This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
UA-Net89.02 3391.44 3986.20 2894.88 189.84 3494.76 2977.45 2885.41 7074.79 10588.83 7788.90 13678.67 4096.06 795.45 496.66 395.58 2
DTE-MVSNet88.99 3592.77 1284.59 4393.31 288.10 4990.96 5383.09 291.38 1476.21 9596.03 298.04 870.78 10695.65 1492.32 3293.18 5687.84 70
mPP-MVS93.05 395.77 43
MP-MVScopyleft90.84 691.95 3489.55 392.92 490.90 1996.56 679.60 1186.83 5888.75 1289.00 7394.38 7784.01 994.94 2494.34 1095.45 2493.24 23
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PEN-MVS88.86 3992.92 984.11 5292.92 488.05 5190.83 5582.67 591.04 1874.83 10495.97 398.47 370.38 10795.70 1392.43 3093.05 6088.78 62
HPM-MVS++copyleft88.74 4089.54 5287.80 1592.58 685.69 6995.10 2678.01 2287.08 5587.66 1987.89 8592.07 10680.28 3090.97 6991.41 4393.17 5791.69 37
DVP-MVS++90.50 1094.18 486.21 2792.52 790.29 2895.29 2276.02 4194.24 582.82 5595.84 597.56 1576.82 5593.13 3891.20 4493.78 4597.01 1
PS-CasMVS89.07 3293.23 784.21 5092.44 888.23 4890.54 6282.95 390.50 2575.31 10295.80 698.37 671.16 10096.30 593.32 2192.88 6190.11 50
CP-MVSNet88.71 4192.63 1584.13 5192.39 988.09 5090.47 6682.86 488.79 4175.16 10394.87 997.68 1371.05 10296.16 693.18 2392.85 6289.64 54
CP-MVS91.09 592.33 2589.65 292.16 1090.41 2796.46 1080.38 888.26 4489.17 1087.00 9796.34 3083.95 1095.77 1194.72 795.81 1793.78 10
ACMMPR91.30 492.88 1189.46 491.92 1191.61 596.60 579.46 1490.08 3088.53 1389.54 6595.57 4784.25 795.24 2094.27 1295.97 1193.85 8
WR-MVS_H88.99 3593.28 683.99 5391.92 1189.13 4091.95 4683.23 190.14 2971.92 12495.85 498.01 1071.83 9795.82 993.19 2293.07 5990.83 47
SR-MVS91.82 1380.80 795.53 49
PGM-MVS90.42 1191.58 3789.05 591.77 1491.06 1396.51 778.94 1685.41 7087.67 1887.02 9695.26 5683.62 1295.01 2393.94 1595.79 1993.40 20
APD-MVScopyleft89.14 2991.25 4286.67 2491.73 1591.02 1595.50 2077.74 2484.04 8279.47 8291.48 4594.85 6681.14 2592.94 4192.20 3594.47 3892.24 32
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SMA-MVScopyleft90.13 1592.26 2787.64 1791.68 1690.44 2695.22 2477.34 3290.79 2287.80 1690.42 5692.05 10879.05 3593.89 3293.59 1894.77 3294.62 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ambc88.38 6091.62 1787.97 5284.48 12288.64 4387.93 1587.38 9194.82 6874.53 7689.14 8883.86 11585.94 15086.84 75
TSAR-MVS + MP.89.67 2492.25 2886.65 2591.53 1890.98 1796.15 1373.30 5687.88 4881.83 6692.92 2995.15 6082.23 1893.58 3492.25 3394.87 2993.01 25
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
train_agg86.67 5387.73 6985.43 3591.51 1982.72 8794.47 3174.22 5381.71 10081.54 7089.20 7192.87 9478.33 4390.12 7988.47 6892.51 6989.04 59
X-MVS89.36 2890.73 4587.77 1691.50 2091.23 896.76 478.88 1787.29 5387.14 2578.98 14694.53 7176.47 5795.25 1994.28 1195.85 1493.55 16
HFP-MVS90.32 1392.37 2287.94 1391.46 2190.91 1895.69 1779.49 1289.94 3383.50 5089.06 7294.44 7581.68 2294.17 3094.19 1395.81 1793.87 7
ACMM80.67 790.67 792.46 1988.57 791.35 2289.93 3296.34 1177.36 3090.17 2886.88 2987.32 9296.63 2383.32 1395.79 1094.49 996.19 992.91 26
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
WR-MVS89.79 2393.66 585.27 3791.32 2388.27 4693.49 3879.86 1092.75 975.37 10196.86 198.38 575.10 7195.93 894.07 1496.46 589.39 56
SD-MVS89.91 1892.23 3087.19 2191.31 2489.79 3594.31 3275.34 4789.26 3681.79 6792.68 3195.08 6283.88 1193.10 3992.69 2596.54 493.02 24
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
XVS91.28 2591.23 896.89 287.14 2594.53 7195.84 15
X-MVStestdata91.28 2591.23 896.89 287.14 2594.53 7195.84 15
DeepC-MVS83.59 490.37 1292.56 1887.82 1491.26 2792.33 394.72 3080.04 990.01 3184.61 4293.33 2294.22 7880.59 2792.90 4392.52 2895.69 2192.57 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPcopyleft90.63 892.40 2088.56 891.24 2891.60 696.49 977.53 2687.89 4786.87 3087.24 9496.46 2582.87 1695.59 1594.50 896.35 693.51 18
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SteuartSystems-ACMMP90.00 1791.73 3587.97 1291.21 2990.29 2896.51 778.00 2386.33 6185.32 4088.23 8294.67 6982.08 2095.13 2293.88 1694.72 3593.59 13
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP89.86 1991.96 3387.42 1991.00 3090.08 3096.00 1576.61 3689.28 3487.73 1790.04 5891.80 11278.71 3894.36 2893.82 1794.48 3794.32 6
CPTT-MVS89.63 2590.52 4788.59 690.95 3190.74 2195.71 1679.13 1587.70 4985.68 3880.05 14195.74 4584.77 694.28 2992.68 2695.28 2692.45 31
LGP-MVS_train90.56 992.38 2188.43 990.88 3291.15 1195.35 2177.65 2586.26 6387.23 2390.45 5597.35 1783.20 1495.44 1693.41 2096.28 892.63 27
OPM-MVS89.82 2192.24 2986.99 2290.86 3389.35 3895.07 2775.91 4391.16 1686.87 3091.07 5197.29 1879.13 3493.32 3591.99 3794.12 4091.49 40
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMP80.00 890.12 1692.30 2687.58 1890.83 3491.10 1294.96 2876.06 4087.47 5185.33 3988.91 7697.65 1482.13 1995.31 1793.44 1996.14 1092.22 33
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
NCCC86.74 5287.97 6885.31 3690.64 3587.25 5893.27 3974.59 4986.50 5983.72 4675.92 17292.39 10077.08 5391.72 5390.68 4892.57 6791.30 42
MSP-MVS88.51 4291.36 4085.19 3990.63 3692.01 495.29 2277.52 2790.48 2680.21 7690.21 5796.08 3476.38 5988.30 9691.42 4191.12 8791.01 44
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
UniMVSNet_ETH3D85.39 6291.12 4378.71 9990.48 3783.72 7981.76 13982.41 693.84 664.43 15895.41 798.76 163.72 14193.63 3389.74 5789.47 10582.74 111
APDe-MVS89.85 2092.91 1086.29 2690.47 3891.34 796.04 1476.41 3991.11 1778.50 8893.44 2195.82 4281.55 2393.16 3791.90 3894.77 3293.58 15
PMVScopyleft79.51 990.23 1492.67 1487.39 2090.16 3988.75 4293.64 3675.78 4490.00 3283.70 4792.97 2892.22 10386.13 497.01 396.79 294.94 2890.96 45
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
CNVR-MVS86.93 5188.98 5684.54 4490.11 4087.41 5793.23 4073.47 5586.31 6282.25 6182.96 12992.15 10476.04 6291.69 5490.69 4792.17 7391.64 39
TSAR-MVS + GP.85.32 6487.41 7382.89 6290.07 4185.69 6989.07 8172.99 6082.45 9374.52 10885.09 11487.67 14279.24 3391.11 6490.41 5091.45 7989.45 55
DeepC-MVS_fast81.78 587.38 4989.64 5184.75 4189.89 4290.70 2292.74 4374.45 5086.02 6482.16 6486.05 10691.99 11075.84 6591.16 6390.44 4993.41 5191.09 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D89.02 3391.69 3685.91 3089.72 4390.81 2092.56 4471.69 6690.83 2187.24 2289.71 6392.07 10678.37 4294.43 2792.59 2795.86 1391.35 41
DPE-MVScopyleft89.81 2292.34 2486.86 2389.69 4491.00 1695.53 1876.91 3388.18 4583.43 5393.48 2095.19 5781.07 2692.75 4592.07 3694.55 3693.74 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CDPH-MVS86.66 5488.52 5984.48 4589.61 4588.27 4692.86 4272.69 6180.55 11882.71 5686.92 9893.32 8975.55 6791.00 6889.85 5693.47 4989.71 53
EPNet79.36 12279.44 14179.27 9889.51 4677.20 13688.35 8777.35 3168.27 17474.29 10976.31 16579.22 17259.63 15485.02 12785.45 9986.49 14284.61 88
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TSAR-MVS + ACMM89.14 2992.11 3285.67 3189.27 4790.61 2490.98 5279.48 1388.86 3979.80 7993.01 2793.53 8783.17 1592.75 4592.45 2991.32 8293.59 13
HQP-MVS85.02 6686.41 7983.40 5489.19 4886.59 6391.28 5071.60 6782.79 8983.48 5178.65 15093.54 8672.55 8986.49 11185.89 9592.28 7290.95 46
AdaColmapbinary84.15 7385.14 9583.00 5989.08 4987.14 6090.56 6170.90 6982.40 9480.41 7373.82 18384.69 15675.19 7091.58 5789.90 5591.87 7686.48 77
DVP-MVScopyleft89.40 2792.69 1385.56 3489.01 5089.85 3393.72 3575.42 4592.28 1180.49 7294.36 1394.87 6581.46 2492.49 4991.42 4193.27 5393.54 17
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
COLMAP_ROBcopyleft85.66 291.85 295.01 288.16 1188.98 5192.86 295.51 1972.17 6294.95 491.27 394.11 1697.77 1184.22 896.49 495.27 596.79 293.60 12
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TDRefinement93.16 195.57 190.36 188.79 5293.57 197.27 178.23 2195.55 193.00 193.98 1796.01 3887.53 197.69 196.81 197.33 195.34 4
TranMVSNet+NR-MVSNet85.23 6589.38 5380.39 9088.78 5383.77 7887.40 9576.75 3485.47 6868.99 14095.18 897.55 1667.13 12491.61 5689.13 6593.26 5482.95 108
SED-MVS88.96 3792.37 2284.99 4088.64 5489.65 3795.11 2575.98 4290.73 2380.15 7794.21 1594.51 7476.59 5692.94 4191.17 4593.46 5093.37 22
ACMH+79.05 1189.62 2693.08 885.58 3288.58 5589.26 3992.18 4574.23 5293.55 882.66 5892.32 3698.35 780.29 2995.28 1892.34 3195.52 2290.43 48
MVS_030484.73 7086.19 8183.02 5788.32 5686.71 6291.55 4870.87 7073.79 14782.88 5485.13 11393.35 8872.55 8988.62 9187.69 7491.93 7588.05 69
DU-MVS84.88 6888.27 6480.92 7988.30 5783.59 8187.06 10178.35 1980.64 11670.49 13292.67 3296.91 2168.13 11791.79 5189.29 6493.20 5583.02 105
Baseline_NR-MVSNet82.79 9186.51 7678.44 10388.30 5775.62 15087.81 9074.97 4881.53 10466.84 15394.71 1296.46 2566.90 12591.79 5183.37 12285.83 15282.09 116
UniMVSNet_NR-MVSNet84.62 7188.00 6780.68 8588.18 5983.83 7787.06 10176.47 3881.46 10770.49 13293.24 2395.56 4868.13 11790.43 7388.47 6893.78 4583.02 105
SF-MVS87.85 4890.95 4484.22 4988.17 6087.90 5390.80 5671.80 6589.28 3482.70 5789.90 6095.37 5477.91 4791.69 5490.04 5493.95 4492.47 29
CSCG88.12 4591.45 3884.23 4888.12 6190.59 2590.57 6068.60 8991.37 1583.45 5289.94 5995.14 6178.71 3891.45 5888.21 7295.96 1293.44 19
CLD-MVS82.75 9387.22 7477.54 10988.01 6285.76 6890.23 6954.52 18682.28 9682.11 6588.48 8095.27 5563.95 13989.41 8588.29 7086.45 14381.01 125
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet (Re)84.95 6788.53 5880.78 8187.82 6384.21 7588.03 8876.50 3781.18 11169.29 13892.63 3496.83 2269.07 11491.23 6289.60 6093.97 4384.00 97
DPM-MVS81.42 10482.11 13180.62 8687.54 6485.30 7190.18 7168.96 8481.00 11479.15 8470.45 19983.29 15967.67 12182.81 14383.46 11790.19 9388.48 64
DeepPCF-MVS81.61 687.95 4790.29 4985.22 3887.48 6590.01 3193.79 3473.54 5488.93 3883.89 4589.40 6790.84 12180.26 3190.62 7290.19 5392.36 7092.03 35
DROMVSNet83.70 7784.77 10482.46 6687.47 6682.79 8685.50 11172.00 6369.81 16577.66 9285.02 11689.63 12878.14 4490.40 7487.56 7594.00 4188.16 66
CANet82.84 9084.60 10680.78 8187.30 6785.20 7290.23 6969.00 8372.16 15778.73 8784.49 12290.70 12469.54 11287.65 9986.17 9089.87 9885.84 82
MCST-MVS84.79 6986.48 7782.83 6387.30 6787.03 6190.46 6769.33 8183.14 8682.21 6381.69 13792.14 10575.09 7287.27 10384.78 10692.58 6589.30 57
EIA-MVS78.57 12977.90 14979.35 9787.24 6980.71 10586.16 10864.03 13362.63 20073.49 11473.60 18476.12 18673.83 8288.49 9384.93 10491.36 8178.78 143
OMC-MVS88.16 4391.34 4184.46 4686.85 7090.63 2393.01 4167.00 10390.35 2787.40 2186.86 9996.35 2977.66 4992.63 4790.84 4694.84 3091.68 38
3Dnovator+83.71 388.13 4490.00 5085.94 2986.82 7191.06 1394.26 3375.39 4688.85 4085.76 3785.74 10986.92 14578.02 4593.03 4092.21 3495.39 2592.21 34
ETV-MVS79.01 12777.98 14880.22 9186.69 7279.73 11588.80 8468.27 9463.22 19571.56 12670.25 20173.63 19273.66 8490.30 7886.77 8492.33 7181.95 118
PHI-MVS86.37 5688.14 6584.30 4786.65 7387.56 5590.76 5770.16 7382.55 9289.65 784.89 11792.40 9975.97 6390.88 7089.70 5892.58 6589.03 60
ACMH78.40 1288.94 3892.62 1684.65 4286.45 7487.16 5991.47 4968.79 8795.49 289.74 693.55 1998.50 277.96 4694.14 3189.57 6193.49 4789.94 52
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EG-PatchMatch MVS84.35 7287.55 7080.62 8686.38 7582.24 9286.75 10464.02 13484.24 7878.17 9189.38 6895.03 6478.78 3789.95 8186.33 8989.59 10285.65 84
IS_MVSNet81.72 10185.01 9677.90 10586.19 7682.64 8985.56 11070.02 7480.11 12163.52 16087.28 9381.18 16767.26 12291.08 6789.33 6394.82 3183.42 102
PCF-MVS76.59 1484.11 7485.27 9282.76 6486.12 7788.30 4591.24 5169.10 8282.36 9584.45 4377.56 15690.40 12672.91 8885.88 11683.88 11392.72 6488.53 63
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TSAR-MVS + COLMAP85.51 6088.36 6282.19 6786.05 7887.69 5490.50 6570.60 7286.40 6082.33 5989.69 6492.52 9874.01 8187.53 10086.84 8389.63 10187.80 71
EPP-MVSNet82.76 9286.47 7878.45 10286.00 7984.47 7485.39 11468.42 9184.17 7962.97 16289.26 7076.84 18272.13 9492.56 4890.40 5195.76 2087.56 73
PLCcopyleft76.06 1585.38 6387.46 7182.95 6185.79 8088.84 4188.86 8368.70 8887.06 5683.60 4879.02 14490.05 12777.37 5290.88 7089.66 5993.37 5286.74 76
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MSLP-MVS++86.29 5789.10 5583.01 5885.71 8189.79 3587.04 10374.39 5185.17 7278.92 8677.59 15593.57 8582.60 1793.23 3691.88 3989.42 10692.46 30
Effi-MVS+-dtu82.04 9883.39 12580.48 8985.48 8286.57 6488.40 8668.28 9369.04 17273.13 11776.26 16791.11 12074.74 7588.40 9487.76 7392.84 6384.57 90
test111179.67 11784.40 10874.16 13285.29 8379.56 11781.16 14373.13 5984.65 7756.08 17788.38 8186.14 14960.49 15189.78 8285.59 9788.79 11476.68 151
v7n87.11 5090.46 4883.19 5685.22 8483.69 8090.03 7368.20 9591.01 1986.71 3394.80 1098.46 477.69 4891.10 6585.98 9291.30 8388.19 65
MAR-MVS81.98 9982.92 12780.88 8085.18 8585.85 6789.13 8069.52 7671.21 16182.25 6171.28 19388.89 13769.69 10988.71 8986.96 7989.52 10387.57 72
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
TAPA-MVS78.00 1385.88 5888.37 6182.96 6084.69 8688.62 4390.62 5864.22 12989.15 3788.05 1478.83 14893.71 8276.20 6190.11 8088.22 7194.00 4189.97 51
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
GeoE81.92 10083.87 11879.66 9484.64 8779.87 11289.75 7465.90 11476.12 13975.87 9884.62 12192.23 10271.96 9686.83 10883.60 11689.83 9983.81 98
SixPastTwentyTwo89.14 2992.19 3185.58 3284.62 8882.56 9090.53 6371.93 6491.95 1285.89 3594.22 1497.25 1985.42 595.73 1291.71 4095.08 2791.89 36
MVS_111021_HR83.95 7586.10 8381.44 7684.62 8880.29 11090.51 6468.05 9684.07 8180.38 7484.74 12091.37 11774.23 7790.37 7587.25 7890.86 8984.59 89
test250675.32 15076.87 15873.50 13684.55 9080.37 10879.63 15773.23 5782.64 9055.41 18176.87 16245.42 22459.61 15590.35 7686.46 8688.58 12075.98 154
ECVR-MVScopyleft79.31 12484.20 11473.60 13484.55 9080.37 10879.63 15773.23 5782.64 9055.98 17887.50 8886.85 14659.61 15590.35 7686.46 8688.58 12075.26 160
CNLPA85.50 6188.58 5781.91 7184.55 9087.52 5690.89 5463.56 13988.18 4584.06 4483.85 12691.34 11876.46 5891.27 6089.00 6691.96 7488.88 61
Effi-MVS+82.33 9483.87 11880.52 8884.51 9381.32 9987.53 9368.05 9674.94 14579.67 8082.37 13492.31 10172.21 9185.06 12386.91 8191.18 8584.20 94
gm-plane-assit71.56 16969.99 18473.39 13884.43 9473.21 16390.42 6851.36 19984.08 8076.00 9791.30 4837.09 22559.01 15873.65 18870.24 18779.09 17960.37 200
RPSCF88.05 4692.61 1782.73 6584.24 9588.40 4490.04 7266.29 10791.46 1382.29 6088.93 7596.01 3879.38 3295.15 2194.90 694.15 3993.40 20
FC-MVSNet-train79.20 12586.29 8070.94 15084.06 9677.67 13085.68 10964.11 13182.90 8852.22 19492.57 3593.69 8349.52 19488.30 9686.93 8090.03 9581.95 118
v119283.61 7885.23 9381.72 7384.05 9782.15 9389.54 7666.20 10881.38 10986.76 3291.79 4296.03 3674.88 7481.81 15180.92 13988.91 11382.50 113
v124083.57 8084.94 9981.97 7084.05 9781.27 10089.46 7866.06 11081.31 11087.50 2091.88 4195.46 5176.25 6081.16 15680.51 14388.52 12382.98 107
test20.0369.91 17376.20 16462.58 18884.01 9967.34 18375.67 18265.88 11579.98 12240.28 21282.65 13089.31 13239.63 20777.41 17273.28 17769.98 19663.40 191
Anonymous20240521184.68 10583.92 10079.45 11879.03 16167.79 9882.01 9888.77 7992.58 9755.93 17086.68 10984.26 11088.92 11278.98 141
NR-MVSNet82.89 8987.43 7277.59 10883.91 10183.59 8187.10 10078.35 1980.64 11668.85 14192.67 3296.50 2454.19 17987.19 10688.68 6793.16 5882.75 110
Gipumacopyleft86.47 5589.25 5483.23 5583.88 10278.78 12385.35 11568.42 9192.69 1089.03 1191.94 3896.32 3281.80 2194.45 2686.86 8290.91 8883.69 99
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
CS-MVS83.57 8084.79 10382.14 6883.83 10381.48 9787.29 9666.54 10572.73 15380.05 7884.04 12493.12 9380.35 2889.50 8386.34 8894.76 3486.32 80
v192192083.49 8284.94 9981.80 7283.78 10481.20 10289.50 7765.91 11381.64 10287.18 2491.70 4395.39 5375.85 6481.56 15480.27 14588.60 11882.80 109
v114483.22 8585.01 9681.14 7783.76 10581.60 9688.95 8265.58 11881.89 9985.80 3691.68 4495.84 4174.04 8082.12 14880.56 14288.70 11781.41 122
Vis-MVSNet (Re-imp)76.15 14380.84 13670.68 15183.66 10674.80 15881.66 14169.59 7580.48 11946.94 20387.44 9080.63 16953.14 18486.87 10784.56 10989.12 10871.12 171
v14419283.43 8384.97 9881.63 7583.43 10781.23 10189.42 7966.04 11281.45 10886.40 3491.46 4695.70 4675.76 6682.14 14780.23 14688.74 11582.57 112
TinyColmap83.79 7686.12 8281.07 7883.42 10881.44 9885.42 11368.55 9088.71 4289.46 887.60 8792.72 9570.34 10889.29 8681.94 13189.20 10781.12 124
TransMVSNet (Re)79.05 12686.66 7570.18 15683.32 10975.99 14577.54 16663.98 13590.68 2455.84 18094.80 1096.06 3553.73 18286.27 11383.22 12386.65 13879.61 139
v1083.17 8785.22 9480.78 8183.26 11082.99 8588.66 8566.49 10679.24 12783.60 4891.46 4695.47 5074.12 7882.60 14680.66 14088.53 12284.11 96
LTVRE_ROB86.82 191.55 394.43 388.19 1083.19 11186.35 6593.60 3778.79 1895.48 391.79 293.08 2697.21 2086.34 397.06 296.27 395.46 2395.56 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
canonicalmvs81.22 10886.04 8575.60 11983.17 11283.18 8480.29 14965.82 11685.97 6567.98 14877.74 15491.51 11565.17 13588.62 9186.15 9191.17 8689.09 58
CS-MVS-test83.59 7984.86 10182.10 6983.04 11381.05 10491.58 4767.48 10272.52 15478.42 8984.75 11991.82 11178.62 4191.98 5087.54 7693.48 4884.35 92
FPMVS81.56 10284.04 11778.66 10082.92 11475.96 14686.48 10765.66 11784.67 7671.47 12777.78 15383.22 16077.57 5091.24 6190.21 5287.84 12885.21 86
DCV-MVSNet80.04 11385.67 9073.48 13782.91 11581.11 10380.44 14866.06 11085.01 7362.53 16578.84 14794.43 7658.51 16088.66 9085.91 9390.41 9185.73 83
MVS_111021_LR83.20 8685.33 9180.73 8482.88 11678.23 12789.61 7565.23 12082.08 9781.19 7185.31 11192.04 10975.22 6989.50 8385.90 9490.24 9284.23 93
Anonymous2023121179.37 12185.78 8771.89 14482.87 11779.66 11678.77 16363.93 13783.36 8459.39 16990.54 5394.66 7056.46 16787.38 10184.12 11189.92 9780.74 126
casdiffmvs_mvgpermissive81.50 10385.70 8876.60 11582.68 11880.54 10783.50 12664.49 12783.40 8372.53 11892.15 3795.40 5265.84 13284.69 13081.89 13290.59 9081.86 120
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v2v48282.20 9684.26 11179.81 9382.67 11980.18 11187.67 9263.96 13681.69 10184.73 4191.27 4996.33 3172.05 9581.94 15079.56 15087.79 12978.84 142
v882.20 9684.56 10779.45 9582.42 12081.65 9587.26 9764.27 12879.36 12681.70 6891.04 5295.75 4473.30 8782.82 14279.18 15387.74 13082.09 116
MSDG81.39 10684.23 11378.09 10482.40 12182.47 9185.31 11760.91 16179.73 12480.26 7586.30 10288.27 14069.67 11087.20 10584.98 10389.97 9680.67 127
Fast-Effi-MVS+81.42 10483.82 12078.62 10182.24 12280.62 10687.72 9163.51 14073.01 14974.75 10683.80 12792.70 9673.44 8688.15 9885.26 10090.05 9483.17 103
PVSNet_Blended_VisFu83.00 8884.16 11581.65 7482.17 12386.01 6688.03 8871.23 6876.05 14079.54 8183.88 12583.44 15777.49 5187.38 10184.93 10491.41 8087.40 74
pmmvs680.46 11088.34 6371.26 14681.96 12477.51 13177.54 16668.83 8693.72 755.92 17993.94 1898.03 955.94 16989.21 8785.61 9687.36 13480.38 129
IterMVS-LS79.79 11582.56 12976.56 11681.83 12577.85 12979.90 15369.42 8078.93 12971.21 12890.47 5485.20 15570.86 10580.54 16180.57 14186.15 14584.36 91
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet73.07 16377.02 15568.46 16681.62 12672.89 16479.56 15970.78 7169.56 16752.52 19177.37 15881.12 16842.60 20284.20 13483.93 11283.65 16570.07 176
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
gg-mvs-nofinetune72.68 16575.21 17169.73 15881.48 12769.04 17870.48 19576.67 3586.92 5767.80 15088.06 8464.67 20042.12 20477.60 17173.65 17679.81 17666.57 183
USDC81.39 10683.07 12679.43 9681.48 12778.95 12282.62 13466.17 10987.45 5290.73 482.40 13393.65 8466.57 12783.63 13877.97 15689.00 11177.45 150
casdiffmvspermissive79.93 11484.11 11675.05 12481.41 12978.99 12182.95 13162.90 14781.53 10468.60 14591.94 3896.03 3665.84 13282.89 14177.07 16488.59 11980.34 133
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tfpnnormal77.16 13584.26 11168.88 16481.02 13075.02 15476.52 17363.30 14287.29 5352.40 19291.24 5093.97 7954.85 17685.46 12081.08 13785.18 15875.76 157
thres600view774.34 15678.43 14569.56 16080.47 13176.28 14378.65 16462.56 14977.39 13352.53 19074.03 18176.78 18355.90 17185.06 12385.19 10187.25 13574.29 162
OpenMVScopyleft75.38 1678.44 13081.39 13574.99 12780.46 13279.85 11379.99 15158.31 17577.34 13473.85 11177.19 15982.33 16568.60 11684.67 13181.95 13088.72 11686.40 79
pm-mvs178.21 13185.68 8969.50 16180.38 13375.73 14876.25 17465.04 12187.59 5054.47 18593.16 2595.99 4054.20 17886.37 11282.98 12686.64 13977.96 148
v14879.33 12382.32 13075.84 11880.14 13475.74 14781.98 13857.06 17881.51 10679.36 8389.42 6696.42 2771.32 9981.54 15575.29 17385.20 15776.32 152
pmmvs-eth3d79.64 11882.06 13276.83 11280.05 13572.64 16587.47 9466.59 10480.83 11573.50 11389.32 6993.20 9067.78 11980.78 15981.64 13585.58 15576.01 153
testgi68.20 18276.05 16559.04 19479.99 13667.32 18481.16 14351.78 19784.91 7439.36 21373.42 18595.19 5732.79 21376.54 17870.40 18669.14 19964.55 187
DI_MVS_plusplus_trai77.64 13379.64 14075.31 12279.87 13776.89 13981.55 14263.64 13876.21 13872.03 12385.59 11082.97 16166.63 12679.27 16777.78 15888.14 12678.76 144
FA-MVS(training)78.93 12880.63 13776.93 11179.79 13875.57 15185.44 11261.95 15377.19 13578.97 8584.82 11882.47 16266.43 13084.09 13580.13 14789.02 11080.15 136
Fast-Effi-MVS+-dtu76.92 13677.18 15476.62 11479.55 13979.17 11984.80 11977.40 2964.46 19068.75 14370.81 19786.57 14763.36 14681.74 15281.76 13385.86 15175.78 156
thres40073.13 16276.99 15768.62 16579.46 14074.93 15677.23 16861.23 15975.54 14152.31 19372.20 18877.10 18154.89 17482.92 14082.62 12886.57 14173.66 167
QAPM80.43 11184.34 10975.86 11779.40 14182.06 9479.86 15461.94 15483.28 8574.73 10781.74 13685.44 15370.97 10384.99 12884.71 10888.29 12488.14 67
DELS-MVS79.71 11683.74 12175.01 12679.31 14282.68 8884.79 12060.06 16775.43 14369.09 13986.13 10489.38 13167.16 12385.12 12283.87 11489.65 10083.57 100
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
3Dnovator79.41 1082.21 9586.07 8477.71 10679.31 14284.61 7387.18 9861.02 16085.65 6676.11 9685.07 11585.38 15470.96 10487.22 10486.47 8591.66 7788.12 68
ET-MVSNet_ETH3D74.71 15474.19 17475.31 12279.22 14475.29 15282.70 13364.05 13265.45 18570.96 13177.15 16057.70 21265.89 13184.40 13381.65 13489.03 10977.67 149
test-LLR62.15 19859.46 21465.29 18479.07 14552.66 20869.46 20162.93 14550.76 21753.81 18763.11 21158.91 20852.87 18566.54 20762.34 19973.59 18461.87 196
test0.0.03 161.79 20065.33 19657.65 19779.07 14564.09 19268.51 20462.93 14561.59 20333.71 21661.58 21371.58 19633.43 21270.95 19668.68 19168.26 20158.82 203
baseline169.62 17573.55 17865.02 18678.95 14770.39 17171.38 19462.03 15270.97 16247.95 20278.47 15168.19 19847.77 19879.65 16676.94 16682.05 17270.27 174
MVS_Test76.72 13879.40 14273.60 13478.85 14874.99 15579.91 15261.56 15669.67 16672.44 11985.98 10790.78 12263.50 14478.30 16975.74 17185.33 15680.31 134
FMVSNet178.20 13284.83 10270.46 15478.62 14979.03 12077.90 16567.53 10183.02 8755.10 18387.19 9593.18 9155.65 17285.57 11783.39 11987.98 12782.40 114
GA-MVS75.01 15376.39 16173.39 13878.37 15075.66 14980.03 15058.40 17470.51 16375.85 9983.24 12876.14 18563.75 14077.28 17376.62 16783.97 16475.30 159
thres20072.41 16676.00 16668.21 16878.28 15176.28 14374.94 18462.56 14972.14 15851.35 19869.59 20376.51 18454.89 17485.06 12380.51 14387.25 13571.92 170
EPNet_dtu71.90 16873.03 18070.59 15278.28 15161.64 19682.44 13564.12 13063.26 19469.74 13571.47 19182.41 16351.89 19178.83 16878.01 15577.07 18175.60 158
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs475.92 14577.48 15374.10 13378.21 15370.94 16984.06 12364.78 12375.13 14468.47 14684.12 12383.32 15864.74 13875.93 18179.14 15484.31 16273.77 165
PM-MVS80.42 11283.63 12276.67 11378.04 15472.37 16787.14 9960.18 16680.13 12071.75 12586.12 10593.92 8177.08 5386.56 11085.12 10285.83 15281.18 123
thres100view90069.86 17472.97 18166.24 17777.97 15572.49 16673.29 18859.12 17066.81 17750.82 19967.30 20575.67 18850.54 19378.24 17079.40 15185.71 15470.88 172
tfpn200view972.01 16775.40 16968.06 16977.97 15576.44 14177.04 17062.67 14866.81 17750.82 19967.30 20575.67 18852.46 19085.06 12382.64 12787.41 13373.86 164
Vis-MVSNetpermissive83.32 8488.12 6677.71 10677.91 15783.44 8390.58 5969.49 7881.11 11267.10 15289.85 6191.48 11671.71 9891.34 5989.37 6289.48 10490.26 49
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PatchMatch-RL76.05 14476.64 15975.36 12177.84 15869.87 17581.09 14563.43 14171.66 15968.34 14771.70 18981.76 16674.98 7384.83 12983.44 11886.45 14373.22 168
CANet_DTU75.04 15278.45 14471.07 14777.27 15977.96 12883.88 12558.00 17664.11 19168.67 14475.65 17488.37 13953.92 18182.05 14981.11 13684.67 16079.88 137
MS-PatchMatch71.18 17273.99 17667.89 17277.16 16071.76 16877.18 16956.38 18067.35 17555.04 18474.63 17975.70 18762.38 14776.62 17675.97 17079.22 17875.90 155
new-patchmatchnet62.59 19773.79 17749.53 21076.98 16153.57 20653.46 21854.64 18585.43 6928.81 21791.94 3896.41 2825.28 21576.80 17453.66 21457.99 21158.69 204
GBi-Net73.17 16077.64 15067.95 17076.76 16277.36 13375.77 17864.57 12462.99 19751.83 19576.05 16877.76 17852.73 18785.57 11783.39 11986.04 14780.37 130
PVSNet_BlendedMVS76.45 14178.12 14674.49 13076.76 16278.46 12479.65 15563.26 14365.42 18673.15 11575.05 17788.96 13466.51 12882.73 14477.66 15987.61 13178.60 145
PVSNet_Blended76.45 14178.12 14674.49 13076.76 16278.46 12479.65 15563.26 14365.42 18673.15 11575.05 17788.96 13466.51 12882.73 14477.66 15987.61 13178.60 145
test173.17 16077.64 15067.95 17076.76 16277.36 13375.77 17864.57 12462.99 19751.83 19576.05 16877.76 17852.73 18785.57 11783.39 11986.04 14780.37 130
FMVSNet274.43 15579.70 13968.27 16776.76 16277.36 13375.77 17865.36 11972.28 15552.97 18981.92 13585.61 15252.73 18780.66 16079.73 14986.04 14780.37 130
IB-MVS71.28 1775.21 15177.00 15673.12 14176.76 16277.45 13283.05 12958.92 17263.01 19664.31 15959.99 21487.57 14368.64 11586.26 11482.34 12987.05 13782.36 115
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thisisatest051581.18 10984.32 11077.52 11076.73 16874.84 15785.06 11861.37 15781.05 11373.95 11088.79 7889.25 13375.49 6885.98 11584.78 10692.53 6885.56 85
IterMVS-SCA-FT77.23 13479.18 14374.96 12876.67 16979.85 11375.58 18361.34 15873.10 14873.79 11286.23 10379.61 17179.00 3680.28 16375.50 17283.41 16979.70 138
FC-MVSNet-test75.91 14683.59 12366.95 17576.63 17069.07 17785.33 11664.97 12284.87 7541.95 20893.17 2487.04 14447.78 19791.09 6685.56 9885.06 15974.34 161
Anonymous2023120667.28 18473.41 17960.12 19376.45 17163.61 19474.21 18656.52 17976.35 13642.23 20775.81 17390.47 12541.51 20574.52 18269.97 18869.83 19763.17 192
baseline268.71 18068.34 18969.14 16275.69 17269.70 17676.60 17255.53 18360.13 20562.07 16766.76 20760.35 20560.77 15076.53 17974.03 17584.19 16370.88 172
diffmvspermissive76.74 13781.61 13471.06 14875.64 17374.45 16080.68 14757.57 17777.48 13267.62 15188.95 7493.94 8061.98 14879.74 16476.18 16882.85 17080.50 128
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tttt051775.86 14776.23 16375.42 12075.55 17474.06 16182.73 13260.31 16369.24 16870.24 13479.18 14358.79 21072.17 9284.49 13283.08 12491.54 7884.80 87
thisisatest053075.54 14975.95 16775.05 12475.08 17573.56 16282.15 13760.31 16369.17 16969.32 13779.02 14458.78 21172.17 9283.88 13683.08 12491.30 8384.20 94
FMVSNet371.40 17175.20 17266.97 17475.00 17676.59 14074.29 18564.57 12462.99 19751.83 19576.05 16877.76 17851.49 19276.58 17777.03 16584.62 16179.43 140
tpm cat164.79 19162.74 20567.17 17374.61 17765.91 18876.18 17559.32 16964.88 18966.41 15571.21 19453.56 22059.17 15761.53 21358.16 20767.33 20263.95 188
UGNet79.62 11985.91 8672.28 14373.52 17883.91 7686.64 10569.51 7779.85 12362.57 16485.82 10889.63 12853.18 18388.39 9587.35 7788.28 12586.43 78
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
our_test_373.27 17970.91 17083.26 127
HyFIR lowres test73.29 15974.14 17572.30 14273.08 18078.33 12683.12 12862.41 15163.81 19262.13 16676.67 16478.50 17571.09 10174.13 18577.47 16281.98 17370.10 175
MIMVSNet173.40 15881.85 13363.55 18772.90 18164.37 19184.58 12153.60 19190.84 2053.92 18687.75 8696.10 3345.31 20085.37 12179.32 15270.98 19569.18 180
CostFormer66.81 18666.94 19266.67 17672.79 18268.25 18079.55 16055.57 18265.52 18462.77 16376.98 16160.09 20656.73 16665.69 20962.35 19872.59 18769.71 177
CR-MVSNet69.56 17668.34 18970.99 14972.78 18367.63 18164.47 20767.74 9959.93 20672.30 12080.10 13956.77 21465.04 13671.64 19372.91 17983.61 16769.40 178
CVMVSNet75.65 14877.62 15273.35 14071.95 18469.89 17483.04 13060.84 16269.12 17068.76 14279.92 14278.93 17473.64 8581.02 15781.01 13881.86 17483.43 101
IterMVS73.62 15776.53 16070.23 15571.83 18577.18 13780.69 14653.22 19372.23 15666.62 15485.21 11278.96 17369.54 11276.28 18071.63 18379.45 17774.25 163
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
RPMNet67.02 18563.99 20070.56 15371.55 18667.63 18175.81 17669.44 7959.93 20663.24 16164.32 20947.51 22359.68 15370.37 19869.64 18983.64 16668.49 181
dps65.14 18864.50 19865.89 18271.41 18765.81 18971.44 19361.59 15558.56 20961.43 16875.45 17552.70 22158.06 16269.57 20064.65 19671.39 19264.77 186
MDTV_nov1_ep13_2view72.96 16475.59 16869.88 15771.15 18864.86 19082.31 13654.45 18776.30 13778.32 9086.52 10091.58 11361.35 14976.80 17466.83 19471.70 18866.26 184
TAMVS63.02 19269.30 18655.70 20170.12 18956.89 20269.63 19945.13 20570.23 16438.00 21477.79 15275.15 19042.60 20274.48 18372.81 18168.70 20057.75 207
tpm62.79 19463.25 20262.26 19170.09 19053.78 20571.65 19247.31 20365.72 18376.70 9480.62 13856.40 21748.11 19664.20 21158.54 20559.70 20863.47 190
V4279.59 12083.59 12374.93 12969.61 19177.05 13886.59 10655.84 18178.42 13177.29 9389.84 6295.08 6274.12 7883.05 13980.11 14886.12 14681.59 121
PatchmatchNetpermissive64.81 19063.74 20166.06 18169.21 19258.62 20073.16 18960.01 16865.92 18166.19 15676.27 16659.09 20760.45 15266.58 20661.47 20467.33 20258.24 205
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CHOSEN 1792x268868.80 17971.09 18266.13 17969.11 19368.89 17978.98 16254.68 18461.63 20256.69 17471.56 19078.39 17667.69 12072.13 19272.01 18269.63 19873.02 169
MIMVSNet63.02 19269.02 18756.01 19968.20 19459.26 19970.01 19853.79 19071.56 16041.26 21171.38 19282.38 16436.38 20971.43 19567.32 19366.45 20459.83 202
CMPMVSbinary55.74 1871.56 16976.26 16266.08 18068.11 19563.91 19363.17 20950.52 20168.79 17375.49 10070.78 19885.67 15163.54 14381.58 15377.20 16375.63 18285.86 81
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
SCA68.54 18167.52 19169.73 15867.79 19675.04 15376.96 17168.94 8566.41 17967.86 14974.03 18160.96 20365.55 13468.99 20165.67 19571.30 19361.54 199
EU-MVSNet76.48 14080.53 13871.75 14567.62 19770.30 17281.74 14054.06 18975.47 14271.01 13080.10 13993.17 9273.67 8383.73 13777.85 15782.40 17183.07 104
tpmrst59.42 20260.02 21258.71 19567.56 19853.10 20766.99 20551.88 19663.80 19357.68 17276.73 16356.49 21648.73 19556.47 21755.55 21059.43 20958.02 206
pmmvs568.91 17874.35 17362.56 18967.45 19966.78 18571.70 19151.47 19867.17 17656.25 17682.41 13288.59 13847.21 19973.21 19174.23 17481.30 17568.03 182
MDTV_nov1_ep1364.96 18964.77 19765.18 18567.08 20062.46 19575.80 17751.10 20062.27 20169.74 13574.12 18062.65 20155.64 17368.19 20362.16 20271.70 18861.57 198
E-PMN59.07 20462.79 20454.72 20267.01 20147.81 21560.44 21343.40 20672.95 15044.63 20570.42 20073.17 19358.73 15980.97 15851.98 21554.14 21442.26 216
pmnet_mix0262.60 19670.81 18353.02 20666.56 20250.44 21262.81 21046.84 20479.13 12843.76 20687.45 8990.75 12339.85 20670.48 19757.09 20858.27 21060.32 201
baseline69.33 17775.37 17062.28 19066.54 20366.67 18673.95 18748.07 20266.10 18059.26 17082.45 13186.30 14854.44 17774.42 18473.25 17871.42 19178.43 147
N_pmnet54.95 21165.90 19442.18 21166.37 20443.86 21857.92 21539.79 21079.54 12517.24 22286.31 10187.91 14125.44 21464.68 21051.76 21646.33 21747.23 214
MVSTER68.08 18369.73 18566.16 17866.33 20570.06 17375.71 18152.36 19555.18 21458.64 17170.23 20256.72 21557.34 16479.68 16576.03 16986.61 14080.20 135
EMVS58.97 20562.63 20654.70 20366.26 20648.71 21361.74 21142.71 20772.80 15246.00 20473.01 18771.66 19457.91 16380.41 16250.68 21753.55 21541.11 217
anonymousdsp85.62 5990.53 4679.88 9264.64 20776.35 14296.28 1253.53 19285.63 6781.59 6992.81 3097.71 1286.88 294.56 2592.83 2496.35 693.84 9
EPMVS56.62 20859.77 21352.94 20762.41 20850.55 21160.66 21252.83 19465.15 18841.80 20977.46 15757.28 21342.68 20159.81 21554.82 21157.23 21253.35 210
FMVSNet556.37 20960.14 21151.98 20960.83 20959.58 19866.85 20642.37 20852.68 21641.33 21047.09 21754.68 21835.28 21073.88 18670.77 18565.24 20562.26 195
ADS-MVSNet56.89 20761.09 20852.00 20859.48 21048.10 21458.02 21454.37 18872.82 15149.19 20175.32 17665.97 19937.96 20859.34 21654.66 21252.99 21651.42 212
new_pmnet52.29 21263.16 20339.61 21358.89 21144.70 21748.78 22034.73 21365.88 18217.85 22173.42 18580.00 17023.06 21667.00 20562.28 20154.36 21348.81 213
MVS-HIRNet59.74 20158.74 21760.92 19257.74 21245.81 21656.02 21658.69 17355.69 21265.17 15770.86 19671.66 19456.75 16561.11 21453.74 21371.17 19452.28 211
PatchT66.25 18766.76 19365.67 18355.87 21360.75 19770.17 19659.00 17159.80 20872.30 12078.68 14954.12 21965.04 13671.64 19372.91 17971.63 19069.40 178
test-mter59.39 20361.59 20756.82 19853.21 21454.82 20473.12 19026.57 21753.19 21556.31 17564.71 20860.47 20456.36 16868.69 20264.27 19775.38 18365.00 185
CHOSEN 280x42056.32 21058.85 21653.36 20551.63 21539.91 21969.12 20338.61 21156.29 21136.79 21548.84 21662.59 20263.39 14573.61 18967.66 19260.61 20663.07 193
TESTMET0.1,157.21 20659.46 21454.60 20450.95 21652.66 20869.46 20126.91 21650.76 21753.81 18763.11 21158.91 20852.87 18566.54 20762.34 19973.59 18461.87 196
pmmvs362.72 19568.71 18855.74 20050.74 21757.10 20170.05 19728.82 21561.57 20457.39 17371.19 19585.73 15053.96 18073.36 19069.43 19073.47 18662.55 194
MDA-MVSNet-bldmvs76.51 13982.87 12869.09 16350.71 21874.72 15984.05 12460.27 16581.62 10371.16 12988.21 8391.58 11369.62 11192.78 4477.48 16178.75 18073.69 166
PMMVS61.98 19965.61 19557.74 19645.03 21951.76 21069.54 20035.05 21255.49 21355.32 18268.23 20478.39 17658.09 16170.21 19971.56 18483.42 16863.66 189
PMMVS248.13 21464.06 19929.55 21444.06 22036.69 22051.95 21929.97 21474.75 1468.90 22476.02 17191.24 1197.53 21873.78 18755.91 20934.87 21940.01 218
MVEpermissive41.12 1951.80 21360.92 20941.16 21235.21 22134.14 22148.45 22141.39 20969.11 17119.53 22063.33 21073.80 19163.56 14267.19 20461.51 20338.85 21857.38 208
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt13.54 21716.73 2226.42 2238.49 2242.36 22028.69 22127.44 21818.40 22013.51 2273.70 21933.23 21836.26 21822.54 222
test_method22.69 21626.99 21817.67 2162.13 2234.31 22427.50 2224.53 21937.94 21924.52 21936.20 21951.40 22215.26 21729.86 21917.09 21932.07 22012.16 219
test1231.06 2171.41 2190.64 2180.39 2240.48 2250.52 2270.25 2221.11 2231.37 2262.01 2221.98 2280.87 2201.43 2211.27 2200.46 2241.62 221
testmvs0.93 2181.37 2200.41 2190.36 2250.36 2260.62 2260.39 2211.48 2220.18 2272.41 2211.31 2290.41 2211.25 2221.08 2210.48 2231.68 220
GG-mvs-BLEND41.63 21560.36 21019.78 2150.14 22666.04 18755.66 2170.17 22357.64 2102.42 22551.82 21569.42 1970.28 22264.11 21258.29 20660.02 20755.18 209
uanet_test0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
RE-MVS-def87.10 28
9.1489.43 130
MTAPA89.37 994.85 66
MTMP90.54 595.16 59
Patchmatch-RL test4.13 225
NP-MVS78.65 130
Patchmtry56.88 20364.47 20767.74 9972.30 120
DeepMVS_CXcopyleft17.78 22220.40 2236.69 21831.41 2209.80 22338.61 21834.88 22633.78 21128.41 22023.59 22145.77 215