65 10383.57 103
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
RPMNet67.02 18963.99 20470.56 15571.55 19067.63 18575.81 18069.44 7959.93 20963.24 16364.32 21347.51 22859.68 15570.37 20269.64 19383.64 16968.49 185
MVSTER68.08 18769.73 18966.16 18066.33 21070.06 17775.71 18552.36 19955.18 21858.64 17370.23 20556.72 22057.34 16779.68 16976.03 17286.61 14380.20 138
CPTT-MVS89.63 2590.52 4788.59 690.95 3190.74 2195.71 1679.13 1587.70 5085.68 3880.05 14295.74 4684.77 694.28 2992.68 2695.28 2692.45 31
GBi-Net73.17 16277.64 15367.95 17276.76 16677.36 13675.77 18264.57 12662.99 20051.83 19876.05 17177.76 18352.73 19185.57 11983.39 12186.04 15080.37 133
PVSNet_Blended_VisFu83.00 8884.16 11781.65 7482.17 12686.01 6688.03 8871.23 6876.05 14379.54 8183.88 12683.44 16177.49 5187.38 10384.93 10591.41 8087.40 77
PVSNet_BlendedMVS76.45 14378.12 14974.49 13176.76 16678.46 12779.65 15763.26 14565.42 18973.15 11675.05 18088.96 13766.51 12882.73 14777.66 16187.61 13478.60 148
PVSNet_Blended76.45 14378.12 14974.49 13176.76 16678.46 12779.65 15763.26 14565.42 18973.15 11675.05 18088.96 13766.51 12882.73 14777.66 16187.61 13478.60 148
FMVSNet556.37 21360.14 21551.98 21360.83 21459.58 20366.85 21142.37 21252.68 22041.33 21547.09 22254.68 22335.28 21573.88 19070.77 18965.24 21062.26 200
test173.17 16277.64 15367.95 17276.76 16677.36 13675.77 18264.57 12662.99 20051.83 19876.05 17177.76 18352.73 19185.57 11983.39 12186.04 15080.37 133
new_pmnet52.29 21663.16 20739.61 21758.89 21644.70 22248.78 22534.73 21765.88 18517.85 22673.42 18880.00 17423.06 22167.00 20962.28 20554.36 21848.81 218
FMVSNet371.40 17475.20 17566.97 17675.00 18076.59 14374.29 18964.57 12662.99 20051.83 19876.05 17177.76 18351.49 19676.58 18177.03 16784.62 16479.43 143
dps65.14 19264.50 20265.89 18471.41 19165.81 19371.44 19861.59 15758.56 21261.43 17075.45 17852.70 22658.06 16569.57 20464.65 20071.39 19664.77 190
FMVSNet274.43 15779.70 14268.27 16976.76 16677.36 13675.77 18265.36 12172.28 15852.97 19281.92 13685.61 15552.73 19180.66 16479.73 15186.04 15080.37 133
FMVSNet178.20 13484.83 10470.46 15678.62 15279.03 12377.90 16767.53 10183.02 9055.10 18687.19 9693.18 9255.65 17585.57 11983.39 12187.98 13082.40 117
N_pmnet54.95 21565.90 19842.18 21566.37 20943.86 22357.92 22039.79 21479.54 12817.24 22786.31 10287.91 14425.44 21964.68 21451.76 22046.33 22247.23 219
UGNet79.62 12085.91 8772.28 14473.52 18283.91 7686.64 10669.51 7779.85 12662.57 16685.82 10989.63 13153.18 18688.39 9687.35 7788.28 12886.43 81
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EC-MVSNet83.70 7784.77 10682.46 6687.47 6682.79 8885.50 11272.00 6369.81 16877.66 9385.02 11789.63 13178.14 4490.40 7487.56 7594.00 4188.16 69
MDTV_nov1_ep13_2view72.96 16675.59 17169.88 15971.15 19264.86 19482.31 13754.45 19176.30 14078.32 9186.52 10191.58 11461.35 15176.80 17866.83 19871.70 19266.26 188
MDTV_nov1_ep1364.96 19364.77 20165.18 18867.08 20562.46 20075.80 18151.10 20462.27 20469.74 13674.12 18362.65 20655.64 17668.19 20762.16 20671.70 19261.57 203
MIMVSNet173.40 16081.85 13663.55 19072.90 18564.37 19584.58 12253.60 19590.84 2153.92 18987.75 8796.10 3345.31 20585.37 12479.32 15470.98 19969.18 184
MIMVSNet63.02 19669.02 19156.01 20368.20 19959.26 20470.01 20353.79 19471.56 16341.26 21671.38 19582.38 16836.38 21471.43 19967.32 19766.45 20959.83 207
IterMVS-LS79.79 11682.56 13276.56 11681.83 12877.85 13279.90 15569.42 8078.93 13271.21 12990.47 5585.20 15870.86 10580.54 16580.57 14386.15 14884.36 94
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet73.07 16577.02 15868.46 16881.62 12972.89 16879.56 16170.78 7169.56 17052.52 19477.37 16181.12 17242.60 20784.20 13783.93 11483.65 16870.07 180
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IterMVS73.62 15976.53 16370.23 15771.83 18977.18 14080.69 14753.22 19772.23 15966.62 15685.21 11378.96 17869.54 11276.28 18471.63 18779.45 18174.25 167
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS_111021_LR83.20 8685.33 9380.73 8482.88 11878.23 13089.61 7565.23 12282.08 10081.19 7185.31 11292.04 11075.22 6989.50 8385.90 9590.24 9484.23 96
HQP-MVS85.02 6686.41 7983.40 5489.19 4886.59 6391.28 5071.60 6782.79 9283.48 5178.65 15193.54 8772.55 8986.49 11385.89 9692.28 7290.95 46
QAPM80.43 11284.34 11175.86 11779.40 14482.06 9779.86 15661.94 15683.28 8874.73 10881.74 13785.44 15670.97 10384.99 13184.71 10988.29 12788.14 70
Vis-MVSNetpermissive83.32 8488.12 6677.71 10677.91 16083.44 8390.58 5969.49 7881.11 11567.10 15489.85 6291.48 11871.71 9891.34 5989.37 6289.48 10790.26 49
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet59.74 20558.74 22160.92 19657.74 21745.81 22156.02 22158.69 17755.69 21665.17 15970.86 19971.66 19956.75 16861.11 21853.74 21771.17 19852.28 216
HyFIR lowres test73.29 16174.14 17872.30 14373.08 18478.33 12983.12 12962.41 15363.81 19562.13 16876.67 16778.50 18071.09 10174.13 18977.47 16481.98 17670.10 179
EPMVS56.62 21259.77 21752.94 21162.41 21350.55 21660.66 21752.83 19865.15 19141.80 21477.46 16057.28 21842.68 20659.81 21954.82 21557.23 21753.35 215
TAMVS63.02 19669.30 19055.70 20570.12 19356.89 20769.63 20445.13 20970.23 16738.00 21977.79 15475.15 19542.60 20774.48 18772.81 18568.70 20457.75 212
IS_MVSNet81.72 10185.01 9877.90 10586.19 7682.64 9185.56 11170.02 7480.11 12463.52 16287.28 9481.18 17167.26 12291.08 6789.33 6394.82 3183.42 105
RPSCF88.05 4692.61 1782.73 6584.24 9688.40 4490.04 7266.29 10791.46 1382.29 6088.93 7696.01 3879.38 3295.15 2194.90 694.15 3993.40 20
Vis-MVSNet (Re-imp)76.15 14580.84 13970.68 15383.66 10774.80 16181.66 14269.59 7580.48 12246.94 20787.44 9180.63 17353.14 18786.87 10984.56 11089.12 11171.12 175
MVS_111021_HR83.95 7586.10 8381.44 7684.62 8980.29 11390.51 6468.05 9684.07 8480.38 7484.74 12191.37 12074.23 7790.37 7587.25 7890.86 9184.59 92
CSCG88.12 4591.45 3884.23 4888.12 6190.59 2590.57 6068.60 8991.37 1583.45 5289.94 6095.14 6278.71 3891.45 5888.21 7295.96 1293.44 19
PatchMatch-RL76.05 14676.64 16275.36 12277.84 16269.87 17981.09 14663.43 14371.66 16268.34 14871.70 19281.76 17074.98 7384.83 13283.44 12086.45 14673.22 172
TDRefinement93.16 195.57 190.36 188.79 5293.57 197.27 178.23 2195.55 193.00 193.98 1896.01 3887.53 197.69 196.81 197.33 195.34 4
USDC81.39 10683.07 12879.43 9681.48 13078.95 12582.62 13566.17 10987.45 5390.73 482.40 13493.65 8566.57 12783.63 14177.97 15889.00 11477.45 153
EPP-MVSNet82.76 9286.47 7878.45 10286.00 8084.47 7485.39 11568.42 9184.17 8262.97 16489.26 7176.84 18772.13 9492.56 4890.40 5195.76 2087.56 76
PMMVS61.98 20365.61 19957.74 20045.03 22451.76 21569.54 20535.05 21655.49 21755.32 18568.23 20878.39 18158.09 16470.21 20371.56 18883.42 17163.66 194
ACMMPcopyleft90.63 892.40 2088.56 891.24 2891.60 696.49 977.53 2687.89 4886.87 3087.24 9596.46 2582.87 1695.59 1594.50 896.35 693.51 18
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA85.50 6188.58 5781.91 7184.55 9187.52 5690.89 5463.56 14188.18 4684.06 4483.85 12791.34 12176.46 5891.27 6089.00 6691.96 7488.88 62
PatchmatchNetpermissive64.81 19463.74 20566.06 18369.21 19658.62 20573.16 19460.01 17165.92 18466.19 15876.27 16959.09 21260.45 15466.58 21061.47 20867.33 20758.24 210
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS86.37 5688.14 6584.30 4786.65 7387.56 5590.76 5770.16 7382.55 9589.65 784.89 11892.40 10075.97 6390.88 7089.70 5892.58 6589.03 61
OMC-MVS88.16 4391.34 4184.46 4686.85 7090.63 2393.01 4167.00 10390.35 2887.40 2186.86 10096.35 2977.66 4992.63 4790.84 4694.84 3091.68 38
AdaColmapbinary84.15 7385.14 9783.00 5989.08 4987.14 6090.56 6170.90 6982.40 9780.41 7373.82 18684.69 15975.19 7091.58 5789.90 5591.87 7686.48 80
DeepMVS_CXcopyleft17.78 22720.40 2286.69 22231.41 2249.80 22838.61 22334.88 23133.78 21628.41 22423.59 22645.77 220
TinyColmap83.79 7686.12 8281.07 7883.42 10981.44 10185.42 11468.55 9088.71 4389.46 887.60 8892.72 9670.34 10889.29 8681.94 13389.20 11081.12 127
MAR-MVS81.98 9982.92 13080.88 8085.18 8685.85 6789.13 8069.52 7671.21 16482.25 6171.28 19688.89 14069.69 10988.71 8986.96 7989.52 10687.57 75
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MSDG81.39 10684.23 11578.09 10482.40 12482.47 9385.31 11860.91 16479.73 12780.26 7586.30 10388.27 14369.67 11087.20 10784.98 10489.97 9880.67 130
LS3D89.02 3391.69 3685.91 3089.72 4390.81 2092.56 4471.69 6690.83 2287.24 2289.71 6492.07 10778.37 4294.43 2792.59 2795.86 1391.35 41
CLD-MVS82.75 9387.22 7477.54 10988.01 6285.76 6890.23 6954.52 19082.28 9982.11 6588.48 8195.27 5663.95 14089.41 8588.29 7086.45 14681.01 128
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS81.56 10284.04 11978.66 10082.92 11675.96 14986.48 10865.66 11884.67 7971.47 12877.78 15583.22 16477.57 5091.24 6190.21 5287.84 13185.21 89
Gipumacopyleft86.47 5589.25 5483.23 5583.88 10378.78 12685.35 11668.42 9192.69 1089.03 1191.94 3996.32 3281.80 2194.45 2686.86 8290.91 9083.69 102
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015