This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DeepC-MVS_fast96.70 198.55 3198.34 3399.18 5099.25 9098.04 6598.50 17598.78 9997.72 798.92 5199.28 4495.27 7099.82 6897.55 8299.77 3099.69 57
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS96.37 297.93 6998.48 2296.30 25999.00 12189.54 33097.43 28298.87 5898.16 299.26 2299.38 2596.12 3299.64 13098.30 3499.77 3099.72 46
DeepC-MVS95.98 397.88 7097.58 7298.77 7899.25 9096.93 11098.83 11098.75 10696.96 5896.89 16199.50 590.46 16799.87 4897.84 5899.76 3699.52 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PLCcopyleft95.07 497.20 11096.78 11298.44 10399.29 8296.31 14398.14 22698.76 10392.41 25996.39 18598.31 18194.92 8399.78 10094.06 21398.77 13799.23 137
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
3Dnovator94.51 597.46 9296.93 10599.07 6397.78 21697.64 8299.35 1899.06 2397.02 5593.75 26499.16 6889.25 18999.92 2597.22 9599.75 4299.64 76
3Dnovator+94.38 697.43 9796.78 11299.38 2097.83 21498.52 3299.37 1598.71 11897.09 5392.99 28999.13 7389.36 18599.89 3996.97 10399.57 8199.71 50
TAPA-MVS93.98 795.35 19694.56 21197.74 15199.13 11094.83 21198.33 19598.64 14186.62 34596.29 18798.61 14494.00 10399.29 17080.00 36099.41 10699.09 157
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
HY-MVS93.96 896.82 12596.23 13798.57 8898.46 16597.00 10798.14 22698.21 22293.95 19296.72 16897.99 20691.58 14099.76 10794.51 19796.54 20398.95 173
ACMM93.85 995.69 17895.38 17296.61 22797.61 22793.84 24898.91 9298.44 18395.25 13894.28 23698.47 16086.04 26499.12 18995.50 16993.95 24396.87 262
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP93.49 1095.34 19794.98 19496.43 25097.67 22393.48 26398.73 13398.44 18394.94 15792.53 30298.53 15384.50 29099.14 18695.48 17094.00 24196.66 289
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PCF-MVS93.45 1194.68 23293.43 27698.42 10698.62 15596.77 11795.48 35298.20 22484.63 35793.34 27798.32 18088.55 21199.81 7584.80 34798.96 12698.68 187
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
COLMAP_ROBcopyleft93.27 1295.33 19894.87 19996.71 21599.29 8293.24 27398.58 16198.11 24389.92 32393.57 26899.10 7886.37 25799.79 9690.78 29198.10 16497.09 237
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OpenMVScopyleft93.04 1395.83 16995.00 19298.32 11197.18 26297.32 9399.21 3798.97 3189.96 32291.14 32399.05 8986.64 25099.92 2593.38 23099.47 9997.73 222
ACMH+92.99 1494.30 25893.77 25995.88 27797.81 21592.04 28998.71 13898.37 19693.99 19090.60 32998.47 16080.86 32299.05 19892.75 25192.40 27396.55 302
LTVRE_ROB92.95 1594.60 23893.90 24996.68 22097.41 24894.42 23098.52 17098.59 14891.69 28291.21 32298.35 17484.87 28299.04 20191.06 28693.44 26196.60 294
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH92.88 1694.55 24293.95 24596.34 25797.63 22693.26 27298.81 11998.49 17793.43 22289.74 33598.53 15381.91 31299.08 19693.69 22193.30 26496.70 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IB-MVS91.98 1793.27 28991.97 30097.19 18297.47 23993.41 26697.09 30895.99 34793.32 22692.47 30695.73 33678.06 33999.53 14894.59 19582.98 35098.62 193
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PVSNet91.96 1896.35 14396.15 13896.96 20099.17 10392.05 28896.08 34198.68 12593.69 20997.75 12497.80 22788.86 20499.69 12494.26 20699.01 12499.15 150
PVSNet_088.72 1991.28 30990.03 31595.00 30297.99 20587.29 35894.84 35798.50 17292.06 27289.86 33495.19 34479.81 32899.39 16492.27 26469.79 36998.33 205
OpenMVS_ROBcopyleft86.42 2089.00 32787.43 33293.69 32893.08 36289.42 33297.91 24896.89 33478.58 36485.86 35594.69 34969.48 36498.29 29877.13 36793.29 26593.36 364
CMPMVSbinary66.06 2189.70 32289.67 31889.78 34693.19 36176.56 37197.00 31298.35 19980.97 36281.57 36397.75 22974.75 35698.61 24989.85 30593.63 25294.17 357
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVEpermissive62.14 2263.28 34459.38 34774.99 35674.33 38165.47 37785.55 37080.50 38252.02 37451.10 37675.00 37510.91 38580.50 37651.60 37553.40 37378.99 371
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft61.03 2365.95 34163.57 34573.09 35857.90 38351.22 38485.05 37193.93 36954.45 37244.32 37883.57 36813.22 38289.15 37358.68 37481.00 35778.91 372
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
iter_conf_final96.42 14096.12 13997.34 17698.46 16596.55 13099.08 6198.06 25896.03 9895.63 19998.46 16287.72 23098.59 25297.84 5893.80 24796.87 262
bld_raw_dy_0_6495.74 17395.31 17997.03 19396.35 30995.76 17199.12 5297.37 31095.97 10094.70 21898.48 15885.80 26698.49 26396.55 13093.48 25796.84 267
test_low_dy_conf_00196.06 15495.86 14896.69 21896.39 30694.58 22599.47 998.26 21895.68 11395.23 20598.73 13088.90 20398.47 26796.43 13693.62 25397.02 241
patch_mono-298.36 4898.87 396.82 21099.53 3990.68 31498.64 15399.29 897.88 599.19 2999.52 396.80 1599.97 199.11 199.86 199.82 10
EGC-MVSNET75.22 33869.54 34192.28 34194.81 34989.58 32997.64 27196.50 3451.82 3815.57 38295.74 33468.21 36596.26 35973.80 37091.71 28090.99 366
test250694.44 25193.91 24896.04 26799.02 11888.99 34099.06 6379.47 38396.96 5898.36 8799.26 4777.21 34699.52 15196.78 12499.04 12199.59 87
test111195.94 16295.78 15296.41 25198.99 12490.12 32299.04 6692.45 37296.99 5798.03 10299.27 4681.40 31599.48 15796.87 11799.04 12199.63 79
ECVR-MVScopyleft95.95 16095.71 15896.65 22199.02 11890.86 30999.03 6991.80 37396.96 5898.10 9699.26 4781.31 31699.51 15296.90 11099.04 12199.59 87
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DVP-MVS++99.08 298.89 299.64 399.17 10399.23 799.69 198.88 5197.32 3399.53 999.47 1097.81 399.94 498.47 2299.72 5499.74 37
FOURS199.82 198.66 2699.69 198.95 3597.46 2399.39 15
MSC_two_6792asdad99.62 699.17 10399.08 1198.63 14399.94 498.53 1499.80 1999.86 2
PC_three_145295.08 14999.60 599.16 6897.86 298.47 26797.52 8599.72 5499.74 37
No_MVS99.62 699.17 10399.08 1198.63 14399.94 498.53 1499.80 1999.86 2
test_one_060199.66 2899.25 298.86 6497.55 1699.20 2699.47 1097.57 6
eth-test20.00 387
eth-test0.00 387
GeoE96.58 13496.07 14198.10 12898.35 17195.89 16799.34 1998.12 24093.12 23596.09 19198.87 11389.71 17998.97 20992.95 24598.08 16599.43 115
test_method79.03 33378.17 33681.63 35386.06 37354.40 38382.75 37296.89 33439.54 37680.98 36495.57 34358.37 37294.73 36784.74 34878.61 36195.75 337
Anonymous2024052191.18 31090.44 31193.42 33093.70 35988.47 34798.94 8997.56 28988.46 33889.56 33895.08 34777.15 34896.97 34683.92 35089.55 30794.82 353
h-mvs3396.17 15095.62 16497.81 14599.03 11794.45 22898.64 15398.75 10697.48 2098.67 6798.72 13289.76 17799.86 5397.95 4681.59 35599.11 155
hse-mvs295.71 17595.30 18096.93 20298.50 16293.53 26198.36 19298.10 24597.48 2098.67 6797.99 20689.76 17799.02 20597.95 4680.91 35998.22 208
CL-MVSNet_self_test90.11 31989.14 32293.02 33791.86 36688.23 35196.51 33898.07 25390.49 31090.49 33094.41 35084.75 28595.34 36380.79 35874.95 36695.50 341
KD-MVS_2432*160089.61 32487.96 32894.54 31694.06 35691.59 29895.59 35097.63 28589.87 32488.95 34294.38 35278.28 33696.82 34884.83 34568.05 37095.21 345
KD-MVS_self_test90.38 31789.38 32093.40 33292.85 36388.94 34197.95 24497.94 26990.35 31690.25 33193.96 35579.82 32795.94 36084.62 34976.69 36495.33 343
AUN-MVS94.53 24493.73 26396.92 20598.50 16293.52 26298.34 19498.10 24593.83 19995.94 19797.98 20885.59 27099.03 20294.35 20180.94 35898.22 208
ZD-MVS99.46 5598.70 2398.79 9693.21 23098.67 6798.97 9795.70 5099.83 6096.07 14499.58 80
test117298.56 2998.35 2999.16 5399.53 3997.94 7199.09 5898.83 7296.52 7799.05 3899.34 3595.34 6599.82 6897.86 5599.64 6899.73 42
SR-MVS-dyc-post98.54 3398.35 2999.13 5799.49 4997.86 7399.11 5498.80 9196.49 7899.17 3099.35 3295.34 6599.82 6897.72 6599.65 6499.71 50
RE-MVS-def98.34 3399.49 4997.86 7399.11 5498.80 9196.49 7899.17 3099.35 3295.29 6997.72 6599.65 6499.71 50
SED-MVS99.09 198.91 199.63 499.71 2199.24 599.02 7398.87 5897.65 1099.73 199.48 897.53 799.94 498.43 2699.81 1299.70 54
IU-MVS99.71 2199.23 798.64 14195.28 13699.63 498.35 3299.81 1299.83 7
OPU-MVS99.37 2399.24 9699.05 1499.02 7399.16 6897.81 399.37 16597.24 9399.73 4799.70 54
test_241102_TWO98.87 5897.65 1099.53 999.48 897.34 1199.94 498.43 2699.80 1999.83 7
test_241102_ONE99.71 2199.24 598.87 5897.62 1299.73 199.39 1897.53 799.74 111
xxxxxxxxxxxxxcwj98.70 1098.50 1799.30 3399.46 5598.38 4098.21 21298.52 16497.95 399.32 1899.39 1896.22 2499.84 5797.72 6599.73 4799.67 67
SF-MVS98.59 2198.32 3899.41 1999.54 3898.71 2299.04 6698.81 8095.12 14499.32 1899.39 1896.22 2499.84 5797.72 6599.73 4799.67 67
ETH3D cwj APD-0.1697.96 6497.52 7799.29 3499.05 11498.52 3298.33 19598.68 12593.18 23198.68 6699.13 7394.62 8899.83 6096.45 13499.55 9099.52 94
cl2294.68 23294.19 22996.13 26598.11 19793.60 25796.94 31598.31 20592.43 25893.32 27896.87 30286.51 25298.28 29994.10 21291.16 28896.51 311
miper_ehance_all_eth95.01 21494.69 20695.97 27197.70 22293.31 27097.02 31198.07 25392.23 26793.51 27296.96 29491.85 13598.15 30593.68 22291.16 28896.44 318
miper_enhance_ethall95.10 21094.75 20396.12 26697.53 23693.73 25496.61 33598.08 25192.20 27093.89 25696.65 31292.44 11998.30 29594.21 20791.16 28896.34 321
ZNCC-MVS98.49 3798.20 4999.35 2599.73 1298.39 3999.19 4198.86 6495.77 10998.31 9299.10 7895.46 5799.93 1997.57 8099.81 1299.74 37
ETH3 D test640097.59 8697.01 10199.34 2699.40 6398.56 3098.20 21598.81 8091.63 28498.44 8398.85 11593.98 10499.82 6894.11 21199.69 5899.64 76
dcpmvs_298.08 6198.59 1096.56 23499.57 3590.34 32099.15 4598.38 19596.82 6499.29 2099.49 795.78 4899.57 13998.94 299.86 199.77 23
cl____94.51 24694.01 24096.02 26897.58 22993.40 26797.05 30997.96 26891.73 28192.76 29497.08 27889.06 19698.13 30792.61 25290.29 29796.52 308
DIV-MVS_self_test94.52 24594.03 23795.99 26997.57 23393.38 26897.05 30997.94 26991.74 27992.81 29297.10 27289.12 19398.07 31392.60 25390.30 29696.53 305
eth_miper_zixun_eth94.68 23294.41 22295.47 28897.64 22591.71 29696.73 33298.07 25392.71 24893.64 26597.21 26890.54 16698.17 30493.38 23089.76 30296.54 303
9.1498.06 5599.47 5298.71 13898.82 7494.36 17799.16 3299.29 4396.05 3699.81 7597.00 10199.71 56
testtj98.33 5497.95 6199.47 1499.49 4998.70 2398.83 11098.86 6495.48 12398.91 5299.17 6395.48 5699.93 1995.80 15799.53 9299.76 30
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
ETH3D-3000-0.198.35 5098.00 5999.38 2099.47 5298.68 2598.67 14898.84 6994.66 16799.11 3499.25 5095.46 5799.81 7596.80 12299.73 4799.63 79
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
save fliter99.46 5598.38 4098.21 21298.71 11897.95 3
ET-MVSNet_ETH3D94.13 26992.98 28497.58 16498.22 18596.20 14597.31 29495.37 35394.53 17079.56 36597.63 24186.51 25297.53 33896.91 10790.74 29299.02 165
UniMVSNet_ETH3D94.24 26293.33 27896.97 19997.19 26193.38 26898.74 12998.57 15491.21 30293.81 26198.58 14972.85 36298.77 23895.05 18193.93 24498.77 183
EIA-MVS97.75 7597.58 7298.27 11498.38 16996.44 13499.01 7598.60 14695.88 10597.26 14397.53 24894.97 8199.33 16897.38 9099.20 11699.05 163
miper_refine_blended89.61 32487.96 32894.54 31694.06 35691.59 29895.59 35097.63 28589.87 32488.95 34294.38 35278.28 33696.82 34884.83 34568.05 37095.21 345
miper_lstm_enhance94.33 25694.07 23695.11 29997.75 21790.97 30897.22 29998.03 26191.67 28392.76 29496.97 29290.03 17497.78 33192.51 26089.64 30496.56 300
ETV-MVS97.96 6497.81 6598.40 10798.42 16797.27 9598.73 13398.55 15896.84 6298.38 8697.44 25495.39 6199.35 16697.62 7498.89 12998.58 196
CS-MVS98.44 4298.49 2098.31 11299.08 11396.73 11999.67 398.47 17897.17 4698.94 4599.10 7895.73 4999.13 18798.71 799.49 9699.09 157
D2MVS95.18 20695.08 18995.48 28797.10 26792.07 28798.30 20399.13 2094.02 18792.90 29096.73 30789.48 18298.73 24094.48 19893.60 25595.65 340
DVP-MVScopyleft99.03 398.83 599.63 499.72 1399.25 298.97 8398.58 15397.62 1299.45 1199.46 1397.42 999.94 498.47 2299.81 1299.69 57
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD97.32 3399.45 1199.46 1397.88 199.94 498.47 2299.86 199.85 4
test_0728_SECOND99.71 199.72 1399.35 198.97 8398.88 5199.94 498.47 2299.81 1299.84 6
test072699.72 1399.25 299.06 6398.88 5197.62 1299.56 699.50 597.42 9
SR-MVS98.57 2798.35 2999.24 4399.53 3998.18 5899.09 5898.82 7496.58 7499.10 3599.32 3795.39 6199.82 6897.70 7099.63 7099.72 46
DPM-MVS97.55 9096.99 10399.23 4599.04 11698.55 3197.17 30498.35 19994.85 15997.93 11698.58 14995.07 7999.71 11892.60 25399.34 11199.43 115
GST-MVS98.43 4398.12 5299.34 2699.72 1398.38 4099.09 5898.82 7495.71 11298.73 6499.06 8895.27 7099.93 1997.07 10099.63 7099.72 46
test_yl97.22 10796.78 11298.54 9298.73 14296.60 12598.45 17998.31 20594.70 16198.02 10498.42 16690.80 16199.70 11996.81 12096.79 19599.34 121
thisisatest053096.01 15695.36 17397.97 13598.38 16995.52 18098.88 10094.19 36694.04 18597.64 13498.31 18183.82 30599.46 16095.29 17597.70 17998.93 174
Anonymous2024052995.10 21094.22 22797.75 15099.01 12094.26 23798.87 10398.83 7285.79 35396.64 17098.97 9778.73 33399.85 5496.27 14094.89 22799.12 154
Anonymous20240521195.28 20094.49 21497.67 15899.00 12193.75 25298.70 14297.04 32390.66 30896.49 18198.80 12278.13 33899.83 6096.21 14395.36 22699.44 114
DCV-MVSNet97.22 10796.78 11298.54 9298.73 14296.60 12598.45 17998.31 20594.70 16198.02 10498.42 16690.80 16199.70 11996.81 12096.79 19599.34 121
tttt051796.07 15395.51 16797.78 14798.41 16894.84 20999.28 2594.33 36494.26 18097.64 13498.64 14184.05 29899.47 15995.34 17197.60 18299.03 164
our_test_393.65 28393.30 27994.69 31295.45 34089.68 32896.91 31897.65 28391.97 27491.66 31996.88 30089.67 18097.93 32488.02 32691.49 28396.48 315
thisisatest051595.61 18394.89 19897.76 14998.15 19595.15 19596.77 32994.41 36292.95 24197.18 14697.43 25584.78 28499.45 16194.63 19097.73 17898.68 187
ppachtmachnet_test93.22 29192.63 29194.97 30395.45 34090.84 31096.88 32497.88 27490.60 30992.08 31497.26 26388.08 22297.86 33085.12 34490.33 29596.22 326
SMA-MVScopyleft98.58 2498.25 4399.56 899.51 4399.04 1598.95 8798.80 9193.67 21399.37 1699.52 396.52 2199.89 3998.06 4199.81 1299.76 30
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS99.20 139
DPE-MVScopyleft98.92 598.67 899.65 299.58 3499.20 998.42 18698.91 4597.58 1599.54 899.46 1397.10 1299.94 497.64 7399.84 1099.83 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.63 3199.18 1099.27 21
test_part194.82 22593.82 25497.82 14498.84 13697.82 7799.03 6998.81 8092.31 26592.51 30497.89 21681.96 31198.67 24594.80 18888.24 32496.98 244
thres100view90095.38 19294.70 20597.41 17198.98 12594.92 20798.87 10396.90 33295.38 12996.61 17296.88 30084.29 29199.56 14288.11 32396.29 21197.76 219
tfpnnormal93.66 28192.70 29096.55 23996.94 27495.94 16098.97 8399.19 1691.04 30591.38 32197.34 25884.94 28198.61 24985.45 34289.02 31795.11 348
tfpn200view995.32 19994.62 20897.43 17098.94 12794.98 20398.68 14596.93 33095.33 13296.55 17696.53 31684.23 29499.56 14288.11 32396.29 21197.76 219
c3_l94.79 22794.43 22195.89 27697.75 21793.12 27797.16 30598.03 26192.23 26793.46 27597.05 28491.39 14698.01 31793.58 22789.21 31396.53 305
CHOSEN 280x42097.18 11197.18 9497.20 18198.81 13893.27 27195.78 34899.15 1995.25 13896.79 16798.11 19792.29 12299.07 19798.56 1399.85 599.25 136
CANet98.05 6297.76 6798.90 7498.73 14297.27 9598.35 19398.78 9997.37 3297.72 12798.96 10391.53 14599.92 2598.79 699.65 6499.51 98
Fast-Effi-MVS+-dtu95.87 16695.85 14995.91 27497.74 22091.74 29598.69 14498.15 23695.56 12094.92 21097.68 23688.98 20098.79 23693.19 23797.78 17597.20 236
Effi-MVS+-dtu96.29 14596.56 12395.51 28697.89 21190.22 32198.80 12098.10 24596.57 7596.45 18496.66 31090.81 15998.91 22095.72 16097.99 16797.40 229
CANet_DTU96.96 11996.55 12498.21 11998.17 19396.07 15097.98 24298.21 22297.24 4297.13 14798.93 10786.88 24799.91 3495.00 18299.37 11098.66 190
MVS_030492.81 29792.01 29995.23 29497.46 24091.33 30298.17 22498.81 8091.13 30493.80 26295.68 34166.08 36998.06 31490.79 29096.13 22096.32 324
MP-MVS-pluss98.31 5697.92 6399.49 1299.72 1398.88 1898.43 18498.78 9994.10 18397.69 12999.42 1695.25 7299.92 2598.09 4099.80 1999.67 67
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS98.74 998.55 1399.29 3499.75 498.23 5499.26 2798.88 5197.52 1799.41 1398.78 12496.00 3899.79 9697.79 6199.59 7799.85 4
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs189.45 18399.20 139
sam_mvs88.99 197
IterMVS-SCA-FT94.11 27193.87 25194.85 30797.98 20790.56 31797.18 30298.11 24393.75 20192.58 30097.48 25083.97 30097.41 34092.48 26291.30 28596.58 296
TSAR-MVS + MP.98.78 798.62 999.24 4399.69 2698.28 5399.14 4798.66 13696.84 6299.56 699.31 3996.34 2399.70 11998.32 3399.73 4799.73 42
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu97.60 8397.56 7497.72 15298.35 17195.98 15297.86 25598.51 16797.13 5099.01 4198.40 16891.56 14199.80 8498.53 1498.68 13897.37 232
OPM-MVS95.69 17895.33 17696.76 21396.16 31894.63 21898.43 18498.39 19296.64 7295.02 20998.78 12485.15 27899.05 19895.21 17994.20 23396.60 294
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP98.61 1898.30 3999.55 999.62 3298.95 1798.82 11398.81 8095.80 10899.16 3299.47 1095.37 6399.92 2597.89 5299.75 4299.79 13
ambc89.49 34786.66 37275.78 37292.66 36596.72 34086.55 35392.50 36146.01 37497.90 32590.32 29682.09 35194.80 354
zzz-MVS98.55 3198.25 4399.46 1599.76 298.64 2798.55 16898.74 10897.27 4098.02 10499.39 1894.81 8499.96 297.91 4999.79 2399.77 23
MTGPAbinary98.74 108
mvs-test196.60 13096.68 12096.37 25497.89 21191.81 29198.56 16698.10 24596.57 7596.52 18097.94 21190.81 15999.45 16195.72 16098.01 16697.86 218
CS-MVS-test98.49 3798.50 1798.46 10199.20 10197.05 10599.64 498.50 17297.45 2598.88 5399.14 7295.25 7299.15 18498.83 599.56 8699.20 139
Effi-MVS+97.12 11496.69 11898.39 10898.19 18996.72 12097.37 28798.43 18693.71 20697.65 13398.02 20292.20 12799.25 17296.87 11797.79 17499.19 143
xiu_mvs_v2_base97.66 8097.70 6997.56 16698.61 15695.46 18297.44 28098.46 17997.15 4898.65 7298.15 19494.33 9799.80 8497.84 5898.66 14297.41 228
xiu_mvs_v1_base97.60 8397.56 7497.72 15298.35 17195.98 15297.86 25598.51 16797.13 5099.01 4198.40 16891.56 14199.80 8498.53 1498.68 13897.37 232
new-patchmatchnet88.50 32887.45 33191.67 34490.31 37085.89 36197.16 30597.33 31189.47 33083.63 36192.77 35976.38 34995.06 36682.70 35377.29 36394.06 360
pmmvs691.77 30590.63 30995.17 29794.69 35291.24 30598.67 14897.92 27186.14 34989.62 33697.56 24775.79 35298.34 28990.75 29284.56 34995.94 334
pmmvs593.65 28392.97 28595.68 28395.49 33892.37 28398.20 21597.28 31489.66 32892.58 30097.26 26382.14 31098.09 31193.18 23890.95 29196.58 296
test_post196.68 33330.43 38087.85 22998.69 24192.59 255
test_post31.83 37988.83 20598.91 220
Fast-Effi-MVS+96.28 14795.70 16098.03 13298.29 18295.97 15798.58 16198.25 22091.74 27995.29 20497.23 26691.03 15799.15 18492.90 24797.96 16898.97 170
patchmatchnet-post95.10 34689.42 18498.89 224
Anonymous2023121194.10 27293.26 28196.61 22799.11 11294.28 23599.01 7598.88 5186.43 34792.81 29297.57 24581.66 31498.68 24494.83 18589.02 31796.88 260
pmmvs-eth3d90.36 31889.05 32394.32 32391.10 36892.12 28597.63 27496.95 32988.86 33684.91 35993.13 35878.32 33596.74 35088.70 32181.81 35494.09 359
GG-mvs-BLEND96.59 23096.34 31094.98 20396.51 33888.58 37893.10 28794.34 35480.34 32698.05 31589.53 31296.99 19196.74 276
xiu_mvs_v1_base_debi97.60 8397.56 7497.72 15298.35 17195.98 15297.86 25598.51 16797.13 5099.01 4198.40 16891.56 14199.80 8498.53 1498.68 13897.37 232
Anonymous2023120691.66 30691.10 30693.33 33394.02 35887.35 35798.58 16197.26 31690.48 31190.16 33296.31 32183.83 30496.53 35679.36 36289.90 30196.12 329
MTAPA98.58 2498.29 4099.46 1599.76 298.64 2798.90 9398.74 10897.27 4098.02 10499.39 1894.81 8499.96 297.91 4999.79 2399.77 23
MTMP98.89 9794.14 367
gm-plane-assit95.88 32787.47 35689.74 32796.94 29799.19 17993.32 234
test9_res96.39 13999.57 8199.69 57
MVP-Stereo94.28 26193.92 24695.35 29294.95 34692.60 28297.97 24397.65 28391.61 28590.68 32897.09 27686.32 25898.42 27489.70 30999.34 11195.02 351
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST999.31 7498.50 3497.92 24698.73 11292.63 24997.74 12598.68 13696.20 2799.80 84
train_agg97.97 6397.52 7799.33 3099.31 7498.50 3497.92 24698.73 11292.98 23997.74 12598.68 13696.20 2799.80 8496.59 12899.57 8199.68 63
gg-mvs-nofinetune92.21 30390.58 31097.13 18796.75 28695.09 19795.85 34689.40 37785.43 35594.50 22381.98 37080.80 32398.40 28892.16 26598.33 15897.88 216
SCA95.46 18595.13 18696.46 24897.67 22391.29 30497.33 29297.60 28794.68 16496.92 15997.10 27283.97 30098.89 22492.59 25598.32 15999.20 139
Patchmatch-test94.42 25293.68 26796.63 22597.60 22891.76 29394.83 35897.49 30089.45 33194.14 24497.10 27288.99 19798.83 23285.37 34398.13 16399.29 132
test_899.29 8298.44 3697.89 25298.72 11492.98 23997.70 12898.66 13996.20 2799.80 84
MS-PatchMatch93.84 28093.63 26894.46 32196.18 31589.45 33197.76 26398.27 21492.23 26792.13 31397.49 24979.50 32998.69 24189.75 30799.38 10995.25 344
Patchmatch-RL test91.49 30790.85 30893.41 33191.37 36784.40 36292.81 36495.93 35091.87 27787.25 34994.87 34888.99 19796.53 35692.54 25982.00 35299.30 130
cdsmvs_eth3d_5k23.98 34631.98 3480.00 3640.00 3870.00 3880.00 37598.59 1480.00 3820.00 38398.61 14490.60 1650.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas7.88 35010.50 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38294.51 910.00 3830.00 3810.00 3810.00 379
agg_prior197.95 6797.51 7999.28 3899.30 7998.38 4097.81 25998.72 11493.16 23397.57 13898.66 13996.14 3099.81 7596.63 12799.56 8699.66 71
agg_prior295.87 15499.57 8199.68 63
agg_prior99.30 7998.38 4098.72 11497.57 13899.81 75
tmp_tt68.90 34066.97 34274.68 35750.78 38459.95 38087.13 36983.47 38138.80 37762.21 37396.23 32564.70 37076.91 37988.91 32030.49 37787.19 369
canonicalmvs97.67 7997.23 9298.98 6898.70 14798.38 4099.34 1998.39 19296.76 6797.67 13097.40 25792.26 12399.49 15398.28 3596.28 21499.08 161
anonymousdsp95.42 18994.91 19796.94 20195.10 34495.90 16699.14 4798.41 18893.75 20193.16 28297.46 25187.50 23798.41 28295.63 16694.03 24096.50 313
alignmvs97.56 8997.07 9999.01 6598.66 15198.37 4698.83 11098.06 25896.74 6898.00 11097.65 23790.80 16199.48 15798.37 3196.56 20299.19 143
nrg03096.28 14795.72 15597.96 13796.90 27898.15 6199.39 1398.31 20595.47 12494.42 23098.35 17492.09 13098.69 24197.50 8689.05 31597.04 239
v14419294.39 25493.70 26596.48 24496.06 32194.35 23498.58 16198.16 23591.45 28894.33 23497.02 28787.50 23798.45 27091.08 28589.11 31496.63 291
FIs96.51 13796.12 13997.67 15897.13 26597.54 8799.36 1699.22 1595.89 10394.03 25198.35 17491.98 13398.44 27296.40 13892.76 27097.01 242
v192192094.20 26493.47 27596.40 25395.98 32494.08 24298.52 17098.15 23691.33 29494.25 23897.20 26986.41 25698.42 27490.04 30389.39 31196.69 288
UA-Net97.96 6497.62 7098.98 6898.86 13397.47 8998.89 9799.08 2296.67 7198.72 6599.54 193.15 11299.81 7594.87 18398.83 13499.65 73
v119294.32 25793.58 27096.53 24096.10 31994.45 22898.50 17598.17 23391.54 28694.19 24297.06 28286.95 24698.43 27390.14 29889.57 30596.70 283
FC-MVSNet-test96.42 14096.05 14297.53 16796.95 27397.27 9599.36 1699.23 1395.83 10793.93 25498.37 17292.00 13298.32 29196.02 14992.72 27197.00 243
v114494.59 24093.92 24696.60 22996.21 31394.78 21598.59 15998.14 23891.86 27894.21 24197.02 28787.97 22498.41 28291.72 27889.57 30596.61 293
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
HFP-MVS98.63 1798.40 2399.32 3199.72 1398.29 5199.23 3098.96 3396.10 9698.94 4599.17 6396.06 3499.92 2597.62 7499.78 2799.75 32
v14894.29 25993.76 26195.91 27496.10 31992.93 27998.58 16197.97 26692.59 25293.47 27496.95 29688.53 21298.32 29192.56 25787.06 33896.49 314
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
AllTest95.24 20294.65 20796.99 19599.25 9093.21 27498.59 15998.18 22891.36 29193.52 27098.77 12684.67 28699.72 11389.70 30997.87 17198.02 214
TestCases96.99 19599.25 9093.21 27498.18 22891.36 29193.52 27098.77 12684.67 28699.72 11389.70 30997.87 17198.02 214
v7n94.19 26593.43 27696.47 24595.90 32694.38 23399.26 2798.34 20191.99 27392.76 29497.13 27188.31 21598.52 26189.48 31487.70 33096.52 308
region2R98.61 1898.38 2599.29 3499.74 898.16 6099.23 3098.93 3996.15 9198.94 4599.17 6395.91 4399.94 497.55 8299.79 2399.78 16
iter_conf0596.13 15295.79 15197.15 18598.16 19495.99 15198.88 10097.98 26495.91 10295.58 20098.46 16285.53 27198.59 25297.88 5393.75 24896.86 265
RRT_MVS95.98 15895.78 15296.56 23496.48 30294.22 24099.57 697.92 27195.89 10393.95 25398.70 13389.27 18898.42 27497.23 9493.02 26797.04 239
PS-MVSNAJss96.43 13996.26 13596.92 20595.84 32995.08 19899.16 4498.50 17295.87 10693.84 26098.34 17894.51 9198.61 24996.88 11493.45 26097.06 238
PS-MVSNAJ97.73 7697.77 6697.62 16298.68 15095.58 17697.34 29198.51 16797.29 3598.66 7197.88 21794.51 9199.90 3797.87 5499.17 11897.39 230
jajsoiax95.45 18795.03 19196.73 21495.42 34294.63 21899.14 4798.52 16495.74 11093.22 28098.36 17383.87 30398.65 24796.95 10694.04 23996.91 256
mvs_tets95.41 19195.00 19296.65 22195.58 33594.42 23099.00 7798.55 15895.73 11193.21 28198.38 17183.45 30798.63 24897.09 9994.00 24196.91 256
#test#98.54 3398.27 4199.32 3199.72 1398.29 5198.98 8298.96 3395.65 11798.94 4599.17 6396.06 3499.92 2597.21 9699.78 2799.75 32
EI-MVSNet-UG-set98.41 4498.34 3398.61 8699.45 5996.32 14198.28 20698.68 12597.17 4698.74 6299.37 2695.25 7299.79 9698.57 1299.54 9199.73 42
EI-MVSNet-Vis-set98.47 4098.39 2498.69 8199.46 5596.49 13298.30 20398.69 12297.21 4398.84 5599.36 3095.41 6099.78 10098.62 1099.65 6499.80 12
Regformer-398.59 2198.50 1798.86 7699.43 6197.05 10598.40 18898.68 12597.43 2699.06 3799.31 3995.80 4799.77 10598.62 1099.76 3699.78 16
Regformer-498.64 1598.53 1498.99 6699.43 6197.37 9298.40 18898.79 9697.46 2399.09 3699.31 3995.86 4699.80 8498.64 899.76 3699.79 13
Regformer-198.66 1398.51 1699.12 6099.35 6497.81 7998.37 19098.76 10397.49 1999.20 2699.21 5596.08 3399.79 9698.42 2899.73 4799.75 32
Regformer-298.69 1298.52 1599.19 4699.35 6498.01 6798.37 19098.81 8097.48 2099.21 2599.21 5596.13 3199.80 8498.40 3099.73 4799.75 32
HPM-MVS++copyleft98.58 2498.25 4399.55 999.50 4599.08 1198.72 13798.66 13697.51 1898.15 9398.83 11995.70 5099.92 2597.53 8499.67 6099.66 71
test_prior498.01 6797.86 255
XVS98.70 1098.49 2099.34 2699.70 2498.35 4899.29 2398.88 5197.40 2798.46 7999.20 5995.90 4499.89 3997.85 5699.74 4599.78 16
v124094.06 27693.29 28096.34 25796.03 32393.90 24698.44 18298.17 23391.18 30394.13 24597.01 28986.05 26298.42 27489.13 31989.50 30996.70 283
test_prior398.22 5997.90 6499.19 4699.31 7498.22 5597.80 26098.84 6996.12 9497.89 11998.69 13495.96 4099.70 11996.89 11199.60 7499.65 73
pm-mvs193.94 27993.06 28396.59 23096.49 30195.16 19398.95 8798.03 26192.32 26391.08 32497.84 22184.54 28998.41 28292.16 26586.13 34796.19 328
test_prior297.80 26096.12 9497.89 11998.69 13495.96 4096.89 11199.60 74
X-MVStestdata94.06 27692.30 29699.34 2699.70 2498.35 4899.29 2398.88 5197.40 2798.46 7943.50 37695.90 4499.89 3997.85 5699.74 4599.78 16
test_prior99.19 4699.31 7498.22 5598.84 6999.70 11999.65 73
旧先验297.57 27791.30 29698.67 6799.80 8495.70 164
新几何297.64 271
新几何199.16 5399.34 6698.01 6798.69 12290.06 32198.13 9498.95 10594.60 8999.89 3991.97 27399.47 9999.59 87
旧先验199.29 8297.48 8898.70 12199.09 8495.56 5399.47 9999.61 82
无先验97.58 27698.72 11491.38 29099.87 4893.36 23299.60 85
原ACMM297.67 269
原ACMM198.65 8499.32 7296.62 12298.67 13393.27 22997.81 12198.97 9795.18 7599.83 6093.84 21899.46 10299.50 100
test22299.23 9797.17 10397.40 28398.66 13688.68 33798.05 9998.96 10394.14 10099.53 9299.61 82
testdata299.89 3991.65 280
segment_acmp96.85 14
testdata98.26 11699.20 10195.36 18698.68 12591.89 27698.60 7599.10 7894.44 9699.82 6894.27 20599.44 10499.58 91
testdata197.32 29396.34 86
v894.47 24993.77 25996.57 23396.36 30894.83 21199.05 6598.19 22591.92 27593.16 28296.97 29288.82 20698.48 26491.69 27987.79 32996.39 319
131496.25 14995.73 15497.79 14697.13 26595.55 17998.19 21998.59 14893.47 22092.03 31597.82 22591.33 14999.49 15394.62 19298.44 15298.32 206
112197.37 10296.77 11699.16 5399.34 6697.99 7098.19 21998.68 12590.14 32098.01 10898.97 9794.80 8699.87 4893.36 23299.46 10299.61 82
LFMVS95.86 16794.98 19498.47 10098.87 13296.32 14198.84 10996.02 34693.40 22398.62 7399.20 5974.99 35599.63 13397.72 6597.20 18899.46 111
VDD-MVS95.82 17095.23 18297.61 16398.84 13693.98 24498.68 14597.40 30895.02 15197.95 11299.34 3574.37 35999.78 10098.64 896.80 19499.08 161
VDDNet95.36 19594.53 21297.86 14098.10 19895.13 19698.85 10697.75 27990.46 31298.36 8799.39 1873.27 36199.64 13097.98 4496.58 20198.81 180
v1094.29 25993.55 27196.51 24296.39 30694.80 21398.99 7998.19 22591.35 29393.02 28896.99 29088.09 22198.41 28290.50 29588.41 32396.33 323
VPNet94.99 21694.19 22997.40 17397.16 26396.57 12798.71 13898.97 3195.67 11594.84 21298.24 18980.36 32598.67 24596.46 13387.32 33596.96 247
MVS94.67 23593.54 27298.08 12996.88 27996.56 12898.19 21998.50 17278.05 36592.69 29798.02 20291.07 15699.63 13390.09 29998.36 15798.04 213
v2v48294.69 23094.03 23796.65 22196.17 31694.79 21498.67 14898.08 25192.72 24794.00 25297.16 27087.69 23498.45 27092.91 24688.87 31996.72 279
V4294.78 22894.14 23396.70 21796.33 31195.22 19298.97 8398.09 25092.32 26394.31 23597.06 28288.39 21498.55 25692.90 24788.87 31996.34 321
SD-MVS98.64 1598.68 798.53 9499.33 6998.36 4798.90 9398.85 6897.28 3699.72 399.39 1896.63 1997.60 33598.17 3699.85 599.64 76
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS94.81 22694.03 23797.14 18697.15 26493.86 24796.76 33097.58 28894.00 18994.76 21797.04 28580.91 32098.48 26491.79 27696.25 21699.09 157
MSLP-MVS++98.56 2998.57 1198.55 9099.26 8996.80 11598.71 13899.05 2597.28 3698.84 5599.28 4496.47 2299.40 16398.52 2099.70 5799.47 107
APDe-MVS99.02 498.84 499.55 999.57 3598.96 1699.39 1398.93 3997.38 3099.41 1399.54 196.66 1799.84 5798.86 499.85 599.87 1
APD-MVS_3200maxsize98.53 3598.33 3799.15 5699.50 4597.92 7299.15 4598.81 8096.24 8899.20 2699.37 2695.30 6899.80 8497.73 6499.67 6099.72 46
ADS-MVSNet294.58 24194.40 22395.11 29998.00 20388.74 34396.04 34297.30 31290.15 31896.47 18296.64 31387.89 22697.56 33790.08 30097.06 18999.02 165
EI-MVSNet95.96 15995.83 15096.36 25597.93 20893.70 25698.12 22998.27 21493.70 20895.07 20799.02 9092.23 12598.54 25894.68 18993.46 25896.84 267
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
CVMVSNet95.43 18896.04 14393.57 32997.93 20883.62 36498.12 22998.59 14895.68 11396.56 17499.02 9087.51 23597.51 33993.56 22897.44 18499.60 85
pmmvs494.69 23093.99 24396.81 21195.74 33095.94 16097.40 28397.67 28290.42 31493.37 27697.59 24389.08 19598.20 30292.97 24491.67 28196.30 325
EU-MVSNet93.66 28194.14 23392.25 34295.96 32583.38 36598.52 17098.12 24094.69 16392.61 29998.13 19687.36 24096.39 35891.82 27590.00 30096.98 244
VNet97.79 7497.40 8698.96 7098.88 13197.55 8698.63 15598.93 3996.74 6899.02 4098.84 11790.33 17099.83 6098.53 1496.66 19899.50 100
test-LLR95.10 21094.87 19995.80 27996.77 28389.70 32696.91 31895.21 35495.11 14594.83 21495.72 33887.71 23198.97 20993.06 24098.50 14998.72 184
TESTMET0.1,194.18 26793.69 26695.63 28496.92 27589.12 33696.91 31894.78 35993.17 23294.88 21196.45 31978.52 33498.92 21993.09 23998.50 14998.85 177
test-mter94.08 27493.51 27395.80 27996.77 28389.70 32696.91 31895.21 35492.89 24394.83 21495.72 33877.69 34198.97 20993.06 24098.50 14998.72 184
VPA-MVSNet95.75 17295.11 18897.69 15697.24 25497.27 9598.94 8999.23 1395.13 14395.51 20197.32 26085.73 26798.91 22097.33 9289.55 30796.89 259
ACMMPR98.59 2198.36 2799.29 3499.74 898.15 6199.23 3098.95 3596.10 9698.93 5099.19 6295.70 5099.94 497.62 7499.79 2399.78 16
testgi93.06 29592.45 29494.88 30696.43 30589.90 32398.75 12697.54 29595.60 11891.63 32097.91 21374.46 35897.02 34586.10 33693.67 24997.72 223
test20.0390.89 31490.38 31292.43 33993.48 36088.14 35298.33 19597.56 28993.40 22387.96 34796.71 30980.69 32494.13 36979.15 36386.17 34595.01 352
thres600view795.49 18494.77 20197.67 15898.98 12595.02 19998.85 10696.90 33295.38 12996.63 17196.90 29984.29 29199.59 13788.65 32296.33 20998.40 201
ADS-MVSNet95.00 21594.45 21996.63 22598.00 20391.91 29096.04 34297.74 28090.15 31896.47 18296.64 31387.89 22698.96 21390.08 30097.06 18999.02 165
MP-MVScopyleft98.33 5498.01 5899.28 3899.75 498.18 5899.22 3498.79 9696.13 9397.92 11799.23 5294.54 9099.94 496.74 12699.78 2799.73 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs21.48 34724.95 35011.09 36314.89 3856.47 38796.56 3369.87 3867.55 37917.93 37939.02 3779.43 3865.90 38216.56 38012.72 37920.91 377
thres40095.38 19294.62 20897.65 16198.94 12794.98 20398.68 14596.93 33095.33 13296.55 17696.53 31684.23 29499.56 14288.11 32396.29 21198.40 201
test12320.95 34823.72 35112.64 36213.54 3868.19 38696.55 3376.13 3877.48 38016.74 38037.98 37812.97 3836.05 38116.69 3795.43 38023.68 376
thres20095.25 20194.57 21097.28 17898.81 13894.92 20798.20 21597.11 31995.24 14096.54 17896.22 32784.58 28899.53 14887.93 32796.50 20597.39 230
test0.0.03 194.08 27493.51 27395.80 27995.53 33792.89 28097.38 28595.97 34895.11 14592.51 30496.66 31087.71 23196.94 34787.03 33193.67 24997.57 226
pmmvs386.67 33284.86 33592.11 34388.16 37187.19 35996.63 33494.75 36079.88 36387.22 35092.75 36066.56 36895.20 36581.24 35776.56 36593.96 361
EMVS64.07 34363.26 34666.53 36081.73 37758.81 38291.85 36684.75 38051.93 37559.09 37575.13 37443.32 37679.09 37842.03 37739.47 37561.69 374
E-PMN64.94 34264.25 34467.02 35982.28 37659.36 38191.83 36785.63 37952.69 37360.22 37477.28 37341.06 37780.12 37746.15 37641.14 37461.57 375
PGM-MVS98.49 3798.23 4799.27 4199.72 1398.08 6498.99 7999.49 595.43 12699.03 3999.32 3795.56 5399.94 496.80 12299.77 3099.78 16
LCM-MVSNet-Re95.22 20395.32 17794.91 30498.18 19187.85 35598.75 12695.66 35295.11 14588.96 34196.85 30390.26 17297.65 33395.65 16598.44 15299.22 138
LCM-MVSNet78.70 33476.24 33986.08 34977.26 38071.99 37594.34 36196.72 34061.62 37176.53 36689.33 36533.91 38092.78 37181.85 35574.60 36793.46 363
MCST-MVS98.65 1498.37 2699.48 1399.60 3398.87 1998.41 18798.68 12597.04 5498.52 7898.80 12296.78 1699.83 6097.93 4899.61 7399.74 37
mvs_anonymous96.70 12896.53 12697.18 18398.19 18993.78 24998.31 20198.19 22594.01 18894.47 22498.27 18692.08 13198.46 26997.39 8997.91 16999.31 127
MVS_Test97.28 10597.00 10298.13 12598.33 17895.97 15798.74 12998.07 25394.27 17998.44 8398.07 19992.48 11899.26 17196.43 13698.19 16199.16 149
MDA-MVSNet-bldmvs89.97 32188.35 32694.83 30995.21 34391.34 30197.64 27197.51 29788.36 33971.17 37196.13 32979.22 33196.63 35583.65 35186.27 34496.52 308
CDPH-MVS97.94 6897.49 8099.28 3899.47 5298.44 3697.91 24898.67 13392.57 25398.77 6098.85 11595.93 4299.72 11395.56 16799.69 5899.68 63
test1299.18 5099.16 10798.19 5798.53 16298.07 9895.13 7799.72 11399.56 8699.63 79
casdiffmvs97.63 8297.41 8598.28 11398.33 17896.14 14898.82 11398.32 20396.38 8597.95 11299.21 5591.23 15299.23 17598.12 3898.37 15599.48 105
diffmvs97.58 8797.40 8698.13 12598.32 18095.81 17098.06 23498.37 19696.20 9098.74 6298.89 11191.31 15099.25 17298.16 3798.52 14799.34 121
baseline295.11 20994.52 21396.87 20796.65 29293.56 25898.27 20894.10 36893.45 22192.02 31697.43 25587.45 23999.19 17993.88 21797.41 18697.87 217
baseline195.84 16895.12 18798.01 13398.49 16495.98 15298.73 13397.03 32495.37 13196.22 18898.19 19289.96 17599.16 18194.60 19387.48 33298.90 176
YYNet190.70 31689.39 31994.62 31594.79 35090.65 31597.20 30097.46 30187.54 34272.54 36995.74 33486.51 25296.66 35486.00 33786.76 34396.54 303
PMMVS277.95 33675.44 34085.46 35082.54 37574.95 37394.23 36293.08 37072.80 36874.68 36787.38 36636.36 37991.56 37273.95 36963.94 37289.87 367
MDA-MVSNet_test_wron90.71 31589.38 32094.68 31394.83 34890.78 31297.19 30197.46 30187.60 34172.41 37095.72 33886.51 25296.71 35385.92 33886.80 34296.56 300
tpmvs94.60 23894.36 22495.33 29397.46 24088.60 34596.88 32497.68 28191.29 29793.80 26296.42 32088.58 20899.24 17491.06 28696.04 22298.17 210
PM-MVS87.77 32986.55 33391.40 34591.03 36983.36 36696.92 31695.18 35691.28 29886.48 35493.42 35753.27 37396.74 35089.43 31581.97 35394.11 358
HQP_MVS96.14 15195.90 14796.85 20897.42 24594.60 22398.80 12098.56 15697.28 3695.34 20298.28 18387.09 24299.03 20296.07 14494.27 23096.92 251
plane_prior797.42 24594.63 218
plane_prior697.35 25094.61 22187.09 242
plane_prior598.56 15699.03 20296.07 14494.27 23096.92 251
plane_prior498.28 183
plane_prior394.61 22197.02 5595.34 202
plane_prior298.80 12097.28 36
plane_prior197.37 249
plane_prior94.60 22398.44 18296.74 6894.22 232
PS-CasMVS94.67 23593.99 24396.71 21596.68 29095.26 19199.13 5099.03 2693.68 21192.33 30997.95 21085.35 27598.10 30993.59 22688.16 32796.79 271
UniMVSNet_NR-MVSNet95.71 17595.15 18597.40 17396.84 28196.97 10898.74 12999.24 1195.16 14293.88 25797.72 23291.68 13898.31 29395.81 15587.25 33696.92 251
PEN-MVS94.42 25293.73 26396.49 24396.28 31294.84 20999.17 4399.00 2893.51 21892.23 31197.83 22486.10 26197.90 32592.55 25886.92 34096.74 276
TransMVSNet (Re)92.67 29991.51 30496.15 26396.58 29594.65 21698.90 9396.73 33990.86 30789.46 33997.86 21885.62 26998.09 31186.45 33481.12 35695.71 338
DTE-MVSNet93.98 27893.26 28196.14 26496.06 32194.39 23299.20 3998.86 6493.06 23691.78 31797.81 22685.87 26597.58 33690.53 29486.17 34596.46 317
DU-MVS95.42 18994.76 20297.40 17396.53 29796.97 10898.66 15198.99 3095.43 12693.88 25797.69 23388.57 20998.31 29395.81 15587.25 33696.92 251
UniMVSNet (Re)95.78 17195.19 18497.58 16496.99 27297.47 8998.79 12499.18 1795.60 11893.92 25597.04 28591.68 13898.48 26495.80 15787.66 33196.79 271
CP-MVSNet94.94 22294.30 22596.83 20996.72 28895.56 17799.11 5498.95 3593.89 19492.42 30897.90 21487.19 24198.12 30894.32 20388.21 32596.82 270
WR-MVS_H95.05 21394.46 21796.81 21196.86 28095.82 16999.24 2999.24 1193.87 19692.53 30296.84 30490.37 16898.24 30193.24 23587.93 32896.38 320
WR-MVS95.15 20794.46 21797.22 18096.67 29196.45 13398.21 21298.81 8094.15 18193.16 28297.69 23387.51 23598.30 29595.29 17588.62 32196.90 258
NR-MVSNet94.98 21894.16 23197.44 16996.53 29797.22 10198.74 12998.95 3594.96 15489.25 34097.69 23389.32 18698.18 30394.59 19587.40 33496.92 251
Baseline_NR-MVSNet94.35 25593.81 25595.96 27296.20 31494.05 24398.61 15896.67 34391.44 28993.85 25997.60 24288.57 20998.14 30694.39 19986.93 33995.68 339
TranMVSNet+NR-MVSNet95.14 20894.48 21597.11 18996.45 30496.36 13999.03 6999.03 2695.04 15093.58 26797.93 21288.27 21698.03 31694.13 20986.90 34196.95 250
TSAR-MVS + GP.98.38 4698.24 4698.81 7799.22 9897.25 10098.11 23198.29 21397.19 4598.99 4499.02 9096.22 2499.67 12698.52 2098.56 14699.51 98
abl_698.30 5798.03 5799.13 5799.56 3797.76 8099.13 5098.82 7496.14 9299.26 2299.37 2693.33 10999.93 1996.96 10599.67 6099.69 57
n20.00 388
nn0.00 388
mPP-MVS98.51 3698.26 4299.25 4299.75 498.04 6599.28 2598.81 8096.24 8898.35 8999.23 5295.46 5799.94 497.42 8899.81 1299.77 23
door-mid94.37 363
XVG-OURS-SEG-HR96.51 13796.34 13097.02 19498.77 14093.76 25097.79 26298.50 17295.45 12596.94 15699.09 8487.87 22899.55 14796.76 12595.83 22497.74 221
mvsmamba96.57 13596.32 13297.32 17796.60 29396.43 13599.54 797.98 26496.49 7895.20 20698.64 14190.82 15898.55 25697.97 4593.65 25196.98 244
MVSFormer97.57 8897.49 8097.84 14198.07 19995.76 17199.47 998.40 19094.98 15298.79 5898.83 11992.34 12098.41 28296.91 10799.59 7799.34 121
jason97.32 10497.08 9898.06 13197.45 24495.59 17597.87 25497.91 27394.79 16098.55 7798.83 11991.12 15399.23 17597.58 7799.60 7499.34 121
jason: jason.
lupinMVS97.44 9697.22 9398.12 12798.07 19995.76 17197.68 26897.76 27894.50 17398.79 5898.61 14492.34 12099.30 16997.58 7799.59 7799.31 127
test_djsdf96.00 15795.69 16196.93 20295.72 33195.49 18199.47 998.40 19094.98 15294.58 22097.86 21889.16 19298.41 28296.91 10794.12 23896.88 260
HPM-MVS_fast98.38 4698.13 5199.12 6099.75 497.86 7399.44 1298.82 7494.46 17598.94 4599.20 5995.16 7699.74 11197.58 7799.85 599.77 23
bld_raw_conf00595.91 16595.56 16596.99 19596.51 29995.46 18299.21 3797.42 30796.41 8494.10 24698.63 14386.59 25198.54 25897.56 8193.59 25696.96 247
K. test v392.55 30091.91 30294.48 31995.64 33389.24 33499.07 6294.88 35894.04 18586.78 35197.59 24377.64 34497.64 33492.08 26789.43 31096.57 298
lessismore_v094.45 32294.93 34788.44 34891.03 37586.77 35297.64 23976.23 35098.42 27490.31 29785.64 34896.51 311
SixPastTwentyTwo93.34 28792.86 28694.75 31195.67 33289.41 33398.75 12696.67 34393.89 19490.15 33398.25 18880.87 32198.27 30090.90 28990.64 29396.57 298
OurMVSNet-221017-094.21 26394.00 24194.85 30795.60 33489.22 33598.89 9797.43 30595.29 13592.18 31298.52 15682.86 30898.59 25293.46 22991.76 27996.74 276
HPM-MVScopyleft98.36 4898.10 5499.13 5799.74 897.82 7799.53 898.80 9194.63 16898.61 7498.97 9795.13 7799.77 10597.65 7299.83 1199.79 13
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS96.55 13696.41 12896.99 19598.75 14193.76 25097.50 27998.52 16495.67 11596.83 16299.30 4288.95 20299.53 14895.88 15396.26 21597.69 224
XVG-ACMP-BASELINE94.54 24394.14 23395.75 28296.55 29691.65 29798.11 23198.44 18394.96 15494.22 24097.90 21479.18 33299.11 19194.05 21493.85 24596.48 315
LPG-MVS_test95.62 18195.34 17496.47 24597.46 24093.54 25998.99 7998.54 16094.67 16594.36 23298.77 12685.39 27399.11 19195.71 16294.15 23696.76 274
LGP-MVS_train96.47 24597.46 24093.54 25998.54 16094.67 16594.36 23298.77 12685.39 27399.11 19195.71 16294.15 23696.76 274
baseline97.64 8197.44 8498.25 11798.35 17196.20 14599.00 7798.32 20396.33 8798.03 10299.17 6391.35 14899.16 18198.10 3998.29 16099.39 118
test1198.66 136
door94.64 361
EPNet_dtu95.21 20494.95 19695.99 26996.17 31690.45 31898.16 22597.27 31596.77 6693.14 28598.33 17990.34 16998.42 27485.57 34098.81 13699.09 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268897.12 11496.80 10998.08 12999.30 7994.56 22698.05 23599.71 193.57 21797.09 14898.91 11088.17 21899.89 3996.87 11799.56 8699.81 11
EPNet97.28 10596.87 10898.51 9594.98 34596.14 14898.90 9397.02 32698.28 195.99 19599.11 7691.36 14799.89 3996.98 10299.19 11799.50 100
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS94.25 238
HQP-NCC97.20 25898.05 23596.43 8194.45 225
ACMP_Plane97.20 25898.05 23596.43 8194.45 225
APD-MVScopyleft98.35 5098.00 5999.42 1899.51 4398.72 2198.80 12098.82 7494.52 17299.23 2499.25 5095.54 5599.80 8496.52 13299.77 3099.74 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS95.30 173
HQP4-MVS94.45 22598.96 21396.87 262
HQP3-MVS98.46 17994.18 234
HQP2-MVS86.75 248
CNVR-MVS98.78 798.56 1299.45 1799.32 7298.87 1998.47 17898.81 8097.72 798.76 6199.16 6897.05 1399.78 10098.06 4199.66 6399.69 57
NCCC98.61 1898.35 2999.38 2099.28 8698.61 2998.45 17998.76 10397.82 698.45 8298.93 10796.65 1899.83 6097.38 9099.41 10699.71 50
114514_t96.93 12096.27 13498.92 7299.50 4597.63 8398.85 10698.90 4684.80 35697.77 12299.11 7692.84 11499.66 12794.85 18499.77 3099.47 107
CP-MVS98.57 2798.36 2799.19 4699.66 2897.86 7399.34 1998.87 5895.96 10198.60 7599.13 7396.05 3699.94 497.77 6299.86 199.77 23
DSMNet-mixed92.52 30192.58 29292.33 34094.15 35482.65 36798.30 20394.26 36589.08 33592.65 29895.73 33685.01 28095.76 36186.24 33597.76 17698.59 194
tpm294.19 26593.76 26195.46 28997.23 25589.04 33897.31 29496.85 33887.08 34496.21 18996.79 30683.75 30698.74 23992.43 26396.23 21798.59 194
NP-MVS97.28 25294.51 22797.73 230
EG-PatchMatch MVS91.13 31190.12 31494.17 32694.73 35189.00 33998.13 22897.81 27689.22 33485.32 35896.46 31867.71 36698.42 27487.89 32893.82 24695.08 349
tpm cat193.36 28592.80 28795.07 30197.58 22987.97 35396.76 33097.86 27582.17 36193.53 26996.04 33186.13 26099.13 18789.24 31795.87 22398.10 212
SteuartSystems-ACMMP98.90 698.75 699.36 2499.22 9898.43 3899.10 5798.87 5897.38 3099.35 1799.40 1797.78 599.87 4897.77 6299.85 599.78 16
Skip Steuart: Steuart Systems R&D Blog.
CostFormer94.95 22094.73 20495.60 28597.28 25289.06 33797.53 27896.89 33489.66 32896.82 16496.72 30886.05 26298.95 21795.53 16896.13 22098.79 181
CR-MVSNet94.76 22994.15 23296.59 23097.00 27093.43 26494.96 35497.56 28992.46 25496.93 15796.24 32388.15 21997.88 32987.38 32996.65 19998.46 199
JIA-IIPM93.35 28692.49 29395.92 27396.48 30290.65 31595.01 35396.96 32885.93 35196.08 19287.33 36787.70 23398.78 23791.35 28395.58 22598.34 204
Patchmtry93.22 29192.35 29595.84 27896.77 28393.09 27894.66 35997.56 28987.37 34392.90 29096.24 32388.15 21997.90 32587.37 33090.10 29996.53 305
PatchT93.06 29591.97 30096.35 25696.69 28992.67 28194.48 36097.08 32086.62 34597.08 14992.23 36287.94 22597.90 32578.89 36496.69 19798.49 198
tpmrst95.63 18095.69 16195.44 29097.54 23488.54 34696.97 31397.56 28993.50 21997.52 14096.93 29889.49 18199.16 18195.25 17796.42 20798.64 192
BH-w/o95.38 19295.08 18996.26 26198.34 17691.79 29297.70 26797.43 30592.87 24494.24 23997.22 26788.66 20798.84 23091.55 28197.70 17998.16 211
tpm94.13 26993.80 25695.12 29896.50 30087.91 35497.44 28095.89 35192.62 25096.37 18696.30 32284.13 29798.30 29593.24 23591.66 28299.14 152
DELS-MVS98.40 4598.20 4998.99 6699.00 12197.66 8197.75 26498.89 4897.71 998.33 9098.97 9794.97 8199.88 4798.42 2899.76 3699.42 117
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned95.95 16095.72 15596.65 22198.55 16092.26 28498.23 21097.79 27793.73 20494.62 21998.01 20488.97 20199.00 20893.04 24298.51 14898.68 187
RPMNet92.81 29791.34 30597.24 17997.00 27093.43 26494.96 35498.80 9182.27 36096.93 15792.12 36386.98 24599.82 6876.32 36896.65 19998.46 199
MVSTER96.06 15495.72 15597.08 19198.23 18495.93 16398.73 13398.27 21494.86 15895.07 20798.09 19888.21 21798.54 25896.59 12893.46 25896.79 271
CPTT-MVS97.72 7797.32 8998.92 7299.64 3097.10 10499.12 5298.81 8092.34 26198.09 9799.08 8693.01 11399.92 2596.06 14799.77 3099.75 32
GBi-Net94.49 24793.80 25696.56 23498.21 18695.00 20098.82 11398.18 22892.46 25494.09 24797.07 27981.16 31797.95 32192.08 26792.14 27496.72 279
PVSNet_Blended_VisFu97.70 7897.46 8298.44 10399.27 8795.91 16598.63 15599.16 1894.48 17497.67 13098.88 11292.80 11599.91 3497.11 9899.12 11999.50 100
PVSNet_BlendedMVS96.73 12796.60 12297.12 18899.25 9095.35 18898.26 20999.26 994.28 17897.94 11497.46 25192.74 11699.81 7596.88 11493.32 26396.20 327
UnsupCasMVSNet_eth90.99 31389.92 31694.19 32594.08 35589.83 32497.13 30798.67 13393.69 20985.83 35696.19 32875.15 35496.74 35089.14 31879.41 36096.00 332
UnsupCasMVSNet_bld87.17 33085.12 33493.31 33491.94 36588.77 34294.92 35698.30 21184.30 35882.30 36290.04 36463.96 37197.25 34285.85 33974.47 36893.93 362
PVSNet_Blended97.38 10197.12 9598.14 12399.25 9095.35 18897.28 29699.26 993.13 23497.94 11498.21 19092.74 11699.81 7596.88 11499.40 10899.27 134
FMVSNet591.81 30490.92 30794.49 31897.21 25792.09 28698.00 24197.55 29489.31 33390.86 32695.61 34274.48 35795.32 36485.57 34089.70 30396.07 331
test194.49 24793.80 25696.56 23498.21 18695.00 20098.82 11398.18 22892.46 25494.09 24797.07 27981.16 31797.95 32192.08 26792.14 27496.72 279
new_pmnet90.06 32089.00 32493.22 33694.18 35388.32 35096.42 34096.89 33486.19 34885.67 35793.62 35677.18 34797.10 34481.61 35689.29 31294.23 356
FMVSNet394.97 21994.26 22697.11 18998.18 19196.62 12298.56 16698.26 21893.67 21394.09 24797.10 27284.25 29398.01 31792.08 26792.14 27496.70 283
dp94.15 26893.90 24994.90 30597.31 25186.82 36096.97 31397.19 31891.22 30196.02 19496.61 31585.51 27299.02 20590.00 30494.30 22998.85 177
FMVSNet294.47 24993.61 26997.04 19298.21 18696.43 13598.79 12498.27 21492.46 25493.50 27397.09 27681.16 31798.00 31991.09 28491.93 27796.70 283
FMVSNet193.19 29392.07 29896.56 23497.54 23495.00 20098.82 11398.18 22890.38 31592.27 31097.07 27973.68 36097.95 32189.36 31691.30 28596.72 279
N_pmnet87.12 33187.77 33085.17 35195.46 33961.92 37897.37 28770.66 38485.83 35288.73 34596.04 33185.33 27797.76 33280.02 35990.48 29495.84 335
cascas94.63 23793.86 25296.93 20296.91 27794.27 23696.00 34598.51 16785.55 35494.54 22196.23 32584.20 29698.87 22795.80 15796.98 19297.66 225
BH-RMVSNet95.92 16495.32 17797.69 15698.32 18094.64 21798.19 21997.45 30394.56 16996.03 19398.61 14485.02 27999.12 18990.68 29399.06 12099.30 130
UGNet96.78 12696.30 13398.19 12298.24 18395.89 16798.88 10098.93 3997.39 2996.81 16597.84 22182.60 30999.90 3796.53 13199.49 9698.79 181
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS97.37 10296.92 10698.72 8098.86 13396.89 11498.31 20198.71 11895.26 13797.67 13098.56 15292.21 12699.78 10095.89 15296.85 19399.48 105
XXY-MVS95.20 20594.45 21997.46 16896.75 28696.56 12898.86 10598.65 14093.30 22893.27 27998.27 18684.85 28398.87 22794.82 18691.26 28796.96 247
DROMVSNet98.21 6098.11 5398.49 9898.34 17697.26 9999.61 598.43 18696.78 6598.87 5498.84 11793.72 10699.01 20798.91 399.50 9599.19 143
sss97.39 10096.98 10498.61 8698.60 15796.61 12498.22 21198.93 3993.97 19198.01 10898.48 15891.98 13399.85 5496.45 13498.15 16299.39 118
Test_1112_low_res96.34 14495.66 16398.36 10998.56 15895.94 16097.71 26698.07 25392.10 27194.79 21697.29 26291.75 13799.56 14294.17 20896.50 20599.58 91
1112_ss96.63 12996.00 14598.50 9698.56 15896.37 13898.18 22398.10 24592.92 24294.84 21298.43 16492.14 12899.58 13894.35 20196.51 20499.56 93
ab-mvs-re8.20 34910.94 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38398.43 1640.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs96.42 14095.71 15898.55 9098.63 15496.75 11897.88 25398.74 10893.84 19796.54 17898.18 19385.34 27699.75 10995.93 15196.35 20899.15 150
TR-MVS94.94 22294.20 22897.17 18497.75 21794.14 24197.59 27597.02 32692.28 26695.75 19897.64 23983.88 30298.96 21389.77 30696.15 21998.40 201
MDTV_nov1_ep13_2view84.26 36396.89 32390.97 30697.90 11889.89 17693.91 21699.18 148
MDTV_nov1_ep1395.40 16897.48 23888.34 34996.85 32697.29 31393.74 20397.48 14197.26 26389.18 19199.05 19891.92 27497.43 185
MIMVSNet189.67 32388.28 32793.82 32792.81 36491.08 30798.01 23997.45 30387.95 34087.90 34895.87 33367.63 36794.56 36878.73 36588.18 32695.83 336
MIMVSNet93.26 29092.21 29796.41 25197.73 22193.13 27695.65 34997.03 32491.27 29994.04 25096.06 33075.33 35397.19 34386.56 33396.23 21798.92 175
IterMVS-LS95.46 18595.21 18396.22 26298.12 19693.72 25598.32 20098.13 23993.71 20694.26 23797.31 26192.24 12498.10 30994.63 19090.12 29896.84 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet96.99 11896.69 11897.90 13998.05 20295.98 15298.20 21598.33 20293.67 21396.95 15598.49 15793.54 10798.42 27495.24 17897.74 17799.31 127
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref92.97 268
IterMVS94.09 27393.85 25394.80 31097.99 20590.35 31997.18 30298.12 24093.68 21192.46 30797.34 25884.05 29897.41 34092.51 26091.33 28496.62 292
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon97.86 7197.46 8299.06 6499.53 3998.35 4898.33 19598.89 4892.62 25098.05 9998.94 10695.34 6599.65 12896.04 14899.42 10599.19 143
MVS_111021_LR98.34 5298.23 4798.67 8399.27 8796.90 11297.95 24499.58 397.14 4998.44 8399.01 9495.03 8099.62 13597.91 4999.75 4299.50 100
DP-MVS96.59 13295.93 14698.57 8899.34 6696.19 14798.70 14298.39 19289.45 33194.52 22299.35 3291.85 13599.85 5492.89 24998.88 13099.68 63
ACMMP++93.61 254
HQP-MVS95.72 17495.40 16896.69 21897.20 25894.25 23898.05 23598.46 17996.43 8194.45 22597.73 23086.75 24898.96 21395.30 17394.18 23496.86 265
QAPM96.29 14595.40 16898.96 7097.85 21397.60 8599.23 3098.93 3989.76 32693.11 28699.02 9089.11 19499.93 1991.99 27299.62 7299.34 121
Vis-MVSNetpermissive97.42 9897.11 9698.34 11098.66 15196.23 14499.22 3499.00 2896.63 7398.04 10199.21 5588.05 22399.35 16696.01 15099.21 11599.45 113
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet89.46 32688.40 32592.64 33897.58 22982.15 36894.16 36393.05 37175.73 36790.90 32582.52 36979.42 33098.33 29083.53 35298.68 13897.43 227
IS-MVSNet97.22 10796.88 10798.25 11798.85 13596.36 13999.19 4197.97 26695.39 12897.23 14498.99 9691.11 15498.93 21894.60 19398.59 14499.47 107
HyFIR lowres test96.90 12296.49 12798.14 12399.33 6995.56 17797.38 28599.65 292.34 26197.61 13698.20 19189.29 18799.10 19496.97 10397.60 18299.77 23
EPMVS94.99 21694.48 21596.52 24197.22 25691.75 29497.23 29891.66 37494.11 18297.28 14296.81 30585.70 26898.84 23093.04 24297.28 18798.97 170
PAPM_NR97.46 9297.11 9698.50 9699.50 4596.41 13798.63 15598.60 14695.18 14197.06 15298.06 20094.26 9999.57 13993.80 22098.87 13299.52 94
TAMVS97.02 11796.79 11197.70 15598.06 20195.31 19098.52 17098.31 20593.95 19297.05 15398.61 14493.49 10898.52 26195.33 17297.81 17399.29 132
PAPR96.84 12496.24 13698.65 8498.72 14696.92 11197.36 28998.57 15493.33 22596.67 16997.57 24594.30 9899.56 14291.05 28898.59 14499.47 107
RPSCF94.87 22495.40 16893.26 33598.89 13082.06 36998.33 19598.06 25890.30 31796.56 17499.26 4787.09 24299.49 15393.82 21996.32 21098.24 207
Vis-MVSNet (Re-imp)96.87 12396.55 12497.83 14298.73 14295.46 18299.20 3998.30 21194.96 15496.60 17398.87 11390.05 17398.59 25293.67 22498.60 14399.46 111
test_040291.32 30890.27 31394.48 31996.60 29391.12 30698.50 17597.22 31786.10 35088.30 34696.98 29177.65 34397.99 32078.13 36692.94 26994.34 355
MVS_111021_HR98.47 4098.34 3398.88 7599.22 9897.32 9397.91 24899.58 397.20 4498.33 9099.00 9595.99 3999.64 13098.05 4399.76 3699.69 57
CSCG97.85 7297.74 6898.20 12099.67 2795.16 19399.22 3499.32 793.04 23797.02 15498.92 10995.36 6499.91 3497.43 8799.64 6899.52 94
PatchMatch-RL96.59 13296.03 14498.27 11499.31 7496.51 13197.91 24899.06 2393.72 20596.92 15998.06 20088.50 21399.65 12891.77 27799.00 12598.66 190
API-MVS97.41 9997.25 9197.91 13898.70 14796.80 11598.82 11398.69 12294.53 17098.11 9598.28 18394.50 9499.57 13994.12 21099.49 9697.37 232
Test By Simon94.64 87
TDRefinement91.06 31289.68 31795.21 29585.35 37491.49 30098.51 17497.07 32191.47 28788.83 34497.84 22177.31 34599.09 19592.79 25077.98 36295.04 350
USDC93.33 28892.71 28995.21 29596.83 28290.83 31196.91 31897.50 29893.84 19790.72 32798.14 19577.69 34198.82 23389.51 31393.21 26695.97 333
EPP-MVSNet97.46 9297.28 9097.99 13498.64 15395.38 18599.33 2298.31 20593.61 21697.19 14599.07 8794.05 10199.23 17596.89 11198.43 15499.37 120
PMMVS96.60 13096.33 13197.41 17197.90 21093.93 24597.35 29098.41 18892.84 24597.76 12397.45 25391.10 15599.20 17896.26 14197.91 16999.11 155
PAPM94.95 22094.00 24197.78 14797.04 26995.65 17496.03 34498.25 22091.23 30094.19 24297.80 22791.27 15198.86 22982.61 35497.61 18198.84 179
ACMMPcopyleft98.23 5897.95 6199.09 6299.74 897.62 8499.03 6999.41 695.98 9997.60 13799.36 3094.45 9599.93 1997.14 9798.85 13399.70 54
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA97.45 9597.03 10098.73 7999.05 11497.44 9198.07 23398.53 16295.32 13496.80 16698.53 15393.32 11099.72 11394.31 20499.31 11399.02 165
PatchmatchNetpermissive95.71 17595.52 16696.29 26097.58 22990.72 31396.84 32797.52 29694.06 18497.08 14996.96 29489.24 19098.90 22392.03 27198.37 15599.26 135
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS98.34 5298.06 5599.18 5099.15 10998.12 6399.04 6699.09 2193.32 22698.83 5799.10 7896.54 2099.83 6097.70 7099.76 3699.59 87
F-COLMAP97.09 11696.80 10997.97 13599.45 5994.95 20698.55 16898.62 14593.02 23896.17 19098.58 14994.01 10299.81 7593.95 21598.90 12899.14 152
ANet_high69.08 33965.37 34380.22 35465.99 38271.96 37690.91 36890.09 37682.62 35949.93 37778.39 37229.36 38181.75 37562.49 37338.52 37686.95 370
wuyk23d30.17 34530.18 34930.16 36178.61 37943.29 38566.79 37414.21 38517.31 37814.82 38111.93 38111.55 38441.43 38037.08 37819.30 3785.76 378
OMC-MVS97.55 9097.34 8898.20 12099.33 6995.92 16498.28 20698.59 14895.52 12297.97 11199.10 7893.28 11199.49 15395.09 18098.88 13099.19 143
MG-MVS97.81 7397.60 7198.44 10399.12 11195.97 15797.75 26498.78 9996.89 6198.46 7999.22 5493.90 10599.68 12594.81 18799.52 9499.67 67
AdaColmapbinary97.15 11396.70 11798.48 9999.16 10796.69 12198.01 23998.89 4894.44 17696.83 16298.68 13690.69 16499.76 10794.36 20099.29 11498.98 169
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
ITE_SJBPF95.44 29097.42 24591.32 30397.50 29895.09 14893.59 26698.35 17481.70 31398.88 22689.71 30893.39 26296.12 329
DeepMVS_CXcopyleft86.78 34897.09 26872.30 37495.17 35775.92 36684.34 36095.19 34470.58 36395.35 36279.98 36189.04 31692.68 365
TinyColmap92.31 30291.53 30394.65 31496.92 27589.75 32596.92 31696.68 34290.45 31389.62 33697.85 22076.06 35198.81 23486.74 33292.51 27295.41 342
MAR-MVS96.91 12196.40 12998.45 10298.69 14996.90 11298.66 15198.68 12592.40 26097.07 15197.96 20991.54 14499.75 10993.68 22298.92 12798.69 186
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS93.14 29492.79 28894.20 32495.88 32788.67 34497.66 27097.07 32193.81 20091.71 31897.65 23777.96 34098.81 23491.47 28291.92 27895.12 347
MSDG95.93 16395.30 18097.83 14298.90 12995.36 18696.83 32898.37 19691.32 29594.43 22998.73 13090.27 17199.60 13690.05 30298.82 13598.52 197
LS3D97.16 11296.66 12198.68 8298.53 16197.19 10298.93 9198.90 4692.83 24695.99 19599.37 2692.12 12999.87 4893.67 22499.57 8198.97 170
CLD-MVS95.62 18195.34 17496.46 24897.52 23793.75 25297.27 29798.46 17995.53 12194.42 23098.00 20586.21 25998.97 20996.25 14294.37 22896.66 289
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS77.62 33777.14 33779.05 35579.25 37860.97 37995.79 34795.94 34965.96 36967.93 37294.40 35137.73 37888.88 37468.83 37188.46 32287.29 368
Gipumacopyleft78.40 33576.75 33883.38 35295.54 33680.43 37079.42 37397.40 30864.67 37073.46 36880.82 37145.65 37593.14 37066.32 37287.43 33376.56 373
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015