This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB86.82 191.55 394.43 388.19 1083.19 11286.35 6593.60 3778.79 1895.48 391.79 293.08 2797.21 2086.34 397.06 296.27 395.46 2395.56 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
COLMAP_ROBcopyleft85.66 291.85 295.01 288.16 1188.98 5192.86 295.51 1972.17 6294.95 491.27 394.11 1797.77 1184.22 896.49 495.27 596.79 293.60 12
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
3Dnovator+83.71 388.13 4490.00 5085.94 2986.82 7191.06 1394.26 3375.39 4688.85 4185.76 3785.74 11086.92 14678.02 4593.03 4092.21 3495.39 2592.21 34
DeepC-MVS83.59 490.37 1292.56 1887.82 1491.26 2792.33 394.72 3080.04 990.01 3284.61 4293.33 2394.22 7980.59 2792.90 4392.52 2895.69 2192.57 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast81.78 587.38 4989.64 5184.75 4189.89 4290.70 2292.74 4374.45 5086.02 6582.16 6486.05 10791.99 11175.84 6591.16 6390.44 4993.41 5191.09 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS81.61 687.95 4790.29 4985.22 3887.48 6590.01 3193.79 3473.54 5488.93 3983.89 4589.40 6890.84 12280.26 3190.62 7290.19 5392.36 7092.03 35
ACMM80.67 790.67 792.46 1988.57 791.35 2289.93 3296.34 1177.36 3090.17 2986.88 2987.32 9396.63 2383.32 1395.79 1094.49 996.19 992.91 26
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP80.00 890.12 1692.30 2687.58 1890.83 3491.10 1294.96 2876.06 4087.47 5285.33 3988.91 7797.65 1482.13 1995.31 1793.44 1996.14 1092.22 33
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PMVScopyleft79.51 990.23 1492.67 1487.39 2090.16 3988.75 4293.64 3675.78 4490.00 3383.70 4792.97 2992.22 10486.13 497.01 396.79 294.94 2890.96 45
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
3Dnovator79.41 1082.21 9586.07 8477.71 10679.31 14384.61 7387.18 9961.02 16185.65 6776.11 9785.07 11685.38 15570.96 10487.22 10486.47 8591.66 7788.12 69
ACMH+79.05 1189.62 2693.08 885.58 3288.58 5589.26 3992.18 4574.23 5293.55 882.66 5892.32 3798.35 780.29 2995.28 1892.34 3195.52 2290.43 48
ACMH78.40 1288.94 3892.62 1684.65 4286.45 7487.16 5991.47 4968.79 8795.49 289.74 693.55 2098.50 277.96 4694.14 3189.57 6193.49 4789.94 52
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TAPA-MVS78.00 1385.88 5888.37 6182.96 6084.69 8788.62 4390.62 5864.22 12989.15 3888.05 1478.83 14993.71 8376.20 6190.11 8088.22 7194.00 4189.97 51
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PCF-MVS76.59 1484.11 7485.27 9282.76 6486.12 7888.30 4591.24 5169.10 8282.36 9684.45 4377.56 15790.40 12772.91 8885.88 11683.88 11392.72 6488.53 63
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PLCcopyleft76.06 1585.38 6387.46 7182.95 6185.79 8188.84 4188.86 8368.70 8887.06 5783.60 4879.02 14590.05 12877.37 5290.88 7089.66 5993.37 5286.74 77
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
OpenMVScopyleft75.38 1678.44 13081.39 13674.99 12780.46 13379.85 11479.99 15258.31 17777.34 13573.85 11277.19 16082.33 16768.60 11684.67 13281.95 13088.72 11786.40 80
IB-MVS71.28 1775.21 15177.00 15773.12 14176.76 16477.45 13383.05 13058.92 17463.01 19764.31 16059.99 21687.57 14468.64 11586.26 11482.34 12987.05 13882.36 116
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CMPMVSbinary55.74 1871.56 17076.26 16366.08 18068.11 19863.91 19563.17 21250.52 20368.79 17475.49 10170.78 19985.67 15263.54 14381.58 15577.20 16375.63 18485.86 82
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVEpermissive41.12 1951.80 21560.92 21141.16 21435.21 22434.14 22448.45 22441.39 21169.11 17219.53 22363.33 21273.80 19463.56 14267.19 20661.51 20538.85 22157.38 211
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
WB-MVS72.91 16582.95 12761.21 19368.59 19673.96 16373.65 19061.48 15790.88 2042.55 20994.18 1695.80 4353.02 18685.42 12175.73 17367.97 20464.65 189
dmvs_re68.11 18470.60 18565.21 18577.91 15863.73 19676.72 17359.65 17055.93 21347.79 20459.79 21779.91 17349.72 19682.48 14876.98 16679.48 17875.41 160
TPM-MVS86.18 7783.43 8487.57 9378.77 8769.75 20484.63 15862.24 14889.88 9888.48 64
Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025
FA-MVS(training)78.93 12880.63 13876.93 11179.79 13975.57 15285.44 11361.95 15377.19 13678.97 8584.82 11982.47 16466.43 13084.09 13680.13 14789.02 11180.15 137
test250675.32 15076.87 15973.50 13684.55 9180.37 10979.63 15873.23 5782.64 9155.41 18276.87 16345.42 22759.61 15690.35 7686.46 8688.58 12175.98 155
test111179.67 11784.40 10874.16 13285.29 8479.56 11881.16 14473.13 5984.65 7856.08 17888.38 8286.14 15060.49 15289.78 8285.59 9788.79 11576.68 152
ECVR-MVScopyleft79.31 12484.20 11473.60 13484.55 9180.37 10979.63 15873.23 5782.64 9155.98 17987.50 8986.85 14759.61 15690.35 7686.46 8688.58 12175.26 162
DVP-MVS++90.50 1094.18 486.21 2792.52 790.29 2895.29 2276.02 4194.24 582.82 5595.84 597.56 1576.82 5593.13 3891.20 4493.78 4597.01 1
GeoE81.92 10083.87 11879.66 9484.64 8879.87 11389.75 7465.90 11476.12 14075.87 9984.62 12292.23 10371.96 9686.83 10883.60 11689.83 10083.81 99
test_method22.69 21826.99 22017.67 2182.13 2264.31 22727.50 2254.53 22137.94 22124.52 22236.20 22251.40 22515.26 22029.86 22117.09 22132.07 22312.16 222
pmnet_mix0262.60 19870.81 18453.02 20866.56 20550.44 21562.81 21346.84 20679.13 12943.76 20887.45 9090.75 12439.85 20970.48 19957.09 21058.27 21360.32 204
RE-MVS-def87.10 28
SED-MVS88.96 3792.37 2284.99 4088.64 5489.65 3795.11 2575.98 4290.73 2480.15 7794.21 1594.51 7576.59 5692.94 4191.17 4593.46 5093.37 22
SF-MVS87.85 4890.95 4484.22 4988.17 6087.90 5390.80 5671.80 6589.28 3582.70 5789.90 6195.37 5577.91 4791.69 5490.04 5493.95 4492.47 29
9.1489.43 131
uanet_test0.00 2210.00 2230.00 2220.00 2300.00 2300.00 2310.00 2260.00 2260.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
ET-MVSNet_ETH3D74.71 15474.19 17575.31 12279.22 14575.29 15382.70 13464.05 13265.45 18670.96 13277.15 16157.70 21565.89 13184.40 13481.65 13489.03 11077.67 150
UniMVSNet_ETH3D85.39 6291.12 4378.71 9990.48 3783.72 7981.76 14082.41 693.84 664.43 15995.41 798.76 163.72 14193.63 3389.74 5789.47 10682.74 112
EIA-MVS78.57 12977.90 15079.35 9787.24 6980.71 10686.16 10964.03 13362.63 20173.49 11573.60 18576.12 18973.83 8288.49 9384.93 10491.36 8178.78 144
ETV-MVS79.01 12777.98 14980.22 9186.69 7279.73 11688.80 8468.27 9463.22 19671.56 12770.25 20273.63 19573.66 8490.30 7886.77 8492.33 7181.95 119
CS-MVS83.57 8084.79 10382.14 6883.83 10481.48 9887.29 9766.54 10572.73 15480.05 7884.04 12593.12 9480.35 2889.50 8386.34 8894.76 3486.32 81
DVP-MVScopyleft89.40 2792.69 1385.56 3489.01 5089.85 3393.72 3575.42 4592.28 1180.49 7294.36 1394.87 6681.46 2492.49 4991.42 4193.27 5393.54 17
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SR-MVS91.82 1380.80 795.53 50
DPM-MVS81.42 10482.11 13280.62 8687.54 6485.30 7190.18 7168.96 8481.00 11579.15 8470.45 20083.29 16167.67 12182.81 14483.46 11790.19 9388.48 64
thisisatest053075.54 14975.95 16875.05 12475.08 17773.56 16482.15 13860.31 16469.17 17069.32 13879.02 14558.78 21472.17 9283.88 13783.08 12491.30 8384.20 95
Anonymous20240521184.68 10583.92 10179.45 11979.03 16267.79 9882.01 9988.77 8092.58 9855.93 17186.68 10984.26 11088.92 11378.98 142
DCV-MVSNet80.04 11385.67 9073.48 13782.91 11681.11 10480.44 14966.06 11085.01 7462.53 16678.84 14894.43 7758.51 16188.66 9085.91 9390.41 9185.73 84
tttt051775.86 14776.23 16475.42 12075.55 17674.06 16282.73 13360.31 16469.24 16970.24 13579.18 14458.79 21372.17 9284.49 13383.08 12491.54 7884.80 88
our_test_373.27 18170.91 17283.26 128
thisisatest051581.18 10984.32 11077.52 11076.73 17074.84 15885.06 11961.37 15881.05 11473.95 11188.79 7989.25 13475.49 6885.98 11584.78 10692.53 6885.56 86
SMA-MVScopyleft90.13 1592.26 2787.64 1791.68 1690.44 2695.22 2477.34 3290.79 2387.80 1690.42 5792.05 10979.05 3593.89 3293.59 1894.77 3294.62 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft89.81 2292.34 2486.86 2389.69 4491.00 1695.53 1876.91 3388.18 4683.43 5393.48 2195.19 5881.07 2692.75 4592.07 3694.55 3693.74 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
thres100view90069.86 17572.97 18266.24 17777.97 15672.49 16873.29 19159.12 17266.81 17850.82 20067.30 20775.67 19150.54 19578.24 17279.40 15185.71 15570.88 174
tfpnnormal77.16 13584.26 11168.88 16481.02 13175.02 15576.52 17563.30 14287.29 5452.40 19391.24 5193.97 8054.85 17785.46 12081.08 13785.18 15975.76 158
tfpn200view972.01 16875.40 17068.06 16977.97 15676.44 14277.04 17162.67 14866.81 17850.82 20067.30 20775.67 19152.46 19285.06 12482.64 12787.41 13473.86 166
CHOSEN 280x42056.32 21258.85 21853.36 20751.63 21839.91 22269.12 20638.61 21356.29 21236.79 21848.84 21962.59 20563.39 14573.61 19167.66 19460.61 20963.07 196
CANet82.84 9084.60 10680.78 8187.30 6785.20 7290.23 6969.00 8372.16 15878.73 8884.49 12390.70 12569.54 11287.65 9986.17 9089.87 9985.84 83
Fast-Effi-MVS+-dtu76.92 13677.18 15576.62 11479.55 14079.17 12084.80 12077.40 2964.46 19168.75 14470.81 19886.57 14863.36 14681.74 15481.76 13385.86 15275.78 157
Effi-MVS+-dtu82.04 9883.39 12580.48 8985.48 8386.57 6488.40 8668.28 9369.04 17373.13 11876.26 16891.11 12174.74 7588.40 9487.76 7392.84 6384.57 91
CANet_DTU75.04 15278.45 14571.07 14777.27 16177.96 12983.88 12658.00 17864.11 19268.67 14575.65 17588.37 14053.92 18282.05 15181.11 13684.67 16179.88 138
MVS_030484.73 7086.19 8183.02 5788.32 5686.71 6291.55 4870.87 7073.79 14882.88 5485.13 11493.35 8972.55 8988.62 9187.69 7491.93 7588.05 70
MSP-MVS88.51 4291.36 4085.19 3990.63 3692.01 495.29 2277.52 2790.48 2780.21 7690.21 5896.08 3476.38 5988.30 9691.42 4191.12 8791.01 44
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
IterMVS-SCA-FT77.23 13479.18 14474.96 12876.67 17179.85 11475.58 18561.34 15973.10 14973.79 11386.23 10479.61 17479.00 3680.28 16575.50 17483.41 17079.70 139
TSAR-MVS + MP.89.67 2492.25 2886.65 2591.53 1890.98 1796.15 1373.30 5687.88 4981.83 6692.92 3095.15 6182.23 1893.58 3492.25 3394.87 2993.01 25
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OPM-MVS89.82 2192.24 2986.99 2290.86 3389.35 3895.07 2775.91 4391.16 1686.87 3091.07 5297.29 1879.13 3493.32 3591.99 3794.12 4091.49 40
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP89.86 1991.96 3387.42 1991.00 3090.08 3096.00 1576.61 3689.28 3587.73 1790.04 5991.80 11378.71 3894.36 2893.82 1794.48 3794.32 6
ambc88.38 6091.62 1787.97 5284.48 12388.64 4487.93 1587.38 9294.82 6974.53 7689.14 8883.86 11585.94 15186.84 76
CS-MVS-test83.59 7984.86 10182.10 6983.04 11481.05 10591.58 4767.48 10272.52 15578.42 9084.75 12091.82 11278.62 4191.98 5087.54 7693.48 4884.35 93
Effi-MVS+82.33 9483.87 11880.52 8884.51 9481.32 10087.53 9468.05 9674.94 14679.67 8082.37 13592.31 10272.21 9185.06 12486.91 8191.18 8584.20 95
new-patchmatchnet62.59 19973.79 17849.53 21276.98 16353.57 20953.46 22154.64 18785.43 7028.81 22091.94 3996.41 2825.28 21876.80 17653.66 21657.99 21458.69 207
pmmvs680.46 11088.34 6371.26 14681.96 12577.51 13277.54 16768.83 8693.72 755.92 18093.94 1998.03 955.94 17089.21 8785.61 9687.36 13580.38 130
pmmvs568.91 17974.35 17462.56 19067.45 20266.78 18771.70 19451.47 20067.17 17756.25 17782.41 13388.59 13947.21 20273.21 19374.23 17681.30 17668.03 184
Fast-Effi-MVS+81.42 10483.82 12078.62 10182.24 12380.62 10787.72 9163.51 14073.01 15074.75 10783.80 12892.70 9773.44 8688.15 9885.26 10090.05 9483.17 104
Anonymous2023121179.37 12185.78 8771.89 14482.87 11879.66 11778.77 16463.93 13783.36 8559.39 17090.54 5494.66 7156.46 16887.38 10184.12 11189.92 9780.74 127
pmmvs-eth3d79.64 11882.06 13376.83 11280.05 13672.64 16787.47 9566.59 10480.83 11673.50 11489.32 7093.20 9167.78 11980.78 16181.64 13585.58 15676.01 154
GG-mvs-BLEND41.63 21760.36 21219.78 2170.14 22966.04 18955.66 2200.17 22557.64 2112.42 22851.82 21869.42 2000.28 22564.11 21458.29 20860.02 21055.18 212
Anonymous2023120667.28 18673.41 18060.12 19576.45 17363.61 19774.21 18856.52 18176.35 13742.23 21075.81 17490.47 12641.51 20874.52 18469.97 19069.83 19963.17 195
MTAPA89.37 994.85 67
MTMP90.54 595.16 60
gm-plane-assit71.56 17069.99 18673.39 13884.43 9573.21 16590.42 6851.36 20184.08 8176.00 9891.30 4937.09 22859.01 15973.65 19070.24 18979.09 18160.37 203
train_agg86.67 5387.73 6985.43 3591.51 1982.72 8894.47 3174.22 5381.71 10181.54 7089.20 7292.87 9578.33 4390.12 7988.47 6892.51 6989.04 59
gg-mvs-nofinetune72.68 16675.21 17269.73 15881.48 12869.04 18070.48 19876.67 3586.92 5867.80 15188.06 8564.67 20342.12 20777.60 17373.65 17879.81 17766.57 185
SCA68.54 18267.52 19369.73 15867.79 19975.04 15476.96 17268.94 8566.41 18067.86 15074.03 18260.96 20665.55 13468.99 20365.67 19771.30 19561.54 202
MS-PatchMatch71.18 17373.99 17767.89 17277.16 16271.76 17077.18 17056.38 18267.35 17655.04 18574.63 18075.70 19062.38 14776.62 17875.97 17179.22 18075.90 156
Patchmatch-RL test4.13 228
tmp_tt13.54 21916.73 2256.42 2268.49 2272.36 22228.69 22327.44 22118.40 22313.51 2303.70 22233.23 22036.26 22022.54 225
canonicalmvs81.22 10886.04 8575.60 11983.17 11383.18 8580.29 15065.82 11685.97 6667.98 14977.74 15591.51 11665.17 13588.62 9186.15 9191.17 8689.09 58
anonymousdsp85.62 5990.53 4679.88 9264.64 21076.35 14396.28 1253.53 19485.63 6881.59 6992.81 3197.71 1286.88 294.56 2592.83 2496.35 693.84 9
v14419283.43 8384.97 9881.63 7583.43 10881.23 10289.42 7966.04 11281.45 10986.40 3491.46 4795.70 4775.76 6682.14 14980.23 14688.74 11682.57 113
v192192083.49 8284.94 9981.80 7283.78 10581.20 10389.50 7765.91 11381.64 10387.18 2491.70 4495.39 5475.85 6481.56 15680.27 14588.60 11982.80 110
FC-MVSNet-train79.20 12586.29 8070.94 15084.06 9777.67 13185.68 11064.11 13182.90 8952.22 19592.57 3693.69 8449.52 19788.30 9686.93 8090.03 9581.95 119
UA-Net89.02 3391.44 3986.20 2894.88 189.84 3494.76 2977.45 2885.41 7174.79 10688.83 7888.90 13778.67 4096.06 795.45 496.66 395.58 2
v119283.61 7885.23 9381.72 7384.05 9882.15 9489.54 7666.20 10881.38 11086.76 3291.79 4396.03 3674.88 7481.81 15380.92 13988.91 11482.50 114
FC-MVSNet-test75.91 14683.59 12366.95 17576.63 17269.07 17985.33 11764.97 12284.87 7641.95 21193.17 2587.04 14547.78 20091.09 6685.56 9885.06 16074.34 163
v114483.22 8585.01 9681.14 7783.76 10681.60 9788.95 8265.58 11881.89 10085.80 3691.68 4595.84 4174.04 8082.12 15080.56 14288.70 11881.41 123
sosnet-low-res0.00 2210.00 2230.00 2220.00 2300.00 2300.00 2310.00 2260.00 2260.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
HFP-MVS90.32 1392.37 2287.94 1391.46 2190.91 1895.69 1779.49 1289.94 3483.50 5089.06 7394.44 7681.68 2294.17 3094.19 1395.81 1793.87 7
v14879.33 12382.32 13175.84 11880.14 13575.74 14881.98 13957.06 18081.51 10779.36 8389.42 6796.42 2771.32 9981.54 15775.29 17585.20 15876.32 153
sosnet0.00 2210.00 2230.00 2220.00 2300.00 2300.00 2310.00 2260.00 2260.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
v7n87.11 5090.46 4883.19 5685.22 8583.69 8090.03 7368.20 9591.01 1986.71 3394.80 1098.46 477.69 4891.10 6585.98 9291.30 8388.19 66
DI_MVS_plusplus_trai77.64 13379.64 14175.31 12279.87 13876.89 14081.55 14363.64 13876.21 13972.03 12485.59 11182.97 16366.63 12679.27 16977.78 15888.14 12778.76 145
HPM-MVS++copyleft88.74 4089.54 5287.80 1592.58 685.69 6995.10 2678.01 2287.08 5687.66 1987.89 8692.07 10780.28 3090.97 6991.41 4393.17 5791.69 37
XVS91.28 2591.23 896.89 287.14 2594.53 7295.84 15
v124083.57 8084.94 9981.97 7084.05 9881.27 10189.46 7866.06 11081.31 11187.50 2091.88 4295.46 5276.25 6081.16 15880.51 14388.52 12482.98 108
pm-mvs178.21 13185.68 8969.50 16180.38 13475.73 14976.25 17665.04 12187.59 5154.47 18693.16 2695.99 4054.20 17986.37 11282.98 12686.64 14077.96 149
X-MVStestdata91.28 2591.23 896.89 287.14 2594.53 7295.84 15
X-MVS89.36 2890.73 4587.77 1691.50 2091.23 896.76 478.88 1787.29 5487.14 2578.98 14794.53 7276.47 5795.25 1994.28 1195.85 1493.55 16
v882.20 9684.56 10779.45 9582.42 12181.65 9687.26 9864.27 12879.36 12781.70 6891.04 5395.75 4573.30 8782.82 14379.18 15387.74 13182.09 117
v1083.17 8785.22 9480.78 8183.26 11182.99 8688.66 8566.49 10679.24 12883.60 4891.46 4795.47 5174.12 7882.60 14780.66 14088.53 12384.11 97
v2v48282.20 9684.26 11179.81 9382.67 12080.18 11287.67 9263.96 13681.69 10284.73 4191.27 5096.33 3172.05 9581.94 15279.56 15087.79 13078.84 143
V4279.59 12083.59 12374.93 12969.61 19377.05 13986.59 10755.84 18378.42 13277.29 9489.84 6395.08 6374.12 7883.05 14080.11 14886.12 14781.59 122
SD-MVS89.91 1892.23 3087.19 2191.31 2489.79 3594.31 3275.34 4789.26 3781.79 6792.68 3295.08 6383.88 1193.10 3992.69 2596.54 493.02 24
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS75.01 15376.39 16273.39 13878.37 15175.66 15080.03 15158.40 17670.51 16475.85 10083.24 12976.14 18863.75 14077.28 17576.62 16883.97 16575.30 161
MSLP-MVS++86.29 5789.10 5583.01 5885.71 8289.79 3587.04 10474.39 5185.17 7378.92 8677.59 15693.57 8682.60 1793.23 3691.88 3989.42 10792.46 30
APDe-MVScopyleft89.85 2092.91 1086.29 2690.47 3891.34 796.04 1476.41 3991.11 1778.50 8993.44 2295.82 4281.55 2393.16 3791.90 3894.77 3293.58 15
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
TSAR-MVS + COLMAP85.51 6088.36 6282.19 6786.05 7987.69 5490.50 6570.60 7286.40 6182.33 5989.69 6592.52 9974.01 8187.53 10086.84 8389.63 10287.80 72
CVMVSNet75.65 14877.62 15373.35 14071.95 18669.89 17683.04 13160.84 16369.12 17168.76 14379.92 14378.93 17773.64 8581.02 15981.01 13881.86 17583.43 102
TSAR-MVS + ACMM89.14 2992.11 3285.67 3189.27 4790.61 2490.98 5279.48 1388.86 4079.80 7993.01 2893.53 8883.17 1592.75 4592.45 2991.32 8293.59 13
pmmvs475.92 14577.48 15474.10 13378.21 15470.94 17184.06 12464.78 12375.13 14568.47 14784.12 12483.32 16064.74 13875.93 18379.14 15484.31 16373.77 167
EU-MVSNet76.48 14080.53 13971.75 14567.62 20070.30 17481.74 14154.06 19175.47 14371.01 13180.10 14093.17 9373.67 8383.73 13877.85 15782.40 17283.07 105
test-LLR62.15 20059.46 21665.29 18479.07 14652.66 21169.46 20462.93 14550.76 21953.81 18863.11 21358.91 21152.87 18766.54 20962.34 20173.59 18661.87 199
TESTMET0.1,157.21 20859.46 21654.60 20650.95 21952.66 21169.46 20426.91 21850.76 21953.81 18863.11 21358.91 21152.87 18766.54 20962.34 20173.59 18661.87 199
test-mter59.39 20561.59 20956.82 20053.21 21754.82 20773.12 19326.57 21953.19 21756.31 17664.71 21060.47 20756.36 16968.69 20464.27 19975.38 18565.00 187
ACMMPR91.30 492.88 1189.46 491.92 1191.61 596.60 579.46 1490.08 3188.53 1389.54 6695.57 4884.25 795.24 2094.27 1295.97 1193.85 8
testgi68.20 18376.05 16659.04 19679.99 13767.32 18681.16 14451.78 19984.91 7539.36 21673.42 18695.19 5832.79 21676.54 18070.40 18869.14 20164.55 190
test20.0369.91 17476.20 16562.58 18984.01 10067.34 18575.67 18465.88 11579.98 12340.28 21582.65 13189.31 13339.63 21077.41 17473.28 17969.98 19863.40 194
thres600view774.34 15678.43 14669.56 16080.47 13276.28 14478.65 16562.56 14977.39 13452.53 19174.03 18276.78 18655.90 17285.06 12485.19 10187.25 13674.29 164
ADS-MVSNet56.89 20961.09 21052.00 21059.48 21348.10 21758.02 21754.37 19072.82 15249.19 20275.32 17765.97 20237.96 21159.34 21854.66 21452.99 21951.42 215
MP-MVScopyleft90.84 691.95 3489.55 392.92 490.90 1996.56 679.60 1186.83 5988.75 1289.00 7494.38 7884.01 994.94 2494.34 1095.45 2493.24 23
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs0.93 2201.37 2220.41 2210.36 2280.36 2290.62 2290.39 2231.48 2240.18 2302.41 2241.31 2320.41 2241.25 2241.08 2230.48 2261.68 223
thres40073.13 16276.99 15868.62 16579.46 14174.93 15777.23 16961.23 16075.54 14252.31 19472.20 18977.10 18454.89 17582.92 14182.62 12886.57 14273.66 169
test1231.06 2191.41 2210.64 2200.39 2270.48 2280.52 2300.25 2241.11 2251.37 2292.01 2251.98 2310.87 2231.43 2231.27 2220.46 2271.62 224
thres20072.41 16776.00 16768.21 16878.28 15276.28 14474.94 18662.56 14972.14 15951.35 19969.59 20576.51 18754.89 17585.06 12480.51 14387.25 13671.92 172
test0.0.03 161.79 20265.33 19857.65 19979.07 14664.09 19468.51 20762.93 14561.59 20433.71 21961.58 21571.58 19933.43 21570.95 19868.68 19368.26 20358.82 206
pmmvs362.72 19768.71 19055.74 20250.74 22057.10 20470.05 20028.82 21761.57 20557.39 17471.19 19685.73 15153.96 18173.36 19269.43 19273.47 18862.55 197
EMVS58.97 20762.63 20854.70 20566.26 20948.71 21661.74 21442.71 20972.80 15346.00 20673.01 18871.66 19757.91 16480.41 16450.68 21953.55 21841.11 220
E-PMN59.07 20662.79 20654.72 20467.01 20447.81 21860.44 21643.40 20872.95 15144.63 20770.42 20173.17 19658.73 16080.97 16051.98 21754.14 21742.26 219
PGM-MVS90.42 1191.58 3789.05 591.77 1491.06 1396.51 778.94 1685.41 7187.67 1887.02 9795.26 5783.62 1295.01 2393.94 1595.79 1993.40 20
MCST-MVS84.79 6986.48 7782.83 6387.30 6787.03 6190.46 6769.33 8183.14 8782.21 6381.69 13892.14 10675.09 7287.27 10384.78 10692.58 6589.30 57
MVS_Test76.72 13879.40 14373.60 13478.85 14974.99 15679.91 15361.56 15669.67 16772.44 12085.98 10890.78 12363.50 14478.30 17175.74 17285.33 15780.31 135
MDA-MVSNet-bldmvs76.51 13982.87 12969.09 16350.71 22174.72 16084.05 12560.27 16681.62 10471.16 13088.21 8491.58 11469.62 11192.78 4477.48 16178.75 18273.69 168
CDPH-MVS86.66 5488.52 5984.48 4589.61 4588.27 4692.86 4272.69 6180.55 11982.71 5686.92 9993.32 9075.55 6791.00 6889.85 5693.47 4989.71 53
casdiffmvspermissive79.93 11484.11 11675.05 12481.41 13078.99 12282.95 13262.90 14781.53 10568.60 14691.94 3996.03 3665.84 13282.89 14277.07 16488.59 12080.34 134
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive76.74 13781.61 13571.06 14875.64 17574.45 16180.68 14857.57 17977.48 13367.62 15288.95 7593.94 8161.98 14979.74 16676.18 16982.85 17180.50 129
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline268.71 18168.34 19169.14 16275.69 17469.70 17876.60 17455.53 18560.13 20662.07 16866.76 20960.35 20860.77 15176.53 18174.03 17784.19 16470.88 174
baseline169.62 17673.55 17965.02 18778.95 14870.39 17371.38 19762.03 15270.97 16347.95 20378.47 15268.19 20147.77 20179.65 16876.94 16782.05 17370.27 176
PMMVS248.13 21664.06 20129.55 21644.06 22336.69 22351.95 22229.97 21674.75 1478.90 22776.02 17291.24 1207.53 22173.78 18955.91 21134.87 22240.01 221
PM-MVS80.42 11283.63 12276.67 11378.04 15572.37 16987.14 10060.18 16780.13 12171.75 12686.12 10693.92 8277.08 5386.56 11085.12 10285.83 15381.18 124
PS-CasMVS89.07 3293.23 784.21 5092.44 888.23 4890.54 6282.95 390.50 2675.31 10395.80 698.37 671.16 10096.30 593.32 2192.88 6190.11 50
UniMVSNet_NR-MVSNet84.62 7188.00 6780.68 8588.18 5983.83 7787.06 10276.47 3881.46 10870.49 13393.24 2495.56 4968.13 11790.43 7388.47 6893.78 4583.02 106
PEN-MVS88.86 3992.92 984.11 5292.92 488.05 5190.83 5582.67 591.04 1874.83 10595.97 398.47 370.38 10795.70 1392.43 3093.05 6088.78 62
TransMVSNet (Re)79.05 12686.66 7570.18 15683.32 11075.99 14677.54 16763.98 13590.68 2555.84 18194.80 1096.06 3553.73 18386.27 11383.22 12386.65 13979.61 140
DTE-MVSNet88.99 3592.77 1284.59 4393.31 288.10 4990.96 5383.09 291.38 1476.21 9696.03 298.04 870.78 10695.65 1492.32 3293.18 5687.84 71
DU-MVS84.88 6888.27 6480.92 7988.30 5783.59 8187.06 10278.35 1980.64 11770.49 13392.67 3396.91 2168.13 11791.79 5189.29 6493.20 5583.02 106
UniMVSNet (Re)84.95 6788.53 5880.78 8187.82 6384.21 7588.03 8876.50 3781.18 11269.29 13992.63 3596.83 2269.07 11491.23 6289.60 6093.97 4384.00 98
CP-MVSNet88.71 4192.63 1584.13 5192.39 988.09 5090.47 6682.86 488.79 4275.16 10494.87 997.68 1371.05 10296.16 693.18 2392.85 6289.64 54
WR-MVS_H88.99 3593.28 683.99 5391.92 1189.13 4091.95 4683.23 190.14 3071.92 12595.85 498.01 1071.83 9795.82 993.19 2293.07 5990.83 47
WR-MVS89.79 2393.66 585.27 3791.32 2388.27 4693.49 3879.86 1092.75 975.37 10296.86 198.38 575.10 7195.93 894.07 1496.46 589.39 56
NR-MVSNet82.89 8987.43 7277.59 10883.91 10283.59 8187.10 10178.35 1980.64 11768.85 14292.67 3396.50 2454.19 18087.19 10688.68 6793.16 5882.75 111
Baseline_NR-MVSNet82.79 9186.51 7678.44 10388.30 5775.62 15187.81 9074.97 4881.53 10566.84 15494.71 1296.46 2566.90 12591.79 5183.37 12285.83 15382.09 117
TranMVSNet+NR-MVSNet85.23 6589.38 5380.39 9088.78 5383.77 7887.40 9676.75 3485.47 6968.99 14195.18 897.55 1667.13 12491.61 5689.13 6593.26 5482.95 109
TSAR-MVS + GP.85.32 6487.41 7382.89 6290.07 4185.69 6989.07 8172.99 6082.45 9474.52 10985.09 11587.67 14379.24 3391.11 6490.41 5091.45 7989.45 55
mPP-MVS93.05 395.77 44
SixPastTwentyTwo89.14 2992.19 3185.58 3284.62 8982.56 9190.53 6371.93 6491.95 1285.89 3594.22 1497.25 1985.42 595.73 1291.71 4095.08 2791.89 36
casdiffmvs_mvgpermissive81.50 10385.70 8876.60 11582.68 11980.54 10883.50 12764.49 12783.40 8472.53 11992.15 3895.40 5365.84 13284.69 13181.89 13290.59 9081.86 121
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LGP-MVS_train90.56 992.38 2188.43 990.88 3291.15 1195.35 2177.65 2586.26 6487.23 2390.45 5697.35 1783.20 1495.44 1693.41 2096.28 892.63 27
baseline69.33 17875.37 17162.28 19166.54 20666.67 18873.95 18948.07 20466.10 18159.26 17182.45 13286.30 14954.44 17874.42 18673.25 18071.42 19378.43 148
EPNet_dtu71.90 16973.03 18170.59 15278.28 15261.64 19982.44 13664.12 13063.26 19569.74 13671.47 19282.41 16551.89 19378.83 17078.01 15577.07 18375.60 159
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268868.80 18071.09 18366.13 17969.11 19568.89 18178.98 16354.68 18661.63 20356.69 17571.56 19178.39 17967.69 12072.13 19472.01 18469.63 20073.02 171
EPNet79.36 12279.44 14279.27 9889.51 4677.20 13788.35 8777.35 3168.27 17574.29 11076.31 16679.22 17559.63 15585.02 12885.45 9986.49 14384.61 89
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
APD-MVScopyleft89.14 2991.25 4286.67 2491.73 1591.02 1595.50 2077.74 2484.04 8379.47 8291.48 4694.85 6781.14 2592.94 4192.20 3594.47 3892.24 32
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS86.93 5188.98 5684.54 4490.11 4087.41 5793.23 4073.47 5586.31 6382.25 6182.96 13092.15 10576.04 6291.69 5490.69 4792.17 7391.64 39
NCCC86.74 5287.97 6885.31 3690.64 3587.25 5893.27 3974.59 4986.50 6083.72 4675.92 17392.39 10177.08 5391.72 5390.68 4892.57 6791.30 42
CP-MVS91.09 592.33 2589.65 292.16 1090.41 2796.46 1080.38 888.26 4589.17 1087.00 9896.34 3083.95 1095.77 1194.72 795.81 1793.78 10
NP-MVS78.65 131
EG-PatchMatch MVS84.35 7287.55 7080.62 8686.38 7582.24 9386.75 10564.02 13484.24 7978.17 9289.38 6995.03 6578.78 3789.95 8186.33 8989.59 10385.65 85
tpm cat164.79 19362.74 20767.17 17374.61 17965.91 19076.18 17759.32 17164.88 19066.41 15671.21 19553.56 22359.17 15861.53 21558.16 20967.33 20563.95 191
SteuartSystems-ACMMP90.00 1791.73 3587.97 1291.21 2990.29 2896.51 778.00 2386.33 6285.32 4088.23 8394.67 7082.08 2095.13 2293.88 1694.72 3593.59 13
Skip Steuart: Steuart Systems R&D Blog.
CostFormer66.81 18866.94 19466.67 17672.79 18468.25 18279.55 16155.57 18465.52 18562.77 16476.98 16260.09 20956.73 16765.69 21162.35 20072.59 18969.71 179
CR-MVSNet69.56 17768.34 19170.99 14972.78 18567.63 18364.47 21067.74 9959.93 20772.30 12180.10 14056.77 21765.04 13671.64 19572.91 18183.61 16869.40 180
Patchmtry56.88 20664.47 21067.74 9972.30 121
PatchT66.25 18966.76 19565.67 18355.87 21660.75 20070.17 19959.00 17359.80 20972.30 12178.68 15054.12 22265.04 13671.64 19572.91 18171.63 19269.40 180
tpmrst59.42 20460.02 21458.71 19767.56 20153.10 21066.99 20851.88 19863.80 19457.68 17376.73 16456.49 21948.73 19856.47 21955.55 21259.43 21258.02 209
tpm62.79 19663.25 20462.26 19270.09 19253.78 20871.65 19547.31 20565.72 18476.70 9580.62 13956.40 22048.11 19964.20 21358.54 20759.70 21163.47 193
DELS-MVS79.71 11683.74 12175.01 12679.31 14382.68 8984.79 12160.06 16875.43 14469.09 14086.13 10589.38 13267.16 12385.12 12383.87 11489.65 10183.57 101
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
RPMNet67.02 18763.99 20270.56 15371.55 18867.63 18375.81 17869.44 7959.93 20763.24 16264.32 21147.51 22659.68 15470.37 20069.64 19183.64 16768.49 183
MVSTER68.08 18569.73 18766.16 17866.33 20870.06 17575.71 18352.36 19755.18 21658.64 17270.23 20356.72 21857.34 16579.68 16776.03 17086.61 14180.20 136
CPTT-MVS89.63 2590.52 4788.59 690.95 3190.74 2195.71 1679.13 1587.70 5085.68 3880.05 14295.74 4684.77 694.28 2992.68 2695.28 2692.45 31
GBi-Net73.17 16077.64 15167.95 17076.76 16477.36 13475.77 18064.57 12462.99 19851.83 19676.05 16977.76 18152.73 18985.57 11783.39 11986.04 14880.37 131
PVSNet_Blended_VisFu83.00 8884.16 11581.65 7482.17 12486.01 6688.03 8871.23 6876.05 14179.54 8183.88 12683.44 15977.49 5187.38 10184.93 10491.41 8087.40 75
PVSNet_BlendedMVS76.45 14178.12 14774.49 13076.76 16478.46 12579.65 15663.26 14365.42 18773.15 11675.05 17888.96 13566.51 12882.73 14577.66 15987.61 13278.60 146
PVSNet_Blended76.45 14178.12 14774.49 13076.76 16478.46 12579.65 15663.26 14365.42 18773.15 11675.05 17888.96 13566.51 12882.73 14577.66 15987.61 13278.60 146
FMVSNet556.37 21160.14 21351.98 21160.83 21259.58 20166.85 20942.37 21052.68 21841.33 21347.09 22054.68 22135.28 21373.88 18870.77 18765.24 20862.26 198
test173.17 16077.64 15167.95 17076.76 16477.36 13475.77 18064.57 12462.99 19851.83 19676.05 16977.76 18152.73 18985.57 11783.39 11986.04 14880.37 131
new_pmnet52.29 21463.16 20539.61 21558.89 21444.70 22048.78 22334.73 21565.88 18317.85 22473.42 18680.00 17223.06 21967.00 20762.28 20354.36 21648.81 216
FMVSNet371.40 17275.20 17366.97 17475.00 17876.59 14174.29 18764.57 12462.99 19851.83 19676.05 16977.76 18151.49 19476.58 17977.03 16584.62 16279.43 141
dps65.14 19064.50 20065.89 18271.41 18965.81 19171.44 19661.59 15558.56 21061.43 16975.45 17652.70 22458.06 16369.57 20264.65 19871.39 19464.77 188
FMVSNet274.43 15579.70 14068.27 16776.76 16477.36 13475.77 18065.36 11972.28 15652.97 19081.92 13685.61 15352.73 18980.66 16279.73 14986.04 14880.37 131
FMVSNet178.20 13284.83 10270.46 15478.62 15079.03 12177.90 16667.53 10183.02 8855.10 18487.19 9693.18 9255.65 17385.57 11783.39 11987.98 12882.40 115
N_pmnet54.95 21365.90 19642.18 21366.37 20743.86 22157.92 21839.79 21279.54 12617.24 22586.31 10287.91 14225.44 21764.68 21251.76 21846.33 22047.23 217
UGNet79.62 11985.91 8672.28 14373.52 18083.91 7686.64 10669.51 7779.85 12462.57 16585.82 10989.63 12953.18 18488.39 9587.35 7788.28 12686.43 79
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EC-MVSNet83.70 7784.77 10482.46 6687.47 6682.79 8785.50 11272.00 6369.81 16677.66 9385.02 11789.63 12978.14 4490.40 7487.56 7594.00 4188.16 67
MDTV_nov1_ep13_2view72.96 16475.59 16969.88 15771.15 19064.86 19282.31 13754.45 18976.30 13878.32 9186.52 10191.58 11461.35 15076.80 17666.83 19671.70 19066.26 186
MDTV_nov1_ep1364.96 19164.77 19965.18 18667.08 20362.46 19875.80 17951.10 20262.27 20269.74 13674.12 18162.65 20455.64 17468.19 20562.16 20471.70 19061.57 201
MIMVSNet173.40 15881.85 13463.55 18872.90 18364.37 19384.58 12253.60 19390.84 2153.92 18787.75 8796.10 3345.31 20385.37 12279.32 15270.98 19769.18 182
MIMVSNet63.02 19469.02 18956.01 20168.20 19759.26 20270.01 20153.79 19271.56 16141.26 21471.38 19382.38 16636.38 21271.43 19767.32 19566.45 20759.83 205
IterMVS-LS79.79 11582.56 13076.56 11681.83 12677.85 13079.90 15469.42 8078.93 13071.21 12990.47 5585.20 15670.86 10580.54 16380.57 14186.15 14684.36 92
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet73.07 16377.02 15668.46 16681.62 12772.89 16679.56 16070.78 7169.56 16852.52 19277.37 15981.12 17042.60 20584.20 13583.93 11283.65 16670.07 178
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IterMVS73.62 15776.53 16170.23 15571.83 18777.18 13880.69 14753.22 19572.23 15766.62 15585.21 11378.96 17669.54 11276.28 18271.63 18579.45 17974.25 165
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS_111021_LR83.20 8685.33 9180.73 8482.88 11778.23 12889.61 7565.23 12082.08 9881.19 7185.31 11292.04 11075.22 6989.50 8385.90 9490.24 9284.23 94
HQP-MVS85.02 6686.41 7983.40 5489.19 4886.59 6391.28 5071.60 6782.79 9083.48 5178.65 15193.54 8772.55 8986.49 11185.89 9592.28 7290.95 46
QAPM80.43 11184.34 10975.86 11779.40 14282.06 9579.86 15561.94 15483.28 8674.73 10881.74 13785.44 15470.97 10384.99 12984.71 10888.29 12588.14 68
Vis-MVSNetpermissive83.32 8488.12 6677.71 10677.91 15883.44 8390.58 5969.49 7881.11 11367.10 15389.85 6291.48 11771.71 9891.34 5989.37 6289.48 10590.26 49
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet59.74 20358.74 21960.92 19457.74 21545.81 21956.02 21958.69 17555.69 21465.17 15870.86 19771.66 19756.75 16661.11 21653.74 21571.17 19652.28 214
HyFIR lowres test73.29 15974.14 17672.30 14273.08 18278.33 12783.12 12962.41 15163.81 19362.13 16776.67 16578.50 17871.09 10174.13 18777.47 16281.98 17470.10 177
EPMVS56.62 21059.77 21552.94 20962.41 21150.55 21460.66 21552.83 19665.15 18941.80 21277.46 15857.28 21642.68 20459.81 21754.82 21357.23 21553.35 213
TAMVS63.02 19469.30 18855.70 20370.12 19156.89 20569.63 20245.13 20770.23 16538.00 21777.79 15375.15 19342.60 20574.48 18572.81 18368.70 20257.75 210
IS_MVSNet81.72 10185.01 9677.90 10586.19 7682.64 9085.56 11170.02 7480.11 12263.52 16187.28 9481.18 16967.26 12291.08 6789.33 6394.82 3183.42 103
RPSCF88.05 4692.61 1782.73 6584.24 9688.40 4490.04 7266.29 10791.46 1382.29 6088.93 7696.01 3879.38 3295.15 2194.90 694.15 3993.40 20
Vis-MVSNet (Re-imp)76.15 14380.84 13770.68 15183.66 10774.80 15981.66 14269.59 7580.48 12046.94 20587.44 9180.63 17153.14 18586.87 10784.56 10989.12 10971.12 173
MVS_111021_HR83.95 7586.10 8381.44 7684.62 8980.29 11190.51 6468.05 9684.07 8280.38 7484.74 12191.37 11874.23 7790.37 7587.25 7890.86 8984.59 90
CSCG88.12 4591.45 3884.23 4888.12 6190.59 2590.57 6068.60 8991.37 1583.45 5289.94 6095.14 6278.71 3891.45 5888.21 7295.96 1293.44 19
PatchMatch-RL76.05 14476.64 16075.36 12177.84 16069.87 17781.09 14663.43 14171.66 16068.34 14871.70 19081.76 16874.98 7384.83 13083.44 11886.45 14473.22 170
TDRefinement93.16 195.57 190.36 188.79 5293.57 197.27 178.23 2195.55 193.00 193.98 1896.01 3887.53 197.69 196.81 197.33 195.34 4
USDC81.39 10683.07 12679.43 9681.48 12878.95 12382.62 13566.17 10987.45 5390.73 482.40 13493.65 8566.57 12783.63 13977.97 15689.00 11277.45 151
EPP-MVSNet82.76 9286.47 7878.45 10286.00 8084.47 7485.39 11568.42 9184.17 8062.97 16389.26 7176.84 18572.13 9492.56 4890.40 5195.76 2087.56 74
PMMVS61.98 20165.61 19757.74 19845.03 22251.76 21369.54 20335.05 21455.49 21555.32 18368.23 20678.39 17958.09 16270.21 20171.56 18683.42 16963.66 192
ACMMPcopyleft90.63 892.40 2088.56 891.24 2891.60 696.49 977.53 2687.89 4886.87 3087.24 9596.46 2582.87 1695.59 1594.50 896.35 693.51 18
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA85.50 6188.58 5781.91 7184.55 9187.52 5690.89 5463.56 13988.18 4684.06 4483.85 12791.34 11976.46 5891.27 6089.00 6691.96 7488.88 61
PatchmatchNetpermissive64.81 19263.74 20366.06 18169.21 19458.62 20373.16 19260.01 16965.92 18266.19 15776.27 16759.09 21060.45 15366.58 20861.47 20667.33 20558.24 208
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS86.37 5688.14 6584.30 4786.65 7387.56 5590.76 5770.16 7382.55 9389.65 784.89 11892.40 10075.97 6390.88 7089.70 5892.58 6589.03 60
OMC-MVS88.16 4391.34 4184.46 4686.85 7090.63 2393.01 4167.00 10390.35 2887.40 2186.86 10096.35 2977.66 4992.63 4790.84 4694.84 3091.68 38
AdaColmapbinary84.15 7385.14 9583.00 5989.08 4987.14 6090.56 6170.90 6982.40 9580.41 7373.82 18484.69 15775.19 7091.58 5789.90 5591.87 7686.48 78
DeepMVS_CXcopyleft17.78 22520.40 2266.69 22031.41 2229.80 22638.61 22134.88 22933.78 21428.41 22223.59 22445.77 218
TinyColmap83.79 7686.12 8281.07 7883.42 10981.44 9985.42 11468.55 9088.71 4389.46 887.60 8892.72 9670.34 10889.29 8681.94 13189.20 10881.12 125
MAR-MVS81.98 9982.92 12880.88 8085.18 8685.85 6789.13 8069.52 7671.21 16282.25 6171.28 19488.89 13869.69 10988.71 8986.96 7989.52 10487.57 73
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MSDG81.39 10684.23 11378.09 10482.40 12282.47 9285.31 11860.91 16279.73 12580.26 7586.30 10388.27 14169.67 11087.20 10584.98 10389.97 9680.67 128
LS3D89.02 3391.69 3685.91 3089.72 4390.81 2092.56 4471.69 6690.83 2287.24 2289.71 6492.07 10778.37 4294.43 2792.59 2795.86 1391.35 41
CLD-MVS82.75 9387.22 7477.54 10988.01 6285.76 6890.23 6954.52 18882.28 9782.11 6588.48 8195.27 5663.95 13989.41 8588.29 7086.45 14481.01 126
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS81.56 10284.04 11778.66 10082.92 11575.96 14786.48 10865.66 11784.67 7771.47 12877.78 15483.22 16277.57 5091.24 6190.21 5287.84 12985.21 87
Gipumacopyleft86.47 5589.25 5483.23 5583.88 10378.78 12485.35 11668.42 9192.69 1089.03 1191.94 3996.32 3281.80 2194.45 2686.86 8290.91 8883.69 100
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015