This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
UniMVSNet_ETH3D85.39 6291.12 4378.71 9990.48 3783.72 7981.76 14082.41 693.84 664.43 15995.41 798.76 163.72 14193.63 3389.74 5789.47 10682.74 112
ACMH78.40 1288.94 3892.62 1684.65 4286.45 7487.16 5991.47 4968.79 8795.49 289.74 693.55 2098.50 277.96 4694.14 3189.57 6193.49 4789.94 52
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PEN-MVS88.86 3992.92 984.11 5292.92 488.05 5190.83 5582.67 591.04 1874.83 10595.97 398.47 370.38 10795.70 1392.43 3093.05 6088.78 62
v7n87.11 5090.46 4883.19 5685.22 8583.69 8090.03 7368.20 9591.01 1986.71 3394.80 1098.46 477.69 4891.10 6585.98 9291.30 8388.19 66
WR-MVS89.79 2393.66 585.27 3791.32 2388.27 4693.49 3879.86 1092.75 975.37 10296.86 198.38 575.10 7195.93 894.07 1496.46 589.39 56
PS-CasMVS89.07 3293.23 784.21 5092.44 888.23 4890.54 6282.95 390.50 2675.31 10395.80 698.37 671.16 10096.30 593.32 2192.88 6190.11 50
ACMH+79.05 1189.62 2693.08 885.58 3288.58 5589.26 3992.18 4574.23 5293.55 882.66 5892.32 3798.35 780.29 2995.28 1892.34 3195.52 2290.43 48
DTE-MVSNet88.99 3592.77 1284.59 4393.31 288.10 4990.96 5383.09 291.38 1476.21 9696.03 298.04 870.78 10695.65 1492.32 3293.18 5687.84 71
pmmvs680.46 11088.34 6371.26 14681.96 12577.51 13277.54 16768.83 8693.72 755.92 18093.94 1998.03 955.94 17089.21 8785.61 9687.36 13580.38 130
WR-MVS_H88.99 3593.28 683.99 5391.92 1189.13 4091.95 4683.23 190.14 3071.92 12595.85 498.01 1071.83 9795.82 993.19 2293.07 5990.83 47
COLMAP_ROBcopyleft85.66 291.85 295.01 288.16 1188.98 5192.86 295.51 1972.17 6294.95 491.27 394.11 1797.77 1184.22 896.49 495.27 596.79 293.60 12
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
anonymousdsp85.62 5990.53 4679.88 9264.64 21076.35 14396.28 1253.53 19485.63 6881.59 6992.81 3197.71 1286.88 294.56 2592.83 2496.35 693.84 9
CP-MVSNet88.71 4192.63 1584.13 5192.39 988.09 5090.47 6682.86 488.79 4275.16 10494.87 997.68 1371.05 10296.16 693.18 2392.85 6289.64 54
ACMP80.00 890.12 1692.30 2687.58 1890.83 3491.10 1294.96 2876.06 4087.47 5285.33 3988.91 7797.65 1482.13 1995.31 1793.44 1996.14 1092.22 33
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DVP-MVS++90.50 1094.18 486.21 2792.52 790.29 2895.29 2276.02 4194.24 582.82 5595.84 597.56 1576.82 5593.13 3891.20 4493.78 4597.01 1
TranMVSNet+NR-MVSNet85.23 6589.38 5380.39 9088.78 5383.77 7887.40 9676.75 3485.47 6968.99 14195.18 897.55 1667.13 12491.61 5689.13 6593.26 5482.95 109
LGP-MVS_train90.56 992.38 2188.43 990.88 3291.15 1195.35 2177.65 2586.26 6487.23 2390.45 5697.35 1783.20 1495.44 1693.41 2096.28 892.63 27
OPM-MVS89.82 2192.24 2986.99 2290.86 3389.35 3895.07 2775.91 4391.16 1686.87 3091.07 5297.29 1879.13 3493.32 3591.99 3794.12 4091.49 40
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
SixPastTwentyTwo89.14 2992.19 3185.58 3284.62 8982.56 9190.53 6371.93 6491.95 1285.89 3594.22 1497.25 1985.42 595.73 1291.71 4095.08 2791.89 36
LTVRE_ROB86.82 191.55 394.43 388.19 1083.19 11286.35 6593.60 3778.79 1895.48 391.79 293.08 2797.21 2086.34 397.06 296.27 395.46 2395.56 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DU-MVS84.88 6888.27 6480.92 7988.30 5783.59 8187.06 10278.35 1980.64 11770.49 13392.67 3396.91 2168.13 11791.79 5189.29 6493.20 5583.02 106
UniMVSNet (Re)84.95 6788.53 5880.78 8187.82 6384.21 7588.03 8876.50 3781.18 11269.29 13992.63 3596.83 2269.07 11491.23 6289.60 6093.97 4384.00 98
ACMM80.67 790.67 792.46 1988.57 791.35 2289.93 3296.34 1177.36 3090.17 2986.88 2987.32 9396.63 2383.32 1395.79 1094.49 996.19 992.91 26
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
NR-MVSNet82.89 8987.43 7277.59 10883.91 10283.59 8187.10 10178.35 1980.64 11768.85 14292.67 3396.50 2454.19 18087.19 10688.68 6793.16 5882.75 111
Baseline_NR-MVSNet82.79 9186.51 7678.44 10388.30 5775.62 15187.81 9074.97 4881.53 10566.84 15494.71 1296.46 2566.90 12591.79 5183.37 12285.83 15382.09 117
ACMMPcopyleft90.63 892.40 2088.56 891.24 2891.60 696.49 977.53 2687.89 4886.87 3087.24 9596.46 2582.87 1695.59 1594.50 896.35 693.51 18
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
v14879.33 12382.32 13175.84 11880.14 13575.74 14881.98 13957.06 18081.51 10779.36 8389.42 6796.42 2771.32 9981.54 15775.29 17585.20 15876.32 153
new-patchmatchnet62.59 19973.79 17849.53 21276.98 16353.57 20953.46 22154.64 18785.43 7028.81 22091.94 3996.41 2825.28 21876.80 17653.66 21657.99 21458.69 207
OMC-MVS88.16 4391.34 4184.46 4686.85 7090.63 2393.01 4167.00 10390.35 2887.40 2186.86 10096.35 2977.66 4992.63 4790.84 4694.84 3091.68 38
CP-MVS91.09 592.33 2589.65 292.16 1090.41 2796.46 1080.38 888.26 4589.17 1087.00 9896.34 3083.95 1095.77 1194.72 795.81 1793.78 10
v2v48282.20 9684.26 11179.81 9382.67 12080.18 11287.67 9263.96 13681.69 10284.73 4191.27 5096.33 3172.05 9581.94 15279.56 15087.79 13078.84 143
Gipumacopyleft86.47 5589.25 5483.23 5583.88 10378.78 12485.35 11668.42 9192.69 1089.03 1191.94 3996.32 3281.80 2194.45 2686.86 8290.91 8883.69 100
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MIMVSNet173.40 15881.85 13463.55 18872.90 18364.37 19384.58 12253.60 19390.84 2153.92 18787.75 8796.10 3345.31 20385.37 12279.32 15270.98 19769.18 182
MSP-MVS88.51 4291.36 4085.19 3990.63 3692.01 495.29 2277.52 2790.48 2780.21 7690.21 5896.08 3476.38 5988.30 9691.42 4191.12 8791.01 44
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TransMVSNet (Re)79.05 12686.66 7570.18 15683.32 11075.99 14677.54 16763.98 13590.68 2555.84 18194.80 1096.06 3553.73 18386.27 11383.22 12386.65 13979.61 140
v119283.61 7885.23 9381.72 7384.05 9882.15 9489.54 7666.20 10881.38 11086.76 3291.79 4396.03 3674.88 7481.81 15380.92 13988.91 11482.50 114
casdiffmvspermissive79.93 11484.11 11675.05 12481.41 13078.99 12282.95 13262.90 14781.53 10568.60 14691.94 3996.03 3665.84 13282.89 14277.07 16488.59 12080.34 134
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
RPSCF88.05 4692.61 1782.73 6584.24 9688.40 4490.04 7266.29 10791.46 1382.29 6088.93 7696.01 3879.38 3295.15 2194.90 694.15 3993.40 20
TDRefinement93.16 195.57 190.36 188.79 5293.57 197.27 178.23 2195.55 193.00 193.98 1896.01 3887.53 197.69 196.81 197.33 195.34 4
pm-mvs178.21 13185.68 8969.50 16180.38 13475.73 14976.25 17665.04 12187.59 5154.47 18693.16 2695.99 4054.20 17986.37 11282.98 12686.64 14077.96 149
v114483.22 8585.01 9681.14 7783.76 10681.60 9788.95 8265.58 11881.89 10085.80 3691.68 4595.84 4174.04 8082.12 15080.56 14288.70 11881.41 123
APDe-MVScopyleft89.85 2092.91 1086.29 2690.47 3891.34 796.04 1476.41 3991.11 1778.50 8993.44 2295.82 4281.55 2393.16 3791.90 3894.77 3293.58 15
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
WB-MVS72.91 16582.95 12761.21 19368.59 19673.96 16373.65 19061.48 15790.88 2042.55 20994.18 1695.80 4353.02 18685.42 12175.73 17367.97 20464.65 189
mPP-MVS93.05 395.77 44
v882.20 9684.56 10779.45 9582.42 12181.65 9687.26 9864.27 12879.36 12781.70 6891.04 5395.75 4573.30 8782.82 14379.18 15387.74 13182.09 117
CPTT-MVS89.63 2590.52 4788.59 690.95 3190.74 2195.71 1679.13 1587.70 5085.68 3880.05 14295.74 4684.77 694.28 2992.68 2695.28 2692.45 31
v14419283.43 8384.97 9881.63 7583.43 10881.23 10289.42 7966.04 11281.45 10986.40 3491.46 4795.70 4775.76 6682.14 14980.23 14688.74 11682.57 113
ACMMPR91.30 492.88 1189.46 491.92 1191.61 596.60 579.46 1490.08 3188.53 1389.54 6695.57 4884.25 795.24 2094.27 1295.97 1193.85 8
UniMVSNet_NR-MVSNet84.62 7188.00 6780.68 8588.18 5983.83 7787.06 10276.47 3881.46 10870.49 13393.24 2495.56 4968.13 11790.43 7388.47 6893.78 4583.02 106
SR-MVS91.82 1380.80 795.53 50
v1083.17 8785.22 9480.78 8183.26 11182.99 8688.66 8566.49 10679.24 12883.60 4891.46 4795.47 5174.12 7882.60 14780.66 14088.53 12384.11 97
v124083.57 8084.94 9981.97 7084.05 9881.27 10189.46 7866.06 11081.31 11187.50 2091.88 4295.46 5276.25 6081.16 15880.51 14388.52 12482.98 108
casdiffmvs_mvgpermissive81.50 10385.70 8876.60 11582.68 11980.54 10883.50 12764.49 12783.40 8472.53 11992.15 3895.40 5365.84 13284.69 13181.89 13290.59 9081.86 121
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v192192083.49 8284.94 9981.80 7283.78 10581.20 10389.50 7765.91 11381.64 10387.18 2491.70 4495.39 5475.85 6481.56 15680.27 14588.60 11982.80 110
SF-MVS87.85 4890.95 4484.22 4988.17 6087.90 5390.80 5671.80 6589.28 3582.70 5789.90 6195.37 5577.91 4791.69 5490.04 5493.95 4492.47 29
CLD-MVS82.75 9387.22 7477.54 10988.01 6285.76 6890.23 6954.52 18882.28 9782.11 6588.48 8195.27 5663.95 13989.41 8588.29 7086.45 14481.01 126
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PGM-MVS90.42 1191.58 3789.05 591.77 1491.06 1396.51 778.94 1685.41 7187.67 1887.02 9795.26 5783.62 1295.01 2393.94 1595.79 1993.40 20
DPE-MVScopyleft89.81 2292.34 2486.86 2389.69 4491.00 1695.53 1876.91 3388.18 4683.43 5393.48 2195.19 5881.07 2692.75 4592.07 3694.55 3693.74 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
testgi68.20 18376.05 16659.04 19679.99 13767.32 18681.16 14451.78 19984.91 7539.36 21673.42 18695.19 5832.79 21676.54 18070.40 18869.14 20164.55 190
MTMP90.54 595.16 60
TSAR-MVS + MP.89.67 2492.25 2886.65 2591.53 1890.98 1796.15 1373.30 5687.88 4981.83 6692.92 3095.15 6182.23 1893.58 3492.25 3394.87 2993.01 25
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CSCG88.12 4591.45 3884.23 4888.12 6190.59 2590.57 6068.60 8991.37 1583.45 5289.94 6095.14 6278.71 3891.45 5888.21 7295.96 1293.44 19
V4279.59 12083.59 12374.93 12969.61 19377.05 13986.59 10755.84 18378.42 13277.29 9489.84 6395.08 6374.12 7883.05 14080.11 14886.12 14781.59 122
SD-MVS89.91 1892.23 3087.19 2191.31 2489.79 3594.31 3275.34 4789.26 3781.79 6792.68 3295.08 6383.88 1193.10 3992.69 2596.54 493.02 24
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
EG-PatchMatch MVS84.35 7287.55 7080.62 8686.38 7582.24 9386.75 10564.02 13484.24 7978.17 9289.38 6995.03 6578.78 3789.95 8186.33 8989.59 10385.65 85
DVP-MVScopyleft89.40 2792.69 1385.56 3489.01 5089.85 3393.72 3575.42 4592.28 1180.49 7294.36 1394.87 6681.46 2492.49 4991.42 4193.27 5393.54 17
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MTAPA89.37 994.85 67
APD-MVScopyleft89.14 2991.25 4286.67 2491.73 1591.02 1595.50 2077.74 2484.04 8379.47 8291.48 4694.85 6781.14 2592.94 4192.20 3594.47 3892.24 32
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ambc88.38 6091.62 1787.97 5284.48 12388.64 4487.93 1587.38 9294.82 6974.53 7689.14 8883.86 11585.94 15186.84 76
SteuartSystems-ACMMP90.00 1791.73 3587.97 1291.21 2990.29 2896.51 778.00 2386.33 6285.32 4088.23 8394.67 7082.08 2095.13 2293.88 1694.72 3593.59 13
Skip Steuart: Steuart Systems R&D Blog.
Anonymous2023121179.37 12185.78 8771.89 14482.87 11879.66 11778.77 16463.93 13783.36 8559.39 17090.54 5494.66 7156.46 16887.38 10184.12 11189.92 9780.74 127
XVS91.28 2591.23 896.89 287.14 2594.53 7295.84 15
X-MVStestdata91.28 2591.23 896.89 287.14 2594.53 7295.84 15
X-MVS89.36 2890.73 4587.77 1691.50 2091.23 896.76 478.88 1787.29 5487.14 2578.98 14794.53 7276.47 5795.25 1994.28 1195.85 1493.55 16
SED-MVS88.96 3792.37 2284.99 4088.64 5489.65 3795.11 2575.98 4290.73 2480.15 7794.21 1594.51 7576.59 5692.94 4191.17 4593.46 5093.37 22
HFP-MVS90.32 1392.37 2287.94 1391.46 2190.91 1895.69 1779.49 1289.94 3483.50 5089.06 7394.44 7681.68 2294.17 3094.19 1395.81 1793.87 7
DCV-MVSNet80.04 11385.67 9073.48 13782.91 11681.11 10480.44 14966.06 11085.01 7462.53 16678.84 14894.43 7758.51 16188.66 9085.91 9390.41 9185.73 84
MP-MVScopyleft90.84 691.95 3489.55 392.92 490.90 1996.56 679.60 1186.83 5988.75 1289.00 7494.38 7884.01 994.94 2494.34 1095.45 2493.24 23
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS83.59 490.37 1292.56 1887.82 1491.26 2792.33 394.72 3080.04 990.01 3284.61 4293.33 2394.22 7980.59 2792.90 4392.52 2895.69 2192.57 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tfpnnormal77.16 13584.26 11168.88 16481.02 13175.02 15576.52 17563.30 14287.29 5452.40 19391.24 5193.97 8054.85 17785.46 12081.08 13785.18 15975.76 158
diffmvspermissive76.74 13781.61 13571.06 14875.64 17574.45 16180.68 14857.57 17977.48 13367.62 15288.95 7593.94 8161.98 14979.74 16676.18 16982.85 17180.50 129
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PM-MVS80.42 11283.63 12276.67 11378.04 15572.37 16987.14 10060.18 16780.13 12171.75 12686.12 10693.92 8277.08 5386.56 11085.12 10285.83 15381.18 124
TAPA-MVS78.00 1385.88 5888.37 6182.96 6084.69 8788.62 4390.62 5864.22 12989.15 3888.05 1478.83 14993.71 8376.20 6190.11 8088.22 7194.00 4189.97 51
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FC-MVSNet-train79.20 12586.29 8070.94 15084.06 9777.67 13185.68 11064.11 13182.90 8952.22 19592.57 3693.69 8449.52 19788.30 9686.93 8090.03 9581.95 119
USDC81.39 10683.07 12679.43 9681.48 12878.95 12382.62 13566.17 10987.45 5390.73 482.40 13493.65 8566.57 12783.63 13977.97 15689.00 11277.45 151
MSLP-MVS++86.29 5789.10 5583.01 5885.71 8289.79 3587.04 10474.39 5185.17 7378.92 8677.59 15693.57 8682.60 1793.23 3691.88 3989.42 10792.46 30
HQP-MVS85.02 6686.41 7983.40 5489.19 4886.59 6391.28 5071.60 6782.79 9083.48 5178.65 15193.54 8772.55 8986.49 11185.89 9592.28 7290.95 46
TSAR-MVS + ACMM89.14 2992.11 3285.67 3189.27 4790.61 2490.98 5279.48 1388.86 4079.80 7993.01 2893.53 8883.17 1592.75 4592.45 2991.32 8293.59 13
MVS_030484.73 7086.19 8183.02 5788.32 5686.71 6291.55 4870.87 7073.79 14882.88 5485.13 11493.35 8972.55 8988.62 9187.69 7491.93 7588.05 70
CDPH-MVS86.66 5488.52 5984.48 4589.61 4588.27 4692.86 4272.69 6180.55 11982.71 5686.92 9993.32 9075.55 6791.00 6889.85 5693.47 4989.71 53
pmmvs-eth3d79.64 11882.06 13376.83 11280.05 13672.64 16787.47 9566.59 10480.83 11673.50 11489.32 7093.20 9167.78 11980.78 16181.64 13585.58 15676.01 154
FMVSNet178.20 13284.83 10270.46 15478.62 15079.03 12177.90 16667.53 10183.02 8855.10 18487.19 9693.18 9255.65 17385.57 11783.39 11987.98 12882.40 115
EU-MVSNet76.48 14080.53 13971.75 14567.62 20070.30 17481.74 14154.06 19175.47 14371.01 13180.10 14093.17 9373.67 8383.73 13877.85 15782.40 17283.07 105
CS-MVS83.57 8084.79 10382.14 6883.83 10481.48 9887.29 9766.54 10572.73 15480.05 7884.04 12593.12 9480.35 2889.50 8386.34 8894.76 3486.32 81
train_agg86.67 5387.73 6985.43 3591.51 1982.72 8894.47 3174.22 5381.71 10181.54 7089.20 7292.87 9578.33 4390.12 7988.47 6892.51 6989.04 59
TinyColmap83.79 7686.12 8281.07 7883.42 10981.44 9985.42 11468.55 9088.71 4389.46 887.60 8892.72 9670.34 10889.29 8681.94 13189.20 10881.12 125
Fast-Effi-MVS+81.42 10483.82 12078.62 10182.24 12380.62 10787.72 9163.51 14073.01 15074.75 10783.80 12892.70 9773.44 8688.15 9885.26 10090.05 9483.17 104
Anonymous20240521184.68 10583.92 10179.45 11979.03 16267.79 9882.01 9988.77 8092.58 9855.93 17186.68 10984.26 11088.92 11378.98 142
TSAR-MVS + COLMAP85.51 6088.36 6282.19 6786.05 7987.69 5490.50 6570.60 7286.40 6182.33 5989.69 6592.52 9974.01 8187.53 10086.84 8389.63 10287.80 72
PHI-MVS86.37 5688.14 6584.30 4786.65 7387.56 5590.76 5770.16 7382.55 9389.65 784.89 11892.40 10075.97 6390.88 7089.70 5892.58 6589.03 60
NCCC86.74 5287.97 6885.31 3690.64 3587.25 5893.27 3974.59 4986.50 6083.72 4675.92 17392.39 10177.08 5391.72 5390.68 4892.57 6791.30 42
Effi-MVS+82.33 9483.87 11880.52 8884.51 9481.32 10087.53 9468.05 9674.94 14679.67 8082.37 13592.31 10272.21 9185.06 12486.91 8191.18 8584.20 95
GeoE81.92 10083.87 11879.66 9484.64 8879.87 11389.75 7465.90 11476.12 14075.87 9984.62 12292.23 10371.96 9686.83 10883.60 11689.83 10083.81 99
PMVScopyleft79.51 990.23 1492.67 1487.39 2090.16 3988.75 4293.64 3675.78 4490.00 3383.70 4792.97 2992.22 10486.13 497.01 396.79 294.94 2890.96 45
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
CNVR-MVS86.93 5188.98 5684.54 4490.11 4087.41 5793.23 4073.47 5586.31 6382.25 6182.96 13092.15 10576.04 6291.69 5490.69 4792.17 7391.64 39
MCST-MVS84.79 6986.48 7782.83 6387.30 6787.03 6190.46 6769.33 8183.14 8782.21 6381.69 13892.14 10675.09 7287.27 10384.78 10692.58 6589.30 57
HPM-MVS++copyleft88.74 4089.54 5287.80 1592.58 685.69 6995.10 2678.01 2287.08 5687.66 1987.89 8692.07 10780.28 3090.97 6991.41 4393.17 5791.69 37
LS3D89.02 3391.69 3685.91 3089.72 4390.81 2092.56 4471.69 6690.83 2287.24 2289.71 6492.07 10778.37 4294.43 2792.59 2795.86 1391.35 41
SMA-MVScopyleft90.13 1592.26 2787.64 1791.68 1690.44 2695.22 2477.34 3290.79 2387.80 1690.42 5792.05 10979.05 3593.89 3293.59 1894.77 3294.62 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MVS_111021_LR83.20 8685.33 9180.73 8482.88 11778.23 12889.61 7565.23 12082.08 9881.19 7185.31 11292.04 11075.22 6989.50 8385.90 9490.24 9284.23 94
DeepC-MVS_fast81.78 587.38 4989.64 5184.75 4189.89 4290.70 2292.74 4374.45 5086.02 6582.16 6486.05 10791.99 11175.84 6591.16 6390.44 4993.41 5191.09 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS-test83.59 7984.86 10182.10 6983.04 11481.05 10591.58 4767.48 10272.52 15578.42 9084.75 12091.82 11278.62 4191.98 5087.54 7693.48 4884.35 93
ACMMP_NAP89.86 1991.96 3387.42 1991.00 3090.08 3096.00 1576.61 3689.28 3587.73 1790.04 5991.80 11378.71 3894.36 2893.82 1794.48 3794.32 6
MDA-MVSNet-bldmvs76.51 13982.87 12969.09 16350.71 22174.72 16084.05 12560.27 16681.62 10471.16 13088.21 8491.58 11469.62 11192.78 4477.48 16178.75 18273.69 168
MDTV_nov1_ep13_2view72.96 16475.59 16969.88 15771.15 19064.86 19282.31 13754.45 18976.30 13878.32 9186.52 10191.58 11461.35 15076.80 17666.83 19671.70 19066.26 186
canonicalmvs81.22 10886.04 8575.60 11983.17 11383.18 8580.29 15065.82 11685.97 6667.98 14977.74 15591.51 11665.17 13588.62 9186.15 9191.17 8689.09 58
Vis-MVSNetpermissive83.32 8488.12 6677.71 10677.91 15883.44 8390.58 5969.49 7881.11 11367.10 15389.85 6291.48 11771.71 9891.34 5989.37 6289.48 10590.26 49
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS_111021_HR83.95 7586.10 8381.44 7684.62 8980.29 11190.51 6468.05 9684.07 8280.38 7484.74 12191.37 11874.23 7790.37 7587.25 7890.86 8984.59 90
CNLPA85.50 6188.58 5781.91 7184.55 9187.52 5690.89 5463.56 13988.18 4684.06 4483.85 12791.34 11976.46 5891.27 6089.00 6691.96 7488.88 61
PMMVS248.13 21664.06 20129.55 21644.06 22336.69 22351.95 22229.97 21674.75 1478.90 22776.02 17291.24 1207.53 22173.78 18955.91 21134.87 22240.01 221
Effi-MVS+-dtu82.04 9883.39 12580.48 8985.48 8386.57 6488.40 8668.28 9369.04 17373.13 11876.26 16891.11 12174.74 7588.40 9487.76 7392.84 6384.57 91
DeepPCF-MVS81.61 687.95 4790.29 4985.22 3887.48 6590.01 3193.79 3473.54 5488.93 3983.89 4589.40 6890.84 12280.26 3190.62 7290.19 5392.36 7092.03 35
MVS_Test76.72 13879.40 14373.60 13478.85 14974.99 15679.91 15361.56 15669.67 16772.44 12085.98 10890.78 12363.50 14478.30 17175.74 17285.33 15780.31 135
pmnet_mix0262.60 19870.81 18453.02 20866.56 20550.44 21562.81 21346.84 20679.13 12943.76 20887.45 9090.75 12439.85 20970.48 19957.09 21058.27 21360.32 204
CANet82.84 9084.60 10680.78 8187.30 6785.20 7290.23 6969.00 8372.16 15878.73 8884.49 12390.70 12569.54 11287.65 9986.17 9089.87 9985.84 83
Anonymous2023120667.28 18673.41 18060.12 19576.45 17363.61 19774.21 18856.52 18176.35 13742.23 21075.81 17490.47 12641.51 20874.52 18469.97 19069.83 19963.17 195
PCF-MVS76.59 1484.11 7485.27 9282.76 6486.12 7888.30 4591.24 5169.10 8282.36 9684.45 4377.56 15790.40 12772.91 8885.88 11683.88 11392.72 6488.53 63
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PLCcopyleft76.06 1585.38 6387.46 7182.95 6185.79 8188.84 4188.86 8368.70 8887.06 5783.60 4879.02 14590.05 12877.37 5290.88 7089.66 5993.37 5286.74 77
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
UGNet79.62 11985.91 8672.28 14373.52 18083.91 7686.64 10669.51 7779.85 12462.57 16585.82 10989.63 12953.18 18488.39 9587.35 7788.28 12686.43 79
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EC-MVSNet83.70 7784.77 10482.46 6687.47 6682.79 8785.50 11272.00 6369.81 16677.66 9385.02 11789.63 12978.14 4490.40 7487.56 7594.00 4188.16 67
9.1489.43 131
DELS-MVS79.71 11683.74 12175.01 12679.31 14382.68 8984.79 12160.06 16875.43 14469.09 14086.13 10589.38 13267.16 12385.12 12383.87 11489.65 10183.57 101
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
test20.0369.91 17476.20 16562.58 18984.01 10067.34 18575.67 18465.88 11579.98 12340.28 21582.65 13189.31 13339.63 21077.41 17473.28 17969.98 19863.40 194
thisisatest051581.18 10984.32 11077.52 11076.73 17074.84 15885.06 11961.37 15881.05 11473.95 11188.79 7989.25 13475.49 6885.98 11584.78 10692.53 6885.56 86
PVSNet_BlendedMVS76.45 14178.12 14774.49 13076.76 16478.46 12579.65 15663.26 14365.42 18773.15 11675.05 17888.96 13566.51 12882.73 14577.66 15987.61 13278.60 146
PVSNet_Blended76.45 14178.12 14774.49 13076.76 16478.46 12579.65 15663.26 14365.42 18773.15 11675.05 17888.96 13566.51 12882.73 14577.66 15987.61 13278.60 146
UA-Net89.02 3391.44 3986.20 2894.88 189.84 3494.76 2977.45 2885.41 7174.79 10688.83 7888.90 13778.67 4096.06 795.45 496.66 395.58 2
MAR-MVS81.98 9982.92 12880.88 8085.18 8685.85 6789.13 8069.52 7671.21 16282.25 6171.28 19488.89 13869.69 10988.71 8986.96 7989.52 10487.57 73
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
pmmvs568.91 17974.35 17462.56 19067.45 20266.78 18771.70 19451.47 20067.17 17756.25 17782.41 13388.59 13947.21 20273.21 19374.23 17681.30 17668.03 184
CANet_DTU75.04 15278.45 14571.07 14777.27 16177.96 12983.88 12658.00 17864.11 19268.67 14575.65 17588.37 14053.92 18282.05 15181.11 13684.67 16179.88 138
MSDG81.39 10684.23 11378.09 10482.40 12282.47 9285.31 11860.91 16279.73 12580.26 7586.30 10388.27 14169.67 11087.20 10584.98 10389.97 9680.67 128
N_pmnet54.95 21365.90 19642.18 21366.37 20743.86 22157.92 21839.79 21279.54 12617.24 22586.31 10287.91 14225.44 21764.68 21251.76 21846.33 22047.23 217
TSAR-MVS + GP.85.32 6487.41 7382.89 6290.07 4185.69 6989.07 8172.99 6082.45 9474.52 10985.09 11587.67 14379.24 3391.11 6490.41 5091.45 7989.45 55
IB-MVS71.28 1775.21 15177.00 15773.12 14176.76 16477.45 13383.05 13058.92 17463.01 19764.31 16059.99 21687.57 14468.64 11586.26 11482.34 12987.05 13882.36 116
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
FC-MVSNet-test75.91 14683.59 12366.95 17576.63 17269.07 17985.33 11764.97 12284.87 7641.95 21193.17 2587.04 14547.78 20091.09 6685.56 9885.06 16074.34 163
3Dnovator+83.71 388.13 4490.00 5085.94 2986.82 7191.06 1394.26 3375.39 4688.85 4185.76 3785.74 11086.92 14678.02 4593.03 4092.21 3495.39 2592.21 34
ECVR-MVScopyleft79.31 12484.20 11473.60 13484.55 9180.37 10979.63 15873.23 5782.64 9155.98 17987.50 8986.85 14759.61 15690.35 7686.46 8688.58 12175.26 162
Fast-Effi-MVS+-dtu76.92 13677.18 15576.62 11479.55 14079.17 12084.80 12077.40 2964.46 19168.75 14470.81 19886.57 14863.36 14681.74 15481.76 13385.86 15275.78 157
baseline69.33 17875.37 17162.28 19166.54 20666.67 18873.95 18948.07 20466.10 18159.26 17182.45 13286.30 14954.44 17874.42 18673.25 18071.42 19378.43 148
test111179.67 11784.40 10874.16 13285.29 8479.56 11881.16 14473.13 5984.65 7856.08 17888.38 8286.14 15060.49 15289.78 8285.59 9788.79 11576.68 152
pmmvs362.72 19768.71 19055.74 20250.74 22057.10 20470.05 20028.82 21761.57 20557.39 17471.19 19685.73 15153.96 18173.36 19269.43 19273.47 18862.55 197
CMPMVSbinary55.74 1871.56 17076.26 16366.08 18068.11 19863.91 19563.17 21250.52 20368.79 17475.49 10170.78 19985.67 15263.54 14381.58 15577.20 16375.63 18485.86 82
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FMVSNet274.43 15579.70 14068.27 16776.76 16477.36 13475.77 18065.36 11972.28 15652.97 19081.92 13685.61 15352.73 18980.66 16279.73 14986.04 14880.37 131
QAPM80.43 11184.34 10975.86 11779.40 14282.06 9579.86 15561.94 15483.28 8674.73 10881.74 13785.44 15470.97 10384.99 12984.71 10888.29 12588.14 68
3Dnovator79.41 1082.21 9586.07 8477.71 10679.31 14384.61 7387.18 9961.02 16185.65 6776.11 9785.07 11685.38 15570.96 10487.22 10486.47 8591.66 7788.12 69
IterMVS-LS79.79 11582.56 13076.56 11681.83 12677.85 13079.90 15469.42 8078.93 13071.21 12990.47 5585.20 15670.86 10580.54 16380.57 14186.15 14684.36 92
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AdaColmapbinary84.15 7385.14 9583.00 5989.08 4987.14 6090.56 6170.90 6982.40 9580.41 7373.82 18484.69 15775.19 7091.58 5789.90 5591.87 7686.48 78
TPM-MVS86.18 7783.43 8487.57 9378.77 8769.75 20484.63 15862.24 14889.88 9888.48 64
Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025
PVSNet_Blended_VisFu83.00 8884.16 11581.65 7482.17 12486.01 6688.03 8871.23 6876.05 14179.54 8183.88 12683.44 15977.49 5187.38 10184.93 10491.41 8087.40 75
pmmvs475.92 14577.48 15474.10 13378.21 15470.94 17184.06 12464.78 12375.13 14568.47 14784.12 12483.32 16064.74 13875.93 18379.14 15484.31 16373.77 167
DPM-MVS81.42 10482.11 13280.62 8687.54 6485.30 7190.18 7168.96 8481.00 11579.15 8470.45 20083.29 16167.67 12182.81 14483.46 11790.19 9388.48 64
FPMVS81.56 10284.04 11778.66 10082.92 11575.96 14786.48 10865.66 11784.67 7771.47 12877.78 15483.22 16277.57 5091.24 6190.21 5287.84 12985.21 87
DI_MVS_plusplus_trai77.64 13379.64 14175.31 12279.87 13876.89 14081.55 14363.64 13876.21 13972.03 12485.59 11182.97 16366.63 12679.27 16977.78 15888.14 12778.76 145
FA-MVS(training)78.93 12880.63 13876.93 11179.79 13975.57 15285.44 11361.95 15377.19 13678.97 8584.82 11982.47 16466.43 13084.09 13680.13 14789.02 11180.15 137
EPNet_dtu71.90 16973.03 18170.59 15278.28 15261.64 19982.44 13664.12 13063.26 19569.74 13671.47 19282.41 16551.89 19378.83 17078.01 15577.07 18375.60 159
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MIMVSNet63.02 19469.02 18956.01 20168.20 19759.26 20270.01 20153.79 19271.56 16141.26 21471.38 19382.38 16636.38 21271.43 19767.32 19566.45 20759.83 205
OpenMVScopyleft75.38 1678.44 13081.39 13674.99 12780.46 13379.85 11479.99 15258.31 17777.34 13573.85 11277.19 16082.33 16768.60 11684.67 13281.95 13088.72 11786.40 80
PatchMatch-RL76.05 14476.64 16075.36 12177.84 16069.87 17781.09 14663.43 14171.66 16068.34 14871.70 19081.76 16874.98 7384.83 13083.44 11886.45 14473.22 170
IS_MVSNet81.72 10185.01 9677.90 10586.19 7682.64 9085.56 11170.02 7480.11 12263.52 16187.28 9481.18 16967.26 12291.08 6789.33 6394.82 3183.42 103
CDS-MVSNet73.07 16377.02 15668.46 16681.62 12772.89 16679.56 16070.78 7169.56 16852.52 19277.37 15981.12 17042.60 20584.20 13583.93 11283.65 16670.07 178
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Vis-MVSNet (Re-imp)76.15 14380.84 13770.68 15183.66 10774.80 15981.66 14269.59 7580.48 12046.94 20587.44 9180.63 17153.14 18586.87 10784.56 10989.12 10971.12 173
new_pmnet52.29 21463.16 20539.61 21558.89 21444.70 22048.78 22334.73 21565.88 18317.85 22473.42 18680.00 17223.06 21967.00 20762.28 20354.36 21648.81 216
dmvs_re68.11 18470.60 18565.21 18577.91 15863.73 19676.72 17359.65 17055.93 21347.79 20459.79 21779.91 17349.72 19682.48 14876.98 16679.48 17875.41 160
IterMVS-SCA-FT77.23 13479.18 14474.96 12876.67 17179.85 11475.58 18561.34 15973.10 14973.79 11386.23 10479.61 17479.00 3680.28 16575.50 17483.41 17079.70 139
EPNet79.36 12279.44 14279.27 9889.51 4677.20 13788.35 8777.35 3168.27 17574.29 11076.31 16679.22 17559.63 15585.02 12885.45 9986.49 14384.61 89
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IterMVS73.62 15776.53 16170.23 15571.83 18777.18 13880.69 14753.22 19572.23 15766.62 15585.21 11378.96 17669.54 11276.28 18271.63 18579.45 17974.25 165
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CVMVSNet75.65 14877.62 15373.35 14071.95 18669.89 17683.04 13160.84 16369.12 17168.76 14379.92 14378.93 17773.64 8581.02 15981.01 13881.86 17583.43 102
HyFIR lowres test73.29 15974.14 17672.30 14273.08 18278.33 12783.12 12962.41 15163.81 19362.13 16776.67 16578.50 17871.09 10174.13 18777.47 16281.98 17470.10 177
CHOSEN 1792x268868.80 18071.09 18366.13 17969.11 19568.89 18178.98 16354.68 18661.63 20356.69 17571.56 19178.39 17967.69 12072.13 19472.01 18469.63 20073.02 171
PMMVS61.98 20165.61 19757.74 19845.03 22251.76 21369.54 20335.05 21455.49 21555.32 18368.23 20678.39 17958.09 16270.21 20171.56 18683.42 16963.66 192
GBi-Net73.17 16077.64 15167.95 17076.76 16477.36 13475.77 18064.57 12462.99 19851.83 19676.05 16977.76 18152.73 18985.57 11783.39 11986.04 14880.37 131
test173.17 16077.64 15167.95 17076.76 16477.36 13475.77 18064.57 12462.99 19851.83 19676.05 16977.76 18152.73 18985.57 11783.39 11986.04 14880.37 131
FMVSNet371.40 17275.20 17366.97 17475.00 17876.59 14174.29 18764.57 12462.99 19851.83 19676.05 16977.76 18151.49 19476.58 17977.03 16584.62 16279.43 141
thres40073.13 16276.99 15868.62 16579.46 14174.93 15777.23 16961.23 16075.54 14252.31 19472.20 18977.10 18454.89 17582.92 14182.62 12886.57 14273.66 169
EPP-MVSNet82.76 9286.47 7878.45 10286.00 8084.47 7485.39 11568.42 9184.17 8062.97 16389.26 7176.84 18572.13 9492.56 4890.40 5195.76 2087.56 74
thres600view774.34 15678.43 14669.56 16080.47 13276.28 14478.65 16562.56 14977.39 13452.53 19174.03 18276.78 18655.90 17285.06 12485.19 10187.25 13674.29 164
thres20072.41 16776.00 16768.21 16878.28 15276.28 14474.94 18662.56 14972.14 15951.35 19969.59 20576.51 18754.89 17585.06 12480.51 14387.25 13671.92 172
GA-MVS75.01 15376.39 16273.39 13878.37 15175.66 15080.03 15158.40 17670.51 16475.85 10083.24 12976.14 18863.75 14077.28 17576.62 16883.97 16575.30 161
EIA-MVS78.57 12977.90 15079.35 9787.24 6980.71 10686.16 10964.03 13362.63 20173.49 11573.60 18576.12 18973.83 8288.49 9384.93 10491.36 8178.78 144
MS-PatchMatch71.18 17373.99 17767.89 17277.16 16271.76 17077.18 17056.38 18267.35 17655.04 18574.63 18075.70 19062.38 14776.62 17875.97 17179.22 18075.90 156
thres100view90069.86 17572.97 18266.24 17777.97 15672.49 16873.29 19159.12 17266.81 17850.82 20067.30 20775.67 19150.54 19578.24 17279.40 15185.71 15570.88 174
tfpn200view972.01 16875.40 17068.06 16977.97 15676.44 14277.04 17162.67 14866.81 17850.82 20067.30 20775.67 19152.46 19285.06 12482.64 12787.41 13473.86 166
TAMVS63.02 19469.30 18855.70 20370.12 19156.89 20569.63 20245.13 20770.23 16538.00 21777.79 15375.15 19342.60 20574.48 18572.81 18368.70 20257.75 210
MVEpermissive41.12 1951.80 21560.92 21141.16 21435.21 22434.14 22448.45 22441.39 21169.11 17219.53 22363.33 21273.80 19463.56 14267.19 20661.51 20538.85 22157.38 211
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ETV-MVS79.01 12777.98 14980.22 9186.69 7279.73 11688.80 8468.27 9463.22 19671.56 12770.25 20273.63 19573.66 8490.30 7886.77 8492.33 7181.95 119
E-PMN59.07 20662.79 20654.72 20467.01 20447.81 21860.44 21643.40 20872.95 15144.63 20770.42 20173.17 19658.73 16080.97 16051.98 21754.14 21742.26 219
EMVS58.97 20762.63 20854.70 20566.26 20948.71 21661.74 21442.71 20972.80 15346.00 20673.01 18871.66 19757.91 16480.41 16450.68 21953.55 21841.11 220
MVS-HIRNet59.74 20358.74 21960.92 19457.74 21545.81 21956.02 21958.69 17555.69 21465.17 15870.86 19771.66 19756.75 16661.11 21653.74 21571.17 19652.28 214
test0.0.03 161.79 20265.33 19857.65 19979.07 14664.09 19468.51 20762.93 14561.59 20433.71 21961.58 21571.58 19933.43 21570.95 19868.68 19368.26 20358.82 206
GG-mvs-BLEND41.63 21760.36 21219.78 2170.14 22966.04 18955.66 2200.17 22557.64 2112.42 22851.82 21869.42 2000.28 22564.11 21458.29 20860.02 21055.18 212
baseline169.62 17673.55 17965.02 18778.95 14870.39 17371.38 19762.03 15270.97 16347.95 20378.47 15268.19 20147.77 20179.65 16876.94 16782.05 17370.27 176
ADS-MVSNet56.89 20961.09 21052.00 21059.48 21348.10 21758.02 21754.37 19072.82 15249.19 20275.32 17765.97 20237.96 21159.34 21854.66 21452.99 21951.42 215
gg-mvs-nofinetune72.68 16675.21 17269.73 15881.48 12869.04 18070.48 19876.67 3586.92 5867.80 15188.06 8564.67 20342.12 20777.60 17373.65 17879.81 17766.57 185
MDTV_nov1_ep1364.96 19164.77 19965.18 18667.08 20362.46 19875.80 17951.10 20262.27 20269.74 13674.12 18162.65 20455.64 17468.19 20562.16 20471.70 19061.57 201
CHOSEN 280x42056.32 21258.85 21853.36 20751.63 21839.91 22269.12 20638.61 21356.29 21236.79 21848.84 21962.59 20563.39 14573.61 19167.66 19460.61 20963.07 196
SCA68.54 18267.52 19369.73 15867.79 19975.04 15476.96 17268.94 8566.41 18067.86 15074.03 18260.96 20665.55 13468.99 20365.67 19771.30 19561.54 202
test-mter59.39 20561.59 20956.82 20053.21 21754.82 20773.12 19326.57 21953.19 21756.31 17664.71 21060.47 20756.36 16968.69 20464.27 19975.38 18565.00 187
baseline268.71 18168.34 19169.14 16275.69 17469.70 17876.60 17455.53 18560.13 20662.07 16866.76 20960.35 20860.77 15176.53 18174.03 17784.19 16470.88 174
CostFormer66.81 18866.94 19466.67 17672.79 18468.25 18279.55 16155.57 18465.52 18562.77 16476.98 16260.09 20956.73 16765.69 21162.35 20072.59 18969.71 179
PatchmatchNetpermissive64.81 19263.74 20366.06 18169.21 19458.62 20373.16 19260.01 16965.92 18266.19 15776.27 16759.09 21060.45 15366.58 20861.47 20667.33 20558.24 208
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test-LLR62.15 20059.46 21665.29 18479.07 14652.66 21169.46 20462.93 14550.76 21953.81 18863.11 21358.91 21152.87 18766.54 20962.34 20173.59 18661.87 199
TESTMET0.1,157.21 20859.46 21654.60 20650.95 21952.66 21169.46 20426.91 21850.76 21953.81 18863.11 21358.91 21152.87 18766.54 20962.34 20173.59 18661.87 199
tttt051775.86 14776.23 16475.42 12075.55 17674.06 16282.73 13360.31 16469.24 16970.24 13579.18 14458.79 21372.17 9284.49 13383.08 12491.54 7884.80 88
thisisatest053075.54 14975.95 16875.05 12475.08 17773.56 16482.15 13860.31 16469.17 17069.32 13879.02 14558.78 21472.17 9283.88 13783.08 12491.30 8384.20 95
ET-MVSNet_ETH3D74.71 15474.19 17575.31 12279.22 14575.29 15382.70 13464.05 13265.45 18670.96 13277.15 16157.70 21565.89 13184.40 13481.65 13489.03 11077.67 150
EPMVS56.62 21059.77 21552.94 20962.41 21150.55 21460.66 21552.83 19665.15 18941.80 21277.46 15857.28 21642.68 20459.81 21754.82 21357.23 21553.35 213
CR-MVSNet69.56 17768.34 19170.99 14972.78 18567.63 18364.47 21067.74 9959.93 20772.30 12180.10 14056.77 21765.04 13671.64 19572.91 18183.61 16869.40 180
MVSTER68.08 18569.73 18766.16 17866.33 20870.06 17575.71 18352.36 19755.18 21658.64 17270.23 20356.72 21857.34 16579.68 16776.03 17086.61 14180.20 136
tpmrst59.42 20460.02 21458.71 19767.56 20153.10 21066.99 20851.88 19863.80 19457.68 17376.73 16456.49 21948.73 19856.47 21955.55 21259.43 21258.02 209
tpm62.79 19663.25 20462.26 19270.09 19253.78 20871.65 19547.31 20565.72 18476.70 9580.62 13956.40 22048.11 19964.20 21358.54 20759.70 21163.47 193
FMVSNet556.37 21160.14 21351.98 21160.83 21259.58 20166.85 20942.37 21052.68 21841.33 21347.09 22054.68 22135.28 21373.88 18870.77 18765.24 20862.26 198
PatchT66.25 18966.76 19565.67 18355.87 21660.75 20070.17 19959.00 17359.80 20972.30 12178.68 15054.12 22265.04 13671.64 19572.91 18171.63 19269.40 180
tpm cat164.79 19362.74 20767.17 17374.61 17965.91 19076.18 17759.32 17164.88 19066.41 15671.21 19553.56 22359.17 15861.53 21558.16 20967.33 20563.95 191
dps65.14 19064.50 20065.89 18271.41 18965.81 19171.44 19661.59 15558.56 21061.43 16975.45 17652.70 22458.06 16369.57 20264.65 19871.39 19464.77 188
test_method22.69 21826.99 22017.67 2182.13 2264.31 22727.50 2254.53 22137.94 22124.52 22236.20 22251.40 22515.26 22029.86 22117.09 22132.07 22312.16 222
RPMNet67.02 18763.99 20270.56 15371.55 18867.63 18375.81 17869.44 7959.93 20763.24 16264.32 21147.51 22659.68 15470.37 20069.64 19183.64 16768.49 183
test250675.32 15076.87 15973.50 13684.55 9180.37 10979.63 15873.23 5782.64 9155.41 18276.87 16345.42 22759.61 15690.35 7686.46 8688.58 12175.98 155
gm-plane-assit71.56 17069.99 18673.39 13884.43 9573.21 16590.42 6851.36 20184.08 8176.00 9891.30 4937.09 22859.01 15973.65 19070.24 18979.09 18160.37 203
DeepMVS_CXcopyleft17.78 22520.40 2266.69 22031.41 2229.80 22638.61 22134.88 22933.78 21428.41 22223.59 22445.77 218
tmp_tt13.54 21916.73 2256.42 2268.49 2272.36 22228.69 22327.44 22118.40 22313.51 2303.70 22233.23 22036.26 22022.54 225
test1231.06 2191.41 2210.64 2200.39 2270.48 2280.52 2300.25 2241.11 2251.37 2292.01 2251.98 2310.87 2231.43 2231.27 2220.46 2271.62 224
testmvs0.93 2201.37 2220.41 2210.36 2280.36 2290.62 2290.39 2231.48 2240.18 2302.41 2241.31 2320.41 2241.25 2241.08 2230.48 2261.68 223
uanet_test0.00 2210.00 2230.00 2220.00 2300.00 2300.00 2310.00 2260.00 2260.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet-low-res0.00 2210.00 2230.00 2220.00 2300.00 2300.00 2310.00 2260.00 2260.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet0.00 2210.00 2230.00 2220.00 2300.00 2300.00 2310.00 2260.00 2260.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
RE-MVS-def87.10 28
our_test_373.27 18170.91 17283.26 128
Patchmatch-RL test4.13 228
NP-MVS78.65 131
Patchmtry56.88 20664.47 21067.74 9972.30 121