This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS88.94 190.98 186.56 192.53 795.09 188.55 576.83 694.16 186.57 190.85 587.07 186.18 186.36 785.08 1288.67 2198.21 3
DVP-MVScopyleft88.07 290.73 284.97 491.98 1095.01 287.86 1076.88 593.90 285.15 290.11 786.90 279.46 1286.26 1084.67 1888.50 2898.25 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DVP-MVS++87.98 389.76 585.89 292.57 694.57 388.34 676.61 792.40 683.40 389.26 1085.57 586.04 286.24 1184.89 1588.39 3195.42 20
SF-MVS87.30 688.71 685.64 394.57 194.55 491.01 179.94 189.15 1279.85 792.37 383.29 1179.75 983.52 2682.72 3288.75 2095.37 23
TPM-MVS94.34 293.91 589.34 375.49 1882.52 2083.34 1083.53 489.62 790.78 72
Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025
DPE-MVScopyleft87.60 590.44 484.29 792.09 993.44 688.69 475.11 993.06 580.80 694.23 286.70 381.44 784.84 1883.52 2787.64 4997.28 5
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CSCG82.90 2084.52 2381.02 1891.85 1193.43 787.14 1274.01 1481.96 3176.14 1470.84 3782.49 1469.71 6382.32 4185.18 1187.26 6195.40 22
MCST-MVS85.75 986.99 1384.31 694.07 392.80 888.15 979.10 285.66 2170.72 2976.50 3380.45 2282.17 588.35 287.49 391.63 297.65 4
DELS-MVS79.49 3079.84 4079.08 2788.26 3792.49 984.12 2670.63 2765.27 8169.60 3561.29 6366.50 6072.75 4388.07 388.03 289.13 1497.22 6
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CHOSEN 1792x268872.55 7171.98 8073.22 5986.57 4592.41 1075.63 7166.77 5062.08 8852.32 9030.27 19450.74 13366.14 8586.22 1285.41 791.90 196.75 12
CNVR-MVS85.96 887.58 1184.06 892.58 592.40 1187.62 1177.77 488.44 1475.93 1679.49 2681.97 1881.65 687.04 686.58 488.79 1897.18 7
CANet80.90 2782.93 2878.53 2986.83 4492.26 1281.19 4266.95 4881.60 3469.90 3266.93 4574.80 3276.79 2184.68 1984.77 1789.50 1195.50 18
QAPM77.50 4477.43 5177.59 3491.52 1492.00 1381.41 4070.63 2766.22 7458.05 7254.70 8171.79 4474.49 3282.46 3782.04 3689.46 1292.79 53
DPM-MVS85.41 1186.72 1683.89 1091.66 1391.92 1490.49 278.09 386.90 1773.95 2074.52 3582.01 1779.29 1390.24 190.65 189.86 690.78 72
APDe-MVScopyleft86.37 788.41 884.00 991.43 1591.83 1588.34 674.67 1091.19 781.76 591.13 481.94 1980.07 883.38 2782.58 3487.69 4796.78 10
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MVS_030479.43 3282.20 3076.20 4084.22 5291.79 1681.82 3763.81 7076.83 4961.71 5766.37 4875.52 3176.38 2385.54 1485.03 1389.28 1394.32 32
MSP-MVS87.87 490.57 384.73 589.38 2791.60 1788.24 874.15 1293.55 382.28 494.99 183.21 1285.96 387.67 484.67 1888.32 3298.29 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PHI-MVS79.43 3284.06 2574.04 5586.15 4791.57 1880.85 4668.90 3882.22 3051.81 9378.10 2874.28 3370.39 6084.01 2484.00 2286.14 8794.24 33
DeepPCF-MVS76.94 183.08 1987.77 1077.60 3390.11 2090.96 1978.48 5572.63 2293.10 465.84 4180.67 2481.55 2074.80 2985.94 1385.39 883.75 14596.77 11
SMA-MVScopyleft85.24 1288.27 981.72 1591.74 1290.71 2086.71 1373.16 1990.56 1074.33 1983.07 1885.88 477.16 2086.28 985.58 687.23 6295.77 13
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MVS_111021_HR77.42 4578.40 4776.28 3986.95 4290.68 2177.41 6470.56 3066.21 7562.48 5466.17 5063.98 6972.08 4882.87 3383.15 2888.24 3595.71 15
MAR-MVS77.19 4778.37 4875.81 4489.87 2290.58 2279.33 5465.56 5977.62 4758.33 7159.24 7167.98 5574.83 2882.37 4083.12 2986.95 6987.67 108
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
NCCC84.16 1685.46 2182.64 1192.34 890.57 2386.57 1476.51 886.85 1872.91 2377.20 3278.69 2679.09 1584.64 2084.88 1688.44 2995.41 21
OpenMVScopyleft67.62 874.92 6173.91 7176.09 4290.10 2190.38 2478.01 5966.35 5366.09 7662.80 5046.33 12564.55 6771.77 5079.92 6580.88 5987.52 5389.20 92
3Dnovator70.49 578.42 3876.77 5780.35 2091.43 1590.27 2581.84 3670.79 2672.10 5871.95 2450.02 10067.86 5777.47 1982.89 3284.24 2088.61 2489.99 83
HPM-MVS++copyleft85.64 1088.43 782.39 1292.65 490.24 2685.83 1774.21 1190.68 975.63 1786.77 1384.15 878.68 1686.33 885.26 987.32 5895.60 17
EPNet79.28 3682.25 2975.83 4388.31 3690.14 2779.43 5368.07 4281.76 3361.26 6077.26 3170.08 5070.06 6182.43 3982.00 3887.82 4392.09 57
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMMP_NAP83.54 1786.37 1880.25 2189.57 2690.10 2885.27 2171.66 2387.38 1573.08 2284.23 1780.16 2375.31 2584.85 1783.64 2486.57 7694.21 35
GG-mvs-BLEND54.54 18377.58 5027.67 2120.03 22790.09 2977.20 660.02 22366.83 730.05 22859.90 6873.33 360.04 22378.40 7979.30 7388.65 2295.20 25
PVSNet_BlendedMVS76.84 4978.47 4574.95 5082.37 5789.90 3075.45 7565.45 6074.99 5470.66 3063.07 5658.27 9967.60 7984.24 2281.70 4388.18 3697.10 8
PVSNet_Blended76.84 4978.47 4574.95 5082.37 5789.90 3075.45 7565.45 6074.99 5470.66 3063.07 5658.27 9967.60 7984.24 2281.70 4388.18 3697.10 8
canonicalmvs77.65 4279.59 4175.39 4581.52 6389.83 3281.32 4160.74 10680.05 3966.72 3968.43 4165.09 6374.72 3178.87 7482.73 3187.32 5892.16 56
SteuartSystems-ACMMP82.51 2185.35 2279.20 2590.25 1889.39 3384.79 2270.95 2582.86 2768.32 3786.44 1477.19 2773.07 3983.63 2583.64 2487.82 4394.34 31
Skip Steuart: Steuart Systems R&D Blog.
casdiffmvs_mvgpermissive75.57 5676.04 6275.02 4980.48 7289.31 3480.79 4764.04 6866.95 7263.87 4657.52 7361.33 8272.90 4182.01 4781.99 3988.03 4093.16 48
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVScopyleft84.83 1387.00 1282.30 1389.61 2589.21 3586.51 1573.64 1690.98 877.99 1289.89 880.04 2479.18 1482.00 4881.37 4986.88 7195.49 19
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
casdiffmvspermissive75.20 5975.69 6574.63 5479.26 7989.07 3678.47 5663.59 7367.05 7163.79 4755.72 7860.32 8773.58 3582.16 4381.78 4189.08 1593.72 42
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IB-MVS64.48 1169.02 9168.97 10269.09 8681.75 6289.01 3764.50 15264.91 6356.65 11062.59 5347.89 10945.23 14651.99 15669.18 17181.88 4088.77 1992.93 50
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVS_Test75.22 5876.69 5873.51 5679.30 7788.82 3880.06 5058.74 11569.77 6557.50 7659.78 7061.35 8075.31 2582.07 4583.60 2690.13 591.41 64
SD-MVS84.31 1586.96 1481.22 1688.98 3188.68 3985.65 1873.85 1589.09 1379.63 887.34 1284.84 673.71 3482.66 3581.60 4685.48 10894.51 29
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
gg-mvs-nofinetune62.34 14066.19 12457.86 16476.15 10888.61 4071.18 11241.24 21025.74 21213.16 21522.91 20863.97 7054.52 15185.06 1685.25 1090.92 391.78 61
DeepC-MVS74.46 380.30 2981.05 3579.42 2387.42 4088.50 4183.23 2873.27 1882.78 2871.01 2862.86 5869.93 5174.80 2984.30 2184.20 2186.79 7494.77 26
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
train_agg83.35 1886.93 1579.17 2689.70 2488.41 4285.60 2072.89 2186.31 1966.58 4090.48 682.24 1673.06 4083.10 3182.64 3387.21 6695.30 24
CDPH-MVS79.39 3582.13 3176.19 4189.22 3088.34 4384.20 2571.00 2479.67 4156.97 7777.77 2972.24 4268.50 7581.33 5282.74 3087.23 6292.84 51
3Dnovator+70.16 677.87 4177.29 5378.55 2889.25 2988.32 4480.09 4967.95 4374.89 5671.83 2552.05 9370.68 4876.27 2482.27 4282.04 3685.92 9190.77 74
TSAR-MVS + GP.82.27 2385.98 1977.94 3180.72 7088.25 4581.12 4367.71 4487.10 1673.31 2185.23 1583.68 976.64 2280.43 6181.47 4888.15 3895.66 16
MP-MVScopyleft80.94 2683.49 2677.96 3088.48 3288.16 4682.82 3269.34 3480.79 3769.67 3382.35 2177.13 2871.60 5280.97 5880.96 5785.87 9494.06 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HyFIR lowres test68.39 9668.28 10868.52 9080.85 6788.11 4771.08 11458.09 12054.87 12647.80 11127.55 20055.80 11164.97 8979.11 7279.14 7488.31 3393.35 44
CLD-MVS77.36 4677.29 5377.45 3582.21 5988.11 4781.92 3568.96 3777.97 4569.62 3462.08 5959.44 9273.57 3681.75 5081.27 5188.41 3090.39 79
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ET-MVSNet_ETH3D71.38 7874.70 6967.51 9951.61 20988.06 4977.29 6560.95 10563.61 8348.36 10866.60 4760.67 8579.55 1073.56 12880.58 6287.30 6089.80 85
PCF-MVS70.85 475.73 5576.55 6074.78 5383.67 5388.04 5081.47 3870.62 2969.24 6957.52 7560.59 6769.18 5370.65 5877.11 9077.65 8984.75 12894.01 37
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ETV-MVS76.25 5180.22 3871.63 7178.23 8787.95 5172.75 9460.27 11177.50 4857.73 7371.53 3666.60 5973.16 3880.99 5781.23 5287.63 5095.73 14
DeepC-MVS_fast75.41 281.69 2482.10 3281.20 1791.04 1787.81 5283.42 2774.04 1383.77 2571.09 2766.88 4672.44 3879.48 1185.08 1584.97 1488.12 3993.78 40
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HFP-MVS82.48 2284.12 2480.56 1990.15 1987.55 5384.28 2469.67 3285.22 2277.95 1384.69 1675.94 3075.04 2781.85 4981.17 5386.30 8392.40 55
baseline72.89 6874.46 7071.07 7275.99 10987.50 5474.57 8160.49 10870.72 6257.60 7460.63 6660.97 8370.79 5775.27 10876.33 10186.94 7089.79 86
diffmvspermissive74.32 6275.42 6673.04 6075.60 11387.27 5578.20 5762.96 7968.66 7061.89 5559.79 6959.84 9071.80 4978.30 8179.87 6687.80 4594.23 34
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EIA-MVS73.48 6676.05 6170.47 7778.12 8887.21 5671.78 10260.63 10769.66 6655.56 8264.86 5260.69 8469.53 6677.35 8978.59 7787.22 6494.01 37
PVSNet_Blended_VisFu71.76 7573.54 7469.69 8079.01 8187.16 5772.05 9961.80 9456.46 11259.66 6853.88 8962.48 7259.08 12881.17 5478.90 7586.53 7894.74 27
ACMMPR80.62 2882.98 2777.87 3288.41 3387.05 5883.02 2969.18 3583.91 2468.35 3682.89 1973.64 3572.16 4780.78 5981.13 5486.10 8891.43 62
CS-MVS-test75.09 6077.84 4971.87 7079.27 7886.92 5970.53 12060.36 10975.13 5363.13 4967.92 4265.08 6471.43 5378.15 8278.51 8086.53 7893.16 48
DI_MVS_plusplus_trai73.94 6574.85 6872.88 6176.57 10586.80 6080.41 4861.47 9762.35 8759.44 6947.91 10868.12 5472.24 4682.84 3481.50 4787.15 6894.42 30
CS-MVS75.84 5478.61 4472.61 6579.03 8086.74 6174.43 8960.27 11174.15 5762.78 5166.26 4964.25 6872.81 4283.36 2881.69 4586.32 8193.85 39
PGM-MVS79.42 3481.84 3376.60 3888.38 3586.69 6282.97 3165.75 5780.39 3864.94 4381.95 2372.11 4371.41 5480.45 6080.55 6386.18 8590.76 75
test111166.72 11167.80 11165.45 10977.42 9886.63 6369.69 12462.98 7855.29 12039.47 14940.12 15347.11 14155.70 14679.96 6480.00 6587.47 5485.49 128
EC-MVSNet76.05 5378.87 4372.77 6278.87 8386.63 6377.50 6357.04 13675.34 5261.68 5864.20 5369.56 5273.96 3382.12 4480.65 6187.57 5193.57 43
CANet_DTU72.84 6976.63 5968.43 9276.81 10286.62 6575.54 7454.71 16272.06 5943.54 12867.11 4458.46 9672.40 4581.13 5680.82 6087.57 5190.21 81
TSAR-MVS + ACMM81.59 2585.84 2076.63 3789.82 2386.53 6686.32 1666.72 5185.96 2065.43 4288.98 1182.29 1567.57 8182.06 4681.33 5083.93 14393.75 41
TSAR-MVS + MP.84.39 1486.58 1781.83 1488.09 3886.47 6785.63 1973.62 1790.13 1179.24 989.67 982.99 1377.72 1881.22 5380.92 5886.68 7594.66 28
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test250669.26 8770.79 9167.48 10078.64 8486.40 6872.22 9762.75 8658.05 10445.24 11850.76 9654.93 11758.05 13479.82 6679.70 6787.96 4185.90 123
ECVR-MVScopyleft67.93 10168.49 10567.28 10378.64 8486.40 6872.22 9762.75 8658.05 10444.06 12640.92 14848.20 13858.05 13479.82 6679.70 6787.96 4186.32 118
baseline271.22 8073.01 7769.13 8475.76 11186.34 7071.23 11062.78 8562.62 8552.85 8957.32 7454.31 12063.27 10079.74 6879.31 7288.89 1791.43 62
XVS82.43 5586.27 7175.70 6961.07 6272.27 3985.67 102
X-MVStestdata82.43 5586.27 7175.70 6961.07 6272.27 3985.67 102
X-MVS78.16 4080.55 3775.38 4687.99 3986.27 7181.05 4468.98 3678.33 4361.07 6275.25 3472.27 3967.52 8280.03 6380.52 6485.66 10591.20 66
CostFormer72.18 7273.90 7270.18 7979.47 7586.19 7476.94 6748.62 18266.07 7760.40 6754.14 8765.82 6167.98 7675.84 10376.41 10087.67 4892.83 52
FA-MVS(training)70.24 8671.77 8368.45 9177.52 9686.03 7573.33 9249.12 18163.55 8455.77 7948.91 10556.26 10767.78 7877.60 8479.62 6987.19 6790.40 78
CP-MVS79.44 3181.51 3477.02 3686.95 4285.96 7682.00 3468.44 4181.82 3267.39 3877.43 3073.68 3471.62 5179.56 7079.58 7085.73 9892.51 54
ACMMPcopyleft77.61 4379.59 4175.30 4785.87 4885.58 7781.42 3967.38 4779.38 4262.61 5278.53 2765.79 6268.80 7478.56 7778.50 8185.75 9590.80 71
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MS-PatchMatch70.34 8569.00 10171.91 6985.20 5185.35 7877.84 6161.77 9558.01 10655.40 8341.26 14458.34 9861.69 10881.70 5178.29 8289.56 980.02 162
Effi-MVS+70.42 8171.23 8769.47 8178.04 8985.24 7975.57 7358.88 11459.56 9748.47 10752.73 9254.94 11669.69 6478.34 8077.06 9386.18 8590.73 76
MVS_111021_LR74.26 6375.95 6372.27 6679.43 7685.04 8072.71 9565.27 6270.92 6163.58 4869.32 3960.31 8869.43 6877.01 9177.15 9283.22 15291.93 60
AdaColmapbinary76.23 5273.55 7379.35 2489.38 2785.00 8179.99 5173.04 2076.60 5071.17 2655.18 8057.99 10177.87 1776.82 9376.82 9584.67 13086.45 115
MSLP-MVS++78.57 3777.33 5280.02 2288.39 3484.79 8284.62 2366.17 5575.96 5178.40 1061.59 6171.47 4573.54 3778.43 7878.88 7688.97 1690.18 82
Vis-MVSNetpermissive65.53 11869.83 9760.52 14770.80 14084.59 8366.37 14955.47 15248.40 14640.62 14757.67 7258.43 9745.37 18077.49 8576.24 10384.47 13485.99 122
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
baseline171.47 7672.02 7970.82 7480.56 7184.51 8476.61 6866.93 4956.22 11448.66 10655.40 7960.43 8662.55 10483.35 2980.99 5589.60 883.28 145
thisisatest053068.38 9770.98 8965.35 11072.61 12784.42 8568.21 13357.98 12159.77 9650.80 9854.63 8258.48 9557.92 13676.99 9277.47 9084.60 13185.07 129
Anonymous20240521166.35 12378.00 9084.41 8674.85 7963.18 7651.00 13531.37 19153.73 12469.67 6576.28 9776.84 9483.21 15490.85 70
OPM-MVS72.74 7070.93 9074.85 5285.30 5084.34 8782.82 3269.79 3149.96 13955.39 8454.09 8860.14 8970.04 6280.38 6279.43 7185.74 9788.20 104
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP-MVS78.26 3980.91 3675.17 4885.67 4984.33 8883.01 3069.38 3379.88 4055.83 7879.85 2564.90 6670.81 5682.46 3781.78 4186.30 8393.18 47
IS_MVSNet67.29 10871.98 8061.82 14176.92 10184.32 8965.90 15058.22 11855.75 11839.22 15254.51 8462.47 7345.99 17778.83 7578.52 7984.70 12989.47 89
EPMVS66.21 11267.49 11464.73 11575.81 11084.20 9068.94 12944.37 19761.55 8948.07 11049.21 10454.87 11862.88 10171.82 14771.40 16088.28 3479.37 165
tttt051767.99 10070.61 9264.94 11371.94 13283.96 9167.62 13757.98 12159.30 9849.90 10354.50 8557.98 10257.92 13676.48 9677.47 9084.24 13884.58 133
thres100view90067.14 11066.09 12568.38 9377.70 9183.84 9274.52 8566.33 5449.16 14343.40 13043.24 12941.34 15462.59 10379.31 7175.92 10685.73 9889.81 84
Anonymous2023121168.44 9566.37 12270.86 7377.58 9483.49 9375.15 7861.89 9252.54 13258.50 7028.89 19656.78 10569.29 7174.96 11276.61 9682.73 15891.36 65
EPP-MVSNet67.58 10471.10 8863.48 12775.71 11283.35 9466.85 14357.83 12653.02 13141.15 14355.82 7667.89 5656.01 14574.40 11772.92 14683.33 15090.30 80
GeoE68.96 9269.32 9868.54 8976.61 10483.12 9571.78 10256.87 13860.21 9554.86 8645.95 12654.79 11964.27 9374.59 11475.54 11286.84 7391.01 69
MVSTER76.92 4879.92 3973.42 5874.98 11682.97 9678.15 5863.41 7478.02 4464.41 4567.54 4372.80 3771.05 5583.29 3083.73 2388.53 2791.12 67
PatchmatchNetpermissive65.43 11967.71 11262.78 13373.49 12482.83 9766.42 14845.40 19260.40 9445.27 11749.22 10357.60 10360.01 12070.61 15771.38 16186.08 8981.91 156
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thres40065.18 12164.44 13366.04 10676.40 10682.63 9871.52 10764.27 6644.93 16140.69 14641.86 14140.79 16058.12 13277.67 8374.64 11985.26 11188.56 100
UGNet67.57 10571.69 8462.76 13469.88 14282.58 9966.43 14758.64 11654.71 12751.87 9261.74 6062.01 7745.46 17974.78 11374.99 11584.24 13891.02 68
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CPTT-MVS75.43 5777.13 5573.44 5781.43 6482.55 10080.96 4564.35 6577.95 4661.39 5969.20 4070.94 4769.38 7073.89 12473.32 13883.14 15592.06 58
TSAR-MVS + COLMAP73.09 6776.86 5668.71 8774.97 11782.49 10174.51 8661.83 9383.16 2649.31 10582.22 2251.62 13068.94 7378.76 7675.52 11382.67 16084.23 137
PMMVS70.37 8475.06 6764.90 11471.46 13381.88 10264.10 15455.64 14871.31 6046.69 11270.69 3858.56 9369.53 6679.03 7375.63 10981.96 16988.32 103
MDTV_nov1_ep1365.21 12067.28 11562.79 13270.91 13881.72 10369.28 12849.50 18058.08 10343.94 12750.50 9956.02 10958.86 12970.72 15673.37 13684.24 13880.52 161
thres600view763.77 13163.14 13964.51 11775.49 11481.61 10469.59 12562.95 8043.96 16438.90 15441.09 14540.24 16555.25 14976.24 9871.54 15584.89 12187.30 109
thres20065.58 11664.74 13166.56 10577.52 9681.61 10473.44 9162.95 8046.23 15542.45 13742.76 13141.18 15658.12 13276.24 9875.59 11084.89 12189.58 87
tfpn200view965.90 11564.96 12967.00 10477.70 9181.58 10671.71 10562.94 8249.16 14343.40 13043.24 12941.34 15461.42 11076.24 9874.63 12084.84 12388.52 101
GA-MVS64.55 12565.76 12863.12 12969.68 14381.56 10769.59 12558.16 11945.23 16035.58 17247.01 12041.82 15359.41 12479.62 6978.54 7886.32 8186.56 114
tpm cat167.47 10667.05 11767.98 9576.63 10381.51 10874.49 8747.65 18761.18 9061.12 6142.51 13653.02 12864.74 9270.11 16571.50 15683.22 15289.49 88
UA-Net64.62 12368.23 10960.42 14877.53 9581.38 10960.08 17657.47 13147.01 15044.75 12260.68 6571.32 4641.84 18773.27 13072.25 15280.83 17971.68 189
CNLPA71.37 7970.27 9572.66 6480.79 6981.33 11071.07 11565.75 5782.36 2964.80 4442.46 13756.49 10672.70 4473.00 13570.52 16980.84 17885.76 125
test-LLR68.23 9871.61 8564.28 12171.37 13481.32 11163.98 15761.03 10058.62 10042.96 13352.74 9061.65 7857.74 13975.64 10578.09 8688.61 2493.21 45
TESTMET0.1,167.38 10771.61 8562.45 13766.05 16781.32 11163.98 15755.36 15358.62 10042.96 13352.74 9061.65 7857.74 13975.64 10578.09 8688.61 2493.21 45
Fast-Effi-MVS+67.59 10367.56 11367.62 9873.67 12281.14 11371.12 11354.79 16158.88 9950.61 10046.70 12347.05 14269.12 7276.06 10176.44 9986.43 8086.65 113
tpmrst67.15 10968.12 11066.03 10776.21 10780.98 11471.27 10945.05 19360.69 9350.63 9946.95 12154.15 12265.30 8771.80 14871.77 15487.72 4690.48 77
OMC-MVS74.03 6475.82 6471.95 6879.56 7480.98 11475.35 7763.21 7584.48 2361.83 5661.54 6266.89 5869.41 6976.60 9574.07 12882.34 16586.15 119
ACMP68.86 772.15 7372.25 7872.03 6780.96 6680.87 11677.93 6064.13 6769.29 6760.79 6564.04 5453.54 12563.91 9573.74 12775.27 11484.45 13588.98 94
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
TAPA-MVS67.10 971.45 7773.47 7569.10 8577.04 10080.78 11773.81 9062.10 8980.80 3651.28 9460.91 6463.80 7167.98 7674.59 11472.42 15082.37 16480.97 159
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CDS-MVSNet64.22 12765.89 12762.28 13970.05 14180.59 11869.91 12357.98 12143.53 16546.58 11348.22 10750.76 13246.45 17475.68 10476.08 10482.70 15986.34 117
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
EG-PatchMatch MVS58.73 16858.03 17559.55 15372.32 12880.49 11963.44 16355.55 15032.49 20138.31 15728.87 19737.22 17542.84 18574.30 12175.70 10884.84 12377.14 171
v2v48263.68 13262.85 14464.65 11668.01 15380.46 12071.90 10057.60 12844.26 16242.82 13539.80 15538.62 17061.56 10973.06 13374.86 11786.03 9088.90 97
v114463.00 13762.39 14863.70 12667.72 15680.27 12171.23 11056.40 13942.51 16740.81 14538.12 16337.73 17160.42 11874.46 11674.55 12285.64 10689.12 93
LGP-MVS_train72.02 7473.18 7670.67 7682.13 6080.26 12279.58 5263.04 7770.09 6351.98 9165.06 5155.62 11362.49 10575.97 10276.32 10284.80 12788.93 95
FC-MVSNet-train68.83 9368.29 10769.47 8178.35 8679.94 12364.72 15166.38 5254.96 12354.51 8756.75 7547.91 14066.91 8375.57 10775.75 10785.92 9187.12 110
v14419262.05 14761.46 15562.73 13666.59 16579.87 12469.30 12755.88 14441.50 17439.41 15137.23 16636.45 17959.62 12272.69 14073.51 13385.61 10788.93 95
v119262.25 14361.64 15362.96 13066.88 16179.72 12569.96 12255.77 14641.58 17239.42 15037.05 16835.96 18460.50 11774.30 12174.09 12785.24 11288.76 98
dps64.08 12863.22 13865.08 11275.27 11579.65 12666.68 14546.63 19156.94 10855.67 8143.96 12843.63 15164.00 9469.50 17069.82 17182.25 16679.02 166
v192192061.66 15061.10 15862.31 13866.32 16679.57 12768.41 13255.49 15141.03 17538.69 15536.64 17435.27 18759.60 12373.23 13173.41 13585.37 10988.51 102
v14862.00 14861.19 15762.96 13067.46 15979.49 12867.87 13457.66 12742.30 16845.02 12138.20 16238.89 16954.77 15069.83 16772.60 14984.96 11787.01 111
FMVSNet370.41 8371.89 8268.68 8870.89 13979.42 12975.63 7160.97 10265.32 7851.06 9547.37 11362.05 7464.90 9082.49 3682.27 3588.64 2384.34 136
v124061.09 15360.55 16261.72 14265.92 17079.28 13067.16 14254.91 15839.79 18138.10 15836.08 17634.64 18959.15 12772.86 13673.36 13785.10 11487.84 106
dmvs_re67.60 10267.21 11668.06 9474.07 11979.01 13173.31 9368.74 3958.27 10242.07 13949.72 10143.96 14960.66 11476.79 9478.04 8889.51 1084.69 132
CMPMVSbinary43.63 1757.67 17455.43 18260.28 14972.01 13079.00 13262.77 16753.23 17041.77 17145.42 11630.74 19339.03 16753.01 15464.81 18564.65 19175.26 20068.03 198
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
V4262.86 13962.97 14162.74 13560.84 19078.99 13371.46 10857.13 13546.85 15144.28 12538.87 15740.73 16257.63 14172.60 14174.14 12685.09 11688.63 99
Vis-MVSNet (Re-imp)62.25 14368.74 10354.68 17973.70 12178.74 13456.51 18557.49 13055.22 12126.86 19354.56 8361.35 8031.06 19573.10 13274.90 11682.49 16283.31 143
GBi-Net69.21 8870.40 9367.81 9669.49 14478.65 13574.54 8260.97 10265.32 7851.06 9547.37 11362.05 7463.43 9777.49 8578.22 8387.37 5583.73 139
test169.21 8870.40 9367.81 9669.49 14478.65 13574.54 8260.97 10265.32 7851.06 9547.37 11362.05 7463.43 9777.49 8578.22 8387.37 5583.73 139
FMVSNet268.06 9968.57 10467.45 10169.49 14478.65 13574.54 8260.23 11356.29 11349.64 10442.13 14057.08 10463.43 9781.15 5580.99 5587.37 5583.73 139
tpm64.85 12266.02 12663.48 12774.52 11878.38 13870.98 11644.99 19551.61 13443.28 13247.66 11153.18 12660.57 11570.58 15971.30 16386.54 7789.45 90
ACMH59.42 1461.59 15159.22 17064.36 12078.92 8278.26 13967.65 13667.48 4639.81 18030.98 18738.25 16134.59 19061.37 11270.55 16073.47 13479.74 18579.59 163
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v863.44 13462.58 14664.43 11868.28 15278.07 14071.82 10154.85 15946.70 15345.20 11939.40 15640.91 15960.54 11672.85 13774.39 12585.92 9185.76 125
Patchmtry78.06 14167.53 13843.18 20041.40 140
UniMVSNet (Re)60.62 15662.93 14357.92 16367.64 15777.90 14261.75 17061.24 9949.83 14029.80 18942.57 13440.62 16343.36 18370.49 16173.27 14083.76 14485.81 124
UniMVSNet_NR-MVSNet62.30 14263.51 13760.89 14569.48 14777.83 14364.07 15563.94 6950.03 13831.17 18544.82 12741.12 15751.37 15971.02 15374.81 11885.30 11084.95 130
v1063.00 13762.22 14963.90 12567.88 15577.78 14471.59 10654.34 16345.37 15942.76 13638.53 15838.93 16861.05 11374.39 11874.52 12385.75 9586.04 120
ACMM66.70 1070.42 8168.49 10572.67 6382.85 5477.76 14577.70 6264.76 6464.61 8260.74 6649.29 10253.97 12365.86 8674.97 11075.57 11184.13 14283.29 144
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TAMVS58.86 16660.91 15956.47 17462.38 18677.57 14658.97 18052.98 17138.76 18436.17 16842.26 13947.94 13946.45 17470.23 16470.79 16681.86 17078.82 167
DCV-MVSNet69.13 9069.07 10069.21 8377.65 9377.52 14774.68 8057.85 12554.92 12455.34 8555.74 7755.56 11466.35 8475.05 10976.56 9883.35 14988.13 105
test-mter64.06 12969.24 9958.01 16259.07 19677.40 14859.13 17948.11 18555.64 11939.18 15351.56 9558.54 9455.38 14873.52 12976.00 10587.22 6492.05 59
EPNet_dtu66.17 11370.13 9661.54 14381.04 6577.39 14968.87 13062.50 8869.78 6433.51 18063.77 5556.22 10837.65 19372.20 14372.18 15385.69 10179.38 164
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs559.72 16060.24 16459.11 15862.77 18477.33 15063.17 16554.00 16540.21 17937.23 16240.41 15035.99 18351.75 15772.55 14272.74 14885.72 10082.45 152
MIMVSNet57.78 17359.71 16855.53 17654.79 20477.10 15163.89 15945.02 19446.59 15436.79 16528.36 19840.77 16145.84 17874.97 11076.58 9786.87 7273.60 182
pm-mvs159.21 16459.58 16958.77 16067.97 15477.07 15264.12 15357.20 13334.73 19736.86 16335.34 17940.54 16443.34 18474.32 12073.30 13983.13 15681.77 157
Fast-Effi-MVS+-dtu63.05 13664.72 13261.11 14471.21 13776.81 15370.72 11843.13 20252.51 13335.34 17346.55 12446.36 14361.40 11171.57 15171.44 15884.84 12387.79 107
MSDG65.57 11761.57 15470.24 7882.02 6176.47 15474.46 8868.73 4056.52 11150.33 10138.47 15941.10 15862.42 10672.12 14472.94 14583.47 14873.37 184
pmmvs463.14 13562.46 14763.94 12466.03 16876.40 15566.82 14457.60 12856.74 10950.26 10240.81 14937.51 17359.26 12671.75 14971.48 15783.68 14782.53 150
FMVSNet163.48 13363.07 14063.97 12365.31 17276.37 15671.77 10457.90 12443.32 16645.66 11535.06 18249.43 13558.57 13077.49 8578.22 8384.59 13281.60 158
tfpnnormal58.97 16556.48 18061.89 14071.27 13676.21 15766.65 14661.76 9632.90 20036.41 16727.83 19929.14 20750.64 16373.06 13373.05 14484.58 13383.15 148
DU-MVS60.87 15561.82 15259.76 15266.69 16275.87 15864.07 15561.96 9049.31 14131.17 18542.76 13136.95 17651.37 15969.67 16873.20 14383.30 15184.95 130
NR-MVSNet61.08 15462.09 15159.90 15071.96 13175.87 15863.60 16161.96 9049.31 14127.95 19042.76 13133.85 19448.82 16674.35 11974.05 12985.13 11384.45 134
LS3D64.54 12662.14 15067.34 10280.85 6775.79 16069.99 12165.87 5660.77 9244.35 12442.43 13845.95 14565.01 8869.88 16668.69 17677.97 19371.43 191
PatchMatch-RL62.22 14660.69 16064.01 12268.74 14975.75 16159.27 17860.35 11056.09 11553.80 8847.06 11936.45 17964.80 9168.22 17367.22 18077.10 19574.02 179
PatchT60.46 15763.85 13556.51 17365.95 16975.68 16247.34 19941.39 20753.89 13041.40 14037.84 16450.30 13457.29 14272.76 13873.27 14085.67 10283.23 146
thisisatest051559.37 16360.68 16157.84 16564.39 17675.65 16358.56 18153.86 16641.55 17342.12 13840.40 15139.59 16647.09 17271.69 15073.79 13081.02 17782.08 155
TranMVSNet+NR-MVSNet60.38 15861.30 15659.30 15668.34 15175.57 16463.38 16463.78 7146.74 15227.73 19142.56 13536.84 17747.66 16970.36 16274.59 12184.91 12082.46 151
Effi-MVS+-dtu64.58 12464.08 13465.16 11173.04 12675.17 16570.68 11956.23 14254.12 12944.71 12347.42 11251.10 13163.82 9668.08 17466.32 18582.47 16386.38 116
IterMVS-LS66.08 11466.56 12165.51 10873.67 12274.88 16670.89 11753.55 16850.42 13748.32 10950.59 9855.66 11261.83 10773.93 12374.42 12484.82 12686.01 121
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PLCcopyleft64.00 1268.54 9466.66 11970.74 7580.28 7374.88 16672.64 9663.70 7269.26 6855.71 8047.24 11655.31 11570.42 5972.05 14670.67 16781.66 17277.19 170
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v7n57.04 17656.64 17957.52 16762.85 18374.75 16861.76 16951.80 17635.58 19636.02 17032.33 18833.61 19550.16 16467.73 17570.34 17082.51 16182.12 154
TransMVSNet (Re)57.83 17156.90 17858.91 15972.26 12974.69 16963.57 16261.42 9832.30 20232.65 18133.97 18435.96 18439.17 19173.84 12672.84 14784.37 13674.69 177
ADS-MVSNet58.40 17059.16 17157.52 16765.80 17174.57 17060.26 17440.17 21150.51 13638.01 15940.11 15444.72 14759.36 12564.91 18366.55 18381.53 17372.72 187
ACMH+60.36 1361.16 15258.38 17264.42 11977.37 9974.35 17168.45 13162.81 8445.86 15738.48 15635.71 17737.35 17459.81 12167.24 17669.80 17379.58 18678.32 168
Baseline_NR-MVSNet59.47 16260.28 16358.54 16166.69 16273.90 17261.63 17162.90 8349.15 14526.87 19235.18 18137.62 17248.20 16769.67 16873.61 13284.92 11882.82 149
MDTV_nov1_ep13_2view54.47 18454.61 18354.30 18360.50 19173.82 17357.92 18243.38 19939.43 18332.51 18233.23 18534.05 19247.26 17162.36 19166.21 18684.24 13873.19 185
test0.0.03 157.35 17559.89 16754.38 18271.37 13473.45 17452.71 19161.03 10046.11 15626.33 19441.73 14244.08 14829.72 19771.43 15270.90 16485.10 11471.56 190
UniMVSNet_ETH3D57.83 17156.46 18159.43 15563.24 18173.22 17567.70 13555.58 14936.17 19236.84 16432.64 18635.14 18851.50 15865.81 17969.81 17281.73 17182.44 153
pmmvs654.20 18553.54 18754.97 17763.22 18272.98 17660.17 17552.32 17526.77 21134.30 17723.29 20736.23 18140.33 19068.77 17268.76 17579.47 18878.00 169
MVS-HIRNet53.86 18753.02 18954.85 17860.30 19272.36 17744.63 20742.20 20539.45 18243.47 12921.66 21134.00 19355.47 14765.42 18167.16 18183.02 15771.08 193
IterMVS61.87 14963.55 13659.90 15067.29 16072.20 17867.34 14148.56 18347.48 14937.86 16147.07 11848.27 13654.08 15272.12 14473.71 13184.30 13783.99 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT60.21 15962.97 14157.00 17166.64 16471.84 17967.53 13846.93 19047.56 14836.77 16646.85 12248.21 13752.51 15570.36 16272.40 15171.63 20883.53 142
USDC59.69 16160.03 16659.28 15764.04 17771.84 17963.15 16655.36 15354.90 12535.02 17448.34 10629.79 20658.16 13170.60 15871.33 16279.99 18373.42 183
SCA63.90 13066.67 11860.66 14673.75 12071.78 18159.87 17743.66 19861.13 9145.03 12051.64 9459.45 9157.92 13670.96 15470.80 16583.71 14680.92 160
anonymousdsp54.99 18057.24 17752.36 18553.82 20671.75 18251.49 19248.14 18433.74 19833.66 17938.34 16036.13 18247.54 17064.53 18770.60 16879.53 18785.59 127
pmnet_mix0253.92 18653.30 18854.65 18161.89 18771.33 18354.54 18954.17 16440.38 17734.65 17534.76 18330.68 20540.44 18960.97 19363.71 19382.19 16771.24 192
CR-MVSNet62.31 14164.75 13059.47 15468.63 15071.29 18467.53 13843.18 20055.83 11641.40 14041.04 14655.85 11057.29 14272.76 13873.27 14078.77 19083.23 146
RPMNet58.63 16962.80 14553.76 18467.59 15871.29 18454.60 18838.13 21255.83 11635.70 17141.58 14353.04 12747.89 16866.10 17867.38 17878.65 19284.40 135
our_test_363.32 17971.07 18655.90 186
LTVRE_ROB47.26 1649.41 19849.91 20148.82 19264.76 17469.79 18749.05 19547.12 18920.36 21816.52 20736.65 17326.96 21050.76 16260.47 19463.16 19664.73 21172.00 188
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Anonymous2023120652.23 19052.80 19251.56 18764.70 17569.41 18851.01 19358.60 11736.63 18922.44 20021.80 21031.42 20130.52 19666.79 17767.83 17782.10 16875.73 173
WR-MVS51.02 19254.56 18446.90 19863.84 17869.23 18944.78 20656.38 14038.19 18514.19 21137.38 16536.82 17822.39 20760.14 19566.20 18779.81 18473.95 181
CHOSEN 280x42062.23 14566.57 12057.17 17059.88 19368.92 19061.20 17342.28 20454.17 12839.57 14847.78 11064.97 6562.68 10273.85 12569.52 17477.43 19486.75 112
CVMVSNet54.92 18258.16 17351.13 18962.61 18568.44 19155.45 18752.38 17442.28 16921.45 20147.10 11746.10 14437.96 19264.42 18863.81 19276.92 19675.01 176
pmmvs-eth3d55.20 17753.95 18656.65 17257.34 20267.77 19257.54 18353.74 16740.93 17641.09 14431.19 19229.10 20849.07 16565.54 18067.28 17981.14 17575.81 172
WR-MVS_H49.62 19752.63 19346.11 20158.80 19767.58 19346.14 20454.94 15636.51 19013.63 21436.75 17235.67 18622.10 20856.43 20362.76 19781.06 17672.73 186
COLMAP_ROBcopyleft51.17 1555.13 17852.90 19157.73 16673.47 12567.21 19462.13 16855.82 14547.83 14734.39 17631.60 19034.24 19144.90 18163.88 19062.52 19875.67 19863.02 207
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
testgi48.51 20050.53 19846.16 20064.78 17367.15 19541.54 20954.81 16029.12 20717.03 20532.07 18931.98 19720.15 21165.26 18267.00 18278.67 19161.10 211
FMVSNet558.86 16660.24 16457.25 16952.66 20866.25 19663.77 16052.86 17357.85 10737.92 16036.12 17552.22 12951.37 15970.88 15571.43 15984.92 11866.91 200
PEN-MVS51.04 19152.94 19048.82 19261.45 18966.00 19748.68 19657.20 13336.87 18715.36 20936.98 16932.72 19628.77 20157.63 19966.37 18481.44 17474.00 180
CP-MVSNet50.57 19352.60 19448.21 19558.77 19865.82 19848.17 19756.29 14137.41 18616.59 20637.14 16731.95 19829.21 19856.60 20263.71 19380.22 18175.56 174
PS-CasMVS50.17 19452.02 19548.02 19658.60 19965.54 19948.04 19856.19 14336.42 19116.42 20835.68 17831.33 20228.85 20056.42 20463.54 19580.01 18275.18 175
TDRefinement52.70 18851.02 19754.66 18057.41 20165.06 20061.47 17254.94 15644.03 16333.93 17830.13 19527.57 20946.17 17661.86 19262.48 19974.01 20466.06 201
test20.0347.23 20348.69 20345.53 20263.28 18064.39 20141.01 21056.93 13729.16 20615.21 21023.90 20430.76 20417.51 21464.63 18665.26 18879.21 18962.71 208
DTE-MVSNet49.82 19651.92 19647.37 19761.75 18864.38 20245.89 20557.33 13236.11 19312.79 21636.87 17031.93 19925.73 20458.01 19765.22 18980.75 18070.93 194
SixPastTwentyTwo49.11 19949.22 20248.99 19158.54 20064.14 20347.18 20047.75 18631.15 20424.42 19641.01 14726.55 21144.04 18254.76 20758.70 20471.99 20768.21 196
TinyColmap52.66 18950.09 20055.65 17559.72 19464.02 20457.15 18452.96 17240.28 17832.51 18232.42 18720.97 21756.65 14463.95 18965.15 19074.91 20163.87 205
N_pmnet47.67 20147.00 20548.45 19454.72 20562.78 20546.95 20151.25 17736.01 19426.09 19526.59 20225.93 21435.50 19455.67 20659.01 20276.22 19763.04 206
MDA-MVSNet-bldmvs44.15 20542.27 21046.34 19938.34 21762.31 20646.28 20255.74 14729.83 20520.98 20227.11 20116.45 22341.98 18641.11 21557.47 20574.72 20261.65 210
PM-MVS50.11 19550.38 19949.80 19047.23 21562.08 20750.91 19444.84 19641.90 17036.10 16935.22 18026.05 21346.83 17357.64 19855.42 20972.90 20574.32 178
new-patchmatchnet42.21 20642.97 20741.33 20553.05 20759.89 20839.38 21149.61 17928.26 20912.10 21722.17 20921.54 21619.22 21250.96 20956.04 20774.61 20361.92 209
RPSCF55.07 17958.06 17451.57 18648.87 21358.95 20953.68 19041.26 20962.42 8645.88 11454.38 8654.26 12153.75 15357.15 20053.53 21066.01 21065.75 202
MIMVSNet140.84 20843.46 20637.79 20832.14 21858.92 21039.24 21250.83 17827.00 21011.29 21816.76 21726.53 21217.75 21357.14 20161.12 20175.46 19956.78 212
FC-MVSNet-test47.24 20254.37 18538.93 20759.49 19558.25 21134.48 21553.36 16945.66 1586.66 22150.62 9742.02 15216.62 21558.39 19661.21 20062.99 21264.40 204
EU-MVSNet44.84 20447.85 20441.32 20649.26 21256.59 21243.07 20847.64 18833.03 19913.82 21236.78 17130.99 20324.37 20553.80 20855.57 20869.78 20968.21 196
gm-plane-assit54.99 18057.99 17651.49 18869.27 14854.42 21332.32 21642.59 20321.18 21613.71 21323.61 20543.84 15060.21 11987.09 586.55 590.81 489.28 91
pmmvs341.86 20742.29 20941.36 20439.80 21652.66 21438.93 21335.85 21623.40 21520.22 20319.30 21220.84 21840.56 18855.98 20558.79 20372.80 20665.03 203
ambc42.30 20850.36 21149.51 21535.47 21432.04 20323.53 19717.36 2148.95 22529.06 19964.88 18456.26 20661.29 21367.12 199
FPMVS39.11 20936.39 21142.28 20355.97 20345.94 21646.23 20341.57 20635.73 19522.61 19823.46 20619.82 21928.32 20243.57 21240.67 21458.96 21445.54 214
new_pmnet33.19 21035.52 21230.47 21027.55 22245.31 21729.29 21730.92 21729.00 2089.88 22018.77 21317.64 22126.77 20344.07 21145.98 21258.41 21547.87 213
WB-MVS30.42 21232.63 21427.84 21151.51 21041.64 21817.75 22155.06 15520.11 2192.46 22626.13 20316.63 2223.90 22144.91 21044.54 21336.34 22034.48 217
PMMVS220.45 21522.31 21718.27 21720.52 22326.73 21914.85 22328.43 21913.69 2200.79 22710.35 2199.10 2243.83 22227.64 21832.87 21641.17 21735.81 216
PMVScopyleft27.44 1832.08 21129.07 21535.60 20948.33 21424.79 22026.97 21841.34 20820.45 21722.50 19917.11 21618.64 22020.44 21041.99 21438.06 21554.02 21642.44 215
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft24.91 21424.61 21625.26 21331.47 21921.59 22118.06 22037.53 21325.43 21310.03 2194.18 2234.25 22714.85 21643.20 21347.03 21139.62 21826.55 220
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method28.15 21334.48 21320.76 2146.76 22621.18 22221.03 21918.41 22036.77 18817.52 20415.67 21831.63 20024.05 20641.03 21626.69 21836.82 21968.38 195
MVEpermissive15.98 1914.37 21816.36 21812.04 2197.72 22520.24 2235.90 22729.05 2188.28 2233.92 2234.72 2222.42 2289.57 21918.89 22031.46 21716.07 22528.53 219
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft19.81 22417.01 22210.02 22123.61 2145.85 22217.21 2158.03 22621.13 20922.60 21921.42 22430.01 218
E-PMN15.08 21611.65 21919.08 21528.73 22012.31 2256.95 22636.87 21510.71 2223.63 2245.13 2202.22 23013.81 21811.34 22118.50 22024.49 22221.32 221
EMVS14.40 21710.71 22018.70 21628.15 22112.09 2267.06 22536.89 21411.00 2213.56 2254.95 2212.27 22913.91 21710.13 22216.06 22122.63 22318.51 222
tmp_tt16.09 21813.07 2248.12 22713.61 2242.08 22255.09 12230.10 18840.26 15222.83 2155.35 22029.91 21725.25 21932.33 221
testmvs0.05 2190.08 2210.01 2200.00 2280.01 2280.03 2290.01 2240.05 2240.00 2290.14 2250.01 2310.03 2250.05 2230.05 2220.01 2260.24 224
test1230.05 2190.08 2210.01 2200.00 2280.01 2280.01 2300.00 2250.05 2240.00 2290.16 2240.00 2320.04 2230.02 2240.05 2220.00 2270.26 223
uanet_test0.00 2210.00 2230.00 2220.00 2280.00 2300.00 2310.00 2250.00 2260.00 2290.00 2260.00 2320.00 2260.00 2250.00 2240.00 2270.00 225
sosnet-low-res0.00 2210.00 2230.00 2220.00 2280.00 2300.00 2310.00 2250.00 2260.00 2290.00 2260.00 2320.00 2260.00 2250.00 2240.00 2270.00 225
sosnet0.00 2210.00 2230.00 2220.00 2280.00 2300.00 2310.00 2250.00 2260.00 2290.00 2260.00 2320.00 2260.00 2250.00 2240.00 2270.00 225
RE-MVS-def31.47 184
9.1484.47 7
SR-MVS86.33 4667.54 4580.78 21
MTAPA78.32 1179.42 25
MTMP76.04 1576.65 29
Patchmatch-RL test2.17 228
mPP-MVS86.96 4170.61 49
NP-MVS81.60 34