This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
HPM-MVS++copyleft79.88 980.14 979.10 2188.17 164.80 186.59 1283.70 6565.37 1378.78 2290.64 1958.63 2587.24 5479.00 1290.37 1485.26 129
CNVR-MVS79.84 1079.97 1079.45 1187.90 262.17 1784.37 3685.03 3566.96 577.58 2790.06 3659.47 2189.13 2278.67 1489.73 1687.03 58
test_0728_SECOND79.19 1687.82 359.11 6387.85 587.15 390.84 378.66 1590.61 1187.62 42
SED-MVS81.56 282.30 279.32 1387.77 458.90 6987.82 786.78 1064.18 3285.97 191.84 866.87 390.83 578.63 1790.87 588.23 21
IU-MVS87.77 459.15 6085.53 2553.93 22684.64 379.07 1190.87 588.37 17
test_241102_ONE87.77 458.90 6986.78 1064.20 3185.97 191.34 1266.87 390.78 7
DVP-MVScopyleft80.84 481.64 378.42 3487.75 759.07 6487.85 585.03 3564.26 2983.82 892.00 364.82 890.75 878.66 1590.61 1185.45 118
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072687.75 759.07 6487.86 486.83 864.26 2984.19 791.92 564.82 8
test_one_060187.58 959.30 5786.84 765.01 2083.80 1191.86 664.03 11
test_part287.58 960.47 4283.42 12
OPU-MVS79.83 787.54 1160.93 3587.82 789.89 4267.01 190.33 1273.16 5491.15 488.23 21
NCCC78.58 1778.31 1979.39 1287.51 1262.61 1385.20 3184.42 4566.73 874.67 5389.38 4955.30 4589.18 2174.19 4687.34 4486.38 77
DPE-MVScopyleft80.56 580.98 579.29 1587.27 1360.56 4185.71 2686.42 1463.28 4483.27 1391.83 1064.96 790.47 1176.41 2989.67 1886.84 64
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVS++81.67 182.40 179.47 1087.24 1459.15 6088.18 187.15 365.04 1684.26 591.86 667.01 190.84 379.48 691.38 288.42 14
MSC_two_6792asdad79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 32
No_MVS79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 32
region2R77.67 2777.18 2979.15 1886.76 1762.95 686.29 1484.16 5062.81 5773.30 7090.58 2149.90 11388.21 3573.78 5087.03 4686.29 88
ACMMPR77.71 2577.23 2879.16 1786.75 1862.93 786.29 1484.24 4862.82 5573.55 6890.56 2249.80 11588.24 3474.02 4887.03 4686.32 85
HFP-MVS78.01 2477.65 2579.10 2186.71 1962.81 886.29 1484.32 4762.82 5573.96 6390.50 2453.20 7488.35 3274.02 4887.05 4586.13 91
MCST-MVS77.48 2877.45 2777.54 4586.67 2058.36 7683.22 5586.93 556.91 16274.91 4788.19 6259.15 2387.68 4973.67 5187.45 4386.57 74
ZD-MVS86.64 2160.38 4382.70 9157.95 14778.10 2490.06 3656.12 4188.84 2674.05 4787.00 49
APDe-MVScopyleft80.16 880.59 678.86 2886.64 2160.02 4588.12 386.42 1462.94 5182.40 1492.12 259.64 1989.76 1578.70 1388.32 3186.79 66
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SMA-MVScopyleft80.28 680.39 779.95 486.60 2361.95 1986.33 1385.75 2162.49 6282.20 1592.28 156.53 3789.70 1679.85 591.48 188.19 23
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DP-MVS Recon72.15 9270.73 10576.40 5986.57 2457.99 7981.15 8882.96 8657.03 15966.78 17885.56 12844.50 18388.11 3951.77 21880.23 11683.10 198
MP-MVScopyleft78.35 2078.26 2178.64 3186.54 2563.47 486.02 2083.55 6963.89 3773.60 6790.60 2054.85 5186.72 6977.20 2588.06 3785.74 108
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS76.54 3675.93 4078.34 3686.47 2663.50 385.74 2582.28 9562.90 5271.77 9990.26 3146.61 16086.55 7571.71 6485.66 6184.97 138
APD-MVScopyleft78.02 2378.04 2377.98 4186.44 2760.81 3885.52 2784.36 4660.61 8979.05 2190.30 3055.54 4488.32 3373.48 5387.03 4684.83 141
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ZNCC-MVS78.82 1378.67 1779.30 1486.43 2862.05 1886.62 1186.01 1863.32 4375.08 4290.47 2653.96 6288.68 2776.48 2889.63 2087.16 56
XVS77.17 3176.56 3479.00 2386.32 2962.62 1185.83 2283.92 5564.55 2372.17 9690.01 4047.95 13588.01 4171.55 6686.74 5386.37 79
X-MVStestdata70.21 12567.28 17479.00 2386.32 2962.62 1185.83 2283.92 5564.55 2372.17 966.49 40847.95 13588.01 4171.55 6686.74 5386.37 79
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1886.83 865.51 1283.81 1090.51 2363.71 1289.23 2081.51 388.44 2788.09 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
114514_t70.83 11269.56 12374.64 9486.21 3154.63 13682.34 7081.81 10248.22 29363.01 24685.83 12340.92 22187.10 6157.91 16779.79 11882.18 215
save fliter86.17 3361.30 2883.98 4779.66 14659.00 124
DeepC-MVS_fast68.24 377.25 3076.63 3379.12 2086.15 3460.86 3684.71 3384.85 3961.98 7473.06 8088.88 5553.72 6889.06 2368.27 7988.04 3887.42 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PGM-MVS76.77 3576.06 3878.88 2786.14 3562.73 982.55 6783.74 6461.71 7672.45 9590.34 2948.48 13188.13 3872.32 5886.85 5185.78 102
FOURS186.12 3660.82 3788.18 183.61 6760.87 8481.50 16
MTAPA76.90 3476.42 3578.35 3586.08 3763.57 274.92 20980.97 12965.13 1575.77 3690.88 1748.63 12886.66 7177.23 2488.17 3384.81 143
GST-MVS78.14 2277.85 2478.99 2586.05 3861.82 2285.84 2185.21 2963.56 4174.29 5990.03 3852.56 8088.53 3074.79 4288.34 2986.63 73
CP-MVS77.12 3276.68 3278.43 3386.05 3863.18 587.55 1083.45 7362.44 6472.68 8990.50 2448.18 13387.34 5373.59 5285.71 6084.76 146
SR-MVS76.13 4275.70 4377.40 4885.87 4061.20 2985.52 2782.19 9659.99 10675.10 4190.35 2847.66 14086.52 7671.64 6582.99 8284.47 152
新几何170.76 19785.66 4161.13 3066.43 30544.68 32970.29 11286.64 9141.29 21675.23 28649.72 23381.75 10275.93 301
MG-MVS73.96 6573.89 6374.16 10885.65 4249.69 21981.59 8381.29 11961.45 7871.05 10688.11 6351.77 9587.73 4861.05 14883.09 8085.05 135
TEST985.58 4361.59 2481.62 8181.26 12055.65 19174.93 4588.81 5653.70 6984.68 119
train_agg76.27 3976.15 3776.64 5585.58 4361.59 2481.62 8181.26 12055.86 18374.93 4588.81 5653.70 6984.68 11975.24 3888.33 3083.65 183
ACMMP_NAP78.77 1578.78 1478.74 2985.44 4561.04 3183.84 4985.16 3162.88 5378.10 2491.26 1352.51 8188.39 3179.34 890.52 1386.78 67
test_885.40 4660.96 3481.54 8481.18 12355.86 18374.81 4988.80 5853.70 6984.45 123
原ACMM174.69 9085.39 4759.40 5483.42 7451.47 25270.27 11386.61 9448.61 12986.51 7753.85 20087.96 3978.16 275
CDPH-MVS76.31 3875.67 4478.22 3785.35 4859.14 6281.31 8684.02 5156.32 17574.05 6188.98 5453.34 7387.92 4469.23 7788.42 2887.59 43
ACMMPcopyleft76.02 4375.33 4778.07 3885.20 4961.91 2085.49 2984.44 4463.04 4969.80 12489.74 4645.43 17387.16 5972.01 6182.87 8785.14 131
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
agg_prior85.04 5059.96 4781.04 12774.68 5284.04 129
HPM-MVScopyleft77.28 2976.85 3078.54 3285.00 5160.81 3882.91 6085.08 3262.57 6073.09 7989.97 4150.90 10887.48 5275.30 3686.85 5187.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MP-MVS-pluss78.35 2078.46 1878.03 4084.96 5259.52 5382.93 5985.39 2662.15 6776.41 3491.51 1152.47 8386.78 6880.66 489.64 1987.80 35
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + MP.78.44 1978.28 2078.90 2684.96 5261.41 2684.03 4583.82 6359.34 12079.37 1989.76 4559.84 1687.62 5076.69 2786.74 5387.68 39
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
AdaColmapbinary69.99 12968.66 14273.97 11284.94 5457.83 8082.63 6578.71 16456.28 17764.34 22784.14 15341.57 21187.06 6346.45 26178.88 13477.02 292
DP-MVS65.68 21763.66 22871.75 17084.93 5556.87 9980.74 9273.16 25453.06 23359.09 29282.35 18936.79 26585.94 9032.82 35369.96 25472.45 336
DeepPCF-MVS69.58 179.03 1279.00 1379.13 1984.92 5660.32 4483.03 5785.33 2762.86 5480.17 1790.03 3861.76 1488.95 2474.21 4588.67 2688.12 25
CPTT-MVS72.78 7772.08 8274.87 8884.88 5761.41 2684.15 4377.86 18555.27 19867.51 16688.08 6541.93 20681.85 17869.04 7880.01 11781.35 231
test1277.76 4384.52 5858.41 7583.36 7772.93 8354.61 5488.05 4088.12 3586.81 65
SD-MVS77.70 2677.62 2677.93 4284.47 5961.88 2184.55 3483.87 6060.37 9679.89 1889.38 4954.97 4985.58 9876.12 3184.94 6686.33 83
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS_fast74.30 6373.46 6876.80 5284.45 6059.04 6683.65 5281.05 12660.15 10370.43 11089.84 4341.09 22085.59 9767.61 9082.90 8685.77 105
test_prior76.69 5384.20 6157.27 8884.88 3886.43 7986.38 77
CSCG76.92 3376.75 3177.41 4683.96 6259.60 5182.95 5886.50 1360.78 8775.27 3984.83 13860.76 1586.56 7467.86 8687.87 4186.06 93
DeepC-MVS69.38 278.56 1878.14 2279.83 783.60 6361.62 2384.17 4286.85 663.23 4673.84 6590.25 3257.68 2989.96 1474.62 4389.03 2287.89 29
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UA-Net73.13 7272.93 7273.76 11883.58 6451.66 18978.75 11777.66 18967.75 472.61 9189.42 4749.82 11483.29 14453.61 20283.14 7986.32 85
SR-MVS-dyc-post74.57 5973.90 6276.58 5683.49 6559.87 4984.29 3781.36 11258.07 14273.14 7690.07 3444.74 18085.84 9268.20 8081.76 10084.03 162
RE-MVS-def73.71 6683.49 6559.87 4984.29 3781.36 11258.07 14273.14 7690.07 3443.06 19568.20 8081.76 10084.03 162
LFMVS71.78 9671.59 8572.32 16083.40 6746.38 25679.75 10771.08 26864.18 3272.80 8788.64 5942.58 19983.72 13657.41 17184.49 7086.86 63
test22283.14 6858.68 7372.57 24863.45 32641.78 35067.56 16586.12 11037.13 26078.73 13974.98 313
9.1478.75 1583.10 6984.15 4388.26 159.90 10778.57 2390.36 2757.51 3286.86 6677.39 2389.52 21
旧先验183.04 7053.15 15967.52 29587.85 7144.08 18680.76 10678.03 280
MSLP-MVS++73.77 6773.47 6774.66 9283.02 7159.29 5882.30 7481.88 10059.34 12071.59 10286.83 8445.94 16483.65 13865.09 11185.22 6581.06 238
SteuartSystems-ACMMP79.48 1179.31 1179.98 383.01 7262.18 1687.60 985.83 1966.69 978.03 2690.98 1654.26 5790.06 1378.42 1989.02 2387.69 38
Skip Steuart: Steuart Systems R&D Blog.
MVS_111021_HR74.02 6473.46 6875.69 7383.01 7260.63 4077.29 15678.40 17961.18 8270.58 10985.97 11654.18 5984.00 13267.52 9182.98 8482.45 210
SF-MVS78.82 1379.22 1277.60 4482.88 7457.83 8084.99 3288.13 261.86 7579.16 2090.75 1857.96 2687.09 6277.08 2690.18 1587.87 31
VDDNet71.81 9571.33 9373.26 14282.80 7547.60 24778.74 11875.27 22459.59 11672.94 8289.40 4841.51 21483.91 13358.75 16582.99 8288.26 19
3Dnovator+66.72 475.84 4574.57 5579.66 982.40 7659.92 4885.83 2286.32 1666.92 767.80 16089.24 5142.03 20489.38 1964.07 11886.50 5689.69 2
dcpmvs_274.55 6075.23 4972.48 15582.34 7753.34 15677.87 13881.46 10857.80 15175.49 3786.81 8562.22 1377.75 25471.09 6882.02 9686.34 81
APD-MVS_3200maxsize74.96 5074.39 5776.67 5482.20 7858.24 7783.67 5183.29 8058.41 13673.71 6690.14 3345.62 16685.99 8869.64 7382.85 8885.78 102
MM80.20 780.28 879.99 282.19 7960.01 4686.19 1783.93 5473.19 177.08 3191.21 1557.23 3390.73 1083.35 188.12 3589.22 6
PVSNet_Blended_VisFu71.45 10370.39 11074.65 9382.01 8058.82 7179.93 10380.35 13955.09 20465.82 20082.16 19649.17 12282.64 16460.34 15378.62 14182.50 209
TSAR-MVS + GP.74.90 5174.15 5977.17 4982.00 8158.77 7281.80 7878.57 16858.58 13374.32 5884.51 14855.94 4287.22 5567.11 9484.48 7185.52 114
h-mvs3372.71 7971.49 8876.40 5981.99 8259.58 5276.92 16676.74 20560.40 9374.81 4985.95 11845.54 16985.76 9470.41 7170.61 24083.86 171
API-MVS72.17 8971.41 9074.45 10181.95 8357.22 8984.03 4580.38 13859.89 11068.40 14482.33 19049.64 11687.83 4751.87 21684.16 7578.30 273
MAR-MVS71.51 10170.15 11675.60 7781.84 8459.39 5581.38 8582.90 8854.90 21168.08 15278.70 26047.73 13885.51 10051.68 22084.17 7481.88 221
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPM_NR72.63 8071.80 8375.13 8481.72 8553.42 15579.91 10483.28 8159.14 12266.31 18985.90 12051.86 9386.06 8557.45 17080.62 10785.91 98
VDD-MVS72.50 8172.09 8173.75 12081.58 8649.69 21977.76 14377.63 19063.21 4773.21 7389.02 5342.14 20383.32 14361.72 14282.50 9188.25 20
PS-MVSNAJ70.51 11869.70 12272.93 14681.52 8755.79 11674.92 20979.00 15755.04 20969.88 12278.66 26147.05 15382.19 17261.61 14379.58 12280.83 242
testdata64.66 28381.52 8752.93 16365.29 31346.09 31873.88 6487.46 7638.08 24866.26 33353.31 20578.48 14274.78 317
CHOSEN 1792x268865.08 22862.84 23971.82 16881.49 8956.26 10566.32 30974.20 24540.53 36063.16 24378.65 26241.30 21577.80 25345.80 26774.09 18981.40 228
HQP_MVS74.31 6273.73 6576.06 6581.41 9056.31 10284.22 4084.01 5264.52 2569.27 13286.10 11145.26 17787.21 5668.16 8280.58 10984.65 147
plane_prior781.41 9055.96 111
DPM-MVS75.47 4975.00 5076.88 5181.38 9259.16 5979.94 10285.71 2256.59 17072.46 9386.76 8656.89 3587.86 4666.36 9988.91 2583.64 184
CANet76.46 3775.93 4078.06 3981.29 9357.53 8582.35 6983.31 7967.78 370.09 11486.34 10454.92 5088.90 2572.68 5784.55 6987.76 37
Vis-MVSNetpermissive72.18 8871.37 9274.61 9581.29 9355.41 12680.90 8978.28 18160.73 8869.23 13588.09 6444.36 18582.65 16357.68 16881.75 10285.77 105
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
plane_prior181.27 95
xiu_mvs_v2_base70.52 11769.75 12072.84 14881.21 9655.63 12075.11 20378.92 15954.92 21069.96 12179.68 24547.00 15782.09 17461.60 14479.37 12580.81 243
plane_prior681.20 9756.24 10645.26 177
PAPR71.72 9970.82 10374.41 10281.20 9751.17 19179.55 11283.33 7855.81 18666.93 17784.61 14450.95 10686.06 8555.79 18279.20 13086.00 94
PLCcopyleft56.13 1465.09 22763.21 23570.72 19981.04 9954.87 13478.57 12377.47 19248.51 28955.71 31981.89 20233.71 29179.71 22041.66 30570.37 24477.58 284
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
NP-MVS80.98 10056.05 11085.54 131
iter_conf05_1173.52 6872.59 7576.30 6380.93 10151.97 18478.62 12183.48 7052.20 24371.53 10385.93 11954.01 6088.55 2861.08 14785.56 6388.39 16
iter_conf0575.83 4775.63 4576.43 5880.84 10251.87 18778.13 13284.81 4059.65 11272.86 8487.47 7556.92 3488.17 3772.18 6087.79 4289.24 5
MVS_030478.73 1678.75 1578.66 3080.82 10357.62 8385.31 3081.31 11770.51 274.17 6091.24 1454.99 4889.56 1782.29 288.13 3488.80 8
OPM-MVS74.73 5474.25 5876.19 6480.81 10459.01 6782.60 6683.64 6663.74 3972.52 9287.49 7447.18 15185.88 9169.47 7580.78 10583.66 182
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP-NCC80.66 10582.31 7162.10 6867.85 155
ACMP_Plane80.66 10582.31 7162.10 6867.85 155
HQP-MVS73.45 6972.80 7375.40 7980.66 10554.94 13182.31 7183.90 5762.10 6867.85 15585.54 13145.46 17186.93 6467.04 9580.35 11384.32 154
CS-MVS-test75.62 4875.31 4876.56 5780.63 10855.13 13083.88 4885.22 2862.05 7171.49 10486.03 11453.83 6586.36 8267.74 8786.91 5088.19 23
PHI-MVS75.87 4475.36 4677.41 4680.62 10955.91 11384.28 3985.78 2056.08 18173.41 6986.58 9650.94 10788.54 2970.79 6989.71 1787.79 36
ACMM61.98 770.80 11469.73 12174.02 11080.59 11058.59 7482.68 6482.02 9955.46 19567.18 17184.39 15038.51 24183.17 14760.65 15176.10 17280.30 250
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2023121169.28 15068.47 14771.73 17180.28 11147.18 25179.98 10082.37 9454.61 21467.24 16984.01 15739.43 23182.41 17055.45 18772.83 21385.62 112
ACMP63.53 672.30 8671.20 9675.59 7880.28 11157.54 8482.74 6382.84 9060.58 9065.24 21286.18 10839.25 23486.03 8766.95 9776.79 16583.22 192
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LPG-MVS_test72.74 7871.74 8475.76 7080.22 11357.51 8682.55 6783.40 7561.32 7966.67 18287.33 7839.15 23686.59 7267.70 8877.30 15883.19 194
LGP-MVS_train75.76 7080.22 11357.51 8683.40 7561.32 7966.67 18287.33 7839.15 23686.59 7267.70 8877.30 15883.19 194
WR-MVS68.47 16768.47 14768.44 23680.20 11539.84 31673.75 23376.07 21264.68 2268.11 15183.63 16550.39 11179.14 23449.78 23069.66 26286.34 81
Anonymous2024052969.91 13169.02 13472.56 15380.19 11647.65 24577.56 14780.99 12855.45 19669.88 12286.76 8639.24 23582.18 17354.04 19777.10 16287.85 32
Anonymous20240521166.84 20265.99 20169.40 22380.19 11642.21 29871.11 27171.31 26758.80 12767.90 15386.39 10329.83 32879.65 22149.60 23678.78 13786.33 83
CS-MVS76.25 4075.98 3977.06 5080.15 11855.63 12084.51 3583.90 5763.24 4573.30 7087.27 8055.06 4786.30 8471.78 6384.58 6889.25 4
BH-RMVSNet68.81 15767.42 16872.97 14580.11 11952.53 17274.26 22076.29 20858.48 13568.38 14584.20 15142.59 19883.83 13446.53 26075.91 17382.56 205
test_040263.25 24761.01 26269.96 21080.00 12054.37 14076.86 16972.02 26354.58 21658.71 29580.79 22735.00 27784.36 12426.41 38564.71 30671.15 354
HyFIR lowres test65.67 21863.01 23773.67 12479.97 12155.65 11969.07 29275.52 22042.68 34863.53 23877.95 27140.43 22381.64 18146.01 26571.91 22683.73 178
EIA-MVS71.78 9670.60 10675.30 8279.85 12253.54 15177.27 15783.26 8257.92 14866.49 18479.39 25252.07 9086.69 7060.05 15579.14 13285.66 110
MVSMamba_pp74.64 5774.07 6076.35 6179.76 12353.09 16279.97 10185.21 2955.21 20172.81 8685.37 13553.93 6387.17 5867.93 8586.46 5788.80 8
BH-untuned68.27 17067.29 17371.21 18779.74 12453.22 15876.06 18377.46 19457.19 15766.10 19181.61 20845.37 17583.50 14145.42 27676.68 16776.91 296
VNet69.68 13870.19 11568.16 23979.73 12541.63 30570.53 27777.38 19560.37 9670.69 10886.63 9351.08 10477.09 26453.61 20281.69 10485.75 107
LS3D64.71 23062.50 24371.34 18579.72 12655.71 11779.82 10574.72 23648.50 29056.62 31284.62 14333.59 29482.34 17129.65 37475.23 18275.97 300
hse-mvs271.04 10769.86 11974.60 9679.58 12757.12 9673.96 22575.25 22560.40 9374.81 4981.95 20145.54 16982.90 15270.41 7166.83 29183.77 176
GeoE71.01 10870.15 11673.60 13079.57 12852.17 17878.93 11678.12 18258.02 14467.76 16383.87 16052.36 8582.72 16156.90 17375.79 17585.92 97
AUN-MVS68.45 16866.41 19174.57 9879.53 12957.08 9773.93 22875.23 22654.44 21966.69 18181.85 20337.10 26182.89 15362.07 13866.84 29083.75 177
test250665.33 22464.61 21767.50 24479.46 13034.19 36774.43 21951.92 37458.72 12866.75 18088.05 6625.99 35780.92 20051.94 21584.25 7287.39 49
ECVR-MVScopyleft67.72 18367.51 16568.35 23779.46 13036.29 35574.79 21266.93 30158.72 12867.19 17088.05 6636.10 26781.38 18752.07 21384.25 7287.39 49
BH-w/o66.85 20165.83 20369.90 21479.29 13252.46 17474.66 21576.65 20654.51 21864.85 22278.12 26745.59 16882.95 15143.26 29275.54 17974.27 322
1112_ss64.00 23963.36 23265.93 26979.28 13342.58 29471.35 26472.36 26046.41 31560.55 27477.89 27546.27 16373.28 29446.18 26369.97 25381.92 220
ETV-MVS74.46 6173.84 6476.33 6279.27 13455.24 12979.22 11485.00 3764.97 2172.65 9079.46 25053.65 7287.87 4567.45 9282.91 8585.89 99
test111167.21 19067.14 18167.42 24679.24 13534.76 36273.89 23065.65 31058.71 13066.96 17587.95 6936.09 26880.53 20752.03 21483.79 7786.97 59
UniMVSNet_NR-MVSNet71.11 10671.00 10171.44 17979.20 13644.13 27976.02 18682.60 9266.48 1168.20 14784.60 14556.82 3682.82 15954.62 19370.43 24287.36 53
VPNet67.52 18668.11 15465.74 27279.18 13736.80 34772.17 25472.83 25662.04 7267.79 16185.83 12348.88 12776.60 27651.30 22172.97 21283.81 172
TR-MVS66.59 20965.07 21471.17 19079.18 13749.63 22173.48 23575.20 22852.95 23467.90 15380.33 23339.81 22883.68 13743.20 29373.56 20080.20 251
TAMVS66.78 20465.27 21271.33 18679.16 13953.67 14773.84 23269.59 28152.32 24265.28 20781.72 20644.49 18477.40 26042.32 30078.66 14082.92 200
patch_mono-269.85 13271.09 9966.16 26379.11 14054.80 13571.97 25774.31 24253.50 23170.90 10784.17 15257.63 3163.31 34266.17 10082.02 9680.38 249
Test_1112_low_res62.32 25661.77 25164.00 28879.08 14139.53 32168.17 29670.17 27543.25 34359.03 29379.90 23944.08 18671.24 30543.79 28868.42 27981.25 232
CDS-MVSNet66.80 20365.37 20971.10 19278.98 14253.13 16173.27 23871.07 26952.15 24464.72 22380.23 23543.56 19177.10 26345.48 27478.88 13483.05 199
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
sasdasda74.67 5574.98 5173.71 12278.94 14350.56 20380.23 9583.87 6060.30 10077.15 2986.56 9759.65 1782.00 17566.01 10382.12 9388.58 12
canonicalmvs74.67 5574.98 5173.71 12278.94 14350.56 20380.23 9583.87 6060.30 10077.15 2986.56 9759.65 1782.00 17566.01 10382.12 9388.58 12
EC-MVSNet75.84 4575.87 4275.74 7278.86 14552.65 16883.73 5086.08 1763.47 4272.77 8887.25 8153.13 7587.93 4371.97 6285.57 6286.66 71
IS-MVSNet71.57 10071.00 10173.27 14178.86 14545.63 26780.22 9778.69 16564.14 3566.46 18587.36 7749.30 11985.60 9650.26 22983.71 7888.59 11
CLD-MVS73.33 7072.68 7475.29 8378.82 14753.33 15778.23 12884.79 4161.30 8170.41 11181.04 21852.41 8487.12 6064.61 11682.49 9285.41 122
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVSFormer71.50 10270.38 11174.88 8778.76 14857.15 9482.79 6178.48 17251.26 25769.49 12783.22 17143.99 18883.24 14566.06 10179.37 12584.23 157
lupinMVS69.57 14268.28 15273.44 13678.76 14857.15 9476.57 17273.29 25346.19 31769.49 12782.18 19343.99 18879.23 22864.66 11479.37 12583.93 166
CNLPA65.43 22164.02 22169.68 21778.73 15058.07 7877.82 14270.71 27251.49 25161.57 26883.58 16738.23 24670.82 30643.90 28670.10 25180.16 252
EPP-MVSNet72.16 9171.31 9474.71 8978.68 15149.70 21782.10 7581.65 10460.40 9365.94 19485.84 12251.74 9686.37 8155.93 17979.55 12488.07 28
TranMVSNet+NR-MVSNet70.36 12270.10 11871.17 19078.64 15242.97 29276.53 17381.16 12566.95 668.53 14385.42 13351.61 9883.07 14852.32 21069.70 26187.46 46
UniMVSNet (Re)70.63 11670.20 11471.89 16578.55 15345.29 27075.94 18782.92 8763.68 4068.16 14983.59 16653.89 6483.49 14253.97 19871.12 23586.89 62
Fast-Effi-MVS+70.28 12469.12 13373.73 12178.50 15451.50 19075.01 20679.46 15156.16 18068.59 14079.55 24853.97 6184.05 12853.34 20477.53 15285.65 111
PS-MVSNAJss72.24 8771.21 9575.31 8178.50 15455.93 11281.63 8082.12 9756.24 17870.02 11885.68 12747.05 15384.34 12565.27 11074.41 18785.67 109
EI-MVSNet-Vis-set72.42 8571.59 8574.91 8678.47 15654.02 14277.05 16279.33 15365.03 1871.68 10179.35 25452.75 7884.89 11566.46 9874.23 18885.83 101
FA-MVS(test-final)69.82 13368.48 14573.84 11478.44 15750.04 21275.58 19578.99 15858.16 14067.59 16482.14 19742.66 19785.63 9556.60 17476.19 17185.84 100
testing9164.46 23463.80 22566.47 25678.43 15840.06 31467.63 30069.59 28159.06 12363.18 24278.05 26934.05 28676.99 26648.30 24675.87 17482.37 212
testing1162.81 25161.90 25065.54 27478.38 15940.76 31167.59 30266.78 30355.48 19460.13 27677.11 28631.67 31776.79 27145.53 27274.45 18579.06 267
MVS_111021_LR69.50 14568.78 13971.65 17478.38 15959.33 5674.82 21170.11 27658.08 14167.83 15984.68 14041.96 20576.34 28165.62 10877.54 15179.30 266
test_yl69.69 13669.13 13171.36 18378.37 16145.74 26374.71 21380.20 14057.91 14970.01 11983.83 16142.44 20082.87 15554.97 18979.72 11985.48 116
DCV-MVSNet69.69 13669.13 13171.36 18378.37 16145.74 26374.71 21380.20 14057.91 14970.01 11983.83 16142.44 20082.87 15554.97 18979.72 11985.48 116
FIs70.82 11371.43 8968.98 22978.33 16338.14 33276.96 16483.59 6861.02 8367.33 16886.73 8855.07 4681.64 18154.61 19579.22 12987.14 57
UGNet68.81 15767.39 16973.06 14478.33 16354.47 13779.77 10675.40 22260.45 9263.22 24084.40 14932.71 30680.91 20151.71 21980.56 11183.81 172
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
jason69.65 13968.39 15173.43 13778.27 16556.88 9877.12 16073.71 25046.53 31469.34 13183.22 17143.37 19279.18 22964.77 11379.20 13084.23 157
jason: jason.
alignmvs73.86 6673.99 6173.45 13578.20 16650.50 20578.57 12382.43 9359.40 11876.57 3286.71 9056.42 3981.23 19265.84 10681.79 9988.62 10
xiu_mvs_v1_base_debu68.58 16367.28 17472.48 15578.19 16757.19 9175.28 19875.09 23151.61 24770.04 11581.41 21232.79 30279.02 23663.81 12477.31 15581.22 233
xiu_mvs_v1_base68.58 16367.28 17472.48 15578.19 16757.19 9175.28 19875.09 23151.61 24770.04 11581.41 21232.79 30279.02 23663.81 12477.31 15581.22 233
xiu_mvs_v1_base_debi68.58 16367.28 17472.48 15578.19 16757.19 9175.28 19875.09 23151.61 24770.04 11581.41 21232.79 30279.02 23663.81 12477.31 15581.22 233
testing9964.05 23763.29 23466.34 25878.17 17039.76 31867.33 30568.00 29458.60 13263.03 24578.10 26832.57 31176.94 26848.22 24775.58 17882.34 213
PAPM67.92 17966.69 18471.63 17578.09 17149.02 22777.09 16181.24 12251.04 26060.91 27283.98 15847.71 13984.99 11040.81 30879.32 12880.90 241
ACMH55.70 1565.20 22663.57 22970.07 20978.07 17252.01 18379.48 11379.69 14455.75 18856.59 31380.98 22027.12 34980.94 19842.90 29771.58 23077.25 290
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DU-MVS70.01 12869.53 12571.44 17978.05 17344.13 27975.01 20681.51 10764.37 2868.20 14784.52 14649.12 12582.82 15954.62 19370.43 24287.37 51
NR-MVSNet69.54 14368.85 13671.59 17678.05 17343.81 28374.20 22180.86 13165.18 1462.76 24884.52 14652.35 8683.59 14050.96 22570.78 23787.37 51
EI-MVSNet-UG-set71.92 9471.06 10074.52 10077.98 17553.56 15076.62 17179.16 15464.40 2771.18 10578.95 25952.19 8884.66 12165.47 10973.57 19985.32 125
WR-MVS_H67.02 19866.92 18367.33 24977.95 17637.75 33677.57 14682.11 9862.03 7362.65 25182.48 18750.57 10979.46 22442.91 29664.01 31284.79 144
testing22262.29 25861.31 25765.25 28077.87 17738.53 32968.34 29566.31 30756.37 17463.15 24477.58 28328.47 33876.18 28437.04 32876.65 16881.05 239
Effi-MVS+73.31 7172.54 7775.62 7677.87 17753.64 14879.62 11179.61 14761.63 7772.02 9882.61 18156.44 3885.97 8963.99 12179.07 13387.25 55
DELS-MVS74.76 5374.46 5675.65 7577.84 17952.25 17775.59 19384.17 4963.76 3873.15 7582.79 17659.58 2086.80 6767.24 9386.04 5987.89 29
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ACMH+57.40 1166.12 21364.06 22072.30 16177.79 18052.83 16680.39 9478.03 18357.30 15557.47 30682.55 18327.68 34484.17 12645.54 27169.78 25879.90 256
MGCFI-Net72.45 8373.34 7069.81 21677.77 18143.21 28975.84 19081.18 12359.59 11675.45 3886.64 9157.74 2877.94 24963.92 12281.90 9888.30 18
bld_raw_dy_0_6472.13 9371.18 9774.96 8577.70 18251.88 18671.67 26184.69 4251.27 25665.06 21785.80 12654.50 5688.19 3664.51 11785.45 6484.82 142
3Dnovator64.47 572.49 8271.39 9175.79 6977.70 18258.99 6880.66 9383.15 8462.24 6665.46 20486.59 9542.38 20285.52 9959.59 16184.72 6782.85 203
EG-PatchMatch MVS64.71 23062.87 23870.22 20577.68 18453.48 15277.99 13678.82 16053.37 23256.03 31877.41 28524.75 36484.04 12946.37 26273.42 20473.14 328
UWE-MVS60.18 27459.78 26961.39 30777.67 18533.92 37069.04 29363.82 32348.56 28764.27 23077.64 28227.20 34870.40 31133.56 35076.24 17079.83 258
CP-MVSNet66.49 21066.41 19166.72 25277.67 18536.33 35276.83 17079.52 14962.45 6362.54 25483.47 17046.32 16178.37 24345.47 27563.43 31985.45 118
GBi-Net67.21 19066.55 18569.19 22577.63 18743.33 28677.31 15377.83 18656.62 16765.04 21882.70 17741.85 20780.33 21247.18 25572.76 21483.92 167
test167.21 19066.55 18569.19 22577.63 18743.33 28677.31 15377.83 18656.62 16765.04 21882.70 17741.85 20780.33 21247.18 25572.76 21483.92 167
FMVSNet266.93 20066.31 19668.79 23277.63 18742.98 29176.11 18177.47 19256.62 16765.22 21482.17 19541.85 20780.18 21847.05 25872.72 21783.20 193
PCF-MVS61.88 870.95 11069.49 12675.35 8077.63 18755.71 11776.04 18581.81 10250.30 26869.66 12585.40 13452.51 8184.89 11551.82 21780.24 11585.45 118
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVP-Stereo65.41 22263.80 22570.22 20577.62 19155.53 12476.30 17778.53 17050.59 26656.47 31678.65 26239.84 22782.68 16244.10 28472.12 22572.44 337
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
FC-MVSNet-test69.80 13470.58 10867.46 24577.61 19234.73 36376.05 18483.19 8360.84 8565.88 19886.46 10154.52 5580.76 20552.52 20978.12 14686.91 61
mvsmamba71.15 10569.54 12475.99 6677.61 19253.46 15381.95 7775.11 23057.73 15266.95 17685.96 11737.14 25987.56 5167.94 8475.49 18086.97 59
PS-CasMVS66.42 21166.32 19566.70 25477.60 19436.30 35476.94 16579.61 14762.36 6562.43 25883.66 16445.69 16578.37 24345.35 27763.26 32085.42 121
testing356.54 30055.92 30258.41 32177.52 19527.93 38969.72 28656.36 36154.75 21358.63 29877.80 27720.88 37571.75 30325.31 38762.25 32875.53 306
FMVSNet166.70 20565.87 20269.19 22577.49 19643.33 28677.31 15377.83 18656.45 17264.60 22682.70 17738.08 24880.33 21246.08 26472.31 22283.92 167
ETVMVS59.51 28158.81 27561.58 30477.46 19734.87 35964.94 32559.35 34754.06 22461.08 27176.67 29329.54 32971.87 30232.16 35574.07 19078.01 281
VPA-MVSNet69.02 15469.47 12767.69 24377.42 19841.00 31074.04 22379.68 14560.06 10469.26 13484.81 13951.06 10577.58 25654.44 19674.43 18684.48 151
UniMVSNet_ETH3D67.60 18567.07 18269.18 22877.39 19942.29 29674.18 22275.59 21860.37 9666.77 17986.06 11337.64 25078.93 24152.16 21273.49 20186.32 85
FE-MVS65.91 21563.33 23373.63 12877.36 20051.95 18572.62 24675.81 21453.70 22865.31 20678.96 25828.81 33786.39 8043.93 28573.48 20282.55 206
thres100view90063.28 24662.41 24465.89 27077.31 20138.66 32772.65 24469.11 28857.07 15862.45 25781.03 21937.01 26379.17 23031.84 35973.25 20779.83 258
cascas65.98 21463.42 23173.64 12777.26 20252.58 17172.26 25377.21 19848.56 28761.21 27074.60 31932.57 31185.82 9350.38 22876.75 16682.52 208
thres600view763.30 24562.27 24566.41 25777.18 20338.87 32572.35 25169.11 28856.98 16062.37 25980.96 22137.01 26379.00 23931.43 36673.05 21181.36 229
SDMVSNet68.03 17568.10 15567.84 24177.13 20448.72 23365.32 32079.10 15558.02 14465.08 21582.55 18347.83 13773.40 29363.92 12273.92 19281.41 226
sd_testset64.46 23464.45 21864.51 28577.13 20442.25 29762.67 33472.11 26258.02 14465.08 21582.55 18341.22 21969.88 31447.32 25373.92 19281.41 226
PEN-MVS66.60 20766.45 18767.04 25077.11 20636.56 34977.03 16380.42 13762.95 5062.51 25684.03 15646.69 15979.07 23544.22 28063.08 32285.51 115
PatchMatch-RL56.25 30554.55 31261.32 30877.06 20756.07 10965.57 31454.10 37144.13 33653.49 34771.27 34225.20 36166.78 32936.52 33663.66 31561.12 376
PVSNet_BlendedMVS68.56 16667.72 15871.07 19377.03 20850.57 20174.50 21781.52 10553.66 23064.22 23379.72 24449.13 12382.87 15555.82 18073.92 19279.77 261
PVSNet_Blended68.59 16267.72 15871.19 18877.03 20850.57 20172.51 24981.52 10551.91 24564.22 23377.77 28049.13 12382.87 15555.82 18079.58 12280.14 253
F-COLMAP63.05 25060.87 26569.58 22176.99 21053.63 14978.12 13376.16 20947.97 29852.41 34981.61 20827.87 34278.11 24740.07 31166.66 29277.00 293
tfpn200view963.18 24862.18 24766.21 26276.85 21139.62 31971.96 25869.44 28456.63 16562.61 25279.83 24037.18 25679.17 23031.84 35973.25 20779.83 258
thres40063.31 24462.18 24766.72 25276.85 21139.62 31971.96 25869.44 28456.63 16562.61 25279.83 24037.18 25679.17 23031.84 35973.25 20781.36 229
tttt051767.83 18165.66 20674.33 10476.69 21350.82 19777.86 13973.99 24754.54 21764.64 22582.53 18635.06 27685.50 10155.71 18369.91 25586.67 70
ET-MVSNet_ETH3D67.96 17865.72 20574.68 9176.67 21455.62 12275.11 20374.74 23552.91 23560.03 27880.12 23633.68 29282.64 16461.86 14176.34 16985.78 102
TAPA-MVS59.36 1066.60 20765.20 21370.81 19676.63 21548.75 23176.52 17480.04 14250.64 26565.24 21284.93 13739.15 23678.54 24236.77 33076.88 16485.14 131
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OMC-MVS71.40 10470.60 10673.78 11676.60 21653.15 15979.74 10879.78 14358.37 13768.75 13986.45 10245.43 17380.60 20662.58 13377.73 15087.58 44
LTVRE_ROB55.42 1663.15 24961.23 26068.92 23076.57 21747.80 24259.92 35076.39 20754.35 22058.67 29682.46 18829.44 33281.49 18542.12 30171.14 23477.46 285
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
QAPM70.05 12768.81 13873.78 11676.54 21853.43 15483.23 5483.48 7052.89 23665.90 19686.29 10541.55 21386.49 7851.01 22378.40 14481.42 225
FMVSNet366.32 21265.61 20768.46 23576.48 21942.34 29574.98 20877.15 19955.83 18565.04 21881.16 21539.91 22580.14 21947.18 25572.76 21482.90 202
casdiffmvs_mvgpermissive76.14 4176.30 3675.66 7476.46 22051.83 18879.67 10985.08 3265.02 1975.84 3588.58 6059.42 2285.08 10972.75 5683.93 7690.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
thisisatest053067.92 17965.78 20474.33 10476.29 22151.03 19276.89 16774.25 24453.67 22965.59 20281.76 20535.15 27585.50 10155.94 17872.47 21886.47 76
baseline163.81 24063.87 22463.62 28976.29 22136.36 35071.78 26067.29 29856.05 18264.23 23282.95 17547.11 15274.41 29047.30 25461.85 33180.10 254
ab-mvs66.65 20666.42 19067.37 24776.17 22341.73 30270.41 28076.14 21153.99 22565.98 19383.51 16849.48 11776.24 28248.60 24373.46 20384.14 160
Effi-MVS+-dtu69.64 14067.53 16475.95 6776.10 22462.29 1580.20 9876.06 21359.83 11165.26 21177.09 28741.56 21284.02 13160.60 15271.09 23681.53 224
DTE-MVSNet65.58 21965.34 21066.31 25976.06 22534.79 36076.43 17579.38 15262.55 6161.66 26683.83 16145.60 16779.15 23341.64 30760.88 33785.00 136
EPNet73.09 7372.16 8075.90 6875.95 22656.28 10483.05 5672.39 25966.53 1065.27 20887.00 8250.40 11085.47 10362.48 13586.32 5885.94 96
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SixPastTwentyTwo61.65 26558.80 27770.20 20775.80 22747.22 25075.59 19369.68 27954.61 21454.11 33879.26 25527.07 35082.96 15043.27 29149.79 37680.41 248
baseline74.61 5874.70 5474.34 10375.70 22849.99 21477.54 14884.63 4362.73 5973.98 6287.79 7357.67 3083.82 13569.49 7482.74 9089.20 7
Baseline_NR-MVSNet67.05 19767.56 16165.50 27575.65 22937.70 33875.42 19674.65 23859.90 10768.14 15083.15 17449.12 12577.20 26252.23 21169.78 25881.60 223
jajsoiax68.25 17166.45 18773.66 12575.62 23055.49 12580.82 9078.51 17152.33 24164.33 22884.11 15428.28 34081.81 18063.48 12870.62 23983.67 180
mvs_tets68.18 17366.36 19373.63 12875.61 23155.35 12880.77 9178.56 16952.48 24064.27 23084.10 15527.45 34681.84 17963.45 12970.56 24183.69 179
casdiffmvspermissive74.80 5274.89 5374.53 9975.59 23250.37 20678.17 13185.06 3462.80 5874.40 5687.86 7057.88 2783.61 13969.46 7682.79 8989.59 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet50.76 1958.40 28657.39 28861.42 30575.53 23344.04 28161.43 34063.45 32647.04 31156.91 31073.61 32527.00 35164.76 33839.12 31772.40 21975.47 307
MVS67.37 18866.33 19470.51 20375.46 23450.94 19373.95 22681.85 10141.57 35462.54 25478.57 26547.98 13485.47 10352.97 20782.05 9575.14 309
nrg03072.96 7573.01 7172.84 14875.41 23550.24 20780.02 9982.89 8958.36 13874.44 5586.73 8858.90 2480.83 20265.84 10674.46 18487.44 47
thres20062.20 25961.16 26165.34 27875.38 23639.99 31569.60 28769.29 28655.64 19261.87 26376.99 28837.07 26278.96 24031.28 36773.28 20677.06 291
TransMVSNet (Re)64.72 22964.33 21965.87 27175.22 23738.56 32874.66 21575.08 23458.90 12661.79 26482.63 18051.18 10278.07 24843.63 28955.87 35880.99 240
MS-PatchMatch62.42 25561.46 25565.31 27975.21 23852.10 17972.05 25574.05 24646.41 31557.42 30874.36 32034.35 28477.57 25745.62 27073.67 19666.26 372
WB-MVSnew59.66 27959.69 27059.56 31175.19 23935.78 35769.34 29064.28 32046.88 31261.76 26575.79 30740.61 22265.20 33732.16 35571.21 23377.70 282
IB-MVS56.42 1265.40 22362.73 24173.40 13874.89 24052.78 16773.09 24075.13 22955.69 18958.48 30073.73 32432.86 30186.32 8350.63 22670.11 25081.10 237
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVS_Test72.45 8372.46 7872.42 15974.88 24148.50 23576.28 17883.14 8559.40 11872.46 9384.68 14055.66 4381.12 19365.98 10579.66 12187.63 41
tt080567.77 18267.24 17869.34 22474.87 24240.08 31377.36 15281.37 11155.31 19766.33 18884.65 14237.35 25482.55 16655.65 18572.28 22385.39 123
CANet_DTU68.18 17367.71 16069.59 21974.83 24346.24 25878.66 12076.85 20259.60 11363.45 23982.09 20035.25 27477.41 25959.88 15878.76 13885.14 131
tfpnnormal62.47 25461.63 25364.99 28274.81 24439.01 32471.22 26773.72 24955.22 20060.21 27580.09 23841.26 21876.98 26730.02 37268.09 28178.97 270
Vis-MVSNet (Re-imp)63.69 24163.88 22363.14 29474.75 24531.04 38171.16 26963.64 32556.32 17559.80 28384.99 13644.51 18275.46 28539.12 31780.62 10782.92 200
HY-MVS56.14 1364.55 23363.89 22266.55 25574.73 24641.02 30769.96 28474.43 23949.29 27961.66 26680.92 22247.43 14776.68 27544.91 27971.69 22881.94 219
Syy-MVS56.00 30756.23 30055.32 33874.69 24726.44 39565.52 31557.49 35650.97 26156.52 31472.18 33139.89 22668.09 32124.20 38864.59 30971.44 350
myMVS_eth3d54.86 31654.61 31155.61 33774.69 24727.31 39265.52 31557.49 35650.97 26156.52 31472.18 33121.87 37368.09 32127.70 38064.59 30971.44 350
COLMAP_ROBcopyleft52.97 1761.27 27058.81 27568.64 23374.63 24952.51 17378.42 12673.30 25249.92 27350.96 35481.51 21123.06 36779.40 22531.63 36365.85 29774.01 325
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
LCM-MVSNet-Re61.88 26361.35 25663.46 29074.58 25031.48 38061.42 34158.14 35258.71 13053.02 34879.55 24843.07 19476.80 27045.69 26877.96 14882.11 218
test_djsdf69.45 14767.74 15774.58 9774.57 25154.92 13382.79 6178.48 17251.26 25765.41 20583.49 16938.37 24383.24 14566.06 10169.25 26885.56 113
EI-MVSNet69.27 15168.44 14971.73 17174.47 25249.39 22475.20 20178.45 17559.60 11369.16 13676.51 29851.29 10082.50 16759.86 16071.45 23283.30 189
CVMVSNet59.63 28059.14 27361.08 30974.47 25238.84 32675.20 20168.74 29031.15 37958.24 30176.51 29832.39 31368.58 31949.77 23165.84 29875.81 302
IterMVS-LS69.22 15368.48 14571.43 18174.44 25449.40 22376.23 17977.55 19159.60 11365.85 19981.59 21051.28 10181.58 18459.87 15969.90 25683.30 189
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
XVG-OURS-SEG-HR68.81 15767.47 16772.82 15074.40 25556.87 9970.59 27679.04 15654.77 21266.99 17486.01 11539.57 23078.21 24662.54 13473.33 20583.37 188
EGC-MVSNET42.47 35138.48 35954.46 34474.33 25648.73 23270.33 28151.10 3770.03 4110.18 41267.78 36313.28 38866.49 33118.91 39450.36 37448.15 391
XVG-OURS68.76 16067.37 17072.90 14774.32 25757.22 8970.09 28378.81 16155.24 19967.79 16185.81 12536.54 26678.28 24562.04 13975.74 17683.19 194
OpenMVScopyleft61.03 968.85 15667.56 16172.70 15274.26 25853.99 14381.21 8781.34 11652.70 23762.75 24985.55 13038.86 23984.14 12748.41 24583.01 8179.97 255
MIMVSNet57.35 29357.07 29058.22 32374.21 25937.18 34162.46 33560.88 34448.88 28455.29 32575.99 30531.68 31662.04 34731.87 35872.35 22075.43 308
SCA60.49 27258.38 28166.80 25174.14 26048.06 24063.35 33163.23 32849.13 28159.33 29172.10 33337.45 25274.27 29144.17 28162.57 32578.05 277
thisisatest051565.83 21663.50 23072.82 15073.75 26149.50 22271.32 26573.12 25549.39 27763.82 23576.50 30034.95 27884.84 11853.20 20675.49 18084.13 161
K. test v360.47 27357.11 28970.56 20173.74 26248.22 23875.10 20562.55 33258.27 13953.62 34476.31 30127.81 34381.59 18347.42 25139.18 38981.88 221
v1070.21 12569.02 13473.81 11573.51 26350.92 19578.74 11881.39 11060.05 10566.39 18781.83 20447.58 14285.41 10662.80 13268.86 27585.09 134
v114470.42 12169.31 12973.76 11873.22 26450.64 20077.83 14181.43 10958.58 13369.40 13081.16 21547.53 14485.29 10864.01 12070.64 23885.34 124
v119269.97 13068.68 14173.85 11373.19 26550.94 19377.68 14481.36 11257.51 15468.95 13880.85 22545.28 17685.33 10762.97 13170.37 24485.27 128
v870.33 12369.28 13073.49 13373.15 26650.22 20878.62 12180.78 13260.79 8666.45 18682.11 19949.35 11884.98 11263.58 12768.71 27685.28 127
v14419269.71 13568.51 14473.33 14073.10 26750.13 21077.54 14880.64 13356.65 16468.57 14280.55 22846.87 15884.96 11462.98 13069.66 26284.89 140
v192192069.47 14668.17 15373.36 13973.06 26850.10 21177.39 15180.56 13456.58 17168.59 14080.37 23044.72 18184.98 11262.47 13669.82 25785.00 136
PatchmatchNetpermissive59.84 27758.24 28264.65 28473.05 26946.70 25469.42 28962.18 33847.55 30358.88 29471.96 33534.49 28269.16 31642.99 29563.60 31678.07 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v124069.24 15267.91 15673.25 14373.02 27049.82 21577.21 15880.54 13556.43 17368.34 14680.51 22943.33 19384.99 11062.03 14069.77 26084.95 139
Fast-Effi-MVS+-dtu67.37 18865.33 21173.48 13472.94 27157.78 8277.47 15076.88 20157.60 15361.97 26176.85 29139.31 23280.49 21054.72 19270.28 24782.17 217
EPNet_dtu61.90 26261.97 24961.68 30272.89 27239.78 31775.85 18965.62 31155.09 20454.56 33479.36 25337.59 25167.02 32839.80 31476.95 16378.25 274
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm262.07 26060.10 26867.99 24072.79 27343.86 28271.05 27366.85 30243.14 34562.77 24775.39 31338.32 24480.80 20341.69 30468.88 27379.32 265
MDTV_nov1_ep1357.00 29172.73 27438.26 33165.02 32464.73 31744.74 32855.46 32172.48 32932.61 31070.47 30837.47 32467.75 284
MSDG61.81 26459.23 27269.55 22272.64 27552.63 17070.45 27975.81 21451.38 25353.70 34176.11 30229.52 33081.08 19637.70 32365.79 29974.93 314
gg-mvs-nofinetune57.86 29156.43 29862.18 30072.62 27635.35 35866.57 30656.33 36250.65 26457.64 30557.10 38630.65 32076.36 28037.38 32578.88 13474.82 316
v2v48270.50 11969.45 12873.66 12572.62 27650.03 21377.58 14580.51 13659.90 10769.52 12682.14 19747.53 14484.88 11765.07 11270.17 24986.09 92
baseline263.42 24361.26 25969.89 21572.55 27847.62 24671.54 26268.38 29250.11 26954.82 33075.55 31143.06 19580.96 19748.13 24867.16 28981.11 236
test_fmvsm_n_192071.73 9871.14 9873.50 13272.52 27956.53 10175.60 19276.16 20948.11 29577.22 2885.56 12853.10 7677.43 25874.86 4077.14 16086.55 75
v7n69.01 15567.36 17173.98 11172.51 28052.65 16878.54 12581.30 11860.26 10262.67 25081.62 20743.61 19084.49 12257.01 17268.70 27784.79 144
fmvsm_s_conf0.5_n_a69.54 14368.74 14071.93 16472.47 28153.82 14578.25 12762.26 33749.78 27473.12 7886.21 10752.66 7976.79 27175.02 3968.88 27385.18 130
mamv456.85 29858.00 28653.43 35172.46 28254.47 13757.56 36254.74 36638.81 36857.42 30879.45 25147.57 14338.70 40160.88 14953.07 36667.11 371
pm-mvs165.24 22564.97 21566.04 26772.38 28339.40 32272.62 24675.63 21755.53 19362.35 26083.18 17347.45 14676.47 27949.06 24066.54 29382.24 214
XVG-ACMP-BASELINE64.36 23662.23 24670.74 19872.35 28452.45 17570.80 27578.45 17553.84 22759.87 28181.10 21716.24 38279.32 22755.64 18671.76 22780.47 246
WTY-MVS59.75 27860.39 26657.85 32772.32 28537.83 33561.05 34664.18 32145.95 32261.91 26279.11 25747.01 15660.88 35042.50 29969.49 26474.83 315
fmvsm_s_conf0.5_n69.58 14168.84 13771.79 16972.31 28652.90 16477.90 13762.43 33549.97 27272.85 8585.90 12052.21 8776.49 27775.75 3370.26 24885.97 95
tpm cat159.25 28256.95 29266.15 26472.19 28746.96 25268.09 29765.76 30940.03 36457.81 30470.56 34538.32 24474.51 28938.26 32161.50 33477.00 293
mvs_anonymous68.03 17567.51 16569.59 21972.08 28844.57 27771.99 25675.23 22651.67 24667.06 17382.57 18254.68 5377.94 24956.56 17575.71 17786.26 89
OurMVSNet-221017-061.37 26958.63 27969.61 21872.05 28948.06 24073.93 22872.51 25847.23 30954.74 33180.92 22221.49 37481.24 19148.57 24456.22 35779.53 263
IterMVS-SCA-FT62.49 25361.52 25465.40 27771.99 29050.80 19871.15 27069.63 28045.71 32360.61 27377.93 27237.45 25265.99 33455.67 18463.50 31879.42 264
CostFormer64.04 23862.51 24268.61 23471.88 29145.77 26271.30 26670.60 27347.55 30364.31 22976.61 29641.63 21079.62 22349.74 23269.00 27280.42 247
131464.61 23263.21 23568.80 23171.87 29247.46 24873.95 22678.39 18042.88 34759.97 27976.60 29738.11 24779.39 22654.84 19172.32 22179.55 262
tpm57.34 29458.16 28354.86 34171.80 29334.77 36167.47 30456.04 36548.20 29460.10 27776.92 28937.17 25853.41 38240.76 30965.01 30376.40 299
eth_miper_zixun_eth67.63 18466.28 19771.67 17371.60 29448.33 23773.68 23477.88 18455.80 18765.91 19578.62 26447.35 15082.88 15459.45 16266.25 29583.81 172
pmmvs461.48 26859.39 27167.76 24271.57 29553.86 14471.42 26365.34 31244.20 33459.46 28777.92 27335.90 26974.71 28843.87 28764.87 30574.71 318
fmvsm_l_conf0.5_n70.99 10970.82 10371.48 17771.45 29654.40 13977.18 15970.46 27448.67 28675.17 4086.86 8353.77 6776.86 26976.33 3077.51 15383.17 197
AllTest57.08 29654.65 31064.39 28671.44 29749.03 22569.92 28567.30 29645.97 32047.16 36879.77 24217.47 37767.56 32533.65 34759.16 34576.57 297
TestCases64.39 28671.44 29749.03 22567.30 29645.97 32047.16 36879.77 24217.47 37767.56 32533.65 34759.16 34576.57 297
lessismore_v069.91 21371.42 29947.80 24250.90 37950.39 36075.56 31027.43 34781.33 18845.91 26634.10 39580.59 245
gm-plane-assit71.40 30041.72 30448.85 28573.31 32682.48 16948.90 241
GG-mvs-BLEND62.34 29971.36 30137.04 34569.20 29157.33 35854.73 33265.48 37430.37 32277.82 25234.82 34374.93 18372.17 342
fmvsm_l_conf0.5_n_a70.50 11970.27 11371.18 18971.30 30254.09 14176.89 16769.87 27747.90 29974.37 5786.49 10053.07 7776.69 27475.41 3577.11 16182.76 204
test_fmvsmconf_n73.01 7472.59 7574.27 10671.28 30355.88 11478.21 13075.56 21954.31 22174.86 4887.80 7254.72 5280.23 21678.07 2178.48 14286.70 68
test_fmvsmvis_n_192070.84 11170.38 11172.22 16271.16 30455.39 12775.86 18872.21 26149.03 28273.28 7286.17 10951.83 9477.29 26175.80 3278.05 14783.98 165
fmvsm_s_conf0.1_n69.41 14868.60 14371.83 16771.07 30552.88 16577.85 14062.44 33449.58 27672.97 8186.22 10651.68 9776.48 27875.53 3470.10 25186.14 90
FMVSNet555.86 30854.93 30858.66 32071.05 30636.35 35164.18 32962.48 33346.76 31350.66 35974.73 31825.80 35864.04 34033.11 35165.57 30075.59 305
fmvsm_s_conf0.1_n_a69.32 14968.44 14971.96 16370.91 30753.78 14678.12 13362.30 33649.35 27873.20 7486.55 9951.99 9176.79 27174.83 4168.68 27885.32 125
c3_l68.33 16967.56 16170.62 20070.87 30846.21 25974.47 21878.80 16256.22 17966.19 19078.53 26651.88 9281.40 18662.08 13769.04 27184.25 156
GA-MVS65.53 22063.70 22771.02 19470.87 30848.10 23970.48 27874.40 24056.69 16364.70 22476.77 29233.66 29381.10 19455.42 18870.32 24683.87 170
pmmvs663.69 24162.82 24066.27 26170.63 31039.27 32373.13 23975.47 22152.69 23859.75 28582.30 19139.71 22977.03 26547.40 25264.35 31182.53 207
miper_ehance_all_eth68.03 17567.24 17870.40 20470.54 31146.21 25973.98 22478.68 16655.07 20766.05 19277.80 27752.16 8981.31 18961.53 14669.32 26583.67 180
OpenMVS_ROBcopyleft52.78 1860.03 27558.14 28465.69 27370.47 31244.82 27275.33 19770.86 27145.04 32656.06 31776.00 30326.89 35279.65 22135.36 34267.29 28772.60 333
v14868.24 17267.19 18071.40 18270.43 31347.77 24475.76 19177.03 20058.91 12567.36 16780.10 23748.60 13081.89 17760.01 15666.52 29484.53 149
XXY-MVS60.68 27161.67 25257.70 32970.43 31338.45 33064.19 32866.47 30448.05 29763.22 24080.86 22449.28 12060.47 35145.25 27867.28 28874.19 323
MVSTER67.16 19565.58 20871.88 16670.37 31549.70 21770.25 28278.45 17551.52 25069.16 13680.37 23038.45 24282.50 16760.19 15471.46 23183.44 187
cl____67.18 19366.26 19869.94 21170.20 31645.74 26373.30 23676.83 20355.10 20265.27 20879.57 24747.39 14880.53 20759.41 16469.22 26983.53 186
DIV-MVS_self_test67.18 19366.26 19869.94 21170.20 31645.74 26373.29 23776.83 20355.10 20265.27 20879.58 24647.38 14980.53 20759.43 16369.22 26983.54 185
tpmvs58.47 28556.95 29263.03 29670.20 31641.21 30667.90 29967.23 29949.62 27554.73 33270.84 34334.14 28576.24 28236.64 33461.29 33571.64 346
anonymousdsp67.00 19964.82 21673.57 13170.09 31956.13 10776.35 17677.35 19648.43 29164.99 22180.84 22633.01 29980.34 21164.66 11467.64 28584.23 157
MIMVSNet155.17 31454.31 31657.77 32870.03 32032.01 37865.68 31364.81 31549.19 28046.75 37176.00 30325.53 36064.04 34028.65 37762.13 32977.26 289
CR-MVSNet59.91 27657.90 28765.96 26869.96 32152.07 18065.31 32163.15 32942.48 34959.36 28874.84 31635.83 27070.75 30745.50 27364.65 30775.06 310
RPMNet61.53 26658.42 28070.86 19569.96 32152.07 18065.31 32181.36 11243.20 34459.36 28870.15 35035.37 27385.47 10336.42 33764.65 30775.06 310
test_fmvsmconf0.1_n72.81 7672.33 7974.24 10769.89 32355.81 11578.22 12975.40 22254.17 22375.00 4488.03 6853.82 6680.23 21678.08 2078.34 14586.69 69
cl2267.47 18766.45 18770.54 20269.85 32446.49 25573.85 23177.35 19655.07 20765.51 20377.92 27347.64 14181.10 19461.58 14569.32 26584.01 164
Anonymous2023120655.10 31555.30 30754.48 34369.81 32533.94 36962.91 33362.13 33941.08 35655.18 32675.65 30932.75 30556.59 37230.32 37167.86 28272.91 329
our_test_356.49 30154.42 31362.68 29869.51 32645.48 26866.08 31061.49 34144.11 33750.73 35869.60 35533.05 29868.15 32038.38 32056.86 35374.40 320
ppachtmachnet_test58.06 29055.38 30666.10 26669.51 32648.99 22868.01 29866.13 30844.50 33154.05 33970.74 34432.09 31572.34 29836.68 33356.71 35676.99 295
diffmvspermissive70.69 11570.43 10971.46 17869.45 32848.95 22972.93 24178.46 17457.27 15671.69 10083.97 15951.48 9977.92 25170.70 7077.95 14987.53 45
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IterMVS62.79 25261.27 25867.35 24869.37 32952.04 18271.17 26868.24 29352.63 23959.82 28276.91 29037.32 25572.36 29752.80 20863.19 32177.66 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dmvs_re56.77 29956.83 29456.61 33269.23 33041.02 30758.37 35564.18 32150.59 26657.45 30771.42 33935.54 27258.94 36037.23 32667.45 28669.87 363
miper_enhance_ethall67.11 19666.09 20070.17 20869.21 33145.98 26172.85 24378.41 17851.38 25365.65 20175.98 30651.17 10381.25 19060.82 15069.32 26583.29 191
Patchmtry57.16 29556.47 29759.23 31469.17 33234.58 36462.98 33263.15 32944.53 33056.83 31174.84 31635.83 27068.71 31840.03 31260.91 33674.39 321
CL-MVSNet_self_test61.53 26660.94 26363.30 29268.95 33336.93 34667.60 30172.80 25755.67 19059.95 28076.63 29445.01 17972.22 30039.74 31562.09 33080.74 244
V4268.65 16167.35 17272.56 15368.93 33450.18 20972.90 24279.47 15056.92 16169.45 12980.26 23446.29 16282.99 14964.07 11867.82 28384.53 149
test-LLR58.15 28958.13 28558.22 32368.57 33544.80 27365.46 31757.92 35350.08 27055.44 32269.82 35232.62 30857.44 36649.66 23473.62 19772.41 338
test-mter56.42 30355.82 30358.22 32368.57 33544.80 27365.46 31757.92 35339.94 36555.44 32269.82 35221.92 37057.44 36649.66 23473.62 19772.41 338
MVS-HIRNet45.52 34644.48 34948.65 36468.49 33734.05 36859.41 35344.50 39227.03 38637.96 39250.47 39426.16 35664.10 33926.74 38459.52 34347.82 393
dp51.89 33051.60 32952.77 35568.44 33832.45 37762.36 33654.57 36844.16 33549.31 36367.91 36028.87 33656.61 37133.89 34654.89 36069.24 368
PatchT53.17 32653.44 32352.33 35768.29 33925.34 39958.21 35654.41 36944.46 33254.56 33469.05 35833.32 29660.94 34936.93 32961.76 33370.73 357
test_fmvsmconf0.01_n72.17 8971.50 8774.16 10867.96 34055.58 12378.06 13574.67 23754.19 22274.54 5488.23 6150.35 11280.24 21578.07 2177.46 15486.65 72
Patchmatch-RL test58.16 28855.49 30566.15 26467.92 34148.89 23060.66 34851.07 37847.86 30059.36 28862.71 38034.02 28872.27 29956.41 17659.40 34477.30 287
pmmvs-eth3d58.81 28456.31 29966.30 26067.61 34252.42 17672.30 25264.76 31643.55 34054.94 32974.19 32228.95 33472.60 29643.31 29057.21 35273.88 326
PVSNet_043.31 2047.46 34545.64 34852.92 35467.60 34344.65 27554.06 37254.64 36741.59 35346.15 37358.75 38330.99 31958.66 36132.18 35424.81 39855.46 386
CHOSEN 280x42047.83 34346.36 34752.24 35967.37 34449.78 21638.91 39843.11 39535.00 37443.27 38163.30 37928.95 33449.19 38936.53 33560.80 33857.76 383
tpmrst58.24 28758.70 27856.84 33166.97 34534.32 36569.57 28861.14 34347.17 31058.58 29971.60 33841.28 21760.41 35249.20 23862.84 32375.78 303
sss56.17 30656.57 29654.96 34066.93 34636.32 35357.94 35861.69 34041.67 35258.64 29775.32 31438.72 24056.25 37342.04 30266.19 29672.31 341
TinyColmap54.14 31751.72 32861.40 30666.84 34741.97 29966.52 30768.51 29144.81 32742.69 38275.77 30811.66 39172.94 29531.96 35756.77 35569.27 367
miper_lstm_enhance62.03 26160.88 26465.49 27666.71 34846.25 25756.29 36775.70 21650.68 26361.27 26975.48 31240.21 22468.03 32356.31 17765.25 30282.18 215
TESTMET0.1,155.28 31254.90 30956.42 33366.56 34943.67 28465.46 31756.27 36339.18 36753.83 34067.44 36424.21 36555.46 37748.04 24973.11 21070.13 361
dmvs_testset50.16 33751.90 32744.94 37066.49 35011.78 41061.01 34751.50 37551.17 25950.30 36267.44 36439.28 23360.29 35322.38 39057.49 35162.76 375
D2MVS62.30 25760.29 26768.34 23866.46 35148.42 23665.70 31273.42 25147.71 30158.16 30275.02 31530.51 32177.71 25553.96 19971.68 22978.90 271
MDA-MVSNet-bldmvs53.87 32050.81 33263.05 29566.25 35248.58 23456.93 36563.82 32348.09 29641.22 38370.48 34830.34 32368.00 32434.24 34545.92 38172.57 334
ITE_SJBPF62.09 30166.16 35344.55 27864.32 31947.36 30655.31 32480.34 23219.27 37662.68 34536.29 33862.39 32779.04 268
EPMVS53.96 31853.69 32154.79 34266.12 35431.96 37962.34 33749.05 38144.42 33355.54 32071.33 34130.22 32456.70 36941.65 30662.54 32675.71 304
ADS-MVSNet251.33 33348.76 34059.07 31766.02 35544.60 27650.90 38059.76 34636.90 36950.74 35666.18 37226.38 35363.11 34327.17 38154.76 36169.50 365
ADS-MVSNet48.48 34247.77 34350.63 36166.02 35529.92 38350.90 38050.87 38036.90 36950.74 35666.18 37226.38 35352.47 38427.17 38154.76 36169.50 365
EU-MVSNet55.61 31054.41 31459.19 31665.41 35733.42 37272.44 25071.91 26428.81 38151.27 35273.87 32324.76 36369.08 31743.04 29458.20 34875.06 310
RPSCF55.80 30954.22 31860.53 31065.13 35842.91 29364.30 32757.62 35536.84 37158.05 30382.28 19228.01 34156.24 37437.14 32758.61 34782.44 211
USDC56.35 30454.24 31762.69 29764.74 35940.31 31265.05 32373.83 24843.93 33847.58 36677.71 28115.36 38575.05 28738.19 32261.81 33272.70 332
JIA-IIPM51.56 33147.68 34563.21 29364.61 36050.73 19947.71 38658.77 35042.90 34648.46 36551.72 39024.97 36270.24 31336.06 33953.89 36468.64 369
Patchmatch-test49.08 34048.28 34251.50 36064.40 36130.85 38245.68 39048.46 38435.60 37346.10 37472.10 33334.47 28346.37 39327.08 38360.65 34077.27 288
TDRefinement53.44 32450.72 33361.60 30364.31 36246.96 25270.89 27465.27 31441.78 35044.61 37777.98 27011.52 39366.36 33228.57 37851.59 37071.49 349
test_vis1_n_192058.86 28359.06 27458.25 32263.76 36343.14 29067.49 30366.36 30640.22 36265.89 19771.95 33631.04 31859.75 35659.94 15764.90 30471.85 345
N_pmnet39.35 35840.28 35636.54 38163.76 3631.62 41849.37 3830.76 41734.62 37543.61 38066.38 37126.25 35542.57 39726.02 38651.77 36965.44 373
ambc65.13 28163.72 36537.07 34447.66 38778.78 16354.37 33771.42 33911.24 39480.94 19845.64 26953.85 36577.38 286
WB-MVS43.26 34943.41 35042.83 37463.32 36610.32 41258.17 35745.20 39045.42 32440.44 38667.26 36734.01 28958.98 35911.96 40324.88 39759.20 378
KD-MVS_2432*160053.45 32251.50 33059.30 31262.82 36737.14 34255.33 36871.79 26547.34 30755.09 32770.52 34621.91 37170.45 30935.72 34042.97 38470.31 359
miper_refine_blended53.45 32251.50 33059.30 31262.82 36737.14 34255.33 36871.79 26547.34 30755.09 32770.52 34621.91 37170.45 30935.72 34042.97 38470.31 359
test0.0.03 153.32 32553.59 32252.50 35662.81 36929.45 38459.51 35154.11 37050.08 27054.40 33674.31 32132.62 30855.92 37530.50 37063.95 31472.15 343
PMMVS53.96 31853.26 32456.04 33462.60 37050.92 19561.17 34456.09 36432.81 37753.51 34666.84 36934.04 28759.93 35544.14 28368.18 28057.27 384
SSC-MVS41.96 35341.99 35341.90 37562.46 3719.28 41457.41 36344.32 39343.38 34138.30 39166.45 37032.67 30758.42 36310.98 40421.91 40057.99 382
PM-MVS52.33 32850.19 33658.75 31962.10 37245.14 27165.75 31140.38 39743.60 33953.52 34572.65 3289.16 39965.87 33550.41 22754.18 36365.24 374
Gipumacopyleft34.77 36231.91 36743.33 37262.05 37337.87 33320.39 40367.03 30023.23 39118.41 40425.84 4044.24 40562.73 34414.71 39751.32 37129.38 402
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test20.0353.87 32054.02 31953.41 35261.47 37428.11 38861.30 34259.21 34851.34 25552.09 35077.43 28433.29 29758.55 36229.76 37360.27 34273.58 327
pmmvs556.47 30255.68 30458.86 31861.41 37536.71 34866.37 30862.75 33140.38 36153.70 34176.62 29534.56 28067.05 32740.02 31365.27 30172.83 331
MDA-MVSNet_test_wron50.71 33648.95 33856.00 33661.17 37641.84 30051.90 37856.45 35940.96 35744.79 37667.84 36130.04 32655.07 37936.71 33250.69 37371.11 355
YYNet150.73 33548.96 33756.03 33561.10 37741.78 30151.94 37756.44 36040.94 35844.84 37567.80 36230.08 32555.08 37836.77 33050.71 37271.22 352
dongtai34.52 36334.94 36333.26 38461.06 37816.00 40952.79 37623.78 41040.71 35939.33 39048.65 39816.91 38048.34 39012.18 40219.05 40235.44 401
CMPMVSbinary42.80 2157.81 29255.97 30163.32 29160.98 37947.38 24964.66 32669.50 28332.06 37846.83 37077.80 27729.50 33171.36 30448.68 24273.75 19571.21 353
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UnsupCasMVSNet_bld50.07 33848.87 33953.66 34860.97 38033.67 37157.62 36164.56 31839.47 36647.38 36764.02 37827.47 34559.32 35734.69 34443.68 38367.98 370
Anonymous2024052155.30 31154.41 31457.96 32660.92 38141.73 30271.09 27271.06 27041.18 35548.65 36473.31 32616.93 37959.25 35842.54 29864.01 31272.90 330
testgi51.90 32952.37 32650.51 36260.39 38223.55 40258.42 35458.15 35149.03 28251.83 35179.21 25622.39 36855.59 37629.24 37662.64 32472.40 340
UnsupCasMVSNet_eth53.16 32752.47 32555.23 33959.45 38333.39 37359.43 35269.13 28745.98 31950.35 36172.32 33029.30 33358.26 36442.02 30344.30 38274.05 324
test_cas_vis1_n_192056.91 29756.71 29557.51 33059.13 38445.40 26963.58 33061.29 34236.24 37267.14 17271.85 33729.89 32756.69 37057.65 16963.58 31770.46 358
new-patchmatchnet47.56 34447.73 34447.06 36558.81 3859.37 41348.78 38459.21 34843.28 34244.22 37868.66 35925.67 35957.20 36831.57 36549.35 37774.62 319
FPMVS42.18 35241.11 35545.39 36758.03 38641.01 30949.50 38253.81 37230.07 38033.71 39464.03 37611.69 39052.08 38714.01 39855.11 35943.09 395
KD-MVS_self_test55.22 31353.89 32059.21 31557.80 38727.47 39157.75 36074.32 24147.38 30550.90 35570.00 35128.45 33970.30 31240.44 31057.92 34979.87 257
test_vis1_n49.89 33948.69 34153.50 35053.97 38837.38 34061.53 33947.33 38728.54 38259.62 28667.10 36813.52 38752.27 38549.07 23957.52 35070.84 356
test_fmvs151.32 33450.48 33453.81 34753.57 38937.51 33960.63 34951.16 37628.02 38563.62 23769.23 35716.41 38153.93 38151.01 22360.70 33969.99 362
kuosan29.62 37030.82 36926.02 38952.99 39016.22 40851.09 37922.71 41133.91 37633.99 39340.85 39915.89 38333.11 4067.59 41018.37 40328.72 403
test_fmvs1_n51.37 33250.35 33554.42 34552.85 39137.71 33761.16 34551.93 37328.15 38363.81 23669.73 35413.72 38653.95 38051.16 22260.65 34071.59 347
new_pmnet34.13 36434.29 36533.64 38352.63 39218.23 40744.43 39333.90 40322.81 39330.89 39653.18 38810.48 39735.72 40520.77 39239.51 38846.98 394
pmmvs344.92 34741.95 35453.86 34652.58 39343.55 28562.11 33846.90 38926.05 38840.63 38460.19 38211.08 39657.91 36531.83 36246.15 38060.11 377
DSMNet-mixed39.30 35938.72 35841.03 37651.22 39419.66 40545.53 39131.35 40415.83 40339.80 38867.42 36622.19 36945.13 39422.43 38952.69 36858.31 381
mvsany_test139.38 35738.16 36043.02 37349.05 39534.28 36644.16 39425.94 40822.74 39446.57 37262.21 38123.85 36641.16 40033.01 35235.91 39253.63 387
APD_test137.39 36034.94 36344.72 37148.88 39633.19 37452.95 37544.00 39419.49 39727.28 39858.59 3843.18 41052.84 38318.92 39341.17 38748.14 392
test_fmvs248.69 34147.49 34652.29 35848.63 39733.06 37557.76 35948.05 38525.71 38959.76 28469.60 35511.57 39252.23 38649.45 23756.86 35371.58 348
LF4IMVS42.95 35042.26 35245.04 36848.30 39832.50 37654.80 37048.49 38328.03 38440.51 38570.16 3499.24 39843.89 39631.63 36349.18 37858.72 380
wuyk23d13.32 37712.52 38015.71 39147.54 39926.27 39631.06 4021.98 4164.93 4085.18 4111.94 4110.45 41618.54 4106.81 41112.83 4072.33 408
test_vis1_rt41.35 35539.45 35747.03 36646.65 40037.86 33447.76 38538.65 39823.10 39244.21 37951.22 39211.20 39544.08 39539.27 31653.02 36759.14 379
test_fmvs344.30 34842.55 35149.55 36342.83 40127.15 39453.03 37444.93 39122.03 39653.69 34364.94 3754.21 40649.63 38847.47 25049.82 37571.88 344
LCM-MVSNet40.30 35635.88 36253.57 34942.24 40229.15 38545.21 39260.53 34522.23 39528.02 39750.98 3933.72 40861.78 34831.22 36838.76 39069.78 364
E-PMN23.77 37222.73 37626.90 38742.02 40320.67 40442.66 39535.70 40117.43 39910.28 40925.05 4056.42 40142.39 39810.28 40614.71 40517.63 404
testf131.46 36828.89 37239.16 37741.99 40428.78 38646.45 38837.56 39914.28 40421.10 40048.96 3951.48 41447.11 39113.63 39934.56 39341.60 396
APD_test231.46 36828.89 37239.16 37741.99 40428.78 38646.45 38837.56 39914.28 40421.10 40048.96 3951.48 41447.11 39113.63 39934.56 39341.60 396
EMVS22.97 37321.84 37726.36 38840.20 40619.53 40641.95 39634.64 40217.09 4009.73 41022.83 4067.29 40042.22 3999.18 40813.66 40617.32 405
ANet_high41.38 35437.47 36153.11 35339.73 40724.45 40056.94 36469.69 27847.65 30226.04 39952.32 38912.44 38962.38 34621.80 39110.61 40872.49 335
PMMVS227.40 37125.91 37431.87 38639.46 4086.57 41531.17 40128.52 40623.96 39020.45 40348.94 3974.20 40737.94 40216.51 39519.97 40151.09 388
PMVScopyleft28.69 2236.22 36133.29 36645.02 36936.82 40935.98 35654.68 37148.74 38226.31 38721.02 40251.61 3912.88 41160.10 3549.99 40747.58 37938.99 400
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
mvsany_test332.62 36530.57 37038.77 37936.16 41024.20 40138.10 39920.63 41219.14 39840.36 38757.43 3855.06 40336.63 40429.59 37528.66 39655.49 385
test_vis3_rt32.09 36630.20 37137.76 38035.36 41127.48 39040.60 39728.29 40716.69 40132.52 39540.53 4001.96 41237.40 40333.64 34942.21 38648.39 390
MVEpermissive17.77 2321.41 37417.77 37932.34 38534.34 41225.44 39816.11 40424.11 40911.19 40613.22 40631.92 4021.58 41330.95 40810.47 40517.03 40440.62 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_f31.86 36731.05 36834.28 38232.33 41321.86 40332.34 40030.46 40516.02 40239.78 38955.45 3874.80 40432.36 40730.61 36937.66 39148.64 389
DeepMVS_CXcopyleft12.03 39217.97 41410.91 41110.60 4157.46 40711.07 40828.36 4033.28 40911.29 4118.01 4099.74 41013.89 406
test_method19.68 37518.10 37824.41 39013.68 4153.11 41712.06 40642.37 3962.00 40911.97 40736.38 4015.77 40229.35 40915.06 39623.65 39940.76 398
tmp_tt9.43 37811.14 3814.30 3932.38 4164.40 41613.62 40516.08 4140.39 41015.89 40513.06 40715.80 3845.54 41212.63 40110.46 4092.95 407
testmvs4.52 3816.03 3840.01 3950.01 4170.00 42053.86 3730.00 4180.01 4120.04 4130.27 4120.00 4180.00 4130.04 4120.00 4110.03 410
test1234.73 3806.30 3830.02 3940.01 4170.01 41956.36 3660.00 4180.01 4120.04 4130.21 4130.01 4170.00 4130.03 4130.00 4110.04 409
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
eth-test20.00 419
eth-test0.00 419
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
cdsmvs_eth3d_5k17.50 37623.34 3750.00 3960.00 4190.00 4200.00 40778.63 1670.00 4140.00 41582.18 19349.25 1210.00 4130.00 4140.00 4110.00 411
pcd_1.5k_mvsjas3.92 3825.23 3850.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 41447.05 1530.00 4130.00 4140.00 4110.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
ab-mvs-re6.49 3798.65 3820.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 41577.89 2750.00 4180.00 4130.00 4140.00 4110.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
WAC-MVS27.31 39227.77 379
PC_three_145255.09 20484.46 489.84 4366.68 589.41 1874.24 4491.38 288.42 14
test_241102_TWO86.73 1264.18 3284.26 591.84 865.19 690.83 578.63 1790.70 787.65 40
test_0728_THIRD65.04 1683.82 892.00 364.69 1090.75 879.48 690.63 1088.09 26
GSMVS78.05 277
sam_mvs134.74 27978.05 277
sam_mvs33.43 295
MTGPAbinary80.97 129
test_post168.67 2943.64 40932.39 31369.49 31544.17 281
test_post3.55 41033.90 29066.52 330
patchmatchnet-post64.03 37634.50 28174.27 291
MTMP86.03 1917.08 413
test9_res75.28 3788.31 3283.81 172
agg_prior273.09 5587.93 4084.33 153
test_prior462.51 1482.08 76
test_prior281.75 7960.37 9675.01 4389.06 5256.22 4072.19 5988.96 24
旧先验276.08 18245.32 32576.55 3365.56 33658.75 165
新几何276.12 180
无先验79.66 11074.30 24348.40 29280.78 20453.62 20179.03 269
原ACMM279.02 115
testdata272.18 30146.95 259
segment_acmp54.23 58
testdata172.65 24460.50 91
plane_prior584.01 5287.21 5668.16 8280.58 10984.65 147
plane_prior486.10 111
plane_prior356.09 10863.92 3669.27 132
plane_prior284.22 4064.52 25
plane_prior56.31 10283.58 5363.19 4880.48 112
n20.00 418
nn0.00 418
door-mid47.19 388
test1183.47 72
door47.60 386
HQP5-MVS54.94 131
BP-MVS67.04 95
HQP4-MVS67.85 15586.93 6484.32 154
HQP3-MVS83.90 5780.35 113
HQP2-MVS45.46 171
MDTV_nov1_ep13_2view25.89 39761.22 34340.10 36351.10 35332.97 30038.49 31978.61 272
ACMMP++_ref74.07 190
ACMMP++72.16 224
Test By Simon48.33 132