This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
TDRefinement93.16 195.57 190.36 188.79 5293.57 197.27 178.23 2195.55 193.00 193.98 1796.01 3887.53 197.69 196.81 197.33 195.34 4
COLMAP_ROBcopyleft85.66 291.85 295.01 288.16 1188.98 5192.86 295.51 1972.17 6294.95 491.27 394.11 1697.77 1184.22 896.49 495.27 596.79 293.60 12
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepC-MVS83.59 490.37 1292.56 1887.82 1491.26 2792.33 394.72 3080.04 990.01 3184.61 4293.33 2294.22 7880.59 2792.90 4392.52 2895.69 2192.57 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSP-MVS88.51 4291.36 4085.19 3990.63 3692.01 495.29 2277.52 2790.48 2680.21 7690.21 5796.08 3476.38 5988.30 9691.42 4191.12 8791.01 44
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ACMMPR91.30 492.88 1189.46 491.92 1191.61 596.60 579.46 1490.08 3088.53 1389.54 6595.57 4784.25 795.24 2094.27 1295.97 1193.85 8
ACMMPcopyleft90.63 892.40 2088.56 891.24 2891.60 696.49 977.53 2687.89 4786.87 3087.24 9496.46 2582.87 1695.59 1594.50 896.35 693.51 18
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APDe-MVS89.85 2092.91 1086.29 2690.47 3891.34 796.04 1476.41 3991.11 1778.50 8893.44 2195.82 4281.55 2393.16 3791.90 3894.77 3293.58 15
XVS91.28 2591.23 896.89 287.14 2594.53 7195.84 15
X-MVStestdata91.28 2591.23 896.89 287.14 2594.53 7195.84 15
X-MVS89.36 2890.73 4587.77 1691.50 2091.23 896.76 478.88 1787.29 5387.14 2578.98 14694.53 7176.47 5795.25 1994.28 1195.85 1493.55 16
LGP-MVS_train90.56 992.38 2188.43 990.88 3291.15 1195.35 2177.65 2586.26 6387.23 2390.45 5597.35 1783.20 1495.44 1693.41 2096.28 892.63 27
ACMP80.00 890.12 1692.30 2687.58 1890.83 3491.10 1294.96 2876.06 4087.47 5185.33 3988.91 7697.65 1482.13 1995.31 1793.44 1996.14 1092.22 33
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PGM-MVS90.42 1191.58 3789.05 591.77 1491.06 1396.51 778.94 1685.41 7087.67 1887.02 9695.26 5683.62 1295.01 2393.94 1595.79 1993.40 20
3Dnovator+83.71 388.13 4490.00 5085.94 2986.82 7191.06 1394.26 3375.39 4688.85 4085.76 3785.74 10986.92 14578.02 4593.03 4092.21 3495.39 2592.21 34
APD-MVScopyleft89.14 2991.25 4286.67 2491.73 1591.02 1595.50 2077.74 2484.04 8279.47 8291.48 4594.85 6681.14 2592.94 4192.20 3594.47 3892.24 32
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DPE-MVScopyleft89.81 2292.34 2486.86 2389.69 4491.00 1695.53 1876.91 3388.18 4583.43 5393.48 2095.19 5781.07 2692.75 4592.07 3694.55 3693.74 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + MP.89.67 2492.25 2886.65 2591.53 1890.98 1796.15 1373.30 5687.88 4881.83 6692.92 2995.15 6082.23 1893.58 3492.25 3394.87 2993.01 25
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HFP-MVS90.32 1392.37 2287.94 1391.46 2190.91 1895.69 1779.49 1289.94 3383.50 5089.06 7294.44 7581.68 2294.17 3094.19 1395.81 1793.87 7
MP-MVScopyleft90.84 691.95 3489.55 392.92 490.90 1996.56 679.60 1186.83 5888.75 1289.00 7394.38 7784.01 994.94 2494.34 1095.45 2493.24 23
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
LS3D89.02 3391.69 3685.91 3089.72 4390.81 2092.56 4471.69 6690.83 2187.24 2289.71 6392.07 10678.37 4294.43 2792.59 2795.86 1391.35 41
CPTT-MVS89.63 2590.52 4788.59 690.95 3190.74 2195.71 1679.13 1587.70 4985.68 3880.05 14195.74 4584.77 694.28 2992.68 2695.28 2692.45 31
DeepC-MVS_fast81.78 587.38 4989.64 5184.75 4189.89 4290.70 2292.74 4374.45 5086.02 6482.16 6486.05 10691.99 11075.84 6591.16 6390.44 4993.41 5191.09 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OMC-MVS88.16 4391.34 4184.46 4686.85 7090.63 2393.01 4167.00 10390.35 2787.40 2186.86 9996.35 2977.66 4992.63 4790.84 4694.84 3091.68 38
TSAR-MVS + ACMM89.14 2992.11 3285.67 3189.27 4790.61 2490.98 5279.48 1388.86 3979.80 7993.01 2793.53 8783.17 1592.75 4592.45 2991.32 8293.59 13
CSCG88.12 4591.45 3884.23 4888.12 6190.59 2590.57 6068.60 8991.37 1583.45 5289.94 5995.14 6178.71 3891.45 5888.21 7295.96 1293.44 19
SMA-MVScopyleft90.13 1592.26 2787.64 1791.68 1690.44 2695.22 2477.34 3290.79 2287.80 1690.42 5692.05 10879.05 3593.89 3293.59 1894.77 3294.62 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CP-MVS91.09 592.33 2589.65 292.16 1090.41 2796.46 1080.38 888.26 4489.17 1087.00 9796.34 3083.95 1095.77 1194.72 795.81 1793.78 10
DVP-MVS++90.50 1094.18 486.21 2792.52 790.29 2895.29 2276.02 4194.24 582.82 5595.84 597.56 1576.82 5593.13 3891.20 4493.78 4597.01 1
SteuartSystems-ACMMP90.00 1791.73 3587.97 1291.21 2990.29 2896.51 778.00 2386.33 6185.32 4088.23 8294.67 6982.08 2095.13 2293.88 1694.72 3593.59 13
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP89.86 1991.96 3387.42 1991.00 3090.08 3096.00 1576.61 3689.28 3487.73 1790.04 5891.80 11278.71 3894.36 2893.82 1794.48 3794.32 6
DeepPCF-MVS81.61 687.95 4790.29 4985.22 3887.48 6590.01 3193.79 3473.54 5488.93 3883.89 4589.40 6790.84 12180.26 3190.62 7290.19 5392.36 7092.03 35
ACMM80.67 790.67 792.46 1988.57 791.35 2289.93 3296.34 1177.36 3090.17 2886.88 2987.32 9296.63 2383.32 1395.79 1094.49 996.19 992.91 26
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DVP-MVScopyleft89.40 2792.69 1385.56 3489.01 5089.85 3393.72 3575.42 4592.28 1180.49 7294.36 1394.87 6581.46 2492.49 4991.42 4193.27 5393.54 17
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
UA-Net89.02 3391.44 3986.20 2894.88 189.84 3494.76 2977.45 2885.41 7074.79 10588.83 7788.90 13678.67 4096.06 795.45 496.66 395.58 2
SD-MVS89.91 1892.23 3087.19 2191.31 2489.79 3594.31 3275.34 4789.26 3681.79 6792.68 3195.08 6283.88 1193.10 3992.69 2596.54 493.02 24
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSLP-MVS++86.29 5789.10 5583.01 5885.71 8189.79 3587.04 10374.39 5185.17 7278.92 8677.59 15593.57 8582.60 1793.23 3691.88 3989.42 10692.46 30
SED-MVS88.96 3792.37 2284.99 4088.64 5489.65 3795.11 2575.98 4290.73 2380.15 7794.21 1594.51 7476.59 5692.94 4191.17 4593.46 5093.37 22
OPM-MVS89.82 2192.24 2986.99 2290.86 3389.35 3895.07 2775.91 4391.16 1686.87 3091.07 5197.29 1879.13 3493.32 3591.99 3794.12 4091.49 40
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMH+79.05 1189.62 2693.08 885.58 3288.58 5589.26 3992.18 4574.23 5293.55 882.66 5892.32 3698.35 780.29 2995.28 1892.34 3195.52 2290.43 48
WR-MVS_H88.99 3593.28 683.99 5391.92 1189.13 4091.95 4683.23 190.14 2971.92 12495.85 498.01 1071.83 9795.82 993.19 2293.07 5990.83 47
PLCcopyleft76.06 1585.38 6387.46 7182.95 6185.79 8088.84 4188.86 8368.70 8887.06 5683.60 4879.02 14490.05 12777.37 5290.88 7089.66 5993.37 5286.74 76
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PMVScopyleft79.51 990.23 1492.67 1487.39 2090.16 3988.75 4293.64 3675.78 4490.00 3283.70 4792.97 2892.22 10386.13 497.01 396.79 294.94 2890.96 45
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
TAPA-MVS78.00 1385.88 5888.37 6182.96 6084.69 8688.62 4390.62 5864.22 12989.15 3788.05 1478.83 14893.71 8276.20 6190.11 8088.22 7194.00 4189.97 51
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
RPSCF88.05 4692.61 1782.73 6584.24 9588.40 4490.04 7266.29 10791.46 1382.29 6088.93 7596.01 3879.38 3295.15 2194.90 694.15 3993.40 20
PCF-MVS76.59 1484.11 7485.27 9282.76 6486.12 7788.30 4591.24 5169.10 8282.36 9584.45 4377.56 15690.40 12672.91 8885.88 11683.88 11392.72 6488.53 63
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CDPH-MVS86.66 5488.52 5984.48 4589.61 4588.27 4692.86 4272.69 6180.55 11882.71 5686.92 9893.32 8975.55 6791.00 6889.85 5693.47 4989.71 53
WR-MVS89.79 2393.66 585.27 3791.32 2388.27 4693.49 3879.86 1092.75 975.37 10196.86 198.38 575.10 7195.93 894.07 1496.46 589.39 56
PS-CasMVS89.07 3293.23 784.21 5092.44 888.23 4890.54 6282.95 390.50 2575.31 10295.80 698.37 671.16 10096.30 593.32 2192.88 6190.11 50
DTE-MVSNet88.99 3592.77 1284.59 4393.31 288.10 4990.96 5383.09 291.38 1476.21 9596.03 298.04 870.78 10695.65 1492.32 3293.18 5687.84 70
CP-MVSNet88.71 4192.63 1584.13 5192.39 988.09 5090.47 6682.86 488.79 4175.16 10394.87 997.68 1371.05 10296.16 693.18 2392.85 6289.64 54
PEN-MVS88.86 3992.92 984.11 5292.92 488.05 5190.83 5582.67 591.04 1874.83 10495.97 398.47 370.38 10795.70 1392.43 3093.05 6088.78 62
ambc88.38 6091.62 1787.97 5284.48 12288.64 4387.93 1587.38 9194.82 6874.53 7689.14 8883.86 11585.94 15086.84 75
SF-MVS87.85 4890.95 4484.22 4988.17 6087.90 5390.80 5671.80 6589.28 3482.70 5789.90 6095.37 5477.91 4791.69 5490.04 5493.95 4492.47 29
TSAR-MVS + COLMAP85.51 6088.36 6282.19 6786.05 7887.69 5490.50 6570.60 7286.40 6082.33 5989.69 6492.52 9874.01 8187.53 10086.84 8389.63 10187.80 71
PHI-MVS86.37 5688.14 6584.30 4786.65 7387.56 5590.76 5770.16 7382.55 9289.65 784.89 11792.40 9975.97 6390.88 7089.70 5892.58 6589.03 60
CNLPA85.50 6188.58 5781.91 7184.55 9087.52 5690.89 5463.56 13988.18 4584.06 4483.85 12691.34 11876.46 5891.27 6089.00 6691.96 7488.88 61
CNVR-MVS86.93 5188.98 5684.54 4490.11 4087.41 5793.23 4073.47 5586.31 6282.25 6182.96 12992.15 10476.04 6291.69 5490.69 4792.17 7391.64 39
NCCC86.74 5287.97 6885.31 3690.64 3587.25 5893.27 3974.59 4986.50 5983.72 4675.92 17292.39 10077.08 5391.72 5390.68 4892.57 6791.30 42
ACMH78.40 1288.94 3892.62 1684.65 4286.45 7487.16 5991.47 4968.79 8795.49 289.74 693.55 1998.50 277.96 4694.14 3189.57 6193.49 4789.94 52
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
AdaColmapbinary84.15 7385.14 9583.00 5989.08 4987.14 6090.56 6170.90 6982.40 9480.41 7373.82 18384.69 15675.19 7091.58 5789.90 5591.87 7686.48 77
MCST-MVS84.79 6986.48 7782.83 6387.30 6787.03 6190.46 6769.33 8183.14 8682.21 6381.69 13792.14 10575.09 7287.27 10384.78 10692.58 6589.30 57
MVS_030484.73 7086.19 8183.02 5788.32 5686.71 6291.55 4870.87 7073.79 14782.88 5485.13 11393.35 8872.55 8988.62 9187.69 7491.93 7588.05 69
HQP-MVS85.02 6686.41 7983.40 5489.19 4886.59 6391.28 5071.60 6782.79 8983.48 5178.65 15093.54 8672.55 8986.49 11185.89 9592.28 7290.95 46
Effi-MVS+-dtu82.04 9883.39 12580.48 8985.48 8286.57 6488.40 8668.28 9369.04 17273.13 11776.26 16791.11 12074.74 7588.40 9487.76 7392.84 6384.57 90
LTVRE_ROB86.82 191.55 394.43 388.19 1083.19 11186.35 6593.60 3778.79 1895.48 391.79 293.08 2697.21 2086.34 397.06 296.27 395.46 2395.56 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PVSNet_Blended_VisFu83.00 8884.16 11581.65 7482.17 12386.01 6688.03 8871.23 6876.05 14079.54 8183.88 12583.44 15777.49 5187.38 10184.93 10491.41 8087.40 74
MAR-MVS81.98 9982.92 12780.88 8085.18 8585.85 6789.13 8069.52 7671.21 16182.25 6171.28 19388.89 13769.69 10988.71 8986.96 7989.52 10387.57 72
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CLD-MVS82.75 9387.22 7477.54 10988.01 6285.76 6890.23 6954.52 18682.28 9682.11 6588.48 8095.27 5563.95 13989.41 8588.29 7086.45 14381.01 125
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HPM-MVS++copyleft88.74 4089.54 5287.80 1592.58 685.69 6995.10 2678.01 2287.08 5587.66 1987.89 8592.07 10680.28 3090.97 6991.41 4393.17 5791.69 37
TSAR-MVS + GP.85.32 6487.41 7382.89 6290.07 4185.69 6989.07 8172.99 6082.45 9374.52 10885.09 11487.67 14279.24 3391.11 6490.41 5091.45 7989.45 55
DPM-MVS81.42 10482.11 13180.62 8687.54 6485.30 7190.18 7168.96 8481.00 11479.15 8470.45 19983.29 15967.67 12182.81 14383.46 11790.19 9388.48 64
CANet82.84 9084.60 10680.78 8187.30 6785.20 7290.23 6969.00 8372.16 15778.73 8784.49 12290.70 12469.54 11287.65 9986.17 9089.87 9885.84 82
3Dnovator79.41 1082.21 9586.07 8477.71 10679.31 14284.61 7387.18 9861.02 16085.65 6676.11 9685.07 11585.38 15470.96 10487.22 10486.47 8591.66 7788.12 68
EPP-MVSNet82.76 9286.47 7878.45 10286.00 7984.47 7485.39 11468.42 9184.17 7962.97 16289.26 7076.84 18272.13 9492.56 4890.40 5195.76 2087.56 73
UniMVSNet (Re)84.95 6788.53 5880.78 8187.82 6384.21 7588.03 8876.50 3781.18 11169.29 13892.63 3496.83 2269.07 11491.23 6289.60 6093.97 4384.00 97
UGNet79.62 11985.91 8672.28 14373.52 17883.91 7686.64 10569.51 7779.85 12362.57 16485.82 10889.63 12853.18 18388.39 9587.35 7788.28 12586.43 78
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_NR-MVSNet84.62 7188.00 6780.68 8588.18 5983.83 7787.06 10176.47 3881.46 10770.49 13293.24 2395.56 4868.13 11790.43 7388.47 6893.78 4583.02 105
TranMVSNet+NR-MVSNet85.23 6589.38 5380.39 9088.78 5383.77 7887.40 9576.75 3485.47 6868.99 14095.18 897.55 1667.13 12491.61 5689.13 6593.26 5482.95 108
UniMVSNet_ETH3D85.39 6291.12 4378.71 9990.48 3783.72 7981.76 13982.41 693.84 664.43 15895.41 798.76 163.72 14193.63 3389.74 5789.47 10582.74 111
v7n87.11 5090.46 4883.19 5685.22 8483.69 8090.03 7368.20 9591.01 1986.71 3394.80 1098.46 477.69 4891.10 6585.98 9291.30 8388.19 65
DU-MVS84.88 6888.27 6480.92 7988.30 5783.59 8187.06 10178.35 1980.64 11670.49 13292.67 3296.91 2168.13 11791.79 5189.29 6493.20 5583.02 105
NR-MVSNet82.89 8987.43 7277.59 10883.91 10183.59 8187.10 10078.35 1980.64 11668.85 14192.67 3296.50 2454.19 17987.19 10688.68 6793.16 5882.75 110
Vis-MVSNetpermissive83.32 8488.12 6677.71 10677.91 15783.44 8390.58 5969.49 7881.11 11267.10 15289.85 6191.48 11671.71 9891.34 5989.37 6289.48 10490.26 49
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
canonicalmvs81.22 10886.04 8575.60 11983.17 11283.18 8480.29 14965.82 11685.97 6567.98 14877.74 15491.51 11565.17 13588.62 9186.15 9191.17 8689.09 58
v1083.17 8785.22 9480.78 8183.26 11082.99 8588.66 8566.49 10679.24 12783.60 4891.46 4695.47 5074.12 7882.60 14680.66 14088.53 12284.11 96
DROMVSNet83.70 7784.77 10482.46 6687.47 6682.79 8685.50 11172.00 6369.81 16577.66 9285.02 11689.63 12878.14 4490.40 7487.56 7594.00 4188.16 66
train_agg86.67 5387.73 6985.43 3591.51 1982.72 8794.47 3174.22 5381.71 10081.54 7089.20 7192.87 9478.33 4390.12 7988.47 6892.51 6989.04 59
DELS-MVS79.71 11683.74 12175.01 12679.31 14282.68 8884.79 12060.06 16775.43 14369.09 13986.13 10489.38 13167.16 12385.12 12283.87 11489.65 10083.57 100
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
IS_MVSNet81.72 10185.01 9677.90 10586.19 7682.64 8985.56 11070.02 7480.11 12163.52 16087.28 9381.18 16767.26 12291.08 6789.33 6394.82 3183.42 102
SixPastTwentyTwo89.14 2992.19 3185.58 3284.62 8882.56 9090.53 6371.93 6491.95 1285.89 3594.22 1497.25 1985.42 595.73 1291.71 4095.08 2791.89 36
MSDG81.39 10684.23 11378.09 10482.40 12182.47 9185.31 11760.91 16179.73 12480.26 7586.30 10288.27 14069.67 11087.20 10584.98 10389.97 9680.67 127
EG-PatchMatch MVS84.35 7287.55 7080.62 8686.38 7582.24 9286.75 10464.02 13484.24 7878.17 9189.38 6895.03 6478.78 3789.95 8186.33 8989.59 10285.65 84
v119283.61 7885.23 9381.72 7384.05 9782.15 9389.54 7666.20 10881.38 10986.76 3291.79 4296.03 3674.88 7481.81 15180.92 13988.91 11382.50 113
QAPM80.43 11184.34 10975.86 11779.40 14182.06 9479.86 15461.94 15483.28 8574.73 10781.74 13685.44 15370.97 10384.99 12884.71 10888.29 12488.14 67
v882.20 9684.56 10779.45 9582.42 12081.65 9587.26 9764.27 12879.36 12681.70 6891.04 5295.75 4473.30 8782.82 14279.18 15387.74 13082.09 116
v114483.22 8585.01 9681.14 7783.76 10581.60 9688.95 8265.58 11881.89 9985.80 3691.68 4495.84 4174.04 8082.12 14880.56 14288.70 11781.41 122
CS-MVS83.57 8084.79 10382.14 6883.83 10381.48 9787.29 9666.54 10572.73 15380.05 7884.04 12493.12 9380.35 2889.50 8386.34 8894.76 3486.32 80
TinyColmap83.79 7686.12 8281.07 7883.42 10881.44 9885.42 11368.55 9088.71 4289.46 887.60 8792.72 9570.34 10889.29 8681.94 13189.20 10781.12 124
Effi-MVS+82.33 9483.87 11880.52 8884.51 9381.32 9987.53 9368.05 9674.94 14579.67 8082.37 13492.31 10172.21 9185.06 12386.91 8191.18 8584.20 94
v124083.57 8084.94 9981.97 7084.05 9781.27 10089.46 7866.06 11081.31 11087.50 2091.88 4195.46 5176.25 6081.16 15680.51 14388.52 12382.98 107
v14419283.43 8384.97 9881.63 7583.43 10781.23 10189.42 7966.04 11281.45 10886.40 3491.46 4695.70 4675.76 6682.14 14780.23 14688.74 11582.57 112
v192192083.49 8284.94 9981.80 7283.78 10481.20 10289.50 7765.91 11381.64 10287.18 2491.70 4395.39 5375.85 6481.56 15480.27 14588.60 11882.80 109
DCV-MVSNet80.04 11385.67 9073.48 13782.91 11581.11 10380.44 14866.06 11085.01 7362.53 16578.84 14794.43 7658.51 16088.66 9085.91 9390.41 9185.73 83
CS-MVS-test83.59 7984.86 10182.10 6983.04 11381.05 10491.58 4767.48 10272.52 15478.42 8984.75 11991.82 11178.62 4191.98 5087.54 7693.48 4884.35 92
EIA-MVS78.57 12977.90 14979.35 9787.24 6980.71 10586.16 10864.03 13362.63 20073.49 11473.60 18476.12 18673.83 8288.49 9384.93 10491.36 8178.78 143
Fast-Effi-MVS+81.42 10483.82 12078.62 10182.24 12280.62 10687.72 9163.51 14073.01 14974.75 10683.80 12792.70 9673.44 8688.15 9885.26 10090.05 9483.17 103
casdiffmvs_mvgpermissive81.50 10385.70 8876.60 11582.68 11880.54 10783.50 12664.49 12783.40 8372.53 11892.15 3795.40 5265.84 13284.69 13081.89 13290.59 9081.86 120
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test250675.32 15076.87 15873.50 13684.55 9080.37 10879.63 15773.23 5782.64 9055.41 18176.87 16245.42 22459.61 15590.35 7686.46 8688.58 12075.98 154
ECVR-MVScopyleft79.31 12484.20 11473.60 13484.55 9080.37 10879.63 15773.23 5782.64 9055.98 17887.50 8886.85 14659.61 15590.35 7686.46 8688.58 12075.26 160
MVS_111021_HR83.95 7586.10 8381.44 7684.62 8880.29 11090.51 6468.05 9684.07 8180.38 7484.74 12091.37 11774.23 7790.37 7587.25 7890.86 8984.59 89
v2v48282.20 9684.26 11179.81 9382.67 11980.18 11187.67 9263.96 13681.69 10184.73 4191.27 4996.33 3172.05 9581.94 15079.56 15087.79 12978.84 142
GeoE81.92 10083.87 11879.66 9484.64 8779.87 11289.75 7465.90 11476.12 13975.87 9884.62 12192.23 10271.96 9686.83 10883.60 11689.83 9983.81 98
IterMVS-SCA-FT77.23 13479.18 14374.96 12876.67 16979.85 11375.58 18361.34 15873.10 14873.79 11286.23 10379.61 17179.00 3680.28 16375.50 17283.41 16979.70 138
OpenMVScopyleft75.38 1678.44 13081.39 13574.99 12780.46 13279.85 11379.99 15158.31 17577.34 13473.85 11177.19 15982.33 16568.60 11684.67 13181.95 13088.72 11686.40 79
ETV-MVS79.01 12777.98 14880.22 9186.69 7279.73 11588.80 8468.27 9463.22 19571.56 12670.25 20173.63 19273.66 8490.30 7886.77 8492.33 7181.95 118
Anonymous2023121179.37 12185.78 8771.89 14482.87 11779.66 11678.77 16363.93 13783.36 8459.39 16990.54 5394.66 7056.46 16787.38 10184.12 11189.92 9780.74 126
test111179.67 11784.40 10874.16 13285.29 8379.56 11781.16 14373.13 5984.65 7756.08 17788.38 8186.14 14960.49 15189.78 8285.59 9788.79 11476.68 151
Anonymous20240521184.68 10583.92 10079.45 11879.03 16167.79 9882.01 9888.77 7992.58 9755.93 17086.68 10984.26 11088.92 11278.98 141
Fast-Effi-MVS+-dtu76.92 13677.18 15476.62 11479.55 13979.17 11984.80 11977.40 2964.46 19068.75 14370.81 19786.57 14763.36 14681.74 15281.76 13385.86 15175.78 156
FMVSNet178.20 13284.83 10270.46 15478.62 14979.03 12077.90 16567.53 10183.02 8755.10 18387.19 9593.18 9155.65 17285.57 11783.39 11987.98 12782.40 114
casdiffmvspermissive79.93 11484.11 11675.05 12481.41 12978.99 12182.95 13162.90 14781.53 10468.60 14591.94 3896.03 3665.84 13282.89 14177.07 16488.59 11980.34 133
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
USDC81.39 10683.07 12679.43 9681.48 12778.95 12282.62 13466.17 10987.45 5290.73 482.40 13393.65 8466.57 12783.63 13877.97 15689.00 11177.45 150
Gipumacopyleft86.47 5589.25 5483.23 5583.88 10278.78 12385.35 11568.42 9192.69 1089.03 1191.94 3896.32 3281.80 2194.45 2686.86 8290.91 8883.69 99
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PVSNet_BlendedMVS76.45 14178.12 14674.49 13076.76 16278.46 12479.65 15563.26 14365.42 18673.15 11575.05 17788.96 13466.51 12882.73 14477.66 15987.61 13178.60 145
PVSNet_Blended76.45 14178.12 14674.49 13076.76 16278.46 12479.65 15563.26 14365.42 18673.15 11575.05 17788.96 13466.51 12882.73 14477.66 15987.61 13178.60 145
HyFIR lowres test73.29 15974.14 17572.30 14273.08 18078.33 12683.12 12862.41 15163.81 19262.13 16676.67 16478.50 17571.09 10174.13 18577.47 16281.98 17370.10 175
MVS_111021_LR83.20 8685.33 9180.73 8482.88 11678.23 12789.61 7565.23 12082.08 9781.19 7185.31 11192.04 10975.22 6989.50 8385.90 9490.24 9284.23 93
CANet_DTU75.04 15278.45 14471.07 14777.27 15977.96 12883.88 12558.00 17664.11 19168.67 14475.65 17488.37 13953.92 18182.05 14981.11 13684.67 16079.88 137
IterMVS-LS79.79 11582.56 12976.56 11681.83 12577.85 12979.90 15369.42 8078.93 12971.21 12890.47 5485.20 15570.86 10580.54 16180.57 14186.15 14584.36 91
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FC-MVSNet-train79.20 12586.29 8070.94 15084.06 9677.67 13085.68 10964.11 13182.90 8852.22 19492.57 3593.69 8349.52 19488.30 9686.93 8090.03 9581.95 118
pmmvs680.46 11088.34 6371.26 14681.96 12477.51 13177.54 16668.83 8693.72 755.92 17993.94 1898.03 955.94 16989.21 8785.61 9687.36 13480.38 129
IB-MVS71.28 1775.21 15177.00 15673.12 14176.76 16277.45 13283.05 12958.92 17263.01 19664.31 15959.99 21487.57 14368.64 11586.26 11482.34 12987.05 13782.36 115
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GBi-Net73.17 16077.64 15067.95 17076.76 16277.36 13375.77 17864.57 12462.99 19751.83 19576.05 16877.76 17852.73 18785.57 11783.39 11986.04 14780.37 130
test173.17 16077.64 15067.95 17076.76 16277.36 13375.77 17864.57 12462.99 19751.83 19576.05 16877.76 17852.73 18785.57 11783.39 11986.04 14780.37 130
FMVSNet274.43 15579.70 13968.27 16776.76 16277.36 13375.77 17865.36 11972.28 15552.97 18981.92 13585.61 15252.73 18780.66 16079.73 14986.04 14780.37 130
EPNet79.36 12279.44 14179.27 9889.51 4677.20 13688.35 8777.35 3168.27 17474.29 10976.31 16579.22 17259.63 15485.02 12785.45 9986.49 14284.61 88
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IterMVS73.62 15776.53 16070.23 15571.83 18577.18 13780.69 14653.22 19372.23 15666.62 15485.21 11278.96 17369.54 11276.28 18071.63 18379.45 17774.25 163
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
V4279.59 12083.59 12374.93 12969.61 19177.05 13886.59 10655.84 18178.42 13177.29 9389.84 6295.08 6274.12 7883.05 13980.11 14886.12 14681.59 121
DI_MVS_plusplus_trai77.64 13379.64 14075.31 12279.87 13776.89 13981.55 14263.64 13876.21 13872.03 12385.59 11082.97 16166.63 12679.27 16777.78 15888.14 12678.76 144
FMVSNet371.40 17175.20 17266.97 17475.00 17676.59 14074.29 18564.57 12462.99 19751.83 19576.05 16877.76 17851.49 19276.58 17777.03 16584.62 16179.43 140
tfpn200view972.01 16775.40 16968.06 16977.97 15576.44 14177.04 17062.67 14866.81 17750.82 19967.30 20575.67 18852.46 19085.06 12382.64 12787.41 13373.86 164
anonymousdsp85.62 5990.53 4679.88 9264.64 20776.35 14296.28 1253.53 19285.63 6781.59 6992.81 3097.71 1286.88 294.56 2592.83 2496.35 693.84 9
thres600view774.34 15678.43 14569.56 16080.47 13176.28 14378.65 16462.56 14977.39 13352.53 19074.03 18176.78 18355.90 17185.06 12385.19 10187.25 13574.29 162
thres20072.41 16676.00 16668.21 16878.28 15176.28 14374.94 18462.56 14972.14 15851.35 19869.59 20376.51 18454.89 17485.06 12380.51 14387.25 13571.92 170
TransMVSNet (Re)79.05 12686.66 7570.18 15683.32 10975.99 14577.54 16663.98 13590.68 2455.84 18094.80 1096.06 3553.73 18286.27 11383.22 12386.65 13879.61 139
FPMVS81.56 10284.04 11778.66 10082.92 11475.96 14686.48 10765.66 11784.67 7671.47 12777.78 15383.22 16077.57 5091.24 6190.21 5287.84 12885.21 86
v14879.33 12382.32 13075.84 11880.14 13475.74 14781.98 13857.06 17881.51 10679.36 8389.42 6696.42 2771.32 9981.54 15575.29 17385.20 15776.32 152
pm-mvs178.21 13185.68 8969.50 16180.38 13375.73 14876.25 17465.04 12187.59 5054.47 18593.16 2595.99 4054.20 17886.37 11282.98 12686.64 13977.96 148
GA-MVS75.01 15376.39 16173.39 13878.37 15075.66 14980.03 15058.40 17470.51 16375.85 9983.24 12876.14 18563.75 14077.28 17376.62 16783.97 16475.30 159
Baseline_NR-MVSNet82.79 9186.51 7678.44 10388.30 5775.62 15087.81 9074.97 4881.53 10466.84 15394.71 1296.46 2566.90 12591.79 5183.37 12285.83 15282.09 116
FA-MVS(training)78.93 12880.63 13776.93 11179.79 13875.57 15185.44 11261.95 15377.19 13578.97 8584.82 11882.47 16266.43 13084.09 13580.13 14789.02 11080.15 136
ET-MVSNet_ETH3D74.71 15474.19 17475.31 12279.22 14475.29 15282.70 13364.05 13265.45 18570.96 13177.15 16057.70 21265.89 13184.40 13381.65 13489.03 10977.67 149
SCA68.54 18167.52 19169.73 15867.79 19675.04 15376.96 17168.94 8566.41 17967.86 14974.03 18160.96 20365.55 13468.99 20165.67 19571.30 19361.54 199
tfpnnormal77.16 13584.26 11168.88 16481.02 13075.02 15476.52 17363.30 14287.29 5352.40 19291.24 5093.97 7954.85 17685.46 12081.08 13785.18 15875.76 157
MVS_Test76.72 13879.40 14273.60 13478.85 14874.99 15579.91 15261.56 15669.67 16672.44 11985.98 10790.78 12263.50 14478.30 16975.74 17185.33 15680.31 134
thres40073.13 16276.99 15768.62 16579.46 14074.93 15677.23 16861.23 15975.54 14152.31 19372.20 18877.10 18154.89 17482.92 14082.62 12886.57 14173.66 167
thisisatest051581.18 10984.32 11077.52 11076.73 16874.84 15785.06 11861.37 15781.05 11373.95 11088.79 7889.25 13375.49 6885.98 11584.78 10692.53 6885.56 85
Vis-MVSNet (Re-imp)76.15 14380.84 13670.68 15183.66 10674.80 15881.66 14169.59 7580.48 11946.94 20387.44 9080.63 16953.14 18486.87 10784.56 10989.12 10871.12 171
MDA-MVSNet-bldmvs76.51 13982.87 12869.09 16350.71 21874.72 15984.05 12460.27 16581.62 10371.16 12988.21 8391.58 11369.62 11192.78 4477.48 16178.75 18073.69 166
diffmvspermissive76.74 13781.61 13471.06 14875.64 17374.45 16080.68 14757.57 17777.48 13267.62 15188.95 7493.94 8061.98 14879.74 16476.18 16882.85 17080.50 128
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tttt051775.86 14776.23 16375.42 12075.55 17474.06 16182.73 13260.31 16369.24 16870.24 13479.18 14358.79 21072.17 9284.49 13283.08 12491.54 7884.80 87
thisisatest053075.54 14975.95 16775.05 12475.08 17573.56 16282.15 13760.31 16369.17 16969.32 13779.02 14458.78 21172.17 9283.88 13683.08 12491.30 8384.20 94
gm-plane-assit71.56 16969.99 18473.39 13884.43 9473.21 16390.42 6851.36 19984.08 8076.00 9791.30 4837.09 22559.01 15873.65 18870.24 18779.09 17960.37 200
CDS-MVSNet73.07 16377.02 15568.46 16681.62 12672.89 16479.56 15970.78 7169.56 16752.52 19177.37 15881.12 16842.60 20284.20 13483.93 11283.65 16570.07 176
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
pmmvs-eth3d79.64 11882.06 13276.83 11280.05 13572.64 16587.47 9466.59 10480.83 11573.50 11389.32 6993.20 9067.78 11980.78 15981.64 13585.58 15576.01 153
thres100view90069.86 17472.97 18166.24 17777.97 15572.49 16673.29 18859.12 17066.81 17750.82 19967.30 20575.67 18850.54 19378.24 17079.40 15185.71 15470.88 172
PM-MVS80.42 11283.63 12276.67 11378.04 15472.37 16787.14 9960.18 16680.13 12071.75 12586.12 10593.92 8177.08 5386.56 11085.12 10285.83 15281.18 123
MS-PatchMatch71.18 17273.99 17667.89 17277.16 16071.76 16877.18 16956.38 18067.35 17555.04 18474.63 17975.70 18762.38 14776.62 17675.97 17079.22 17875.90 155
pmmvs475.92 14577.48 15374.10 13378.21 15370.94 16984.06 12364.78 12375.13 14468.47 14684.12 12383.32 15864.74 13875.93 18179.14 15484.31 16273.77 165
our_test_373.27 17970.91 17083.26 127
baseline169.62 17573.55 17865.02 18678.95 14770.39 17171.38 19462.03 15270.97 16247.95 20278.47 15168.19 19847.77 19879.65 16676.94 16682.05 17270.27 174
EU-MVSNet76.48 14080.53 13871.75 14567.62 19770.30 17281.74 14054.06 18975.47 14271.01 13080.10 13993.17 9273.67 8383.73 13777.85 15782.40 17183.07 104
MVSTER68.08 18369.73 18566.16 17866.33 20570.06 17375.71 18152.36 19555.18 21458.64 17170.23 20256.72 21557.34 16479.68 16576.03 16986.61 14080.20 135
CVMVSNet75.65 14877.62 15273.35 14071.95 18469.89 17483.04 13060.84 16269.12 17068.76 14279.92 14278.93 17473.64 8581.02 15781.01 13881.86 17483.43 101
PatchMatch-RL76.05 14476.64 15975.36 12177.84 15869.87 17581.09 14563.43 14171.66 15968.34 14771.70 18981.76 16674.98 7384.83 12983.44 11886.45 14373.22 168
baseline268.71 18068.34 18969.14 16275.69 17269.70 17676.60 17255.53 18360.13 20562.07 16766.76 20760.35 20560.77 15076.53 17974.03 17584.19 16370.88 172
FC-MVSNet-test75.91 14683.59 12366.95 17576.63 17069.07 17785.33 11664.97 12284.87 7541.95 20893.17 2487.04 14447.78 19791.09 6685.56 9885.06 15974.34 161
gg-mvs-nofinetune72.68 16575.21 17169.73 15881.48 12769.04 17870.48 19576.67 3586.92 5767.80 15088.06 8464.67 20042.12 20477.60 17173.65 17679.81 17666.57 183
CHOSEN 1792x268868.80 17971.09 18266.13 17969.11 19368.89 17978.98 16254.68 18461.63 20256.69 17471.56 19078.39 17667.69 12072.13 19272.01 18269.63 19873.02 169
CostFormer66.81 18666.94 19266.67 17672.79 18268.25 18079.55 16055.57 18265.52 18462.77 16376.98 16160.09 20656.73 16665.69 20962.35 19872.59 18769.71 177
CR-MVSNet69.56 17668.34 18970.99 14972.78 18367.63 18164.47 20767.74 9959.93 20672.30 12080.10 13956.77 21465.04 13671.64 19372.91 17983.61 16769.40 178
RPMNet67.02 18563.99 20070.56 15371.55 18667.63 18175.81 17669.44 7959.93 20663.24 16164.32 20947.51 22359.68 15370.37 19869.64 18983.64 16668.49 181
test20.0369.91 17376.20 16462.58 18884.01 9967.34 18375.67 18265.88 11579.98 12240.28 21282.65 13089.31 13239.63 20777.41 17273.28 17769.98 19663.40 191
testgi68.20 18276.05 16559.04 19479.99 13667.32 18481.16 14351.78 19784.91 7439.36 21373.42 18595.19 5732.79 21376.54 17870.40 18669.14 19964.55 187
pmmvs568.91 17874.35 17362.56 18967.45 19966.78 18571.70 19151.47 19867.17 17656.25 17682.41 13288.59 13847.21 19973.21 19174.23 17481.30 17568.03 182
baseline69.33 17775.37 17062.28 19066.54 20366.67 18673.95 18748.07 20266.10 18059.26 17082.45 13186.30 14854.44 17774.42 18473.25 17871.42 19178.43 147
GG-mvs-BLEND41.63 21560.36 21019.78 2150.14 22666.04 18755.66 2170.17 22357.64 2102.42 22551.82 21569.42 1970.28 22264.11 21258.29 20660.02 20755.18 209
tpm cat164.79 19162.74 20567.17 17374.61 17765.91 18876.18 17559.32 16964.88 18966.41 15571.21 19453.56 22059.17 15761.53 21358.16 20767.33 20263.95 188
dps65.14 18864.50 19865.89 18271.41 18765.81 18971.44 19361.59 15558.56 20961.43 16875.45 17552.70 22158.06 16269.57 20064.65 19671.39 19264.77 186
MDTV_nov1_ep13_2view72.96 16475.59 16869.88 15771.15 18864.86 19082.31 13654.45 18776.30 13778.32 9086.52 10091.58 11361.35 14976.80 17466.83 19471.70 18866.26 184
MIMVSNet173.40 15881.85 13363.55 18772.90 18164.37 19184.58 12153.60 19190.84 2053.92 18687.75 8696.10 3345.31 20085.37 12179.32 15270.98 19569.18 180
test0.0.03 161.79 20065.33 19657.65 19779.07 14564.09 19268.51 20462.93 14561.59 20333.71 21661.58 21371.58 19633.43 21270.95 19668.68 19168.26 20158.82 203
CMPMVSbinary55.74 1871.56 16976.26 16266.08 18068.11 19563.91 19363.17 20950.52 20168.79 17375.49 10070.78 19885.67 15163.54 14381.58 15377.20 16375.63 18285.86 81
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous2023120667.28 18473.41 17960.12 19376.45 17163.61 19474.21 18656.52 17976.35 13642.23 20775.81 17390.47 12541.51 20574.52 18269.97 18869.83 19763.17 192
MDTV_nov1_ep1364.96 18964.77 19765.18 18567.08 20062.46 19575.80 17751.10 20062.27 20169.74 13574.12 18062.65 20155.64 17368.19 20362.16 20271.70 18861.57 198
EPNet_dtu71.90 16873.03 18070.59 15278.28 15161.64 19682.44 13564.12 13063.26 19469.74 13571.47 19182.41 16351.89 19178.83 16878.01 15577.07 18175.60 158
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchT66.25 18766.76 19365.67 18355.87 21360.75 19770.17 19659.00 17159.80 20872.30 12078.68 14954.12 21965.04 13671.64 19372.91 17971.63 19069.40 178
FMVSNet556.37 20960.14 21151.98 20960.83 20959.58 19866.85 20642.37 20852.68 21641.33 21047.09 21754.68 21835.28 21073.88 18670.77 18565.24 20562.26 195
MIMVSNet63.02 19269.02 18756.01 19968.20 19459.26 19970.01 19853.79 19071.56 16041.26 21171.38 19282.38 16436.38 20971.43 19567.32 19366.45 20459.83 202
PatchmatchNetpermissive64.81 19063.74 20166.06 18169.21 19258.62 20073.16 18960.01 16865.92 18166.19 15676.27 16659.09 20760.45 15266.58 20661.47 20467.33 20258.24 205
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
pmmvs362.72 19568.71 18855.74 20050.74 21757.10 20170.05 19728.82 21561.57 20457.39 17371.19 19585.73 15053.96 18073.36 19069.43 19073.47 18662.55 194
TAMVS63.02 19269.30 18655.70 20170.12 18956.89 20269.63 19945.13 20570.23 16438.00 21477.79 15275.15 19042.60 20274.48 18372.81 18168.70 20057.75 207
Patchmtry56.88 20364.47 20767.74 9972.30 120
test-mter59.39 20361.59 20756.82 19853.21 21454.82 20473.12 19026.57 21753.19 21556.31 17564.71 20860.47 20456.36 16868.69 20264.27 19775.38 18365.00 185
tpm62.79 19463.25 20262.26 19170.09 19053.78 20571.65 19247.31 20365.72 18376.70 9480.62 13856.40 21748.11 19664.20 21158.54 20559.70 20863.47 190
new-patchmatchnet62.59 19773.79 17749.53 21076.98 16153.57 20653.46 21854.64 18585.43 6928.81 21791.94 3896.41 2825.28 21576.80 17453.66 21457.99 21158.69 204
tpmrst59.42 20260.02 21258.71 19567.56 19853.10 20766.99 20551.88 19663.80 19357.68 17276.73 16356.49 21648.73 19556.47 21755.55 21059.43 20958.02 206
test-LLR62.15 19859.46 21465.29 18479.07 14552.66 20869.46 20162.93 14550.76 21753.81 18763.11 21158.91 20852.87 18566.54 20762.34 19973.59 18461.87 196
TESTMET0.1,157.21 20659.46 21454.60 20450.95 21652.66 20869.46 20126.91 21650.76 21753.81 18763.11 21158.91 20852.87 18566.54 20762.34 19973.59 18461.87 196
PMMVS61.98 19965.61 19557.74 19645.03 21951.76 21069.54 20035.05 21255.49 21355.32 18268.23 20478.39 17658.09 16170.21 19971.56 18483.42 16863.66 189
EPMVS56.62 20859.77 21352.94 20762.41 20850.55 21160.66 21252.83 19465.15 18841.80 20977.46 15757.28 21342.68 20159.81 21554.82 21157.23 21253.35 210
pmnet_mix0262.60 19670.81 18353.02 20666.56 20250.44 21262.81 21046.84 20479.13 12843.76 20687.45 8990.75 12339.85 20670.48 19757.09 20858.27 21060.32 201
EMVS58.97 20562.63 20654.70 20366.26 20648.71 21361.74 21142.71 20772.80 15246.00 20473.01 18771.66 19457.91 16380.41 16250.68 21753.55 21541.11 217
ADS-MVSNet56.89 20761.09 20852.00 20859.48 21048.10 21458.02 21454.37 18872.82 15149.19 20175.32 17665.97 19937.96 20859.34 21654.66 21252.99 21651.42 212
E-PMN59.07 20462.79 20454.72 20267.01 20147.81 21560.44 21343.40 20672.95 15044.63 20570.42 20073.17 19358.73 15980.97 15851.98 21554.14 21442.26 216
MVS-HIRNet59.74 20158.74 21760.92 19257.74 21245.81 21656.02 21658.69 17355.69 21265.17 15770.86 19671.66 19456.75 16561.11 21453.74 21371.17 19452.28 211
new_pmnet52.29 21263.16 20339.61 21358.89 21144.70 21748.78 22034.73 21365.88 18217.85 22173.42 18580.00 17023.06 21667.00 20562.28 20154.36 21348.81 213
N_pmnet54.95 21165.90 19442.18 21166.37 20443.86 21857.92 21539.79 21079.54 12517.24 22286.31 10187.91 14125.44 21464.68 21051.76 21646.33 21747.23 214
CHOSEN 280x42056.32 21058.85 21653.36 20551.63 21539.91 21969.12 20338.61 21156.29 21136.79 21548.84 21662.59 20263.39 14573.61 18967.66 19260.61 20663.07 193
PMMVS248.13 21464.06 19929.55 21444.06 22036.69 22051.95 21929.97 21474.75 1468.90 22476.02 17191.24 1197.53 21873.78 18755.91 20934.87 21940.01 218
MVEpermissive41.12 1951.80 21360.92 20941.16 21235.21 22134.14 22148.45 22141.39 20969.11 17119.53 22063.33 21073.80 19163.56 14267.19 20461.51 20338.85 21857.38 208
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft17.78 22220.40 2236.69 21831.41 2209.80 22338.61 21834.88 22633.78 21128.41 22023.59 22145.77 215
tmp_tt13.54 21716.73 2226.42 2238.49 2242.36 22028.69 22127.44 21818.40 22013.51 2273.70 21933.23 21836.26 21822.54 222
test_method22.69 21626.99 21817.67 2162.13 2234.31 22427.50 2224.53 21937.94 21924.52 21936.20 21951.40 22215.26 21729.86 21917.09 21932.07 22012.16 219
test1231.06 2171.41 2190.64 2180.39 2240.48 2250.52 2270.25 2221.11 2231.37 2262.01 2221.98 2280.87 2201.43 2211.27 2200.46 2241.62 221
testmvs0.93 2181.37 2200.41 2190.36 2250.36 2260.62 2260.39 2211.48 2220.18 2272.41 2211.31 2290.41 2211.25 2221.08 2210.48 2231.68 220
uanet_test0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
RE-MVS-def87.10 28
9.1489.43 130
SR-MVS91.82 1380.80 795.53 49
MTAPA89.37 994.85 66
MTMP90.54 595.16 59
Patchmatch-RL test4.13 225
mPP-MVS93.05 395.77 43
NP-MVS78.65 130