This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
WR-MVS_H88.99 3593.28 683.99 5391.92 1189.13 4091.95 4683.23 190.14 3071.92 12595.85 498.01 1071.83 9795.82 993.19 2293.07 5990.83 47
DTE-MVSNet88.99 3592.77 1284.59 4393.31 288.10 4990.96 5383.09 291.38 1476.21 9696.03 298.04 870.78 10695.65 1492.32 3293.18 5687.84 71
PS-CasMVS89.07 3293.23 784.21 5092.44 888.23 4890.54 6282.95 390.50 2675.31 10395.80 698.37 671.16 10096.30 593.32 2192.88 6190.11 50
CP-MVSNet88.71 4192.63 1584.13 5192.39 988.09 5090.47 6682.86 488.79 4275.16 10494.87 997.68 1371.05 10296.16 693.18 2392.85 6289.64 54
PEN-MVS88.86 3992.92 984.11 5292.92 488.05 5190.83 5582.67 591.04 1874.83 10595.97 398.47 370.38 10795.70 1392.43 3093.05 6088.78 62
UniMVSNet_ETH3D85.39 6291.12 4378.71 9990.48 3783.72 7981.76 14082.41 693.84 664.43 15995.41 798.76 163.72 14193.63 3389.74 5789.47 10682.74 112
SR-MVS91.82 1380.80 795.53 50
CP-MVS91.09 592.33 2589.65 292.16 1090.41 2796.46 1080.38 888.26 4589.17 1087.00 9896.34 3083.95 1095.77 1194.72 795.81 1793.78 10
DeepC-MVS83.59 490.37 1292.56 1887.82 1491.26 2792.33 394.72 3080.04 990.01 3284.61 4293.33 2394.22 7980.59 2792.90 4392.52 2895.69 2192.57 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
WR-MVS89.79 2393.66 585.27 3791.32 2388.27 4693.49 3879.86 1092.75 975.37 10296.86 198.38 575.10 7195.93 894.07 1496.46 589.39 56
MP-MVScopyleft90.84 691.95 3489.55 392.92 490.90 1996.56 679.60 1186.83 5988.75 1289.00 7494.38 7884.01 994.94 2494.34 1095.45 2493.24 23
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HFP-MVS90.32 1392.37 2287.94 1391.46 2190.91 1895.69 1779.49 1289.94 3483.50 5089.06 7394.44 7681.68 2294.17 3094.19 1395.81 1793.87 7
TSAR-MVS + ACMM89.14 2992.11 3285.67 3189.27 4790.61 2490.98 5279.48 1388.86 4079.80 7993.01 2893.53 8883.17 1592.75 4592.45 2991.32 8293.59 13
ACMMPR91.30 492.88 1189.46 491.92 1191.61 596.60 579.46 1490.08 3188.53 1389.54 6695.57 4884.25 795.24 2094.27 1295.97 1193.85 8
CPTT-MVS89.63 2590.52 4788.59 690.95 3190.74 2195.71 1679.13 1587.70 5085.68 3880.05 14295.74 4684.77 694.28 2992.68 2695.28 2692.45 31
PGM-MVS90.42 1191.58 3789.05 591.77 1491.06 1396.51 778.94 1685.41 7187.67 1887.02 9795.26 5783.62 1295.01 2393.94 1595.79 1993.40 20
X-MVS89.36 2890.73 4587.77 1691.50 2091.23 896.76 478.88 1787.29 5487.14 2578.98 14794.53 7276.47 5795.25 1994.28 1195.85 1493.55 16
LTVRE_ROB86.82 191.55 394.43 388.19 1083.19 11286.35 6593.60 3778.79 1895.48 391.79 293.08 2797.21 2086.34 397.06 296.27 395.46 2395.56 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DU-MVS84.88 6888.27 6480.92 7988.30 5783.59 8187.06 10278.35 1980.64 11770.49 13392.67 3396.91 2168.13 11791.79 5189.29 6493.20 5583.02 106
NR-MVSNet82.89 8987.43 7277.59 10883.91 10283.59 8187.10 10178.35 1980.64 11768.85 14292.67 3396.50 2454.19 18087.19 10688.68 6793.16 5882.75 111
TDRefinement93.16 195.57 190.36 188.79 5293.57 197.27 178.23 2195.55 193.00 193.98 1896.01 3887.53 197.69 196.81 197.33 195.34 4
HPM-MVS++copyleft88.74 4089.54 5287.80 1592.58 685.69 6995.10 2678.01 2287.08 5687.66 1987.89 8692.07 10780.28 3090.97 6991.41 4393.17 5791.69 37
SteuartSystems-ACMMP90.00 1791.73 3587.97 1291.21 2990.29 2896.51 778.00 2386.33 6285.32 4088.23 8394.67 7082.08 2095.13 2293.88 1694.72 3593.59 13
Skip Steuart: Steuart Systems R&D Blog.
APD-MVScopyleft89.14 2991.25 4286.67 2491.73 1591.02 1595.50 2077.74 2484.04 8379.47 8291.48 4694.85 6781.14 2592.94 4192.20 3594.47 3892.24 32
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
LGP-MVS_train90.56 992.38 2188.43 990.88 3291.15 1195.35 2177.65 2586.26 6487.23 2390.45 5697.35 1783.20 1495.44 1693.41 2096.28 892.63 27
ACMMPcopyleft90.63 892.40 2088.56 891.24 2891.60 696.49 977.53 2687.89 4886.87 3087.24 9596.46 2582.87 1695.59 1594.50 896.35 693.51 18
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MSP-MVS88.51 4291.36 4085.19 3990.63 3692.01 495.29 2277.52 2790.48 2780.21 7690.21 5896.08 3476.38 5988.30 9691.42 4191.12 8791.01 44
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
UA-Net89.02 3391.44 3986.20 2894.88 189.84 3494.76 2977.45 2885.41 7174.79 10688.83 7888.90 13778.67 4096.06 795.45 496.66 395.58 2
Fast-Effi-MVS+-dtu76.92 13677.18 15576.62 11479.55 14079.17 12084.80 12077.40 2964.46 19168.75 14470.81 19886.57 14863.36 14681.74 15481.76 13385.86 15275.78 157
ACMM80.67 790.67 792.46 1988.57 791.35 2289.93 3296.34 1177.36 3090.17 2986.88 2987.32 9396.63 2383.32 1395.79 1094.49 996.19 992.91 26
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EPNet79.36 12279.44 14279.27 9889.51 4677.20 13788.35 8777.35 3168.27 17574.29 11076.31 16679.22 17559.63 15585.02 12885.45 9986.49 14384.61 89
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SMA-MVScopyleft90.13 1592.26 2787.64 1791.68 1690.44 2695.22 2477.34 3290.79 2387.80 1690.42 5792.05 10979.05 3593.89 3293.59 1894.77 3294.62 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft89.81 2292.34 2486.86 2389.69 4491.00 1695.53 1876.91 3388.18 4683.43 5393.48 2195.19 5881.07 2692.75 4592.07 3694.55 3693.74 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TranMVSNet+NR-MVSNet85.23 6589.38 5380.39 9088.78 5383.77 7887.40 9676.75 3485.47 6968.99 14195.18 897.55 1667.13 12491.61 5689.13 6593.26 5482.95 109
gg-mvs-nofinetune72.68 16675.21 17269.73 15881.48 12869.04 18070.48 19876.67 3586.92 5867.80 15188.06 8564.67 20342.12 20777.60 17373.65 17879.81 17766.57 185
ACMMP_NAP89.86 1991.96 3387.42 1991.00 3090.08 3096.00 1576.61 3689.28 3587.73 1790.04 5991.80 11378.71 3894.36 2893.82 1794.48 3794.32 6
UniMVSNet (Re)84.95 6788.53 5880.78 8187.82 6384.21 7588.03 8876.50 3781.18 11269.29 13992.63 3596.83 2269.07 11491.23 6289.60 6093.97 4384.00 98
UniMVSNet_NR-MVSNet84.62 7188.00 6780.68 8588.18 5983.83 7787.06 10276.47 3881.46 10870.49 13393.24 2495.56 4968.13 11790.43 7388.47 6893.78 4583.02 106
APDe-MVScopyleft89.85 2092.91 1086.29 2690.47 3891.34 796.04 1476.41 3991.11 1778.50 8993.44 2295.82 4281.55 2393.16 3791.90 3894.77 3293.58 15
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMP80.00 890.12 1692.30 2687.58 1890.83 3491.10 1294.96 2876.06 4087.47 5285.33 3988.91 7797.65 1482.13 1995.31 1793.44 1996.14 1092.22 33
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DVP-MVS++90.50 1094.18 486.21 2792.52 790.29 2895.29 2276.02 4194.24 582.82 5595.84 597.56 1576.82 5593.13 3891.20 4493.78 4597.01 1
SED-MVS88.96 3792.37 2284.99 4088.64 5489.65 3795.11 2575.98 4290.73 2480.15 7794.21 1594.51 7576.59 5692.94 4191.17 4593.46 5093.37 22
OPM-MVS89.82 2192.24 2986.99 2290.86 3389.35 3895.07 2775.91 4391.16 1686.87 3091.07 5297.29 1879.13 3493.32 3591.99 3794.12 4091.49 40
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PMVScopyleft79.51 990.23 1492.67 1487.39 2090.16 3988.75 4293.64 3675.78 4490.00 3383.70 4792.97 2992.22 10486.13 497.01 396.79 294.94 2890.96 45
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DVP-MVScopyleft89.40 2792.69 1385.56 3489.01 5089.85 3393.72 3575.42 4592.28 1180.49 7294.36 1394.87 6681.46 2492.49 4991.42 4193.27 5393.54 17
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
3Dnovator+83.71 388.13 4490.00 5085.94 2986.82 7191.06 1394.26 3375.39 4688.85 4185.76 3785.74 11086.92 14678.02 4593.03 4092.21 3495.39 2592.21 34
SD-MVS89.91 1892.23 3087.19 2191.31 2489.79 3594.31 3275.34 4789.26 3781.79 6792.68 3295.08 6383.88 1193.10 3992.69 2596.54 493.02 24
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Baseline_NR-MVSNet82.79 9186.51 7678.44 10388.30 5775.62 15187.81 9074.97 4881.53 10566.84 15494.71 1296.46 2566.90 12591.79 5183.37 12285.83 15382.09 117
NCCC86.74 5287.97 6885.31 3690.64 3587.25 5893.27 3974.59 4986.50 6083.72 4675.92 17392.39 10177.08 5391.72 5390.68 4892.57 6791.30 42
DeepC-MVS_fast81.78 587.38 4989.64 5184.75 4189.89 4290.70 2292.74 4374.45 5086.02 6582.16 6486.05 10791.99 11175.84 6591.16 6390.44 4993.41 5191.09 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSLP-MVS++86.29 5789.10 5583.01 5885.71 8289.79 3587.04 10474.39 5185.17 7378.92 8677.59 15693.57 8682.60 1793.23 3691.88 3989.42 10792.46 30
ACMH+79.05 1189.62 2693.08 885.58 3288.58 5589.26 3992.18 4574.23 5293.55 882.66 5892.32 3798.35 780.29 2995.28 1892.34 3195.52 2290.43 48
train_agg86.67 5387.73 6985.43 3591.51 1982.72 8894.47 3174.22 5381.71 10181.54 7089.20 7292.87 9578.33 4390.12 7988.47 6892.51 6989.04 59
DeepPCF-MVS81.61 687.95 4790.29 4985.22 3887.48 6590.01 3193.79 3473.54 5488.93 3983.89 4589.40 6890.84 12280.26 3190.62 7290.19 5392.36 7092.03 35
CNVR-MVS86.93 5188.98 5684.54 4490.11 4087.41 5793.23 4073.47 5586.31 6382.25 6182.96 13092.15 10576.04 6291.69 5490.69 4792.17 7391.64 39
TSAR-MVS + MP.89.67 2492.25 2886.65 2591.53 1890.98 1796.15 1373.30 5687.88 4981.83 6692.92 3095.15 6182.23 1893.58 3492.25 3394.87 2993.01 25
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test250675.32 15076.87 15973.50 13684.55 9180.37 10979.63 15873.23 5782.64 9155.41 18276.87 16345.42 22759.61 15690.35 7686.46 8688.58 12175.98 155
ECVR-MVScopyleft79.31 12484.20 11473.60 13484.55 9180.37 10979.63 15873.23 5782.64 9155.98 17987.50 8986.85 14759.61 15690.35 7686.46 8688.58 12175.26 162
test111179.67 11784.40 10874.16 13285.29 8479.56 11881.16 14473.13 5984.65 7856.08 17888.38 8286.14 15060.49 15289.78 8285.59 9788.79 11576.68 152
TSAR-MVS + GP.85.32 6487.41 7382.89 6290.07 4185.69 6989.07 8172.99 6082.45 9474.52 10985.09 11587.67 14379.24 3391.11 6490.41 5091.45 7989.45 55
CDPH-MVS86.66 5488.52 5984.48 4589.61 4588.27 4692.86 4272.69 6180.55 11982.71 5686.92 9993.32 9075.55 6791.00 6889.85 5693.47 4989.71 53
COLMAP_ROBcopyleft85.66 291.85 295.01 288.16 1188.98 5192.86 295.51 1972.17 6294.95 491.27 394.11 1797.77 1184.22 896.49 495.27 596.79 293.60 12
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EC-MVSNet83.70 7784.77 10482.46 6687.47 6682.79 8785.50 11272.00 6369.81 16677.66 9385.02 11789.63 12978.14 4490.40 7487.56 7594.00 4188.16 67
SixPastTwentyTwo89.14 2992.19 3185.58 3284.62 8982.56 9190.53 6371.93 6491.95 1285.89 3594.22 1497.25 1985.42 595.73 1291.71 4095.08 2791.89 36
SF-MVS87.85 4890.95 4484.22 4988.17 6087.90 5390.80 5671.80 6589.28 3582.70 5789.90 6195.37 5577.91 4791.69 5490.04 5493.95 4492.47 29
LS3D89.02 3391.69 3685.91 3089.72 4390.81 2092.56 4471.69 6690.83 2287.24 2289.71 6492.07 10778.37 4294.43 2792.59 2795.86 1391.35 41
HQP-MVS85.02 6686.41 7983.40 5489.19 4886.59 6391.28 5071.60 6782.79 9083.48 5178.65 15193.54 8772.55 8986.49 11185.89 9592.28 7290.95 46
PVSNet_Blended_VisFu83.00 8884.16 11581.65 7482.17 12486.01 6688.03 8871.23 6876.05 14179.54 8183.88 12683.44 15977.49 5187.38 10184.93 10491.41 8087.40 75
AdaColmapbinary84.15 7385.14 9583.00 5989.08 4987.14 6090.56 6170.90 6982.40 9580.41 7373.82 18484.69 15775.19 7091.58 5789.90 5591.87 7686.48 78
MVS_030484.73 7086.19 8183.02 5788.32 5686.71 6291.55 4870.87 7073.79 14882.88 5485.13 11493.35 8972.55 8988.62 9187.69 7491.93 7588.05 70
CDS-MVSNet73.07 16377.02 15668.46 16681.62 12772.89 16679.56 16070.78 7169.56 16852.52 19277.37 15981.12 17042.60 20584.20 13583.93 11283.65 16670.07 178
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TSAR-MVS + COLMAP85.51 6088.36 6282.19 6786.05 7987.69 5490.50 6570.60 7286.40 6182.33 5989.69 6592.52 9974.01 8187.53 10086.84 8389.63 10287.80 72
PHI-MVS86.37 5688.14 6584.30 4786.65 7387.56 5590.76 5770.16 7382.55 9389.65 784.89 11892.40 10075.97 6390.88 7089.70 5892.58 6589.03 60
IS_MVSNet81.72 10185.01 9677.90 10586.19 7682.64 9085.56 11170.02 7480.11 12263.52 16187.28 9481.18 16967.26 12291.08 6789.33 6394.82 3183.42 103
Vis-MVSNet (Re-imp)76.15 14380.84 13770.68 15183.66 10774.80 15981.66 14269.59 7580.48 12046.94 20587.44 9180.63 17153.14 18586.87 10784.56 10989.12 10971.12 173
MAR-MVS81.98 9982.92 12880.88 8085.18 8685.85 6789.13 8069.52 7671.21 16282.25 6171.28 19488.89 13869.69 10988.71 8986.96 7989.52 10487.57 73
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
UGNet79.62 11985.91 8672.28 14373.52 18083.91 7686.64 10669.51 7779.85 12462.57 16585.82 10989.63 12953.18 18488.39 9587.35 7788.28 12686.43 79
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Vis-MVSNetpermissive83.32 8488.12 6677.71 10677.91 15883.44 8390.58 5969.49 7881.11 11367.10 15389.85 6291.48 11771.71 9891.34 5989.37 6289.48 10590.26 49
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
RPMNet67.02 18763.99 20270.56 15371.55 18867.63 18375.81 17869.44 7959.93 20763.24 16264.32 21147.51 22659.68 15470.37 20069.64 19183.64 16768.49 183
IterMVS-LS79.79 11582.56 13076.56 11681.83 12677.85 13079.90 15469.42 8078.93 13071.21 12990.47 5585.20 15670.86 10580.54 16380.57 14186.15 14684.36 92
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MCST-MVS84.79 6986.48 7782.83 6387.30 6787.03 6190.46 6769.33 8183.14 8782.21 6381.69 13892.14 10675.09 7287.27 10384.78 10692.58 6589.30 57
PCF-MVS76.59 1484.11 7485.27 9282.76 6486.12 7888.30 4591.24 5169.10 8282.36 9684.45 4377.56 15790.40 12772.91 8885.88 11683.88 11392.72 6488.53 63
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CANet82.84 9084.60 10680.78 8187.30 6785.20 7290.23 6969.00 8372.16 15878.73 8884.49 12390.70 12569.54 11287.65 9986.17 9089.87 9985.84 83
DPM-MVS81.42 10482.11 13280.62 8687.54 6485.30 7190.18 7168.96 8481.00 11579.15 8470.45 20083.29 16167.67 12182.81 14483.46 11790.19 9388.48 64
SCA68.54 18267.52 19369.73 15867.79 19975.04 15476.96 17268.94 8566.41 18067.86 15074.03 18260.96 20665.55 13468.99 20365.67 19771.30 19561.54 202
pmmvs680.46 11088.34 6371.26 14681.96 12577.51 13277.54 16768.83 8693.72 755.92 18093.94 1998.03 955.94 17089.21 8785.61 9687.36 13580.38 130
ACMH78.40 1288.94 3892.62 1684.65 4286.45 7487.16 5991.47 4968.79 8795.49 289.74 693.55 2098.50 277.96 4694.14 3189.57 6193.49 4789.94 52
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PLCcopyleft76.06 1585.38 6387.46 7182.95 6185.79 8188.84 4188.86 8368.70 8887.06 5783.60 4879.02 14590.05 12877.37 5290.88 7089.66 5993.37 5286.74 77
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CSCG88.12 4591.45 3884.23 4888.12 6190.59 2590.57 6068.60 8991.37 1583.45 5289.94 6095.14 6278.71 3891.45 5888.21 7295.96 1293.44 19
TinyColmap83.79 7686.12 8281.07 7883.42 10981.44 9985.42 11468.55 9088.71 4389.46 887.60 8892.72 9670.34 10889.29 8681.94 13189.20 10881.12 125
EPP-MVSNet82.76 9286.47 7878.45 10286.00 8084.47 7485.39 11568.42 9184.17 8062.97 16389.26 7176.84 18572.13 9492.56 4890.40 5195.76 2087.56 74
Gipumacopyleft86.47 5589.25 5483.23 5583.88 10378.78 12485.35 11668.42 9192.69 1089.03 1191.94 3996.32 3281.80 2194.45 2686.86 8290.91 8883.69 100
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
Effi-MVS+-dtu82.04 9883.39 12580.48 8985.48 8386.57 6488.40 8668.28 9369.04 17373.13 11876.26 16891.11 12174.74 7588.40 9487.76 7392.84 6384.57 91
ETV-MVS79.01 12777.98 14980.22 9186.69 7279.73 11688.80 8468.27 9463.22 19671.56 12770.25 20273.63 19573.66 8490.30 7886.77 8492.33 7181.95 119
v7n87.11 5090.46 4883.19 5685.22 8583.69 8090.03 7368.20 9591.01 1986.71 3394.80 1098.46 477.69 4891.10 6585.98 9291.30 8388.19 66
Effi-MVS+82.33 9483.87 11880.52 8884.51 9481.32 10087.53 9468.05 9674.94 14679.67 8082.37 13592.31 10272.21 9185.06 12486.91 8191.18 8584.20 95
MVS_111021_HR83.95 7586.10 8381.44 7684.62 8980.29 11190.51 6468.05 9684.07 8280.38 7484.74 12191.37 11874.23 7790.37 7587.25 7890.86 8984.59 90
Anonymous20240521184.68 10583.92 10179.45 11979.03 16267.79 9882.01 9988.77 8092.58 9855.93 17186.68 10984.26 11088.92 11378.98 142
CR-MVSNet69.56 17768.34 19170.99 14972.78 18567.63 18364.47 21067.74 9959.93 20772.30 12180.10 14056.77 21765.04 13671.64 19572.91 18183.61 16869.40 180
Patchmtry56.88 20664.47 21067.74 9972.30 121
FMVSNet178.20 13284.83 10270.46 15478.62 15079.03 12177.90 16667.53 10183.02 8855.10 18487.19 9693.18 9255.65 17385.57 11783.39 11987.98 12882.40 115
CS-MVS-test83.59 7984.86 10182.10 6983.04 11481.05 10591.58 4767.48 10272.52 15578.42 9084.75 12091.82 11278.62 4191.98 5087.54 7693.48 4884.35 93
OMC-MVS88.16 4391.34 4184.46 4686.85 7090.63 2393.01 4167.00 10390.35 2887.40 2186.86 10096.35 2977.66 4992.63 4790.84 4694.84 3091.68 38
pmmvs-eth3d79.64 11882.06 13376.83 11280.05 13672.64 16787.47 9566.59 10480.83 11673.50 11489.32 7093.20 9167.78 11980.78 16181.64 13585.58 15676.01 154
CS-MVS83.57 8084.79 10382.14 6883.83 10481.48 9887.29 9766.54 10572.73 15480.05 7884.04 12593.12 9480.35 2889.50 8386.34 8894.76 3486.32 81
v1083.17 8785.22 9480.78 8183.26 11182.99 8688.66 8566.49 10679.24 12883.60 4891.46 4795.47 5174.12 7882.60 14780.66 14088.53 12384.11 97
RPSCF88.05 4692.61 1782.73 6584.24 9688.40 4490.04 7266.29 10791.46 1382.29 6088.93 7696.01 3879.38 3295.15 2194.90 694.15 3993.40 20
v119283.61 7885.23 9381.72 7384.05 9882.15 9489.54 7666.20 10881.38 11086.76 3291.79 4396.03 3674.88 7481.81 15380.92 13988.91 11482.50 114
USDC81.39 10683.07 12679.43 9681.48 12878.95 12382.62 13566.17 10987.45 5390.73 482.40 13493.65 8566.57 12783.63 13977.97 15689.00 11277.45 151
DCV-MVSNet80.04 11385.67 9073.48 13782.91 11681.11 10480.44 14966.06 11085.01 7462.53 16678.84 14894.43 7758.51 16188.66 9085.91 9390.41 9185.73 84
v124083.57 8084.94 9981.97 7084.05 9881.27 10189.46 7866.06 11081.31 11187.50 2091.88 4295.46 5276.25 6081.16 15880.51 14388.52 12482.98 108
v14419283.43 8384.97 9881.63 7583.43 10881.23 10289.42 7966.04 11281.45 10986.40 3491.46 4795.70 4775.76 6682.14 14980.23 14688.74 11682.57 113
v192192083.49 8284.94 9981.80 7283.78 10581.20 10389.50 7765.91 11381.64 10387.18 2491.70 4495.39 5475.85 6481.56 15680.27 14588.60 11982.80 110
GeoE81.92 10083.87 11879.66 9484.64 8879.87 11389.75 7465.90 11476.12 14075.87 9984.62 12292.23 10371.96 9686.83 10883.60 11689.83 10083.81 99
test20.0369.91 17476.20 16562.58 18984.01 10067.34 18575.67 18465.88 11579.98 12340.28 21582.65 13189.31 13339.63 21077.41 17473.28 17969.98 19863.40 194
canonicalmvs81.22 10886.04 8575.60 11983.17 11383.18 8580.29 15065.82 11685.97 6667.98 14977.74 15591.51 11665.17 13588.62 9186.15 9191.17 8689.09 58
FPMVS81.56 10284.04 11778.66 10082.92 11575.96 14786.48 10865.66 11784.67 7771.47 12877.78 15483.22 16277.57 5091.24 6190.21 5287.84 12985.21 87
v114483.22 8585.01 9681.14 7783.76 10681.60 9788.95 8265.58 11881.89 10085.80 3691.68 4595.84 4174.04 8082.12 15080.56 14288.70 11881.41 123
FMVSNet274.43 15579.70 14068.27 16776.76 16477.36 13475.77 18065.36 11972.28 15652.97 19081.92 13685.61 15352.73 18980.66 16279.73 14986.04 14880.37 131
MVS_111021_LR83.20 8685.33 9180.73 8482.88 11778.23 12889.61 7565.23 12082.08 9881.19 7185.31 11292.04 11075.22 6989.50 8385.90 9490.24 9284.23 94
pm-mvs178.21 13185.68 8969.50 16180.38 13475.73 14976.25 17665.04 12187.59 5154.47 18693.16 2695.99 4054.20 17986.37 11282.98 12686.64 14077.96 149
FC-MVSNet-test75.91 14683.59 12366.95 17576.63 17269.07 17985.33 11764.97 12284.87 7641.95 21193.17 2587.04 14547.78 20091.09 6685.56 9885.06 16074.34 163
pmmvs475.92 14577.48 15474.10 13378.21 15470.94 17184.06 12464.78 12375.13 14568.47 14784.12 12483.32 16064.74 13875.93 18379.14 15484.31 16373.77 167
GBi-Net73.17 16077.64 15167.95 17076.76 16477.36 13475.77 18064.57 12462.99 19851.83 19676.05 16977.76 18152.73 18985.57 11783.39 11986.04 14880.37 131
test173.17 16077.64 15167.95 17076.76 16477.36 13475.77 18064.57 12462.99 19851.83 19676.05 16977.76 18152.73 18985.57 11783.39 11986.04 14880.37 131
FMVSNet371.40 17275.20 17366.97 17475.00 17876.59 14174.29 18764.57 12462.99 19851.83 19676.05 16977.76 18151.49 19476.58 17977.03 16584.62 16279.43 141
casdiffmvs_mvgpermissive81.50 10385.70 8876.60 11582.68 11980.54 10883.50 12764.49 12783.40 8472.53 11992.15 3895.40 5365.84 13284.69 13181.89 13290.59 9081.86 121
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v882.20 9684.56 10779.45 9582.42 12181.65 9687.26 9864.27 12879.36 12781.70 6891.04 5395.75 4573.30 8782.82 14379.18 15387.74 13182.09 117
TAPA-MVS78.00 1385.88 5888.37 6182.96 6084.69 8788.62 4390.62 5864.22 12989.15 3888.05 1478.83 14993.71 8376.20 6190.11 8088.22 7194.00 4189.97 51
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
EPNet_dtu71.90 16973.03 18170.59 15278.28 15261.64 19982.44 13664.12 13063.26 19569.74 13671.47 19282.41 16551.89 19378.83 17078.01 15577.07 18375.60 159
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FC-MVSNet-train79.20 12586.29 8070.94 15084.06 9777.67 13185.68 11064.11 13182.90 8952.22 19592.57 3693.69 8449.52 19788.30 9686.93 8090.03 9581.95 119
ET-MVSNet_ETH3D74.71 15474.19 17575.31 12279.22 14575.29 15382.70 13464.05 13265.45 18670.96 13277.15 16157.70 21565.89 13184.40 13481.65 13489.03 11077.67 150
EIA-MVS78.57 12977.90 15079.35 9787.24 6980.71 10686.16 10964.03 13362.63 20173.49 11573.60 18576.12 18973.83 8288.49 9384.93 10491.36 8178.78 144
EG-PatchMatch MVS84.35 7287.55 7080.62 8686.38 7582.24 9386.75 10564.02 13484.24 7978.17 9289.38 6995.03 6578.78 3789.95 8186.33 8989.59 10385.65 85
TransMVSNet (Re)79.05 12686.66 7570.18 15683.32 11075.99 14677.54 16763.98 13590.68 2555.84 18194.80 1096.06 3553.73 18386.27 11383.22 12386.65 13979.61 140
v2v48282.20 9684.26 11179.81 9382.67 12080.18 11287.67 9263.96 13681.69 10284.73 4191.27 5096.33 3172.05 9581.94 15279.56 15087.79 13078.84 143
Anonymous2023121179.37 12185.78 8771.89 14482.87 11879.66 11778.77 16463.93 13783.36 8559.39 17090.54 5494.66 7156.46 16887.38 10184.12 11189.92 9780.74 127
DI_MVS_plusplus_trai77.64 13379.64 14175.31 12279.87 13876.89 14081.55 14363.64 13876.21 13972.03 12485.59 11182.97 16366.63 12679.27 16977.78 15888.14 12778.76 145
CNLPA85.50 6188.58 5781.91 7184.55 9187.52 5690.89 5463.56 13988.18 4684.06 4483.85 12791.34 11976.46 5891.27 6089.00 6691.96 7488.88 61
Fast-Effi-MVS+81.42 10483.82 12078.62 10182.24 12380.62 10787.72 9163.51 14073.01 15074.75 10783.80 12892.70 9773.44 8688.15 9885.26 10090.05 9483.17 104
PatchMatch-RL76.05 14476.64 16075.36 12177.84 16069.87 17781.09 14663.43 14171.66 16068.34 14871.70 19081.76 16874.98 7384.83 13083.44 11886.45 14473.22 170
tfpnnormal77.16 13584.26 11168.88 16481.02 13175.02 15576.52 17563.30 14287.29 5452.40 19391.24 5193.97 8054.85 17785.46 12081.08 13785.18 15975.76 158
PVSNet_BlendedMVS76.45 14178.12 14774.49 13076.76 16478.46 12579.65 15663.26 14365.42 18773.15 11675.05 17888.96 13566.51 12882.73 14577.66 15987.61 13278.60 146
PVSNet_Blended76.45 14178.12 14774.49 13076.76 16478.46 12579.65 15663.26 14365.42 18773.15 11675.05 17888.96 13566.51 12882.73 14577.66 15987.61 13278.60 146
test-LLR62.15 20059.46 21665.29 18479.07 14652.66 21169.46 20462.93 14550.76 21953.81 18863.11 21358.91 21152.87 18766.54 20962.34 20173.59 18661.87 199
test0.0.03 161.79 20265.33 19857.65 19979.07 14664.09 19468.51 20762.93 14561.59 20433.71 21961.58 21571.58 19933.43 21570.95 19868.68 19368.26 20358.82 206
casdiffmvspermissive79.93 11484.11 11675.05 12481.41 13078.99 12282.95 13262.90 14781.53 10568.60 14691.94 3996.03 3665.84 13282.89 14277.07 16488.59 12080.34 134
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tfpn200view972.01 16875.40 17068.06 16977.97 15676.44 14277.04 17162.67 14866.81 17850.82 20067.30 20775.67 19152.46 19285.06 12482.64 12787.41 13473.86 166
thres600view774.34 15678.43 14669.56 16080.47 13276.28 14478.65 16562.56 14977.39 13452.53 19174.03 18276.78 18655.90 17285.06 12485.19 10187.25 13674.29 164
thres20072.41 16776.00 16768.21 16878.28 15276.28 14474.94 18662.56 14972.14 15951.35 19969.59 20576.51 18754.89 17585.06 12480.51 14387.25 13671.92 172
HyFIR lowres test73.29 15974.14 17672.30 14273.08 18278.33 12783.12 12962.41 15163.81 19362.13 16776.67 16578.50 17871.09 10174.13 18777.47 16281.98 17470.10 177
baseline169.62 17673.55 17965.02 18778.95 14870.39 17371.38 19762.03 15270.97 16347.95 20378.47 15268.19 20147.77 20179.65 16876.94 16782.05 17370.27 176
FA-MVS(training)78.93 12880.63 13876.93 11179.79 13975.57 15285.44 11361.95 15377.19 13678.97 8584.82 11982.47 16466.43 13084.09 13680.13 14789.02 11180.15 137
QAPM80.43 11184.34 10975.86 11779.40 14282.06 9579.86 15561.94 15483.28 8674.73 10881.74 13785.44 15470.97 10384.99 12984.71 10888.29 12588.14 68
dps65.14 19064.50 20065.89 18271.41 18965.81 19171.44 19661.59 15558.56 21061.43 16975.45 17652.70 22458.06 16369.57 20264.65 19871.39 19464.77 188
MVS_Test76.72 13879.40 14373.60 13478.85 14974.99 15679.91 15361.56 15669.67 16772.44 12085.98 10890.78 12363.50 14478.30 17175.74 17285.33 15780.31 135
WB-MVS72.91 16582.95 12761.21 19368.59 19673.96 16373.65 19061.48 15790.88 2042.55 20994.18 1695.80 4353.02 18685.42 12175.73 17367.97 20464.65 189
thisisatest051581.18 10984.32 11077.52 11076.73 17074.84 15885.06 11961.37 15881.05 11473.95 11188.79 7989.25 13475.49 6885.98 11584.78 10692.53 6885.56 86
IterMVS-SCA-FT77.23 13479.18 14474.96 12876.67 17179.85 11475.58 18561.34 15973.10 14973.79 11386.23 10479.61 17479.00 3680.28 16575.50 17483.41 17079.70 139
thres40073.13 16276.99 15868.62 16579.46 14174.93 15777.23 16961.23 16075.54 14252.31 19472.20 18977.10 18454.89 17582.92 14182.62 12886.57 14273.66 169
3Dnovator79.41 1082.21 9586.07 8477.71 10679.31 14384.61 7387.18 9961.02 16185.65 6776.11 9785.07 11685.38 15570.96 10487.22 10486.47 8591.66 7788.12 69
MSDG81.39 10684.23 11378.09 10482.40 12282.47 9285.31 11860.91 16279.73 12580.26 7586.30 10388.27 14169.67 11087.20 10584.98 10389.97 9680.67 128
CVMVSNet75.65 14877.62 15373.35 14071.95 18669.89 17683.04 13160.84 16369.12 17168.76 14379.92 14378.93 17773.64 8581.02 15981.01 13881.86 17583.43 102
thisisatest053075.54 14975.95 16875.05 12475.08 17773.56 16482.15 13860.31 16469.17 17069.32 13879.02 14558.78 21472.17 9283.88 13783.08 12491.30 8384.20 95
tttt051775.86 14776.23 16475.42 12075.55 17674.06 16282.73 13360.31 16469.24 16970.24 13579.18 14458.79 21372.17 9284.49 13383.08 12491.54 7884.80 88
MDA-MVSNet-bldmvs76.51 13982.87 12969.09 16350.71 22174.72 16084.05 12560.27 16681.62 10471.16 13088.21 8491.58 11469.62 11192.78 4477.48 16178.75 18273.69 168
PM-MVS80.42 11283.63 12276.67 11378.04 15572.37 16987.14 10060.18 16780.13 12171.75 12686.12 10693.92 8277.08 5386.56 11085.12 10285.83 15381.18 124
DELS-MVS79.71 11683.74 12175.01 12679.31 14382.68 8984.79 12160.06 16875.43 14469.09 14086.13 10589.38 13267.16 12385.12 12383.87 11489.65 10183.57 101
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PatchmatchNetpermissive64.81 19263.74 20366.06 18169.21 19458.62 20373.16 19260.01 16965.92 18266.19 15776.27 16759.09 21060.45 15366.58 20861.47 20667.33 20558.24 208
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
dmvs_re68.11 18470.60 18565.21 18577.91 15863.73 19676.72 17359.65 17055.93 21347.79 20459.79 21779.91 17349.72 19682.48 14876.98 16679.48 17875.41 160
tpm cat164.79 19362.74 20767.17 17374.61 17965.91 19076.18 17759.32 17164.88 19066.41 15671.21 19553.56 22359.17 15861.53 21558.16 20967.33 20563.95 191
thres100view90069.86 17572.97 18266.24 17777.97 15672.49 16873.29 19159.12 17266.81 17850.82 20067.30 20775.67 19150.54 19578.24 17279.40 15185.71 15570.88 174
PatchT66.25 18966.76 19565.67 18355.87 21660.75 20070.17 19959.00 17359.80 20972.30 12178.68 15054.12 22265.04 13671.64 19572.91 18171.63 19269.40 180
IB-MVS71.28 1775.21 15177.00 15773.12 14176.76 16477.45 13383.05 13058.92 17463.01 19764.31 16059.99 21687.57 14468.64 11586.26 11482.34 12987.05 13882.36 116
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVS-HIRNet59.74 20358.74 21960.92 19457.74 21545.81 21956.02 21958.69 17555.69 21465.17 15870.86 19771.66 19756.75 16661.11 21653.74 21571.17 19652.28 214
GA-MVS75.01 15376.39 16273.39 13878.37 15175.66 15080.03 15158.40 17670.51 16475.85 10083.24 12976.14 18863.75 14077.28 17576.62 16883.97 16575.30 161
OpenMVScopyleft75.38 1678.44 13081.39 13674.99 12780.46 13379.85 11479.99 15258.31 17777.34 13573.85 11277.19 16082.33 16768.60 11684.67 13281.95 13088.72 11786.40 80
CANet_DTU75.04 15278.45 14571.07 14777.27 16177.96 12983.88 12658.00 17864.11 19268.67 14575.65 17588.37 14053.92 18282.05 15181.11 13684.67 16179.88 138
diffmvspermissive76.74 13781.61 13571.06 14875.64 17574.45 16180.68 14857.57 17977.48 13367.62 15288.95 7593.94 8161.98 14979.74 16676.18 16982.85 17180.50 129
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v14879.33 12382.32 13175.84 11880.14 13575.74 14881.98 13957.06 18081.51 10779.36 8389.42 6796.42 2771.32 9981.54 15775.29 17585.20 15876.32 153
Anonymous2023120667.28 18673.41 18060.12 19576.45 17363.61 19774.21 18856.52 18176.35 13742.23 21075.81 17490.47 12641.51 20874.52 18469.97 19069.83 19963.17 195
MS-PatchMatch71.18 17373.99 17767.89 17277.16 16271.76 17077.18 17056.38 18267.35 17655.04 18574.63 18075.70 19062.38 14776.62 17875.97 17179.22 18075.90 156
V4279.59 12083.59 12374.93 12969.61 19377.05 13986.59 10755.84 18378.42 13277.29 9489.84 6395.08 6374.12 7883.05 14080.11 14886.12 14781.59 122
CostFormer66.81 18866.94 19466.67 17672.79 18468.25 18279.55 16155.57 18465.52 18562.77 16476.98 16260.09 20956.73 16765.69 21162.35 20072.59 18969.71 179
baseline268.71 18168.34 19169.14 16275.69 17469.70 17876.60 17455.53 18560.13 20662.07 16866.76 20960.35 20860.77 15176.53 18174.03 17784.19 16470.88 174
CHOSEN 1792x268868.80 18071.09 18366.13 17969.11 19568.89 18178.98 16354.68 18661.63 20356.69 17571.56 19178.39 17967.69 12072.13 19472.01 18469.63 20073.02 171
new-patchmatchnet62.59 19973.79 17849.53 21276.98 16353.57 20953.46 22154.64 18785.43 7028.81 22091.94 3996.41 2825.28 21876.80 17653.66 21657.99 21458.69 207
CLD-MVS82.75 9387.22 7477.54 10988.01 6285.76 6890.23 6954.52 18882.28 9782.11 6588.48 8195.27 5663.95 13989.41 8588.29 7086.45 14481.01 126
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MDTV_nov1_ep13_2view72.96 16475.59 16969.88 15771.15 19064.86 19282.31 13754.45 18976.30 13878.32 9186.52 10191.58 11461.35 15076.80 17666.83 19671.70 19066.26 186
ADS-MVSNet56.89 20961.09 21052.00 21059.48 21348.10 21758.02 21754.37 19072.82 15249.19 20275.32 17765.97 20237.96 21159.34 21854.66 21452.99 21951.42 215
EU-MVSNet76.48 14080.53 13971.75 14567.62 20070.30 17481.74 14154.06 19175.47 14371.01 13180.10 14093.17 9373.67 8383.73 13877.85 15782.40 17283.07 105
MIMVSNet63.02 19469.02 18956.01 20168.20 19759.26 20270.01 20153.79 19271.56 16141.26 21471.38 19382.38 16636.38 21271.43 19767.32 19566.45 20759.83 205
MIMVSNet173.40 15881.85 13463.55 18872.90 18364.37 19384.58 12253.60 19390.84 2153.92 18787.75 8796.10 3345.31 20385.37 12279.32 15270.98 19769.18 182
anonymousdsp85.62 5990.53 4679.88 9264.64 21076.35 14396.28 1253.53 19485.63 6881.59 6992.81 3197.71 1286.88 294.56 2592.83 2496.35 693.84 9
IterMVS73.62 15776.53 16170.23 15571.83 18777.18 13880.69 14753.22 19572.23 15766.62 15585.21 11378.96 17669.54 11276.28 18271.63 18579.45 17974.25 165
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EPMVS56.62 21059.77 21552.94 20962.41 21150.55 21460.66 21552.83 19665.15 18941.80 21277.46 15857.28 21642.68 20459.81 21754.82 21357.23 21553.35 213
MVSTER68.08 18569.73 18766.16 17866.33 20870.06 17575.71 18352.36 19755.18 21658.64 17270.23 20356.72 21857.34 16579.68 16776.03 17086.61 14180.20 136
tpmrst59.42 20460.02 21458.71 19767.56 20153.10 21066.99 20851.88 19863.80 19457.68 17376.73 16456.49 21948.73 19856.47 21955.55 21259.43 21258.02 209
testgi68.20 18376.05 16659.04 19679.99 13767.32 18681.16 14451.78 19984.91 7539.36 21673.42 18695.19 5832.79 21676.54 18070.40 18869.14 20164.55 190
pmmvs568.91 17974.35 17462.56 19067.45 20266.78 18771.70 19451.47 20067.17 17756.25 17782.41 13388.59 13947.21 20273.21 19374.23 17681.30 17668.03 184
gm-plane-assit71.56 17069.99 18673.39 13884.43 9573.21 16590.42 6851.36 20184.08 8176.00 9891.30 4937.09 22859.01 15973.65 19070.24 18979.09 18160.37 203
MDTV_nov1_ep1364.96 19164.77 19965.18 18667.08 20362.46 19875.80 17951.10 20262.27 20269.74 13674.12 18162.65 20455.64 17468.19 20562.16 20471.70 19061.57 201
CMPMVSbinary55.74 1871.56 17076.26 16366.08 18068.11 19863.91 19563.17 21250.52 20368.79 17475.49 10170.78 19985.67 15263.54 14381.58 15577.20 16375.63 18485.86 82
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
baseline69.33 17875.37 17162.28 19166.54 20666.67 18873.95 18948.07 20466.10 18159.26 17182.45 13286.30 14954.44 17874.42 18673.25 18071.42 19378.43 148
tpm62.79 19663.25 20462.26 19270.09 19253.78 20871.65 19547.31 20565.72 18476.70 9580.62 13956.40 22048.11 19964.20 21358.54 20759.70 21163.47 193
pmnet_mix0262.60 19870.81 18453.02 20866.56 20550.44 21562.81 21346.84 20679.13 12943.76 20887.45 9090.75 12439.85 20970.48 19957.09 21058.27 21360.32 204
TAMVS63.02 19469.30 18855.70 20370.12 19156.89 20569.63 20245.13 20770.23 16538.00 21777.79 15375.15 19342.60 20574.48 18572.81 18368.70 20257.75 210
E-PMN59.07 20662.79 20654.72 20467.01 20447.81 21860.44 21643.40 20872.95 15144.63 20770.42 20173.17 19658.73 16080.97 16051.98 21754.14 21742.26 219
EMVS58.97 20762.63 20854.70 20566.26 20948.71 21661.74 21442.71 20972.80 15346.00 20673.01 18871.66 19757.91 16480.41 16450.68 21953.55 21841.11 220
FMVSNet556.37 21160.14 21351.98 21160.83 21259.58 20166.85 20942.37 21052.68 21841.33 21347.09 22054.68 22135.28 21373.88 18870.77 18765.24 20862.26 198
MVEpermissive41.12 1951.80 21560.92 21141.16 21435.21 22434.14 22448.45 22441.39 21169.11 17219.53 22363.33 21273.80 19463.56 14267.19 20661.51 20538.85 22157.38 211
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
N_pmnet54.95 21365.90 19642.18 21366.37 20743.86 22157.92 21839.79 21279.54 12617.24 22586.31 10287.91 14225.44 21764.68 21251.76 21846.33 22047.23 217
CHOSEN 280x42056.32 21258.85 21853.36 20751.63 21839.91 22269.12 20638.61 21356.29 21236.79 21848.84 21962.59 20563.39 14573.61 19167.66 19460.61 20963.07 196
PMMVS61.98 20165.61 19757.74 19845.03 22251.76 21369.54 20335.05 21455.49 21555.32 18368.23 20678.39 17958.09 16270.21 20171.56 18683.42 16963.66 192
new_pmnet52.29 21463.16 20539.61 21558.89 21444.70 22048.78 22334.73 21565.88 18317.85 22473.42 18680.00 17223.06 21967.00 20762.28 20354.36 21648.81 216
PMMVS248.13 21664.06 20129.55 21644.06 22336.69 22351.95 22229.97 21674.75 1478.90 22776.02 17291.24 1207.53 22173.78 18955.91 21134.87 22240.01 221
pmmvs362.72 19768.71 19055.74 20250.74 22057.10 20470.05 20028.82 21761.57 20557.39 17471.19 19685.73 15153.96 18173.36 19269.43 19273.47 18862.55 197
TESTMET0.1,157.21 20859.46 21654.60 20650.95 21952.66 21169.46 20426.91 21850.76 21953.81 18863.11 21358.91 21152.87 18766.54 20962.34 20173.59 18661.87 199
test-mter59.39 20561.59 20956.82 20053.21 21754.82 20773.12 19326.57 21953.19 21756.31 17664.71 21060.47 20756.36 16968.69 20464.27 19975.38 18565.00 187
DeepMVS_CXcopyleft17.78 22520.40 2266.69 22031.41 2229.80 22638.61 22134.88 22933.78 21428.41 22223.59 22445.77 218
test_method22.69 21826.99 22017.67 2182.13 2264.31 22727.50 2254.53 22137.94 22124.52 22236.20 22251.40 22515.26 22029.86 22117.09 22132.07 22312.16 222
tmp_tt13.54 21916.73 2256.42 2268.49 2272.36 22228.69 22327.44 22118.40 22313.51 2303.70 22233.23 22036.26 22022.54 225
testmvs0.93 2201.37 2220.41 2210.36 2280.36 2290.62 2290.39 2231.48 2240.18 2302.41 2241.31 2320.41 2241.25 2241.08 2230.48 2261.68 223
test1231.06 2191.41 2210.64 2200.39 2270.48 2280.52 2300.25 2241.11 2251.37 2292.01 2251.98 2310.87 2231.43 2231.27 2220.46 2271.62 224
GG-mvs-BLEND41.63 21760.36 21219.78 2170.14 22966.04 18955.66 2200.17 22557.64 2112.42 22851.82 21869.42 2000.28 22564.11 21458.29 20860.02 21055.18 212
uanet_test0.00 2210.00 2230.00 2220.00 2300.00 2300.00 2310.00 2260.00 2260.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet-low-res0.00 2210.00 2230.00 2220.00 2300.00 2300.00 2310.00 2260.00 2260.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet0.00 2210.00 2230.00 2220.00 2300.00 2300.00 2310.00 2260.00 2260.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
TPM-MVS86.18 7783.43 8487.57 9378.77 8769.75 20484.63 15862.24 14889.88 9888.48 64
Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025
RE-MVS-def87.10 28
9.1489.43 131
our_test_373.27 18170.91 17283.26 128
ambc88.38 6091.62 1787.97 5284.48 12388.64 4487.93 1587.38 9294.82 6974.53 7689.14 8883.86 11585.94 15186.84 76
MTAPA89.37 994.85 67
MTMP90.54 595.16 60
Patchmatch-RL test4.13 228
XVS91.28 2591.23 896.89 287.14 2594.53 7295.84 15
X-MVStestdata91.28 2591.23 896.89 287.14 2594.53 7295.84 15
mPP-MVS93.05 395.77 44
NP-MVS78.65 131