This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
TDRefinement93.16 195.57 190.36 188.79 5293.57 197.27 178.23 2195.55 193.00 193.98 1796.01 3887.53 197.69 196.81 197.33 195.34 4
COLMAP_ROBcopyleft85.66 291.85 295.01 288.16 1188.98 5192.86 295.51 1972.17 6294.95 491.27 394.11 1697.77 1184.22 896.49 495.27 596.79 293.60 12
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
LTVRE_ROB86.82 191.55 394.43 388.19 1083.19 11186.35 6593.60 3778.79 1895.48 391.79 293.08 2697.21 2086.34 397.06 296.27 395.46 2395.56 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DVP-MVS++90.50 1094.18 486.21 2792.52 790.29 2895.29 2276.02 4194.24 582.82 5595.84 597.56 1576.82 5593.13 3891.20 4493.78 4597.01 1
WR-MVS89.79 2393.66 585.27 3791.32 2388.27 4693.49 3879.86 1092.75 975.37 10196.86 198.38 575.10 7195.93 894.07 1496.46 589.39 56
WR-MVS_H88.99 3593.28 683.99 5391.92 1189.13 4091.95 4683.23 190.14 2971.92 12495.85 498.01 1071.83 9795.82 993.19 2293.07 5990.83 47
PS-CasMVS89.07 3293.23 784.21 5092.44 888.23 4890.54 6282.95 390.50 2575.31 10295.80 698.37 671.16 10096.30 593.32 2192.88 6190.11 50
ACMH+79.05 1189.62 2693.08 885.58 3288.58 5589.26 3992.18 4574.23 5293.55 882.66 5892.32 3698.35 780.29 2995.28 1892.34 3195.52 2290.43 48
PEN-MVS88.86 3992.92 984.11 5292.92 488.05 5190.83 5582.67 591.04 1874.83 10495.97 398.47 370.38 10795.70 1392.43 3093.05 6088.78 62
APDe-MVS89.85 2092.91 1086.29 2690.47 3891.34 796.04 1476.41 3991.11 1778.50 8893.44 2195.82 4281.55 2393.16 3791.90 3894.77 3293.58 15
ACMMPR91.30 492.88 1189.46 491.92 1191.61 596.60 579.46 1490.08 3088.53 1389.54 6595.57 4784.25 795.24 2094.27 1295.97 1193.85 8
DTE-MVSNet88.99 3592.77 1284.59 4393.31 288.10 4990.96 5383.09 291.38 1476.21 9596.03 298.04 870.78 10695.65 1492.32 3293.18 5687.84 70
DVP-MVScopyleft89.40 2792.69 1385.56 3489.01 5089.85 3393.72 3575.42 4592.28 1180.49 7294.36 1394.87 6581.46 2492.49 4991.42 4193.27 5393.54 17
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
PMVScopyleft79.51 990.23 1492.67 1487.39 2090.16 3988.75 4293.64 3675.78 4490.00 3283.70 4792.97 2892.22 10386.13 497.01 396.79 294.94 2890.96 45
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
CP-MVSNet88.71 4192.63 1584.13 5192.39 988.09 5090.47 6682.86 488.79 4175.16 10394.87 997.68 1371.05 10296.16 693.18 2392.85 6289.64 54
ACMH78.40 1288.94 3892.62 1684.65 4286.45 7487.16 5991.47 4968.79 8795.49 289.74 693.55 1998.50 277.96 4694.14 3189.57 6193.49 4789.94 52
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
RPSCF88.05 4692.61 1782.73 6584.24 9588.40 4490.04 7266.29 10791.46 1382.29 6088.93 7596.01 3879.38 3295.15 2194.90 694.15 3993.40 20
DeepC-MVS83.59 490.37 1292.56 1887.82 1491.26 2792.33 394.72 3080.04 990.01 3184.61 4293.33 2294.22 7880.59 2792.90 4392.52 2895.69 2192.57 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMM80.67 790.67 792.46 1988.57 791.35 2289.93 3296.34 1177.36 3090.17 2886.88 2987.32 9296.63 2383.32 1395.79 1094.49 996.19 992.91 26
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMMPcopyleft90.63 892.40 2088.56 891.24 2891.60 696.49 977.53 2687.89 4786.87 3087.24 9496.46 2582.87 1695.59 1594.50 896.35 693.51 18
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
LGP-MVS_train90.56 992.38 2188.43 990.88 3291.15 1195.35 2177.65 2586.26 6387.23 2390.45 5597.35 1783.20 1495.44 1693.41 2096.28 892.63 27
SED-MVS88.96 3792.37 2284.99 4088.64 5489.65 3795.11 2575.98 4290.73 2380.15 7794.21 1594.51 7476.59 5692.94 4191.17 4593.46 5093.37 22
HFP-MVS90.32 1392.37 2287.94 1391.46 2190.91 1895.69 1779.49 1289.94 3383.50 5089.06 7294.44 7581.68 2294.17 3094.19 1395.81 1793.87 7
DPE-MVScopyleft89.81 2292.34 2486.86 2389.69 4491.00 1695.53 1876.91 3388.18 4583.43 5393.48 2095.19 5781.07 2692.75 4592.07 3694.55 3693.74 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CP-MVS91.09 592.33 2589.65 292.16 1090.41 2796.46 1080.38 888.26 4489.17 1087.00 9796.34 3083.95 1095.77 1194.72 795.81 1793.78 10
ACMP80.00 890.12 1692.30 2687.58 1890.83 3491.10 1294.96 2876.06 4087.47 5185.33 3988.91 7697.65 1482.13 1995.31 1793.44 1996.14 1092.22 33
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SMA-MVScopyleft90.13 1592.26 2787.64 1791.68 1690.44 2695.22 2477.34 3290.79 2287.80 1690.42 5692.05 10879.05 3593.89 3293.59 1894.77 3294.62 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.89.67 2492.25 2886.65 2591.53 1890.98 1796.15 1373.30 5687.88 4881.83 6692.92 2995.15 6082.23 1893.58 3492.25 3394.87 2993.01 25
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OPM-MVS89.82 2192.24 2986.99 2290.86 3389.35 3895.07 2775.91 4391.16 1686.87 3091.07 5197.29 1879.13 3493.32 3591.99 3794.12 4091.49 40
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
SD-MVS89.91 1892.23 3087.19 2191.31 2489.79 3594.31 3275.34 4789.26 3681.79 6792.68 3195.08 6283.88 1193.10 3992.69 2596.54 493.02 24
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SixPastTwentyTwo89.14 2992.19 3185.58 3284.62 8882.56 9090.53 6371.93 6491.95 1285.89 3594.22 1497.25 1985.42 595.73 1291.71 4095.08 2791.89 36
TSAR-MVS + ACMM89.14 2992.11 3285.67 3189.27 4790.61 2490.98 5279.48 1388.86 3979.80 7993.01 2793.53 8783.17 1592.75 4592.45 2991.32 8293.59 13
ACMMP_NAP89.86 1991.96 3387.42 1991.00 3090.08 3096.00 1576.61 3689.28 3487.73 1790.04 5891.80 11278.71 3894.36 2893.82 1794.48 3794.32 6
MP-MVScopyleft90.84 691.95 3489.55 392.92 490.90 1996.56 679.60 1186.83 5888.75 1289.00 7394.38 7784.01 994.94 2494.34 1095.45 2493.24 23
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SteuartSystems-ACMMP90.00 1791.73 3587.97 1291.21 2990.29 2896.51 778.00 2386.33 6185.32 4088.23 8294.67 6982.08 2095.13 2293.88 1694.72 3593.59 13
Skip Steuart: Steuart Systems R&D Blog.
LS3D89.02 3391.69 3685.91 3089.72 4390.81 2092.56 4471.69 6690.83 2187.24 2289.71 6392.07 10678.37 4294.43 2792.59 2795.86 1391.35 41
PGM-MVS90.42 1191.58 3789.05 591.77 1491.06 1396.51 778.94 1685.41 7087.67 1887.02 9695.26 5683.62 1295.01 2393.94 1595.79 1993.40 20
CSCG88.12 4591.45 3884.23 4888.12 6190.59 2590.57 6068.60 8991.37 1583.45 5289.94 5995.14 6178.71 3891.45 5888.21 7295.96 1293.44 19
UA-Net89.02 3391.44 3986.20 2894.88 189.84 3494.76 2977.45 2885.41 7074.79 10588.83 7788.90 13678.67 4096.06 795.45 496.66 395.58 2
MSP-MVS88.51 4291.36 4085.19 3990.63 3692.01 495.29 2277.52 2790.48 2680.21 7690.21 5796.08 3476.38 5988.30 9691.42 4191.12 8791.01 44
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
OMC-MVS88.16 4391.34 4184.46 4686.85 7090.63 2393.01 4167.00 10390.35 2787.40 2186.86 9996.35 2977.66 4992.63 4790.84 4694.84 3091.68 38
APD-MVScopyleft89.14 2991.25 4286.67 2491.73 1591.02 1595.50 2077.74 2484.04 8279.47 8291.48 4594.85 6681.14 2592.94 4192.20 3594.47 3892.24 32
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
UniMVSNet_ETH3D85.39 6291.12 4378.71 9990.48 3783.72 7981.76 13982.41 693.84 664.43 15895.41 798.76 163.72 14193.63 3389.74 5789.47 10582.74 111
SF-MVS87.85 4890.95 4484.22 4988.17 6087.90 5390.80 5671.80 6589.28 3482.70 5789.90 6095.37 5477.91 4791.69 5490.04 5493.95 4492.47 29
X-MVS89.36 2890.73 4587.77 1691.50 2091.23 896.76 478.88 1787.29 5387.14 2578.98 14694.53 7176.47 5795.25 1994.28 1195.85 1493.55 16
anonymousdsp85.62 5990.53 4679.88 9264.64 20776.35 14296.28 1253.53 19285.63 6781.59 6992.81 3097.71 1286.88 294.56 2592.83 2496.35 693.84 9
CPTT-MVS89.63 2590.52 4788.59 690.95 3190.74 2195.71 1679.13 1587.70 4985.68 3880.05 14195.74 4584.77 694.28 2992.68 2695.28 2692.45 31
v7n87.11 5090.46 4883.19 5685.22 8483.69 8090.03 7368.20 9591.01 1986.71 3394.80 1098.46 477.69 4891.10 6585.98 9291.30 8388.19 65
DeepPCF-MVS81.61 687.95 4790.29 4985.22 3887.48 6590.01 3193.79 3473.54 5488.93 3883.89 4589.40 6790.84 12180.26 3190.62 7290.19 5392.36 7092.03 35
3Dnovator+83.71 388.13 4490.00 5085.94 2986.82 7191.06 1394.26 3375.39 4688.85 4085.76 3785.74 10986.92 14578.02 4593.03 4092.21 3495.39 2592.21 34
DeepC-MVS_fast81.78 587.38 4989.64 5184.75 4189.89 4290.70 2292.74 4374.45 5086.02 6482.16 6486.05 10691.99 11075.84 6591.16 6390.44 4993.41 5191.09 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS++copyleft88.74 4089.54 5287.80 1592.58 685.69 6995.10 2678.01 2287.08 5587.66 1987.89 8592.07 10680.28 3090.97 6991.41 4393.17 5791.69 37
TranMVSNet+NR-MVSNet85.23 6589.38 5380.39 9088.78 5383.77 7887.40 9576.75 3485.47 6868.99 14095.18 897.55 1667.13 12491.61 5689.13 6593.26 5482.95 108
Gipumacopyleft86.47 5589.25 5483.23 5583.88 10278.78 12385.35 11568.42 9192.69 1089.03 1191.94 3896.32 3281.80 2194.45 2686.86 8290.91 8883.69 99
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MSLP-MVS++86.29 5789.10 5583.01 5885.71 8189.79 3587.04 10374.39 5185.17 7278.92 8677.59 15593.57 8582.60 1793.23 3691.88 3989.42 10692.46 30
CNVR-MVS86.93 5188.98 5684.54 4490.11 4087.41 5793.23 4073.47 5586.31 6282.25 6182.96 12992.15 10476.04 6291.69 5490.69 4792.17 7391.64 39
CNLPA85.50 6188.58 5781.91 7184.55 9087.52 5690.89 5463.56 13988.18 4584.06 4483.85 12691.34 11876.46 5891.27 6089.00 6691.96 7488.88 61
UniMVSNet (Re)84.95 6788.53 5880.78 8187.82 6384.21 7588.03 8876.50 3781.18 11169.29 13892.63 3496.83 2269.07 11491.23 6289.60 6093.97 4384.00 97
CDPH-MVS86.66 5488.52 5984.48 4589.61 4588.27 4692.86 4272.69 6180.55 11882.71 5686.92 9893.32 8975.55 6791.00 6889.85 5693.47 4989.71 53
ambc88.38 6091.62 1787.97 5284.48 12288.64 4387.93 1587.38 9194.82 6874.53 7689.14 8883.86 11585.94 15086.84 75
TAPA-MVS78.00 1385.88 5888.37 6182.96 6084.69 8688.62 4390.62 5864.22 12989.15 3788.05 1478.83 14893.71 8276.20 6190.11 8088.22 7194.00 4189.97 51
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TSAR-MVS + COLMAP85.51 6088.36 6282.19 6786.05 7887.69 5490.50 6570.60 7286.40 6082.33 5989.69 6492.52 9874.01 8187.53 10086.84 8389.63 10187.80 71
pmmvs680.46 11088.34 6371.26 14681.96 12477.51 13177.54 16668.83 8693.72 755.92 17993.94 1898.03 955.94 16989.21 8785.61 9687.36 13480.38 129
DU-MVS84.88 6888.27 6480.92 7988.30 5783.59 8187.06 10178.35 1980.64 11670.49 13292.67 3296.91 2168.13 11791.79 5189.29 6493.20 5583.02 105
PHI-MVS86.37 5688.14 6584.30 4786.65 7387.56 5590.76 5770.16 7382.55 9289.65 784.89 11792.40 9975.97 6390.88 7089.70 5892.58 6589.03 60
Vis-MVSNetpermissive83.32 8488.12 6677.71 10677.91 15783.44 8390.58 5969.49 7881.11 11267.10 15289.85 6191.48 11671.71 9891.34 5989.37 6289.48 10490.26 49
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_NR-MVSNet84.62 7188.00 6780.68 8588.18 5983.83 7787.06 10176.47 3881.46 10770.49 13293.24 2395.56 4868.13 11790.43 7388.47 6893.78 4583.02 105
NCCC86.74 5287.97 6885.31 3690.64 3587.25 5893.27 3974.59 4986.50 5983.72 4675.92 17292.39 10077.08 5391.72 5390.68 4892.57 6791.30 42
train_agg86.67 5387.73 6985.43 3591.51 1982.72 8794.47 3174.22 5381.71 10081.54 7089.20 7192.87 9478.33 4390.12 7988.47 6892.51 6989.04 59
EG-PatchMatch MVS84.35 7287.55 7080.62 8686.38 7582.24 9286.75 10464.02 13484.24 7878.17 9189.38 6895.03 6478.78 3789.95 8186.33 8989.59 10285.65 84
PLCcopyleft76.06 1585.38 6387.46 7182.95 6185.79 8088.84 4188.86 8368.70 8887.06 5683.60 4879.02 14490.05 12777.37 5290.88 7089.66 5993.37 5286.74 76
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
NR-MVSNet82.89 8987.43 7277.59 10883.91 10183.59 8187.10 10078.35 1980.64 11668.85 14192.67 3296.50 2454.19 17987.19 10688.68 6793.16 5882.75 110
TSAR-MVS + GP.85.32 6487.41 7382.89 6290.07 4185.69 6989.07 8172.99 6082.45 9374.52 10885.09 11487.67 14279.24 3391.11 6490.41 5091.45 7989.45 55
CLD-MVS82.75 9387.22 7477.54 10988.01 6285.76 6890.23 6954.52 18682.28 9682.11 6588.48 8095.27 5563.95 13989.41 8588.29 7086.45 14381.01 125
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TransMVSNet (Re)79.05 12686.66 7570.18 15683.32 10975.99 14577.54 16663.98 13590.68 2455.84 18094.80 1096.06 3553.73 18286.27 11383.22 12386.65 13879.61 139
Baseline_NR-MVSNet82.79 9186.51 7678.44 10388.30 5775.62 15087.81 9074.97 4881.53 10466.84 15394.71 1296.46 2566.90 12591.79 5183.37 12285.83 15282.09 116
MCST-MVS84.79 6986.48 7782.83 6387.30 6787.03 6190.46 6769.33 8183.14 8682.21 6381.69 13792.14 10575.09 7287.27 10384.78 10692.58 6589.30 57
EPP-MVSNet82.76 9286.47 7878.45 10286.00 7984.47 7485.39 11468.42 9184.17 7962.97 16289.26 7076.84 18272.13 9492.56 4890.40 5195.76 2087.56 73
HQP-MVS85.02 6686.41 7983.40 5489.19 4886.59 6391.28 5071.60 6782.79 8983.48 5178.65 15093.54 8672.55 8986.49 11185.89 9592.28 7290.95 46
FC-MVSNet-train79.20 12586.29 8070.94 15084.06 9677.67 13085.68 10964.11 13182.90 8852.22 19492.57 3593.69 8349.52 19488.30 9686.93 8090.03 9581.95 118
MVS_030484.73 7086.19 8183.02 5788.32 5686.71 6291.55 4870.87 7073.79 14782.88 5485.13 11393.35 8872.55 8988.62 9187.69 7491.93 7588.05 69
TinyColmap83.79 7686.12 8281.07 7883.42 10881.44 9885.42 11368.55 9088.71 4289.46 887.60 8792.72 9570.34 10889.29 8681.94 13189.20 10781.12 124
MVS_111021_HR83.95 7586.10 8381.44 7684.62 8880.29 11090.51 6468.05 9684.07 8180.38 7484.74 12091.37 11774.23 7790.37 7587.25 7890.86 8984.59 89
3Dnovator79.41 1082.21 9586.07 8477.71 10679.31 14284.61 7387.18 9861.02 16085.65 6676.11 9685.07 11585.38 15470.96 10487.22 10486.47 8591.66 7788.12 68
canonicalmvs81.22 10886.04 8575.60 11983.17 11283.18 8480.29 14965.82 11685.97 6567.98 14877.74 15491.51 11565.17 13588.62 9186.15 9191.17 8689.09 58
UGNet79.62 11985.91 8672.28 14373.52 17883.91 7686.64 10569.51 7779.85 12362.57 16485.82 10889.63 12853.18 18388.39 9587.35 7788.28 12586.43 78
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Anonymous2023121179.37 12185.78 8771.89 14482.87 11779.66 11678.77 16363.93 13783.36 8459.39 16990.54 5394.66 7056.46 16787.38 10184.12 11189.92 9780.74 126
casdiffmvs_mvgpermissive81.50 10385.70 8876.60 11582.68 11880.54 10783.50 12664.49 12783.40 8372.53 11892.15 3795.40 5265.84 13284.69 13081.89 13290.59 9081.86 120
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
pm-mvs178.21 13185.68 8969.50 16180.38 13375.73 14876.25 17465.04 12187.59 5054.47 18593.16 2595.99 4054.20 17886.37 11282.98 12686.64 13977.96 148
DCV-MVSNet80.04 11385.67 9073.48 13782.91 11581.11 10380.44 14866.06 11085.01 7362.53 16578.84 14794.43 7658.51 16088.66 9085.91 9390.41 9185.73 83
MVS_111021_LR83.20 8685.33 9180.73 8482.88 11678.23 12789.61 7565.23 12082.08 9781.19 7185.31 11192.04 10975.22 6989.50 8385.90 9490.24 9284.23 93
PCF-MVS76.59 1484.11 7485.27 9282.76 6486.12 7788.30 4591.24 5169.10 8282.36 9584.45 4377.56 15690.40 12672.91 8885.88 11683.88 11392.72 6488.53 63
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v119283.61 7885.23 9381.72 7384.05 9782.15 9389.54 7666.20 10881.38 10986.76 3291.79 4296.03 3674.88 7481.81 15180.92 13988.91 11382.50 113
v1083.17 8785.22 9480.78 8183.26 11082.99 8588.66 8566.49 10679.24 12783.60 4891.46 4695.47 5074.12 7882.60 14680.66 14088.53 12284.11 96
AdaColmapbinary84.15 7385.14 9583.00 5989.08 4987.14 6090.56 6170.90 6982.40 9480.41 7373.82 18384.69 15675.19 7091.58 5789.90 5591.87 7686.48 77
v114483.22 8585.01 9681.14 7783.76 10581.60 9688.95 8265.58 11881.89 9985.80 3691.68 4495.84 4174.04 8082.12 14880.56 14288.70 11781.41 122
IS_MVSNet81.72 10185.01 9677.90 10586.19 7682.64 8985.56 11070.02 7480.11 12163.52 16087.28 9381.18 16767.26 12291.08 6789.33 6394.82 3183.42 102
v14419283.43 8384.97 9881.63 7583.43 10781.23 10189.42 7966.04 11281.45 10886.40 3491.46 4695.70 4675.76 6682.14 14780.23 14688.74 11582.57 112
v192192083.49 8284.94 9981.80 7283.78 10481.20 10289.50 7765.91 11381.64 10287.18 2491.70 4395.39 5375.85 6481.56 15480.27 14588.60 11882.80 109
v124083.57 8084.94 9981.97 7084.05 9781.27 10089.46 7866.06 11081.31 11087.50 2091.88 4195.46 5176.25 6081.16 15680.51 14388.52 12382.98 107
CS-MVS-test83.59 7984.86 10182.10 6983.04 11381.05 10491.58 4767.48 10272.52 15478.42 8984.75 11991.82 11178.62 4191.98 5087.54 7693.48 4884.35 92
FMVSNet178.20 13284.83 10270.46 15478.62 14979.03 12077.90 16567.53 10183.02 8755.10 18387.19 9593.18 9155.65 17285.57 11783.39 11987.98 12782.40 114
CS-MVS83.57 8084.79 10382.14 6883.83 10381.48 9787.29 9666.54 10572.73 15380.05 7884.04 12493.12 9380.35 2889.50 8386.34 8894.76 3486.32 80
DROMVSNet83.70 7784.77 10482.46 6687.47 6682.79 8685.50 11172.00 6369.81 16577.66 9285.02 11689.63 12878.14 4490.40 7487.56 7594.00 4188.16 66
Anonymous20240521184.68 10583.92 10079.45 11879.03 16167.79 9882.01 9888.77 7992.58 9755.93 17086.68 10984.26 11088.92 11278.98 141
CANet82.84 9084.60 10680.78 8187.30 6785.20 7290.23 6969.00 8372.16 15778.73 8784.49 12290.70 12469.54 11287.65 9986.17 9089.87 9885.84 82
v882.20 9684.56 10779.45 9582.42 12081.65 9587.26 9764.27 12879.36 12681.70 6891.04 5295.75 4473.30 8782.82 14279.18 15387.74 13082.09 116
test111179.67 11784.40 10874.16 13285.29 8379.56 11781.16 14373.13 5984.65 7756.08 17788.38 8186.14 14960.49 15189.78 8285.59 9788.79 11476.68 151
QAPM80.43 11184.34 10975.86 11779.40 14182.06 9479.86 15461.94 15483.28 8574.73 10781.74 13685.44 15370.97 10384.99 12884.71 10888.29 12488.14 67
thisisatest051581.18 10984.32 11077.52 11076.73 16874.84 15785.06 11861.37 15781.05 11373.95 11088.79 7889.25 13375.49 6885.98 11584.78 10692.53 6885.56 85
tfpnnormal77.16 13584.26 11168.88 16481.02 13075.02 15476.52 17363.30 14287.29 5352.40 19291.24 5093.97 7954.85 17685.46 12081.08 13785.18 15875.76 157
v2v48282.20 9684.26 11179.81 9382.67 11980.18 11187.67 9263.96 13681.69 10184.73 4191.27 4996.33 3172.05 9581.94 15079.56 15087.79 12978.84 142
MSDG81.39 10684.23 11378.09 10482.40 12182.47 9185.31 11760.91 16179.73 12480.26 7586.30 10288.27 14069.67 11087.20 10584.98 10389.97 9680.67 127
ECVR-MVScopyleft79.31 12484.20 11473.60 13484.55 9080.37 10879.63 15773.23 5782.64 9055.98 17887.50 8886.85 14659.61 15590.35 7686.46 8688.58 12075.26 160
PVSNet_Blended_VisFu83.00 8884.16 11581.65 7482.17 12386.01 6688.03 8871.23 6876.05 14079.54 8183.88 12583.44 15777.49 5187.38 10184.93 10491.41 8087.40 74
casdiffmvspermissive79.93 11484.11 11675.05 12481.41 12978.99 12182.95 13162.90 14781.53 10468.60 14591.94 3896.03 3665.84 13282.89 14177.07 16488.59 11980.34 133
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FPMVS81.56 10284.04 11778.66 10082.92 11475.96 14686.48 10765.66 11784.67 7671.47 12777.78 15383.22 16077.57 5091.24 6190.21 5287.84 12885.21 86
GeoE81.92 10083.87 11879.66 9484.64 8779.87 11289.75 7465.90 11476.12 13975.87 9884.62 12192.23 10271.96 9686.83 10883.60 11689.83 9983.81 98
Effi-MVS+82.33 9483.87 11880.52 8884.51 9381.32 9987.53 9368.05 9674.94 14579.67 8082.37 13492.31 10172.21 9185.06 12386.91 8191.18 8584.20 94
Fast-Effi-MVS+81.42 10483.82 12078.62 10182.24 12280.62 10687.72 9163.51 14073.01 14974.75 10683.80 12792.70 9673.44 8688.15 9885.26 10090.05 9483.17 103
DELS-MVS79.71 11683.74 12175.01 12679.31 14282.68 8884.79 12060.06 16775.43 14369.09 13986.13 10489.38 13167.16 12385.12 12283.87 11489.65 10083.57 100
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PM-MVS80.42 11283.63 12276.67 11378.04 15472.37 16787.14 9960.18 16680.13 12071.75 12586.12 10593.92 8177.08 5386.56 11085.12 10285.83 15281.18 123
FC-MVSNet-test75.91 14683.59 12366.95 17576.63 17069.07 17785.33 11664.97 12284.87 7541.95 20893.17 2487.04 14447.78 19791.09 6685.56 9885.06 15974.34 161
V4279.59 12083.59 12374.93 12969.61 19177.05 13886.59 10655.84 18178.42 13177.29 9389.84 6295.08 6274.12 7883.05 13980.11 14886.12 14681.59 121
Effi-MVS+-dtu82.04 9883.39 12580.48 8985.48 8286.57 6488.40 8668.28 9369.04 17273.13 11776.26 16791.11 12074.74 7588.40 9487.76 7392.84 6384.57 90
USDC81.39 10683.07 12679.43 9681.48 12778.95 12282.62 13466.17 10987.45 5290.73 482.40 13393.65 8466.57 12783.63 13877.97 15689.00 11177.45 150
MAR-MVS81.98 9982.92 12780.88 8085.18 8585.85 6789.13 8069.52 7671.21 16182.25 6171.28 19388.89 13769.69 10988.71 8986.96 7989.52 10387.57 72
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MDA-MVSNet-bldmvs76.51 13982.87 12869.09 16350.71 21874.72 15984.05 12460.27 16581.62 10371.16 12988.21 8391.58 11369.62 11192.78 4477.48 16178.75 18073.69 166
IterMVS-LS79.79 11582.56 12976.56 11681.83 12577.85 12979.90 15369.42 8078.93 12971.21 12890.47 5485.20 15570.86 10580.54 16180.57 14186.15 14584.36 91
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14879.33 12382.32 13075.84 11880.14 13475.74 14781.98 13857.06 17881.51 10679.36 8389.42 6696.42 2771.32 9981.54 15575.29 17385.20 15776.32 152
DPM-MVS81.42 10482.11 13180.62 8687.54 6485.30 7190.18 7168.96 8481.00 11479.15 8470.45 19983.29 15967.67 12182.81 14383.46 11790.19 9388.48 64
pmmvs-eth3d79.64 11882.06 13276.83 11280.05 13572.64 16587.47 9466.59 10480.83 11573.50 11389.32 6993.20 9067.78 11980.78 15981.64 13585.58 15576.01 153
MIMVSNet173.40 15881.85 13363.55 18772.90 18164.37 19184.58 12153.60 19190.84 2053.92 18687.75 8696.10 3345.31 20085.37 12179.32 15270.98 19569.18 180
diffmvspermissive76.74 13781.61 13471.06 14875.64 17374.45 16080.68 14757.57 17777.48 13267.62 15188.95 7493.94 8061.98 14879.74 16476.18 16882.85 17080.50 128
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
OpenMVScopyleft75.38 1678.44 13081.39 13574.99 12780.46 13279.85 11379.99 15158.31 17577.34 13473.85 11177.19 15982.33 16568.60 11684.67 13181.95 13088.72 11686.40 79
Vis-MVSNet (Re-imp)76.15 14380.84 13670.68 15183.66 10674.80 15881.66 14169.59 7580.48 11946.94 20387.44 9080.63 16953.14 18486.87 10784.56 10989.12 10871.12 171
FA-MVS(training)78.93 12880.63 13776.93 11179.79 13875.57 15185.44 11261.95 15377.19 13578.97 8584.82 11882.47 16266.43 13084.09 13580.13 14789.02 11080.15 136
EU-MVSNet76.48 14080.53 13871.75 14567.62 19770.30 17281.74 14054.06 18975.47 14271.01 13080.10 13993.17 9273.67 8383.73 13777.85 15782.40 17183.07 104
FMVSNet274.43 15579.70 13968.27 16776.76 16277.36 13375.77 17865.36 11972.28 15552.97 18981.92 13585.61 15252.73 18780.66 16079.73 14986.04 14780.37 130
DI_MVS_plusplus_trai77.64 13379.64 14075.31 12279.87 13776.89 13981.55 14263.64 13876.21 13872.03 12385.59 11082.97 16166.63 12679.27 16777.78 15888.14 12678.76 144
EPNet79.36 12279.44 14179.27 9889.51 4677.20 13688.35 8777.35 3168.27 17474.29 10976.31 16579.22 17259.63 15485.02 12785.45 9986.49 14284.61 88
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_Test76.72 13879.40 14273.60 13478.85 14874.99 15579.91 15261.56 15669.67 16672.44 11985.98 10790.78 12263.50 14478.30 16975.74 17185.33 15680.31 134
IterMVS-SCA-FT77.23 13479.18 14374.96 12876.67 16979.85 11375.58 18361.34 15873.10 14873.79 11286.23 10379.61 17179.00 3680.28 16375.50 17283.41 16979.70 138
CANet_DTU75.04 15278.45 14471.07 14777.27 15977.96 12883.88 12558.00 17664.11 19168.67 14475.65 17488.37 13953.92 18182.05 14981.11 13684.67 16079.88 137
thres600view774.34 15678.43 14569.56 16080.47 13176.28 14378.65 16462.56 14977.39 13352.53 19074.03 18176.78 18355.90 17185.06 12385.19 10187.25 13574.29 162
PVSNet_BlendedMVS76.45 14178.12 14674.49 13076.76 16278.46 12479.65 15563.26 14365.42 18673.15 11575.05 17788.96 13466.51 12882.73 14477.66 15987.61 13178.60 145
PVSNet_Blended76.45 14178.12 14674.49 13076.76 16278.46 12479.65 15563.26 14365.42 18673.15 11575.05 17788.96 13466.51 12882.73 14477.66 15987.61 13178.60 145
ETV-MVS79.01 12777.98 14880.22 9186.69 7279.73 11588.80 8468.27 9463.22 19571.56 12670.25 20173.63 19273.66 8490.30 7886.77 8492.33 7181.95 118
EIA-MVS78.57 12977.90 14979.35 9787.24 6980.71 10586.16 10864.03 13362.63 20073.49 11473.60 18476.12 18673.83 8288.49 9384.93 10491.36 8178.78 143
GBi-Net73.17 16077.64 15067.95 17076.76 16277.36 13375.77 17864.57 12462.99 19751.83 19576.05 16877.76 17852.73 18785.57 11783.39 11986.04 14780.37 130
test173.17 16077.64 15067.95 17076.76 16277.36 13375.77 17864.57 12462.99 19751.83 19576.05 16877.76 17852.73 18785.57 11783.39 11986.04 14780.37 130
CVMVSNet75.65 14877.62 15273.35 14071.95 18469.89 17483.04 13060.84 16269.12 17068.76 14279.92 14278.93 17473.64 8581.02 15781.01 13881.86 17483.43 101
pmmvs475.92 14577.48 15374.10 13378.21 15370.94 16984.06 12364.78 12375.13 14468.47 14684.12 12383.32 15864.74 13875.93 18179.14 15484.31 16273.77 165
Fast-Effi-MVS+-dtu76.92 13677.18 15476.62 11479.55 13979.17 11984.80 11977.40 2964.46 19068.75 14370.81 19786.57 14763.36 14681.74 15281.76 13385.86 15175.78 156
CDS-MVSNet73.07 16377.02 15568.46 16681.62 12672.89 16479.56 15970.78 7169.56 16752.52 19177.37 15881.12 16842.60 20284.20 13483.93 11283.65 16570.07 176
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IB-MVS71.28 1775.21 15177.00 15673.12 14176.76 16277.45 13283.05 12958.92 17263.01 19664.31 15959.99 21487.57 14368.64 11586.26 11482.34 12987.05 13782.36 115
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thres40073.13 16276.99 15768.62 16579.46 14074.93 15677.23 16861.23 15975.54 14152.31 19372.20 18877.10 18154.89 17482.92 14082.62 12886.57 14173.66 167
test250675.32 15076.87 15873.50 13684.55 9080.37 10879.63 15773.23 5782.64 9055.41 18176.87 16245.42 22459.61 15590.35 7686.46 8688.58 12075.98 154
PatchMatch-RL76.05 14476.64 15975.36 12177.84 15869.87 17581.09 14563.43 14171.66 15968.34 14771.70 18981.76 16674.98 7384.83 12983.44 11886.45 14373.22 168
IterMVS73.62 15776.53 16070.23 15571.83 18577.18 13780.69 14653.22 19372.23 15666.62 15485.21 11278.96 17369.54 11276.28 18071.63 18379.45 17774.25 163
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GA-MVS75.01 15376.39 16173.39 13878.37 15075.66 14980.03 15058.40 17470.51 16375.85 9983.24 12876.14 18563.75 14077.28 17376.62 16783.97 16475.30 159
CMPMVSbinary55.74 1871.56 16976.26 16266.08 18068.11 19563.91 19363.17 20950.52 20168.79 17375.49 10070.78 19885.67 15163.54 14381.58 15377.20 16375.63 18285.86 81
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
tttt051775.86 14776.23 16375.42 12075.55 17474.06 16182.73 13260.31 16369.24 16870.24 13479.18 14358.79 21072.17 9284.49 13283.08 12491.54 7884.80 87
test20.0369.91 17376.20 16462.58 18884.01 9967.34 18375.67 18265.88 11579.98 12240.28 21282.65 13089.31 13239.63 20777.41 17273.28 17769.98 19663.40 191
testgi68.20 18276.05 16559.04 19479.99 13667.32 18481.16 14351.78 19784.91 7439.36 21373.42 18595.19 5732.79 21376.54 17870.40 18669.14 19964.55 187
thres20072.41 16676.00 16668.21 16878.28 15176.28 14374.94 18462.56 14972.14 15851.35 19869.59 20376.51 18454.89 17485.06 12380.51 14387.25 13571.92 170
thisisatest053075.54 14975.95 16775.05 12475.08 17573.56 16282.15 13760.31 16369.17 16969.32 13779.02 14458.78 21172.17 9283.88 13683.08 12491.30 8384.20 94
MDTV_nov1_ep13_2view72.96 16475.59 16869.88 15771.15 18864.86 19082.31 13654.45 18776.30 13778.32 9086.52 10091.58 11361.35 14976.80 17466.83 19471.70 18866.26 184
tfpn200view972.01 16775.40 16968.06 16977.97 15576.44 14177.04 17062.67 14866.81 17750.82 19967.30 20575.67 18852.46 19085.06 12382.64 12787.41 13373.86 164
baseline69.33 17775.37 17062.28 19066.54 20366.67 18673.95 18748.07 20266.10 18059.26 17082.45 13186.30 14854.44 17774.42 18473.25 17871.42 19178.43 147
gg-mvs-nofinetune72.68 16575.21 17169.73 15881.48 12769.04 17870.48 19576.67 3586.92 5767.80 15088.06 8464.67 20042.12 20477.60 17173.65 17679.81 17666.57 183
FMVSNet371.40 17175.20 17266.97 17475.00 17676.59 14074.29 18564.57 12462.99 19751.83 19576.05 16877.76 17851.49 19276.58 17777.03 16584.62 16179.43 140
pmmvs568.91 17874.35 17362.56 18967.45 19966.78 18571.70 19151.47 19867.17 17656.25 17682.41 13288.59 13847.21 19973.21 19174.23 17481.30 17568.03 182
ET-MVSNet_ETH3D74.71 15474.19 17475.31 12279.22 14475.29 15282.70 13364.05 13265.45 18570.96 13177.15 16057.70 21265.89 13184.40 13381.65 13489.03 10977.67 149
HyFIR lowres test73.29 15974.14 17572.30 14273.08 18078.33 12683.12 12862.41 15163.81 19262.13 16676.67 16478.50 17571.09 10174.13 18577.47 16281.98 17370.10 175
MS-PatchMatch71.18 17273.99 17667.89 17277.16 16071.76 16877.18 16956.38 18067.35 17555.04 18474.63 17975.70 18762.38 14776.62 17675.97 17079.22 17875.90 155
new-patchmatchnet62.59 19773.79 17749.53 21076.98 16153.57 20653.46 21854.64 18585.43 6928.81 21791.94 3896.41 2825.28 21576.80 17453.66 21457.99 21158.69 204
baseline169.62 17573.55 17865.02 18678.95 14770.39 17171.38 19462.03 15270.97 16247.95 20278.47 15168.19 19847.77 19879.65 16676.94 16682.05 17270.27 174
Anonymous2023120667.28 18473.41 17960.12 19376.45 17163.61 19474.21 18656.52 17976.35 13642.23 20775.81 17390.47 12541.51 20574.52 18269.97 18869.83 19763.17 192
EPNet_dtu71.90 16873.03 18070.59 15278.28 15161.64 19682.44 13564.12 13063.26 19469.74 13571.47 19182.41 16351.89 19178.83 16878.01 15577.07 18175.60 158
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres100view90069.86 17472.97 18166.24 17777.97 15572.49 16673.29 18859.12 17066.81 17750.82 19967.30 20575.67 18850.54 19378.24 17079.40 15185.71 15470.88 172
CHOSEN 1792x268868.80 17971.09 18266.13 17969.11 19368.89 17978.98 16254.68 18461.63 20256.69 17471.56 19078.39 17667.69 12072.13 19272.01 18269.63 19873.02 169
pmnet_mix0262.60 19670.81 18353.02 20666.56 20250.44 21262.81 21046.84 20479.13 12843.76 20687.45 8990.75 12339.85 20670.48 19757.09 20858.27 21060.32 201
gm-plane-assit71.56 16969.99 18473.39 13884.43 9473.21 16390.42 6851.36 19984.08 8076.00 9791.30 4837.09 22559.01 15873.65 18870.24 18779.09 17960.37 200
MVSTER68.08 18369.73 18566.16 17866.33 20570.06 17375.71 18152.36 19555.18 21458.64 17170.23 20256.72 21557.34 16479.68 16576.03 16986.61 14080.20 135
TAMVS63.02 19269.30 18655.70 20170.12 18956.89 20269.63 19945.13 20570.23 16438.00 21477.79 15275.15 19042.60 20274.48 18372.81 18168.70 20057.75 207
MIMVSNet63.02 19269.02 18756.01 19968.20 19459.26 19970.01 19853.79 19071.56 16041.26 21171.38 19282.38 16436.38 20971.43 19567.32 19366.45 20459.83 202
pmmvs362.72 19568.71 18855.74 20050.74 21757.10 20170.05 19728.82 21561.57 20457.39 17371.19 19585.73 15053.96 18073.36 19069.43 19073.47 18662.55 194
baseline268.71 18068.34 18969.14 16275.69 17269.70 17676.60 17255.53 18360.13 20562.07 16766.76 20760.35 20560.77 15076.53 17974.03 17584.19 16370.88 172
CR-MVSNet69.56 17668.34 18970.99 14972.78 18367.63 18164.47 20767.74 9959.93 20672.30 12080.10 13956.77 21465.04 13671.64 19372.91 17983.61 16769.40 178
SCA68.54 18167.52 19169.73 15867.79 19675.04 15376.96 17168.94 8566.41 17967.86 14974.03 18160.96 20365.55 13468.99 20165.67 19571.30 19361.54 199
CostFormer66.81 18666.94 19266.67 17672.79 18268.25 18079.55 16055.57 18265.52 18462.77 16376.98 16160.09 20656.73 16665.69 20962.35 19872.59 18769.71 177
PatchT66.25 18766.76 19365.67 18355.87 21360.75 19770.17 19659.00 17159.80 20872.30 12078.68 14954.12 21965.04 13671.64 19372.91 17971.63 19069.40 178
N_pmnet54.95 21165.90 19442.18 21166.37 20443.86 21857.92 21539.79 21079.54 12517.24 22286.31 10187.91 14125.44 21464.68 21051.76 21646.33 21747.23 214
PMMVS61.98 19965.61 19557.74 19645.03 21951.76 21069.54 20035.05 21255.49 21355.32 18268.23 20478.39 17658.09 16170.21 19971.56 18483.42 16863.66 189
test0.0.03 161.79 20065.33 19657.65 19779.07 14564.09 19268.51 20462.93 14561.59 20333.71 21661.58 21371.58 19633.43 21270.95 19668.68 19168.26 20158.82 203
MDTV_nov1_ep1364.96 18964.77 19765.18 18567.08 20062.46 19575.80 17751.10 20062.27 20169.74 13574.12 18062.65 20155.64 17368.19 20362.16 20271.70 18861.57 198
dps65.14 18864.50 19865.89 18271.41 18765.81 18971.44 19361.59 15558.56 20961.43 16875.45 17552.70 22158.06 16269.57 20064.65 19671.39 19264.77 186
PMMVS248.13 21464.06 19929.55 21444.06 22036.69 22051.95 21929.97 21474.75 1468.90 22476.02 17191.24 1197.53 21873.78 18755.91 20934.87 21940.01 218
RPMNet67.02 18563.99 20070.56 15371.55 18667.63 18175.81 17669.44 7959.93 20663.24 16164.32 20947.51 22359.68 15370.37 19869.64 18983.64 16668.49 181
PatchmatchNetpermissive64.81 19063.74 20166.06 18169.21 19258.62 20073.16 18960.01 16865.92 18166.19 15676.27 16659.09 20760.45 15266.58 20661.47 20467.33 20258.24 205
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpm62.79 19463.25 20262.26 19170.09 19053.78 20571.65 19247.31 20365.72 18376.70 9480.62 13856.40 21748.11 19664.20 21158.54 20559.70 20863.47 190
new_pmnet52.29 21263.16 20339.61 21358.89 21144.70 21748.78 22034.73 21365.88 18217.85 22173.42 18580.00 17023.06 21667.00 20562.28 20154.36 21348.81 213
E-PMN59.07 20462.79 20454.72 20267.01 20147.81 21560.44 21343.40 20672.95 15044.63 20570.42 20073.17 19358.73 15980.97 15851.98 21554.14 21442.26 216
tpm cat164.79 19162.74 20567.17 17374.61 17765.91 18876.18 17559.32 16964.88 18966.41 15571.21 19453.56 22059.17 15761.53 21358.16 20767.33 20263.95 188
EMVS58.97 20562.63 20654.70 20366.26 20648.71 21361.74 21142.71 20772.80 15246.00 20473.01 18771.66 19457.91 16380.41 16250.68 21753.55 21541.11 217
test-mter59.39 20361.59 20756.82 19853.21 21454.82 20473.12 19026.57 21753.19 21556.31 17564.71 20860.47 20456.36 16868.69 20264.27 19775.38 18365.00 185
ADS-MVSNet56.89 20761.09 20852.00 20859.48 21048.10 21458.02 21454.37 18872.82 15149.19 20175.32 17665.97 19937.96 20859.34 21654.66 21252.99 21651.42 212
MVEpermissive41.12 1951.80 21360.92 20941.16 21235.21 22134.14 22148.45 22141.39 20969.11 17119.53 22063.33 21073.80 19163.56 14267.19 20461.51 20338.85 21857.38 208
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
GG-mvs-BLEND41.63 21560.36 21019.78 2150.14 22666.04 18755.66 2170.17 22357.64 2102.42 22551.82 21569.42 1970.28 22264.11 21258.29 20660.02 20755.18 209
FMVSNet556.37 20960.14 21151.98 20960.83 20959.58 19866.85 20642.37 20852.68 21641.33 21047.09 21754.68 21835.28 21073.88 18670.77 18565.24 20562.26 195
tpmrst59.42 20260.02 21258.71 19567.56 19853.10 20766.99 20551.88 19663.80 19357.68 17276.73 16356.49 21648.73 19556.47 21755.55 21059.43 20958.02 206
EPMVS56.62 20859.77 21352.94 20762.41 20850.55 21160.66 21252.83 19465.15 18841.80 20977.46 15757.28 21342.68 20159.81 21554.82 21157.23 21253.35 210
test-LLR62.15 19859.46 21465.29 18479.07 14552.66 20869.46 20162.93 14550.76 21753.81 18763.11 21158.91 20852.87 18566.54 20762.34 19973.59 18461.87 196
TESTMET0.1,157.21 20659.46 21454.60 20450.95 21652.66 20869.46 20126.91 21650.76 21753.81 18763.11 21158.91 20852.87 18566.54 20762.34 19973.59 18461.87 196
CHOSEN 280x42056.32 21058.85 21653.36 20551.63 21539.91 21969.12 20338.61 21156.29 21136.79 21548.84 21662.59 20263.39 14573.61 18967.66 19260.61 20663.07 193
MVS-HIRNet59.74 20158.74 21760.92 19257.74 21245.81 21656.02 21658.69 17355.69 21265.17 15770.86 19671.66 19456.75 16561.11 21453.74 21371.17 19452.28 211
test_method22.69 21626.99 21817.67 2162.13 2234.31 22427.50 2224.53 21937.94 21924.52 21936.20 21951.40 22215.26 21729.86 21917.09 21932.07 22012.16 219
test1231.06 2171.41 2190.64 2180.39 2240.48 2250.52 2270.25 2221.11 2231.37 2262.01 2221.98 2280.87 2201.43 2211.27 2200.46 2241.62 221
testmvs0.93 2181.37 2200.41 2190.36 2250.36 2260.62 2260.39 2211.48 2220.18 2272.41 2211.31 2290.41 2211.25 2221.08 2210.48 2231.68 220
uanet_test0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
RE-MVS-def87.10 28
9.1489.43 130
SR-MVS91.82 1380.80 795.53 49
our_test_373.27 17970.91 17083.26 127
MTAPA89.37 994.85 66
MTMP90.54 595.16 59
Patchmatch-RL test4.13 225
tmp_tt13.54 21716.73 2226.42 2238.49 2242.36 22028.69 22127.44 21818.40 22013.51 2273.70 21933.23 21836.26 21822.54 222
XVS91.28 2591.23 896.89 287.14 2594.53 7195.84 15
X-MVStestdata91.28 2591.23 896.89 287.14 2594.53 7195.84 15
mPP-MVS93.05 395.77 43
NP-MVS78.65 130
Patchmtry56.88 20364.47 20767.74 9972.30 120
DeepMVS_CXcopyleft17.78 22220.40 2236.69 21831.41 2209.80 22338.61 21834.88 22633.78 21128.41 22023.59 22145.77 215