This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
TDRefinement93.16 195.57 190.36 188.79 5293.57 197.27 178.23 2195.55 193.00 193.98 1796.01 3887.53 197.69 196.81 197.33 195.34 4
XVS91.28 2591.23 896.89 287.14 2594.53 7195.84 15
X-MVStestdata91.28 2591.23 896.89 287.14 2594.53 7195.84 15
X-MVS89.36 2890.73 4587.77 1691.50 2091.23 896.76 478.88 1787.29 5387.14 2578.98 14694.53 7176.47 5795.25 1994.28 1195.85 1493.55 16
ACMMPR91.30 492.88 1189.46 491.92 1191.61 596.60 579.46 1490.08 3088.53 1389.54 6595.57 4784.25 795.24 2094.27 1295.97 1193.85 8
MP-MVScopyleft90.84 691.95 3489.55 392.92 490.90 1996.56 679.60 1186.83 5888.75 1289.00 7394.38 7784.01 994.94 2494.34 1095.45 2493.24 23
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS90.42 1191.58 3789.05 591.77 1491.06 1396.51 778.94 1685.41 7087.67 1887.02 9695.26 5683.62 1295.01 2393.94 1595.79 1993.40 20
SteuartSystems-ACMMP90.00 1791.73 3587.97 1291.21 2990.29 2896.51 778.00 2386.33 6185.32 4088.23 8294.67 6982.08 2095.13 2293.88 1694.72 3593.59 13
Skip Steuart: Steuart Systems R&D Blog.
ACMMPcopyleft90.63 892.40 2088.56 891.24 2891.60 696.49 977.53 2687.89 4786.87 3087.24 9496.46 2582.87 1695.59 1594.50 896.35 693.51 18
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CP-MVS91.09 592.33 2589.65 292.16 1090.41 2796.46 1080.38 888.26 4489.17 1087.00 9796.34 3083.95 1095.77 1194.72 795.81 1793.78 10
ACMM80.67 790.67 792.46 1988.57 791.35 2289.93 3296.34 1177.36 3090.17 2886.88 2987.32 9296.63 2383.32 1395.79 1094.49 996.19 992.91 26
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
anonymousdsp85.62 5990.53 4679.88 9264.64 20776.35 14296.28 1253.53 19285.63 6781.59 6992.81 3097.71 1286.88 294.56 2592.83 2496.35 693.84 9
TSAR-MVS + MP.89.67 2492.25 2886.65 2591.53 1890.98 1796.15 1373.30 5687.88 4881.83 6692.92 2995.15 6082.23 1893.58 3492.25 3394.87 2993.01 25
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APDe-MVS89.85 2092.91 1086.29 2690.47 3891.34 796.04 1476.41 3991.11 1778.50 8893.44 2195.82 4281.55 2393.16 3791.90 3894.77 3293.58 15
ACMMP_NAP89.86 1991.96 3387.42 1991.00 3090.08 3096.00 1576.61 3689.28 3487.73 1790.04 5891.80 11278.71 3894.36 2893.82 1794.48 3794.32 6
CPTT-MVS89.63 2590.52 4788.59 690.95 3190.74 2195.71 1679.13 1587.70 4985.68 3880.05 14195.74 4584.77 694.28 2992.68 2695.28 2692.45 31
HFP-MVS90.32 1392.37 2287.94 1391.46 2190.91 1895.69 1779.49 1289.94 3383.50 5089.06 7294.44 7581.68 2294.17 3094.19 1395.81 1793.87 7
DPE-MVScopyleft89.81 2292.34 2486.86 2389.69 4491.00 1695.53 1876.91 3388.18 4583.43 5393.48 2095.19 5781.07 2692.75 4592.07 3694.55 3693.74 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
COLMAP_ROBcopyleft85.66 291.85 295.01 288.16 1188.98 5192.86 295.51 1972.17 6294.95 491.27 394.11 1697.77 1184.22 896.49 495.27 596.79 293.60 12
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
APD-MVScopyleft89.14 2991.25 4286.67 2491.73 1591.02 1595.50 2077.74 2484.04 8279.47 8291.48 4594.85 6681.14 2592.94 4192.20 3594.47 3892.24 32
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
LGP-MVS_train90.56 992.38 2188.43 990.88 3291.15 1195.35 2177.65 2586.26 6387.23 2390.45 5597.35 1783.20 1495.44 1693.41 2096.28 892.63 27
DVP-MVS++90.50 1094.18 486.21 2792.52 790.29 2895.29 2276.02 4194.24 582.82 5595.84 597.56 1576.82 5593.13 3891.20 4493.78 4597.01 1
MSP-MVS88.51 4291.36 4085.19 3990.63 3692.01 495.29 2277.52 2790.48 2680.21 7690.21 5796.08 3476.38 5988.30 9691.42 4191.12 8791.01 44
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SMA-MVScopyleft90.13 1592.26 2787.64 1791.68 1690.44 2695.22 2477.34 3290.79 2287.80 1690.42 5692.05 10879.05 3593.89 3293.59 1894.77 3294.62 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SED-MVS88.96 3792.37 2284.99 4088.64 5489.65 3795.11 2575.98 4290.73 2380.15 7794.21 1594.51 7476.59 5692.94 4191.17 4593.46 5093.37 22
HPM-MVS++copyleft88.74 4089.54 5287.80 1592.58 685.69 6995.10 2678.01 2287.08 5587.66 1987.89 8592.07 10680.28 3090.97 6991.41 4393.17 5791.69 37
OPM-MVS89.82 2192.24 2986.99 2290.86 3389.35 3895.07 2775.91 4391.16 1686.87 3091.07 5197.29 1879.13 3493.32 3591.99 3794.12 4091.49 40
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMP80.00 890.12 1692.30 2687.58 1890.83 3491.10 1294.96 2876.06 4087.47 5185.33 3988.91 7697.65 1482.13 1995.31 1793.44 1996.14 1092.22 33
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
UA-Net89.02 3391.44 3986.20 2894.88 189.84 3494.76 2977.45 2885.41 7074.79 10588.83 7788.90 13678.67 4096.06 795.45 496.66 395.58 2
DeepC-MVS83.59 490.37 1292.56 1887.82 1491.26 2792.33 394.72 3080.04 990.01 3184.61 4293.33 2294.22 7880.59 2792.90 4392.52 2895.69 2192.57 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
train_agg86.67 5387.73 6985.43 3591.51 1982.72 8794.47 3174.22 5381.71 10081.54 7089.20 7192.87 9478.33 4390.12 7988.47 6892.51 6989.04 59
SD-MVS89.91 1892.23 3087.19 2191.31 2489.79 3594.31 3275.34 4789.26 3681.79 6792.68 3195.08 6283.88 1193.10 3992.69 2596.54 493.02 24
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
3Dnovator+83.71 388.13 4490.00 5085.94 2986.82 7191.06 1394.26 3375.39 4688.85 4085.76 3785.74 10986.92 14578.02 4593.03 4092.21 3495.39 2592.21 34
DeepPCF-MVS81.61 687.95 4790.29 4985.22 3887.48 6590.01 3193.79 3473.54 5488.93 3883.89 4589.40 6790.84 12180.26 3190.62 7290.19 5392.36 7092.03 35
DVP-MVScopyleft89.40 2792.69 1385.56 3489.01 5089.85 3393.72 3575.42 4592.28 1180.49 7294.36 1394.87 6581.46 2492.49 4991.42 4193.27 5393.54 17
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
PMVScopyleft79.51 990.23 1492.67 1487.39 2090.16 3988.75 4293.64 3675.78 4490.00 3283.70 4792.97 2892.22 10386.13 497.01 396.79 294.94 2890.96 45
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
LTVRE_ROB86.82 191.55 394.43 388.19 1083.19 11186.35 6593.60 3778.79 1895.48 391.79 293.08 2697.21 2086.34 397.06 296.27 395.46 2395.56 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
WR-MVS89.79 2393.66 585.27 3791.32 2388.27 4693.49 3879.86 1092.75 975.37 10196.86 198.38 575.10 7195.93 894.07 1496.46 589.39 56
NCCC86.74 5287.97 6885.31 3690.64 3587.25 5893.27 3974.59 4986.50 5983.72 4675.92 17292.39 10077.08 5391.72 5390.68 4892.57 6791.30 42
CNVR-MVS86.93 5188.98 5684.54 4490.11 4087.41 5793.23 4073.47 5586.31 6282.25 6182.96 12992.15 10476.04 6291.69 5490.69 4792.17 7391.64 39
OMC-MVS88.16 4391.34 4184.46 4686.85 7090.63 2393.01 4167.00 10390.35 2787.40 2186.86 9996.35 2977.66 4992.63 4790.84 4694.84 3091.68 38
CDPH-MVS86.66 5488.52 5984.48 4589.61 4588.27 4692.86 4272.69 6180.55 11882.71 5686.92 9893.32 8975.55 6791.00 6889.85 5693.47 4989.71 53
DeepC-MVS_fast81.78 587.38 4989.64 5184.75 4189.89 4290.70 2292.74 4374.45 5086.02 6482.16 6486.05 10691.99 11075.84 6591.16 6390.44 4993.41 5191.09 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D89.02 3391.69 3685.91 3089.72 4390.81 2092.56 4471.69 6690.83 2187.24 2289.71 6392.07 10678.37 4294.43 2792.59 2795.86 1391.35 41
ACMH+79.05 1189.62 2693.08 885.58 3288.58 5589.26 3992.18 4574.23 5293.55 882.66 5892.32 3698.35 780.29 2995.28 1892.34 3195.52 2290.43 48
WR-MVS_H88.99 3593.28 683.99 5391.92 1189.13 4091.95 4683.23 190.14 2971.92 12495.85 498.01 1071.83 9795.82 993.19 2293.07 5990.83 47
CS-MVS-test83.59 7984.86 10182.10 6983.04 11381.05 10491.58 4767.48 10272.52 15478.42 8984.75 11991.82 11178.62 4191.98 5087.54 7693.48 4884.35 92
MVS_030484.73 7086.19 8183.02 5788.32 5686.71 6291.55 4870.87 7073.79 14782.88 5485.13 11393.35 8872.55 8988.62 9187.69 7491.93 7588.05 69
ACMH78.40 1288.94 3892.62 1684.65 4286.45 7487.16 5991.47 4968.79 8795.49 289.74 693.55 1998.50 277.96 4694.14 3189.57 6193.49 4789.94 52
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP-MVS85.02 6686.41 7983.40 5489.19 4886.59 6391.28 5071.60 6782.79 8983.48 5178.65 15093.54 8672.55 8986.49 11185.89 9592.28 7290.95 46
PCF-MVS76.59 1484.11 7485.27 9282.76 6486.12 7788.30 4591.24 5169.10 8282.36 9584.45 4377.56 15690.40 12672.91 8885.88 11683.88 11392.72 6488.53 63
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TSAR-MVS + ACMM89.14 2992.11 3285.67 3189.27 4790.61 2490.98 5279.48 1388.86 3979.80 7993.01 2793.53 8783.17 1592.75 4592.45 2991.32 8293.59 13
DTE-MVSNet88.99 3592.77 1284.59 4393.31 288.10 4990.96 5383.09 291.38 1476.21 9596.03 298.04 870.78 10695.65 1492.32 3293.18 5687.84 70
CNLPA85.50 6188.58 5781.91 7184.55 9087.52 5690.89 5463.56 13988.18 4584.06 4483.85 12691.34 11876.46 5891.27 6089.00 6691.96 7488.88 61
PEN-MVS88.86 3992.92 984.11 5292.92 488.05 5190.83 5582.67 591.04 1874.83 10495.97 398.47 370.38 10795.70 1392.43 3093.05 6088.78 62
SF-MVS87.85 4890.95 4484.22 4988.17 6087.90 5390.80 5671.80 6589.28 3482.70 5789.90 6095.37 5477.91 4791.69 5490.04 5493.95 4492.47 29
PHI-MVS86.37 5688.14 6584.30 4786.65 7387.56 5590.76 5770.16 7382.55 9289.65 784.89 11792.40 9975.97 6390.88 7089.70 5892.58 6589.03 60
TAPA-MVS78.00 1385.88 5888.37 6182.96 6084.69 8688.62 4390.62 5864.22 12989.15 3788.05 1478.83 14893.71 8276.20 6190.11 8088.22 7194.00 4189.97 51
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Vis-MVSNetpermissive83.32 8488.12 6677.71 10677.91 15783.44 8390.58 5969.49 7881.11 11267.10 15289.85 6191.48 11671.71 9891.34 5989.37 6289.48 10490.26 49
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CSCG88.12 4591.45 3884.23 4888.12 6190.59 2590.57 6068.60 8991.37 1583.45 5289.94 5995.14 6178.71 3891.45 5888.21 7295.96 1293.44 19
AdaColmapbinary84.15 7385.14 9583.00 5989.08 4987.14 6090.56 6170.90 6982.40 9480.41 7373.82 18384.69 15675.19 7091.58 5789.90 5591.87 7686.48 77
PS-CasMVS89.07 3293.23 784.21 5092.44 888.23 4890.54 6282.95 390.50 2575.31 10295.80 698.37 671.16 10096.30 593.32 2192.88 6190.11 50
SixPastTwentyTwo89.14 2992.19 3185.58 3284.62 8882.56 9090.53 6371.93 6491.95 1285.89 3594.22 1497.25 1985.42 595.73 1291.71 4095.08 2791.89 36
MVS_111021_HR83.95 7586.10 8381.44 7684.62 8880.29 11090.51 6468.05 9684.07 8180.38 7484.74 12091.37 11774.23 7790.37 7587.25 7890.86 8984.59 89
TSAR-MVS + COLMAP85.51 6088.36 6282.19 6786.05 7887.69 5490.50 6570.60 7286.40 6082.33 5989.69 6492.52 9874.01 8187.53 10086.84 8389.63 10187.80 71
CP-MVSNet88.71 4192.63 1584.13 5192.39 988.09 5090.47 6682.86 488.79 4175.16 10394.87 997.68 1371.05 10296.16 693.18 2392.85 6289.64 54
MCST-MVS84.79 6986.48 7782.83 6387.30 6787.03 6190.46 6769.33 8183.14 8682.21 6381.69 13792.14 10575.09 7287.27 10384.78 10692.58 6589.30 57
gm-plane-assit71.56 16969.99 18473.39 13884.43 9473.21 16390.42 6851.36 19984.08 8076.00 9791.30 4837.09 22559.01 15873.65 18870.24 18779.09 17960.37 200
CANet82.84 9084.60 10680.78 8187.30 6785.20 7290.23 6969.00 8372.16 15778.73 8784.49 12290.70 12469.54 11287.65 9986.17 9089.87 9885.84 82
CLD-MVS82.75 9387.22 7477.54 10988.01 6285.76 6890.23 6954.52 18682.28 9682.11 6588.48 8095.27 5563.95 13989.41 8588.29 7086.45 14381.01 125
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DPM-MVS81.42 10482.11 13180.62 8687.54 6485.30 7190.18 7168.96 8481.00 11479.15 8470.45 19983.29 15967.67 12182.81 14383.46 11790.19 9388.48 64
RPSCF88.05 4692.61 1782.73 6584.24 9588.40 4490.04 7266.29 10791.46 1382.29 6088.93 7596.01 3879.38 3295.15 2194.90 694.15 3993.40 20
v7n87.11 5090.46 4883.19 5685.22 8483.69 8090.03 7368.20 9591.01 1986.71 3394.80 1098.46 477.69 4891.10 6585.98 9291.30 8388.19 65
GeoE81.92 10083.87 11879.66 9484.64 8779.87 11289.75 7465.90 11476.12 13975.87 9884.62 12192.23 10271.96 9686.83 10883.60 11689.83 9983.81 98
MVS_111021_LR83.20 8685.33 9180.73 8482.88 11678.23 12789.61 7565.23 12082.08 9781.19 7185.31 11192.04 10975.22 6989.50 8385.90 9490.24 9284.23 93
v119283.61 7885.23 9381.72 7384.05 9782.15 9389.54 7666.20 10881.38 10986.76 3291.79 4296.03 3674.88 7481.81 15180.92 13988.91 11382.50 113
v192192083.49 8284.94 9981.80 7283.78 10481.20 10289.50 7765.91 11381.64 10287.18 2491.70 4395.39 5375.85 6481.56 15480.27 14588.60 11882.80 109
v124083.57 8084.94 9981.97 7084.05 9781.27 10089.46 7866.06 11081.31 11087.50 2091.88 4195.46 5176.25 6081.16 15680.51 14388.52 12382.98 107
v14419283.43 8384.97 9881.63 7583.43 10781.23 10189.42 7966.04 11281.45 10886.40 3491.46 4695.70 4675.76 6682.14 14780.23 14688.74 11582.57 112
MAR-MVS81.98 9982.92 12780.88 8085.18 8585.85 6789.13 8069.52 7671.21 16182.25 6171.28 19388.89 13769.69 10988.71 8986.96 7989.52 10387.57 72
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
TSAR-MVS + GP.85.32 6487.41 7382.89 6290.07 4185.69 6989.07 8172.99 6082.45 9374.52 10885.09 11487.67 14279.24 3391.11 6490.41 5091.45 7989.45 55
v114483.22 8585.01 9681.14 7783.76 10581.60 9688.95 8265.58 11881.89 9985.80 3691.68 4495.84 4174.04 8082.12 14880.56 14288.70 11781.41 122
PLCcopyleft76.06 1585.38 6387.46 7182.95 6185.79 8088.84 4188.86 8368.70 8887.06 5683.60 4879.02 14490.05 12777.37 5290.88 7089.66 5993.37 5286.74 76
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ETV-MVS79.01 12777.98 14880.22 9186.69 7279.73 11588.80 8468.27 9463.22 19571.56 12670.25 20173.63 19273.66 8490.30 7886.77 8492.33 7181.95 118
v1083.17 8785.22 9480.78 8183.26 11082.99 8588.66 8566.49 10679.24 12783.60 4891.46 4695.47 5074.12 7882.60 14680.66 14088.53 12284.11 96
Effi-MVS+-dtu82.04 9883.39 12580.48 8985.48 8286.57 6488.40 8668.28 9369.04 17273.13 11776.26 16791.11 12074.74 7588.40 9487.76 7392.84 6384.57 90
EPNet79.36 12279.44 14179.27 9889.51 4677.20 13688.35 8777.35 3168.27 17474.29 10976.31 16579.22 17259.63 15485.02 12785.45 9986.49 14284.61 88
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UniMVSNet (Re)84.95 6788.53 5880.78 8187.82 6384.21 7588.03 8876.50 3781.18 11169.29 13892.63 3496.83 2269.07 11491.23 6289.60 6093.97 4384.00 97
PVSNet_Blended_VisFu83.00 8884.16 11581.65 7482.17 12386.01 6688.03 8871.23 6876.05 14079.54 8183.88 12583.44 15777.49 5187.38 10184.93 10491.41 8087.40 74
Baseline_NR-MVSNet82.79 9186.51 7678.44 10388.30 5775.62 15087.81 9074.97 4881.53 10466.84 15394.71 1296.46 2566.90 12591.79 5183.37 12285.83 15282.09 116
Fast-Effi-MVS+81.42 10483.82 12078.62 10182.24 12280.62 10687.72 9163.51 14073.01 14974.75 10683.80 12792.70 9673.44 8688.15 9885.26 10090.05 9483.17 103
v2v48282.20 9684.26 11179.81 9382.67 11980.18 11187.67 9263.96 13681.69 10184.73 4191.27 4996.33 3172.05 9581.94 15079.56 15087.79 12978.84 142
Effi-MVS+82.33 9483.87 11880.52 8884.51 9381.32 9987.53 9368.05 9674.94 14579.67 8082.37 13492.31 10172.21 9185.06 12386.91 8191.18 8584.20 94
pmmvs-eth3d79.64 11882.06 13276.83 11280.05 13572.64 16587.47 9466.59 10480.83 11573.50 11389.32 6993.20 9067.78 11980.78 15981.64 13585.58 15576.01 153
TranMVSNet+NR-MVSNet85.23 6589.38 5380.39 9088.78 5383.77 7887.40 9576.75 3485.47 6868.99 14095.18 897.55 1667.13 12491.61 5689.13 6593.26 5482.95 108
CS-MVS83.57 8084.79 10382.14 6883.83 10381.48 9787.29 9666.54 10572.73 15380.05 7884.04 12493.12 9380.35 2889.50 8386.34 8894.76 3486.32 80
v882.20 9684.56 10779.45 9582.42 12081.65 9587.26 9764.27 12879.36 12681.70 6891.04 5295.75 4473.30 8782.82 14279.18 15387.74 13082.09 116
3Dnovator79.41 1082.21 9586.07 8477.71 10679.31 14284.61 7387.18 9861.02 16085.65 6676.11 9685.07 11585.38 15470.96 10487.22 10486.47 8591.66 7788.12 68
PM-MVS80.42 11283.63 12276.67 11378.04 15472.37 16787.14 9960.18 16680.13 12071.75 12586.12 10593.92 8177.08 5386.56 11085.12 10285.83 15281.18 123
NR-MVSNet82.89 8987.43 7277.59 10883.91 10183.59 8187.10 10078.35 1980.64 11668.85 14192.67 3296.50 2454.19 17987.19 10688.68 6793.16 5882.75 110
UniMVSNet_NR-MVSNet84.62 7188.00 6780.68 8588.18 5983.83 7787.06 10176.47 3881.46 10770.49 13293.24 2395.56 4868.13 11790.43 7388.47 6893.78 4583.02 105
DU-MVS84.88 6888.27 6480.92 7988.30 5783.59 8187.06 10178.35 1980.64 11670.49 13292.67 3296.91 2168.13 11791.79 5189.29 6493.20 5583.02 105
MSLP-MVS++86.29 5789.10 5583.01 5885.71 8189.79 3587.04 10374.39 5185.17 7278.92 8677.59 15593.57 8582.60 1793.23 3691.88 3989.42 10692.46 30
EG-PatchMatch MVS84.35 7287.55 7080.62 8686.38 7582.24 9286.75 10464.02 13484.24 7878.17 9189.38 6895.03 6478.78 3789.95 8186.33 8989.59 10285.65 84
UGNet79.62 11985.91 8672.28 14373.52 17883.91 7686.64 10569.51 7779.85 12362.57 16485.82 10889.63 12853.18 18388.39 9587.35 7788.28 12586.43 78
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
V4279.59 12083.59 12374.93 12969.61 19177.05 13886.59 10655.84 18178.42 13177.29 9389.84 6295.08 6274.12 7883.05 13980.11 14886.12 14681.59 121
FPMVS81.56 10284.04 11778.66 10082.92 11475.96 14686.48 10765.66 11784.67 7671.47 12777.78 15383.22 16077.57 5091.24 6190.21 5287.84 12885.21 86
EIA-MVS78.57 12977.90 14979.35 9787.24 6980.71 10586.16 10864.03 13362.63 20073.49 11473.60 18476.12 18673.83 8288.49 9384.93 10491.36 8178.78 143
FC-MVSNet-train79.20 12586.29 8070.94 15084.06 9677.67 13085.68 10964.11 13182.90 8852.22 19492.57 3593.69 8349.52 19488.30 9686.93 8090.03 9581.95 118
IS_MVSNet81.72 10185.01 9677.90 10586.19 7682.64 8985.56 11070.02 7480.11 12163.52 16087.28 9381.18 16767.26 12291.08 6789.33 6394.82 3183.42 102
DROMVSNet83.70 7784.77 10482.46 6687.47 6682.79 8685.50 11172.00 6369.81 16577.66 9285.02 11689.63 12878.14 4490.40 7487.56 7594.00 4188.16 66
FA-MVS(training)78.93 12880.63 13776.93 11179.79 13875.57 15185.44 11261.95 15377.19 13578.97 8584.82 11882.47 16266.43 13084.09 13580.13 14789.02 11080.15 136
TinyColmap83.79 7686.12 8281.07 7883.42 10881.44 9885.42 11368.55 9088.71 4289.46 887.60 8792.72 9570.34 10889.29 8681.94 13189.20 10781.12 124
EPP-MVSNet82.76 9286.47 7878.45 10286.00 7984.47 7485.39 11468.42 9184.17 7962.97 16289.26 7076.84 18272.13 9492.56 4890.40 5195.76 2087.56 73
Gipumacopyleft86.47 5589.25 5483.23 5583.88 10278.78 12385.35 11568.42 9192.69 1089.03 1191.94 3896.32 3281.80 2194.45 2686.86 8290.91 8883.69 99
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
FC-MVSNet-test75.91 14683.59 12366.95 17576.63 17069.07 17785.33 11664.97 12284.87 7541.95 20893.17 2487.04 14447.78 19791.09 6685.56 9885.06 15974.34 161
MSDG81.39 10684.23 11378.09 10482.40 12182.47 9185.31 11760.91 16179.73 12480.26 7586.30 10288.27 14069.67 11087.20 10584.98 10389.97 9680.67 127
thisisatest051581.18 10984.32 11077.52 11076.73 16874.84 15785.06 11861.37 15781.05 11373.95 11088.79 7889.25 13375.49 6885.98 11584.78 10692.53 6885.56 85
Fast-Effi-MVS+-dtu76.92 13677.18 15476.62 11479.55 13979.17 11984.80 11977.40 2964.46 19068.75 14370.81 19786.57 14763.36 14681.74 15281.76 13385.86 15175.78 156
DELS-MVS79.71 11683.74 12175.01 12679.31 14282.68 8884.79 12060.06 16775.43 14369.09 13986.13 10489.38 13167.16 12385.12 12283.87 11489.65 10083.57 100
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MIMVSNet173.40 15881.85 13363.55 18772.90 18164.37 19184.58 12153.60 19190.84 2053.92 18687.75 8696.10 3345.31 20085.37 12179.32 15270.98 19569.18 180
ambc88.38 6091.62 1787.97 5284.48 12288.64 4387.93 1587.38 9194.82 6874.53 7689.14 8883.86 11585.94 15086.84 75
pmmvs475.92 14577.48 15374.10 13378.21 15370.94 16984.06 12364.78 12375.13 14468.47 14684.12 12383.32 15864.74 13875.93 18179.14 15484.31 16273.77 165
MDA-MVSNet-bldmvs76.51 13982.87 12869.09 16350.71 21874.72 15984.05 12460.27 16581.62 10371.16 12988.21 8391.58 11369.62 11192.78 4477.48 16178.75 18073.69 166
CANet_DTU75.04 15278.45 14471.07 14777.27 15977.96 12883.88 12558.00 17664.11 19168.67 14475.65 17488.37 13953.92 18182.05 14981.11 13684.67 16079.88 137
casdiffmvs_mvgpermissive81.50 10385.70 8876.60 11582.68 11880.54 10783.50 12664.49 12783.40 8372.53 11892.15 3795.40 5265.84 13284.69 13081.89 13290.59 9081.86 120
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
our_test_373.27 17970.91 17083.26 127
HyFIR lowres test73.29 15974.14 17572.30 14273.08 18078.33 12683.12 12862.41 15163.81 19262.13 16676.67 16478.50 17571.09 10174.13 18577.47 16281.98 17370.10 175
IB-MVS71.28 1775.21 15177.00 15673.12 14176.76 16277.45 13283.05 12958.92 17263.01 19664.31 15959.99 21487.57 14368.64 11586.26 11482.34 12987.05 13782.36 115
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CVMVSNet75.65 14877.62 15273.35 14071.95 18469.89 17483.04 13060.84 16269.12 17068.76 14279.92 14278.93 17473.64 8581.02 15781.01 13881.86 17483.43 101
casdiffmvspermissive79.93 11484.11 11675.05 12481.41 12978.99 12182.95 13162.90 14781.53 10468.60 14591.94 3896.03 3665.84 13282.89 14177.07 16488.59 11980.34 133
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tttt051775.86 14776.23 16375.42 12075.55 17474.06 16182.73 13260.31 16369.24 16870.24 13479.18 14358.79 21072.17 9284.49 13283.08 12491.54 7884.80 87
ET-MVSNet_ETH3D74.71 15474.19 17475.31 12279.22 14475.29 15282.70 13364.05 13265.45 18570.96 13177.15 16057.70 21265.89 13184.40 13381.65 13489.03 10977.67 149
USDC81.39 10683.07 12679.43 9681.48 12778.95 12282.62 13466.17 10987.45 5290.73 482.40 13393.65 8466.57 12783.63 13877.97 15689.00 11177.45 150
EPNet_dtu71.90 16873.03 18070.59 15278.28 15161.64 19682.44 13564.12 13063.26 19469.74 13571.47 19182.41 16351.89 19178.83 16878.01 15577.07 18175.60 158
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDTV_nov1_ep13_2view72.96 16475.59 16869.88 15771.15 18864.86 19082.31 13654.45 18776.30 13778.32 9086.52 10091.58 11361.35 14976.80 17466.83 19471.70 18866.26 184
thisisatest053075.54 14975.95 16775.05 12475.08 17573.56 16282.15 13760.31 16369.17 16969.32 13779.02 14458.78 21172.17 9283.88 13683.08 12491.30 8384.20 94
v14879.33 12382.32 13075.84 11880.14 13475.74 14781.98 13857.06 17881.51 10679.36 8389.42 6696.42 2771.32 9981.54 15575.29 17385.20 15776.32 152
UniMVSNet_ETH3D85.39 6291.12 4378.71 9990.48 3783.72 7981.76 13982.41 693.84 664.43 15895.41 798.76 163.72 14193.63 3389.74 5789.47 10582.74 111
EU-MVSNet76.48 14080.53 13871.75 14567.62 19770.30 17281.74 14054.06 18975.47 14271.01 13080.10 13993.17 9273.67 8383.73 13777.85 15782.40 17183.07 104
Vis-MVSNet (Re-imp)76.15 14380.84 13670.68 15183.66 10674.80 15881.66 14169.59 7580.48 11946.94 20387.44 9080.63 16953.14 18486.87 10784.56 10989.12 10871.12 171
DI_MVS_plusplus_trai77.64 13379.64 14075.31 12279.87 13776.89 13981.55 14263.64 13876.21 13872.03 12385.59 11082.97 16166.63 12679.27 16777.78 15888.14 12678.76 144
test111179.67 11784.40 10874.16 13285.29 8379.56 11781.16 14373.13 5984.65 7756.08 17788.38 8186.14 14960.49 15189.78 8285.59 9788.79 11476.68 151
testgi68.20 18276.05 16559.04 19479.99 13667.32 18481.16 14351.78 19784.91 7439.36 21373.42 18595.19 5732.79 21376.54 17870.40 18669.14 19964.55 187
PatchMatch-RL76.05 14476.64 15975.36 12177.84 15869.87 17581.09 14563.43 14171.66 15968.34 14771.70 18981.76 16674.98 7384.83 12983.44 11886.45 14373.22 168
IterMVS73.62 15776.53 16070.23 15571.83 18577.18 13780.69 14653.22 19372.23 15666.62 15485.21 11278.96 17369.54 11276.28 18071.63 18379.45 17774.25 163
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
diffmvspermissive76.74 13781.61 13471.06 14875.64 17374.45 16080.68 14757.57 17777.48 13267.62 15188.95 7493.94 8061.98 14879.74 16476.18 16882.85 17080.50 128
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DCV-MVSNet80.04 11385.67 9073.48 13782.91 11581.11 10380.44 14866.06 11085.01 7362.53 16578.84 14794.43 7658.51 16088.66 9085.91 9390.41 9185.73 83
canonicalmvs81.22 10886.04 8575.60 11983.17 11283.18 8480.29 14965.82 11685.97 6567.98 14877.74 15491.51 11565.17 13588.62 9186.15 9191.17 8689.09 58
GA-MVS75.01 15376.39 16173.39 13878.37 15075.66 14980.03 15058.40 17470.51 16375.85 9983.24 12876.14 18563.75 14077.28 17376.62 16783.97 16475.30 159
OpenMVScopyleft75.38 1678.44 13081.39 13574.99 12780.46 13279.85 11379.99 15158.31 17577.34 13473.85 11177.19 15982.33 16568.60 11684.67 13181.95 13088.72 11686.40 79
MVS_Test76.72 13879.40 14273.60 13478.85 14874.99 15579.91 15261.56 15669.67 16672.44 11985.98 10790.78 12263.50 14478.30 16975.74 17185.33 15680.31 134
IterMVS-LS79.79 11582.56 12976.56 11681.83 12577.85 12979.90 15369.42 8078.93 12971.21 12890.47 5485.20 15570.86 10580.54 16180.57 14186.15 14584.36 91
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
QAPM80.43 11184.34 10975.86 11779.40 14182.06 9479.86 15461.94 15483.28 8574.73 10781.74 13685.44 15370.97 10384.99 12884.71 10888.29 12488.14 67
PVSNet_BlendedMVS76.45 14178.12 14674.49 13076.76 16278.46 12479.65 15563.26 14365.42 18673.15 11575.05 17788.96 13466.51 12882.73 14477.66 15987.61 13178.60 145
PVSNet_Blended76.45 14178.12 14674.49 13076.76 16278.46 12479.65 15563.26 14365.42 18673.15 11575.05 17788.96 13466.51 12882.73 14477.66 15987.61 13178.60 145
test250675.32 15076.87 15873.50 13684.55 9080.37 10879.63 15773.23 5782.64 9055.41 18176.87 16245.42 22459.61 15590.35 7686.46 8688.58 12075.98 154
ECVR-MVScopyleft79.31 12484.20 11473.60 13484.55 9080.37 10879.63 15773.23 5782.64 9055.98 17887.50 8886.85 14659.61 15590.35 7686.46 8688.58 12075.26 160
CDS-MVSNet73.07 16377.02 15568.46 16681.62 12672.89 16479.56 15970.78 7169.56 16752.52 19177.37 15881.12 16842.60 20284.20 13483.93 11283.65 16570.07 176
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CostFormer66.81 18666.94 19266.67 17672.79 18268.25 18079.55 16055.57 18265.52 18462.77 16376.98 16160.09 20656.73 16665.69 20962.35 19872.59 18769.71 177
Anonymous20240521184.68 10583.92 10079.45 11879.03 16167.79 9882.01 9888.77 7992.58 9755.93 17086.68 10984.26 11088.92 11278.98 141
CHOSEN 1792x268868.80 17971.09 18266.13 17969.11 19368.89 17978.98 16254.68 18461.63 20256.69 17471.56 19078.39 17667.69 12072.13 19272.01 18269.63 19873.02 169
Anonymous2023121179.37 12185.78 8771.89 14482.87 11779.66 11678.77 16363.93 13783.36 8459.39 16990.54 5394.66 7056.46 16787.38 10184.12 11189.92 9780.74 126
thres600view774.34 15678.43 14569.56 16080.47 13176.28 14378.65 16462.56 14977.39 13352.53 19074.03 18176.78 18355.90 17185.06 12385.19 10187.25 13574.29 162
FMVSNet178.20 13284.83 10270.46 15478.62 14979.03 12077.90 16567.53 10183.02 8755.10 18387.19 9593.18 9155.65 17285.57 11783.39 11987.98 12782.40 114
pmmvs680.46 11088.34 6371.26 14681.96 12477.51 13177.54 16668.83 8693.72 755.92 17993.94 1898.03 955.94 16989.21 8785.61 9687.36 13480.38 129
TransMVSNet (Re)79.05 12686.66 7570.18 15683.32 10975.99 14577.54 16663.98 13590.68 2455.84 18094.80 1096.06 3553.73 18286.27 11383.22 12386.65 13879.61 139
thres40073.13 16276.99 15768.62 16579.46 14074.93 15677.23 16861.23 15975.54 14152.31 19372.20 18877.10 18154.89 17482.92 14082.62 12886.57 14173.66 167
MS-PatchMatch71.18 17273.99 17667.89 17277.16 16071.76 16877.18 16956.38 18067.35 17555.04 18474.63 17975.70 18762.38 14776.62 17675.97 17079.22 17875.90 155
tfpn200view972.01 16775.40 16968.06 16977.97 15576.44 14177.04 17062.67 14866.81 17750.82 19967.30 20575.67 18852.46 19085.06 12382.64 12787.41 13373.86 164
SCA68.54 18167.52 19169.73 15867.79 19675.04 15376.96 17168.94 8566.41 17967.86 14974.03 18160.96 20365.55 13468.99 20165.67 19571.30 19361.54 199
baseline268.71 18068.34 18969.14 16275.69 17269.70 17676.60 17255.53 18360.13 20562.07 16766.76 20760.35 20560.77 15076.53 17974.03 17584.19 16370.88 172
tfpnnormal77.16 13584.26 11168.88 16481.02 13075.02 15476.52 17363.30 14287.29 5352.40 19291.24 5093.97 7954.85 17685.46 12081.08 13785.18 15875.76 157
pm-mvs178.21 13185.68 8969.50 16180.38 13375.73 14876.25 17465.04 12187.59 5054.47 18593.16 2595.99 4054.20 17886.37 11282.98 12686.64 13977.96 148
tpm cat164.79 19162.74 20567.17 17374.61 17765.91 18876.18 17559.32 16964.88 18966.41 15571.21 19453.56 22059.17 15761.53 21358.16 20767.33 20263.95 188
RPMNet67.02 18563.99 20070.56 15371.55 18667.63 18175.81 17669.44 7959.93 20663.24 16164.32 20947.51 22359.68 15370.37 19869.64 18983.64 16668.49 181
MDTV_nov1_ep1364.96 18964.77 19765.18 18567.08 20062.46 19575.80 17751.10 20062.27 20169.74 13574.12 18062.65 20155.64 17368.19 20362.16 20271.70 18861.57 198
GBi-Net73.17 16077.64 15067.95 17076.76 16277.36 13375.77 17864.57 12462.99 19751.83 19576.05 16877.76 17852.73 18785.57 11783.39 11986.04 14780.37 130
test173.17 16077.64 15067.95 17076.76 16277.36 13375.77 17864.57 12462.99 19751.83 19576.05 16877.76 17852.73 18785.57 11783.39 11986.04 14780.37 130
FMVSNet274.43 15579.70 13968.27 16776.76 16277.36 13375.77 17865.36 11972.28 15552.97 18981.92 13585.61 15252.73 18780.66 16079.73 14986.04 14780.37 130
MVSTER68.08 18369.73 18566.16 17866.33 20570.06 17375.71 18152.36 19555.18 21458.64 17170.23 20256.72 21557.34 16479.68 16576.03 16986.61 14080.20 135
test20.0369.91 17376.20 16462.58 18884.01 9967.34 18375.67 18265.88 11579.98 12240.28 21282.65 13089.31 13239.63 20777.41 17273.28 17769.98 19663.40 191
IterMVS-SCA-FT77.23 13479.18 14374.96 12876.67 16979.85 11375.58 18361.34 15873.10 14873.79 11286.23 10379.61 17179.00 3680.28 16375.50 17283.41 16979.70 138
thres20072.41 16676.00 16668.21 16878.28 15176.28 14374.94 18462.56 14972.14 15851.35 19869.59 20376.51 18454.89 17485.06 12380.51 14387.25 13571.92 170
FMVSNet371.40 17175.20 17266.97 17475.00 17676.59 14074.29 18564.57 12462.99 19751.83 19576.05 16877.76 17851.49 19276.58 17777.03 16584.62 16179.43 140
Anonymous2023120667.28 18473.41 17960.12 19376.45 17163.61 19474.21 18656.52 17976.35 13642.23 20775.81 17390.47 12541.51 20574.52 18269.97 18869.83 19763.17 192
baseline69.33 17775.37 17062.28 19066.54 20366.67 18673.95 18748.07 20266.10 18059.26 17082.45 13186.30 14854.44 17774.42 18473.25 17871.42 19178.43 147
thres100view90069.86 17472.97 18166.24 17777.97 15572.49 16673.29 18859.12 17066.81 17750.82 19967.30 20575.67 18850.54 19378.24 17079.40 15185.71 15470.88 172
PatchmatchNetpermissive64.81 19063.74 20166.06 18169.21 19258.62 20073.16 18960.01 16865.92 18166.19 15676.27 16659.09 20760.45 15266.58 20661.47 20467.33 20258.24 205
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test-mter59.39 20361.59 20756.82 19853.21 21454.82 20473.12 19026.57 21753.19 21556.31 17564.71 20860.47 20456.36 16868.69 20264.27 19775.38 18365.00 185
pmmvs568.91 17874.35 17362.56 18967.45 19966.78 18571.70 19151.47 19867.17 17656.25 17682.41 13288.59 13847.21 19973.21 19174.23 17481.30 17568.03 182
tpm62.79 19463.25 20262.26 19170.09 19053.78 20571.65 19247.31 20365.72 18376.70 9480.62 13856.40 21748.11 19664.20 21158.54 20559.70 20863.47 190
dps65.14 18864.50 19865.89 18271.41 18765.81 18971.44 19361.59 15558.56 20961.43 16875.45 17552.70 22158.06 16269.57 20064.65 19671.39 19264.77 186
baseline169.62 17573.55 17865.02 18678.95 14770.39 17171.38 19462.03 15270.97 16247.95 20278.47 15168.19 19847.77 19879.65 16676.94 16682.05 17270.27 174
gg-mvs-nofinetune72.68 16575.21 17169.73 15881.48 12769.04 17870.48 19576.67 3586.92 5767.80 15088.06 8464.67 20042.12 20477.60 17173.65 17679.81 17666.57 183
PatchT66.25 18766.76 19365.67 18355.87 21360.75 19770.17 19659.00 17159.80 20872.30 12078.68 14954.12 21965.04 13671.64 19372.91 17971.63 19069.40 178
pmmvs362.72 19568.71 18855.74 20050.74 21757.10 20170.05 19728.82 21561.57 20457.39 17371.19 19585.73 15053.96 18073.36 19069.43 19073.47 18662.55 194
MIMVSNet63.02 19269.02 18756.01 19968.20 19459.26 19970.01 19853.79 19071.56 16041.26 21171.38 19282.38 16436.38 20971.43 19567.32 19366.45 20459.83 202
TAMVS63.02 19269.30 18655.70 20170.12 18956.89 20269.63 19945.13 20570.23 16438.00 21477.79 15275.15 19042.60 20274.48 18372.81 18168.70 20057.75 207
PMMVS61.98 19965.61 19557.74 19645.03 21951.76 21069.54 20035.05 21255.49 21355.32 18268.23 20478.39 17658.09 16170.21 19971.56 18483.42 16863.66 189
test-LLR62.15 19859.46 21465.29 18479.07 14552.66 20869.46 20162.93 14550.76 21753.81 18763.11 21158.91 20852.87 18566.54 20762.34 19973.59 18461.87 196
TESTMET0.1,157.21 20659.46 21454.60 20450.95 21652.66 20869.46 20126.91 21650.76 21753.81 18763.11 21158.91 20852.87 18566.54 20762.34 19973.59 18461.87 196
CHOSEN 280x42056.32 21058.85 21653.36 20551.63 21539.91 21969.12 20338.61 21156.29 21136.79 21548.84 21662.59 20263.39 14573.61 18967.66 19260.61 20663.07 193
test0.0.03 161.79 20065.33 19657.65 19779.07 14564.09 19268.51 20462.93 14561.59 20333.71 21661.58 21371.58 19633.43 21270.95 19668.68 19168.26 20158.82 203
tpmrst59.42 20260.02 21258.71 19567.56 19853.10 20766.99 20551.88 19663.80 19357.68 17276.73 16356.49 21648.73 19556.47 21755.55 21059.43 20958.02 206
FMVSNet556.37 20960.14 21151.98 20960.83 20959.58 19866.85 20642.37 20852.68 21641.33 21047.09 21754.68 21835.28 21073.88 18670.77 18565.24 20562.26 195
CR-MVSNet69.56 17668.34 18970.99 14972.78 18367.63 18164.47 20767.74 9959.93 20672.30 12080.10 13956.77 21465.04 13671.64 19372.91 17983.61 16769.40 178
Patchmtry56.88 20364.47 20767.74 9972.30 120
CMPMVSbinary55.74 1871.56 16976.26 16266.08 18068.11 19563.91 19363.17 20950.52 20168.79 17375.49 10070.78 19885.67 15163.54 14381.58 15377.20 16375.63 18285.86 81
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmnet_mix0262.60 19670.81 18353.02 20666.56 20250.44 21262.81 21046.84 20479.13 12843.76 20687.45 8990.75 12339.85 20670.48 19757.09 20858.27 21060.32 201
EMVS58.97 20562.63 20654.70 20366.26 20648.71 21361.74 21142.71 20772.80 15246.00 20473.01 18771.66 19457.91 16380.41 16250.68 21753.55 21541.11 217
EPMVS56.62 20859.77 21352.94 20762.41 20850.55 21160.66 21252.83 19465.15 18841.80 20977.46 15757.28 21342.68 20159.81 21554.82 21157.23 21253.35 210
E-PMN59.07 20462.79 20454.72 20267.01 20147.81 21560.44 21343.40 20672.95 15044.63 20570.42 20073.17 19358.73 15980.97 15851.98 21554.14 21442.26 216
ADS-MVSNet56.89 20761.09 20852.00 20859.48 21048.10 21458.02 21454.37 18872.82 15149.19 20175.32 17665.97 19937.96 20859.34 21654.66 21252.99 21651.42 212
N_pmnet54.95 21165.90 19442.18 21166.37 20443.86 21857.92 21539.79 21079.54 12517.24 22286.31 10187.91 14125.44 21464.68 21051.76 21646.33 21747.23 214
MVS-HIRNet59.74 20158.74 21760.92 19257.74 21245.81 21656.02 21658.69 17355.69 21265.17 15770.86 19671.66 19456.75 16561.11 21453.74 21371.17 19452.28 211
GG-mvs-BLEND41.63 21560.36 21019.78 2150.14 22666.04 18755.66 2170.17 22357.64 2102.42 22551.82 21569.42 1970.28 22264.11 21258.29 20660.02 20755.18 209
new-patchmatchnet62.59 19773.79 17749.53 21076.98 16153.57 20653.46 21854.64 18585.43 6928.81 21791.94 3896.41 2825.28 21576.80 17453.66 21457.99 21158.69 204
PMMVS248.13 21464.06 19929.55 21444.06 22036.69 22051.95 21929.97 21474.75 1468.90 22476.02 17191.24 1197.53 21873.78 18755.91 20934.87 21940.01 218
new_pmnet52.29 21263.16 20339.61 21358.89 21144.70 21748.78 22034.73 21365.88 18217.85 22173.42 18580.00 17023.06 21667.00 20562.28 20154.36 21348.81 213
MVEpermissive41.12 1951.80 21360.92 20941.16 21235.21 22134.14 22148.45 22141.39 20969.11 17119.53 22063.33 21073.80 19163.56 14267.19 20461.51 20338.85 21857.38 208
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method22.69 21626.99 21817.67 2162.13 2234.31 22427.50 2224.53 21937.94 21924.52 21936.20 21951.40 22215.26 21729.86 21917.09 21932.07 22012.16 219
DeepMVS_CXcopyleft17.78 22220.40 2236.69 21831.41 2209.80 22338.61 21834.88 22633.78 21128.41 22023.59 22145.77 215
tmp_tt13.54 21716.73 2226.42 2238.49 2242.36 22028.69 22127.44 21818.40 22013.51 2273.70 21933.23 21836.26 21822.54 222
Patchmatch-RL test4.13 225
testmvs0.93 2181.37 2200.41 2190.36 2250.36 2260.62 2260.39 2211.48 2220.18 2272.41 2211.31 2290.41 2211.25 2221.08 2210.48 2231.68 220
test1231.06 2171.41 2190.64 2180.39 2240.48 2250.52 2270.25 2221.11 2231.37 2262.01 2221.98 2280.87 2201.43 2211.27 2200.46 2241.62 221
uanet_test0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
RE-MVS-def87.10 28
9.1489.43 130
SR-MVS91.82 1380.80 795.53 49
MTAPA89.37 994.85 66
MTMP90.54 595.16 59
mPP-MVS93.05 395.77 43
NP-MVS78.65 130