This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
TDRefinement93.16 195.57 190.36 188.79 5393.57 197.27 178.23 2295.55 293.00 193.98 1896.01 4087.53 197.69 196.81 197.33 195.34 4
PMVScopyleft79.51 990.23 1592.67 1587.39 2190.16 4088.75 4293.64 3775.78 4590.00 3483.70 4892.97 2992.22 10686.13 497.01 396.79 294.94 3090.96 47
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
LTVRE_ROB86.82 191.55 394.43 388.19 1183.19 11686.35 6893.60 3878.79 1995.48 491.79 293.08 2797.21 2286.34 397.06 296.27 395.46 2395.56 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UA-Net89.02 3491.44 4086.20 2994.88 189.84 3494.76 3077.45 2985.41 7374.79 10788.83 7888.90 13978.67 4096.06 795.45 496.66 395.58 2
COLMAP_ROBcopyleft85.66 291.85 295.01 288.16 1288.98 5292.86 295.51 2072.17 6394.95 591.27 394.11 1797.77 1284.22 896.49 495.27 596.79 293.60 12
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RPSCF88.05 4792.61 1882.73 6884.24 10188.40 4490.04 7566.29 11091.46 1482.29 6388.93 7696.01 4079.38 3295.15 2194.90 694.15 4293.40 20
zzz-MVS90.38 1291.35 4289.25 593.08 386.59 6596.45 1179.00 1690.23 2989.30 1085.87 10994.97 6682.54 1895.05 2394.83 795.14 2791.94 37
CP-MVS91.09 592.33 2689.65 292.16 1190.41 2796.46 1080.38 888.26 4789.17 1187.00 9896.34 3283.95 1095.77 1194.72 895.81 1793.78 10
ACMMPcopyleft90.63 892.40 2188.56 991.24 2991.60 696.49 977.53 2787.89 5086.87 3187.24 9596.46 2782.87 1695.59 1594.50 996.35 693.51 18
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMM80.67 790.67 792.46 2088.57 891.35 2389.93 3296.34 1277.36 3190.17 3086.88 3087.32 9396.63 2583.32 1395.79 1094.49 1096.19 992.91 26
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MP-MVScopyleft90.84 691.95 3589.55 392.92 590.90 1996.56 679.60 1186.83 6188.75 1389.00 7494.38 7984.01 994.94 2594.34 1195.45 2493.24 23
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
X-MVS89.36 2990.73 4887.77 1791.50 2191.23 896.76 478.88 1887.29 5687.14 2678.98 14794.53 7376.47 5995.25 1994.28 1295.85 1493.55 16
ACMMPR91.30 492.88 1289.46 491.92 1291.61 596.60 579.46 1490.08 3288.53 1489.54 6695.57 4984.25 795.24 2094.27 1395.97 1193.85 8
HFP-MVS90.32 1492.37 2387.94 1491.46 2290.91 1895.69 1879.49 1289.94 3583.50 5189.06 7394.44 7781.68 2394.17 3194.19 1495.81 1793.87 7
WR-MVS89.79 2493.66 585.27 3891.32 2488.27 4693.49 3979.86 1092.75 1075.37 10396.86 198.38 675.10 7395.93 894.07 1596.46 589.39 59
PGM-MVS90.42 1191.58 3889.05 691.77 1591.06 1396.51 778.94 1785.41 7387.67 1987.02 9795.26 5783.62 1295.01 2493.94 1695.79 1993.40 20
SteuartSystems-ACMMP90.00 1891.73 3687.97 1391.21 3090.29 2896.51 778.00 2486.33 6485.32 4188.23 8394.67 7182.08 2195.13 2293.88 1794.72 3693.59 13
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP89.86 2091.96 3487.42 2091.00 3190.08 3096.00 1676.61 3789.28 3687.73 1890.04 5891.80 11478.71 3894.36 2993.82 1894.48 4094.32 6
SMA-MVScopyleft90.13 1692.26 2887.64 1891.68 1790.44 2695.22 2577.34 3390.79 2387.80 1790.42 5692.05 11179.05 3593.89 3393.59 1994.77 3494.62 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMP80.00 890.12 1792.30 2787.58 1990.83 3591.10 1294.96 2976.06 4187.47 5485.33 4088.91 7797.65 1682.13 2095.31 1793.44 2096.14 1092.22 34
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LGP-MVS_train90.56 992.38 2288.43 1090.88 3391.15 1195.35 2277.65 2686.26 6687.23 2490.45 5597.35 1983.20 1495.44 1693.41 2196.28 892.63 27
PS-CasMVS89.07 3393.23 884.21 5292.44 988.23 4890.54 6482.95 390.50 2675.31 10495.80 798.37 771.16 10296.30 593.32 2292.88 6490.11 53
WR-MVS_H88.99 3693.28 683.99 5591.92 1289.13 4091.95 4783.23 190.14 3171.92 12695.85 598.01 1171.83 9995.82 993.19 2393.07 6290.83 49
CP-MVSNet88.71 4292.63 1684.13 5392.39 1088.09 5090.47 6982.86 488.79 4475.16 10594.87 1097.68 1571.05 10496.16 693.18 2492.85 6589.64 57
anonymousdsp85.62 6290.53 4979.88 9564.64 20976.35 14596.28 1353.53 19485.63 7081.59 7292.81 3197.71 1486.88 294.56 2692.83 2596.35 693.84 9
SD-MVS89.91 1992.23 3187.19 2291.31 2589.79 3594.31 3375.34 4889.26 3981.79 7092.68 3295.08 6383.88 1193.10 4092.69 2696.54 493.02 24
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CPTT-MVS89.63 2690.52 5088.59 790.95 3290.74 2195.71 1779.13 1587.70 5285.68 3980.05 14295.74 4784.77 694.28 3092.68 2795.28 2692.45 32
LS3D89.02 3491.69 3785.91 3189.72 4490.81 2092.56 4571.69 6990.83 2287.24 2389.71 6492.07 10978.37 4194.43 2892.59 2895.86 1391.35 43
DeepC-MVS83.59 490.37 1392.56 1987.82 1591.26 2892.33 394.72 3180.04 990.01 3384.61 4393.33 2394.22 8080.59 2892.90 4592.52 2995.69 2192.57 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + ACMM89.14 3092.11 3385.67 3289.27 4890.61 2490.98 5279.48 1388.86 4279.80 8193.01 2893.53 8983.17 1592.75 4792.45 3091.32 8593.59 13
PEN-MVS88.86 4092.92 1084.11 5492.92 588.05 5190.83 5682.67 591.04 1974.83 10695.97 498.47 470.38 10995.70 1392.43 3193.05 6388.78 65
ACMH+79.05 1189.62 2793.08 985.58 3388.58 5689.26 3992.18 4674.23 5393.55 982.66 6192.32 3798.35 880.29 2995.28 1892.34 3295.52 2290.43 51
DTE-MVSNet88.99 3692.77 1384.59 4493.31 288.10 4990.96 5383.09 291.38 1576.21 9696.03 398.04 970.78 10895.65 1492.32 3393.18 5987.84 73
TSAR-MVS + MP.89.67 2592.25 2986.65 2691.53 1990.98 1796.15 1473.30 5787.88 5181.83 6992.92 3095.15 6182.23 1993.58 3592.25 3494.87 3193.01 25
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
3Dnovator+83.71 388.13 4590.00 5385.94 3086.82 7491.06 1394.26 3475.39 4788.85 4385.76 3885.74 11186.92 14878.02 4593.03 4192.21 3595.39 2592.21 35
APD-MVScopyleft89.14 3091.25 4586.67 2591.73 1691.02 1595.50 2177.74 2584.04 8579.47 8491.48 4594.85 6881.14 2692.94 4292.20 3694.47 4192.24 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DPE-MVScopyleft89.81 2392.34 2586.86 2489.69 4591.00 1695.53 1976.91 3488.18 4883.43 5493.48 2195.19 5881.07 2792.75 4792.07 3794.55 3893.74 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
OPM-MVS89.82 2292.24 3086.99 2390.86 3489.35 3895.07 2875.91 4491.16 1786.87 3191.07 5197.29 2079.13 3493.32 3691.99 3894.12 4391.49 42
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
APDe-MVS89.85 2192.91 1186.29 2790.47 3991.34 796.04 1576.41 4091.11 1878.50 8993.44 2295.82 4481.55 2493.16 3891.90 3994.77 3493.58 15
MSLP-MVS++86.29 6089.10 5883.01 6185.71 8589.79 3587.04 10674.39 5285.17 7578.92 8777.59 15693.57 8782.60 1793.23 3791.88 4089.42 10992.46 31
SixPastTwentyTwo89.14 3092.19 3285.58 3384.62 9482.56 9490.53 6571.93 6691.95 1385.89 3694.22 1597.25 2185.42 595.73 1291.71 4195.08 2891.89 38
DVP-MVScopyleft89.40 2892.69 1485.56 3589.01 5189.85 3393.72 3675.42 4692.28 1280.49 7594.36 1494.87 6781.46 2592.49 5191.42 4293.27 5693.54 17
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS88.51 4391.36 4185.19 4090.63 3792.01 495.29 2377.52 2890.48 2780.21 7990.21 5796.08 3676.38 6188.30 9991.42 4291.12 9091.01 46
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft88.74 4189.54 5587.80 1692.58 785.69 7395.10 2778.01 2387.08 5887.66 2087.89 8692.07 10980.28 3090.97 7291.41 4493.17 6091.69 39
DVP-MVS++90.50 1094.18 486.21 2892.52 890.29 2895.29 2376.02 4294.24 682.82 5795.84 697.56 1776.82 5793.13 3991.20 4593.78 4997.01 1
SED-MVS88.96 3892.37 2384.99 4188.64 5589.65 3795.11 2675.98 4390.73 2480.15 8094.21 1694.51 7676.59 5892.94 4291.17 4693.46 5393.37 22
test_part187.86 5093.26 781.56 7787.23 7286.76 6390.91 5470.06 7796.50 176.74 9496.63 298.62 269.45 11692.93 4490.92 4794.98 2990.46 50
OMC-MVS88.16 4491.34 4384.46 4786.85 7390.63 2393.01 4267.00 10690.35 2887.40 2286.86 10096.35 3177.66 5092.63 4990.84 4894.84 3291.68 40
CNVR-MVS86.93 5488.98 5984.54 4590.11 4187.41 5893.23 4173.47 5686.31 6582.25 6482.96 13092.15 10776.04 6491.69 5690.69 4992.17 7691.64 41
NCCC86.74 5587.97 7185.31 3790.64 3687.25 5993.27 4074.59 5086.50 6283.72 4775.92 17392.39 10377.08 5591.72 5590.68 5092.57 7091.30 44
DeepC-MVS_fast81.78 587.38 5289.64 5484.75 4289.89 4390.70 2292.74 4474.45 5186.02 6782.16 6786.05 10791.99 11375.84 6791.16 6690.44 5193.41 5491.09 45
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + GP.85.32 6787.41 7682.89 6590.07 4285.69 7389.07 8572.99 6182.45 9574.52 11085.09 11787.67 14579.24 3391.11 6790.41 5291.45 8289.45 58
EPP-MVSNet82.76 9586.47 8178.45 10686.00 8384.47 7885.39 11768.42 9584.17 8262.97 16489.26 7176.84 18472.13 9692.56 5090.40 5395.76 2087.56 76
FPMVS81.56 10584.04 11978.66 10482.92 11875.96 14986.48 11065.66 12084.67 7971.47 12977.78 15483.22 16377.57 5191.24 6490.21 5487.84 13085.21 91
DeepPCF-MVS81.61 687.95 4990.29 5285.22 3987.48 6790.01 3193.79 3573.54 5588.93 4183.89 4689.40 6890.84 12380.26 3190.62 7590.19 5592.36 7392.03 36
xxxxxxxxxxxxxcwj88.03 4891.29 4484.22 5088.17 6187.90 5390.80 5771.80 6789.28 3682.70 5989.90 6097.72 1377.91 4791.69 5690.04 5693.95 4792.47 29
SF-MVS87.85 5190.95 4784.22 5088.17 6187.90 5390.80 5771.80 6789.28 3682.70 5989.90 6095.37 5577.91 4791.69 5690.04 5693.95 4792.47 29
AdaColmapbinary84.15 7685.14 9783.00 6289.08 5087.14 6190.56 6370.90 7282.40 9680.41 7673.82 18484.69 15975.19 7291.58 6089.90 5891.87 7986.48 80
CDPH-MVS86.66 5788.52 6284.48 4689.61 4688.27 4692.86 4372.69 6280.55 12082.71 5886.92 9993.32 9175.55 6991.00 7189.85 5993.47 5289.71 56
UniMVSNet_ETH3D85.39 6591.12 4678.71 10390.48 3883.72 8381.76 14182.41 693.84 764.43 16095.41 898.76 163.72 14393.63 3489.74 6089.47 10882.74 115
PHI-MVS86.37 5988.14 6884.30 4886.65 7687.56 5690.76 5970.16 7682.55 9489.65 784.89 12092.40 10275.97 6590.88 7389.70 6192.58 6889.03 63
PLCcopyleft76.06 1585.38 6687.46 7482.95 6485.79 8488.84 4188.86 8768.70 9287.06 5983.60 4979.02 14590.05 12977.37 5390.88 7389.66 6293.37 5586.74 79
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
UniMVSNet (Re)84.95 7088.53 6180.78 8487.82 6584.21 7988.03 9276.50 3881.18 11369.29 14092.63 3596.83 2469.07 11791.23 6589.60 6393.97 4684.00 101
ACMH78.40 1288.94 3992.62 1784.65 4386.45 7787.16 6091.47 4968.79 9195.49 389.74 693.55 2098.50 377.96 4694.14 3289.57 6493.49 5189.94 55
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Vis-MVSNetpermissive83.32 8688.12 6977.71 11077.91 15983.44 8790.58 6169.49 8281.11 11467.10 15489.85 6291.48 11871.71 10091.34 6289.37 6589.48 10790.26 52
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
IS_MVSNet81.72 10485.01 9977.90 10986.19 8082.64 9385.56 11370.02 7880.11 12363.52 16287.28 9481.18 16967.26 12691.08 7089.33 6694.82 3383.42 106
DU-MVS84.88 7188.27 6780.92 8288.30 5883.59 8587.06 10478.35 2080.64 11870.49 13492.67 3396.91 2368.13 12191.79 5389.29 6793.20 5883.02 109
TranMVSNet+NR-MVSNet85.23 6889.38 5680.39 9388.78 5483.77 8287.40 9976.75 3585.47 7168.99 14295.18 997.55 1867.13 12891.61 5989.13 6893.26 5782.95 112
CNLPA85.50 6488.58 6081.91 7284.55 9687.52 5790.89 5563.56 14188.18 4884.06 4583.85 12791.34 12076.46 6091.27 6389.00 6991.96 7788.88 64
CS-MVS-test83.73 8084.09 11883.31 5786.38 7880.24 11285.50 11472.00 6465.58 18583.11 5584.64 12292.52 10078.14 4390.40 7788.92 7094.71 3786.34 83
NR-MVSNet82.89 9287.43 7577.59 11283.91 10783.59 8587.10 10378.35 2080.64 11868.85 14392.67 3396.50 2654.19 18187.19 10988.68 7193.16 6182.75 114
train_agg86.67 5687.73 7285.43 3691.51 2082.72 9194.47 3274.22 5481.71 10281.54 7389.20 7292.87 9578.33 4290.12 8388.47 7292.51 7289.04 62
UniMVSNet_NR-MVSNet84.62 7488.00 7080.68 8888.18 6083.83 8187.06 10476.47 3981.46 10970.49 13493.24 2495.56 5068.13 12190.43 7688.47 7293.78 4983.02 109
CLD-MVS82.75 9687.22 7777.54 11388.01 6485.76 7290.23 7254.52 18882.28 9882.11 6888.48 8195.27 5663.95 14189.41 8888.29 7486.45 14581.01 128
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TAPA-MVS78.00 1385.88 6188.37 6482.96 6384.69 9288.62 4390.62 6064.22 13189.15 4088.05 1578.83 14993.71 8476.20 6390.11 8488.22 7594.00 4489.97 54
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CSCG88.12 4691.45 3984.23 4988.12 6390.59 2590.57 6268.60 9391.37 1683.45 5389.94 5995.14 6278.71 3891.45 6188.21 7695.96 1293.44 19
CS-MVS83.23 8785.14 9781.00 8185.59 8679.28 12189.80 7763.29 14573.02 15175.70 10185.28 11492.81 9677.09 5491.92 5287.93 7794.53 3985.76 87
Effi-MVS+-dtu82.04 10183.39 12780.48 9285.48 8786.57 6788.40 9068.28 9769.04 17373.13 12076.26 16891.11 12274.74 7788.40 9787.76 7892.84 6684.57 95
MVS_030484.73 7386.19 8483.02 6088.32 5786.71 6491.55 4870.87 7373.79 14982.88 5685.13 11693.35 9072.55 9188.62 9487.69 7991.93 7888.05 72
DROMVSNet83.70 8184.77 10582.46 6987.47 6882.79 9085.50 11472.00 6469.81 16677.66 9285.02 11989.63 13078.14 4390.40 7787.56 8094.00 4488.16 69
UGNet79.62 12185.91 8972.28 14573.52 18083.91 8086.64 10869.51 8179.85 12562.57 16685.82 11089.63 13053.18 18588.39 9887.35 8188.28 12786.43 81
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVS_111021_HR83.95 7886.10 8681.44 7884.62 9480.29 11190.51 6668.05 10084.07 8480.38 7784.74 12191.37 11974.23 7990.37 7987.25 8290.86 9284.59 94
MAR-MVS81.98 10282.92 12980.88 8385.18 9085.85 7089.13 8469.52 8071.21 16282.25 6471.28 19588.89 14069.69 11188.71 9286.96 8389.52 10687.57 75
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
FC-MVSNet-train79.20 12786.29 8370.94 15284.06 10277.67 13385.68 11264.11 13382.90 9052.22 19692.57 3693.69 8549.52 19688.30 9986.93 8490.03 9881.95 122
Effi-MVS+82.33 9783.87 12080.52 9184.51 9981.32 10287.53 9768.05 10074.94 14779.67 8282.37 13592.31 10472.21 9385.06 12686.91 8591.18 8884.20 98
Gipumacopyleft86.47 5889.25 5783.23 5883.88 10878.78 12685.35 11868.42 9592.69 1189.03 1291.94 3896.32 3481.80 2294.45 2786.86 8690.91 9183.69 103
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
TSAR-MVS + COLMAP85.51 6388.36 6582.19 7086.05 8287.69 5590.50 6770.60 7586.40 6382.33 6289.69 6592.52 10074.01 8387.53 10386.84 8789.63 10487.80 74
ETV-MVS79.01 12977.98 14980.22 9486.69 7579.73 11788.80 8868.27 9863.22 19771.56 12870.25 20373.63 19473.66 8690.30 8286.77 8892.33 7481.95 122
3Dnovator79.41 1082.21 9886.07 8777.71 11079.31 14484.61 7787.18 10161.02 16285.65 6976.11 9785.07 11885.38 15770.96 10687.22 10786.47 8991.66 8088.12 71
test250675.32 15176.87 15973.50 13884.55 9680.37 10979.63 15973.23 5882.64 9255.41 18376.87 16345.42 22659.61 15790.35 8086.46 9088.58 12275.98 156
ECVR-MVScopyleft79.31 12684.20 11573.60 13684.55 9680.37 10979.63 15973.23 5882.64 9255.98 18087.50 8986.85 14959.61 15790.35 8086.46 9088.58 12275.26 162
EG-PatchMatch MVS84.35 7587.55 7380.62 8986.38 7882.24 9686.75 10764.02 13684.24 8178.17 9189.38 6995.03 6578.78 3789.95 8586.33 9289.59 10585.65 89
CANet82.84 9384.60 10780.78 8487.30 6985.20 7690.23 7269.00 8772.16 15878.73 8884.49 12490.70 12669.54 11487.65 10286.17 9389.87 10185.84 86
canonicalmvs81.22 11086.04 8875.60 12183.17 11783.18 8880.29 15165.82 11985.97 6867.98 15077.74 15591.51 11765.17 13788.62 9486.15 9491.17 8989.09 61
v7n87.11 5390.46 5183.19 5985.22 8983.69 8490.03 7668.20 9991.01 2086.71 3494.80 1198.46 577.69 4991.10 6885.98 9591.30 8688.19 68
DCV-MVSNet80.04 11585.67 9273.48 13982.91 11981.11 10680.44 15066.06 11385.01 7662.53 16778.84 14894.43 7858.51 16288.66 9385.91 9690.41 9485.73 88
MVS_111021_LR83.20 8985.33 9380.73 8782.88 12078.23 13089.61 7965.23 12382.08 9981.19 7485.31 11392.04 11275.22 7189.50 8785.90 9790.24 9584.23 97
HQP-MVS85.02 6986.41 8283.40 5689.19 4986.59 6591.28 5071.60 7082.79 9183.48 5278.65 15193.54 8872.55 9186.49 11485.89 9892.28 7590.95 48
pmmvs680.46 11288.34 6671.26 14881.96 12777.51 13477.54 16868.83 9093.72 855.92 18193.94 1998.03 1055.94 17189.21 9085.61 9987.36 13680.38 132
test111179.67 11984.40 10974.16 13485.29 8879.56 11981.16 14573.13 6084.65 8056.08 17988.38 8286.14 15260.49 15389.78 8685.59 10088.79 11676.68 153
FC-MVSNet-test75.91 14783.59 12566.95 17776.63 17269.07 17985.33 11964.97 12584.87 7841.95 21093.17 2587.04 14747.78 19991.09 6985.56 10185.06 16174.34 163
EPNet79.36 12479.44 14279.27 10289.51 4777.20 13988.35 9177.35 3268.27 17574.29 11176.31 16679.22 17459.63 15685.02 13085.45 10286.49 14484.61 93
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Fast-Effi-MVS+81.42 10683.82 12278.62 10582.24 12580.62 10887.72 9563.51 14273.01 15274.75 10883.80 12892.70 9873.44 8888.15 10185.26 10390.05 9783.17 107
thres600view774.34 15778.43 14669.56 16280.47 13476.28 14678.65 16662.56 15277.39 13552.53 19274.03 18276.78 18555.90 17385.06 12685.19 10487.25 13774.29 164
PM-MVS80.42 11483.63 12476.67 11678.04 15672.37 16987.14 10260.18 16880.13 12271.75 12786.12 10693.92 8377.08 5586.56 11385.12 10585.83 15481.18 126
MSDG81.39 10884.23 11478.09 10882.40 12482.47 9585.31 12060.91 16379.73 12680.26 7886.30 10388.27 14369.67 11287.20 10884.98 10689.97 9980.67 130
EIA-MVS78.57 13077.90 15079.35 10087.24 7180.71 10786.16 11164.03 13562.63 20273.49 11773.60 18576.12 18873.83 8488.49 9684.93 10791.36 8478.78 145
PVSNet_Blended_VisFu83.00 9184.16 11681.65 7582.17 12686.01 6988.03 9271.23 7176.05 14279.54 8383.88 12683.44 16077.49 5287.38 10484.93 10791.41 8387.40 77
thisisatest051581.18 11184.32 11177.52 11476.73 17074.84 15985.06 12161.37 15981.05 11573.95 11388.79 7989.25 13675.49 7085.98 11884.78 10992.53 7185.56 90
MCST-MVS84.79 7286.48 8082.83 6687.30 6987.03 6290.46 7069.33 8583.14 8882.21 6681.69 13892.14 10875.09 7487.27 10684.78 10992.58 6889.30 60
QAPM80.43 11384.34 11075.86 11979.40 14382.06 9879.86 15661.94 15683.28 8774.73 10981.74 13785.44 15670.97 10584.99 13184.71 11188.29 12688.14 70
Vis-MVSNet (Re-imp)76.15 14480.84 13870.68 15383.66 11174.80 16081.66 14369.59 7980.48 12146.94 20587.44 9180.63 17153.14 18686.87 11084.56 11289.12 11171.12 173
Anonymous20240521184.68 10683.92 10679.45 12079.03 16367.79 10282.01 10088.77 8092.58 9955.93 17286.68 11284.26 11388.92 11478.98 143
Anonymous2023121179.37 12385.78 9071.89 14682.87 12179.66 11878.77 16563.93 13983.36 8659.39 17190.54 5394.66 7256.46 16987.38 10484.12 11489.92 10080.74 129
CDS-MVSNet73.07 16477.02 15668.46 16881.62 12972.89 16679.56 16170.78 7469.56 16852.52 19377.37 15981.12 17042.60 20484.20 13683.93 11583.65 16770.07 178
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PCF-MVS76.59 1484.11 7785.27 9482.76 6786.12 8188.30 4591.24 5169.10 8682.36 9784.45 4477.56 15790.40 12872.91 9085.88 11983.88 11692.72 6788.53 66
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DELS-MVS79.71 11883.74 12375.01 12879.31 14482.68 9284.79 12360.06 16975.43 14569.09 14186.13 10589.38 13367.16 12785.12 12583.87 11789.65 10383.57 104
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ambc88.38 6391.62 1887.97 5284.48 12588.64 4687.93 1687.38 9294.82 7074.53 7889.14 9183.86 11885.94 15286.84 78
GeoE81.92 10383.87 12079.66 9784.64 9379.87 11489.75 7865.90 11776.12 14175.87 9984.62 12392.23 10571.96 9886.83 11183.60 11989.83 10283.81 102
DPM-MVS81.42 10682.11 13380.62 8987.54 6685.30 7590.18 7468.96 8881.00 11679.15 8670.45 20183.29 16267.67 12582.81 14483.46 12090.19 9688.48 67
PatchMatch-RL76.05 14576.64 16075.36 12377.84 16069.87 17781.09 14763.43 14371.66 16068.34 14971.70 19181.76 16874.98 7584.83 13283.44 12186.45 14573.22 170
GBi-Net73.17 16177.64 15167.95 17276.76 16477.36 13675.77 18064.57 12762.99 19951.83 19776.05 16977.76 18052.73 18985.57 12083.39 12286.04 14980.37 133
test173.17 16177.64 15167.95 17276.76 16477.36 13675.77 18064.57 12762.99 19951.83 19776.05 16977.76 18052.73 18985.57 12083.39 12286.04 14980.37 133
FMVSNet178.20 13384.83 10470.46 15678.62 15179.03 12377.90 16767.53 10583.02 8955.10 18587.19 9693.18 9355.65 17485.57 12083.39 12287.98 12982.40 118
Baseline_NR-MVSNet82.79 9486.51 7978.44 10788.30 5875.62 15387.81 9474.97 4981.53 10666.84 15594.71 1396.46 2766.90 12991.79 5383.37 12585.83 15482.09 120
TransMVSNet (Re)79.05 12886.66 7870.18 15883.32 11475.99 14877.54 16863.98 13790.68 2555.84 18294.80 1196.06 3753.73 18486.27 11683.22 12686.65 14079.61 141
thisisatest053075.54 15075.95 16875.05 12675.08 17773.56 16482.15 13960.31 16569.17 17069.32 13979.02 14558.78 21372.17 9483.88 13783.08 12791.30 8684.20 98
tttt051775.86 14876.23 16475.42 12275.55 17674.06 16382.73 13460.31 16569.24 16970.24 13679.18 14458.79 21272.17 9484.49 13483.08 12791.54 8184.80 92
pm-mvs178.21 13285.68 9169.50 16380.38 13675.73 15176.25 17665.04 12487.59 5354.47 18793.16 2695.99 4254.20 18086.37 11582.98 12986.64 14177.96 150
tfpn200view972.01 16875.40 17068.06 17177.97 15776.44 14477.04 17262.67 15166.81 17850.82 20167.30 20775.67 19052.46 19285.06 12682.64 13087.41 13573.86 166
thres40073.13 16376.99 15868.62 16779.46 14274.93 15877.23 17061.23 16175.54 14352.31 19572.20 19077.10 18354.89 17682.92 14182.62 13186.57 14373.66 169
IB-MVS71.28 1775.21 15277.00 15773.12 14376.76 16477.45 13583.05 13158.92 17463.01 19864.31 16159.99 21687.57 14668.64 11986.26 11782.34 13287.05 13982.36 119
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
OpenMVScopyleft75.38 1678.44 13181.39 13774.99 12980.46 13579.85 11579.99 15358.31 17777.34 13673.85 11477.19 16082.33 16768.60 12084.67 13381.95 13388.72 11886.40 82
TinyColmap83.79 7986.12 8581.07 8083.42 11381.44 10185.42 11668.55 9488.71 4589.46 887.60 8892.72 9770.34 11089.29 8981.94 13489.20 11081.12 127
Fast-Effi-MVS+-dtu76.92 13777.18 15576.62 11779.55 14179.17 12284.80 12277.40 3064.46 19268.75 14570.81 19986.57 15063.36 14881.74 15381.76 13585.86 15375.78 158
ET-MVSNet_ETH3D74.71 15574.19 17575.31 12479.22 14675.29 15482.70 13564.05 13465.45 18770.96 13377.15 16157.70 21465.89 13484.40 13581.65 13689.03 11277.67 151
pmmvs-eth3d79.64 12082.06 13476.83 11580.05 13872.64 16787.47 9866.59 10880.83 11773.50 11689.32 7093.20 9267.78 12380.78 16081.64 13785.58 15776.01 155
CANet_DTU75.04 15378.45 14571.07 14977.27 16177.96 13183.88 12858.00 17864.11 19368.67 14675.65 17588.37 14253.92 18382.05 15081.11 13884.67 16279.88 139
tfpnnormal77.16 13684.26 11268.88 16681.02 13375.02 15676.52 17563.30 14487.29 5652.40 19491.24 5093.97 8154.85 17885.46 12381.08 13985.18 16075.76 159
CVMVSNet75.65 14977.62 15373.35 14271.95 18669.89 17683.04 13260.84 16469.12 17168.76 14479.92 14378.93 17673.64 8781.02 15881.01 14081.86 17683.43 105
v119283.61 8285.23 9581.72 7484.05 10382.15 9789.54 8066.20 11181.38 11186.76 3391.79 4296.03 3874.88 7681.81 15280.92 14188.91 11582.50 117
v1083.17 9085.22 9680.78 8483.26 11582.99 8988.66 8966.49 10979.24 12983.60 4991.46 4695.47 5274.12 8082.60 14780.66 14288.53 12484.11 100
IterMVS-LS79.79 11782.56 13176.56 11881.83 12877.85 13279.90 15569.42 8478.93 13171.21 13090.47 5485.20 15870.86 10780.54 16280.57 14386.15 14784.36 96
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114483.22 8885.01 9981.14 7983.76 11081.60 10088.95 8665.58 12181.89 10185.80 3791.68 4495.84 4374.04 8282.12 14980.56 14488.70 11981.41 125
v124083.57 8384.94 10281.97 7184.05 10381.27 10389.46 8266.06 11381.31 11287.50 2191.88 4195.46 5376.25 6281.16 15780.51 14588.52 12582.98 111
thres20072.41 16776.00 16768.21 17078.28 15376.28 14674.94 18662.56 15272.14 15951.35 20069.59 20576.51 18654.89 17685.06 12680.51 14587.25 13771.92 172
v192192083.49 8484.94 10281.80 7383.78 10981.20 10589.50 8165.91 11681.64 10487.18 2591.70 4395.39 5475.85 6681.56 15580.27 14788.60 12082.80 113
v14419283.43 8584.97 10181.63 7683.43 11281.23 10489.42 8366.04 11581.45 11086.40 3591.46 4695.70 4875.76 6882.14 14880.23 14888.74 11782.57 116
V4279.59 12283.59 12574.93 13169.61 19377.05 14186.59 10955.84 18378.42 13377.29 9389.84 6395.08 6374.12 8083.05 14080.11 14986.12 14881.59 124
FMVSNet274.43 15679.70 14068.27 16976.76 16477.36 13675.77 18065.36 12272.28 15652.97 19181.92 13685.61 15552.73 18980.66 16179.73 15086.04 14980.37 133
v2v48282.20 9984.26 11279.81 9682.67 12280.18 11387.67 9663.96 13881.69 10384.73 4291.27 4996.33 3372.05 9781.94 15179.56 15187.79 13178.84 144
thres100view90069.86 17572.97 18266.24 17977.97 15772.49 16873.29 19059.12 17266.81 17850.82 20167.30 20775.67 19050.54 19578.24 17179.40 15285.71 15670.88 174
MIMVSNet173.40 15981.85 13563.55 18972.90 18364.37 19384.58 12453.60 19390.84 2153.92 18887.75 8796.10 3545.31 20285.37 12479.32 15370.98 19769.18 182
v882.20 9984.56 10879.45 9882.42 12381.65 9987.26 10064.27 13079.36 12881.70 7191.04 5295.75 4673.30 8982.82 14379.18 15487.74 13282.09 120
pmmvs475.92 14677.48 15474.10 13578.21 15570.94 17184.06 12664.78 12675.13 14668.47 14884.12 12583.32 16164.74 14075.93 18279.14 15584.31 16473.77 167
EPNet_dtu71.90 16973.03 18170.59 15478.28 15361.64 19882.44 13764.12 13263.26 19669.74 13771.47 19382.41 16551.89 19378.83 16978.01 15677.07 18375.60 160
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
USDC81.39 10883.07 12879.43 9981.48 13078.95 12582.62 13666.17 11287.45 5590.73 482.40 13493.65 8666.57 13183.63 13977.97 15789.00 11377.45 152
EU-MVSNet76.48 14180.53 13971.75 14767.62 19970.30 17481.74 14254.06 19175.47 14471.01 13280.10 14093.17 9473.67 8583.73 13877.85 15882.40 17383.07 108
DI_MVS_plusplus_trai77.64 13479.64 14175.31 12479.87 14076.89 14281.55 14463.64 14076.21 14072.03 12585.59 11282.97 16466.63 13079.27 16877.78 15988.14 12878.76 146
PVSNet_BlendedMVS76.45 14278.12 14774.49 13276.76 16478.46 12779.65 15763.26 14665.42 18873.15 11875.05 17888.96 13766.51 13282.73 14577.66 16087.61 13378.60 147
PVSNet_Blended76.45 14278.12 14774.49 13276.76 16478.46 12779.65 15763.26 14665.42 18873.15 11875.05 17888.96 13766.51 13282.73 14577.66 16087.61 13378.60 147
MDA-MVSNet-bldmvs76.51 14082.87 13069.09 16550.71 22074.72 16184.05 12760.27 16781.62 10571.16 13188.21 8491.58 11569.62 11392.78 4677.48 16278.75 18273.69 168
HyFIR lowres test73.29 16074.14 17672.30 14473.08 18278.33 12983.12 13062.41 15463.81 19462.13 16876.67 16578.50 17771.09 10374.13 18677.47 16381.98 17570.10 177
CMPMVSbinary55.74 1871.56 17076.26 16366.08 18268.11 19763.91 19563.17 21150.52 20368.79 17475.49 10270.78 20085.67 15463.54 14581.58 15477.20 16475.63 18485.86 85
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
casdiffmvs79.93 11684.11 11775.05 12681.41 13278.99 12482.95 13362.90 15081.53 10668.60 14791.94 3896.03 3865.84 13582.89 14277.07 16588.59 12180.34 136
FMVSNet371.40 17275.20 17366.97 17675.00 17876.59 14374.29 18764.57 12762.99 19951.83 19776.05 16977.76 18051.49 19476.58 17877.03 16684.62 16379.43 142
baseline169.62 17673.55 17965.02 18878.95 14970.39 17371.38 19662.03 15570.97 16347.95 20478.47 15268.19 20047.77 20079.65 16776.94 16782.05 17470.27 176
GA-MVS75.01 15476.39 16273.39 14078.37 15275.66 15280.03 15258.40 17670.51 16475.85 10083.24 12976.14 18763.75 14277.28 17476.62 16883.97 16675.30 161
diffmvs76.74 13881.61 13671.06 15075.64 17574.45 16280.68 14957.57 17977.48 13467.62 15388.95 7593.94 8261.98 15079.74 16576.18 16982.85 17280.50 131
MVSTER68.08 18469.73 18666.16 18066.33 20770.06 17575.71 18352.36 19755.18 21658.64 17370.23 20456.72 21757.34 16679.68 16676.03 17086.61 14280.20 138
MS-PatchMatch71.18 17373.99 17767.89 17477.16 16271.76 17077.18 17156.38 18267.35 17655.04 18674.63 18075.70 18962.38 14976.62 17775.97 17179.22 18075.90 157
MVS_Test76.72 13979.40 14373.60 13678.85 15074.99 15779.91 15461.56 15869.67 16772.44 12185.98 10890.78 12463.50 14678.30 17075.74 17285.33 15880.31 137
IterMVS-SCA-FT77.23 13579.18 14474.96 13076.67 17179.85 11575.58 18561.34 16073.10 15073.79 11586.23 10479.61 17379.00 3680.28 16475.50 17383.41 17179.70 140
v14879.33 12582.32 13275.84 12080.14 13775.74 15081.98 14057.06 18081.51 10879.36 8589.42 6796.42 2971.32 10181.54 15675.29 17485.20 15976.32 154
pmmvs568.91 17974.35 17462.56 19167.45 20166.78 18771.70 19351.47 20067.17 17756.25 17882.41 13388.59 14147.21 20173.21 19274.23 17581.30 17768.03 184
baseline268.71 18168.34 19069.14 16475.69 17469.70 17876.60 17455.53 18560.13 20762.07 16966.76 20960.35 20760.77 15276.53 18074.03 17684.19 16570.88 174
gg-mvs-nofinetune72.68 16675.21 17269.73 16081.48 13069.04 18070.48 19776.67 3686.92 6067.80 15288.06 8564.67 20242.12 20677.60 17273.65 17779.81 17866.57 185
test20.0369.91 17476.20 16562.58 19084.01 10567.34 18575.67 18465.88 11879.98 12440.28 21482.65 13189.31 13539.63 20977.41 17373.28 17869.98 19863.40 193
baseline69.33 17875.37 17162.28 19266.54 20566.67 18873.95 18948.07 20466.10 18159.26 17282.45 13286.30 15154.44 17974.42 18573.25 17971.42 19378.43 149
CR-MVSNet69.56 17768.34 19070.99 15172.78 18567.63 18364.47 20967.74 10359.93 20872.30 12280.10 14056.77 21665.04 13871.64 19472.91 18083.61 16969.40 180
PatchT66.25 18866.76 19465.67 18555.87 21560.75 19970.17 19859.00 17359.80 21072.30 12278.68 15054.12 22165.04 13871.64 19472.91 18071.63 19269.40 180
TAMVS63.02 19369.30 18755.70 20370.12 19156.89 20469.63 20145.13 20770.23 16538.00 21677.79 15375.15 19242.60 20474.48 18472.81 18268.70 20257.75 209
CHOSEN 1792x268868.80 18071.09 18366.13 18169.11 19568.89 18178.98 16454.68 18661.63 20456.69 17671.56 19278.39 17867.69 12472.13 19372.01 18369.63 20073.02 171
IterMVS73.62 15876.53 16170.23 15771.83 18777.18 14080.69 14853.22 19572.23 15766.62 15685.21 11578.96 17569.54 11476.28 18171.63 18479.45 17974.25 165
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PMMVS61.98 20065.61 19657.74 19845.03 22151.76 21269.54 20235.05 21455.49 21555.32 18468.23 20678.39 17858.09 16370.21 20071.56 18583.42 17063.66 191
FMVSNet556.37 21060.14 21251.98 21160.83 21159.58 20066.85 20842.37 21052.68 21841.33 21247.09 21954.68 22035.28 21273.88 18770.77 18665.24 20762.26 197
testgi68.20 18376.05 16659.04 19679.99 13967.32 18681.16 14551.78 19984.91 7739.36 21573.42 18695.19 5832.79 21576.54 17970.40 18769.14 20164.55 189
gm-plane-assit71.56 17069.99 18573.39 14084.43 10073.21 16590.42 7151.36 20184.08 8376.00 9891.30 4837.09 22759.01 16073.65 18970.24 18879.09 18160.37 202
Anonymous2023120667.28 18573.41 18060.12 19576.45 17363.61 19674.21 18856.52 18176.35 13842.23 20975.81 17490.47 12741.51 20774.52 18369.97 18969.83 19963.17 194
RPMNet67.02 18663.99 20170.56 15571.55 18867.63 18375.81 17869.44 8359.93 20863.24 16364.32 21147.51 22559.68 15570.37 19969.64 19083.64 16868.49 183
pmmvs362.72 19668.71 18955.74 20250.74 21957.10 20370.05 19928.82 21761.57 20657.39 17571.19 19785.73 15353.96 18273.36 19169.43 19173.47 18862.55 196
test0.0.03 161.79 20165.33 19757.65 19979.07 14764.09 19468.51 20662.93 14861.59 20533.71 21861.58 21571.58 19833.43 21470.95 19768.68 19268.26 20358.82 205
CHOSEN 280x42056.32 21158.85 21753.36 20751.63 21739.91 22169.12 20538.61 21356.29 21336.79 21748.84 21862.59 20463.39 14773.61 19067.66 19360.61 20863.07 195
MIMVSNet63.02 19369.02 18856.01 20168.20 19659.26 20170.01 20053.79 19271.56 16141.26 21371.38 19482.38 16636.38 21171.43 19667.32 19466.45 20659.83 204
MDTV_nov1_ep13_2view72.96 16575.59 16969.88 15971.15 19064.86 19282.31 13854.45 18976.30 13978.32 9086.52 10191.58 11561.35 15176.80 17566.83 19571.70 19066.26 186
SCA68.54 18267.52 19269.73 16067.79 19875.04 15576.96 17368.94 8966.41 18067.86 15174.03 18260.96 20565.55 13668.99 20265.67 19671.30 19561.54 201
dps65.14 18964.50 19965.89 18471.41 18965.81 19171.44 19561.59 15758.56 21161.43 17075.45 17652.70 22358.06 16469.57 20164.65 19771.39 19464.77 188
test-mter59.39 20461.59 20856.82 20053.21 21654.82 20673.12 19226.57 21953.19 21756.31 17764.71 21060.47 20656.36 17068.69 20364.27 19875.38 18565.00 187
CostFormer66.81 18766.94 19366.67 17872.79 18468.25 18279.55 16255.57 18465.52 18662.77 16576.98 16260.09 20856.73 16865.69 21062.35 19972.59 18969.71 179
test-LLR62.15 19959.46 21565.29 18679.07 14752.66 21069.46 20362.93 14850.76 21953.81 18963.11 21358.91 21052.87 18766.54 20862.34 20073.59 18661.87 198
TESTMET0.1,157.21 20759.46 21554.60 20650.95 21852.66 21069.46 20326.91 21850.76 21953.81 18963.11 21358.91 21052.87 18766.54 20862.34 20073.59 18661.87 198
new_pmnet52.29 21363.16 20439.61 21558.89 21344.70 21948.78 22234.73 21565.88 18317.85 22373.42 18680.00 17223.06 21867.00 20662.28 20254.36 21548.81 215
MDTV_nov1_ep1364.96 19064.77 19865.18 18767.08 20262.46 19775.80 17951.10 20262.27 20369.74 13774.12 18162.65 20355.64 17568.19 20462.16 20371.70 19061.57 200
MVEpermissive41.12 1951.80 21460.92 21041.16 21435.21 22334.14 22348.45 22341.39 21169.11 17219.53 22263.33 21273.80 19363.56 14467.19 20561.51 20438.85 22057.38 210
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PatchmatchNetpermissive64.81 19163.74 20266.06 18369.21 19458.62 20273.16 19160.01 17065.92 18266.19 15876.27 16759.09 20960.45 15466.58 20761.47 20567.33 20458.24 207
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpm62.79 19563.25 20362.26 19370.09 19253.78 20771.65 19447.31 20565.72 18476.70 9580.62 13956.40 21948.11 19864.20 21258.54 20659.70 21063.47 192
GG-mvs-BLEND41.63 21660.36 21119.78 2170.14 22866.04 18955.66 2190.17 22557.64 2122.42 22751.82 21769.42 1990.28 22464.11 21358.29 20760.02 20955.18 211
tpm cat164.79 19262.74 20667.17 17574.61 17965.91 19076.18 17759.32 17164.88 19166.41 15771.21 19653.56 22259.17 15961.53 21458.16 20867.33 20463.95 190
pmnet_mix0262.60 19770.81 18453.02 20866.56 20450.44 21462.81 21246.84 20679.13 13043.76 20887.45 9090.75 12539.85 20870.48 19857.09 20958.27 21260.32 203
PMMVS248.13 21564.06 20029.55 21644.06 22236.69 22251.95 22129.97 21674.75 1488.90 22676.02 17291.24 1217.53 22073.78 18855.91 21034.87 22140.01 220
tpmrst59.42 20360.02 21358.71 19767.56 20053.10 20966.99 20751.88 19863.80 19557.68 17476.73 16456.49 21848.73 19756.47 21855.55 21159.43 21158.02 208
EPMVS56.62 20959.77 21452.94 20962.41 21050.55 21360.66 21452.83 19665.15 19041.80 21177.46 15857.28 21542.68 20359.81 21654.82 21257.23 21453.35 212
ADS-MVSNet56.89 20861.09 20952.00 21059.48 21248.10 21658.02 21654.37 19072.82 15449.19 20375.32 17765.97 20137.96 21059.34 21754.66 21352.99 21851.42 214
MVS-HIRNet59.74 20258.74 21860.92 19457.74 21445.81 21856.02 21858.69 17555.69 21465.17 15970.86 19871.66 19656.75 16761.11 21553.74 21471.17 19652.28 213
new-patchmatchnet62.59 19873.79 17849.53 21276.98 16353.57 20853.46 22054.64 18785.43 7228.81 21991.94 3896.41 3025.28 21776.80 17553.66 21557.99 21358.69 206
E-PMN59.07 20562.79 20554.72 20467.01 20347.81 21760.44 21543.40 20872.95 15344.63 20770.42 20273.17 19558.73 16180.97 15951.98 21654.14 21642.26 218
N_pmnet54.95 21265.90 19542.18 21366.37 20643.86 22057.92 21739.79 21279.54 12717.24 22486.31 10287.91 14425.44 21664.68 21151.76 21746.33 21947.23 216
EMVS58.97 20662.63 20754.70 20566.26 20848.71 21561.74 21342.71 20972.80 15546.00 20673.01 18971.66 19657.91 16580.41 16350.68 21853.55 21741.11 219
tmp_tt13.54 21916.73 2246.42 2258.49 2262.36 22228.69 22327.44 22018.40 22213.51 2293.70 22133.23 21936.26 21922.54 224
test_method22.69 21726.99 21917.67 2182.13 2254.31 22627.50 2244.53 22137.94 22124.52 22136.20 22151.40 22415.26 21929.86 22017.09 22032.07 22212.16 221
test1231.06 2181.41 2200.64 2200.39 2260.48 2270.52 2290.25 2241.11 2251.37 2282.01 2241.98 2300.87 2221.43 2221.27 2210.46 2261.62 223
testmvs0.93 2191.37 2210.41 2210.36 2270.36 2280.62 2280.39 2231.48 2240.18 2292.41 2231.31 2310.41 2231.25 2231.08 2220.48 2251.68 222
uanet_test0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet-low-res0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
RE-MVS-def87.10 29
9.1489.43 132
SR-MVS91.82 1480.80 795.53 51
our_test_373.27 18170.91 17283.26 129
MTAPA89.37 994.85 68
MTMP90.54 595.16 60
Patchmatch-RL test4.13 227
XVS91.28 2691.23 896.89 287.14 2694.53 7395.84 15
X-MVStestdata91.28 2691.23 896.89 287.14 2694.53 7395.84 15
abl_679.30 10184.98 9185.78 7190.50 6766.88 10777.08 13774.02 11273.29 18889.34 13468.94 11890.49 9385.98 84
mPP-MVS93.05 495.77 45
NP-MVS78.65 132
Patchmtry56.88 20564.47 20967.74 10372.30 122
DeepMVS_CXcopyleft17.78 22420.40 2256.69 22031.41 2229.80 22538.61 22034.88 22833.78 21328.41 22123.59 22345.77 217