This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
TDRefinement93.16 195.57 190.36 188.79 5293.57 197.27 178.23 2195.55 193.00 193.98 1896.01 3887.53 197.69 196.81 197.33 195.34 4
PMVScopyleft79.51 990.23 1492.67 1487.39 2090.16 3988.75 4293.64 3675.78 4490.00 3383.70 4792.97 2992.22 10486.13 497.01 396.79 294.94 2890.96 45
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
LTVRE_ROB86.82 191.55 394.43 388.19 1083.19 11286.35 6593.60 3778.79 1895.48 391.79 293.08 2797.21 2086.34 397.06 296.27 395.46 2395.56 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UA-Net89.02 3391.44 3986.20 2894.88 189.84 3494.76 2977.45 2885.41 7174.79 10688.83 7888.90 13778.67 4096.06 795.45 496.66 395.58 2
COLMAP_ROBcopyleft85.66 291.85 295.01 288.16 1188.98 5192.86 295.51 1972.17 6294.95 491.27 394.11 1797.77 1184.22 896.49 495.27 596.79 293.60 12
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RPSCF88.05 4692.61 1782.73 6584.24 9688.40 4490.04 7266.29 10791.46 1382.29 6088.93 7696.01 3879.38 3295.15 2194.90 694.15 3993.40 20
CP-MVS91.09 592.33 2589.65 292.16 1090.41 2796.46 1080.38 888.26 4589.17 1087.00 9896.34 3083.95 1095.77 1194.72 795.81 1793.78 10
ACMMPcopyleft90.63 892.40 2088.56 891.24 2891.60 696.49 977.53 2687.89 4886.87 3087.24 9596.46 2582.87 1695.59 1594.50 896.35 693.51 18
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMM80.67 790.67 792.46 1988.57 791.35 2289.93 3296.34 1177.36 3090.17 2986.88 2987.32 9396.63 2383.32 1395.79 1094.49 996.19 992.91 26
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MP-MVScopyleft90.84 691.95 3489.55 392.92 490.90 1996.56 679.60 1186.83 5988.75 1289.00 7494.38 7884.01 994.94 2494.34 1095.45 2493.24 23
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
X-MVS89.36 2890.73 4587.77 1691.50 2091.23 896.76 478.88 1787.29 5487.14 2578.98 14794.53 7276.47 5795.25 1994.28 1195.85 1493.55 16
ACMMPR91.30 492.88 1189.46 491.92 1191.61 596.60 579.46 1490.08 3188.53 1389.54 6695.57 4884.25 795.24 2094.27 1295.97 1193.85 8
HFP-MVS90.32 1392.37 2287.94 1391.46 2190.91 1895.69 1779.49 1289.94 3483.50 5089.06 7394.44 7681.68 2294.17 3094.19 1395.81 1793.87 7
WR-MVS89.79 2393.66 585.27 3791.32 2388.27 4693.49 3879.86 1092.75 975.37 10296.86 198.38 575.10 7195.93 894.07 1496.46 589.39 56
PGM-MVS90.42 1191.58 3789.05 591.77 1491.06 1396.51 778.94 1685.41 7187.67 1887.02 9795.26 5783.62 1295.01 2393.94 1595.79 1993.40 20
SteuartSystems-ACMMP90.00 1791.73 3587.97 1291.21 2990.29 2896.51 778.00 2386.33 6285.32 4088.23 8394.67 7082.08 2095.13 2293.88 1694.72 3593.59 13
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP89.86 1991.96 3387.42 1991.00 3090.08 3096.00 1576.61 3689.28 3587.73 1790.04 5991.80 11378.71 3894.36 2893.82 1794.48 3794.32 6
SMA-MVScopyleft90.13 1592.26 2787.64 1791.68 1690.44 2695.22 2477.34 3290.79 2387.80 1690.42 5792.05 10979.05 3593.89 3293.59 1894.77 3294.62 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMP80.00 890.12 1692.30 2687.58 1890.83 3491.10 1294.96 2876.06 4087.47 5285.33 3988.91 7797.65 1482.13 1995.31 1793.44 1996.14 1092.22 33
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LGP-MVS_train90.56 992.38 2188.43 990.88 3291.15 1195.35 2177.65 2586.26 6487.23 2390.45 5697.35 1783.20 1495.44 1693.41 2096.28 892.63 27
PS-CasMVS89.07 3293.23 784.21 5092.44 888.23 4890.54 6282.95 390.50 2675.31 10395.80 698.37 671.16 10096.30 593.32 2192.88 6190.11 50
WR-MVS_H88.99 3593.28 683.99 5391.92 1189.13 4091.95 4683.23 190.14 3071.92 12595.85 498.01 1071.83 9795.82 993.19 2293.07 5990.83 47
CP-MVSNet88.71 4192.63 1584.13 5192.39 988.09 5090.47 6682.86 488.79 4275.16 10494.87 997.68 1371.05 10296.16 693.18 2392.85 6289.64 54
anonymousdsp85.62 5990.53 4679.88 9264.64 21076.35 14396.28 1253.53 19485.63 6881.59 6992.81 3197.71 1286.88 294.56 2592.83 2496.35 693.84 9
SD-MVS89.91 1892.23 3087.19 2191.31 2489.79 3594.31 3275.34 4789.26 3781.79 6792.68 3295.08 6383.88 1193.10 3992.69 2596.54 493.02 24
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CPTT-MVS89.63 2590.52 4788.59 690.95 3190.74 2195.71 1679.13 1587.70 5085.68 3880.05 14295.74 4684.77 694.28 2992.68 2695.28 2692.45 31
LS3D89.02 3391.69 3685.91 3089.72 4390.81 2092.56 4471.69 6690.83 2287.24 2289.71 6492.07 10778.37 4294.43 2792.59 2795.86 1391.35 41
DeepC-MVS83.59 490.37 1292.56 1887.82 1491.26 2792.33 394.72 3080.04 990.01 3284.61 4293.33 2394.22 7980.59 2792.90 4392.52 2895.69 2192.57 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + ACMM89.14 2992.11 3285.67 3189.27 4790.61 2490.98 5279.48 1388.86 4079.80 7993.01 2893.53 8883.17 1592.75 4592.45 2991.32 8293.59 13
PEN-MVS88.86 3992.92 984.11 5292.92 488.05 5190.83 5582.67 591.04 1874.83 10595.97 398.47 370.38 10795.70 1392.43 3093.05 6088.78 62
ACMH+79.05 1189.62 2693.08 885.58 3288.58 5589.26 3992.18 4574.23 5293.55 882.66 5892.32 3798.35 780.29 2995.28 1892.34 3195.52 2290.43 48
DTE-MVSNet88.99 3592.77 1284.59 4393.31 288.10 4990.96 5383.09 291.38 1476.21 9696.03 298.04 870.78 10695.65 1492.32 3293.18 5687.84 71
TSAR-MVS + MP.89.67 2492.25 2886.65 2591.53 1890.98 1796.15 1373.30 5687.88 4981.83 6692.92 3095.15 6182.23 1893.58 3492.25 3394.87 2993.01 25
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
3Dnovator+83.71 388.13 4490.00 5085.94 2986.82 7191.06 1394.26 3375.39 4688.85 4185.76 3785.74 11086.92 14678.02 4593.03 4092.21 3495.39 2592.21 34
APD-MVScopyleft89.14 2991.25 4286.67 2491.73 1591.02 1595.50 2077.74 2484.04 8379.47 8291.48 4694.85 6781.14 2592.94 4192.20 3594.47 3892.24 32
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DPE-MVScopyleft89.81 2292.34 2486.86 2389.69 4491.00 1695.53 1876.91 3388.18 4683.43 5393.48 2195.19 5881.07 2692.75 4592.07 3694.55 3693.74 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
OPM-MVS89.82 2192.24 2986.99 2290.86 3389.35 3895.07 2775.91 4391.16 1686.87 3091.07 5297.29 1879.13 3493.32 3591.99 3794.12 4091.49 40
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
APDe-MVScopyleft89.85 2092.91 1086.29 2690.47 3891.34 796.04 1476.41 3991.11 1778.50 8993.44 2295.82 4281.55 2393.16 3791.90 3894.77 3293.58 15
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSLP-MVS++86.29 5789.10 5583.01 5885.71 8289.79 3587.04 10474.39 5185.17 7378.92 8677.59 15693.57 8682.60 1793.23 3691.88 3989.42 10792.46 30
SixPastTwentyTwo89.14 2992.19 3185.58 3284.62 8982.56 9190.53 6371.93 6491.95 1285.89 3594.22 1497.25 1985.42 595.73 1291.71 4095.08 2791.89 36
DVP-MVScopyleft89.40 2792.69 1385.56 3489.01 5089.85 3393.72 3575.42 4592.28 1180.49 7294.36 1394.87 6681.46 2492.49 4991.42 4193.27 5393.54 17
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS88.51 4291.36 4085.19 3990.63 3692.01 495.29 2277.52 2790.48 2780.21 7690.21 5896.08 3476.38 5988.30 9691.42 4191.12 8791.01 44
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft88.74 4089.54 5287.80 1592.58 685.69 6995.10 2678.01 2287.08 5687.66 1987.89 8692.07 10780.28 3090.97 6991.41 4393.17 5791.69 37
DVP-MVS++90.50 1094.18 486.21 2792.52 790.29 2895.29 2276.02 4194.24 582.82 5595.84 597.56 1576.82 5593.13 3891.20 4493.78 4597.01 1
SED-MVS88.96 3792.37 2284.99 4088.64 5489.65 3795.11 2575.98 4290.73 2480.15 7794.21 1594.51 7576.59 5692.94 4191.17 4593.46 5093.37 22
OMC-MVS88.16 4391.34 4184.46 4686.85 7090.63 2393.01 4167.00 10390.35 2887.40 2186.86 10096.35 2977.66 4992.63 4790.84 4694.84 3091.68 38
CNVR-MVS86.93 5188.98 5684.54 4490.11 4087.41 5793.23 4073.47 5586.31 6382.25 6182.96 13092.15 10576.04 6291.69 5490.69 4792.17 7391.64 39
NCCC86.74 5287.97 6885.31 3690.64 3587.25 5893.27 3974.59 4986.50 6083.72 4675.92 17392.39 10177.08 5391.72 5390.68 4892.57 6791.30 42
DeepC-MVS_fast81.78 587.38 4989.64 5184.75 4189.89 4290.70 2292.74 4374.45 5086.02 6582.16 6486.05 10791.99 11175.84 6591.16 6390.44 4993.41 5191.09 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + GP.85.32 6487.41 7382.89 6290.07 4185.69 6989.07 8172.99 6082.45 9474.52 10985.09 11587.67 14379.24 3391.11 6490.41 5091.45 7989.45 55
EPP-MVSNet82.76 9286.47 7878.45 10286.00 8084.47 7485.39 11568.42 9184.17 8062.97 16389.26 7176.84 18572.13 9492.56 4890.40 5195.76 2087.56 74
FPMVS81.56 10284.04 11778.66 10082.92 11575.96 14786.48 10865.66 11784.67 7771.47 12877.78 15483.22 16277.57 5091.24 6190.21 5287.84 12985.21 87
DeepPCF-MVS81.61 687.95 4790.29 4985.22 3887.48 6590.01 3193.79 3473.54 5488.93 3983.89 4589.40 6890.84 12280.26 3190.62 7290.19 5392.36 7092.03 35
SF-MVS87.85 4890.95 4484.22 4988.17 6087.90 5390.80 5671.80 6589.28 3582.70 5789.90 6195.37 5577.91 4791.69 5490.04 5493.95 4492.47 29
AdaColmapbinary84.15 7385.14 9583.00 5989.08 4987.14 6090.56 6170.90 6982.40 9580.41 7373.82 18484.69 15775.19 7091.58 5789.90 5591.87 7686.48 78
CDPH-MVS86.66 5488.52 5984.48 4589.61 4588.27 4692.86 4272.69 6180.55 11982.71 5686.92 9993.32 9075.55 6791.00 6889.85 5693.47 4989.71 53
UniMVSNet_ETH3D85.39 6291.12 4378.71 9990.48 3783.72 7981.76 14082.41 693.84 664.43 15995.41 798.76 163.72 14193.63 3389.74 5789.47 10682.74 112
PHI-MVS86.37 5688.14 6584.30 4786.65 7387.56 5590.76 5770.16 7382.55 9389.65 784.89 11892.40 10075.97 6390.88 7089.70 5892.58 6589.03 60
PLCcopyleft76.06 1585.38 6387.46 7182.95 6185.79 8188.84 4188.86 8368.70 8887.06 5783.60 4879.02 14590.05 12877.37 5290.88 7089.66 5993.37 5286.74 77
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
UniMVSNet (Re)84.95 6788.53 5880.78 8187.82 6384.21 7588.03 8876.50 3781.18 11269.29 13992.63 3596.83 2269.07 11491.23 6289.60 6093.97 4384.00 98
ACMH78.40 1288.94 3892.62 1684.65 4286.45 7487.16 5991.47 4968.79 8795.49 289.74 693.55 2098.50 277.96 4694.14 3189.57 6193.49 4789.94 52
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Vis-MVSNetpermissive83.32 8488.12 6677.71 10677.91 15883.44 8390.58 5969.49 7881.11 11367.10 15389.85 6291.48 11771.71 9891.34 5989.37 6289.48 10590.26 49
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
IS_MVSNet81.72 10185.01 9677.90 10586.19 7682.64 9085.56 11170.02 7480.11 12263.52 16187.28 9481.18 16967.26 12291.08 6789.33 6394.82 3183.42 103
DU-MVS84.88 6888.27 6480.92 7988.30 5783.59 8187.06 10278.35 1980.64 11770.49 13392.67 3396.91 2168.13 11791.79 5189.29 6493.20 5583.02 106
TranMVSNet+NR-MVSNet85.23 6589.38 5380.39 9088.78 5383.77 7887.40 9676.75 3485.47 6968.99 14195.18 897.55 1667.13 12491.61 5689.13 6593.26 5482.95 109
CNLPA85.50 6188.58 5781.91 7184.55 9187.52 5690.89 5463.56 13988.18 4684.06 4483.85 12791.34 11976.46 5891.27 6089.00 6691.96 7488.88 61
NR-MVSNet82.89 8987.43 7277.59 10883.91 10283.59 8187.10 10178.35 1980.64 11768.85 14292.67 3396.50 2454.19 18087.19 10688.68 6793.16 5882.75 111
train_agg86.67 5387.73 6985.43 3591.51 1982.72 8894.47 3174.22 5381.71 10181.54 7089.20 7292.87 9578.33 4390.12 7988.47 6892.51 6989.04 59
UniMVSNet_NR-MVSNet84.62 7188.00 6780.68 8588.18 5983.83 7787.06 10276.47 3881.46 10870.49 13393.24 2495.56 4968.13 11790.43 7388.47 6893.78 4583.02 106
CLD-MVS82.75 9387.22 7477.54 10988.01 6285.76 6890.23 6954.52 18882.28 9782.11 6588.48 8195.27 5663.95 13989.41 8588.29 7086.45 14481.01 126
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TAPA-MVS78.00 1385.88 5888.37 6182.96 6084.69 8788.62 4390.62 5864.22 12989.15 3888.05 1478.83 14993.71 8376.20 6190.11 8088.22 7194.00 4189.97 51
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CSCG88.12 4591.45 3884.23 4888.12 6190.59 2590.57 6068.60 8991.37 1583.45 5289.94 6095.14 6278.71 3891.45 5888.21 7295.96 1293.44 19
Effi-MVS+-dtu82.04 9883.39 12580.48 8985.48 8386.57 6488.40 8668.28 9369.04 17373.13 11876.26 16891.11 12174.74 7588.40 9487.76 7392.84 6384.57 91
MVS_030484.73 7086.19 8183.02 5788.32 5686.71 6291.55 4870.87 7073.79 14882.88 5485.13 11493.35 8972.55 8988.62 9187.69 7491.93 7588.05 70
EC-MVSNet83.70 7784.77 10482.46 6687.47 6682.79 8785.50 11272.00 6369.81 16677.66 9385.02 11789.63 12978.14 4490.40 7487.56 7594.00 4188.16 67
CS-MVS-test83.59 7984.86 10182.10 6983.04 11481.05 10591.58 4767.48 10272.52 15578.42 9084.75 12091.82 11278.62 4191.98 5087.54 7693.48 4884.35 93
UGNet79.62 11985.91 8672.28 14373.52 18083.91 7686.64 10669.51 7779.85 12462.57 16585.82 10989.63 12953.18 18488.39 9587.35 7788.28 12686.43 79
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVS_111021_HR83.95 7586.10 8381.44 7684.62 8980.29 11190.51 6468.05 9684.07 8280.38 7484.74 12191.37 11874.23 7790.37 7587.25 7890.86 8984.59 90
MAR-MVS81.98 9982.92 12880.88 8085.18 8685.85 6789.13 8069.52 7671.21 16282.25 6171.28 19488.89 13869.69 10988.71 8986.96 7989.52 10487.57 73
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
FC-MVSNet-train79.20 12586.29 8070.94 15084.06 9777.67 13185.68 11064.11 13182.90 8952.22 19592.57 3693.69 8449.52 19788.30 9686.93 8090.03 9581.95 119
Effi-MVS+82.33 9483.87 11880.52 8884.51 9481.32 10087.53 9468.05 9674.94 14679.67 8082.37 13592.31 10272.21 9185.06 12486.91 8191.18 8584.20 95
Gipumacopyleft86.47 5589.25 5483.23 5583.88 10378.78 12485.35 11668.42 9192.69 1089.03 1191.94 3996.32 3281.80 2194.45 2686.86 8290.91 8883.69 100
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
TSAR-MVS + COLMAP85.51 6088.36 6282.19 6786.05 7987.69 5490.50 6570.60 7286.40 6182.33 5989.69 6592.52 9974.01 8187.53 10086.84 8389.63 10287.80 72
ETV-MVS79.01 12777.98 14980.22 9186.69 7279.73 11688.80 8468.27 9463.22 19671.56 12770.25 20273.63 19573.66 8490.30 7886.77 8492.33 7181.95 119
3Dnovator79.41 1082.21 9586.07 8477.71 10679.31 14384.61 7387.18 9961.02 16185.65 6776.11 9785.07 11685.38 15570.96 10487.22 10486.47 8591.66 7788.12 69
test250675.32 15076.87 15973.50 13684.55 9180.37 10979.63 15873.23 5782.64 9155.41 18276.87 16345.42 22759.61 15690.35 7686.46 8688.58 12175.98 155
ECVR-MVScopyleft79.31 12484.20 11473.60 13484.55 9180.37 10979.63 15873.23 5782.64 9155.98 17987.50 8986.85 14759.61 15690.35 7686.46 8688.58 12175.26 162
CS-MVS83.57 8084.79 10382.14 6883.83 10481.48 9887.29 9766.54 10572.73 15480.05 7884.04 12593.12 9480.35 2889.50 8386.34 8894.76 3486.32 81
EG-PatchMatch MVS84.35 7287.55 7080.62 8686.38 7582.24 9386.75 10564.02 13484.24 7978.17 9289.38 6995.03 6578.78 3789.95 8186.33 8989.59 10385.65 85
CANet82.84 9084.60 10680.78 8187.30 6785.20 7290.23 6969.00 8372.16 15878.73 8884.49 12390.70 12569.54 11287.65 9986.17 9089.87 9985.84 83
canonicalmvs81.22 10886.04 8575.60 11983.17 11383.18 8580.29 15065.82 11685.97 6667.98 14977.74 15591.51 11665.17 13588.62 9186.15 9191.17 8689.09 58
v7n87.11 5090.46 4883.19 5685.22 8583.69 8090.03 7368.20 9591.01 1986.71 3394.80 1098.46 477.69 4891.10 6585.98 9291.30 8388.19 66
DCV-MVSNet80.04 11385.67 9073.48 13782.91 11681.11 10480.44 14966.06 11085.01 7462.53 16678.84 14894.43 7758.51 16188.66 9085.91 9390.41 9185.73 84
MVS_111021_LR83.20 8685.33 9180.73 8482.88 11778.23 12889.61 7565.23 12082.08 9881.19 7185.31 11292.04 11075.22 6989.50 8385.90 9490.24 9284.23 94
HQP-MVS85.02 6686.41 7983.40 5489.19 4886.59 6391.28 5071.60 6782.79 9083.48 5178.65 15193.54 8772.55 8986.49 11185.89 9592.28 7290.95 46
pmmvs680.46 11088.34 6371.26 14681.96 12577.51 13277.54 16768.83 8693.72 755.92 18093.94 1998.03 955.94 17089.21 8785.61 9687.36 13580.38 130
test111179.67 11784.40 10874.16 13285.29 8479.56 11881.16 14473.13 5984.65 7856.08 17888.38 8286.14 15060.49 15289.78 8285.59 9788.79 11576.68 152
FC-MVSNet-test75.91 14683.59 12366.95 17576.63 17269.07 17985.33 11764.97 12284.87 7641.95 21193.17 2587.04 14547.78 20091.09 6685.56 9885.06 16074.34 163
EPNet79.36 12279.44 14279.27 9889.51 4677.20 13788.35 8777.35 3168.27 17574.29 11076.31 16679.22 17559.63 15585.02 12885.45 9986.49 14384.61 89
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Fast-Effi-MVS+81.42 10483.82 12078.62 10182.24 12380.62 10787.72 9163.51 14073.01 15074.75 10783.80 12892.70 9773.44 8688.15 9885.26 10090.05 9483.17 104
thres600view774.34 15678.43 14669.56 16080.47 13276.28 14478.65 16562.56 14977.39 13452.53 19174.03 18276.78 18655.90 17285.06 12485.19 10187.25 13674.29 164
PM-MVS80.42 11283.63 12276.67 11378.04 15572.37 16987.14 10060.18 16780.13 12171.75 12686.12 10693.92 8277.08 5386.56 11085.12 10285.83 15381.18 124
MSDG81.39 10684.23 11378.09 10482.40 12282.47 9285.31 11860.91 16279.73 12580.26 7586.30 10388.27 14169.67 11087.20 10584.98 10389.97 9680.67 128
EIA-MVS78.57 12977.90 15079.35 9787.24 6980.71 10686.16 10964.03 13362.63 20173.49 11573.60 18576.12 18973.83 8288.49 9384.93 10491.36 8178.78 144
PVSNet_Blended_VisFu83.00 8884.16 11581.65 7482.17 12486.01 6688.03 8871.23 6876.05 14179.54 8183.88 12683.44 15977.49 5187.38 10184.93 10491.41 8087.40 75
thisisatest051581.18 10984.32 11077.52 11076.73 17074.84 15885.06 11961.37 15881.05 11473.95 11188.79 7989.25 13475.49 6885.98 11584.78 10692.53 6885.56 86
MCST-MVS84.79 6986.48 7782.83 6387.30 6787.03 6190.46 6769.33 8183.14 8782.21 6381.69 13892.14 10675.09 7287.27 10384.78 10692.58 6589.30 57
QAPM80.43 11184.34 10975.86 11779.40 14282.06 9579.86 15561.94 15483.28 8674.73 10881.74 13785.44 15470.97 10384.99 12984.71 10888.29 12588.14 68
Vis-MVSNet (Re-imp)76.15 14380.84 13770.68 15183.66 10774.80 15981.66 14269.59 7580.48 12046.94 20587.44 9180.63 17153.14 18586.87 10784.56 10989.12 10971.12 173
Anonymous20240521184.68 10583.92 10179.45 11979.03 16267.79 9882.01 9988.77 8092.58 9855.93 17186.68 10984.26 11088.92 11378.98 142
Anonymous2023121179.37 12185.78 8771.89 14482.87 11879.66 11778.77 16463.93 13783.36 8559.39 17090.54 5494.66 7156.46 16887.38 10184.12 11189.92 9780.74 127
CDS-MVSNet73.07 16377.02 15668.46 16681.62 12772.89 16679.56 16070.78 7169.56 16852.52 19277.37 15981.12 17042.60 20584.20 13583.93 11283.65 16670.07 178
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PCF-MVS76.59 1484.11 7485.27 9282.76 6486.12 7888.30 4591.24 5169.10 8282.36 9684.45 4377.56 15790.40 12772.91 8885.88 11683.88 11392.72 6488.53 63
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DELS-MVS79.71 11683.74 12175.01 12679.31 14382.68 8984.79 12160.06 16875.43 14469.09 14086.13 10589.38 13267.16 12385.12 12383.87 11489.65 10183.57 101
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ambc88.38 6091.62 1787.97 5284.48 12388.64 4487.93 1587.38 9294.82 6974.53 7689.14 8883.86 11585.94 15186.84 76
GeoE81.92 10083.87 11879.66 9484.64 8879.87 11389.75 7465.90 11476.12 14075.87 9984.62 12292.23 10371.96 9686.83 10883.60 11689.83 10083.81 99
DPM-MVS81.42 10482.11 13280.62 8687.54 6485.30 7190.18 7168.96 8481.00 11579.15 8470.45 20083.29 16167.67 12182.81 14483.46 11790.19 9388.48 64
PatchMatch-RL76.05 14476.64 16075.36 12177.84 16069.87 17781.09 14663.43 14171.66 16068.34 14871.70 19081.76 16874.98 7384.83 13083.44 11886.45 14473.22 170
GBi-Net73.17 16077.64 15167.95 17076.76 16477.36 13475.77 18064.57 12462.99 19851.83 19676.05 16977.76 18152.73 18985.57 11783.39 11986.04 14880.37 131
test173.17 16077.64 15167.95 17076.76 16477.36 13475.77 18064.57 12462.99 19851.83 19676.05 16977.76 18152.73 18985.57 11783.39 11986.04 14880.37 131
FMVSNet178.20 13284.83 10270.46 15478.62 15079.03 12177.90 16667.53 10183.02 8855.10 18487.19 9693.18 9255.65 17385.57 11783.39 11987.98 12882.40 115
Baseline_NR-MVSNet82.79 9186.51 7678.44 10388.30 5775.62 15187.81 9074.97 4881.53 10566.84 15494.71 1296.46 2566.90 12591.79 5183.37 12285.83 15382.09 117
TransMVSNet (Re)79.05 12686.66 7570.18 15683.32 11075.99 14677.54 16763.98 13590.68 2555.84 18194.80 1096.06 3553.73 18386.27 11383.22 12386.65 13979.61 140
thisisatest053075.54 14975.95 16875.05 12475.08 17773.56 16482.15 13860.31 16469.17 17069.32 13879.02 14558.78 21472.17 9283.88 13783.08 12491.30 8384.20 95
tttt051775.86 14776.23 16475.42 12075.55 17674.06 16282.73 13360.31 16469.24 16970.24 13579.18 14458.79 21372.17 9284.49 13383.08 12491.54 7884.80 88
pm-mvs178.21 13185.68 8969.50 16180.38 13475.73 14976.25 17665.04 12187.59 5154.47 18693.16 2695.99 4054.20 17986.37 11282.98 12686.64 14077.96 149
tfpn200view972.01 16875.40 17068.06 16977.97 15676.44 14277.04 17162.67 14866.81 17850.82 20067.30 20775.67 19152.46 19285.06 12482.64 12787.41 13473.86 166
thres40073.13 16276.99 15868.62 16579.46 14174.93 15777.23 16961.23 16075.54 14252.31 19472.20 18977.10 18454.89 17582.92 14182.62 12886.57 14273.66 169
IB-MVS71.28 1775.21 15177.00 15773.12 14176.76 16477.45 13383.05 13058.92 17463.01 19764.31 16059.99 21687.57 14468.64 11586.26 11482.34 12987.05 13882.36 116
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
OpenMVScopyleft75.38 1678.44 13081.39 13674.99 12780.46 13379.85 11479.99 15258.31 17777.34 13573.85 11277.19 16082.33 16768.60 11684.67 13281.95 13088.72 11786.40 80
TinyColmap83.79 7686.12 8281.07 7883.42 10981.44 9985.42 11468.55 9088.71 4389.46 887.60 8892.72 9670.34 10889.29 8681.94 13189.20 10881.12 125
casdiffmvs_mvgpermissive81.50 10385.70 8876.60 11582.68 11980.54 10883.50 12764.49 12783.40 8472.53 11992.15 3895.40 5365.84 13284.69 13181.89 13290.59 9081.86 121
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Fast-Effi-MVS+-dtu76.92 13677.18 15576.62 11479.55 14079.17 12084.80 12077.40 2964.46 19168.75 14470.81 19886.57 14863.36 14681.74 15481.76 13385.86 15275.78 157
ET-MVSNet_ETH3D74.71 15474.19 17575.31 12279.22 14575.29 15382.70 13464.05 13265.45 18670.96 13277.15 16157.70 21565.89 13184.40 13481.65 13489.03 11077.67 150
pmmvs-eth3d79.64 11882.06 13376.83 11280.05 13672.64 16787.47 9566.59 10480.83 11673.50 11489.32 7093.20 9167.78 11980.78 16181.64 13585.58 15676.01 154
CANet_DTU75.04 15278.45 14571.07 14777.27 16177.96 12983.88 12658.00 17864.11 19268.67 14575.65 17588.37 14053.92 18282.05 15181.11 13684.67 16179.88 138
tfpnnormal77.16 13584.26 11168.88 16481.02 13175.02 15576.52 17563.30 14287.29 5452.40 19391.24 5193.97 8054.85 17785.46 12081.08 13785.18 15975.76 158
CVMVSNet75.65 14877.62 15373.35 14071.95 18669.89 17683.04 13160.84 16369.12 17168.76 14379.92 14378.93 17773.64 8581.02 15981.01 13881.86 17583.43 102
v119283.61 7885.23 9381.72 7384.05 9882.15 9489.54 7666.20 10881.38 11086.76 3291.79 4396.03 3674.88 7481.81 15380.92 13988.91 11482.50 114
v1083.17 8785.22 9480.78 8183.26 11182.99 8688.66 8566.49 10679.24 12883.60 4891.46 4795.47 5174.12 7882.60 14780.66 14088.53 12384.11 97
IterMVS-LS79.79 11582.56 13076.56 11681.83 12677.85 13079.90 15469.42 8078.93 13071.21 12990.47 5585.20 15670.86 10580.54 16380.57 14186.15 14684.36 92
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114483.22 8585.01 9681.14 7783.76 10681.60 9788.95 8265.58 11881.89 10085.80 3691.68 4595.84 4174.04 8082.12 15080.56 14288.70 11881.41 123
v124083.57 8084.94 9981.97 7084.05 9881.27 10189.46 7866.06 11081.31 11187.50 2091.88 4295.46 5276.25 6081.16 15880.51 14388.52 12482.98 108
thres20072.41 16776.00 16768.21 16878.28 15276.28 14474.94 18662.56 14972.14 15951.35 19969.59 20576.51 18754.89 17585.06 12480.51 14387.25 13671.92 172
v192192083.49 8284.94 9981.80 7283.78 10581.20 10389.50 7765.91 11381.64 10387.18 2491.70 4495.39 5475.85 6481.56 15680.27 14588.60 11982.80 110
v14419283.43 8384.97 9881.63 7583.43 10881.23 10289.42 7966.04 11281.45 10986.40 3491.46 4795.70 4775.76 6682.14 14980.23 14688.74 11682.57 113
FA-MVS(training)78.93 12880.63 13876.93 11179.79 13975.57 15285.44 11361.95 15377.19 13678.97 8584.82 11982.47 16466.43 13084.09 13680.13 14789.02 11180.15 137
V4279.59 12083.59 12374.93 12969.61 19377.05 13986.59 10755.84 18378.42 13277.29 9489.84 6395.08 6374.12 7883.05 14080.11 14886.12 14781.59 122
FMVSNet274.43 15579.70 14068.27 16776.76 16477.36 13475.77 18065.36 11972.28 15652.97 19081.92 13685.61 15352.73 18980.66 16279.73 14986.04 14880.37 131
v2v48282.20 9684.26 11179.81 9382.67 12080.18 11287.67 9263.96 13681.69 10284.73 4191.27 5096.33 3172.05 9581.94 15279.56 15087.79 13078.84 143
thres100view90069.86 17572.97 18266.24 17777.97 15672.49 16873.29 19159.12 17266.81 17850.82 20067.30 20775.67 19150.54 19578.24 17279.40 15185.71 15570.88 174
MIMVSNet173.40 15881.85 13463.55 18872.90 18364.37 19384.58 12253.60 19390.84 2153.92 18787.75 8796.10 3345.31 20385.37 12279.32 15270.98 19769.18 182
v882.20 9684.56 10779.45 9582.42 12181.65 9687.26 9864.27 12879.36 12781.70 6891.04 5395.75 4573.30 8782.82 14379.18 15387.74 13182.09 117
pmmvs475.92 14577.48 15474.10 13378.21 15470.94 17184.06 12464.78 12375.13 14568.47 14784.12 12483.32 16064.74 13875.93 18379.14 15484.31 16373.77 167
EPNet_dtu71.90 16973.03 18170.59 15278.28 15261.64 19982.44 13664.12 13063.26 19569.74 13671.47 19282.41 16551.89 19378.83 17078.01 15577.07 18375.60 159
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
USDC81.39 10683.07 12679.43 9681.48 12878.95 12382.62 13566.17 10987.45 5390.73 482.40 13493.65 8566.57 12783.63 13977.97 15689.00 11277.45 151
EU-MVSNet76.48 14080.53 13971.75 14567.62 20070.30 17481.74 14154.06 19175.47 14371.01 13180.10 14093.17 9373.67 8383.73 13877.85 15782.40 17283.07 105
DI_MVS_plusplus_trai77.64 13379.64 14175.31 12279.87 13876.89 14081.55 14363.64 13876.21 13972.03 12485.59 11182.97 16366.63 12679.27 16977.78 15888.14 12778.76 145
PVSNet_BlendedMVS76.45 14178.12 14774.49 13076.76 16478.46 12579.65 15663.26 14365.42 18773.15 11675.05 17888.96 13566.51 12882.73 14577.66 15987.61 13278.60 146
PVSNet_Blended76.45 14178.12 14774.49 13076.76 16478.46 12579.65 15663.26 14365.42 18773.15 11675.05 17888.96 13566.51 12882.73 14577.66 15987.61 13278.60 146
MDA-MVSNet-bldmvs76.51 13982.87 12969.09 16350.71 22174.72 16084.05 12560.27 16681.62 10471.16 13088.21 8491.58 11469.62 11192.78 4477.48 16178.75 18273.69 168
HyFIR lowres test73.29 15974.14 17672.30 14273.08 18278.33 12783.12 12962.41 15163.81 19362.13 16776.67 16578.50 17871.09 10174.13 18777.47 16281.98 17470.10 177
CMPMVSbinary55.74 1871.56 17076.26 16366.08 18068.11 19863.91 19563.17 21250.52 20368.79 17475.49 10170.78 19985.67 15263.54 14381.58 15577.20 16375.63 18485.86 82
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
casdiffmvspermissive79.93 11484.11 11675.05 12481.41 13078.99 12282.95 13262.90 14781.53 10568.60 14691.94 3996.03 3665.84 13282.89 14277.07 16488.59 12080.34 134
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FMVSNet371.40 17275.20 17366.97 17475.00 17876.59 14174.29 18764.57 12462.99 19851.83 19676.05 16977.76 18151.49 19476.58 17977.03 16584.62 16279.43 141
dmvs_re68.11 18470.60 18565.21 18577.91 15863.73 19676.72 17359.65 17055.93 21347.79 20459.79 21779.91 17349.72 19682.48 14876.98 16679.48 17875.41 160
baseline169.62 17673.55 17965.02 18778.95 14870.39 17371.38 19762.03 15270.97 16347.95 20378.47 15268.19 20147.77 20179.65 16876.94 16782.05 17370.27 176
GA-MVS75.01 15376.39 16273.39 13878.37 15175.66 15080.03 15158.40 17670.51 16475.85 10083.24 12976.14 18863.75 14077.28 17576.62 16883.97 16575.30 161
diffmvspermissive76.74 13781.61 13571.06 14875.64 17574.45 16180.68 14857.57 17977.48 13367.62 15288.95 7593.94 8161.98 14979.74 16676.18 16982.85 17180.50 129
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVSTER68.08 18569.73 18766.16 17866.33 20870.06 17575.71 18352.36 19755.18 21658.64 17270.23 20356.72 21857.34 16579.68 16776.03 17086.61 14180.20 136
MS-PatchMatch71.18 17373.99 17767.89 17277.16 16271.76 17077.18 17056.38 18267.35 17655.04 18574.63 18075.70 19062.38 14776.62 17875.97 17179.22 18075.90 156
MVS_Test76.72 13879.40 14373.60 13478.85 14974.99 15679.91 15361.56 15669.67 16772.44 12085.98 10890.78 12363.50 14478.30 17175.74 17285.33 15780.31 135
WB-MVS72.91 16582.95 12761.21 19368.59 19673.96 16373.65 19061.48 15790.88 2042.55 20994.18 1695.80 4353.02 18685.42 12175.73 17367.97 20464.65 189
IterMVS-SCA-FT77.23 13479.18 14474.96 12876.67 17179.85 11475.58 18561.34 15973.10 14973.79 11386.23 10479.61 17479.00 3680.28 16575.50 17483.41 17079.70 139
v14879.33 12382.32 13175.84 11880.14 13575.74 14881.98 13957.06 18081.51 10779.36 8389.42 6796.42 2771.32 9981.54 15775.29 17585.20 15876.32 153
pmmvs568.91 17974.35 17462.56 19067.45 20266.78 18771.70 19451.47 20067.17 17756.25 17782.41 13388.59 13947.21 20273.21 19374.23 17681.30 17668.03 184
baseline268.71 18168.34 19169.14 16275.69 17469.70 17876.60 17455.53 18560.13 20662.07 16866.76 20960.35 20860.77 15176.53 18174.03 17784.19 16470.88 174
gg-mvs-nofinetune72.68 16675.21 17269.73 15881.48 12869.04 18070.48 19876.67 3586.92 5867.80 15188.06 8564.67 20342.12 20777.60 17373.65 17879.81 17766.57 185
test20.0369.91 17476.20 16562.58 18984.01 10067.34 18575.67 18465.88 11579.98 12340.28 21582.65 13189.31 13339.63 21077.41 17473.28 17969.98 19863.40 194
baseline69.33 17875.37 17162.28 19166.54 20666.67 18873.95 18948.07 20466.10 18159.26 17182.45 13286.30 14954.44 17874.42 18673.25 18071.42 19378.43 148
CR-MVSNet69.56 17768.34 19170.99 14972.78 18567.63 18364.47 21067.74 9959.93 20772.30 12180.10 14056.77 21765.04 13671.64 19572.91 18183.61 16869.40 180
PatchT66.25 18966.76 19565.67 18355.87 21660.75 20070.17 19959.00 17359.80 20972.30 12178.68 15054.12 22265.04 13671.64 19572.91 18171.63 19269.40 180
TAMVS63.02 19469.30 18855.70 20370.12 19156.89 20569.63 20245.13 20770.23 16538.00 21777.79 15375.15 19342.60 20574.48 18572.81 18368.70 20257.75 210
CHOSEN 1792x268868.80 18071.09 18366.13 17969.11 19568.89 18178.98 16354.68 18661.63 20356.69 17571.56 19178.39 17967.69 12072.13 19472.01 18469.63 20073.02 171
IterMVS73.62 15776.53 16170.23 15571.83 18777.18 13880.69 14753.22 19572.23 15766.62 15585.21 11378.96 17669.54 11276.28 18271.63 18579.45 17974.25 165
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PMMVS61.98 20165.61 19757.74 19845.03 22251.76 21369.54 20335.05 21455.49 21555.32 18368.23 20678.39 17958.09 16270.21 20171.56 18683.42 16963.66 192
FMVSNet556.37 21160.14 21351.98 21160.83 21259.58 20166.85 20942.37 21052.68 21841.33 21347.09 22054.68 22135.28 21373.88 18870.77 18765.24 20862.26 198
testgi68.20 18376.05 16659.04 19679.99 13767.32 18681.16 14451.78 19984.91 7539.36 21673.42 18695.19 5832.79 21676.54 18070.40 18869.14 20164.55 190
gm-plane-assit71.56 17069.99 18673.39 13884.43 9573.21 16590.42 6851.36 20184.08 8176.00 9891.30 4937.09 22859.01 15973.65 19070.24 18979.09 18160.37 203
Anonymous2023120667.28 18673.41 18060.12 19576.45 17363.61 19774.21 18856.52 18176.35 13742.23 21075.81 17490.47 12641.51 20874.52 18469.97 19069.83 19963.17 195
RPMNet67.02 18763.99 20270.56 15371.55 18867.63 18375.81 17869.44 7959.93 20763.24 16264.32 21147.51 22659.68 15470.37 20069.64 19183.64 16768.49 183
pmmvs362.72 19768.71 19055.74 20250.74 22057.10 20470.05 20028.82 21761.57 20557.39 17471.19 19685.73 15153.96 18173.36 19269.43 19273.47 18862.55 197
test0.0.03 161.79 20265.33 19857.65 19979.07 14664.09 19468.51 20762.93 14561.59 20433.71 21961.58 21571.58 19933.43 21570.95 19868.68 19368.26 20358.82 206
CHOSEN 280x42056.32 21258.85 21853.36 20751.63 21839.91 22269.12 20638.61 21356.29 21236.79 21848.84 21962.59 20563.39 14573.61 19167.66 19460.61 20963.07 196
MIMVSNet63.02 19469.02 18956.01 20168.20 19759.26 20270.01 20153.79 19271.56 16141.26 21471.38 19382.38 16636.38 21271.43 19767.32 19566.45 20759.83 205
MDTV_nov1_ep13_2view72.96 16475.59 16969.88 15771.15 19064.86 19282.31 13754.45 18976.30 13878.32 9186.52 10191.58 11461.35 15076.80 17666.83 19671.70 19066.26 186
SCA68.54 18267.52 19369.73 15867.79 19975.04 15476.96 17268.94 8566.41 18067.86 15074.03 18260.96 20665.55 13468.99 20365.67 19771.30 19561.54 202
dps65.14 19064.50 20065.89 18271.41 18965.81 19171.44 19661.59 15558.56 21061.43 16975.45 17652.70 22458.06 16369.57 20264.65 19871.39 19464.77 188
test-mter59.39 20561.59 20956.82 20053.21 21754.82 20773.12 19326.57 21953.19 21756.31 17664.71 21060.47 20756.36 16968.69 20464.27 19975.38 18565.00 187
CostFormer66.81 18866.94 19466.67 17672.79 18468.25 18279.55 16155.57 18465.52 18562.77 16476.98 16260.09 20956.73 16765.69 21162.35 20072.59 18969.71 179
test-LLR62.15 20059.46 21665.29 18479.07 14652.66 21169.46 20462.93 14550.76 21953.81 18863.11 21358.91 21152.87 18766.54 20962.34 20173.59 18661.87 199
TESTMET0.1,157.21 20859.46 21654.60 20650.95 21952.66 21169.46 20426.91 21850.76 21953.81 18863.11 21358.91 21152.87 18766.54 20962.34 20173.59 18661.87 199
new_pmnet52.29 21463.16 20539.61 21558.89 21444.70 22048.78 22334.73 21565.88 18317.85 22473.42 18680.00 17223.06 21967.00 20762.28 20354.36 21648.81 216
MDTV_nov1_ep1364.96 19164.77 19965.18 18667.08 20362.46 19875.80 17951.10 20262.27 20269.74 13674.12 18162.65 20455.64 17468.19 20562.16 20471.70 19061.57 201
MVEpermissive41.12 1951.80 21560.92 21141.16 21435.21 22434.14 22448.45 22441.39 21169.11 17219.53 22363.33 21273.80 19463.56 14267.19 20661.51 20538.85 22157.38 211
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PatchmatchNetpermissive64.81 19263.74 20366.06 18169.21 19458.62 20373.16 19260.01 16965.92 18266.19 15776.27 16759.09 21060.45 15366.58 20861.47 20667.33 20558.24 208
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpm62.79 19663.25 20462.26 19270.09 19253.78 20871.65 19547.31 20565.72 18476.70 9580.62 13956.40 22048.11 19964.20 21358.54 20759.70 21163.47 193
GG-mvs-BLEND41.63 21760.36 21219.78 2170.14 22966.04 18955.66 2200.17 22557.64 2112.42 22851.82 21869.42 2000.28 22564.11 21458.29 20860.02 21055.18 212
tpm cat164.79 19362.74 20767.17 17374.61 17965.91 19076.18 17759.32 17164.88 19066.41 15671.21 19553.56 22359.17 15861.53 21558.16 20967.33 20563.95 191
pmnet_mix0262.60 19870.81 18453.02 20866.56 20550.44 21562.81 21346.84 20679.13 12943.76 20887.45 9090.75 12439.85 20970.48 19957.09 21058.27 21360.32 204
PMMVS248.13 21664.06 20129.55 21644.06 22336.69 22351.95 22229.97 21674.75 1478.90 22776.02 17291.24 1207.53 22173.78 18955.91 21134.87 22240.01 221
tpmrst59.42 20460.02 21458.71 19767.56 20153.10 21066.99 20851.88 19863.80 19457.68 17376.73 16456.49 21948.73 19856.47 21955.55 21259.43 21258.02 209
EPMVS56.62 21059.77 21552.94 20962.41 21150.55 21460.66 21552.83 19665.15 18941.80 21277.46 15857.28 21642.68 20459.81 21754.82 21357.23 21553.35 213
ADS-MVSNet56.89 20961.09 21052.00 21059.48 21348.10 21758.02 21754.37 19072.82 15249.19 20275.32 17765.97 20237.96 21159.34 21854.66 21452.99 21951.42 215
MVS-HIRNet59.74 20358.74 21960.92 19457.74 21545.81 21956.02 21958.69 17555.69 21465.17 15870.86 19771.66 19756.75 16661.11 21653.74 21571.17 19652.28 214
new-patchmatchnet62.59 19973.79 17849.53 21276.98 16353.57 20953.46 22154.64 18785.43 7028.81 22091.94 3996.41 2825.28 21876.80 17653.66 21657.99 21458.69 207
E-PMN59.07 20662.79 20654.72 20467.01 20447.81 21860.44 21643.40 20872.95 15144.63 20770.42 20173.17 19658.73 16080.97 16051.98 21754.14 21742.26 219
N_pmnet54.95 21365.90 19642.18 21366.37 20743.86 22157.92 21839.79 21279.54 12617.24 22586.31 10287.91 14225.44 21764.68 21251.76 21846.33 22047.23 217
EMVS58.97 20762.63 20854.70 20566.26 20948.71 21661.74 21442.71 20972.80 15346.00 20673.01 18871.66 19757.91 16480.41 16450.68 21953.55 21841.11 220
tmp_tt13.54 21916.73 2256.42 2268.49 2272.36 22228.69 22327.44 22118.40 22313.51 2303.70 22233.23 22036.26 22022.54 225
test_method22.69 21826.99 22017.67 2182.13 2264.31 22727.50 2254.53 22137.94 22124.52 22236.20 22251.40 22515.26 22029.86 22117.09 22132.07 22312.16 222
test1231.06 2191.41 2210.64 2200.39 2270.48 2280.52 2300.25 2241.11 2251.37 2292.01 2251.98 2310.87 2231.43 2231.27 2220.46 2271.62 224
testmvs0.93 2201.37 2220.41 2210.36 2280.36 2290.62 2290.39 2231.48 2240.18 2302.41 2241.31 2320.41 2241.25 2241.08 2230.48 2261.68 223
uanet_test0.00 2210.00 2230.00 2220.00 2300.00 2300.00 2310.00 2260.00 2260.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet-low-res0.00 2210.00 2230.00 2220.00 2300.00 2300.00 2310.00 2260.00 2260.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet0.00 2210.00 2230.00 2220.00 2300.00 2300.00 2310.00 2260.00 2260.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
TPM-MVS86.18 7783.43 8487.57 9378.77 8769.75 20484.63 15862.24 14889.88 9888.48 64
Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025
RE-MVS-def87.10 28
9.1489.43 131
SR-MVS91.82 1380.80 795.53 50
our_test_373.27 18170.91 17283.26 128
MTAPA89.37 994.85 67
MTMP90.54 595.16 60
Patchmatch-RL test4.13 228
XVS91.28 2591.23 896.89 287.14 2594.53 7295.84 15
X-MVStestdata91.28 2591.23 896.89 287.14 2594.53 7295.84 15
mPP-MVS93.05 395.77 44
NP-MVS78.65 131
Patchmtry56.88 20664.47 21067.74 9972.30 121
DeepMVS_CXcopyleft17.78 22520.40 2266.69 22031.41 2229.80 22638.61 22134.88 22933.78 21428.41 22223.59 22445.77 218