This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DeepPCF-MVS76.94 183.08 1987.77 1077.60 3390.11 2090.96 1978.48 5672.63 2293.10 465.84 4280.67 2481.55 2074.80 2985.94 1385.39 883.75 14796.77 11
DeepC-MVS_fast75.41 281.69 2482.10 3281.20 1791.04 1787.81 5383.42 2774.04 1383.77 2571.09 2766.88 4872.44 3879.48 1185.08 1584.97 1488.12 3993.78 40
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS74.46 380.30 2981.05 3579.42 2387.42 4088.50 4283.23 2873.27 1882.78 2871.01 2862.86 6069.93 5174.80 2984.30 2184.20 2186.79 7594.77 26
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PCF-MVS70.85 475.73 5676.55 6274.78 5483.67 5388.04 5181.47 3870.62 2969.24 7157.52 7660.59 6969.18 5370.65 5977.11 9277.65 9184.75 13094.01 37
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
3Dnovator70.49 578.42 3876.77 5980.35 2091.43 1590.27 2581.84 3670.79 2672.10 6071.95 2450.02 10267.86 5777.47 1982.89 3284.24 2088.61 2489.99 85
3Dnovator+70.16 677.87 4177.29 5578.55 2889.25 2988.32 4580.09 5067.95 4374.89 5871.83 2552.05 9570.68 4876.27 2482.27 4282.04 3785.92 9390.77 76
ACMP68.86 772.15 7572.25 8072.03 6880.96 6780.87 11877.93 6164.13 6769.29 6960.79 6664.04 5653.54 12763.91 9773.74 12975.27 11684.45 13788.98 96
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OpenMVScopyleft67.62 874.92 6273.91 7376.09 4290.10 2190.38 2478.01 6066.35 5366.09 7862.80 5146.33 12764.55 6971.77 5179.92 6580.88 6087.52 5389.20 94
TAPA-MVS67.10 971.45 7973.47 7769.10 8677.04 10280.78 11973.81 9162.10 8980.80 3651.28 9560.91 6663.80 7367.98 7774.59 11672.42 15282.37 16680.97 161
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMM66.70 1070.42 8368.49 10772.67 6482.85 5477.76 14777.70 6364.76 6464.61 8460.74 6749.29 10453.97 12565.86 8774.97 11275.57 11384.13 14483.29 146
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IB-MVS64.48 1169.02 9368.97 10469.09 8881.75 6289.01 3864.50 15464.91 6356.65 11262.59 5447.89 11145.23 14851.99 15869.18 17381.88 4188.77 1992.93 50
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PLCcopyleft64.00 1268.54 9666.66 12170.74 7680.28 7574.88 16872.64 9863.70 7269.26 7055.71 8147.24 11855.31 11770.42 6072.05 14870.67 16981.66 17477.19 172
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ACMH+60.36 1361.16 15458.38 17464.42 12177.37 10174.35 17368.45 13362.81 8445.86 15938.48 15835.71 17937.35 17659.81 12367.24 17869.80 17579.58 18878.32 170
ACMH59.42 1461.59 15359.22 17264.36 12278.92 8478.26 14167.65 13867.48 4639.81 18230.98 18938.25 16334.59 19261.37 11470.55 16273.47 13679.74 18779.59 165
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
COLMAP_ROBcopyleft51.17 1555.13 18052.90 19357.73 16873.47 12767.21 19662.13 17055.82 14747.83 14934.39 17831.60 19234.24 19344.90 18363.88 19262.52 20075.67 20063.02 209
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
LTVRE_ROB47.26 1649.41 20049.91 20348.82 19464.76 17669.79 18949.05 19747.12 19120.36 22016.52 20936.65 17526.96 21250.76 16460.47 19663.16 19864.73 21372.00 190
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CMPMVSbinary43.63 1757.67 17655.43 18460.28 15172.01 13279.00 13462.77 16953.23 17241.77 17345.42 11830.74 19539.03 16953.01 15664.81 18764.65 19375.26 20268.03 200
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PMVScopyleft27.44 1832.08 21329.07 21735.60 21148.33 21624.79 22226.97 22041.34 21020.45 21922.50 20117.11 21818.64 22220.44 21241.99 21638.06 21754.02 21842.44 217
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive15.98 1914.37 22016.36 22012.04 2217.72 22720.24 2255.90 22929.05 2208.28 2253.92 2254.72 2242.42 2309.57 22118.89 22231.46 21916.07 22728.53 221
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MGCFI-Net74.26 6478.69 4569.10 8680.64 7287.32 5673.21 9559.20 11579.76 4250.18 10468.10 4364.86 6864.65 9478.28 8380.83 6186.69 7691.69 63
sasdasda77.65 4279.59 4175.39 4581.52 6389.83 3281.32 4160.74 10680.05 3966.72 3968.43 4165.09 6374.72 3178.87 7482.73 3187.32 5892.16 56
WB-MVS30.42 21432.63 21627.84 21351.51 21241.64 22017.75 22355.06 15720.11 2212.46 22826.13 20516.63 2243.90 22344.91 21244.54 21536.34 22234.48 219
dmvs_re67.60 10467.21 11868.06 9674.07 12179.01 13373.31 9468.74 3958.27 10442.07 14149.72 10343.96 15160.66 11676.79 9678.04 9089.51 1084.69 134
TPM-MVS94.34 293.91 589.34 375.49 1882.52 2083.34 1083.53 489.62 790.78 74
Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025
FA-MVS(training)70.24 8871.77 8568.45 9377.52 9886.03 7773.33 9349.12 18363.55 8655.77 8048.91 10756.26 10967.78 7977.60 8679.62 7187.19 6890.40 80
test250669.26 8970.79 9367.48 10278.64 8686.40 7072.22 9962.75 8658.05 10645.24 12050.76 9854.93 11958.05 13679.82 6679.70 6987.96 4185.90 125
test111166.72 11367.80 11365.45 11177.42 10086.63 6569.69 12662.98 7855.29 12239.47 15140.12 15547.11 14355.70 14879.96 6480.00 6787.47 5485.49 130
ECVR-MVScopyleft67.93 10368.49 10767.28 10578.64 8686.40 7072.22 9962.75 8658.05 10644.06 12840.92 15048.20 14058.05 13679.82 6679.70 6987.96 4186.32 120
DVP-MVS++87.98 389.76 585.89 292.57 694.57 388.34 676.61 792.40 683.40 389.26 1085.57 586.04 286.24 1184.89 1588.39 3195.42 20
GeoE68.96 9469.32 10068.54 9176.61 10683.12 9771.78 10456.87 14060.21 9754.86 8745.95 12854.79 12164.27 9574.59 11675.54 11486.84 7491.01 71
test_method28.15 21534.48 21520.76 2166.76 22821.18 22421.03 22118.41 22236.77 19017.52 20615.67 22031.63 20224.05 20841.03 21826.69 22036.82 22168.38 197
pmnet_mix0253.92 18853.30 19054.65 18361.89 18971.33 18554.54 19154.17 16640.38 17934.65 17734.76 18530.68 20740.44 19160.97 19563.71 19582.19 16971.24 194
RE-MVS-def31.47 186
SED-MVS88.94 190.98 186.56 192.53 795.09 188.55 576.83 694.16 186.57 190.85 587.07 186.18 186.36 785.08 1288.67 2198.21 3
SF-MVS87.30 688.71 685.64 394.57 194.55 491.01 179.94 189.15 1279.85 792.37 383.29 1179.75 983.52 2682.72 3388.75 2095.37 23
9.1484.47 7
uanet_test0.00 2230.00 2250.00 2240.00 2300.00 2320.00 2330.00 2270.00 2280.00 2310.00 2280.00 2340.00 2280.00 2270.00 2260.00 2290.00 227
ET-MVSNet_ETH3D71.38 8074.70 7167.51 10151.61 21188.06 5077.29 6660.95 10563.61 8548.36 11066.60 4960.67 8779.55 1073.56 13080.58 6487.30 6189.80 87
UniMVSNet_ETH3D57.83 17356.46 18359.43 15763.24 18373.22 17767.70 13755.58 15136.17 19436.84 16632.64 18835.14 19051.50 16065.81 18169.81 17481.73 17382.44 155
EIA-MVS73.48 6876.05 6370.47 7878.12 9087.21 5871.78 10460.63 10869.66 6855.56 8364.86 5460.69 8669.53 6777.35 9178.59 7987.22 6594.01 37
ETV-MVS76.25 5280.22 3871.63 7278.23 8987.95 5272.75 9660.27 11277.50 5057.73 7471.53 3666.60 5973.16 3980.99 5781.23 5387.63 5095.73 14
CS-MVS75.84 5578.61 4672.61 6679.03 8286.74 6374.43 9060.27 11274.15 5962.78 5266.26 5164.25 7072.81 4383.36 2881.69 4686.32 8393.85 39
DVP-MVScopyleft88.07 290.73 284.97 491.98 1095.01 287.86 1076.88 593.90 285.15 290.11 786.90 279.46 1286.26 1084.67 1888.50 2898.25 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SR-MVS86.33 4667.54 4580.78 21
DPM-MVS85.41 1186.72 1683.89 1091.66 1391.92 1490.49 278.09 386.90 1773.95 2074.52 3582.01 1779.29 1390.24 190.65 189.86 690.78 74
thisisatest053068.38 9970.98 9165.35 11272.61 12984.42 8768.21 13557.98 12359.77 9850.80 9954.63 8458.48 9757.92 13876.99 9477.47 9284.60 13385.07 131
Anonymous20240521166.35 12578.00 9284.41 8874.85 8063.18 7651.00 13731.37 19353.73 12669.67 6676.28 9976.84 9683.21 15690.85 72
DCV-MVSNet69.13 9269.07 10269.21 8477.65 9577.52 14974.68 8157.85 12754.92 12655.34 8655.74 7955.56 11666.35 8575.05 11176.56 10083.35 15188.13 107
tttt051767.99 10270.61 9464.94 11571.94 13483.96 9367.62 13957.98 12359.30 10049.90 10554.50 8757.98 10457.92 13876.48 9877.47 9284.24 14084.58 135
our_test_363.32 18171.07 18855.90 188
thisisatest051559.37 16560.68 16357.84 16764.39 17875.65 16558.56 18353.86 16841.55 17542.12 14040.40 15339.59 16847.09 17471.69 15273.79 13281.02 17982.08 157
SMA-MVScopyleft85.24 1288.27 981.72 1591.74 1290.71 2086.71 1373.16 1990.56 1074.33 1983.07 1885.88 477.16 2086.28 985.58 687.23 6395.77 13
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft87.60 590.44 484.29 792.09 993.44 688.69 475.11 993.06 580.80 694.23 286.70 381.44 784.84 1883.52 2787.64 4997.28 5
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
thres100view90067.14 11266.09 12768.38 9577.70 9383.84 9474.52 8666.33 5449.16 14543.40 13243.24 13141.34 15662.59 10579.31 7175.92 10885.73 10089.81 86
tfpnnormal58.97 16756.48 18261.89 14271.27 13876.21 15966.65 14861.76 9632.90 20236.41 16927.83 20129.14 20950.64 16573.06 13573.05 14684.58 13583.15 150
tfpn200view965.90 11764.96 13167.00 10677.70 9381.58 10871.71 10762.94 8249.16 14543.40 13243.24 13141.34 15661.42 11276.24 10074.63 12284.84 12588.52 103
CHOSEN 280x42062.23 14766.57 12257.17 17259.88 19568.92 19261.20 17542.28 20654.17 13039.57 15047.78 11264.97 6662.68 10473.85 12769.52 17677.43 19686.75 114
CANet80.90 2782.93 2878.53 2986.83 4492.26 1281.19 4366.95 4881.60 3469.90 3266.93 4774.80 3276.79 2184.68 1984.77 1789.50 1195.50 18
Fast-Effi-MVS+-dtu63.05 13864.72 13461.11 14671.21 13976.81 15570.72 12043.13 20452.51 13535.34 17546.55 12646.36 14561.40 11371.57 15371.44 16084.84 12587.79 109
Effi-MVS+-dtu64.58 12664.08 13665.16 11373.04 12875.17 16770.68 12156.23 14454.12 13144.71 12547.42 11451.10 13363.82 9868.08 17666.32 18782.47 16586.38 118
CANet_DTU72.84 7176.63 6168.43 9476.81 10486.62 6775.54 7554.71 16472.06 6143.54 13067.11 4658.46 9872.40 4681.13 5680.82 6287.57 5190.21 83
MVS_030479.43 3282.20 3076.20 4084.22 5291.79 1681.82 3763.81 7076.83 5161.71 5866.37 5075.52 3176.38 2385.54 1485.03 1389.28 1394.32 32
MSP-MVS87.87 490.57 384.73 589.38 2791.60 1788.24 874.15 1293.55 382.28 494.99 183.21 1285.96 387.67 484.67 1888.32 3298.29 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
IterMVS-SCA-FT60.21 16162.97 14357.00 17366.64 16671.84 18167.53 14046.93 19247.56 15036.77 16846.85 12448.21 13952.51 15770.36 16472.40 15371.63 21083.53 144
TSAR-MVS + MP.84.39 1486.58 1781.83 1488.09 3886.47 6985.63 1973.62 1790.13 1179.24 989.67 982.99 1377.72 1881.22 5380.92 5986.68 7794.66 28
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OPM-MVS72.74 7270.93 9274.85 5385.30 5084.34 8982.82 3269.79 3149.96 14155.39 8554.09 9060.14 9170.04 6380.38 6279.43 7385.74 9988.20 106
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP83.54 1786.37 1880.25 2189.57 2690.10 2885.27 2171.66 2387.38 1573.08 2284.23 1780.16 2375.31 2584.85 1783.64 2486.57 7894.21 35
ambc42.30 21050.36 21349.51 21735.47 21632.04 20523.53 19917.36 2168.95 22729.06 20164.88 18656.26 20861.29 21567.12 201
CS-MVS-test75.09 6177.84 5171.87 7179.27 8086.92 6170.53 12260.36 11075.13 5563.13 5067.92 4465.08 6571.43 5478.15 8478.51 8286.53 8093.16 48
Effi-MVS+70.42 8371.23 8969.47 8278.04 9185.24 8175.57 7458.88 11659.56 9948.47 10952.73 9454.94 11869.69 6578.34 8177.06 9586.18 8790.73 78
new-patchmatchnet42.21 20842.97 20941.33 20753.05 20959.89 21039.38 21349.61 18128.26 21112.10 21922.17 21121.54 21819.22 21450.96 21156.04 20974.61 20561.92 211
pmmvs654.20 18753.54 18954.97 17963.22 18472.98 17860.17 17752.32 17726.77 21334.30 17923.29 20936.23 18340.33 19268.77 17468.76 17779.47 19078.00 171
pmmvs559.72 16260.24 16659.11 16062.77 18677.33 15263.17 16754.00 16740.21 18137.23 16440.41 15235.99 18551.75 15972.55 14472.74 15085.72 10282.45 154
Fast-Effi-MVS+67.59 10567.56 11567.62 10073.67 12481.14 11571.12 11554.79 16358.88 10150.61 10146.70 12547.05 14469.12 7376.06 10376.44 10186.43 8286.65 115
Anonymous2023121168.44 9766.37 12470.86 7477.58 9683.49 9575.15 7961.89 9252.54 13458.50 7128.89 19856.78 10769.29 7274.96 11476.61 9882.73 16091.36 67
pmmvs-eth3d55.20 17953.95 18856.65 17457.34 20467.77 19457.54 18553.74 16940.93 17841.09 14631.19 19429.10 21049.07 16765.54 18267.28 18181.14 17775.81 174
GG-mvs-BLEND54.54 18577.58 5227.67 2140.03 22990.09 2977.20 670.02 22566.83 750.05 23059.90 7073.33 360.04 22578.40 8079.30 7588.65 2295.20 25
Anonymous2023120652.23 19252.80 19451.56 18964.70 17769.41 19051.01 19558.60 11936.63 19122.44 20221.80 21231.42 20330.52 19866.79 17967.83 17982.10 17075.73 175
MTAPA78.32 1179.42 25
MTMP76.04 1576.65 29
gm-plane-assit54.99 18257.99 17851.49 19069.27 15054.42 21532.32 21842.59 20521.18 21813.71 21523.61 20743.84 15260.21 12187.09 586.55 590.81 489.28 93
train_agg83.35 1886.93 1579.17 2689.70 2488.41 4385.60 2072.89 2186.31 1966.58 4190.48 682.24 1673.06 4183.10 3182.64 3487.21 6795.30 24
gg-mvs-nofinetune62.34 14266.19 12657.86 16676.15 11088.61 4171.18 11441.24 21225.74 21413.16 21722.91 21063.97 7254.52 15385.06 1685.25 1090.92 391.78 62
SCA63.90 13266.67 12060.66 14873.75 12271.78 18359.87 17943.66 20061.13 9345.03 12251.64 9659.45 9357.92 13870.96 15670.80 16783.71 14880.92 162
MS-PatchMatch70.34 8769.00 10371.91 7085.20 5185.35 8077.84 6261.77 9558.01 10855.40 8441.26 14658.34 10061.69 11081.70 5178.29 8489.56 980.02 164
Patchmatch-RL test2.17 230
tmp_tt16.09 22013.07 2268.12 22913.61 2262.08 22455.09 12430.10 19040.26 15422.83 2175.35 22229.91 21925.25 22132.33 223
canonicalmvs77.65 4279.59 4175.39 4581.52 6389.83 3281.32 4160.74 10680.05 3966.72 3968.43 4165.09 6374.72 3178.87 7482.73 3187.32 5892.16 56
anonymousdsp54.99 18257.24 17952.36 18753.82 20871.75 18451.49 19448.14 18633.74 20033.66 18138.34 16236.13 18447.54 17264.53 18970.60 17079.53 18985.59 129
v14419262.05 14961.46 15762.73 13866.59 16779.87 12669.30 12955.88 14641.50 17639.41 15337.23 16836.45 18159.62 12472.69 14273.51 13585.61 10988.93 97
v192192061.66 15261.10 16062.31 14066.32 16879.57 12968.41 13455.49 15341.03 17738.69 15736.64 17635.27 18959.60 12573.23 13373.41 13785.37 11188.51 104
FC-MVSNet-train68.83 9568.29 10969.47 8278.35 8879.94 12564.72 15366.38 5254.96 12554.51 8856.75 7747.91 14266.91 8475.57 10975.75 10985.92 9387.12 112
UA-Net64.62 12568.23 11160.42 15077.53 9781.38 11160.08 17857.47 13347.01 15244.75 12460.68 6771.32 4641.84 18973.27 13272.25 15480.83 18171.68 191
v119262.25 14561.64 15562.96 13266.88 16379.72 12769.96 12455.77 14841.58 17439.42 15237.05 17035.96 18660.50 11974.30 12374.09 12985.24 11488.76 100
FC-MVSNet-test47.24 20454.37 18738.93 20959.49 19758.25 21334.48 21753.36 17145.66 1606.66 22350.62 9942.02 15416.62 21758.39 19861.21 20262.99 21464.40 206
v114463.00 13962.39 15063.70 12867.72 15880.27 12371.23 11256.40 14142.51 16940.81 14738.12 16537.73 17360.42 12074.46 11874.55 12485.64 10889.12 95
sosnet-low-res0.00 2230.00 2250.00 2240.00 2300.00 2320.00 2330.00 2270.00 2280.00 2310.00 2280.00 2340.00 2280.00 2270.00 2260.00 2290.00 227
HFP-MVS82.48 2284.12 2480.56 1990.15 1987.55 5484.28 2469.67 3285.22 2277.95 1384.69 1675.94 3075.04 2781.85 4981.17 5486.30 8592.40 55
v14862.00 15061.19 15962.96 13267.46 16179.49 13067.87 13657.66 12942.30 17045.02 12338.20 16438.89 17154.77 15269.83 16972.60 15184.96 11987.01 113
sosnet0.00 2230.00 2250.00 2240.00 2300.00 2320.00 2330.00 2270.00 2280.00 2310.00 2280.00 2340.00 2280.00 2270.00 2260.00 2290.00 227
v7n57.04 17856.64 18157.52 16962.85 18574.75 17061.76 17151.80 17835.58 19836.02 17232.33 19033.61 19750.16 16667.73 17770.34 17282.51 16382.12 156
DI_MVS_plusplus_trai73.94 6774.85 7072.88 6276.57 10786.80 6280.41 4961.47 9762.35 8959.44 7047.91 11068.12 5472.24 4782.84 3481.50 4887.15 6994.42 30
HPM-MVS++copyleft85.64 1088.43 782.39 1292.65 490.24 2685.83 1774.21 1190.68 975.63 1786.77 1384.15 878.68 1686.33 885.26 987.32 5895.60 17
XVS82.43 5586.27 7375.70 7061.07 6372.27 3985.67 104
v124061.09 15560.55 16461.72 14465.92 17279.28 13267.16 14454.91 16039.79 18338.10 16036.08 17834.64 19159.15 12972.86 13873.36 13985.10 11687.84 108
pm-mvs159.21 16659.58 17158.77 16267.97 15677.07 15464.12 15557.20 13534.73 19936.86 16535.34 18140.54 16643.34 18674.32 12273.30 14183.13 15881.77 159
X-MVStestdata82.43 5586.27 7375.70 7061.07 6372.27 3985.67 104
X-MVS78.16 4080.55 3775.38 4787.99 3986.27 7381.05 4568.98 3678.33 4561.07 6375.25 3472.27 3967.52 8380.03 6380.52 6685.66 10791.20 68
v863.44 13662.58 14864.43 12068.28 15478.07 14271.82 10354.85 16146.70 15545.20 12139.40 15840.91 16160.54 11872.85 13974.39 12785.92 9385.76 127
v1063.00 13962.22 15163.90 12767.88 15777.78 14671.59 10854.34 16545.37 16142.76 13838.53 16038.93 17061.05 11574.39 12074.52 12585.75 9786.04 122
v2v48263.68 13462.85 14664.65 11868.01 15580.46 12271.90 10257.60 13044.26 16442.82 13739.80 15738.62 17261.56 11173.06 13574.86 11986.03 9288.90 99
V4262.86 14162.97 14362.74 13760.84 19278.99 13571.46 11057.13 13746.85 15344.28 12738.87 15940.73 16457.63 14372.60 14374.14 12885.09 11888.63 101
SD-MVS84.31 1586.96 1481.22 1688.98 3188.68 4085.65 1873.85 1589.09 1379.63 887.34 1284.84 673.71 3582.66 3581.60 4785.48 11094.51 29
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS64.55 12765.76 13063.12 13169.68 14581.56 10969.59 12758.16 12145.23 16235.58 17447.01 12241.82 15559.41 12679.62 6978.54 8086.32 8386.56 116
MSLP-MVS++78.57 3777.33 5480.02 2288.39 3484.79 8484.62 2366.17 5575.96 5378.40 1061.59 6371.47 4573.54 3878.43 7978.88 7888.97 1690.18 84
APDe-MVScopyleft86.37 788.41 884.00 991.43 1591.83 1588.34 674.67 1091.19 781.76 591.13 481.94 1980.07 883.38 2782.58 3587.69 4796.78 10
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
TSAR-MVS + COLMAP73.09 6976.86 5868.71 8974.97 11982.49 10374.51 8761.83 9383.16 2649.31 10782.22 2251.62 13268.94 7478.76 7775.52 11582.67 16284.23 139
CVMVSNet54.92 18458.16 17551.13 19162.61 18768.44 19355.45 18952.38 17642.28 17121.45 20347.10 11946.10 14637.96 19464.42 19063.81 19476.92 19875.01 178
TSAR-MVS + ACMM81.59 2585.84 2076.63 3789.82 2386.53 6886.32 1666.72 5185.96 2065.43 4388.98 1182.29 1567.57 8282.06 4681.33 5183.93 14593.75 41
pmmvs463.14 13762.46 14963.94 12666.03 17076.40 15766.82 14657.60 13056.74 11150.26 10340.81 15137.51 17559.26 12871.75 15171.48 15983.68 14982.53 152
EU-MVSNet44.84 20647.85 20641.32 20849.26 21456.59 21443.07 21047.64 19033.03 20113.82 21436.78 17330.99 20524.37 20753.80 21055.57 21069.78 21168.21 198
test-LLR68.23 10071.61 8764.28 12371.37 13681.32 11363.98 15961.03 10058.62 10242.96 13552.74 9261.65 8057.74 14175.64 10778.09 8888.61 2493.21 45
TESTMET0.1,167.38 10971.61 8762.45 13966.05 16981.32 11363.98 15955.36 15558.62 10242.96 13552.74 9261.65 8057.74 14175.64 10778.09 8888.61 2493.21 45
test-mter64.06 13169.24 10158.01 16459.07 19877.40 15059.13 18148.11 18755.64 12139.18 15551.56 9758.54 9655.38 15073.52 13176.00 10787.22 6592.05 60
ACMMPR80.62 2882.98 2777.87 3288.41 3387.05 6083.02 2969.18 3583.91 2468.35 3682.89 1973.64 3572.16 4880.78 5981.13 5586.10 9091.43 64
testgi48.51 20250.53 20046.16 20264.78 17567.15 19741.54 21154.81 16229.12 20917.03 20732.07 19131.98 19920.15 21365.26 18467.00 18478.67 19361.10 213
test20.0347.23 20548.69 20545.53 20463.28 18264.39 20341.01 21256.93 13929.16 20815.21 21223.90 20630.76 20617.51 21664.63 18865.26 19079.21 19162.71 210
thres600view763.77 13363.14 14164.51 11975.49 11681.61 10669.59 12762.95 8043.96 16638.90 15641.09 14740.24 16755.25 15176.24 10071.54 15784.89 12387.30 111
ADS-MVSNet58.40 17259.16 17357.52 16965.80 17374.57 17260.26 17640.17 21350.51 13838.01 16140.11 15644.72 14959.36 12764.91 18566.55 18581.53 17572.72 189
MP-MVScopyleft80.94 2683.49 2677.96 3088.48 3288.16 4782.82 3269.34 3480.79 3769.67 3382.35 2177.13 2871.60 5380.97 5880.96 5885.87 9694.06 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs0.05 2210.08 2230.01 2220.00 2300.01 2300.03 2310.01 2260.05 2260.00 2310.14 2270.01 2330.03 2270.05 2250.05 2240.01 2280.24 226
thres40065.18 12364.44 13566.04 10876.40 10882.63 10071.52 10964.27 6644.93 16340.69 14841.86 14340.79 16258.12 13477.67 8574.64 12185.26 11388.56 102
test1230.05 2210.08 2230.01 2220.00 2300.01 2300.01 2320.00 2270.05 2260.00 2310.16 2260.00 2340.04 2250.02 2260.05 2240.00 2290.26 225
thres20065.58 11864.74 13366.56 10777.52 9881.61 10673.44 9262.95 8046.23 15742.45 13942.76 13341.18 15858.12 13476.24 10075.59 11284.89 12389.58 89
test0.0.03 157.35 17759.89 16954.38 18471.37 13673.45 17652.71 19361.03 10046.11 15826.33 19641.73 14444.08 15029.72 19971.43 15470.90 16685.10 11671.56 192
pmmvs341.86 20942.29 21141.36 20639.80 21852.66 21638.93 21535.85 21823.40 21720.22 20519.30 21420.84 22040.56 19055.98 20758.79 20572.80 20865.03 205
EMVS14.40 21910.71 22218.70 21828.15 22312.09 2287.06 22736.89 21611.00 2233.56 2274.95 2232.27 23113.91 21910.13 22416.06 22322.63 22518.51 224
E-PMN15.08 21811.65 22119.08 21728.73 22212.31 2276.95 22836.87 21710.71 2243.63 2265.13 2222.22 23213.81 22011.34 22318.50 22224.49 22421.32 223
PGM-MVS79.42 3481.84 3376.60 3888.38 3586.69 6482.97 3165.75 5780.39 3864.94 4481.95 2372.11 4371.41 5580.45 6080.55 6586.18 8790.76 77
MCST-MVS85.75 986.99 1384.31 694.07 392.80 888.15 979.10 285.66 2170.72 2976.50 3380.45 2282.17 588.35 287.49 391.63 297.65 4
MVS_Test75.22 5976.69 6073.51 5779.30 7988.82 3980.06 5158.74 11769.77 6757.50 7759.78 7261.35 8275.31 2582.07 4583.60 2690.13 591.41 66
MDA-MVSNet-bldmvs44.15 20742.27 21246.34 20138.34 21962.31 20846.28 20455.74 14929.83 20720.98 20427.11 20316.45 22541.98 18841.11 21757.47 20774.72 20461.65 212
CDPH-MVS79.39 3582.13 3176.19 4189.22 3088.34 4484.20 2571.00 2479.67 4356.97 7877.77 2972.24 4268.50 7681.33 5282.74 3087.23 6392.84 51
casdiffmvspermissive75.20 6075.69 6774.63 5579.26 8189.07 3778.47 5763.59 7367.05 7363.79 4855.72 8060.32 8973.58 3682.16 4381.78 4289.08 1593.72 42
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive74.32 6375.42 6873.04 6175.60 11587.27 5778.20 5862.96 7968.66 7261.89 5659.79 7159.84 9271.80 5078.30 8279.87 6887.80 4594.23 34
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline271.22 8273.01 7969.13 8575.76 11386.34 7271.23 11262.78 8562.62 8752.85 9057.32 7654.31 12263.27 10279.74 6879.31 7488.89 1791.43 64
baseline171.47 7872.02 8170.82 7580.56 7384.51 8676.61 6966.93 4956.22 11648.66 10855.40 8160.43 8862.55 10683.35 2980.99 5689.60 883.28 147
PMMVS220.45 21722.31 21918.27 21920.52 22526.73 22114.85 22528.43 22113.69 2220.79 22910.35 2219.10 2263.83 22427.64 22032.87 21841.17 21935.81 218
PM-MVS50.11 19750.38 20149.80 19247.23 21762.08 20950.91 19644.84 19841.90 17236.10 17135.22 18226.05 21546.83 17557.64 20055.42 21172.90 20774.32 180
PS-CasMVS50.17 19652.02 19748.02 19858.60 20165.54 20148.04 20056.19 14536.42 19316.42 21035.68 18031.33 20428.85 20256.42 20663.54 19780.01 18475.18 177
UniMVSNet_NR-MVSNet62.30 14463.51 13960.89 14769.48 14977.83 14564.07 15763.94 6950.03 14031.17 18744.82 12941.12 15951.37 16171.02 15574.81 12085.30 11284.95 132
PEN-MVS51.04 19352.94 19248.82 19461.45 19166.00 19948.68 19857.20 13536.87 18915.36 21136.98 17132.72 19828.77 20357.63 20166.37 18681.44 17674.00 182
TransMVSNet (Re)57.83 17356.90 18058.91 16172.26 13174.69 17163.57 16461.42 9832.30 20432.65 18333.97 18635.96 18639.17 19373.84 12872.84 14984.37 13874.69 179
DTE-MVSNet49.82 19851.92 19847.37 19961.75 19064.38 20445.89 20757.33 13436.11 19512.79 21836.87 17231.93 20125.73 20658.01 19965.22 19180.75 18270.93 196
DU-MVS60.87 15761.82 15459.76 15466.69 16475.87 16064.07 15761.96 9049.31 14331.17 18742.76 13336.95 17851.37 16169.67 17073.20 14583.30 15384.95 132
UniMVSNet (Re)60.62 15862.93 14557.92 16567.64 15977.90 14461.75 17261.24 9949.83 14229.80 19142.57 13640.62 16543.36 18570.49 16373.27 14283.76 14685.81 126
CP-MVSNet50.57 19552.60 19648.21 19758.77 20065.82 20048.17 19956.29 14337.41 18816.59 20837.14 16931.95 20029.21 20056.60 20463.71 19580.22 18375.56 176
WR-MVS_H49.62 19952.63 19546.11 20358.80 19967.58 19546.14 20654.94 15836.51 19213.63 21636.75 17435.67 18822.10 21056.43 20562.76 19981.06 17872.73 188
WR-MVS51.02 19454.56 18646.90 20063.84 18069.23 19144.78 20856.38 14238.19 18714.19 21337.38 16736.82 18022.39 20960.14 19766.20 18979.81 18673.95 183
NR-MVSNet61.08 15662.09 15359.90 15271.96 13375.87 16063.60 16361.96 9049.31 14327.95 19242.76 13333.85 19648.82 16874.35 12174.05 13185.13 11584.45 136
Baseline_NR-MVSNet59.47 16460.28 16558.54 16366.69 16473.90 17461.63 17362.90 8349.15 14726.87 19435.18 18337.62 17448.20 16969.67 17073.61 13484.92 12082.82 151
TranMVSNet+NR-MVSNet60.38 16061.30 15859.30 15868.34 15375.57 16663.38 16663.78 7146.74 15427.73 19342.56 13736.84 17947.66 17170.36 16474.59 12384.91 12282.46 153
TSAR-MVS + GP.82.27 2385.98 1977.94 3180.72 7188.25 4681.12 4467.71 4487.10 1673.31 2185.23 1583.68 976.64 2280.43 6181.47 4988.15 3895.66 16
mPP-MVS86.96 4170.61 49
SixPastTwentyTwo49.11 20149.22 20448.99 19358.54 20264.14 20547.18 20247.75 18831.15 20624.42 19841.01 14926.55 21344.04 18454.76 20958.70 20671.99 20968.21 198
casdiffmvs_mvgpermissive75.57 5776.04 6475.02 5080.48 7489.31 3580.79 4864.04 6866.95 7463.87 4757.52 7561.33 8472.90 4282.01 4781.99 4088.03 4093.16 48
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LGP-MVS_train72.02 7673.18 7870.67 7782.13 6080.26 12479.58 5363.04 7770.09 6551.98 9265.06 5355.62 11562.49 10775.97 10476.32 10484.80 12988.93 97
baseline72.89 7074.46 7271.07 7375.99 11187.50 5574.57 8260.49 10970.72 6457.60 7560.63 6860.97 8570.79 5875.27 11076.33 10386.94 7189.79 88
EPNet_dtu66.17 11570.13 9861.54 14581.04 6677.39 15168.87 13262.50 8869.78 6633.51 18263.77 5756.22 11037.65 19572.20 14572.18 15585.69 10379.38 166
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268872.55 7371.98 8273.22 6086.57 4592.41 1075.63 7266.77 5062.08 9052.32 9130.27 19650.74 13566.14 8686.22 1285.41 791.90 196.75 12
EPNet79.28 3682.25 2975.83 4388.31 3690.14 2779.43 5468.07 4281.76 3361.26 6177.26 3170.08 5070.06 6282.43 3982.00 3987.82 4392.09 58
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
APD-MVScopyleft84.83 1387.00 1282.30 1389.61 2589.21 3686.51 1573.64 1690.98 877.99 1289.89 880.04 2479.18 1482.00 4881.37 5086.88 7295.49 19
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS85.96 887.58 1184.06 892.58 592.40 1187.62 1177.77 488.44 1475.93 1679.49 2681.97 1881.65 687.04 686.58 488.79 1897.18 7
NCCC84.16 1685.46 2182.64 1192.34 890.57 2386.57 1476.51 886.85 1872.91 2377.20 3278.69 2679.09 1584.64 2084.88 1688.44 2995.41 21
CP-MVS79.44 3181.51 3477.02 3686.95 4285.96 7882.00 3468.44 4181.82 3267.39 3877.43 3073.68 3471.62 5279.56 7079.58 7285.73 10092.51 54
NP-MVS81.60 34
EG-PatchMatch MVS58.73 17058.03 17759.55 15572.32 13080.49 12163.44 16555.55 15232.49 20338.31 15928.87 19937.22 17742.84 18774.30 12375.70 11084.84 12577.14 173
tpm cat167.47 10867.05 11967.98 9776.63 10581.51 11074.49 8847.65 18961.18 9261.12 6242.51 13853.02 13064.74 9370.11 16771.50 15883.22 15489.49 90
SteuartSystems-ACMMP82.51 2185.35 2279.20 2590.25 1889.39 3484.79 2270.95 2582.86 2768.32 3786.44 1477.19 2773.07 4083.63 2583.64 2487.82 4394.34 31
Skip Steuart: Steuart Systems R&D Blog.
CostFormer72.18 7473.90 7470.18 8079.47 7786.19 7676.94 6848.62 18466.07 7960.40 6854.14 8965.82 6167.98 7775.84 10576.41 10287.67 4892.83 52
CR-MVSNet62.31 14364.75 13259.47 15668.63 15271.29 18667.53 14043.18 20255.83 11841.40 14241.04 14855.85 11257.29 14472.76 14073.27 14278.77 19283.23 148
Patchmtry78.06 14367.53 14043.18 20241.40 142
PatchT60.46 15963.85 13756.51 17565.95 17175.68 16447.34 20141.39 20953.89 13241.40 14237.84 16650.30 13657.29 14472.76 14073.27 14285.67 10483.23 148
tpmrst67.15 11168.12 11266.03 10976.21 10980.98 11671.27 11145.05 19560.69 9550.63 10046.95 12354.15 12465.30 8871.80 15071.77 15687.72 4690.48 79
tpm64.85 12466.02 12863.48 12974.52 12078.38 14070.98 11844.99 19751.61 13643.28 13447.66 11353.18 12860.57 11770.58 16171.30 16586.54 7989.45 92
DELS-MVS79.49 3079.84 4079.08 2788.26 3792.49 984.12 2670.63 2765.27 8369.60 3561.29 6566.50 6072.75 4488.07 388.03 289.13 1497.22 6
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
RPMNet58.63 17162.80 14753.76 18667.59 16071.29 18654.60 19038.13 21455.83 11835.70 17341.58 14553.04 12947.89 17066.10 18067.38 18078.65 19484.40 137
MVSTER76.92 4979.92 3973.42 5974.98 11882.97 9878.15 5963.41 7478.02 4664.41 4667.54 4572.80 3771.05 5683.29 3083.73 2388.53 2791.12 69
CPTT-MVS75.43 5877.13 5773.44 5881.43 6582.55 10280.96 4664.35 6577.95 4861.39 6069.20 4070.94 4769.38 7173.89 12673.32 14083.14 15792.06 59
GBi-Net69.21 9070.40 9567.81 9869.49 14678.65 13774.54 8360.97 10265.32 8051.06 9647.37 11562.05 7663.43 9977.49 8778.22 8587.37 5583.73 141
PVSNet_Blended_VisFu71.76 7773.54 7669.69 8179.01 8387.16 5972.05 10161.80 9456.46 11459.66 6953.88 9162.48 7459.08 13081.17 5478.90 7786.53 8094.74 27
PVSNet_BlendedMVS76.84 5078.47 4774.95 5182.37 5789.90 3075.45 7665.45 6074.99 5670.66 3063.07 5858.27 10167.60 8084.24 2281.70 4488.18 3697.10 8
PVSNet_Blended76.84 5078.47 4774.95 5182.37 5789.90 3075.45 7665.45 6074.99 5670.66 3063.07 5858.27 10167.60 8084.24 2281.70 4488.18 3697.10 8
FMVSNet558.86 16860.24 16657.25 17152.66 21066.25 19863.77 16252.86 17557.85 10937.92 16236.12 17752.22 13151.37 16170.88 15771.43 16184.92 12066.91 202
test169.21 9070.40 9567.81 9869.49 14678.65 13774.54 8360.97 10265.32 8051.06 9647.37 11562.05 7663.43 9977.49 8778.22 8587.37 5583.73 141
new_pmnet33.19 21235.52 21430.47 21227.55 22445.31 21929.29 21930.92 21929.00 2109.88 22218.77 21517.64 22326.77 20544.07 21345.98 21458.41 21747.87 215
FMVSNet370.41 8571.89 8468.68 9070.89 14179.42 13175.63 7260.97 10265.32 8051.06 9647.37 11562.05 7664.90 9182.49 3682.27 3688.64 2384.34 138
dps64.08 13063.22 14065.08 11475.27 11779.65 12866.68 14746.63 19356.94 11055.67 8243.96 13043.63 15364.00 9669.50 17269.82 17382.25 16879.02 168
FMVSNet268.06 10168.57 10667.45 10369.49 14678.65 13774.54 8360.23 11456.29 11549.64 10642.13 14257.08 10663.43 9981.15 5580.99 5687.37 5583.73 141
FMVSNet163.48 13563.07 14263.97 12565.31 17476.37 15871.77 10657.90 12643.32 16845.66 11735.06 18449.43 13758.57 13277.49 8778.22 8584.59 13481.60 160
N_pmnet47.67 20347.00 20748.45 19654.72 20762.78 20746.95 20351.25 17936.01 19626.09 19726.59 20425.93 21635.50 19655.67 20859.01 20476.22 19963.04 208
UGNet67.57 10771.69 8662.76 13669.88 14482.58 10166.43 14958.64 11854.71 12951.87 9361.74 6262.01 7945.46 18174.78 11574.99 11784.24 14091.02 70
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EC-MVSNet76.05 5478.87 4472.77 6378.87 8586.63 6577.50 6457.04 13875.34 5461.68 5964.20 5569.56 5273.96 3482.12 4480.65 6387.57 5193.57 43
MDTV_nov1_ep13_2view54.47 18654.61 18554.30 18560.50 19373.82 17557.92 18443.38 20139.43 18532.51 18433.23 18734.05 19447.26 17362.36 19366.21 18884.24 14073.19 187
MDTV_nov1_ep1365.21 12267.28 11762.79 13470.91 14081.72 10569.28 13049.50 18258.08 10543.94 12950.50 10156.02 11158.86 13170.72 15873.37 13884.24 14080.52 163
MIMVSNet140.84 21043.46 20837.79 21032.14 22058.92 21239.24 21450.83 18027.00 21211.29 22016.76 21926.53 21417.75 21557.14 20361.12 20375.46 20156.78 214
MIMVSNet57.78 17559.71 17055.53 17854.79 20677.10 15363.89 16145.02 19646.59 15636.79 16728.36 20040.77 16345.84 18074.97 11276.58 9986.87 7373.60 184
IterMVS-LS66.08 11666.56 12365.51 11073.67 12474.88 16870.89 11953.55 17050.42 13948.32 11150.59 10055.66 11461.83 10973.93 12574.42 12684.82 12886.01 123
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet64.22 12965.89 12962.28 14170.05 14380.59 12069.91 12557.98 12343.53 16746.58 11548.22 10950.76 13446.45 17675.68 10676.08 10682.70 16186.34 119
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IterMVS61.87 15163.55 13859.90 15267.29 16272.20 18067.34 14348.56 18547.48 15137.86 16347.07 12048.27 13854.08 15472.12 14673.71 13384.30 13983.99 140
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS_111021_LR74.26 6475.95 6572.27 6779.43 7885.04 8272.71 9765.27 6270.92 6363.58 4969.32 3960.31 9069.43 6977.01 9377.15 9483.22 15491.93 61
HQP-MVS78.26 3980.91 3675.17 4985.67 4984.33 9083.01 3069.38 3379.88 4155.83 7979.85 2564.90 6770.81 5782.46 3781.78 4286.30 8593.18 47
QAPM77.50 4577.43 5377.59 3491.52 1492.00 1381.41 4070.63 2766.22 7658.05 7354.70 8371.79 4474.49 3382.46 3782.04 3789.46 1292.79 53
Vis-MVSNetpermissive65.53 12069.83 9960.52 14970.80 14284.59 8566.37 15155.47 15448.40 14840.62 14957.67 7458.43 9945.37 18277.49 8776.24 10584.47 13685.99 124
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet53.86 18953.02 19154.85 18060.30 19472.36 17944.63 20942.20 20739.45 18443.47 13121.66 21334.00 19555.47 14965.42 18367.16 18383.02 15971.08 195
HyFIR lowres test68.39 9868.28 11068.52 9280.85 6888.11 4871.08 11658.09 12254.87 12847.80 11327.55 20255.80 11364.97 9079.11 7279.14 7688.31 3393.35 44
EPMVS66.21 11467.49 11664.73 11775.81 11284.20 9268.94 13144.37 19961.55 9148.07 11249.21 10654.87 12062.88 10371.82 14971.40 16288.28 3479.37 167
TAMVS58.86 16860.91 16156.47 17662.38 18877.57 14858.97 18252.98 17338.76 18636.17 17042.26 14147.94 14146.45 17670.23 16670.79 16881.86 17278.82 169
IS_MVSNet67.29 11071.98 8261.82 14376.92 10384.32 9165.90 15258.22 12055.75 12039.22 15454.51 8662.47 7545.99 17978.83 7678.52 8184.70 13189.47 91
RPSCF55.07 18158.06 17651.57 18848.87 21558.95 21153.68 19241.26 21162.42 8845.88 11654.38 8854.26 12353.75 15557.15 20253.53 21266.01 21265.75 204
Vis-MVSNet (Re-imp)62.25 14568.74 10554.68 18173.70 12378.74 13656.51 18757.49 13255.22 12326.86 19554.56 8561.35 8231.06 19773.10 13474.90 11882.49 16483.31 145
MVS_111021_HR77.42 4678.40 4976.28 3986.95 4290.68 2177.41 6570.56 3066.21 7762.48 5566.17 5263.98 7172.08 4982.87 3383.15 2888.24 3595.71 15
CSCG82.90 2084.52 2381.02 1891.85 1193.43 787.14 1274.01 1481.96 3176.14 1470.84 3782.49 1469.71 6482.32 4185.18 1187.26 6295.40 22
PatchMatch-RL62.22 14860.69 16264.01 12468.74 15175.75 16359.27 18060.35 11156.09 11753.80 8947.06 12136.45 18164.80 9268.22 17567.22 18277.10 19774.02 181
TDRefinement52.70 19051.02 19954.66 18257.41 20365.06 20261.47 17454.94 15844.03 16533.93 18030.13 19727.57 21146.17 17861.86 19462.48 20174.01 20666.06 203
USDC59.69 16360.03 16859.28 15964.04 17971.84 18163.15 16855.36 15554.90 12735.02 17648.34 10829.79 20858.16 13370.60 16071.33 16479.99 18573.42 185
EPP-MVSNet67.58 10671.10 9063.48 12975.71 11483.35 9666.85 14557.83 12853.02 13341.15 14555.82 7867.89 5656.01 14774.40 11972.92 14883.33 15290.30 82
PMMVS70.37 8675.06 6964.90 11671.46 13581.88 10464.10 15655.64 15071.31 6246.69 11470.69 3858.56 9569.53 6779.03 7375.63 11181.96 17188.32 105
ACMMPcopyleft77.61 4479.59 4175.30 4885.87 4885.58 7981.42 3967.38 4779.38 4462.61 5378.53 2765.79 6268.80 7578.56 7878.50 8385.75 9790.80 73
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA71.37 8170.27 9772.66 6580.79 7081.33 11271.07 11765.75 5782.36 2964.80 4542.46 13956.49 10872.70 4573.00 13770.52 17180.84 18085.76 127
PatchmatchNetpermissive65.43 12167.71 11462.78 13573.49 12682.83 9966.42 15045.40 19460.40 9645.27 11949.22 10557.60 10560.01 12270.61 15971.38 16386.08 9181.91 158
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS79.43 3284.06 2574.04 5686.15 4791.57 1880.85 4768.90 3882.22 3051.81 9478.10 2874.28 3370.39 6184.01 2484.00 2286.14 8994.24 33
OMC-MVS74.03 6675.82 6671.95 6979.56 7680.98 11675.35 7863.21 7584.48 2361.83 5761.54 6466.89 5869.41 7076.60 9774.07 13082.34 16786.15 121
AdaColmapbinary76.23 5373.55 7579.35 2489.38 2785.00 8379.99 5273.04 2076.60 5271.17 2655.18 8257.99 10377.87 1776.82 9576.82 9784.67 13286.45 117
DeepMVS_CXcopyleft19.81 22617.01 22410.02 22323.61 2165.85 22417.21 2178.03 22821.13 21122.60 22121.42 22630.01 220
TinyColmap52.66 19150.09 20255.65 17759.72 19664.02 20657.15 18652.96 17440.28 18032.51 18432.42 18920.97 21956.65 14663.95 19165.15 19274.91 20363.87 207
MAR-MVS77.19 4878.37 5075.81 4489.87 2290.58 2279.33 5565.56 5977.62 4958.33 7259.24 7367.98 5574.83 2882.37 4083.12 2986.95 7087.67 110
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MSDG65.57 11961.57 15670.24 7982.02 6176.47 15674.46 8968.73 4056.52 11350.33 10238.47 16141.10 16062.42 10872.12 14672.94 14783.47 15073.37 186
LS3D64.54 12862.14 15267.34 10480.85 6875.79 16269.99 12365.87 5660.77 9444.35 12642.43 14045.95 14765.01 8969.88 16868.69 17877.97 19571.43 193
CLD-MVS77.36 4777.29 5577.45 3582.21 5988.11 4881.92 3568.96 3777.97 4769.62 3462.08 6159.44 9473.57 3781.75 5081.27 5288.41 3090.39 81
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS39.11 21136.39 21342.28 20555.97 20545.94 21846.23 20541.57 20835.73 19722.61 20023.46 20819.82 22128.32 20443.57 21440.67 21658.96 21645.54 216
Gipumacopyleft24.91 21624.61 21825.26 21531.47 22121.59 22318.06 22237.53 21525.43 21510.03 2214.18 2254.25 22914.85 21843.20 21547.03 21339.62 22026.55 222
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015