This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
TDRefinement93.16 195.57 190.36 188.79 5293.57 197.27 178.23 2195.55 193.00 193.98 1796.01 3887.53 197.69 196.81 197.33 195.34 4
LTVRE_ROB86.82 191.55 394.43 388.19 1083.19 11186.35 6593.60 3778.79 1895.48 391.79 293.08 2697.21 2086.34 397.06 296.27 395.46 2395.56 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
COLMAP_ROBcopyleft85.66 291.85 295.01 288.16 1188.98 5192.86 295.51 1972.17 6294.95 491.27 394.11 1697.77 1184.22 896.49 495.27 596.79 293.60 12
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
USDC81.39 10683.07 12679.43 9681.48 12778.95 12282.62 13466.17 10987.45 5290.73 482.40 13393.65 8466.57 12783.63 13877.97 15689.00 11177.45 150
MTMP90.54 595.16 59
ACMH78.40 1288.94 3892.62 1684.65 4286.45 7487.16 5991.47 4968.79 8795.49 289.74 693.55 1998.50 277.96 4694.14 3189.57 6193.49 4789.94 52
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PHI-MVS86.37 5688.14 6584.30 4786.65 7387.56 5590.76 5770.16 7382.55 9289.65 784.89 11792.40 9975.97 6390.88 7089.70 5892.58 6589.03 60
TinyColmap83.79 7686.12 8281.07 7883.42 10881.44 9885.42 11368.55 9088.71 4289.46 887.60 8792.72 9570.34 10889.29 8681.94 13189.20 10781.12 124
MTAPA89.37 994.85 66
CP-MVS91.09 592.33 2589.65 292.16 1090.41 2796.46 1080.38 888.26 4489.17 1087.00 9796.34 3083.95 1095.77 1194.72 795.81 1793.78 10
Gipumacopyleft86.47 5589.25 5483.23 5583.88 10278.78 12385.35 11568.42 9192.69 1089.03 1191.94 3896.32 3281.80 2194.45 2686.86 8290.91 8883.69 99
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MP-MVScopyleft90.84 691.95 3489.55 392.92 490.90 1996.56 679.60 1186.83 5888.75 1289.00 7394.38 7784.01 994.94 2494.34 1095.45 2493.24 23
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMMPR91.30 492.88 1189.46 491.92 1191.61 596.60 579.46 1490.08 3088.53 1389.54 6595.57 4784.25 795.24 2094.27 1295.97 1193.85 8
TAPA-MVS78.00 1385.88 5888.37 6182.96 6084.69 8688.62 4390.62 5864.22 12989.15 3788.05 1478.83 14893.71 8276.20 6190.11 8088.22 7194.00 4189.97 51
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ambc88.38 6091.62 1787.97 5284.48 12288.64 4387.93 1587.38 9194.82 6874.53 7689.14 8883.86 11585.94 15086.84 75
SMA-MVScopyleft90.13 1592.26 2787.64 1791.68 1690.44 2695.22 2477.34 3290.79 2287.80 1690.42 5692.05 10879.05 3593.89 3293.59 1894.77 3294.62 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP89.86 1991.96 3387.42 1991.00 3090.08 3096.00 1576.61 3689.28 3487.73 1790.04 5891.80 11278.71 3894.36 2893.82 1794.48 3794.32 6
PGM-MVS90.42 1191.58 3789.05 591.77 1491.06 1396.51 778.94 1685.41 7087.67 1887.02 9695.26 5683.62 1295.01 2393.94 1595.79 1993.40 20
HPM-MVS++copyleft88.74 4089.54 5287.80 1592.58 685.69 6995.10 2678.01 2287.08 5587.66 1987.89 8592.07 10680.28 3090.97 6991.41 4393.17 5791.69 37
v124083.57 8084.94 9981.97 7084.05 9781.27 10089.46 7866.06 11081.31 11087.50 2091.88 4195.46 5176.25 6081.16 15680.51 14388.52 12382.98 107
OMC-MVS88.16 4391.34 4184.46 4686.85 7090.63 2393.01 4167.00 10390.35 2787.40 2186.86 9996.35 2977.66 4992.63 4790.84 4694.84 3091.68 38
LS3D89.02 3391.69 3685.91 3089.72 4390.81 2092.56 4471.69 6690.83 2187.24 2289.71 6392.07 10678.37 4294.43 2792.59 2795.86 1391.35 41
LGP-MVS_train90.56 992.38 2188.43 990.88 3291.15 1195.35 2177.65 2586.26 6387.23 2390.45 5597.35 1783.20 1495.44 1693.41 2096.28 892.63 27
v192192083.49 8284.94 9981.80 7283.78 10481.20 10289.50 7765.91 11381.64 10287.18 2491.70 4395.39 5375.85 6481.56 15480.27 14588.60 11882.80 109
XVS91.28 2591.23 896.89 287.14 2594.53 7195.84 15
X-MVStestdata91.28 2591.23 896.89 287.14 2594.53 7195.84 15
X-MVS89.36 2890.73 4587.77 1691.50 2091.23 896.76 478.88 1787.29 5387.14 2578.98 14694.53 7176.47 5795.25 1994.28 1195.85 1493.55 16
RE-MVS-def87.10 28
ACMM80.67 790.67 792.46 1988.57 791.35 2289.93 3296.34 1177.36 3090.17 2886.88 2987.32 9296.63 2383.32 1395.79 1094.49 996.19 992.91 26
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OPM-MVS89.82 2192.24 2986.99 2290.86 3389.35 3895.07 2775.91 4391.16 1686.87 3091.07 5197.29 1879.13 3493.32 3591.99 3794.12 4091.49 40
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMPcopyleft90.63 892.40 2088.56 891.24 2891.60 696.49 977.53 2687.89 4786.87 3087.24 9496.46 2582.87 1695.59 1594.50 896.35 693.51 18
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
v119283.61 7885.23 9381.72 7384.05 9782.15 9389.54 7666.20 10881.38 10986.76 3291.79 4296.03 3674.88 7481.81 15180.92 13988.91 11382.50 113
v7n87.11 5090.46 4883.19 5685.22 8483.69 8090.03 7368.20 9591.01 1986.71 3394.80 1098.46 477.69 4891.10 6585.98 9291.30 8388.19 65
v14419283.43 8384.97 9881.63 7583.43 10781.23 10189.42 7966.04 11281.45 10886.40 3491.46 4695.70 4675.76 6682.14 14780.23 14688.74 11582.57 112
SixPastTwentyTwo89.14 2992.19 3185.58 3284.62 8882.56 9090.53 6371.93 6491.95 1285.89 3594.22 1497.25 1985.42 595.73 1291.71 4095.08 2791.89 36
v114483.22 8585.01 9681.14 7783.76 10581.60 9688.95 8265.58 11881.89 9985.80 3691.68 4495.84 4174.04 8082.12 14880.56 14288.70 11781.41 122
3Dnovator+83.71 388.13 4490.00 5085.94 2986.82 7191.06 1394.26 3375.39 4688.85 4085.76 3785.74 10986.92 14578.02 4593.03 4092.21 3495.39 2592.21 34
CPTT-MVS89.63 2590.52 4788.59 690.95 3190.74 2195.71 1679.13 1587.70 4985.68 3880.05 14195.74 4584.77 694.28 2992.68 2695.28 2692.45 31
ACMP80.00 890.12 1692.30 2687.58 1890.83 3491.10 1294.96 2876.06 4087.47 5185.33 3988.91 7697.65 1482.13 1995.31 1793.44 1996.14 1092.22 33
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SteuartSystems-ACMMP90.00 1791.73 3587.97 1291.21 2990.29 2896.51 778.00 2386.33 6185.32 4088.23 8294.67 6982.08 2095.13 2293.88 1694.72 3593.59 13
Skip Steuart: Steuart Systems R&D Blog.
v2v48282.20 9684.26 11179.81 9382.67 11980.18 11187.67 9263.96 13681.69 10184.73 4191.27 4996.33 3172.05 9581.94 15079.56 15087.79 12978.84 142
DeepC-MVS83.59 490.37 1292.56 1887.82 1491.26 2792.33 394.72 3080.04 990.01 3184.61 4293.33 2294.22 7880.59 2792.90 4392.52 2895.69 2192.57 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PCF-MVS76.59 1484.11 7485.27 9282.76 6486.12 7788.30 4591.24 5169.10 8282.36 9584.45 4377.56 15690.40 12672.91 8885.88 11683.88 11392.72 6488.53 63
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CNLPA85.50 6188.58 5781.91 7184.55 9087.52 5690.89 5463.56 13988.18 4584.06 4483.85 12691.34 11876.46 5891.27 6089.00 6691.96 7488.88 61
DeepPCF-MVS81.61 687.95 4790.29 4985.22 3887.48 6590.01 3193.79 3473.54 5488.93 3883.89 4589.40 6790.84 12180.26 3190.62 7290.19 5392.36 7092.03 35
NCCC86.74 5287.97 6885.31 3690.64 3587.25 5893.27 3974.59 4986.50 5983.72 4675.92 17292.39 10077.08 5391.72 5390.68 4892.57 6791.30 42
PMVScopyleft79.51 990.23 1492.67 1487.39 2090.16 3988.75 4293.64 3675.78 4490.00 3283.70 4792.97 2892.22 10386.13 497.01 396.79 294.94 2890.96 45
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
v1083.17 8785.22 9480.78 8183.26 11082.99 8588.66 8566.49 10679.24 12783.60 4891.46 4695.47 5074.12 7882.60 14680.66 14088.53 12284.11 96
PLCcopyleft76.06 1585.38 6387.46 7182.95 6185.79 8088.84 4188.86 8368.70 8887.06 5683.60 4879.02 14490.05 12777.37 5290.88 7089.66 5993.37 5286.74 76
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
HFP-MVS90.32 1392.37 2287.94 1391.46 2190.91 1895.69 1779.49 1289.94 3383.50 5089.06 7294.44 7581.68 2294.17 3094.19 1395.81 1793.87 7
HQP-MVS85.02 6686.41 7983.40 5489.19 4886.59 6391.28 5071.60 6782.79 8983.48 5178.65 15093.54 8672.55 8986.49 11185.89 9592.28 7290.95 46
CSCG88.12 4591.45 3884.23 4888.12 6190.59 2590.57 6068.60 8991.37 1583.45 5289.94 5995.14 6178.71 3891.45 5888.21 7295.96 1293.44 19
DPE-MVScopyleft89.81 2292.34 2486.86 2389.69 4491.00 1695.53 1876.91 3388.18 4583.43 5393.48 2095.19 5781.07 2692.75 4592.07 3694.55 3693.74 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS_030484.73 7086.19 8183.02 5788.32 5686.71 6291.55 4870.87 7073.79 14782.88 5485.13 11393.35 8872.55 8988.62 9187.69 7491.93 7588.05 69
DVP-MVS++90.50 1094.18 486.21 2792.52 790.29 2895.29 2276.02 4194.24 582.82 5595.84 597.56 1576.82 5593.13 3891.20 4493.78 4597.01 1
CDPH-MVS86.66 5488.52 5984.48 4589.61 4588.27 4692.86 4272.69 6180.55 11882.71 5686.92 9893.32 8975.55 6791.00 6889.85 5693.47 4989.71 53
SF-MVS87.85 4890.95 4484.22 4988.17 6087.90 5390.80 5671.80 6589.28 3482.70 5789.90 6095.37 5477.91 4791.69 5490.04 5493.95 4492.47 29
ACMH+79.05 1189.62 2693.08 885.58 3288.58 5589.26 3992.18 4574.23 5293.55 882.66 5892.32 3698.35 780.29 2995.28 1892.34 3195.52 2290.43 48
TSAR-MVS + COLMAP85.51 6088.36 6282.19 6786.05 7887.69 5490.50 6570.60 7286.40 6082.33 5989.69 6492.52 9874.01 8187.53 10086.84 8389.63 10187.80 71
RPSCF88.05 4692.61 1782.73 6584.24 9588.40 4490.04 7266.29 10791.46 1382.29 6088.93 7596.01 3879.38 3295.15 2194.90 694.15 3993.40 20
CNVR-MVS86.93 5188.98 5684.54 4490.11 4087.41 5793.23 4073.47 5586.31 6282.25 6182.96 12992.15 10476.04 6291.69 5490.69 4792.17 7391.64 39
MAR-MVS81.98 9982.92 12780.88 8085.18 8585.85 6789.13 8069.52 7671.21 16182.25 6171.28 19388.89 13769.69 10988.71 8986.96 7989.52 10387.57 72
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MCST-MVS84.79 6986.48 7782.83 6387.30 6787.03 6190.46 6769.33 8183.14 8682.21 6381.69 13792.14 10575.09 7287.27 10384.78 10692.58 6589.30 57
DeepC-MVS_fast81.78 587.38 4989.64 5184.75 4189.89 4290.70 2292.74 4374.45 5086.02 6482.16 6486.05 10691.99 11075.84 6591.16 6390.44 4993.41 5191.09 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CLD-MVS82.75 9387.22 7477.54 10988.01 6285.76 6890.23 6954.52 18682.28 9682.11 6588.48 8095.27 5563.95 13989.41 8588.29 7086.45 14381.01 125
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TSAR-MVS + MP.89.67 2492.25 2886.65 2591.53 1890.98 1796.15 1373.30 5687.88 4881.83 6692.92 2995.15 6082.23 1893.58 3492.25 3394.87 2993.01 25
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS89.91 1892.23 3087.19 2191.31 2489.79 3594.31 3275.34 4789.26 3681.79 6792.68 3195.08 6283.88 1193.10 3992.69 2596.54 493.02 24
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
v882.20 9684.56 10779.45 9582.42 12081.65 9587.26 9764.27 12879.36 12681.70 6891.04 5295.75 4473.30 8782.82 14279.18 15387.74 13082.09 116
anonymousdsp85.62 5990.53 4679.88 9264.64 20776.35 14296.28 1253.53 19285.63 6781.59 6992.81 3097.71 1286.88 294.56 2592.83 2496.35 693.84 9
train_agg86.67 5387.73 6985.43 3591.51 1982.72 8794.47 3174.22 5381.71 10081.54 7089.20 7192.87 9478.33 4390.12 7988.47 6892.51 6989.04 59
MVS_111021_LR83.20 8685.33 9180.73 8482.88 11678.23 12789.61 7565.23 12082.08 9781.19 7185.31 11192.04 10975.22 6989.50 8385.90 9490.24 9284.23 93
DVP-MVScopyleft89.40 2792.69 1385.56 3489.01 5089.85 3393.72 3575.42 4592.28 1180.49 7294.36 1394.87 6581.46 2492.49 4991.42 4193.27 5393.54 17
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
AdaColmapbinary84.15 7385.14 9583.00 5989.08 4987.14 6090.56 6170.90 6982.40 9480.41 7373.82 18384.69 15675.19 7091.58 5789.90 5591.87 7686.48 77
MVS_111021_HR83.95 7586.10 8381.44 7684.62 8880.29 11090.51 6468.05 9684.07 8180.38 7484.74 12091.37 11774.23 7790.37 7587.25 7890.86 8984.59 89
MSDG81.39 10684.23 11378.09 10482.40 12182.47 9185.31 11760.91 16179.73 12480.26 7586.30 10288.27 14069.67 11087.20 10584.98 10389.97 9680.67 127
MSP-MVS88.51 4291.36 4085.19 3990.63 3692.01 495.29 2277.52 2790.48 2680.21 7690.21 5796.08 3476.38 5988.30 9691.42 4191.12 8791.01 44
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SED-MVS88.96 3792.37 2284.99 4088.64 5489.65 3795.11 2575.98 4290.73 2380.15 7794.21 1594.51 7476.59 5692.94 4191.17 4593.46 5093.37 22
CS-MVS83.57 8084.79 10382.14 6883.83 10381.48 9787.29 9666.54 10572.73 15380.05 7884.04 12493.12 9380.35 2889.50 8386.34 8894.76 3486.32 80
TSAR-MVS + ACMM89.14 2992.11 3285.67 3189.27 4790.61 2490.98 5279.48 1388.86 3979.80 7993.01 2793.53 8783.17 1592.75 4592.45 2991.32 8293.59 13
Effi-MVS+82.33 9483.87 11880.52 8884.51 9381.32 9987.53 9368.05 9674.94 14579.67 8082.37 13492.31 10172.21 9185.06 12386.91 8191.18 8584.20 94
PVSNet_Blended_VisFu83.00 8884.16 11581.65 7482.17 12386.01 6688.03 8871.23 6876.05 14079.54 8183.88 12583.44 15777.49 5187.38 10184.93 10491.41 8087.40 74
APD-MVScopyleft89.14 2991.25 4286.67 2491.73 1591.02 1595.50 2077.74 2484.04 8279.47 8291.48 4594.85 6681.14 2592.94 4192.20 3594.47 3892.24 32
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
v14879.33 12382.32 13075.84 11880.14 13475.74 14781.98 13857.06 17881.51 10679.36 8389.42 6696.42 2771.32 9981.54 15575.29 17385.20 15776.32 152
DPM-MVS81.42 10482.11 13180.62 8687.54 6485.30 7190.18 7168.96 8481.00 11479.15 8470.45 19983.29 15967.67 12182.81 14383.46 11790.19 9388.48 64
FA-MVS(training)78.93 12880.63 13776.93 11179.79 13875.57 15185.44 11261.95 15377.19 13578.97 8584.82 11882.47 16266.43 13084.09 13580.13 14789.02 11080.15 136
MSLP-MVS++86.29 5789.10 5583.01 5885.71 8189.79 3587.04 10374.39 5185.17 7278.92 8677.59 15593.57 8582.60 1793.23 3691.88 3989.42 10692.46 30
CANet82.84 9084.60 10680.78 8187.30 6785.20 7290.23 6969.00 8372.16 15778.73 8784.49 12290.70 12469.54 11287.65 9986.17 9089.87 9885.84 82
APDe-MVS89.85 2092.91 1086.29 2690.47 3891.34 796.04 1476.41 3991.11 1778.50 8893.44 2195.82 4281.55 2393.16 3791.90 3894.77 3293.58 15
CS-MVS-test83.59 7984.86 10182.10 6983.04 11381.05 10491.58 4767.48 10272.52 15478.42 8984.75 11991.82 11178.62 4191.98 5087.54 7693.48 4884.35 92
MDTV_nov1_ep13_2view72.96 16475.59 16869.88 15771.15 18864.86 19082.31 13654.45 18776.30 13778.32 9086.52 10091.58 11361.35 14976.80 17466.83 19471.70 18866.26 184
EG-PatchMatch MVS84.35 7287.55 7080.62 8686.38 7582.24 9286.75 10464.02 13484.24 7878.17 9189.38 6895.03 6478.78 3789.95 8186.33 8989.59 10285.65 84
DROMVSNet83.70 7784.77 10482.46 6687.47 6682.79 8685.50 11172.00 6369.81 16577.66 9285.02 11689.63 12878.14 4490.40 7487.56 7594.00 4188.16 66
V4279.59 12083.59 12374.93 12969.61 19177.05 13886.59 10655.84 18178.42 13177.29 9389.84 6295.08 6274.12 7883.05 13980.11 14886.12 14681.59 121
tpm62.79 19463.25 20262.26 19170.09 19053.78 20571.65 19247.31 20365.72 18376.70 9480.62 13856.40 21748.11 19664.20 21158.54 20559.70 20863.47 190
DTE-MVSNet88.99 3592.77 1284.59 4393.31 288.10 4990.96 5383.09 291.38 1476.21 9596.03 298.04 870.78 10695.65 1492.32 3293.18 5687.84 70
3Dnovator79.41 1082.21 9586.07 8477.71 10679.31 14284.61 7387.18 9861.02 16085.65 6676.11 9685.07 11585.38 15470.96 10487.22 10486.47 8591.66 7788.12 68
gm-plane-assit71.56 16969.99 18473.39 13884.43 9473.21 16390.42 6851.36 19984.08 8076.00 9791.30 4837.09 22559.01 15873.65 18870.24 18779.09 17960.37 200
GeoE81.92 10083.87 11879.66 9484.64 8779.87 11289.75 7465.90 11476.12 13975.87 9884.62 12192.23 10271.96 9686.83 10883.60 11689.83 9983.81 98
GA-MVS75.01 15376.39 16173.39 13878.37 15075.66 14980.03 15058.40 17470.51 16375.85 9983.24 12876.14 18563.75 14077.28 17376.62 16783.97 16475.30 159
CMPMVSbinary55.74 1871.56 16976.26 16266.08 18068.11 19563.91 19363.17 20950.52 20168.79 17375.49 10070.78 19885.67 15163.54 14381.58 15377.20 16375.63 18285.86 81
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
WR-MVS89.79 2393.66 585.27 3791.32 2388.27 4693.49 3879.86 1092.75 975.37 10196.86 198.38 575.10 7195.93 894.07 1496.46 589.39 56
PS-CasMVS89.07 3293.23 784.21 5092.44 888.23 4890.54 6282.95 390.50 2575.31 10295.80 698.37 671.16 10096.30 593.32 2192.88 6190.11 50
CP-MVSNet88.71 4192.63 1584.13 5192.39 988.09 5090.47 6682.86 488.79 4175.16 10394.87 997.68 1371.05 10296.16 693.18 2392.85 6289.64 54
PEN-MVS88.86 3992.92 984.11 5292.92 488.05 5190.83 5582.67 591.04 1874.83 10495.97 398.47 370.38 10795.70 1392.43 3093.05 6088.78 62
UA-Net89.02 3391.44 3986.20 2894.88 189.84 3494.76 2977.45 2885.41 7074.79 10588.83 7788.90 13678.67 4096.06 795.45 496.66 395.58 2
Fast-Effi-MVS+81.42 10483.82 12078.62 10182.24 12280.62 10687.72 9163.51 14073.01 14974.75 10683.80 12792.70 9673.44 8688.15 9885.26 10090.05 9483.17 103
QAPM80.43 11184.34 10975.86 11779.40 14182.06 9479.86 15461.94 15483.28 8574.73 10781.74 13685.44 15370.97 10384.99 12884.71 10888.29 12488.14 67
TSAR-MVS + GP.85.32 6487.41 7382.89 6290.07 4185.69 6989.07 8172.99 6082.45 9374.52 10885.09 11487.67 14279.24 3391.11 6490.41 5091.45 7989.45 55
EPNet79.36 12279.44 14179.27 9889.51 4677.20 13688.35 8777.35 3168.27 17474.29 10976.31 16579.22 17259.63 15485.02 12785.45 9986.49 14284.61 88
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thisisatest051581.18 10984.32 11077.52 11076.73 16874.84 15785.06 11861.37 15781.05 11373.95 11088.79 7889.25 13375.49 6885.98 11584.78 10692.53 6885.56 85
OpenMVScopyleft75.38 1678.44 13081.39 13574.99 12780.46 13279.85 11379.99 15158.31 17577.34 13473.85 11177.19 15982.33 16568.60 11684.67 13181.95 13088.72 11686.40 79
IterMVS-SCA-FT77.23 13479.18 14374.96 12876.67 16979.85 11375.58 18361.34 15873.10 14873.79 11286.23 10379.61 17179.00 3680.28 16375.50 17283.41 16979.70 138
pmmvs-eth3d79.64 11882.06 13276.83 11280.05 13572.64 16587.47 9466.59 10480.83 11573.50 11389.32 6993.20 9067.78 11980.78 15981.64 13585.58 15576.01 153
EIA-MVS78.57 12977.90 14979.35 9787.24 6980.71 10586.16 10864.03 13362.63 20073.49 11473.60 18476.12 18673.83 8288.49 9384.93 10491.36 8178.78 143
PVSNet_BlendedMVS76.45 14178.12 14674.49 13076.76 16278.46 12479.65 15563.26 14365.42 18673.15 11575.05 17788.96 13466.51 12882.73 14477.66 15987.61 13178.60 145
PVSNet_Blended76.45 14178.12 14674.49 13076.76 16278.46 12479.65 15563.26 14365.42 18673.15 11575.05 17788.96 13466.51 12882.73 14477.66 15987.61 13178.60 145
Effi-MVS+-dtu82.04 9883.39 12580.48 8985.48 8286.57 6488.40 8668.28 9369.04 17273.13 11776.26 16791.11 12074.74 7588.40 9487.76 7392.84 6384.57 90
casdiffmvs_mvgpermissive81.50 10385.70 8876.60 11582.68 11880.54 10783.50 12664.49 12783.40 8372.53 11892.15 3795.40 5265.84 13284.69 13081.89 13290.59 9081.86 120
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test76.72 13879.40 14273.60 13478.85 14874.99 15579.91 15261.56 15669.67 16672.44 11985.98 10790.78 12263.50 14478.30 16975.74 17185.33 15680.31 134
CR-MVSNet69.56 17668.34 18970.99 14972.78 18367.63 18164.47 20767.74 9959.93 20672.30 12080.10 13956.77 21465.04 13671.64 19372.91 17983.61 16769.40 178
Patchmtry56.88 20364.47 20767.74 9972.30 120
PatchT66.25 18766.76 19365.67 18355.87 21360.75 19770.17 19659.00 17159.80 20872.30 12078.68 14954.12 21965.04 13671.64 19372.91 17971.63 19069.40 178
DI_MVS_plusplus_trai77.64 13379.64 14075.31 12279.87 13776.89 13981.55 14263.64 13876.21 13872.03 12385.59 11082.97 16166.63 12679.27 16777.78 15888.14 12678.76 144
WR-MVS_H88.99 3593.28 683.99 5391.92 1189.13 4091.95 4683.23 190.14 2971.92 12495.85 498.01 1071.83 9795.82 993.19 2293.07 5990.83 47
PM-MVS80.42 11283.63 12276.67 11378.04 15472.37 16787.14 9960.18 16680.13 12071.75 12586.12 10593.92 8177.08 5386.56 11085.12 10285.83 15281.18 123
ETV-MVS79.01 12777.98 14880.22 9186.69 7279.73 11588.80 8468.27 9463.22 19571.56 12670.25 20173.63 19273.66 8490.30 7886.77 8492.33 7181.95 118
FPMVS81.56 10284.04 11778.66 10082.92 11475.96 14686.48 10765.66 11784.67 7671.47 12777.78 15383.22 16077.57 5091.24 6190.21 5287.84 12885.21 86
IterMVS-LS79.79 11582.56 12976.56 11681.83 12577.85 12979.90 15369.42 8078.93 12971.21 12890.47 5485.20 15570.86 10580.54 16180.57 14186.15 14584.36 91
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MDA-MVSNet-bldmvs76.51 13982.87 12869.09 16350.71 21874.72 15984.05 12460.27 16581.62 10371.16 12988.21 8391.58 11369.62 11192.78 4477.48 16178.75 18073.69 166
EU-MVSNet76.48 14080.53 13871.75 14567.62 19770.30 17281.74 14054.06 18975.47 14271.01 13080.10 13993.17 9273.67 8383.73 13777.85 15782.40 17183.07 104
ET-MVSNet_ETH3D74.71 15474.19 17475.31 12279.22 14475.29 15282.70 13364.05 13265.45 18570.96 13177.15 16057.70 21265.89 13184.40 13381.65 13489.03 10977.67 149
UniMVSNet_NR-MVSNet84.62 7188.00 6780.68 8588.18 5983.83 7787.06 10176.47 3881.46 10770.49 13293.24 2395.56 4868.13 11790.43 7388.47 6893.78 4583.02 105
DU-MVS84.88 6888.27 6480.92 7988.30 5783.59 8187.06 10178.35 1980.64 11670.49 13292.67 3296.91 2168.13 11791.79 5189.29 6493.20 5583.02 105
tttt051775.86 14776.23 16375.42 12075.55 17474.06 16182.73 13260.31 16369.24 16870.24 13479.18 14358.79 21072.17 9284.49 13283.08 12491.54 7884.80 87
EPNet_dtu71.90 16873.03 18070.59 15278.28 15161.64 19682.44 13564.12 13063.26 19469.74 13571.47 19182.41 16351.89 19178.83 16878.01 15577.07 18175.60 158
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDTV_nov1_ep1364.96 18964.77 19765.18 18567.08 20062.46 19575.80 17751.10 20062.27 20169.74 13574.12 18062.65 20155.64 17368.19 20362.16 20271.70 18861.57 198
thisisatest053075.54 14975.95 16775.05 12475.08 17573.56 16282.15 13760.31 16369.17 16969.32 13779.02 14458.78 21172.17 9283.88 13683.08 12491.30 8384.20 94
UniMVSNet (Re)84.95 6788.53 5880.78 8187.82 6384.21 7588.03 8876.50 3781.18 11169.29 13892.63 3496.83 2269.07 11491.23 6289.60 6093.97 4384.00 97
DELS-MVS79.71 11683.74 12175.01 12679.31 14282.68 8884.79 12060.06 16775.43 14369.09 13986.13 10489.38 13167.16 12385.12 12283.87 11489.65 10083.57 100
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TranMVSNet+NR-MVSNet85.23 6589.38 5380.39 9088.78 5383.77 7887.40 9576.75 3485.47 6868.99 14095.18 897.55 1667.13 12491.61 5689.13 6593.26 5482.95 108
NR-MVSNet82.89 8987.43 7277.59 10883.91 10183.59 8187.10 10078.35 1980.64 11668.85 14192.67 3296.50 2454.19 17987.19 10688.68 6793.16 5882.75 110
CVMVSNet75.65 14877.62 15273.35 14071.95 18469.89 17483.04 13060.84 16269.12 17068.76 14279.92 14278.93 17473.64 8581.02 15781.01 13881.86 17483.43 101
Fast-Effi-MVS+-dtu76.92 13677.18 15476.62 11479.55 13979.17 11984.80 11977.40 2964.46 19068.75 14370.81 19786.57 14763.36 14681.74 15281.76 13385.86 15175.78 156
CANet_DTU75.04 15278.45 14471.07 14777.27 15977.96 12883.88 12558.00 17664.11 19168.67 14475.65 17488.37 13953.92 18182.05 14981.11 13684.67 16079.88 137
casdiffmvspermissive79.93 11484.11 11675.05 12481.41 12978.99 12182.95 13162.90 14781.53 10468.60 14591.94 3896.03 3665.84 13282.89 14177.07 16488.59 11980.34 133
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
pmmvs475.92 14577.48 15374.10 13378.21 15370.94 16984.06 12364.78 12375.13 14468.47 14684.12 12383.32 15864.74 13875.93 18179.14 15484.31 16273.77 165
PatchMatch-RL76.05 14476.64 15975.36 12177.84 15869.87 17581.09 14563.43 14171.66 15968.34 14771.70 18981.76 16674.98 7384.83 12983.44 11886.45 14373.22 168
canonicalmvs81.22 10886.04 8575.60 11983.17 11283.18 8480.29 14965.82 11685.97 6567.98 14877.74 15491.51 11565.17 13588.62 9186.15 9191.17 8689.09 58
SCA68.54 18167.52 19169.73 15867.79 19675.04 15376.96 17168.94 8566.41 17967.86 14974.03 18160.96 20365.55 13468.99 20165.67 19571.30 19361.54 199
gg-mvs-nofinetune72.68 16575.21 17169.73 15881.48 12769.04 17870.48 19576.67 3586.92 5767.80 15088.06 8464.67 20042.12 20477.60 17173.65 17679.81 17666.57 183
diffmvspermissive76.74 13781.61 13471.06 14875.64 17374.45 16080.68 14757.57 17777.48 13267.62 15188.95 7493.94 8061.98 14879.74 16476.18 16882.85 17080.50 128
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive83.32 8488.12 6677.71 10677.91 15783.44 8390.58 5969.49 7881.11 11267.10 15289.85 6191.48 11671.71 9891.34 5989.37 6289.48 10490.26 49
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Baseline_NR-MVSNet82.79 9186.51 7678.44 10388.30 5775.62 15087.81 9074.97 4881.53 10466.84 15394.71 1296.46 2566.90 12591.79 5183.37 12285.83 15282.09 116
IterMVS73.62 15776.53 16070.23 15571.83 18577.18 13780.69 14653.22 19372.23 15666.62 15485.21 11278.96 17369.54 11276.28 18071.63 18379.45 17774.25 163
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tpm cat164.79 19162.74 20567.17 17374.61 17765.91 18876.18 17559.32 16964.88 18966.41 15571.21 19453.56 22059.17 15761.53 21358.16 20767.33 20263.95 188
PatchmatchNetpermissive64.81 19063.74 20166.06 18169.21 19258.62 20073.16 18960.01 16865.92 18166.19 15676.27 16659.09 20760.45 15266.58 20661.47 20467.33 20258.24 205
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MVS-HIRNet59.74 20158.74 21760.92 19257.74 21245.81 21656.02 21658.69 17355.69 21265.17 15770.86 19671.66 19456.75 16561.11 21453.74 21371.17 19452.28 211
UniMVSNet_ETH3D85.39 6291.12 4378.71 9990.48 3783.72 7981.76 13982.41 693.84 664.43 15895.41 798.76 163.72 14193.63 3389.74 5789.47 10582.74 111
IB-MVS71.28 1775.21 15177.00 15673.12 14176.76 16277.45 13283.05 12958.92 17263.01 19664.31 15959.99 21487.57 14368.64 11586.26 11482.34 12987.05 13782.36 115
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
IS_MVSNet81.72 10185.01 9677.90 10586.19 7682.64 8985.56 11070.02 7480.11 12163.52 16087.28 9381.18 16767.26 12291.08 6789.33 6394.82 3183.42 102
RPMNet67.02 18563.99 20070.56 15371.55 18667.63 18175.81 17669.44 7959.93 20663.24 16164.32 20947.51 22359.68 15370.37 19869.64 18983.64 16668.49 181
EPP-MVSNet82.76 9286.47 7878.45 10286.00 7984.47 7485.39 11468.42 9184.17 7962.97 16289.26 7076.84 18272.13 9492.56 4890.40 5195.76 2087.56 73
CostFormer66.81 18666.94 19266.67 17672.79 18268.25 18079.55 16055.57 18265.52 18462.77 16376.98 16160.09 20656.73 16665.69 20962.35 19872.59 18769.71 177
UGNet79.62 11985.91 8672.28 14373.52 17883.91 7686.64 10569.51 7779.85 12362.57 16485.82 10889.63 12853.18 18388.39 9587.35 7788.28 12586.43 78
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DCV-MVSNet80.04 11385.67 9073.48 13782.91 11581.11 10380.44 14866.06 11085.01 7362.53 16578.84 14794.43 7658.51 16088.66 9085.91 9390.41 9185.73 83
HyFIR lowres test73.29 15974.14 17572.30 14273.08 18078.33 12683.12 12862.41 15163.81 19262.13 16676.67 16478.50 17571.09 10174.13 18577.47 16281.98 17370.10 175
baseline268.71 18068.34 18969.14 16275.69 17269.70 17676.60 17255.53 18360.13 20562.07 16766.76 20760.35 20560.77 15076.53 17974.03 17584.19 16370.88 172
dps65.14 18864.50 19865.89 18271.41 18765.81 18971.44 19361.59 15558.56 20961.43 16875.45 17552.70 22158.06 16269.57 20064.65 19671.39 19264.77 186
Anonymous2023121179.37 12185.78 8771.89 14482.87 11779.66 11678.77 16363.93 13783.36 8459.39 16990.54 5394.66 7056.46 16787.38 10184.12 11189.92 9780.74 126
baseline69.33 17775.37 17062.28 19066.54 20366.67 18673.95 18748.07 20266.10 18059.26 17082.45 13186.30 14854.44 17774.42 18473.25 17871.42 19178.43 147
MVSTER68.08 18369.73 18566.16 17866.33 20570.06 17375.71 18152.36 19555.18 21458.64 17170.23 20256.72 21557.34 16479.68 16576.03 16986.61 14080.20 135
tpmrst59.42 20260.02 21258.71 19567.56 19853.10 20766.99 20551.88 19663.80 19357.68 17276.73 16356.49 21648.73 19556.47 21755.55 21059.43 20958.02 206
pmmvs362.72 19568.71 18855.74 20050.74 21757.10 20170.05 19728.82 21561.57 20457.39 17371.19 19585.73 15053.96 18073.36 19069.43 19073.47 18662.55 194
CHOSEN 1792x268868.80 17971.09 18266.13 17969.11 19368.89 17978.98 16254.68 18461.63 20256.69 17471.56 19078.39 17667.69 12072.13 19272.01 18269.63 19873.02 169
test-mter59.39 20361.59 20756.82 19853.21 21454.82 20473.12 19026.57 21753.19 21556.31 17564.71 20860.47 20456.36 16868.69 20264.27 19775.38 18365.00 185
pmmvs568.91 17874.35 17362.56 18967.45 19966.78 18571.70 19151.47 19867.17 17656.25 17682.41 13288.59 13847.21 19973.21 19174.23 17481.30 17568.03 182
test111179.67 11784.40 10874.16 13285.29 8379.56 11781.16 14373.13 5984.65 7756.08 17788.38 8186.14 14960.49 15189.78 8285.59 9788.79 11476.68 151
ECVR-MVScopyleft79.31 12484.20 11473.60 13484.55 9080.37 10879.63 15773.23 5782.64 9055.98 17887.50 8886.85 14659.61 15590.35 7686.46 8688.58 12075.26 160
pmmvs680.46 11088.34 6371.26 14681.96 12477.51 13177.54 16668.83 8693.72 755.92 17993.94 1898.03 955.94 16989.21 8785.61 9687.36 13480.38 129
TransMVSNet (Re)79.05 12686.66 7570.18 15683.32 10975.99 14577.54 16663.98 13590.68 2455.84 18094.80 1096.06 3553.73 18286.27 11383.22 12386.65 13879.61 139
test250675.32 15076.87 15873.50 13684.55 9080.37 10879.63 15773.23 5782.64 9055.41 18176.87 16245.42 22459.61 15590.35 7686.46 8688.58 12075.98 154
PMMVS61.98 19965.61 19557.74 19645.03 21951.76 21069.54 20035.05 21255.49 21355.32 18268.23 20478.39 17658.09 16170.21 19971.56 18483.42 16863.66 189
FMVSNet178.20 13284.83 10270.46 15478.62 14979.03 12077.90 16567.53 10183.02 8755.10 18387.19 9593.18 9155.65 17285.57 11783.39 11987.98 12782.40 114
MS-PatchMatch71.18 17273.99 17667.89 17277.16 16071.76 16877.18 16956.38 18067.35 17555.04 18474.63 17975.70 18762.38 14776.62 17675.97 17079.22 17875.90 155
pm-mvs178.21 13185.68 8969.50 16180.38 13375.73 14876.25 17465.04 12187.59 5054.47 18593.16 2595.99 4054.20 17886.37 11282.98 12686.64 13977.96 148
MIMVSNet173.40 15881.85 13363.55 18772.90 18164.37 19184.58 12153.60 19190.84 2053.92 18687.75 8696.10 3345.31 20085.37 12179.32 15270.98 19569.18 180
test-LLR62.15 19859.46 21465.29 18479.07 14552.66 20869.46 20162.93 14550.76 21753.81 18763.11 21158.91 20852.87 18566.54 20762.34 19973.59 18461.87 196
TESTMET0.1,157.21 20659.46 21454.60 20450.95 21652.66 20869.46 20126.91 21650.76 21753.81 18763.11 21158.91 20852.87 18566.54 20762.34 19973.59 18461.87 196
FMVSNet274.43 15579.70 13968.27 16776.76 16277.36 13375.77 17865.36 11972.28 15552.97 18981.92 13585.61 15252.73 18780.66 16079.73 14986.04 14780.37 130
thres600view774.34 15678.43 14569.56 16080.47 13176.28 14378.65 16462.56 14977.39 13352.53 19074.03 18176.78 18355.90 17185.06 12385.19 10187.25 13574.29 162
CDS-MVSNet73.07 16377.02 15568.46 16681.62 12672.89 16479.56 15970.78 7169.56 16752.52 19177.37 15881.12 16842.60 20284.20 13483.93 11283.65 16570.07 176
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tfpnnormal77.16 13584.26 11168.88 16481.02 13075.02 15476.52 17363.30 14287.29 5352.40 19291.24 5093.97 7954.85 17685.46 12081.08 13785.18 15875.76 157
thres40073.13 16276.99 15768.62 16579.46 14074.93 15677.23 16861.23 15975.54 14152.31 19372.20 18877.10 18154.89 17482.92 14082.62 12886.57 14173.66 167
FC-MVSNet-train79.20 12586.29 8070.94 15084.06 9677.67 13085.68 10964.11 13182.90 8852.22 19492.57 3593.69 8349.52 19488.30 9686.93 8090.03 9581.95 118
GBi-Net73.17 16077.64 15067.95 17076.76 16277.36 13375.77 17864.57 12462.99 19751.83 19576.05 16877.76 17852.73 18785.57 11783.39 11986.04 14780.37 130
test173.17 16077.64 15067.95 17076.76 16277.36 13375.77 17864.57 12462.99 19751.83 19576.05 16877.76 17852.73 18785.57 11783.39 11986.04 14780.37 130
FMVSNet371.40 17175.20 17266.97 17475.00 17676.59 14074.29 18564.57 12462.99 19751.83 19576.05 16877.76 17851.49 19276.58 17777.03 16584.62 16179.43 140
thres20072.41 16676.00 16668.21 16878.28 15176.28 14374.94 18462.56 14972.14 15851.35 19869.59 20376.51 18454.89 17485.06 12380.51 14387.25 13571.92 170
thres100view90069.86 17472.97 18166.24 17777.97 15572.49 16673.29 18859.12 17066.81 17750.82 19967.30 20575.67 18850.54 19378.24 17079.40 15185.71 15470.88 172
tfpn200view972.01 16775.40 16968.06 16977.97 15576.44 14177.04 17062.67 14866.81 17750.82 19967.30 20575.67 18852.46 19085.06 12382.64 12787.41 13373.86 164
ADS-MVSNet56.89 20761.09 20852.00 20859.48 21048.10 21458.02 21454.37 18872.82 15149.19 20175.32 17665.97 19937.96 20859.34 21654.66 21252.99 21651.42 212
baseline169.62 17573.55 17865.02 18678.95 14770.39 17171.38 19462.03 15270.97 16247.95 20278.47 15168.19 19847.77 19879.65 16676.94 16682.05 17270.27 174
Vis-MVSNet (Re-imp)76.15 14380.84 13670.68 15183.66 10674.80 15881.66 14169.59 7580.48 11946.94 20387.44 9080.63 16953.14 18486.87 10784.56 10989.12 10871.12 171
EMVS58.97 20562.63 20654.70 20366.26 20648.71 21361.74 21142.71 20772.80 15246.00 20473.01 18771.66 19457.91 16380.41 16250.68 21753.55 21541.11 217
E-PMN59.07 20462.79 20454.72 20267.01 20147.81 21560.44 21343.40 20672.95 15044.63 20570.42 20073.17 19358.73 15980.97 15851.98 21554.14 21442.26 216
pmnet_mix0262.60 19670.81 18353.02 20666.56 20250.44 21262.81 21046.84 20479.13 12843.76 20687.45 8990.75 12339.85 20670.48 19757.09 20858.27 21060.32 201
Anonymous2023120667.28 18473.41 17960.12 19376.45 17163.61 19474.21 18656.52 17976.35 13642.23 20775.81 17390.47 12541.51 20574.52 18269.97 18869.83 19763.17 192
FC-MVSNet-test75.91 14683.59 12366.95 17576.63 17069.07 17785.33 11664.97 12284.87 7541.95 20893.17 2487.04 14447.78 19791.09 6685.56 9885.06 15974.34 161
EPMVS56.62 20859.77 21352.94 20762.41 20850.55 21160.66 21252.83 19465.15 18841.80 20977.46 15757.28 21342.68 20159.81 21554.82 21157.23 21253.35 210
FMVSNet556.37 20960.14 21151.98 20960.83 20959.58 19866.85 20642.37 20852.68 21641.33 21047.09 21754.68 21835.28 21073.88 18670.77 18565.24 20562.26 195
MIMVSNet63.02 19269.02 18756.01 19968.20 19459.26 19970.01 19853.79 19071.56 16041.26 21171.38 19282.38 16436.38 20971.43 19567.32 19366.45 20459.83 202
test20.0369.91 17376.20 16462.58 18884.01 9967.34 18375.67 18265.88 11579.98 12240.28 21282.65 13089.31 13239.63 20777.41 17273.28 17769.98 19663.40 191
testgi68.20 18276.05 16559.04 19479.99 13667.32 18481.16 14351.78 19784.91 7439.36 21373.42 18595.19 5732.79 21376.54 17870.40 18669.14 19964.55 187
TAMVS63.02 19269.30 18655.70 20170.12 18956.89 20269.63 19945.13 20570.23 16438.00 21477.79 15275.15 19042.60 20274.48 18372.81 18168.70 20057.75 207
CHOSEN 280x42056.32 21058.85 21653.36 20551.63 21539.91 21969.12 20338.61 21156.29 21136.79 21548.84 21662.59 20263.39 14573.61 18967.66 19260.61 20663.07 193
test0.0.03 161.79 20065.33 19657.65 19779.07 14564.09 19268.51 20462.93 14561.59 20333.71 21661.58 21371.58 19633.43 21270.95 19668.68 19168.26 20158.82 203
new-patchmatchnet62.59 19773.79 17749.53 21076.98 16153.57 20653.46 21854.64 18585.43 6928.81 21791.94 3896.41 2825.28 21576.80 17453.66 21457.99 21158.69 204
tmp_tt13.54 21716.73 2226.42 2238.49 2242.36 22028.69 22127.44 21818.40 22013.51 2273.70 21933.23 21836.26 21822.54 222
test_method22.69 21626.99 21817.67 2162.13 2234.31 22427.50 2224.53 21937.94 21924.52 21936.20 21951.40 22215.26 21729.86 21917.09 21932.07 22012.16 219
MVEpermissive41.12 1951.80 21360.92 20941.16 21235.21 22134.14 22148.45 22141.39 20969.11 17119.53 22063.33 21073.80 19163.56 14267.19 20461.51 20338.85 21857.38 208
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
new_pmnet52.29 21263.16 20339.61 21358.89 21144.70 21748.78 22034.73 21365.88 18217.85 22173.42 18580.00 17023.06 21667.00 20562.28 20154.36 21348.81 213
N_pmnet54.95 21165.90 19442.18 21166.37 20443.86 21857.92 21539.79 21079.54 12517.24 22286.31 10187.91 14125.44 21464.68 21051.76 21646.33 21747.23 214
DeepMVS_CXcopyleft17.78 22220.40 2236.69 21831.41 2209.80 22338.61 21834.88 22633.78 21128.41 22023.59 22145.77 215
PMMVS248.13 21464.06 19929.55 21444.06 22036.69 22051.95 21929.97 21474.75 1468.90 22476.02 17191.24 1197.53 21873.78 18755.91 20934.87 21940.01 218
GG-mvs-BLEND41.63 21560.36 21019.78 2150.14 22666.04 18755.66 2170.17 22357.64 2102.42 22551.82 21569.42 1970.28 22264.11 21258.29 20660.02 20755.18 209
test1231.06 2171.41 2190.64 2180.39 2240.48 2250.52 2270.25 2221.11 2231.37 2262.01 2221.98 2280.87 2201.43 2211.27 2200.46 2241.62 221
testmvs0.93 2181.37 2200.41 2190.36 2250.36 2260.62 2260.39 2211.48 2220.18 2272.41 2211.31 2290.41 2211.25 2221.08 2210.48 2231.68 220
uanet_test0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
9.1489.43 130
SR-MVS91.82 1380.80 795.53 49
Anonymous20240521184.68 10583.92 10079.45 11879.03 16167.79 9882.01 9888.77 7992.58 9755.93 17086.68 10984.26 11088.92 11278.98 141
our_test_373.27 17970.91 17083.26 127
Patchmatch-RL test4.13 225
mPP-MVS93.05 395.77 43
NP-MVS78.65 130