This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
SED-MVS99.09 198.91 199.63 499.71 2199.24 599.02 7398.87 5897.65 1099.73 199.48 897.53 799.94 498.43 2699.81 1299.70 54
test_241102_ONE99.71 2199.24 598.87 5897.62 1299.73 199.39 1897.53 799.74 111
SD-MVS98.64 1598.68 798.53 9499.33 6998.36 4798.90 9398.85 6897.28 3699.72 399.39 1896.63 1997.60 33598.17 3699.85 599.64 76
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
IU-MVS99.71 2199.23 798.64 14195.28 13699.63 498.35 3299.81 1299.83 7
PC_three_145295.08 14999.60 599.16 6897.86 298.47 26797.52 8599.72 5499.74 37
test072699.72 1399.25 299.06 6398.88 5197.62 1299.56 699.50 597.42 9
TSAR-MVS + MP.98.78 798.62 999.24 4399.69 2698.28 5399.14 4798.66 13696.84 6299.56 699.31 3996.34 2399.70 11998.32 3399.73 4799.73 42
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPE-MVScopyleft98.92 598.67 899.65 299.58 3499.20 998.42 18698.91 4597.58 1599.54 899.46 1397.10 1299.94 497.64 7399.84 1099.83 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVS++99.08 298.89 299.64 399.17 10399.23 799.69 198.88 5197.32 3399.53 999.47 1097.81 399.94 498.47 2299.72 5499.74 37
test_241102_TWO98.87 5897.65 1099.53 999.48 897.34 1199.94 498.43 2699.80 1999.83 7
DVP-MVScopyleft99.03 398.83 599.63 499.72 1399.25 298.97 8398.58 15397.62 1299.45 1199.46 1397.42 999.94 498.47 2299.81 1299.69 57
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD97.32 3399.45 1199.46 1397.88 199.94 498.47 2299.86 199.85 4
MSP-MVS98.74 998.55 1399.29 3499.75 498.23 5499.26 2798.88 5197.52 1799.41 1398.78 12496.00 3899.79 9697.79 6199.59 7799.85 4
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVS99.02 498.84 499.55 999.57 3598.96 1699.39 1398.93 3997.38 3099.41 1399.54 196.66 1799.84 5798.86 499.85 599.87 1
FOURS199.82 198.66 2699.69 198.95 3597.46 2399.39 15
SMA-MVScopyleft98.58 2498.25 4399.56 899.51 4399.04 1598.95 8798.80 9193.67 21399.37 1699.52 396.52 2199.89 3998.06 4199.81 1299.76 30
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SteuartSystems-ACMMP98.90 698.75 699.36 2499.22 9898.43 3899.10 5798.87 5897.38 3099.35 1799.40 1797.78 599.87 4897.77 6299.85 599.78 16
Skip Steuart: Steuart Systems R&D Blog.
xxxxxxxxxxxxxcwj98.70 1098.50 1799.30 3399.46 5598.38 4098.21 21298.52 16497.95 399.32 1899.39 1896.22 2499.84 5797.72 6599.73 4799.67 67
SF-MVS98.59 2198.32 3899.41 1999.54 3898.71 2299.04 6698.81 8095.12 14499.32 1899.39 1896.22 2499.84 5797.72 6599.73 4799.67 67
dcpmvs_298.08 6198.59 1096.56 23499.57 3590.34 32099.15 4598.38 19596.82 6499.29 2099.49 795.78 4899.57 13998.94 299.86 199.77 23
test_part299.63 3199.18 1099.27 21
abl_698.30 5798.03 5799.13 5799.56 3797.76 8099.13 5098.82 7496.14 9299.26 2299.37 2693.33 10999.93 1996.96 10599.67 6099.69 57
DeepPCF-MVS96.37 297.93 6998.48 2296.30 25999.00 12189.54 33097.43 28298.87 5898.16 299.26 2299.38 2596.12 3299.64 13098.30 3499.77 3099.72 46
APD-MVScopyleft98.35 5098.00 5999.42 1899.51 4398.72 2198.80 12098.82 7494.52 17299.23 2499.25 5095.54 5599.80 8496.52 13299.77 3099.74 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Regformer-298.69 1298.52 1599.19 4699.35 6498.01 6798.37 19098.81 8097.48 2099.21 2599.21 5596.13 3199.80 8498.40 3099.73 4799.75 32
test_one_060199.66 2899.25 298.86 6497.55 1699.20 2699.47 1097.57 6
Regformer-198.66 1398.51 1699.12 6099.35 6497.81 7998.37 19098.76 10397.49 1999.20 2699.21 5596.08 3399.79 9698.42 2899.73 4799.75 32
APD-MVS_3200maxsize98.53 3598.33 3799.15 5699.50 4597.92 7299.15 4598.81 8096.24 8899.20 2699.37 2695.30 6899.80 8497.73 6499.67 6099.72 46
patch_mono-298.36 4898.87 396.82 21099.53 3990.68 31498.64 15399.29 897.88 599.19 2999.52 396.80 1599.97 199.11 199.86 199.82 10
SR-MVS-dyc-post98.54 3398.35 2999.13 5799.49 4997.86 7399.11 5498.80 9196.49 7899.17 3099.35 3295.34 6599.82 6897.72 6599.65 6499.71 50
RE-MVS-def98.34 3399.49 4997.86 7399.11 5498.80 9196.49 7899.17 3099.35 3295.29 6997.72 6599.65 6499.71 50
9.1498.06 5599.47 5298.71 13898.82 7494.36 17799.16 3299.29 4396.05 3699.81 7597.00 10199.71 56
ACMMP_NAP98.61 1898.30 3999.55 999.62 3298.95 1798.82 11398.81 8095.80 10899.16 3299.47 1095.37 6399.92 2597.89 5299.75 4299.79 13
ETH3D-3000-0.198.35 5098.00 5999.38 2099.47 5298.68 2598.67 14898.84 6994.66 16799.11 3499.25 5095.46 5799.81 7596.80 12299.73 4799.63 79
SR-MVS98.57 2798.35 2999.24 4399.53 3998.18 5899.09 5898.82 7496.58 7499.10 3599.32 3795.39 6199.82 6897.70 7099.63 7099.72 46
Regformer-498.64 1598.53 1498.99 6699.43 6197.37 9298.40 18898.79 9697.46 2399.09 3699.31 3995.86 4699.80 8498.64 899.76 3699.79 13
Regformer-398.59 2198.50 1798.86 7699.43 6197.05 10598.40 18898.68 12597.43 2699.06 3799.31 3995.80 4799.77 10598.62 1099.76 3699.78 16
test117298.56 2998.35 2999.16 5399.53 3997.94 7199.09 5898.83 7296.52 7799.05 3899.34 3595.34 6599.82 6897.86 5599.64 6899.73 42
PGM-MVS98.49 3798.23 4799.27 4199.72 1398.08 6498.99 7999.49 595.43 12699.03 3999.32 3795.56 5399.94 496.80 12299.77 3099.78 16
VNet97.79 7497.40 8698.96 7098.88 13197.55 8698.63 15598.93 3996.74 6899.02 4098.84 11790.33 17099.83 6098.53 1496.66 19899.50 100
xiu_mvs_v1_base_debu97.60 8397.56 7497.72 15298.35 17195.98 15297.86 25598.51 16797.13 5099.01 4198.40 16891.56 14199.80 8498.53 1498.68 13897.37 232
xiu_mvs_v1_base97.60 8397.56 7497.72 15298.35 17195.98 15297.86 25598.51 16797.13 5099.01 4198.40 16891.56 14199.80 8498.53 1498.68 13897.37 232
xiu_mvs_v1_base_debi97.60 8397.56 7497.72 15298.35 17195.98 15297.86 25598.51 16797.13 5099.01 4198.40 16891.56 14199.80 8498.53 1498.68 13897.37 232
TSAR-MVS + GP.98.38 4698.24 4698.81 7799.22 9897.25 10098.11 23198.29 21397.19 4598.99 4499.02 9096.22 2499.67 12698.52 2098.56 14699.51 98
CS-MVS98.44 4298.49 2098.31 11299.08 11396.73 11999.67 398.47 17897.17 4698.94 4599.10 7895.73 4999.13 18798.71 799.49 9699.09 157
HFP-MVS98.63 1798.40 2399.32 3199.72 1398.29 5199.23 3098.96 3396.10 9698.94 4599.17 6396.06 3499.92 2597.62 7499.78 2799.75 32
region2R98.61 1898.38 2599.29 3499.74 898.16 6099.23 3098.93 3996.15 9198.94 4599.17 6395.91 4399.94 497.55 8299.79 2399.78 16
#test#98.54 3398.27 4199.32 3199.72 1398.29 5198.98 8298.96 3395.65 11798.94 4599.17 6396.06 3499.92 2597.21 9699.78 2799.75 32
HPM-MVS_fast98.38 4698.13 5199.12 6099.75 497.86 7399.44 1298.82 7494.46 17598.94 4599.20 5995.16 7699.74 11197.58 7799.85 599.77 23
ACMMPR98.59 2198.36 2799.29 3499.74 898.15 6199.23 3098.95 3596.10 9698.93 5099.19 6295.70 5099.94 497.62 7499.79 2399.78 16
DeepC-MVS_fast96.70 198.55 3198.34 3399.18 5099.25 9098.04 6598.50 17598.78 9997.72 798.92 5199.28 4495.27 7099.82 6897.55 8299.77 3099.69 57
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testtj98.33 5497.95 6199.47 1499.49 4998.70 2398.83 11098.86 6495.48 12398.91 5299.17 6395.48 5699.93 1995.80 15799.53 9299.76 30
CS-MVS-test98.49 3798.50 1798.46 10199.20 10197.05 10599.64 498.50 17297.45 2598.88 5399.14 7295.25 7299.15 18498.83 599.56 8699.20 139
DROMVSNet98.21 6098.11 5398.49 9898.34 17697.26 9999.61 598.43 18696.78 6598.87 5498.84 11793.72 10699.01 20798.91 399.50 9599.19 143
EI-MVSNet-Vis-set98.47 4098.39 2498.69 8199.46 5596.49 13298.30 20398.69 12297.21 4398.84 5599.36 3095.41 6099.78 10098.62 1099.65 6499.80 12
MSLP-MVS++98.56 2998.57 1198.55 9099.26 8996.80 11598.71 13899.05 2597.28 3698.84 5599.28 4496.47 2299.40 16398.52 2099.70 5799.47 107
PHI-MVS98.34 5298.06 5599.18 5099.15 10998.12 6399.04 6699.09 2193.32 22698.83 5799.10 7896.54 2099.83 6097.70 7099.76 3699.59 87
MVSFormer97.57 8897.49 8097.84 14198.07 19995.76 17199.47 998.40 19094.98 15298.79 5898.83 11992.34 12098.41 28296.91 10799.59 7799.34 121
lupinMVS97.44 9697.22 9398.12 12798.07 19995.76 17197.68 26897.76 27894.50 17398.79 5898.61 14492.34 12099.30 16997.58 7799.59 7799.31 127
CDPH-MVS97.94 6897.49 8099.28 3899.47 5298.44 3697.91 24898.67 13392.57 25398.77 6098.85 11595.93 4299.72 11395.56 16799.69 5899.68 63
CNVR-MVS98.78 798.56 1299.45 1799.32 7298.87 1998.47 17898.81 8097.72 798.76 6199.16 6897.05 1399.78 10098.06 4199.66 6399.69 57
EI-MVSNet-UG-set98.41 4498.34 3398.61 8699.45 5996.32 14198.28 20698.68 12597.17 4698.74 6299.37 2695.25 7299.79 9698.57 1299.54 9199.73 42
diffmvs97.58 8797.40 8698.13 12598.32 18095.81 17098.06 23498.37 19696.20 9098.74 6298.89 11191.31 15099.25 17298.16 3798.52 14799.34 121
GST-MVS98.43 4398.12 5299.34 2699.72 1398.38 4099.09 5898.82 7495.71 11298.73 6499.06 8895.27 7099.93 1997.07 10099.63 7099.72 46
UA-Net97.96 6497.62 7098.98 6898.86 13397.47 8998.89 9799.08 2296.67 7198.72 6599.54 193.15 11299.81 7594.87 18398.83 13499.65 73
ETH3D cwj APD-0.1697.96 6497.52 7799.29 3499.05 11498.52 3298.33 19598.68 12593.18 23198.68 6699.13 7394.62 8899.83 6096.45 13499.55 9099.52 94
h-mvs3396.17 15095.62 16497.81 14599.03 11794.45 22898.64 15398.75 10697.48 2098.67 6798.72 13289.76 17799.86 5397.95 4681.59 35599.11 155
hse-mvs295.71 17595.30 18096.93 20298.50 16293.53 26198.36 19298.10 24597.48 2098.67 6797.99 20689.76 17799.02 20597.95 4680.91 35998.22 208
ZD-MVS99.46 5598.70 2398.79 9693.21 23098.67 6798.97 9795.70 5099.83 6096.07 14499.58 80
旧先验297.57 27791.30 29698.67 6799.80 8495.70 164
PS-MVSNAJ97.73 7697.77 6697.62 16298.68 15095.58 17697.34 29198.51 16797.29 3598.66 7197.88 21794.51 9199.90 3797.87 5499.17 11897.39 230
xiu_mvs_v2_base97.66 8097.70 6997.56 16698.61 15695.46 18297.44 28098.46 17997.15 4898.65 7298.15 19494.33 9799.80 8497.84 5898.66 14297.41 228
LFMVS95.86 16794.98 19498.47 10098.87 13296.32 14198.84 10996.02 34693.40 22398.62 7399.20 5974.99 35599.63 13397.72 6597.20 18899.46 111
HPM-MVScopyleft98.36 4898.10 5499.13 5799.74 897.82 7799.53 898.80 9194.63 16898.61 7498.97 9795.13 7799.77 10597.65 7299.83 1199.79 13
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
testdata98.26 11699.20 10195.36 18698.68 12591.89 27698.60 7599.10 7894.44 9699.82 6894.27 20599.44 10499.58 91
CP-MVS98.57 2798.36 2799.19 4699.66 2897.86 7399.34 1998.87 5895.96 10198.60 7599.13 7396.05 3699.94 497.77 6299.86 199.77 23
jason97.32 10497.08 9898.06 13197.45 24495.59 17597.87 25497.91 27394.79 16098.55 7798.83 11991.12 15399.23 17597.58 7799.60 7499.34 121
jason: jason.
MCST-MVS98.65 1498.37 2699.48 1399.60 3398.87 1998.41 18798.68 12597.04 5498.52 7898.80 12296.78 1699.83 6097.93 4899.61 7399.74 37
XVS98.70 1098.49 2099.34 2699.70 2498.35 4899.29 2398.88 5197.40 2798.46 7999.20 5995.90 4499.89 3997.85 5699.74 4599.78 16
X-MVStestdata94.06 27692.30 29699.34 2699.70 2498.35 4899.29 2398.88 5197.40 2798.46 7943.50 37695.90 4499.89 3997.85 5699.74 4599.78 16
MG-MVS97.81 7397.60 7198.44 10399.12 11195.97 15797.75 26498.78 9996.89 6198.46 7999.22 5493.90 10599.68 12594.81 18799.52 9499.67 67
NCCC98.61 1898.35 2999.38 2099.28 8698.61 2998.45 17998.76 10397.82 698.45 8298.93 10796.65 1899.83 6097.38 9099.41 10699.71 50
ETH3 D test640097.59 8697.01 10199.34 2699.40 6398.56 3098.20 21598.81 8091.63 28498.44 8398.85 11593.98 10499.82 6894.11 21199.69 5899.64 76
MVS_Test97.28 10597.00 10298.13 12598.33 17895.97 15798.74 12998.07 25394.27 17998.44 8398.07 19992.48 11899.26 17196.43 13698.19 16199.16 149
MVS_111021_LR98.34 5298.23 4798.67 8399.27 8796.90 11297.95 24499.58 397.14 4998.44 8399.01 9495.03 8099.62 13597.91 4999.75 4299.50 100
ETV-MVS97.96 6497.81 6598.40 10798.42 16797.27 9598.73 13398.55 15896.84 6298.38 8697.44 25495.39 6199.35 16697.62 7498.89 12998.58 196
test250694.44 25193.91 24896.04 26799.02 11888.99 34099.06 6379.47 38396.96 5898.36 8799.26 4777.21 34699.52 15196.78 12499.04 12199.59 87
VDDNet95.36 19594.53 21297.86 14098.10 19895.13 19698.85 10697.75 27990.46 31298.36 8799.39 1873.27 36199.64 13097.98 4496.58 20198.81 180
mPP-MVS98.51 3698.26 4299.25 4299.75 498.04 6599.28 2598.81 8096.24 8898.35 8999.23 5295.46 5799.94 497.42 8899.81 1299.77 23
DELS-MVS98.40 4598.20 4998.99 6699.00 12197.66 8197.75 26498.89 4897.71 998.33 9098.97 9794.97 8199.88 4798.42 2899.76 3699.42 117
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR98.47 4098.34 3398.88 7599.22 9897.32 9397.91 24899.58 397.20 4498.33 9099.00 9595.99 3999.64 13098.05 4399.76 3699.69 57
ZNCC-MVS98.49 3798.20 4999.35 2599.73 1298.39 3999.19 4198.86 6495.77 10998.31 9299.10 7895.46 5799.93 1997.57 8099.81 1299.74 37
HPM-MVS++copyleft98.58 2498.25 4399.55 999.50 4599.08 1198.72 13798.66 13697.51 1898.15 9398.83 11995.70 5099.92 2597.53 8499.67 6099.66 71
新几何199.16 5399.34 6698.01 6798.69 12290.06 32198.13 9498.95 10594.60 8999.89 3991.97 27399.47 9999.59 87
API-MVS97.41 9997.25 9197.91 13898.70 14796.80 11598.82 11398.69 12294.53 17098.11 9598.28 18394.50 9499.57 13994.12 21099.49 9697.37 232
ECVR-MVScopyleft95.95 16095.71 15896.65 22199.02 11890.86 30999.03 6991.80 37396.96 5898.10 9699.26 4781.31 31699.51 15296.90 11099.04 12199.59 87
CPTT-MVS97.72 7797.32 8998.92 7299.64 3097.10 10499.12 5298.81 8092.34 26198.09 9799.08 8693.01 11399.92 2596.06 14799.77 3099.75 32
test1299.18 5099.16 10798.19 5798.53 16298.07 9895.13 7799.72 11399.56 8699.63 79
test22299.23 9797.17 10397.40 28398.66 13688.68 33798.05 9998.96 10394.14 10099.53 9299.61 82
DP-MVS Recon97.86 7197.46 8299.06 6499.53 3998.35 4898.33 19598.89 4892.62 25098.05 9998.94 10695.34 6599.65 12896.04 14899.42 10599.19 143
Vis-MVSNetpermissive97.42 9897.11 9698.34 11098.66 15196.23 14499.22 3499.00 2896.63 7398.04 10199.21 5588.05 22399.35 16696.01 15099.21 11599.45 113
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test111195.94 16295.78 15296.41 25198.99 12490.12 32299.04 6692.45 37296.99 5798.03 10299.27 4681.40 31599.48 15796.87 11799.04 12199.63 79
baseline97.64 8197.44 8498.25 11798.35 17196.20 14599.00 7798.32 20396.33 8798.03 10299.17 6391.35 14899.16 18198.10 3998.29 16099.39 118
test_yl97.22 10796.78 11298.54 9298.73 14296.60 12598.45 17998.31 20594.70 16198.02 10498.42 16690.80 16199.70 11996.81 12096.79 19599.34 121
DCV-MVSNet97.22 10796.78 11298.54 9298.73 14296.60 12598.45 17998.31 20594.70 16198.02 10498.42 16690.80 16199.70 11996.81 12096.79 19599.34 121
zzz-MVS98.55 3198.25 4399.46 1599.76 298.64 2798.55 16898.74 10897.27 4098.02 10499.39 1894.81 8499.96 297.91 4999.79 2399.77 23
MTAPA98.58 2498.29 4099.46 1599.76 298.64 2798.90 9398.74 10897.27 4098.02 10499.39 1894.81 8499.96 297.91 4999.79 2399.77 23
112197.37 10296.77 11699.16 5399.34 6697.99 7098.19 21998.68 12590.14 32098.01 10898.97 9794.80 8699.87 4893.36 23299.46 10299.61 82
sss97.39 10096.98 10498.61 8698.60 15796.61 12498.22 21198.93 3993.97 19198.01 10898.48 15891.98 13399.85 5496.45 13498.15 16299.39 118
alignmvs97.56 8997.07 9999.01 6598.66 15198.37 4698.83 11098.06 25896.74 6898.00 11097.65 23790.80 16199.48 15798.37 3196.56 20299.19 143
OMC-MVS97.55 9097.34 8898.20 12099.33 6995.92 16498.28 20698.59 14895.52 12297.97 11199.10 7893.28 11199.49 15395.09 18098.88 13099.19 143
VDD-MVS95.82 17095.23 18297.61 16398.84 13693.98 24498.68 14597.40 30895.02 15197.95 11299.34 3574.37 35999.78 10098.64 896.80 19499.08 161
casdiffmvs97.63 8297.41 8598.28 11398.33 17896.14 14898.82 11398.32 20396.38 8597.95 11299.21 5591.23 15299.23 17598.12 3898.37 15599.48 105
PVSNet_BlendedMVS96.73 12796.60 12297.12 18899.25 9095.35 18898.26 20999.26 994.28 17897.94 11497.46 25192.74 11699.81 7596.88 11493.32 26396.20 327
PVSNet_Blended97.38 10197.12 9598.14 12399.25 9095.35 18897.28 29699.26 993.13 23497.94 11498.21 19092.74 11699.81 7596.88 11499.40 10899.27 134
DPM-MVS97.55 9096.99 10399.23 4599.04 11698.55 3197.17 30498.35 19994.85 15997.93 11698.58 14995.07 7999.71 11892.60 25399.34 11199.43 115
MP-MVScopyleft98.33 5498.01 5899.28 3899.75 498.18 5899.22 3498.79 9696.13 9397.92 11799.23 5294.54 9099.94 496.74 12699.78 2799.73 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MDTV_nov1_ep13_2view84.26 36396.89 32390.97 30697.90 11889.89 17693.91 21699.18 148
test_prior398.22 5997.90 6499.19 4699.31 7498.22 5597.80 26098.84 6996.12 9497.89 11998.69 13495.96 4099.70 11996.89 11199.60 7499.65 73
test_prior297.80 26096.12 9497.89 11998.69 13495.96 4096.89 11199.60 74
原ACMM198.65 8499.32 7296.62 12298.67 13393.27 22997.81 12198.97 9795.18 7599.83 6093.84 21899.46 10299.50 100
114514_t96.93 12096.27 13498.92 7299.50 4597.63 8398.85 10698.90 4684.80 35697.77 12299.11 7692.84 11499.66 12794.85 18499.77 3099.47 107
PMMVS96.60 13096.33 13197.41 17197.90 21093.93 24597.35 29098.41 18892.84 24597.76 12397.45 25391.10 15599.20 17896.26 14197.91 16999.11 155
PVSNet91.96 1896.35 14396.15 13896.96 20099.17 10392.05 28896.08 34198.68 12593.69 20997.75 12497.80 22788.86 20499.69 12494.26 20699.01 12499.15 150
TEST999.31 7498.50 3497.92 24698.73 11292.63 24997.74 12598.68 13696.20 2799.80 84
train_agg97.97 6397.52 7799.33 3099.31 7498.50 3497.92 24698.73 11292.98 23997.74 12598.68 13696.20 2799.80 8496.59 12899.57 8199.68 63
CANet98.05 6297.76 6798.90 7498.73 14297.27 9598.35 19398.78 9997.37 3297.72 12798.96 10391.53 14599.92 2598.79 699.65 6499.51 98
test_899.29 8298.44 3697.89 25298.72 11492.98 23997.70 12898.66 13996.20 2799.80 84
MP-MVS-pluss98.31 5697.92 6399.49 1299.72 1398.88 1898.43 18498.78 9994.10 18397.69 12999.42 1695.25 7299.92 2598.09 4099.80 1999.67 67
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
canonicalmvs97.67 7997.23 9298.98 6898.70 14798.38 4099.34 1998.39 19296.76 6797.67 13097.40 25792.26 12399.49 15398.28 3596.28 21499.08 161
PVSNet_Blended_VisFu97.70 7897.46 8298.44 10399.27 8795.91 16598.63 15599.16 1894.48 17497.67 13098.88 11292.80 11599.91 3497.11 9899.12 11999.50 100
WTY-MVS97.37 10296.92 10698.72 8098.86 13396.89 11498.31 20198.71 11895.26 13797.67 13098.56 15292.21 12699.78 10095.89 15296.85 19399.48 105
Effi-MVS+97.12 11496.69 11898.39 10898.19 18996.72 12097.37 28798.43 18693.71 20697.65 13398.02 20292.20 12799.25 17296.87 11797.79 17499.19 143
thisisatest053096.01 15695.36 17397.97 13598.38 16995.52 18098.88 10094.19 36694.04 18597.64 13498.31 18183.82 30599.46 16095.29 17597.70 17998.93 174
tttt051796.07 15395.51 16797.78 14798.41 16894.84 20999.28 2594.33 36494.26 18097.64 13498.64 14184.05 29899.47 15995.34 17197.60 18299.03 164
HyFIR lowres test96.90 12296.49 12798.14 12399.33 6995.56 17797.38 28599.65 292.34 26197.61 13698.20 19189.29 18799.10 19496.97 10397.60 18299.77 23
ACMMPcopyleft98.23 5897.95 6199.09 6299.74 897.62 8499.03 6999.41 695.98 9997.60 13799.36 3094.45 9599.93 1997.14 9798.85 13399.70 54
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
agg_prior197.95 6797.51 7999.28 3899.30 7998.38 4097.81 25998.72 11493.16 23397.57 13898.66 13996.14 3099.81 7596.63 12799.56 8699.66 71
agg_prior99.30 7998.38 4098.72 11497.57 13899.81 75
tpmrst95.63 18095.69 16195.44 29097.54 23488.54 34696.97 31397.56 28993.50 21997.52 14096.93 29889.49 18199.16 18195.25 17796.42 20798.64 192
MDTV_nov1_ep1395.40 16897.48 23888.34 34996.85 32697.29 31393.74 20397.48 14197.26 26389.18 19199.05 19891.92 27497.43 185
EPMVS94.99 21694.48 21596.52 24197.22 25691.75 29497.23 29891.66 37494.11 18297.28 14296.81 30585.70 26898.84 23093.04 24297.28 18798.97 170
EIA-MVS97.75 7597.58 7298.27 11498.38 16996.44 13499.01 7598.60 14695.88 10597.26 14397.53 24894.97 8199.33 16897.38 9099.20 11699.05 163
IS-MVSNet97.22 10796.88 10798.25 11798.85 13596.36 13999.19 4197.97 26695.39 12897.23 14498.99 9691.11 15498.93 21894.60 19398.59 14499.47 107
EPP-MVSNet97.46 9297.28 9097.99 13498.64 15395.38 18599.33 2298.31 20593.61 21697.19 14599.07 8794.05 10199.23 17596.89 11198.43 15499.37 120
thisisatest051595.61 18394.89 19897.76 14998.15 19595.15 19596.77 32994.41 36292.95 24197.18 14697.43 25584.78 28499.45 16194.63 19097.73 17898.68 187
CANet_DTU96.96 11996.55 12498.21 11998.17 19396.07 15097.98 24298.21 22297.24 4297.13 14798.93 10786.88 24799.91 3495.00 18299.37 11098.66 190
CHOSEN 1792x268897.12 11496.80 10998.08 12999.30 7994.56 22698.05 23599.71 193.57 21797.09 14898.91 11088.17 21899.89 3996.87 11799.56 8699.81 11
PatchT93.06 29591.97 30096.35 25696.69 28992.67 28194.48 36097.08 32086.62 34597.08 14992.23 36287.94 22597.90 32578.89 36496.69 19798.49 198
PatchmatchNetpermissive95.71 17595.52 16696.29 26097.58 22990.72 31396.84 32797.52 29694.06 18497.08 14996.96 29489.24 19098.90 22392.03 27198.37 15599.26 135
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MAR-MVS96.91 12196.40 12998.45 10298.69 14996.90 11298.66 15198.68 12592.40 26097.07 15197.96 20991.54 14499.75 10993.68 22298.92 12798.69 186
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPM_NR97.46 9297.11 9698.50 9699.50 4596.41 13798.63 15598.60 14695.18 14197.06 15298.06 20094.26 9999.57 13993.80 22098.87 13299.52 94
TAMVS97.02 11796.79 11197.70 15598.06 20195.31 19098.52 17098.31 20593.95 19297.05 15398.61 14493.49 10898.52 26195.33 17297.81 17399.29 132
CSCG97.85 7297.74 6898.20 12099.67 2795.16 19399.22 3499.32 793.04 23797.02 15498.92 10995.36 6499.91 3497.43 8799.64 6899.52 94
CDS-MVSNet96.99 11896.69 11897.90 13998.05 20295.98 15298.20 21598.33 20293.67 21396.95 15598.49 15793.54 10798.42 27495.24 17897.74 17799.31 127
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
XVG-OURS-SEG-HR96.51 13796.34 13097.02 19498.77 14093.76 25097.79 26298.50 17295.45 12596.94 15699.09 8487.87 22899.55 14796.76 12595.83 22497.74 221
CR-MVSNet94.76 22994.15 23296.59 23097.00 27093.43 26494.96 35497.56 28992.46 25496.93 15796.24 32388.15 21997.88 32987.38 32996.65 19998.46 199
RPMNet92.81 29791.34 30597.24 17997.00 27093.43 26494.96 35498.80 9182.27 36096.93 15792.12 36386.98 24599.82 6876.32 36896.65 19998.46 199
SCA95.46 18595.13 18696.46 24897.67 22391.29 30497.33 29297.60 28794.68 16496.92 15997.10 27283.97 30098.89 22492.59 25598.32 15999.20 139
PatchMatch-RL96.59 13296.03 14498.27 11499.31 7496.51 13197.91 24899.06 2393.72 20596.92 15998.06 20088.50 21399.65 12891.77 27799.00 12598.66 190
DeepC-MVS95.98 397.88 7097.58 7298.77 7899.25 9096.93 11098.83 11098.75 10696.96 5896.89 16199.50 590.46 16799.87 4897.84 5899.76 3699.52 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XVG-OURS96.55 13696.41 12896.99 19598.75 14193.76 25097.50 27998.52 16495.67 11596.83 16299.30 4288.95 20299.53 14895.88 15396.26 21597.69 224
AdaColmapbinary97.15 11396.70 11798.48 9999.16 10796.69 12198.01 23998.89 4894.44 17696.83 16298.68 13690.69 16499.76 10794.36 20099.29 11498.98 169
CostFormer94.95 22094.73 20495.60 28597.28 25289.06 33797.53 27896.89 33489.66 32896.82 16496.72 30886.05 26298.95 21795.53 16896.13 22098.79 181
UGNet96.78 12696.30 13398.19 12298.24 18395.89 16798.88 10098.93 3997.39 2996.81 16597.84 22182.60 30999.90 3796.53 13199.49 9698.79 181
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CNLPA97.45 9597.03 10098.73 7999.05 11497.44 9198.07 23398.53 16295.32 13496.80 16698.53 15393.32 11099.72 11394.31 20499.31 11399.02 165
CHOSEN 280x42097.18 11197.18 9497.20 18198.81 13893.27 27195.78 34899.15 1995.25 13896.79 16798.11 19792.29 12299.07 19798.56 1399.85 599.25 136
HY-MVS93.96 896.82 12596.23 13798.57 8898.46 16597.00 10798.14 22698.21 22293.95 19296.72 16897.99 20691.58 14099.76 10794.51 19796.54 20398.95 173
PAPR96.84 12496.24 13698.65 8498.72 14696.92 11197.36 28998.57 15493.33 22596.67 16997.57 24594.30 9899.56 14291.05 28898.59 14499.47 107
Anonymous2024052995.10 21094.22 22797.75 15099.01 12094.26 23798.87 10398.83 7285.79 35396.64 17098.97 9778.73 33399.85 5496.27 14094.89 22799.12 154
thres600view795.49 18494.77 20197.67 15898.98 12595.02 19998.85 10696.90 33295.38 12996.63 17196.90 29984.29 29199.59 13788.65 32296.33 20998.40 201
thres100view90095.38 19294.70 20597.41 17198.98 12594.92 20798.87 10396.90 33295.38 12996.61 17296.88 30084.29 29199.56 14288.11 32396.29 21197.76 219
Vis-MVSNet (Re-imp)96.87 12396.55 12497.83 14298.73 14295.46 18299.20 3998.30 21194.96 15496.60 17398.87 11390.05 17398.59 25293.67 22498.60 14399.46 111
CVMVSNet95.43 18896.04 14393.57 32997.93 20883.62 36498.12 22998.59 14895.68 11396.56 17499.02 9087.51 23597.51 33993.56 22897.44 18499.60 85
RPSCF94.87 22495.40 16893.26 33598.89 13082.06 36998.33 19598.06 25890.30 31796.56 17499.26 4787.09 24299.49 15393.82 21996.32 21098.24 207
tfpn200view995.32 19994.62 20897.43 17098.94 12794.98 20398.68 14596.93 33095.33 13296.55 17696.53 31684.23 29499.56 14288.11 32396.29 21197.76 219
thres40095.38 19294.62 20897.65 16198.94 12794.98 20398.68 14596.93 33095.33 13296.55 17696.53 31684.23 29499.56 14288.11 32396.29 21198.40 201
thres20095.25 20194.57 21097.28 17898.81 13894.92 20798.20 21597.11 31995.24 14096.54 17896.22 32784.58 28899.53 14887.93 32796.50 20597.39 230
ab-mvs96.42 14095.71 15898.55 9098.63 15496.75 11897.88 25398.74 10893.84 19796.54 17898.18 19385.34 27699.75 10995.93 15196.35 20899.15 150
mvs-test196.60 13096.68 12096.37 25497.89 21191.81 29198.56 16698.10 24596.57 7596.52 18097.94 21190.81 15999.45 16195.72 16098.01 16697.86 218
Anonymous20240521195.28 20094.49 21497.67 15899.00 12193.75 25298.70 14297.04 32390.66 30896.49 18198.80 12278.13 33899.83 6096.21 14395.36 22699.44 114
ADS-MVSNet294.58 24194.40 22395.11 29998.00 20388.74 34396.04 34297.30 31290.15 31896.47 18296.64 31387.89 22697.56 33790.08 30097.06 18999.02 165
ADS-MVSNet95.00 21594.45 21996.63 22598.00 20391.91 29096.04 34297.74 28090.15 31896.47 18296.64 31387.89 22698.96 21390.08 30097.06 18999.02 165
Effi-MVS+-dtu96.29 14596.56 12395.51 28697.89 21190.22 32198.80 12098.10 24596.57 7596.45 18496.66 31090.81 15998.91 22095.72 16097.99 16797.40 229
PLCcopyleft95.07 497.20 11096.78 11298.44 10399.29 8296.31 14398.14 22698.76 10392.41 25996.39 18598.31 18194.92 8399.78 10094.06 21398.77 13799.23 137
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpm94.13 26993.80 25695.12 29896.50 30087.91 35497.44 28095.89 35192.62 25096.37 18696.30 32284.13 29798.30 29593.24 23591.66 28299.14 152
TAPA-MVS93.98 795.35 19694.56 21197.74 15199.13 11094.83 21198.33 19598.64 14186.62 34596.29 18798.61 14494.00 10399.29 17080.00 36099.41 10699.09 157
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline195.84 16895.12 18798.01 13398.49 16495.98 15298.73 13397.03 32495.37 13196.22 18898.19 19289.96 17599.16 18194.60 19387.48 33298.90 176
tpm294.19 26593.76 26195.46 28997.23 25589.04 33897.31 29496.85 33887.08 34496.21 18996.79 30683.75 30698.74 23992.43 26396.23 21798.59 194
F-COLMAP97.09 11696.80 10997.97 13599.45 5994.95 20698.55 16898.62 14593.02 23896.17 19098.58 14994.01 10299.81 7593.95 21598.90 12899.14 152
GeoE96.58 13496.07 14198.10 12898.35 17195.89 16799.34 1998.12 24093.12 23596.09 19198.87 11389.71 17998.97 20992.95 24598.08 16599.43 115
JIA-IIPM93.35 28692.49 29395.92 27396.48 30290.65 31595.01 35396.96 32885.93 35196.08 19287.33 36787.70 23398.78 23791.35 28395.58 22598.34 204
BH-RMVSNet95.92 16495.32 17797.69 15698.32 18094.64 21798.19 21997.45 30394.56 16996.03 19398.61 14485.02 27999.12 18990.68 29399.06 12099.30 130
dp94.15 26893.90 24994.90 30597.31 25186.82 36096.97 31397.19 31891.22 30196.02 19496.61 31585.51 27299.02 20590.00 30494.30 22998.85 177
EPNet97.28 10596.87 10898.51 9594.98 34596.14 14898.90 9397.02 32698.28 195.99 19599.11 7691.36 14799.89 3996.98 10299.19 11799.50 100
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LS3D97.16 11296.66 12198.68 8298.53 16197.19 10298.93 9198.90 4692.83 24695.99 19599.37 2692.12 12999.87 4893.67 22499.57 8198.97 170
AUN-MVS94.53 24493.73 26396.92 20598.50 16293.52 26298.34 19498.10 24593.83 19995.94 19797.98 20885.59 27099.03 20294.35 20180.94 35898.22 208
TR-MVS94.94 22294.20 22897.17 18497.75 21794.14 24197.59 27597.02 32692.28 26695.75 19897.64 23983.88 30298.96 21389.77 30696.15 21998.40 201
iter_conf_final96.42 14096.12 13997.34 17698.46 16596.55 13099.08 6198.06 25896.03 9895.63 19998.46 16287.72 23098.59 25297.84 5893.80 24796.87 262
iter_conf0596.13 15295.79 15197.15 18598.16 19495.99 15198.88 10097.98 26495.91 10295.58 20098.46 16285.53 27198.59 25297.88 5393.75 24896.86 265
VPA-MVSNet95.75 17295.11 18897.69 15697.24 25497.27 9598.94 8999.23 1395.13 14395.51 20197.32 26085.73 26798.91 22097.33 9289.55 30796.89 259
HQP_MVS96.14 15195.90 14796.85 20897.42 24594.60 22398.80 12098.56 15697.28 3695.34 20298.28 18387.09 24299.03 20296.07 14494.27 23096.92 251
plane_prior394.61 22197.02 5595.34 202
Fast-Effi-MVS+96.28 14795.70 16098.03 13298.29 18295.97 15798.58 16198.25 22091.74 27995.29 20497.23 26691.03 15799.15 18492.90 24797.96 16898.97 170
test_low_dy_conf_00196.06 15495.86 14896.69 21896.39 30694.58 22599.47 998.26 21895.68 11395.23 20598.73 13088.90 20398.47 26796.43 13693.62 25397.02 241
mvsmamba96.57 13596.32 13297.32 17796.60 29396.43 13599.54 797.98 26496.49 7895.20 20698.64 14190.82 15898.55 25697.97 4593.65 25196.98 244
EI-MVSNet95.96 15995.83 15096.36 25597.93 20893.70 25698.12 22998.27 21493.70 20895.07 20799.02 9092.23 12598.54 25894.68 18993.46 25896.84 267
MVSTER96.06 15495.72 15597.08 19198.23 18495.93 16398.73 13398.27 21494.86 15895.07 20798.09 19888.21 21798.54 25896.59 12893.46 25896.79 271
OPM-MVS95.69 17895.33 17696.76 21396.16 31894.63 21898.43 18498.39 19296.64 7295.02 20998.78 12485.15 27899.05 19895.21 17994.20 23396.60 294
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Fast-Effi-MVS+-dtu95.87 16695.85 14995.91 27497.74 22091.74 29598.69 14498.15 23695.56 12094.92 21097.68 23688.98 20098.79 23693.19 23797.78 17597.20 236
TESTMET0.1,194.18 26793.69 26695.63 28496.92 27589.12 33696.91 31894.78 35993.17 23294.88 21196.45 31978.52 33498.92 21993.09 23998.50 14998.85 177
VPNet94.99 21694.19 22997.40 17397.16 26396.57 12798.71 13898.97 3195.67 11594.84 21298.24 18980.36 32598.67 24596.46 13387.32 33596.96 247
1112_ss96.63 12996.00 14598.50 9698.56 15896.37 13898.18 22398.10 24592.92 24294.84 21298.43 16492.14 12899.58 13894.35 20196.51 20499.56 93
test-LLR95.10 21094.87 19995.80 27996.77 28389.70 32696.91 31895.21 35495.11 14594.83 21495.72 33887.71 23198.97 20993.06 24098.50 14998.72 184
test-mter94.08 27493.51 27395.80 27996.77 28389.70 32696.91 31895.21 35492.89 24394.83 21495.72 33877.69 34198.97 20993.06 24098.50 14998.72 184
Test_1112_low_res96.34 14495.66 16398.36 10998.56 15895.94 16097.71 26698.07 25392.10 27194.79 21697.29 26291.75 13799.56 14294.17 20896.50 20599.58 91
GA-MVS94.81 22694.03 23797.14 18697.15 26493.86 24796.76 33097.58 28894.00 18994.76 21797.04 28580.91 32098.48 26491.79 27696.25 21699.09 157
bld_raw_dy_0_6495.74 17395.31 17997.03 19396.35 30995.76 17199.12 5297.37 31095.97 10094.70 21898.48 15885.80 26698.49 26396.55 13093.48 25796.84 267
BH-untuned95.95 16095.72 15596.65 22198.55 16092.26 28498.23 21097.79 27793.73 20494.62 21998.01 20488.97 20199.00 20893.04 24298.51 14898.68 187
test_djsdf96.00 15795.69 16196.93 20295.72 33195.49 18199.47 998.40 19094.98 15294.58 22097.86 21889.16 19298.41 28296.91 10794.12 23896.88 260
cascas94.63 23793.86 25296.93 20296.91 27794.27 23696.00 34598.51 16785.55 35494.54 22196.23 32584.20 29698.87 22795.80 15796.98 19297.66 225
DP-MVS96.59 13295.93 14698.57 8899.34 6696.19 14798.70 14298.39 19289.45 33194.52 22299.35 3291.85 13599.85 5492.89 24998.88 13099.68 63
gg-mvs-nofinetune92.21 30390.58 31097.13 18796.75 28695.09 19795.85 34689.40 37785.43 35594.50 22381.98 37080.80 32398.40 28892.16 26598.33 15897.88 216
mvs_anonymous96.70 12896.53 12697.18 18398.19 18993.78 24998.31 20198.19 22594.01 18894.47 22498.27 18692.08 13198.46 26997.39 8997.91 16999.31 127
HQP-NCC97.20 25898.05 23596.43 8194.45 225
ACMP_Plane97.20 25898.05 23596.43 8194.45 225
HQP4-MVS94.45 22598.96 21396.87 262
HQP-MVS95.72 17495.40 16896.69 21897.20 25894.25 23898.05 23598.46 17996.43 8194.45 22597.73 23086.75 24898.96 21395.30 17394.18 23496.86 265
MSDG95.93 16395.30 18097.83 14298.90 12995.36 18696.83 32898.37 19691.32 29594.43 22998.73 13090.27 17199.60 13690.05 30298.82 13598.52 197
nrg03096.28 14795.72 15597.96 13796.90 27898.15 6199.39 1398.31 20595.47 12494.42 23098.35 17492.09 13098.69 24197.50 8689.05 31597.04 239
CLD-MVS95.62 18195.34 17496.46 24897.52 23793.75 25297.27 29798.46 17995.53 12194.42 23098.00 20586.21 25998.97 20996.25 14294.37 22896.66 289
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LPG-MVS_test95.62 18195.34 17496.47 24597.46 24093.54 25998.99 7998.54 16094.67 16594.36 23298.77 12685.39 27399.11 19195.71 16294.15 23696.76 274
LGP-MVS_train96.47 24597.46 24093.54 25998.54 16094.67 16594.36 23298.77 12685.39 27399.11 19195.71 16294.15 23696.76 274
v14419294.39 25493.70 26596.48 24496.06 32194.35 23498.58 16198.16 23591.45 28894.33 23497.02 28787.50 23798.45 27091.08 28589.11 31496.63 291
V4294.78 22894.14 23396.70 21796.33 31195.22 19298.97 8398.09 25092.32 26394.31 23597.06 28288.39 21498.55 25692.90 24788.87 31996.34 321
ACMM93.85 995.69 17895.38 17296.61 22797.61 22793.84 24898.91 9298.44 18395.25 13894.28 23698.47 16086.04 26499.12 18995.50 16993.95 24396.87 262
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS-LS95.46 18595.21 18396.22 26298.12 19693.72 25598.32 20098.13 23993.71 20694.26 23797.31 26192.24 12498.10 30994.63 19090.12 29896.84 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192094.20 26493.47 27596.40 25395.98 32494.08 24298.52 17098.15 23691.33 29494.25 23897.20 26986.41 25698.42 27490.04 30389.39 31196.69 288
BH-w/o95.38 19295.08 18996.26 26198.34 17691.79 29297.70 26797.43 30592.87 24494.24 23997.22 26788.66 20798.84 23091.55 28197.70 17998.16 211
XVG-ACMP-BASELINE94.54 24394.14 23395.75 28296.55 29691.65 29798.11 23198.44 18394.96 15494.22 24097.90 21479.18 33299.11 19194.05 21493.85 24596.48 315
v114494.59 24093.92 24696.60 22996.21 31394.78 21598.59 15998.14 23891.86 27894.21 24197.02 28787.97 22498.41 28291.72 27889.57 30596.61 293
v119294.32 25793.58 27096.53 24096.10 31994.45 22898.50 17598.17 23391.54 28694.19 24297.06 28286.95 24698.43 27390.14 29889.57 30596.70 283
PAPM94.95 22094.00 24197.78 14797.04 26995.65 17496.03 34498.25 22091.23 30094.19 24297.80 22791.27 15198.86 22982.61 35497.61 18198.84 179
Patchmatch-test94.42 25293.68 26796.63 22597.60 22891.76 29394.83 35897.49 30089.45 33194.14 24497.10 27288.99 19798.83 23285.37 34398.13 16399.29 132
v124094.06 27693.29 28096.34 25796.03 32393.90 24698.44 18298.17 23391.18 30394.13 24597.01 28986.05 26298.42 27489.13 31989.50 30996.70 283
bld_raw_conf00595.91 16595.56 16596.99 19596.51 29995.46 18299.21 3797.42 30796.41 8494.10 24698.63 14386.59 25198.54 25897.56 8193.59 25696.96 247
GBi-Net94.49 24793.80 25696.56 23498.21 18695.00 20098.82 11398.18 22892.46 25494.09 24797.07 27981.16 31797.95 32192.08 26792.14 27496.72 279
test194.49 24793.80 25696.56 23498.21 18695.00 20098.82 11398.18 22892.46 25494.09 24797.07 27981.16 31797.95 32192.08 26792.14 27496.72 279
FMVSNet394.97 21994.26 22697.11 18998.18 19196.62 12298.56 16698.26 21893.67 21394.09 24797.10 27284.25 29398.01 31792.08 26792.14 27496.70 283
MIMVSNet93.26 29092.21 29796.41 25197.73 22193.13 27695.65 34997.03 32491.27 29994.04 25096.06 33075.33 35397.19 34386.56 33396.23 21798.92 175
FIs96.51 13796.12 13997.67 15897.13 26597.54 8799.36 1699.22 1595.89 10394.03 25198.35 17491.98 13398.44 27296.40 13892.76 27097.01 242
v2v48294.69 23094.03 23796.65 22196.17 31694.79 21498.67 14898.08 25192.72 24794.00 25297.16 27087.69 23498.45 27092.91 24688.87 31996.72 279
RRT_MVS95.98 15895.78 15296.56 23496.48 30294.22 24099.57 697.92 27195.89 10393.95 25398.70 13389.27 18898.42 27497.23 9493.02 26797.04 239
FC-MVSNet-test96.42 14096.05 14297.53 16796.95 27397.27 9599.36 1699.23 1395.83 10793.93 25498.37 17292.00 13298.32 29196.02 14992.72 27197.00 243
UniMVSNet (Re)95.78 17195.19 18497.58 16496.99 27297.47 8998.79 12499.18 1795.60 11893.92 25597.04 28591.68 13898.48 26495.80 15787.66 33196.79 271
miper_enhance_ethall95.10 21094.75 20396.12 26697.53 23693.73 25496.61 33598.08 25192.20 27093.89 25696.65 31292.44 11998.30 29594.21 20791.16 28896.34 321
UniMVSNet_NR-MVSNet95.71 17595.15 18597.40 17396.84 28196.97 10898.74 12999.24 1195.16 14293.88 25797.72 23291.68 13898.31 29395.81 15587.25 33696.92 251
DU-MVS95.42 18994.76 20297.40 17396.53 29796.97 10898.66 15198.99 3095.43 12693.88 25797.69 23388.57 20998.31 29395.81 15587.25 33696.92 251
Baseline_NR-MVSNet94.35 25593.81 25595.96 27296.20 31494.05 24398.61 15896.67 34391.44 28993.85 25997.60 24288.57 20998.14 30694.39 19986.93 33995.68 339
PS-MVSNAJss96.43 13996.26 13596.92 20595.84 32995.08 19899.16 4498.50 17295.87 10693.84 26098.34 17894.51 9198.61 24996.88 11493.45 26097.06 238
UniMVSNet_ETH3D94.24 26293.33 27896.97 19997.19 26193.38 26898.74 12998.57 15491.21 30293.81 26198.58 14972.85 36298.77 23895.05 18193.93 24498.77 183
MVS_030492.81 29792.01 29995.23 29497.46 24091.33 30298.17 22498.81 8091.13 30493.80 26295.68 34166.08 36998.06 31490.79 29096.13 22096.32 324
tpmvs94.60 23894.36 22495.33 29397.46 24088.60 34596.88 32497.68 28191.29 29793.80 26296.42 32088.58 20899.24 17491.06 28696.04 22298.17 210
3Dnovator94.51 597.46 9296.93 10599.07 6397.78 21697.64 8299.35 1899.06 2397.02 5593.75 26499.16 6889.25 18999.92 2597.22 9599.75 4299.64 76
eth_miper_zixun_eth94.68 23294.41 22295.47 28897.64 22591.71 29696.73 33298.07 25392.71 24893.64 26597.21 26890.54 16698.17 30493.38 23089.76 30296.54 303
ITE_SJBPF95.44 29097.42 24591.32 30397.50 29895.09 14893.59 26698.35 17481.70 31398.88 22689.71 30893.39 26296.12 329
TranMVSNet+NR-MVSNet95.14 20894.48 21597.11 18996.45 30496.36 13999.03 6999.03 2695.04 15093.58 26797.93 21288.27 21698.03 31694.13 20986.90 34196.95 250
COLMAP_ROBcopyleft93.27 1295.33 19894.87 19996.71 21599.29 8293.24 27398.58 16198.11 24389.92 32393.57 26899.10 7886.37 25799.79 9690.78 29198.10 16497.09 237
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tpm cat193.36 28592.80 28795.07 30197.58 22987.97 35396.76 33097.86 27582.17 36193.53 26996.04 33186.13 26099.13 18789.24 31795.87 22398.10 212
AllTest95.24 20294.65 20796.99 19599.25 9093.21 27498.59 15998.18 22891.36 29193.52 27098.77 12684.67 28699.72 11389.70 30997.87 17198.02 214
TestCases96.99 19599.25 9093.21 27498.18 22891.36 29193.52 27098.77 12684.67 28699.72 11389.70 30997.87 17198.02 214
miper_ehance_all_eth95.01 21494.69 20695.97 27197.70 22293.31 27097.02 31198.07 25392.23 26793.51 27296.96 29491.85 13598.15 30593.68 22291.16 28896.44 318
FMVSNet294.47 24993.61 26997.04 19298.21 18696.43 13598.79 12498.27 21492.46 25493.50 27397.09 27681.16 31798.00 31991.09 28491.93 27796.70 283
v14894.29 25993.76 26195.91 27496.10 31992.93 27998.58 16197.97 26692.59 25293.47 27496.95 29688.53 21298.32 29192.56 25787.06 33896.49 314
c3_l94.79 22794.43 22195.89 27697.75 21793.12 27797.16 30598.03 26192.23 26793.46 27597.05 28491.39 14698.01 31793.58 22789.21 31396.53 305
pmmvs494.69 23093.99 24396.81 21195.74 33095.94 16097.40 28397.67 28290.42 31493.37 27697.59 24389.08 19598.20 30292.97 24491.67 28196.30 325
PCF-MVS93.45 1194.68 23293.43 27698.42 10698.62 15596.77 11795.48 35298.20 22484.63 35793.34 27798.32 18088.55 21199.81 7584.80 34798.96 12698.68 187
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
cl2294.68 23294.19 22996.13 26598.11 19793.60 25796.94 31598.31 20592.43 25893.32 27896.87 30286.51 25298.28 29994.10 21291.16 28896.51 311
XXY-MVS95.20 20594.45 21997.46 16896.75 28696.56 12898.86 10598.65 14093.30 22893.27 27998.27 18684.85 28398.87 22794.82 18691.26 28796.96 247
jajsoiax95.45 18795.03 19196.73 21495.42 34294.63 21899.14 4798.52 16495.74 11093.22 28098.36 17383.87 30398.65 24796.95 10694.04 23996.91 256
mvs_tets95.41 19195.00 19296.65 22195.58 33594.42 23099.00 7798.55 15895.73 11193.21 28198.38 17183.45 30798.63 24897.09 9994.00 24196.91 256
anonymousdsp95.42 18994.91 19796.94 20195.10 34495.90 16699.14 4798.41 18893.75 20193.16 28297.46 25187.50 23798.41 28295.63 16694.03 24096.50 313
v894.47 24993.77 25996.57 23396.36 30894.83 21199.05 6598.19 22591.92 27593.16 28296.97 29288.82 20698.48 26491.69 27987.79 32996.39 319
WR-MVS95.15 20794.46 21797.22 18096.67 29196.45 13398.21 21298.81 8094.15 18193.16 28297.69 23387.51 23598.30 29595.29 17588.62 32196.90 258
EPNet_dtu95.21 20494.95 19695.99 26996.17 31690.45 31898.16 22597.27 31596.77 6693.14 28598.33 17990.34 16998.42 27485.57 34098.81 13699.09 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
QAPM96.29 14595.40 16898.96 7097.85 21397.60 8599.23 3098.93 3989.76 32693.11 28699.02 9089.11 19499.93 1991.99 27299.62 7299.34 121
GG-mvs-BLEND96.59 23096.34 31094.98 20396.51 33888.58 37893.10 28794.34 35480.34 32698.05 31589.53 31296.99 19196.74 276
v1094.29 25993.55 27196.51 24296.39 30694.80 21398.99 7998.19 22591.35 29393.02 28896.99 29088.09 22198.41 28290.50 29588.41 32396.33 323
3Dnovator+94.38 697.43 9796.78 11299.38 2097.83 21498.52 3299.37 1598.71 11897.09 5392.99 28999.13 7389.36 18599.89 3996.97 10399.57 8199.71 50
D2MVS95.18 20695.08 18995.48 28797.10 26792.07 28798.30 20399.13 2094.02 18792.90 29096.73 30789.48 18298.73 24094.48 19893.60 25595.65 340
Patchmtry93.22 29192.35 29595.84 27896.77 28393.09 27894.66 35997.56 28987.37 34392.90 29096.24 32388.15 21997.90 32587.37 33090.10 29996.53 305
DIV-MVS_self_test94.52 24594.03 23795.99 26997.57 23393.38 26897.05 30997.94 26991.74 27992.81 29297.10 27289.12 19398.07 31392.60 25390.30 29696.53 305
Anonymous2023121194.10 27293.26 28196.61 22799.11 11294.28 23599.01 7598.88 5186.43 34792.81 29297.57 24581.66 31498.68 24494.83 18589.02 31796.88 260
cl____94.51 24694.01 24096.02 26897.58 22993.40 26797.05 30997.96 26891.73 28192.76 29497.08 27889.06 19698.13 30792.61 25290.29 29796.52 308
miper_lstm_enhance94.33 25694.07 23695.11 29997.75 21790.97 30897.22 29998.03 26191.67 28392.76 29496.97 29290.03 17497.78 33192.51 26089.64 30496.56 300
v7n94.19 26593.43 27696.47 24595.90 32694.38 23399.26 2798.34 20191.99 27392.76 29497.13 27188.31 21598.52 26189.48 31487.70 33096.52 308
MVS94.67 23593.54 27298.08 12996.88 27996.56 12898.19 21998.50 17278.05 36592.69 29798.02 20291.07 15699.63 13390.09 29998.36 15798.04 213
DSMNet-mixed92.52 30192.58 29292.33 34094.15 35482.65 36798.30 20394.26 36589.08 33592.65 29895.73 33685.01 28095.76 36186.24 33597.76 17698.59 194
EU-MVSNet93.66 28194.14 23392.25 34295.96 32583.38 36598.52 17098.12 24094.69 16392.61 29998.13 19687.36 24096.39 35891.82 27590.00 30096.98 244
IterMVS-SCA-FT94.11 27193.87 25194.85 30797.98 20790.56 31797.18 30298.11 24393.75 20192.58 30097.48 25083.97 30097.41 34092.48 26291.30 28596.58 296
pmmvs593.65 28392.97 28595.68 28395.49 33892.37 28398.20 21597.28 31489.66 32892.58 30097.26 26382.14 31098.09 31193.18 23890.95 29196.58 296
WR-MVS_H95.05 21394.46 21796.81 21196.86 28095.82 16999.24 2999.24 1193.87 19692.53 30296.84 30490.37 16898.24 30193.24 23587.93 32896.38 320
ACMP93.49 1095.34 19794.98 19496.43 25097.67 22393.48 26398.73 13398.44 18394.94 15792.53 30298.53 15384.50 29099.14 18695.48 17094.00 24196.66 289
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_part194.82 22593.82 25497.82 14498.84 13697.82 7799.03 6998.81 8092.31 26592.51 30497.89 21681.96 31198.67 24594.80 18888.24 32496.98 244
test0.0.03 194.08 27493.51 27395.80 27995.53 33792.89 28097.38 28595.97 34895.11 14592.51 30496.66 31087.71 23196.94 34787.03 33193.67 24997.57 226
IB-MVS91.98 1793.27 28991.97 30097.19 18297.47 23993.41 26697.09 30895.99 34793.32 22692.47 30695.73 33678.06 33999.53 14894.59 19582.98 35098.62 193
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
IterMVS94.09 27393.85 25394.80 31097.99 20590.35 31997.18 30298.12 24093.68 21192.46 30797.34 25884.05 29897.41 34092.51 26091.33 28496.62 292
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CP-MVSNet94.94 22294.30 22596.83 20996.72 28895.56 17799.11 5498.95 3593.89 19492.42 30897.90 21487.19 24198.12 30894.32 20388.21 32596.82 270
PS-CasMVS94.67 23593.99 24396.71 21596.68 29095.26 19199.13 5099.03 2693.68 21192.33 30997.95 21085.35 27598.10 30993.59 22688.16 32796.79 271
FMVSNet193.19 29392.07 29896.56 23497.54 23495.00 20098.82 11398.18 22890.38 31592.27 31097.07 27973.68 36097.95 32189.36 31691.30 28596.72 279
PEN-MVS94.42 25293.73 26396.49 24396.28 31294.84 20999.17 4399.00 2893.51 21892.23 31197.83 22486.10 26197.90 32592.55 25886.92 34096.74 276
OurMVSNet-221017-094.21 26394.00 24194.85 30795.60 33489.22 33598.89 9797.43 30595.29 13592.18 31298.52 15682.86 30898.59 25293.46 22991.76 27996.74 276
MS-PatchMatch93.84 28093.63 26894.46 32196.18 31589.45 33197.76 26398.27 21492.23 26792.13 31397.49 24979.50 32998.69 24189.75 30799.38 10995.25 344
ppachtmachnet_test93.22 29192.63 29194.97 30395.45 34090.84 31096.88 32497.88 27490.60 30992.08 31497.26 26388.08 22297.86 33085.12 34490.33 29596.22 326
131496.25 14995.73 15497.79 14697.13 26595.55 17998.19 21998.59 14893.47 22092.03 31597.82 22591.33 14999.49 15394.62 19298.44 15298.32 206
baseline295.11 20994.52 21396.87 20796.65 29293.56 25898.27 20894.10 36893.45 22192.02 31697.43 25587.45 23999.19 17993.88 21797.41 18697.87 217
DTE-MVSNet93.98 27893.26 28196.14 26496.06 32194.39 23299.20 3998.86 6493.06 23691.78 31797.81 22685.87 26597.58 33690.53 29486.17 34596.46 317
LF4IMVS93.14 29492.79 28894.20 32495.88 32788.67 34497.66 27097.07 32193.81 20091.71 31897.65 23777.96 34098.81 23491.47 28291.92 27895.12 347
our_test_393.65 28393.30 27994.69 31295.45 34089.68 32896.91 31897.65 28391.97 27491.66 31996.88 30089.67 18097.93 32488.02 32691.49 28396.48 315
testgi93.06 29592.45 29494.88 30696.43 30589.90 32398.75 12697.54 29595.60 11891.63 32097.91 21374.46 35897.02 34586.10 33693.67 24997.72 223
tfpnnormal93.66 28192.70 29096.55 23996.94 27495.94 16098.97 8399.19 1691.04 30591.38 32197.34 25884.94 28198.61 24985.45 34289.02 31795.11 348
LTVRE_ROB92.95 1594.60 23893.90 24996.68 22097.41 24894.42 23098.52 17098.59 14891.69 28291.21 32298.35 17484.87 28299.04 20191.06 28693.44 26196.60 294
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OpenMVScopyleft93.04 1395.83 16995.00 19298.32 11197.18 26297.32 9399.21 3798.97 3189.96 32291.14 32399.05 8986.64 25099.92 2593.38 23099.47 9997.73 222
pm-mvs193.94 27993.06 28396.59 23096.49 30195.16 19398.95 8798.03 26192.32 26391.08 32497.84 22184.54 28998.41 28292.16 26586.13 34796.19 328
MVS-HIRNet89.46 32688.40 32592.64 33897.58 22982.15 36894.16 36393.05 37175.73 36790.90 32582.52 36979.42 33098.33 29083.53 35298.68 13897.43 227
FMVSNet591.81 30490.92 30794.49 31897.21 25792.09 28698.00 24197.55 29489.31 33390.86 32695.61 34274.48 35795.32 36485.57 34089.70 30396.07 331
USDC93.33 28892.71 28995.21 29596.83 28290.83 31196.91 31897.50 29893.84 19790.72 32798.14 19577.69 34198.82 23389.51 31393.21 26695.97 333
MVP-Stereo94.28 26193.92 24695.35 29294.95 34692.60 28297.97 24397.65 28391.61 28590.68 32897.09 27686.32 25898.42 27489.70 30999.34 11195.02 351
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ACMH+92.99 1494.30 25893.77 25995.88 27797.81 21592.04 28998.71 13898.37 19693.99 19090.60 32998.47 16080.86 32299.05 19892.75 25192.40 27396.55 302
CL-MVSNet_self_test90.11 31989.14 32293.02 33791.86 36688.23 35196.51 33898.07 25390.49 31090.49 33094.41 35084.75 28595.34 36380.79 35874.95 36695.50 341
KD-MVS_self_test90.38 31789.38 32093.40 33292.85 36388.94 34197.95 24497.94 26990.35 31690.25 33193.96 35579.82 32795.94 36084.62 34976.69 36495.33 343
Anonymous2023120691.66 30691.10 30693.33 33394.02 35887.35 35798.58 16197.26 31690.48 31190.16 33296.31 32183.83 30496.53 35679.36 36289.90 30196.12 329
SixPastTwentyTwo93.34 28792.86 28694.75 31195.67 33289.41 33398.75 12696.67 34393.89 19490.15 33398.25 18880.87 32198.27 30090.90 28990.64 29396.57 298
PVSNet_088.72 1991.28 30990.03 31595.00 30297.99 20587.29 35894.84 35798.50 17292.06 27289.86 33495.19 34479.81 32899.39 16492.27 26469.79 36998.33 205
ACMH92.88 1694.55 24293.95 24596.34 25797.63 22693.26 27298.81 11998.49 17793.43 22289.74 33598.53 15381.91 31299.08 19693.69 22193.30 26496.70 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs691.77 30590.63 30995.17 29794.69 35291.24 30598.67 14897.92 27186.14 34989.62 33697.56 24775.79 35298.34 28990.75 29284.56 34995.94 334
TinyColmap92.31 30291.53 30394.65 31496.92 27589.75 32596.92 31696.68 34290.45 31389.62 33697.85 22076.06 35198.81 23486.74 33292.51 27295.41 342
Anonymous2024052191.18 31090.44 31193.42 33093.70 35988.47 34798.94 8997.56 28988.46 33889.56 33895.08 34777.15 34896.97 34683.92 35089.55 30794.82 353
TransMVSNet (Re)92.67 29991.51 30496.15 26396.58 29594.65 21698.90 9396.73 33990.86 30789.46 33997.86 21885.62 26998.09 31186.45 33481.12 35695.71 338
NR-MVSNet94.98 21894.16 23197.44 16996.53 29797.22 10198.74 12998.95 3594.96 15489.25 34097.69 23389.32 18698.18 30394.59 19587.40 33496.92 251
LCM-MVSNet-Re95.22 20395.32 17794.91 30498.18 19187.85 35598.75 12695.66 35295.11 14588.96 34196.85 30390.26 17297.65 33395.65 16598.44 15299.22 138
KD-MVS_2432*160089.61 32487.96 32894.54 31694.06 35691.59 29895.59 35097.63 28589.87 32488.95 34294.38 35278.28 33696.82 34884.83 34568.05 37095.21 345
miper_refine_blended89.61 32487.96 32894.54 31694.06 35691.59 29895.59 35097.63 28589.87 32488.95 34294.38 35278.28 33696.82 34884.83 34568.05 37095.21 345
TDRefinement91.06 31289.68 31795.21 29585.35 37491.49 30098.51 17497.07 32191.47 28788.83 34497.84 22177.31 34599.09 19592.79 25077.98 36295.04 350
N_pmnet87.12 33187.77 33085.17 35195.46 33961.92 37897.37 28770.66 38485.83 35288.73 34596.04 33185.33 27797.76 33280.02 35990.48 29495.84 335
test_040291.32 30890.27 31394.48 31996.60 29391.12 30698.50 17597.22 31786.10 35088.30 34696.98 29177.65 34397.99 32078.13 36692.94 26994.34 355
test20.0390.89 31490.38 31292.43 33993.48 36088.14 35298.33 19597.56 28993.40 22387.96 34796.71 30980.69 32494.13 36979.15 36386.17 34595.01 352
MIMVSNet189.67 32388.28 32793.82 32792.81 36491.08 30798.01 23997.45 30387.95 34087.90 34895.87 33367.63 36794.56 36878.73 36588.18 32695.83 336
Patchmatch-RL test91.49 30790.85 30893.41 33191.37 36784.40 36292.81 36495.93 35091.87 27787.25 34994.87 34888.99 19796.53 35692.54 25982.00 35299.30 130
pmmvs386.67 33284.86 33592.11 34388.16 37187.19 35996.63 33494.75 36079.88 36387.22 35092.75 36066.56 36895.20 36581.24 35776.56 36593.96 361
K. test v392.55 30091.91 30294.48 31995.64 33389.24 33499.07 6294.88 35894.04 18586.78 35197.59 24377.64 34497.64 33492.08 26789.43 31096.57 298
lessismore_v094.45 32294.93 34788.44 34891.03 37586.77 35297.64 23976.23 35098.42 27490.31 29785.64 34896.51 311
ambc89.49 34786.66 37275.78 37292.66 36596.72 34086.55 35392.50 36146.01 37497.90 32590.32 29682.09 35194.80 354
PM-MVS87.77 32986.55 33391.40 34591.03 36983.36 36696.92 31695.18 35691.28 29886.48 35493.42 35753.27 37396.74 35089.43 31581.97 35394.11 358
OpenMVS_ROBcopyleft86.42 2089.00 32787.43 33293.69 32893.08 36289.42 33297.91 24896.89 33478.58 36485.86 35594.69 34969.48 36498.29 29877.13 36793.29 26593.36 364
UnsupCasMVSNet_eth90.99 31389.92 31694.19 32594.08 35589.83 32497.13 30798.67 13393.69 20985.83 35696.19 32875.15 35496.74 35089.14 31879.41 36096.00 332
new_pmnet90.06 32089.00 32493.22 33694.18 35388.32 35096.42 34096.89 33486.19 34885.67 35793.62 35677.18 34797.10 34481.61 35689.29 31294.23 356
EG-PatchMatch MVS91.13 31190.12 31494.17 32694.73 35189.00 33998.13 22897.81 27689.22 33485.32 35896.46 31867.71 36698.42 27487.89 32893.82 24695.08 349
pmmvs-eth3d90.36 31889.05 32394.32 32391.10 36892.12 28597.63 27496.95 32988.86 33684.91 35993.13 35878.32 33596.74 35088.70 32181.81 35494.09 359
DeepMVS_CXcopyleft86.78 34897.09 26872.30 37495.17 35775.92 36684.34 36095.19 34470.58 36395.35 36279.98 36189.04 31692.68 365
new-patchmatchnet88.50 32887.45 33191.67 34490.31 37085.89 36197.16 30597.33 31189.47 33083.63 36192.77 35976.38 34995.06 36682.70 35377.29 36394.06 360
UnsupCasMVSNet_bld87.17 33085.12 33493.31 33491.94 36588.77 34294.92 35698.30 21184.30 35882.30 36290.04 36463.96 37197.25 34285.85 33974.47 36893.93 362
CMPMVSbinary66.06 2189.70 32289.67 31889.78 34693.19 36176.56 37197.00 31298.35 19980.97 36281.57 36397.75 22974.75 35698.61 24989.85 30593.63 25294.17 357
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_method79.03 33378.17 33681.63 35386.06 37354.40 38382.75 37296.89 33439.54 37680.98 36495.57 34358.37 37294.73 36784.74 34878.61 36195.75 337
ET-MVSNet_ETH3D94.13 26992.98 28497.58 16498.22 18596.20 14597.31 29495.37 35394.53 17079.56 36597.63 24186.51 25297.53 33896.91 10790.74 29299.02 165
LCM-MVSNet78.70 33476.24 33986.08 34977.26 38071.99 37594.34 36196.72 34061.62 37176.53 36689.33 36533.91 38092.78 37181.85 35574.60 36793.46 363
PMMVS277.95 33675.44 34085.46 35082.54 37574.95 37394.23 36293.08 37072.80 36874.68 36787.38 36636.36 37991.56 37273.95 36963.94 37289.87 367
Gipumacopyleft78.40 33576.75 33883.38 35295.54 33680.43 37079.42 37397.40 30864.67 37073.46 36880.82 37145.65 37593.14 37066.32 37287.43 33376.56 373
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
YYNet190.70 31689.39 31994.62 31594.79 35090.65 31597.20 30097.46 30187.54 34272.54 36995.74 33486.51 25296.66 35486.00 33786.76 34396.54 303
MDA-MVSNet_test_wron90.71 31589.38 32094.68 31394.83 34890.78 31297.19 30197.46 30187.60 34172.41 37095.72 33886.51 25296.71 35385.92 33886.80 34296.56 300
MDA-MVSNet-bldmvs89.97 32188.35 32694.83 30995.21 34391.34 30197.64 27197.51 29788.36 33971.17 37196.13 32979.22 33196.63 35583.65 35186.27 34496.52 308
FPMVS77.62 33777.14 33779.05 35579.25 37860.97 37995.79 34795.94 34965.96 36967.93 37294.40 35137.73 37888.88 37468.83 37188.46 32287.29 368
tmp_tt68.90 34066.97 34274.68 35750.78 38459.95 38087.13 36983.47 38138.80 37762.21 37396.23 32564.70 37076.91 37988.91 32030.49 37787.19 369
E-PMN64.94 34264.25 34467.02 35982.28 37659.36 38191.83 36785.63 37952.69 37360.22 37477.28 37341.06 37780.12 37746.15 37641.14 37461.57 375
EMVS64.07 34363.26 34666.53 36081.73 37758.81 38291.85 36684.75 38051.93 37559.09 37575.13 37443.32 37679.09 37842.03 37739.47 37561.69 374
MVEpermissive62.14 2263.28 34459.38 34774.99 35674.33 38165.47 37785.55 37080.50 38252.02 37451.10 37675.00 37510.91 38580.50 37651.60 37553.40 37378.99 371
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high69.08 33965.37 34380.22 35465.99 38271.96 37690.91 36890.09 37682.62 35949.93 37778.39 37229.36 38181.75 37562.49 37338.52 37686.95 370
PMVScopyleft61.03 2365.95 34163.57 34573.09 35857.90 38351.22 38485.05 37193.93 36954.45 37244.32 37883.57 36813.22 38289.15 37358.68 37481.00 35778.91 372
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testmvs21.48 34724.95 35011.09 36314.89 3856.47 38796.56 3369.87 3867.55 37917.93 37939.02 3779.43 3865.90 38216.56 38012.72 37920.91 377
test12320.95 34823.72 35112.64 36213.54 3868.19 38696.55 3376.13 3877.48 38016.74 38037.98 37812.97 3836.05 38116.69 3795.43 38023.68 376
wuyk23d30.17 34530.18 34930.16 36178.61 37943.29 38566.79 37414.21 38517.31 37814.82 38111.93 38111.55 38441.43 38037.08 37819.30 3785.76 378
EGC-MVSNET75.22 33869.54 34192.28 34194.81 34989.58 32997.64 27196.50 3451.82 3815.57 38295.74 33468.21 36596.26 35973.80 37091.71 28090.99 366
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
cdsmvs_eth3d_5k23.98 34631.98 3480.00 3640.00 3870.00 3880.00 37598.59 1480.00 3820.00 38398.61 14490.60 1650.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas7.88 35010.50 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38294.51 910.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re8.20 34910.94 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38398.43 1640.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
MSC_two_6792asdad99.62 699.17 10399.08 1198.63 14399.94 498.53 1499.80 1999.86 2
No_MVS99.62 699.17 10399.08 1198.63 14399.94 498.53 1499.80 1999.86 2
eth-test20.00 387
eth-test0.00 387
OPU-MVS99.37 2399.24 9699.05 1499.02 7399.16 6897.81 399.37 16597.24 9399.73 4799.70 54
save fliter99.46 5598.38 4098.21 21298.71 11897.95 3
test_0728_SECOND99.71 199.72 1399.35 198.97 8398.88 5199.94 498.47 2299.81 1299.84 6
GSMVS99.20 139
sam_mvs189.45 18399.20 139
sam_mvs88.99 197
MTGPAbinary98.74 108
test_post196.68 33330.43 38087.85 22998.69 24192.59 255
test_post31.83 37988.83 20598.91 220
patchmatchnet-post95.10 34689.42 18498.89 224
MTMP98.89 9794.14 367
gm-plane-assit95.88 32787.47 35689.74 32796.94 29799.19 17993.32 234
test9_res96.39 13999.57 8199.69 57
agg_prior295.87 15499.57 8199.68 63
test_prior498.01 6797.86 255
test_prior99.19 4699.31 7498.22 5598.84 6999.70 11999.65 73
新几何297.64 271
旧先验199.29 8297.48 8898.70 12199.09 8495.56 5399.47 9999.61 82
无先验97.58 27698.72 11491.38 29099.87 4893.36 23299.60 85
原ACMM297.67 269
testdata299.89 3991.65 280
segment_acmp96.85 14
testdata197.32 29396.34 86
plane_prior797.42 24594.63 218
plane_prior697.35 25094.61 22187.09 242
plane_prior598.56 15699.03 20296.07 14494.27 23096.92 251
plane_prior498.28 183
plane_prior298.80 12097.28 36
plane_prior197.37 249
plane_prior94.60 22398.44 18296.74 6894.22 232
n20.00 388
nn0.00 388
door-mid94.37 363
test1198.66 136
door94.64 361
HQP5-MVS94.25 238
BP-MVS95.30 173
HQP3-MVS98.46 17994.18 234
HQP2-MVS86.75 248
NP-MVS97.28 25294.51 22797.73 230
ACMMP++_ref92.97 268
ACMMP++93.61 254
Test By Simon94.64 87