This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS88.94 190.98 186.56 192.53 695.09 188.55 476.83 694.16 186.57 190.85 587.07 186.18 186.36 785.08 1288.67 1998.21 3
DVP-MVScopyleft88.07 290.73 284.97 491.98 995.01 287.86 976.88 593.90 285.15 290.11 786.90 279.46 1186.26 1084.67 1888.50 2698.25 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DVP-MVS++87.98 389.76 585.89 292.57 594.57 388.34 576.61 792.40 683.40 389.26 1085.57 586.04 286.24 1184.89 1588.39 2995.42 20
SF-MVS87.30 688.71 685.64 394.57 194.55 491.01 179.94 189.15 1279.85 792.37 383.29 1079.75 883.52 2682.72 3288.75 1895.37 23
DPE-MVScopyleft87.60 590.44 484.29 792.09 893.44 588.69 375.11 993.06 580.80 694.23 286.70 381.44 684.84 1883.52 2787.64 4797.28 5
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CSCG82.90 2084.52 2381.02 1891.85 1093.43 687.14 1174.01 1481.96 3176.14 1470.84 3682.49 1369.71 6282.32 4185.18 1187.26 5995.40 22
MCST-MVS85.75 986.99 1384.31 694.07 292.80 788.15 879.10 285.66 2170.72 2876.50 3280.45 2182.17 488.35 287.49 391.63 297.65 4
DELS-MVS79.49 3079.84 4079.08 2788.26 3692.49 884.12 2570.63 2765.27 8169.60 3461.29 6266.50 5972.75 4288.07 388.03 289.13 1297.22 6
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CHOSEN 1792x268872.55 7171.98 8073.22 5986.57 4492.41 975.63 7066.77 4962.08 8852.32 8930.27 19250.74 13266.14 8486.22 1285.41 791.90 196.75 12
CNVR-MVS85.96 887.58 1184.06 892.58 492.40 1087.62 1077.77 488.44 1475.93 1679.49 2581.97 1781.65 587.04 686.58 488.79 1697.18 7
CANet80.90 2782.93 2878.53 2986.83 4392.26 1181.19 4166.95 4781.60 3469.90 3166.93 4474.80 3176.79 2084.68 1984.77 1789.50 995.50 18
QAPM77.50 4477.43 5177.59 3491.52 1392.00 1281.41 3970.63 2766.22 7458.05 7154.70 8071.79 4374.49 3182.46 3782.04 3689.46 1092.79 53
DPM-MVS85.41 1186.72 1683.89 1091.66 1291.92 1390.49 278.09 386.90 1773.95 1974.52 3482.01 1679.29 1290.24 190.65 189.86 690.78 72
APDe-MVS86.37 788.41 884.00 991.43 1491.83 1488.34 574.67 1091.19 781.76 591.13 481.94 1880.07 783.38 2782.58 3487.69 4596.78 10
MVS_030479.43 3282.20 3076.20 4084.22 5191.79 1581.82 3663.81 6976.83 4961.71 5666.37 4775.52 3076.38 2285.54 1485.03 1389.28 1194.32 32
MSP-MVS87.87 490.57 384.73 589.38 2691.60 1688.24 774.15 1293.55 382.28 494.99 183.21 1185.96 387.67 484.67 1888.32 3098.29 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PHI-MVS79.43 3284.06 2574.04 5586.15 4691.57 1780.85 4568.90 3882.22 3051.81 9278.10 2774.28 3270.39 5984.01 2484.00 2286.14 8594.24 33
DeepPCF-MVS76.94 183.08 1987.77 1077.60 3390.11 1990.96 1878.48 5472.63 2293.10 465.84 4080.67 2381.55 1974.80 2885.94 1385.39 883.75 14396.77 11
SMA-MVScopyleft85.24 1288.27 981.72 1591.74 1190.71 1986.71 1273.16 1990.56 1074.33 1883.07 1885.88 477.16 1986.28 985.58 687.23 6095.77 13
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MVS_111021_HR77.42 4578.40 4776.28 3986.95 4190.68 2077.41 6370.56 3066.21 7562.48 5366.17 4963.98 6872.08 4782.87 3383.15 2888.24 3395.71 15
MAR-MVS77.19 4778.37 4875.81 4489.87 2190.58 2179.33 5365.56 5877.62 4758.33 7059.24 7067.98 5474.83 2782.37 4083.12 2986.95 6787.67 107
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
NCCC84.16 1685.46 2182.64 1192.34 790.57 2286.57 1376.51 886.85 1872.91 2277.20 3178.69 2579.09 1484.64 2084.88 1688.44 2795.41 21
OpenMVScopyleft67.62 874.92 6173.91 7176.09 4290.10 2090.38 2378.01 5866.35 5266.09 7662.80 4946.33 12364.55 6671.77 4979.92 6580.88 5987.52 5189.20 91
3Dnovator70.49 578.42 3876.77 5780.35 2091.43 1490.27 2481.84 3570.79 2672.10 5871.95 2350.02 9967.86 5677.47 1882.89 3284.24 2088.61 2289.99 82
HPM-MVS++copyleft85.64 1088.43 782.39 1292.65 390.24 2585.83 1674.21 1190.68 975.63 1786.77 1384.15 878.68 1586.33 885.26 987.32 5695.60 17
EPNet79.28 3682.25 2975.83 4388.31 3590.14 2679.43 5268.07 4181.76 3361.26 5977.26 3070.08 4970.06 6082.43 3982.00 3887.82 4192.09 57
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMMP_NAP83.54 1786.37 1880.25 2189.57 2590.10 2785.27 2071.66 2387.38 1573.08 2184.23 1780.16 2275.31 2484.85 1783.64 2486.57 7494.21 35
GG-mvs-BLEND54.54 18277.58 5027.67 2100.03 22490.09 2877.20 650.02 22166.83 730.05 22559.90 6773.33 350.04 22078.40 7979.30 7388.65 2095.20 25
PVSNet_BlendedMVS76.84 4978.47 4574.95 5082.37 5689.90 2975.45 7465.45 5974.99 5470.66 2963.07 5558.27 9867.60 7884.24 2281.70 4388.18 3497.10 8
PVSNet_Blended76.84 4978.47 4574.95 5082.37 5689.90 2975.45 7465.45 5974.99 5470.66 2963.07 5558.27 9867.60 7884.24 2281.70 4388.18 3497.10 8
canonicalmvs77.65 4279.59 4175.39 4581.52 6289.83 3181.32 4060.74 10580.05 3966.72 3868.43 4065.09 6274.72 3078.87 7482.73 3187.32 5692.16 56
SteuartSystems-ACMMP82.51 2185.35 2279.20 2590.25 1789.39 3284.79 2170.95 2582.86 2768.32 3686.44 1477.19 2673.07 3883.63 2583.64 2487.82 4194.34 31
Skip Steuart: Steuart Systems R&D Blog.
casdiffmvs_mvgpermissive75.57 5676.04 6275.02 4980.48 7189.31 3380.79 4664.04 6766.95 7263.87 4557.52 7261.33 8172.90 4082.01 4781.99 3988.03 3893.16 48
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVScopyleft84.83 1387.00 1282.30 1389.61 2489.21 3486.51 1473.64 1690.98 877.99 1289.89 880.04 2379.18 1382.00 4881.37 4986.88 6995.49 19
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
casdiffmvspermissive75.20 5975.69 6574.63 5479.26 7889.07 3578.47 5563.59 7267.05 7163.79 4655.72 7760.32 8673.58 3482.16 4381.78 4189.08 1393.72 42
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IB-MVS64.48 1169.02 9168.97 10269.09 8681.75 6189.01 3664.50 15064.91 6256.65 10962.59 5247.89 10745.23 14551.99 15469.18 17081.88 4088.77 1792.93 50
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVS_Test75.22 5876.69 5873.51 5679.30 7688.82 3780.06 4958.74 11469.77 6557.50 7559.78 6961.35 7975.31 2482.07 4583.60 2690.13 591.41 64
SD-MVS84.31 1586.96 1481.22 1688.98 3088.68 3885.65 1773.85 1589.09 1379.63 887.34 1284.84 673.71 3382.66 3581.60 4685.48 10694.51 29
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
gg-mvs-nofinetune62.34 13966.19 12357.86 16376.15 10788.61 3971.18 11041.24 20825.74 21113.16 21322.91 20563.97 6954.52 14985.06 1685.25 1090.92 391.78 61
DeepC-MVS74.46 380.30 2981.05 3579.42 2387.42 3988.50 4083.23 2773.27 1882.78 2871.01 2762.86 5769.93 5074.80 2884.30 2184.20 2186.79 7294.77 26
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
train_agg83.35 1886.93 1579.17 2689.70 2388.41 4185.60 1972.89 2186.31 1966.58 3990.48 682.24 1573.06 3983.10 3182.64 3387.21 6495.30 24
CDPH-MVS79.39 3582.13 3176.19 4189.22 2988.34 4284.20 2471.00 2479.67 4156.97 7677.77 2872.24 4168.50 7481.33 5282.74 3087.23 6092.84 51
3Dnovator+70.16 677.87 4177.29 5378.55 2889.25 2888.32 4380.09 4867.95 4274.89 5671.83 2452.05 9270.68 4776.27 2382.27 4282.04 3685.92 8990.77 73
TSAR-MVS + GP.82.27 2385.98 1977.94 3180.72 6988.25 4481.12 4267.71 4387.10 1673.31 2085.23 1583.68 976.64 2180.43 6181.47 4888.15 3695.66 16
MP-MVScopyleft80.94 2683.49 2677.96 3088.48 3188.16 4582.82 3169.34 3480.79 3769.67 3282.35 2077.13 2771.60 5180.97 5880.96 5785.87 9294.06 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HyFIR lowres test68.39 9668.28 10868.52 9080.85 6688.11 4671.08 11258.09 11954.87 12547.80 11027.55 19855.80 11064.97 8879.11 7279.14 7488.31 3193.35 44
CLD-MVS77.36 4677.29 5377.45 3582.21 5888.11 4681.92 3468.96 3777.97 4569.62 3362.08 5859.44 9173.57 3581.75 5081.27 5188.41 2890.39 78
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ET-MVSNet_ETH3D71.38 7874.70 6967.51 9851.61 20788.06 4877.29 6460.95 10463.61 8348.36 10766.60 4660.67 8479.55 973.56 12780.58 6287.30 5889.80 84
PCF-MVS70.85 475.73 5576.55 6074.78 5383.67 5288.04 4981.47 3770.62 2969.24 6957.52 7460.59 6669.18 5270.65 5777.11 9077.65 8884.75 12694.01 37
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ETV-MVS76.25 5180.22 3871.63 7178.23 8687.95 5072.75 9260.27 11077.50 4857.73 7271.53 3566.60 5873.16 3780.99 5781.23 5287.63 4895.73 14
DeepC-MVS_fast75.41 281.69 2482.10 3281.20 1791.04 1687.81 5183.42 2674.04 1383.77 2571.09 2666.88 4572.44 3779.48 1085.08 1584.97 1488.12 3793.78 40
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HFP-MVS82.48 2284.12 2480.56 1990.15 1887.55 5284.28 2369.67 3285.22 2277.95 1384.69 1675.94 2975.04 2681.85 4981.17 5386.30 8192.40 55
baseline72.89 6874.46 7071.07 7275.99 10887.50 5374.57 8060.49 10770.72 6257.60 7360.63 6560.97 8270.79 5675.27 10776.33 10086.94 6889.79 85
diffmvspermissive74.32 6275.42 6673.04 6075.60 11287.27 5478.20 5662.96 7868.66 7061.89 5459.79 6859.84 8971.80 4878.30 8179.87 6687.80 4394.23 34
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EIA-MVS73.48 6676.05 6170.47 7778.12 8787.21 5571.78 10060.63 10669.66 6655.56 8164.86 5160.69 8369.53 6577.35 8978.59 7787.22 6294.01 37
PVSNet_Blended_VisFu71.76 7573.54 7469.69 8079.01 8087.16 5672.05 9761.80 9356.46 11159.66 6753.88 8862.48 7159.08 12681.17 5478.90 7586.53 7694.74 27
ACMMPR80.62 2882.98 2777.87 3288.41 3287.05 5783.02 2869.18 3583.91 2468.35 3582.89 1973.64 3472.16 4680.78 5981.13 5486.10 8691.43 62
CS-MVS-test75.09 6077.84 4971.87 7079.27 7786.92 5870.53 11860.36 10875.13 5363.13 4867.92 4165.08 6371.43 5278.15 8278.51 8086.53 7693.16 48
DI_MVS_plusplus_trai73.94 6574.85 6872.88 6176.57 10486.80 5980.41 4761.47 9662.35 8759.44 6847.91 10668.12 5372.24 4582.84 3481.50 4787.15 6694.42 30
CS-MVS75.84 5478.61 4472.61 6579.03 7986.74 6074.43 8860.27 11074.15 5762.78 5066.26 4864.25 6772.81 4183.36 2881.69 4586.32 7993.85 39
PGM-MVS79.42 3481.84 3376.60 3888.38 3486.69 6182.97 3065.75 5680.39 3864.94 4281.95 2272.11 4271.41 5380.45 6080.55 6386.18 8390.76 74
test111166.72 11067.80 11165.45 10877.42 9786.63 6269.69 12262.98 7755.29 11939.47 14740.12 15147.11 14055.70 14479.96 6480.00 6587.47 5285.49 127
DROMVSNet76.05 5378.87 4372.77 6278.87 8286.63 6277.50 6257.04 13575.34 5261.68 5764.20 5269.56 5173.96 3282.12 4480.65 6187.57 4993.57 43
CANet_DTU72.84 6976.63 5968.43 9276.81 10186.62 6475.54 7354.71 16072.06 5943.54 12767.11 4358.46 9572.40 4481.13 5680.82 6087.57 4990.21 80
TSAR-MVS + ACMM81.59 2585.84 2076.63 3789.82 2286.53 6586.32 1566.72 5085.96 2065.43 4188.98 1182.29 1467.57 8082.06 4681.33 5083.93 14193.75 41
TSAR-MVS + MP.84.39 1486.58 1781.83 1488.09 3786.47 6685.63 1873.62 1790.13 1179.24 989.67 982.99 1277.72 1781.22 5380.92 5886.68 7394.66 28
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test250669.26 8770.79 9167.48 9978.64 8386.40 6772.22 9562.75 8558.05 10345.24 11750.76 9554.93 11658.05 13279.82 6679.70 6787.96 3985.90 122
ECVR-MVScopyleft67.93 10168.49 10567.28 10278.64 8386.40 6772.22 9562.75 8558.05 10344.06 12540.92 14648.20 13758.05 13279.82 6679.70 6787.96 3986.32 117
baseline271.22 8073.01 7769.13 8475.76 11086.34 6971.23 10862.78 8462.62 8552.85 8857.32 7354.31 11963.27 9979.74 6879.31 7288.89 1591.43 62
XVS82.43 5486.27 7075.70 6861.07 6172.27 3885.67 100
X-MVStestdata82.43 5486.27 7075.70 6861.07 6172.27 3885.67 100
X-MVS78.16 4080.55 3775.38 4687.99 3886.27 7081.05 4368.98 3678.33 4361.07 6175.25 3372.27 3867.52 8180.03 6380.52 6485.66 10391.20 66
CostFormer72.18 7273.90 7270.18 7979.47 7486.19 7376.94 6648.62 18066.07 7760.40 6654.14 8665.82 6067.98 7575.84 10276.41 9987.67 4692.83 52
FA-MVS(training)70.24 8671.77 8368.45 9177.52 9586.03 7473.33 9149.12 17963.55 8455.77 7848.91 10356.26 10667.78 7777.60 8479.62 6987.19 6590.40 77
CP-MVS79.44 3181.51 3477.02 3686.95 4185.96 7582.00 3368.44 4081.82 3267.39 3777.43 2973.68 3371.62 5079.56 7079.58 7085.73 9692.51 54
ACMMPcopyleft77.61 4379.59 4175.30 4785.87 4785.58 7681.42 3867.38 4679.38 4262.61 5178.53 2665.79 6168.80 7378.56 7778.50 8185.75 9390.80 71
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MS-PatchMatch70.34 8569.00 10171.91 6985.20 5085.35 7777.84 6061.77 9458.01 10555.40 8241.26 14258.34 9761.69 10781.70 5178.29 8289.56 880.02 160
Effi-MVS+70.42 8171.23 8769.47 8178.04 8885.24 7875.57 7258.88 11359.56 9748.47 10652.73 9154.94 11569.69 6378.34 8077.06 9286.18 8390.73 75
MVS_111021_LR74.26 6375.95 6372.27 6679.43 7585.04 7972.71 9365.27 6170.92 6163.58 4769.32 3860.31 8769.43 6777.01 9177.15 9183.22 15091.93 60
AdaColmapbinary76.23 5273.55 7379.35 2489.38 2685.00 8079.99 5073.04 2076.60 5071.17 2555.18 7957.99 10077.87 1676.82 9376.82 9484.67 12886.45 114
MSLP-MVS++78.57 3777.33 5280.02 2288.39 3384.79 8184.62 2266.17 5475.96 5178.40 1061.59 6071.47 4473.54 3678.43 7878.88 7688.97 1490.18 81
Vis-MVSNetpermissive65.53 11769.83 9760.52 14670.80 13884.59 8266.37 14755.47 15148.40 14540.62 14557.67 7158.43 9645.37 17877.49 8576.24 10284.47 13285.99 121
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
baseline171.47 7672.02 7970.82 7480.56 7084.51 8376.61 6766.93 4856.22 11348.66 10555.40 7860.43 8562.55 10383.35 2980.99 5589.60 783.28 143
thisisatest053068.38 9770.98 8965.35 10972.61 12584.42 8468.21 13157.98 12059.77 9650.80 9754.63 8158.48 9457.92 13476.99 9277.47 8984.60 12985.07 128
Anonymous20240521166.35 12278.00 8984.41 8574.85 7863.18 7551.00 13431.37 18953.73 12369.67 6476.28 9676.84 9383.21 15290.85 70
OPM-MVS72.74 7070.93 9074.85 5285.30 4984.34 8682.82 3169.79 3149.96 13855.39 8354.09 8760.14 8870.04 6180.38 6279.43 7185.74 9588.20 103
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP-MVS78.26 3980.91 3675.17 4885.67 4884.33 8783.01 2969.38 3379.88 4055.83 7779.85 2464.90 6570.81 5582.46 3781.78 4186.30 8193.18 47
IS_MVSNet67.29 10771.98 8061.82 14076.92 10084.32 8865.90 14858.22 11755.75 11739.22 15054.51 8362.47 7245.99 17578.83 7578.52 7984.70 12789.47 88
EPMVS66.21 11167.49 11464.73 11475.81 10984.20 8968.94 12744.37 19561.55 8948.07 10949.21 10254.87 11762.88 10071.82 14671.40 15988.28 3279.37 163
tttt051767.99 10070.61 9264.94 11271.94 13083.96 9067.62 13557.98 12059.30 9849.90 10254.50 8457.98 10157.92 13476.48 9577.47 8984.24 13684.58 131
thres100view90067.14 10966.09 12468.38 9377.70 9083.84 9174.52 8466.33 5349.16 14243.40 12943.24 12741.34 15262.59 10279.31 7175.92 10585.73 9689.81 83
Anonymous2023121168.44 9566.37 12170.86 7377.58 9383.49 9275.15 7761.89 9152.54 13158.50 6928.89 19456.78 10469.29 7074.96 11176.61 9582.73 15691.36 65
EPP-MVSNet67.58 10371.10 8863.48 12675.71 11183.35 9366.85 14157.83 12553.02 13041.15 14155.82 7567.89 5556.01 14374.40 11672.92 14583.33 14890.30 79
GeoE68.96 9269.32 9868.54 8976.61 10383.12 9471.78 10056.87 13760.21 9554.86 8545.95 12454.79 11864.27 9274.59 11375.54 11186.84 7191.01 69
MVSTER76.92 4879.92 3973.42 5874.98 11582.97 9578.15 5763.41 7378.02 4464.41 4467.54 4272.80 3671.05 5483.29 3083.73 2388.53 2591.12 67
PatchmatchNetpermissive65.43 11867.71 11262.78 13273.49 12282.83 9666.42 14645.40 19060.40 9445.27 11649.22 10157.60 10260.01 11870.61 15671.38 16086.08 8781.91 154
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thres40065.18 12064.44 13266.04 10576.40 10582.63 9771.52 10564.27 6544.93 16040.69 14441.86 13940.79 15858.12 13077.67 8374.64 11885.26 10988.56 99
UGNet67.57 10471.69 8462.76 13369.88 14082.58 9866.43 14558.64 11554.71 12651.87 9161.74 5962.01 7645.46 17774.78 11274.99 11484.24 13691.02 68
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CPTT-MVS75.43 5777.13 5573.44 5781.43 6382.55 9980.96 4464.35 6477.95 4661.39 5869.20 3970.94 4669.38 6973.89 12373.32 13783.14 15392.06 58
TSAR-MVS + COLMAP73.09 6776.86 5668.71 8774.97 11682.49 10074.51 8561.83 9283.16 2649.31 10482.22 2151.62 12968.94 7278.76 7675.52 11282.67 15884.23 135
PMMVS70.37 8475.06 6764.90 11371.46 13181.88 10164.10 15255.64 14771.31 6046.69 11170.69 3758.56 9269.53 6579.03 7375.63 10881.96 16788.32 102
MDTV_nov1_ep1365.21 11967.28 11562.79 13170.91 13681.72 10269.28 12649.50 17858.08 10243.94 12650.50 9856.02 10858.86 12770.72 15573.37 13584.24 13680.52 159
thres600view763.77 13063.14 13864.51 11675.49 11381.61 10369.59 12362.95 7943.96 16338.90 15241.09 14340.24 16355.25 14776.24 9771.54 15484.89 11987.30 108
thres20065.58 11564.74 13066.56 10477.52 9581.61 10373.44 9062.95 7946.23 15442.45 13642.76 12941.18 15458.12 13076.24 9775.59 10984.89 11989.58 86
tfpn200view965.90 11464.96 12867.00 10377.70 9081.58 10571.71 10362.94 8149.16 14243.40 12943.24 12741.34 15261.42 10976.24 9774.63 11984.84 12188.52 100
GA-MVS64.55 12465.76 12763.12 12869.68 14181.56 10669.59 12358.16 11845.23 15935.58 17047.01 11841.82 15159.41 12279.62 6978.54 7886.32 7986.56 113
tpm cat167.47 10567.05 11667.98 9476.63 10281.51 10774.49 8647.65 18561.18 9061.12 6042.51 13453.02 12764.74 9170.11 16471.50 15583.22 15089.49 87
UA-Net64.62 12268.23 10960.42 14777.53 9481.38 10860.08 17457.47 13047.01 14944.75 12160.68 6471.32 4541.84 18573.27 12972.25 15180.83 17771.68 187
CNLPA71.37 7970.27 9572.66 6480.79 6881.33 10971.07 11365.75 5682.36 2964.80 4342.46 13556.49 10572.70 4373.00 13470.52 16880.84 17685.76 124
test-LLR68.23 9871.61 8564.28 12071.37 13281.32 11063.98 15561.03 9958.62 10042.96 13252.74 8961.65 7757.74 13775.64 10478.09 8688.61 2293.21 45
TESTMET0.1,167.38 10671.61 8562.45 13666.05 16581.32 11063.98 15555.36 15258.62 10042.96 13252.74 8961.65 7757.74 13775.64 10478.09 8688.61 2293.21 45
Fast-Effi-MVS+67.59 10267.56 11367.62 9773.67 12081.14 11271.12 11154.79 15958.88 9950.61 9946.70 12147.05 14169.12 7176.06 10076.44 9886.43 7886.65 112
tpmrst67.15 10868.12 11066.03 10676.21 10680.98 11371.27 10745.05 19160.69 9350.63 9846.95 11954.15 12165.30 8671.80 14771.77 15387.72 4490.48 76
OMC-MVS74.03 6475.82 6471.95 6879.56 7380.98 11375.35 7663.21 7484.48 2361.83 5561.54 6166.89 5769.41 6876.60 9474.07 12782.34 16386.15 118
ACMP68.86 772.15 7372.25 7872.03 6780.96 6580.87 11577.93 5964.13 6669.29 6760.79 6464.04 5353.54 12463.91 9473.74 12675.27 11384.45 13388.98 93
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
TAPA-MVS67.10 971.45 7773.47 7569.10 8577.04 9980.78 11673.81 8962.10 8880.80 3651.28 9360.91 6363.80 7067.98 7574.59 11372.42 14982.37 16280.97 157
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CDS-MVSNet64.22 12665.89 12662.28 13870.05 13980.59 11769.91 12157.98 12043.53 16446.58 11248.22 10550.76 13146.45 17275.68 10376.08 10382.70 15786.34 116
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
EG-PatchMatch MVS58.73 16758.03 17459.55 15272.32 12680.49 11863.44 16155.55 14932.49 20038.31 15528.87 19537.22 17342.84 18374.30 12075.70 10784.84 12177.14 169
v2v48263.68 13162.85 14364.65 11568.01 15180.46 11971.90 9857.60 12744.26 16142.82 13439.80 15338.62 16861.56 10873.06 13274.86 11686.03 8888.90 96
v114463.00 13662.39 14763.70 12567.72 15480.27 12071.23 10856.40 13842.51 16640.81 14338.12 16137.73 16960.42 11674.46 11574.55 12185.64 10489.12 92
LGP-MVS_train72.02 7473.18 7670.67 7682.13 5980.26 12179.58 5163.04 7670.09 6351.98 9065.06 5055.62 11262.49 10475.97 10176.32 10184.80 12588.93 94
FC-MVSNet-train68.83 9368.29 10769.47 8178.35 8579.94 12264.72 14966.38 5154.96 12254.51 8656.75 7447.91 13966.91 8275.57 10675.75 10685.92 8987.12 109
v14419262.05 14661.46 15462.73 13566.59 16379.87 12369.30 12555.88 14341.50 17339.41 14937.23 16436.45 17759.62 12072.69 13973.51 13285.61 10588.93 94
v119262.25 14261.64 15262.96 12966.88 15979.72 12469.96 12055.77 14541.58 17139.42 14837.05 16635.96 18260.50 11574.30 12074.09 12685.24 11088.76 97
dps64.08 12763.22 13765.08 11175.27 11479.65 12566.68 14346.63 18956.94 10755.67 8043.96 12643.63 14964.00 9369.50 16969.82 17082.25 16479.02 164
v192192061.66 14961.10 15762.31 13766.32 16479.57 12668.41 13055.49 15041.03 17438.69 15336.64 17235.27 18559.60 12173.23 13073.41 13485.37 10788.51 101
v14862.00 14761.19 15662.96 12967.46 15779.49 12767.87 13257.66 12642.30 16745.02 12038.20 16038.89 16754.77 14869.83 16672.60 14884.96 11587.01 110
FMVSNet370.41 8371.89 8268.68 8870.89 13779.42 12875.63 7060.97 10165.32 7851.06 9447.37 11162.05 7364.90 8982.49 3682.27 3588.64 2184.34 134
v124061.09 15260.55 16161.72 14165.92 16879.28 12967.16 14054.91 15639.79 18038.10 15636.08 17434.64 18759.15 12572.86 13573.36 13685.10 11287.84 105
CMPMVSbinary43.63 1757.67 17355.43 18160.28 14872.01 12879.00 13062.77 16553.23 16841.77 17045.42 11530.74 19139.03 16553.01 15264.81 18464.65 19075.26 19868.03 196
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
V4262.86 13862.97 14062.74 13460.84 18878.99 13171.46 10657.13 13446.85 15044.28 12438.87 15540.73 16057.63 13972.60 14074.14 12585.09 11488.63 98
Vis-MVSNet (Re-imp)62.25 14268.74 10354.68 17873.70 11978.74 13256.51 18357.49 12955.22 12026.86 19154.56 8261.35 7931.06 19373.10 13174.90 11582.49 16083.31 141
GBi-Net69.21 8870.40 9367.81 9569.49 14278.65 13374.54 8160.97 10165.32 7851.06 9447.37 11162.05 7363.43 9677.49 8578.22 8387.37 5383.73 137
test169.21 8870.40 9367.81 9569.49 14278.65 13374.54 8160.97 10165.32 7851.06 9447.37 11162.05 7363.43 9677.49 8578.22 8387.37 5383.73 137
FMVSNet268.06 9968.57 10467.45 10069.49 14278.65 13374.54 8160.23 11256.29 11249.64 10342.13 13857.08 10363.43 9681.15 5580.99 5587.37 5383.73 137
tpm64.85 12166.02 12563.48 12674.52 11778.38 13670.98 11444.99 19351.61 13343.28 13147.66 10953.18 12560.57 11370.58 15871.30 16286.54 7589.45 89
ACMH59.42 1461.59 15059.22 16964.36 11978.92 8178.26 13767.65 13467.48 4539.81 17930.98 18538.25 15934.59 18861.37 11170.55 15973.47 13379.74 18379.59 161
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v863.44 13362.58 14564.43 11768.28 15078.07 13871.82 9954.85 15746.70 15245.20 11839.40 15440.91 15760.54 11472.85 13674.39 12485.92 8985.76 124
Patchmtry78.06 13967.53 13643.18 19841.40 138
UniMVSNet (Re)60.62 15562.93 14257.92 16267.64 15577.90 14061.75 16861.24 9849.83 13929.80 18742.57 13240.62 16143.36 18170.49 16073.27 13983.76 14285.81 123
UniMVSNet_NR-MVSNet62.30 14163.51 13660.89 14469.48 14577.83 14164.07 15363.94 6850.03 13731.17 18344.82 12541.12 15551.37 15771.02 15274.81 11785.30 10884.95 129
v1063.00 13662.22 14863.90 12467.88 15377.78 14271.59 10454.34 16145.37 15842.76 13538.53 15638.93 16661.05 11274.39 11774.52 12285.75 9386.04 119
ACMM66.70 1070.42 8168.49 10572.67 6382.85 5377.76 14377.70 6164.76 6364.61 8260.74 6549.29 10053.97 12265.86 8574.97 10975.57 11084.13 14083.29 142
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TAMVS58.86 16560.91 15856.47 17362.38 18477.57 14458.97 17852.98 16938.76 18336.17 16642.26 13747.94 13846.45 17270.23 16370.79 16581.86 16878.82 165
DCV-MVSNet69.13 9069.07 10069.21 8377.65 9277.52 14574.68 7957.85 12454.92 12355.34 8455.74 7655.56 11366.35 8375.05 10876.56 9783.35 14788.13 104
test-mter64.06 12869.24 9958.01 16159.07 19477.40 14659.13 17748.11 18355.64 11839.18 15151.56 9458.54 9355.38 14673.52 12876.00 10487.22 6292.05 59
EPNet_dtu66.17 11270.13 9661.54 14281.04 6477.39 14768.87 12862.50 8769.78 6433.51 17863.77 5456.22 10737.65 19172.20 14272.18 15285.69 9979.38 162
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs559.72 15960.24 16359.11 15762.77 18277.33 14863.17 16354.00 16340.21 17837.23 16040.41 14835.99 18151.75 15572.55 14172.74 14785.72 9882.45 150
MIMVSNet57.78 17259.71 16755.53 17554.79 20277.10 14963.89 15745.02 19246.59 15336.79 16328.36 19640.77 15945.84 17674.97 10976.58 9686.87 7073.60 180
pm-mvs159.21 16359.58 16858.77 15967.97 15277.07 15064.12 15157.20 13234.73 19636.86 16135.34 17740.54 16243.34 18274.32 11973.30 13883.13 15481.77 155
Fast-Effi-MVS+-dtu63.05 13564.72 13161.11 14371.21 13576.81 15170.72 11643.13 20052.51 13235.34 17146.55 12246.36 14261.40 11071.57 15071.44 15784.84 12187.79 106
MSDG65.57 11661.57 15370.24 7882.02 6076.47 15274.46 8768.73 3956.52 11050.33 10038.47 15741.10 15662.42 10572.12 14372.94 14483.47 14673.37 182
pmmvs463.14 13462.46 14663.94 12366.03 16676.40 15366.82 14257.60 12756.74 10850.26 10140.81 14737.51 17159.26 12471.75 14871.48 15683.68 14582.53 148
FMVSNet163.48 13263.07 13963.97 12265.31 17076.37 15471.77 10257.90 12343.32 16545.66 11435.06 18049.43 13458.57 12877.49 8578.22 8384.59 13081.60 156
tfpnnormal58.97 16456.48 17961.89 13971.27 13476.21 15566.65 14461.76 9532.90 19936.41 16527.83 19729.14 20550.64 16173.06 13273.05 14384.58 13183.15 146
DU-MVS60.87 15461.82 15159.76 15166.69 16075.87 15664.07 15361.96 8949.31 14031.17 18342.76 12936.95 17451.37 15769.67 16773.20 14283.30 14984.95 129
NR-MVSNet61.08 15362.09 15059.90 14971.96 12975.87 15663.60 15961.96 8949.31 14027.95 18842.76 12933.85 19248.82 16474.35 11874.05 12885.13 11184.45 132
LS3D64.54 12562.14 14967.34 10180.85 6675.79 15869.99 11965.87 5560.77 9244.35 12342.43 13645.95 14465.01 8769.88 16568.69 17577.97 19171.43 189
PatchMatch-RL62.22 14560.69 15964.01 12168.74 14775.75 15959.27 17660.35 10956.09 11453.80 8747.06 11736.45 17764.80 9068.22 17267.22 17977.10 19374.02 177
PatchT60.46 15663.85 13456.51 17265.95 16775.68 16047.34 19741.39 20553.89 12941.40 13837.84 16250.30 13357.29 14072.76 13773.27 13985.67 10083.23 144
thisisatest051559.37 16260.68 16057.84 16464.39 17475.65 16158.56 17953.86 16441.55 17242.12 13740.40 14939.59 16447.09 17071.69 14973.79 12981.02 17582.08 153
TranMVSNet+NR-MVSNet60.38 15761.30 15559.30 15568.34 14975.57 16263.38 16263.78 7046.74 15127.73 18942.56 13336.84 17547.66 16770.36 16174.59 12084.91 11882.46 149
Effi-MVS+-dtu64.58 12364.08 13365.16 11073.04 12475.17 16370.68 11756.23 14154.12 12844.71 12247.42 11051.10 13063.82 9568.08 17366.32 18482.47 16186.38 115
IterMVS-LS66.08 11366.56 12065.51 10773.67 12074.88 16470.89 11553.55 16650.42 13648.32 10850.59 9755.66 11161.83 10673.93 12274.42 12384.82 12486.01 120
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PLCcopyleft64.00 1268.54 9466.66 11870.74 7580.28 7274.88 16472.64 9463.70 7169.26 6855.71 7947.24 11455.31 11470.42 5872.05 14570.67 16681.66 17077.19 168
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v7n57.04 17556.64 17857.52 16662.85 18174.75 16661.76 16751.80 17435.58 19536.02 16832.33 18633.61 19350.16 16267.73 17470.34 16982.51 15982.12 152
TransMVSNet (Re)57.83 17056.90 17758.91 15872.26 12774.69 16763.57 16061.42 9732.30 20132.65 17933.97 18235.96 18239.17 18973.84 12572.84 14684.37 13474.69 175
ADS-MVSNet58.40 16959.16 17057.52 16665.80 16974.57 16860.26 17240.17 20950.51 13538.01 15740.11 15244.72 14659.36 12364.91 18266.55 18281.53 17172.72 185
ACMH+60.36 1361.16 15158.38 17164.42 11877.37 9874.35 16968.45 12962.81 8345.86 15638.48 15435.71 17537.35 17259.81 11967.24 17569.80 17279.58 18478.32 166
Baseline_NR-MVSNet59.47 16160.28 16258.54 16066.69 16073.90 17061.63 16962.90 8249.15 14426.87 19035.18 17937.62 17048.20 16569.67 16773.61 13184.92 11682.82 147
MDTV_nov1_ep13_2view54.47 18354.61 18254.30 18260.50 18973.82 17157.92 18043.38 19739.43 18232.51 18033.23 18334.05 19047.26 16962.36 19066.21 18584.24 13673.19 183
test0.0.03 157.35 17459.89 16654.38 18171.37 13273.45 17252.71 18961.03 9946.11 15526.33 19241.73 14044.08 14729.72 19571.43 15170.90 16385.10 11271.56 188
UniMVSNet_ETH3D57.83 17056.46 18059.43 15463.24 17973.22 17367.70 13355.58 14836.17 19136.84 16232.64 18435.14 18651.50 15665.81 17869.81 17181.73 16982.44 151
pmmvs654.20 18453.54 18654.97 17663.22 18072.98 17460.17 17352.32 17326.77 21034.30 17523.29 20436.23 17940.33 18868.77 17168.76 17479.47 18678.00 167
MVS-HIRNet53.86 18653.02 18854.85 17760.30 19072.36 17544.63 20542.20 20339.45 18143.47 12821.66 20834.00 19155.47 14565.42 18067.16 18083.02 15571.08 191
IterMVS61.87 14863.55 13559.90 14967.29 15872.20 17667.34 13948.56 18147.48 14837.86 15947.07 11648.27 13554.08 15072.12 14373.71 13084.30 13583.99 136
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT60.21 15862.97 14057.00 17066.64 16271.84 17767.53 13646.93 18847.56 14736.77 16446.85 12048.21 13652.51 15370.36 16172.40 15071.63 20683.53 140
USDC59.69 16060.03 16559.28 15664.04 17571.84 17763.15 16455.36 15254.90 12435.02 17248.34 10429.79 20458.16 12970.60 15771.33 16179.99 18173.42 181
SCA63.90 12966.67 11760.66 14573.75 11871.78 17959.87 17543.66 19661.13 9145.03 11951.64 9359.45 9057.92 13470.96 15370.80 16483.71 14480.92 158
anonymousdsp54.99 17957.24 17652.36 18453.82 20471.75 18051.49 19048.14 18233.74 19733.66 17738.34 15836.13 18047.54 16864.53 18670.60 16779.53 18585.59 126
pmnet_mix0253.92 18553.30 18754.65 18061.89 18571.33 18154.54 18754.17 16240.38 17634.65 17334.76 18130.68 20340.44 18760.97 19263.71 19282.19 16571.24 190
CR-MVSNet62.31 14064.75 12959.47 15368.63 14871.29 18267.53 13643.18 19855.83 11541.40 13841.04 14455.85 10957.29 14072.76 13773.27 13978.77 18883.23 144
RPMNet58.63 16862.80 14453.76 18367.59 15671.29 18254.60 18638.13 21055.83 11535.70 16941.58 14153.04 12647.89 16666.10 17767.38 17778.65 19084.40 133
our_test_363.32 17771.07 18455.90 184
LTVRE_ROB47.26 1649.41 19749.91 20048.82 19164.76 17269.79 18549.05 19347.12 18720.36 21716.52 20536.65 17126.96 20850.76 16060.47 19363.16 19564.73 20972.00 186
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Anonymous2023120652.23 18952.80 19151.56 18664.70 17369.41 18651.01 19158.60 11636.63 18822.44 19821.80 20731.42 19930.52 19466.79 17667.83 17682.10 16675.73 171
WR-MVS51.02 19154.56 18346.90 19763.84 17669.23 18744.78 20456.38 13938.19 18414.19 20937.38 16336.82 17622.39 20560.14 19466.20 18679.81 18273.95 179
CHOSEN 280x42062.23 14466.57 11957.17 16959.88 19168.92 18861.20 17142.28 20254.17 12739.57 14647.78 10864.97 6462.68 10173.85 12469.52 17377.43 19286.75 111
CVMVSNet54.92 18158.16 17251.13 18862.61 18368.44 18955.45 18552.38 17242.28 16821.45 19947.10 11546.10 14337.96 19064.42 18763.81 19176.92 19475.01 174
pmmvs-eth3d55.20 17653.95 18556.65 17157.34 20067.77 19057.54 18153.74 16540.93 17541.09 14231.19 19029.10 20649.07 16365.54 17967.28 17881.14 17375.81 170
WR-MVS_H49.62 19652.63 19246.11 20058.80 19567.58 19146.14 20254.94 15436.51 18913.63 21236.75 17035.67 18422.10 20656.43 20262.76 19681.06 17472.73 184
COLMAP_ROBcopyleft51.17 1555.13 17752.90 19057.73 16573.47 12367.21 19262.13 16655.82 14447.83 14634.39 17431.60 18834.24 18944.90 17963.88 18962.52 19775.67 19663.02 205
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
testgi48.51 19950.53 19746.16 19964.78 17167.15 19341.54 20754.81 15829.12 20617.03 20332.07 18731.98 19520.15 20965.26 18167.00 18178.67 18961.10 209
FMVSNet558.86 16560.24 16357.25 16852.66 20666.25 19463.77 15852.86 17157.85 10637.92 15836.12 17352.22 12851.37 15770.88 15471.43 15884.92 11666.91 198
PEN-MVS51.04 19052.94 18948.82 19161.45 18766.00 19548.68 19457.20 13236.87 18615.36 20736.98 16732.72 19428.77 19957.63 19866.37 18381.44 17274.00 178
CP-MVSNet50.57 19252.60 19348.21 19458.77 19665.82 19648.17 19556.29 14037.41 18516.59 20437.14 16531.95 19629.21 19656.60 20163.71 19280.22 17975.56 172
PS-CasMVS50.17 19352.02 19448.02 19558.60 19765.54 19748.04 19656.19 14236.42 19016.42 20635.68 17631.33 20028.85 19856.42 20363.54 19480.01 18075.18 173
TDRefinement52.70 18751.02 19654.66 17957.41 19965.06 19861.47 17054.94 15444.03 16233.93 17630.13 19327.57 20746.17 17461.86 19162.48 19874.01 20266.06 199
test20.0347.23 20248.69 20245.53 20163.28 17864.39 19941.01 20856.93 13629.16 20515.21 20823.90 20130.76 20217.51 21264.63 18565.26 18779.21 18762.71 206
DTE-MVSNet49.82 19551.92 19547.37 19661.75 18664.38 20045.89 20357.33 13136.11 19212.79 21436.87 16831.93 19725.73 20258.01 19665.22 18880.75 17870.93 192
SixPastTwentyTwo49.11 19849.22 20148.99 19058.54 19864.14 20147.18 19847.75 18431.15 20324.42 19441.01 14526.55 20944.04 18054.76 20658.70 20371.99 20568.21 194
TinyColmap52.66 18850.09 19955.65 17459.72 19264.02 20257.15 18252.96 17040.28 17732.51 18032.42 18520.97 21556.65 14263.95 18865.15 18974.91 19963.87 203
N_pmnet47.67 20047.00 20448.45 19354.72 20362.78 20346.95 19951.25 17536.01 19326.09 19326.59 20025.93 21235.50 19255.67 20559.01 20176.22 19563.04 204
MDA-MVSNet-bldmvs44.15 20442.27 20946.34 19838.34 21462.31 20446.28 20055.74 14629.83 20420.98 20027.11 19916.45 22041.98 18441.11 21357.47 20474.72 20061.65 208
PM-MVS50.11 19450.38 19849.80 18947.23 21262.08 20550.91 19244.84 19441.90 16936.10 16735.22 17826.05 21146.83 17157.64 19755.42 20872.90 20374.32 176
new-patchmatchnet42.21 20542.97 20641.33 20453.05 20559.89 20639.38 20949.61 17728.26 20812.10 21522.17 20621.54 21419.22 21050.96 20856.04 20674.61 20161.92 207
RPSCF55.07 17858.06 17351.57 18548.87 21058.95 20753.68 18841.26 20762.42 8645.88 11354.38 8554.26 12053.75 15157.15 19953.53 20966.01 20865.75 200
MIMVSNet140.84 20743.46 20537.79 20732.14 21558.92 20839.24 21050.83 17627.00 20911.29 21616.76 21426.53 21017.75 21157.14 20061.12 20075.46 19756.78 210
FC-MVSNet-test47.24 20154.37 18438.93 20659.49 19358.25 20934.48 21353.36 16745.66 1576.66 21950.62 9642.02 15016.62 21358.39 19561.21 19962.99 21064.40 202
EU-MVSNet44.84 20347.85 20341.32 20549.26 20956.59 21043.07 20647.64 18633.03 19813.82 21036.78 16930.99 20124.37 20353.80 20755.57 20769.78 20768.21 194
gm-plane-assit54.99 17957.99 17551.49 18769.27 14654.42 21132.32 21442.59 20121.18 21513.71 21123.61 20243.84 14860.21 11787.09 586.55 590.81 489.28 90
pmmvs341.86 20642.29 20841.36 20339.80 21352.66 21238.93 21135.85 21423.40 21420.22 20119.30 20920.84 21640.56 18655.98 20458.79 20272.80 20465.03 201
ambc42.30 20750.36 20849.51 21335.47 21232.04 20223.53 19517.36 2118.95 22229.06 19764.88 18356.26 20561.29 21167.12 197
FPMVS39.11 20836.39 21042.28 20255.97 20145.94 21446.23 20141.57 20435.73 19422.61 19623.46 20319.82 21728.32 20043.57 21040.67 21258.96 21245.54 212
new_pmnet33.19 20935.52 21130.47 20927.55 21945.31 21529.29 21530.92 21529.00 2079.88 21818.77 21017.64 21926.77 20144.07 20945.98 21158.41 21347.87 211
PMMVS220.45 21322.31 21518.27 21520.52 22026.73 21614.85 22028.43 21713.69 2180.79 22410.35 2169.10 2213.83 21927.64 21632.87 21441.17 21535.81 214
PMVScopyleft27.44 1832.08 21029.07 21335.60 20848.33 21124.79 21726.97 21641.34 20620.45 21622.50 19717.11 21318.64 21820.44 20841.99 21238.06 21354.02 21442.44 213
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft24.91 21224.61 21425.26 21131.47 21621.59 21818.06 21837.53 21125.43 21210.03 2174.18 2204.25 22414.85 21443.20 21147.03 21039.62 21626.55 217
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method28.15 21134.48 21220.76 2126.76 22321.18 21921.03 21718.41 21836.77 18717.52 20215.67 21531.63 19824.05 20441.03 21426.69 21636.82 21768.38 193
MVEpermissive15.98 1914.37 21616.36 21612.04 2177.72 22220.24 2205.90 22429.05 2168.28 2213.92 2214.72 2192.42 2259.57 21718.89 21831.46 21516.07 22228.53 216
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft19.81 22117.01 21910.02 21923.61 2135.85 22017.21 2128.03 22321.13 20722.60 21721.42 22130.01 215
E-PMN15.08 21411.65 21719.08 21328.73 21712.31 2226.95 22336.87 21310.71 2203.63 2225.13 2172.22 22713.81 21611.34 21918.50 21824.49 21921.32 218
EMVS14.40 21510.71 21818.70 21428.15 21812.09 2237.06 22236.89 21211.00 2193.56 2234.95 2182.27 22613.91 21510.13 22016.06 21922.63 22018.51 219
tmp_tt16.09 21613.07 2218.12 22413.61 2212.08 22055.09 12130.10 18640.26 15022.83 2135.35 21829.91 21525.25 21732.33 218
testmvs0.05 2170.08 2190.01 2180.00 2250.01 2250.03 2260.01 2220.05 2220.00 2260.14 2220.01 2280.03 2220.05 2210.05 2200.01 2230.24 221
test1230.05 2170.08 2190.01 2180.00 2250.01 2250.01 2270.00 2230.05 2220.00 2260.16 2210.00 2290.04 2200.02 2220.05 2200.00 2240.26 220
uanet_test0.00 2190.00 2210.00 2200.00 2250.00 2270.00 2280.00 2230.00 2240.00 2260.00 2230.00 2290.00 2230.00 2230.00 2220.00 2240.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2250.00 2270.00 2280.00 2230.00 2240.00 2260.00 2230.00 2290.00 2230.00 2230.00 2220.00 2240.00 222
sosnet0.00 2190.00 2210.00 2200.00 2250.00 2270.00 2280.00 2230.00 2240.00 2260.00 2230.00 2290.00 2230.00 2230.00 2220.00 2240.00 222
RE-MVS-def31.47 182
9.1484.47 7
SR-MVS86.33 4567.54 4480.78 20
MTAPA78.32 1179.42 24
MTMP76.04 1576.65 28
Patchmatch-RL test2.17 225
mPP-MVS86.96 4070.61 48
NP-MVS81.60 34