This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DeepC-MVS78.47 284.81 2586.03 2883.37 1889.29 3290.38 1188.61 2676.50 186.25 2277.22 2375.12 4080.28 4577.59 2188.39 1088.17 691.02 693.66 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SED-MVS88.85 291.59 385.67 290.54 1592.29 391.71 376.40 292.41 383.24 292.50 390.64 481.10 389.53 388.02 791.00 895.73 3
DVP-MVS++89.14 191.86 185.97 192.55 292.38 191.69 476.31 393.31 183.11 392.44 491.18 181.17 289.55 287.93 891.01 796.21 1
DVP-MVScopyleft88.67 391.62 285.22 490.47 1692.36 290.69 976.15 493.08 282.75 492.19 690.71 380.45 689.27 687.91 990.82 1195.84 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
HPM-MVS++copyleft87.09 988.92 1384.95 692.61 187.91 4090.23 1576.06 588.85 1281.20 987.33 1387.93 1279.47 988.59 988.23 590.15 3493.60 20
DPE-MVScopyleft88.63 491.29 485.53 390.87 892.20 491.98 276.00 690.55 882.09 693.85 190.75 281.25 188.62 887.59 1490.96 995.48 4
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS88.09 590.84 584.88 790.00 2391.80 691.63 575.80 791.99 481.23 892.54 289.18 680.89 487.99 1587.91 989.70 4594.51 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SF-MVS87.47 889.70 884.86 891.26 691.10 890.90 675.65 889.21 981.25 791.12 888.93 778.82 1087.42 1986.23 3091.28 393.90 13
APD-MVScopyleft86.84 1288.91 1484.41 1090.66 1190.10 1290.78 775.64 987.38 1678.72 1890.68 1086.82 1780.15 787.13 2486.45 2890.51 2193.83 14
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS86.36 1488.19 1784.23 1191.33 589.84 1490.34 1175.56 1087.36 1778.97 1781.19 2886.76 1878.74 1189.30 588.58 290.45 2794.33 10
NCCC85.34 1986.59 2483.88 1591.48 488.88 2589.79 1775.54 1186.67 2077.94 2276.55 3484.99 2578.07 1688.04 1287.68 1290.46 2693.31 21
APDe-MVScopyleft88.00 690.50 685.08 590.95 791.58 792.03 175.53 1291.15 580.10 1492.27 588.34 1180.80 588.00 1486.99 1891.09 595.16 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SMA-MVScopyleft87.56 790.17 784.52 991.71 390.57 990.77 875.19 1390.67 780.50 1386.59 1788.86 878.09 1589.92 189.41 190.84 1095.19 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SD-MVS86.96 1089.45 984.05 1490.13 1989.23 2289.77 1874.59 1489.17 1080.70 1089.93 1189.67 578.47 1287.57 1886.79 2290.67 1793.76 16
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SteuartSystems-ACMMP85.99 1688.31 1683.27 2090.73 1089.84 1490.27 1474.31 1584.56 2975.88 3087.32 1485.04 2477.31 2389.01 788.46 391.14 493.96 12
Skip Steuart: Steuart Systems R&D Blog.
HFP-MVS86.15 1587.95 1884.06 1390.80 989.20 2389.62 1974.26 1687.52 1480.63 1186.82 1684.19 2878.22 1487.58 1787.19 1690.81 1293.13 24
DeepC-MVS_fast78.24 384.27 2885.50 3082.85 2290.46 1789.24 2187.83 3374.24 1784.88 2576.23 2875.26 3981.05 4377.62 2088.02 1387.62 1390.69 1692.41 27
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVScopyleft85.50 1887.40 2183.28 1990.65 1289.51 1989.16 2374.11 1883.70 3378.06 2185.54 2084.89 2777.31 2387.40 2187.14 1790.41 2893.65 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMMP_NAP86.52 1389.01 1183.62 1690.28 1890.09 1390.32 1374.05 1988.32 1379.74 1587.04 1585.59 2376.97 2889.35 488.44 490.35 3094.27 11
ACMMPR85.52 1787.53 2083.17 2190.13 1989.27 2089.30 2073.97 2086.89 1977.14 2486.09 1883.18 3277.74 1987.42 1987.20 1590.77 1392.63 25
CP-MVS84.74 2686.43 2682.77 2389.48 3088.13 3988.64 2573.93 2184.92 2476.77 2681.94 2683.50 3077.29 2586.92 3086.49 2790.49 2293.14 23
MCST-MVS85.13 2286.62 2383.39 1790.55 1489.82 1689.29 2173.89 2284.38 3076.03 2979.01 3185.90 2178.47 1287.81 1686.11 3392.11 193.29 22
X-MVS83.23 3285.20 3280.92 3389.71 2788.68 2788.21 3273.60 2382.57 3971.81 4577.07 3281.92 3771.72 5886.98 2886.86 2090.47 2392.36 28
SR-MVS88.99 3473.57 2487.54 14
train_agg84.86 2487.21 2282.11 2690.59 1385.47 5589.81 1673.55 2583.95 3173.30 3889.84 1287.23 1575.61 3386.47 3385.46 3889.78 4092.06 31
TSAR-MVS + MP.86.88 1189.23 1084.14 1289.78 2688.67 3090.59 1073.46 2688.99 1180.52 1291.26 788.65 979.91 886.96 2986.22 3190.59 1993.83 14
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPM-MVS83.30 3184.33 3482.11 2689.56 2888.49 3390.33 1273.24 2783.85 3276.46 2772.43 5282.65 3373.02 4886.37 3586.91 1990.03 3689.62 53
DeepPCF-MVS79.04 185.30 2088.93 1281.06 3188.77 3690.48 1085.46 4673.08 2890.97 673.77 3784.81 2285.95 2077.43 2288.22 1187.73 1187.85 8694.34 9
OPM-MVS79.68 4779.28 6280.15 3787.99 3986.77 4688.52 2872.72 2964.55 10067.65 6367.87 7674.33 6774.31 3986.37 3585.25 4089.73 4489.81 51
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
TSAR-MVS + ACMM85.10 2388.81 1580.77 3489.55 2988.53 3288.59 2772.55 3087.39 1571.90 4290.95 987.55 1374.57 3687.08 2686.54 2687.47 9393.67 17
EPNet79.08 5680.62 5377.28 5188.90 3583.17 8283.65 5472.41 3174.41 5867.15 6776.78 3374.37 6664.43 9983.70 6083.69 5387.15 9788.19 62
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMMPcopyleft83.42 3085.27 3181.26 3088.47 3788.49 3388.31 3172.09 3283.42 3472.77 4082.65 2478.22 5075.18 3486.24 3885.76 3590.74 1492.13 30
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
AdaColmapbinary79.74 4678.62 6481.05 3289.23 3386.06 5284.95 4971.96 3379.39 4875.51 3163.16 9368.84 9776.51 2983.55 6182.85 5988.13 7686.46 78
CDPH-MVS82.64 3385.03 3379.86 3889.41 3188.31 3688.32 3071.84 3480.11 4567.47 6482.09 2581.44 4171.85 5685.89 4186.15 3290.24 3291.25 37
PGM-MVS84.42 2786.29 2782.23 2590.04 2288.82 2689.23 2271.74 3582.82 3874.61 3384.41 2382.09 3577.03 2787.13 2486.73 2490.73 1592.06 31
3Dnovator+75.73 482.40 3482.76 3981.97 2888.02 3889.67 1786.60 3771.48 3681.28 4378.18 2064.78 8777.96 5277.13 2687.32 2286.83 2190.41 2891.48 35
CSCG85.28 2187.68 1982.49 2489.95 2491.99 588.82 2471.20 3786.41 2179.63 1679.26 2988.36 1073.94 4186.64 3186.67 2591.40 294.41 8
CPTT-MVS81.77 3783.10 3880.21 3685.93 5086.45 4987.72 3470.98 3882.54 4071.53 4874.23 4581.49 4076.31 3182.85 7181.87 6788.79 6592.26 29
ACMM72.26 878.86 5778.13 6679.71 3986.89 4483.40 7786.02 4070.50 3975.28 5571.49 4963.01 9469.26 9173.57 4384.11 5683.98 4889.76 4287.84 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP-MVS81.19 4083.27 3778.76 4487.40 4185.45 5686.95 3570.47 4081.31 4266.91 6879.24 3076.63 5471.67 5984.43 5483.78 5289.19 5692.05 33
TSAR-MVS + GP.83.69 2986.58 2580.32 3585.14 5486.96 4484.91 5070.25 4184.71 2873.91 3685.16 2185.63 2277.92 1785.44 4285.71 3689.77 4192.45 26
MSLP-MVS++82.09 3682.66 4081.42 2987.03 4387.22 4385.82 4270.04 4280.30 4478.66 1968.67 7281.04 4477.81 1885.19 4684.88 4389.19 5691.31 36
PCF-MVS73.28 679.42 4980.41 5678.26 4684.88 6088.17 3786.08 3969.85 4375.23 5768.43 5868.03 7578.38 4871.76 5781.26 8980.65 8988.56 6891.18 38
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TranMVSNet+NR-MVSNet69.25 12270.81 11467.43 12977.23 11779.46 11573.48 14769.66 4460.43 13339.56 18758.82 11553.48 16755.74 16379.59 11381.21 7488.89 6182.70 117
UniMVSNet_NR-MVSNet70.59 10672.19 10568.72 11477.72 11280.72 10373.81 14269.65 4561.99 12043.23 17960.54 10457.50 13958.57 13879.56 11581.07 7689.34 5083.97 107
LGP-MVS_train79.83 4381.22 4978.22 4886.28 4885.36 5886.76 3669.59 4677.34 5065.14 7475.68 3670.79 8171.37 6284.60 5084.01 4790.18 3390.74 42
ACMP73.23 779.79 4480.53 5478.94 4285.61 5285.68 5385.61 4369.59 4677.33 5171.00 5174.45 4369.16 9271.88 5483.15 6783.37 5589.92 3790.57 45
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PHI-MVS82.36 3585.89 2978.24 4786.40 4789.52 1885.52 4469.52 4882.38 4165.67 7181.35 2782.36 3473.07 4787.31 2386.76 2389.24 5291.56 34
MVS_111021_HR80.13 4281.46 4678.58 4585.77 5185.17 5983.45 5569.28 4974.08 6270.31 5474.31 4475.26 6373.13 4686.46 3485.15 4189.53 4789.81 51
DU-MVS69.63 11770.91 11368.13 12075.99 12379.54 11373.81 14269.20 5061.20 12843.23 17958.52 11653.50 16558.57 13879.22 12080.45 9287.97 8183.97 107
NR-MVSNet68.79 12770.56 11566.71 14577.48 11579.54 11373.52 14669.20 5061.20 12839.76 18658.52 11650.11 19151.37 17980.26 10680.71 8688.97 5983.59 113
LS3D74.08 8073.39 9574.88 6885.05 5582.62 8679.71 7568.66 5272.82 6758.80 9357.61 12561.31 12271.07 6580.32 10378.87 11686.00 13580.18 144
Baseline_NR-MVSNet67.53 14568.77 13766.09 14875.99 12374.75 16472.43 15368.41 5361.33 12738.33 19151.31 17454.13 16056.03 15979.22 12078.19 12385.37 14682.45 119
ACMH65.37 1470.71 10570.00 12071.54 8482.51 6782.47 8777.78 9568.13 5456.19 15946.06 16954.30 14351.20 18568.68 7780.66 9880.72 8286.07 12984.45 106
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+66.54 1371.36 10170.09 11972.85 7982.59 6681.13 9878.56 8768.04 5561.55 12452.52 13351.50 17354.14 15868.56 7878.85 12579.50 10786.82 10983.94 109
UniMVSNet (Re)69.53 11871.90 10866.76 14376.42 12180.93 9972.59 15268.03 5661.75 12341.68 18458.34 12257.23 14153.27 17579.53 11680.62 9088.57 6784.90 99
CANet81.62 3983.41 3679.53 4087.06 4288.59 3185.47 4567.96 5776.59 5374.05 3474.69 4181.98 3672.98 4986.14 3985.47 3789.68 4690.42 46
DTE-MVSNet61.85 18164.96 17258.22 18574.32 14274.39 16661.01 19967.85 5851.76 18921.91 21653.28 15548.17 19637.74 20272.22 17376.44 15086.52 12178.49 156
test111171.56 9773.44 9469.38 10981.16 7982.95 8374.99 12167.68 5966.89 8446.33 16655.19 13960.91 12357.99 14484.59 5182.70 6188.12 7780.85 135
PEN-MVS62.96 16965.77 16359.70 17973.98 14675.45 15763.39 19367.61 6052.49 18225.49 20853.39 15349.12 19540.85 19871.94 17677.26 14086.86 10880.72 137
test250671.72 9572.95 9970.29 9681.49 7583.27 7875.74 10967.59 6168.19 7949.81 14661.15 9949.73 19358.82 13684.76 4882.94 5788.27 7080.63 138
ECVR-MVScopyleft72.20 9173.91 9170.20 9881.49 7583.27 7875.74 10967.59 6168.19 7949.31 15055.77 13362.00 12058.82 13684.76 4882.94 5788.27 7080.41 142
MAR-MVS79.21 5280.32 5777.92 4987.46 4088.15 3883.95 5367.48 6374.28 5968.25 5964.70 8877.04 5372.17 5285.42 4385.00 4288.22 7287.62 67
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVS_030481.73 3883.86 3579.26 4186.22 4989.18 2486.41 3867.15 6475.28 5570.75 5274.59 4283.49 3174.42 3887.05 2786.34 2990.58 2091.08 39
CP-MVSNet62.68 17165.49 16659.40 18271.84 16375.34 15862.87 19567.04 6552.64 18127.19 20653.38 15448.15 19741.40 19671.26 17975.68 15586.07 12982.00 124
PS-CasMVS62.38 17765.06 16959.25 18371.73 16475.21 16262.77 19666.99 6651.94 18826.96 20752.00 17147.52 20041.06 19771.16 18275.60 15685.97 13681.97 126
UniMVSNet_ETH3D67.18 15067.03 15567.36 13174.44 14178.12 12874.07 13766.38 6752.22 18446.87 16148.64 18451.84 18256.96 15277.29 14078.53 11885.42 14582.59 118
WR-MVS_H61.83 18365.87 16257.12 18971.72 16576.87 14461.45 19866.19 6851.97 18722.92 21353.13 16052.30 18033.80 20671.03 18375.00 16086.65 11780.78 136
PVSNet_Blended_VisFu76.57 6777.90 6775.02 6680.56 8786.58 4879.24 8066.18 6964.81 9768.18 6065.61 8171.45 7667.05 8384.16 5581.80 6888.90 6090.92 40
WR-MVS63.03 16867.40 15357.92 18675.14 13377.60 14060.56 20066.10 7054.11 17623.88 20953.94 15053.58 16334.50 20573.93 16477.71 12987.35 9580.94 134
PLCcopyleft68.99 1175.68 7275.31 8476.12 6082.94 6481.26 9679.94 7166.10 7077.15 5266.86 6959.13 11468.53 9973.73 4280.38 10279.04 11287.13 10181.68 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
QAPM78.47 5980.22 5876.43 5885.03 5686.75 4780.62 6666.00 7273.77 6465.35 7365.54 8378.02 5172.69 5083.71 5983.36 5688.87 6290.41 47
UA-Net74.47 7877.80 6870.59 9285.33 5385.40 5773.54 14565.98 7360.65 13156.00 11072.11 5379.15 4654.63 17083.13 6882.25 6488.04 8081.92 127
TSAR-MVS + COLMAP78.34 6081.64 4574.48 7380.13 9485.01 6081.73 5865.93 7484.75 2761.68 8585.79 1966.27 10771.39 6182.91 7080.78 8086.01 13485.98 80
3Dnovator73.76 579.75 4580.52 5578.84 4384.94 5987.35 4184.43 5265.54 7578.29 4973.97 3563.00 9575.62 6274.07 4085.00 4785.34 3990.11 3589.04 56
Anonymous20240521172.16 10780.85 8581.85 8976.88 10565.40 7662.89 11546.35 19067.99 10162.05 11481.15 9180.38 9385.97 13684.50 104
MVS_111021_LR78.13 6179.85 6076.13 5981.12 8181.50 9280.28 6865.25 7776.09 5471.32 5076.49 3572.87 7372.21 5182.79 7281.29 7386.59 11987.91 64
FC-MVSNet-train72.60 8975.07 8569.71 10481.10 8378.79 12373.74 14465.23 7866.10 8953.34 12670.36 6363.40 11656.92 15481.44 8280.96 7887.93 8284.46 105
OMC-MVS80.26 4182.59 4177.54 5083.04 6285.54 5483.25 5665.05 7987.32 1872.42 4172.04 5478.97 4773.30 4583.86 5781.60 7188.15 7588.83 58
DELS-MVS79.15 5581.07 5176.91 5583.54 6187.31 4284.45 5164.92 8069.98 7169.34 5671.62 5676.26 5569.84 6886.57 3285.90 3489.39 4989.88 50
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CNLPA77.20 6577.54 7076.80 5682.63 6584.31 6679.77 7364.64 8185.17 2373.18 3956.37 13169.81 8874.53 3781.12 9278.69 11786.04 13387.29 70
MSDG71.52 9869.87 12173.44 7782.21 7279.35 11679.52 7764.59 8266.15 8861.87 8453.21 15856.09 14865.85 9778.94 12478.50 11986.60 11876.85 167
TDRefinement66.09 15465.03 17167.31 13269.73 18276.75 14675.33 11164.55 8360.28 13449.72 14845.63 19242.83 20960.46 13275.75 15375.95 15484.08 15978.04 158
baseline170.10 11372.17 10667.69 12579.74 9576.80 14573.91 13864.38 8462.74 11648.30 15464.94 8564.08 11354.17 17281.46 8178.92 11485.66 14176.22 169
PVSNet_BlendedMVS76.21 6977.52 7174.69 7079.46 9783.79 7277.50 9864.34 8569.88 7271.88 4368.54 7370.42 8367.05 8383.48 6279.63 10287.89 8486.87 74
PVSNet_Blended76.21 6977.52 7174.69 7079.46 9783.79 7277.50 9864.34 8569.88 7271.88 4368.54 7370.42 8367.05 8383.48 6279.63 10287.89 8486.87 74
casdiffmvs_mvgpermissive77.79 6279.55 6175.73 6181.56 7484.70 6282.12 5764.26 8774.27 6067.93 6170.83 6174.66 6569.19 7483.33 6681.94 6689.29 5187.14 72
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ETV-MVS77.32 6478.81 6375.58 6282.24 7183.64 7579.98 6964.02 8869.64 7663.90 7970.89 6069.94 8773.41 4485.39 4583.91 5189.92 3788.31 61
dmvs_re67.22 14967.92 14766.40 14675.94 12670.55 18074.97 12363.87 8957.07 15144.75 17554.29 14456.72 14554.65 16979.53 11677.51 13484.20 15879.78 148
CDS-MVSNet67.65 14269.83 12365.09 15175.39 13176.55 14874.42 13063.75 9053.55 17749.37 14959.41 11262.45 11844.44 19079.71 11279.82 10083.17 16577.36 163
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CS-MVS-test78.79 5880.72 5276.53 5781.11 8283.88 7079.69 7663.72 9173.80 6369.95 5575.40 3876.17 5674.85 3584.50 5382.78 6089.87 3988.54 60
EC-MVSNet79.44 4881.35 4777.22 5282.95 6384.67 6381.31 6063.65 9272.47 6968.75 5773.15 4778.33 4975.99 3286.06 4083.96 4990.67 1790.79 41
UGNet72.78 8777.67 6967.07 13871.65 16783.24 8075.20 11463.62 9364.93 9656.72 10671.82 5573.30 6949.02 18381.02 9380.70 8786.22 12588.67 59
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IS_MVSNet73.33 8477.34 7568.65 11681.29 7883.47 7674.45 12763.58 9465.75 9248.49 15267.11 8070.61 8254.63 17084.51 5283.58 5489.48 4886.34 79
EPNet_dtu68.08 13371.00 11264.67 15579.64 9668.62 18775.05 11963.30 9566.36 8745.27 17367.40 7866.84 10643.64 19275.37 15574.98 16181.15 17177.44 162
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CS-MVS79.22 5181.11 5077.01 5481.36 7784.03 6780.35 6763.25 9673.43 6670.37 5374.10 4676.03 5976.40 3086.32 3783.95 5090.34 3189.93 49
casdiffmvspermissive76.76 6678.46 6574.77 6980.32 9183.73 7480.65 6563.24 9773.58 6566.11 7069.39 6774.09 6869.49 7282.52 7479.35 11188.84 6486.52 77
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
sasdasda79.16 5382.37 4275.41 6382.33 6986.38 5080.80 6363.18 9882.90 3667.34 6572.79 4976.07 5769.62 6983.46 6484.41 4589.20 5490.60 43
canonicalmvs79.16 5382.37 4275.41 6382.33 6986.38 5080.80 6363.18 9882.90 3667.34 6572.79 4976.07 5769.62 6983.46 6484.41 4589.20 5490.60 43
TAPA-MVS71.42 977.69 6380.05 5974.94 6780.68 8684.52 6581.36 5963.14 10084.77 2664.82 7668.72 7075.91 6071.86 5581.62 7879.55 10687.80 8885.24 92
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Effi-MVS+75.28 7576.20 8174.20 7481.15 8083.24 8081.11 6163.13 10166.37 8660.27 8964.30 9168.88 9670.93 6681.56 8081.69 6988.61 6687.35 68
Vis-MVSNet (Re-imp)67.83 13873.52 9361.19 17178.37 10576.72 14766.80 17762.96 10265.50 9334.17 19867.19 7969.68 8939.20 20179.39 11979.44 10985.68 14076.73 168
COLMAP_ROBcopyleft62.73 1567.66 14166.76 15868.70 11580.49 8977.98 13375.29 11362.95 10363.62 10949.96 14447.32 18950.72 18858.57 13876.87 14675.50 15884.94 15375.33 178
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2023121171.90 9372.48 10471.21 8580.14 9381.53 9176.92 10362.89 10464.46 10258.94 9143.80 19470.98 8062.22 11180.70 9780.19 9686.18 12685.73 82
tfpn200view968.11 13268.72 13867.40 13077.83 11078.93 11974.28 13262.81 10556.64 15446.82 16252.65 16653.47 16856.59 15580.41 9978.43 12086.11 12780.52 140
thres600view767.68 14068.43 14266.80 14277.90 10778.86 12173.84 14062.75 10656.07 16044.70 17752.85 16452.81 17555.58 16480.41 9977.77 12886.05 13180.28 143
thres20067.98 13468.55 14167.30 13377.89 10978.86 12174.18 13662.75 10656.35 15746.48 16552.98 16253.54 16456.46 15680.41 9977.97 12686.05 13179.78 148
thres40067.95 13568.62 14067.17 13577.90 10778.59 12674.27 13362.72 10856.34 15845.77 17153.00 16153.35 17156.46 15680.21 10878.43 12085.91 13880.43 141
GBi-Net70.78 10373.37 9667.76 12172.95 15578.00 13075.15 11562.72 10864.13 10351.44 13558.37 11969.02 9357.59 14681.33 8580.72 8286.70 11382.02 121
test170.78 10373.37 9667.76 12172.95 15578.00 13075.15 11562.72 10864.13 10351.44 13558.37 11969.02 9357.59 14681.33 8580.72 8286.70 11382.02 121
FMVSNet370.49 10772.90 10167.67 12672.88 15877.98 13374.96 12462.72 10864.13 10351.44 13558.37 11969.02 9357.43 14979.43 11879.57 10586.59 11981.81 128
FMVSNet270.39 10972.67 10367.72 12472.95 15578.00 13075.15 11562.69 11263.29 11151.25 13955.64 13468.49 10057.59 14680.91 9580.35 9486.70 11382.02 121
EPP-MVSNet74.00 8177.41 7370.02 10180.53 8883.91 6974.99 12162.68 11365.06 9549.77 14768.68 7172.09 7563.06 10782.49 7580.73 8189.12 5888.91 57
TransMVSNet (Re)64.74 16165.66 16463.66 16277.40 11675.33 15969.86 16062.67 11447.63 19941.21 18550.01 17952.33 17845.31 18979.57 11477.69 13085.49 14377.07 166
DI_MVS_plusplus_trai75.13 7676.12 8273.96 7578.18 10681.55 9080.97 6262.54 11568.59 7765.13 7561.43 9874.81 6469.32 7381.01 9479.59 10487.64 9185.89 81
thres100view90067.60 14468.02 14567.12 13777.83 11077.75 13773.90 13962.52 11656.64 15446.82 16252.65 16653.47 16855.92 16078.77 12677.62 13185.72 13979.23 152
tfpnnormal64.27 16463.64 18065.02 15275.84 12775.61 15671.24 15862.52 11647.79 19842.97 18142.65 19744.49 20752.66 17778.77 12676.86 14484.88 15479.29 151
ET-MVSNet_ETH3D72.46 9074.19 8970.44 9462.50 20281.17 9779.90 7262.46 11864.52 10157.52 10271.49 5859.15 13272.08 5378.61 12881.11 7588.16 7483.29 115
FMVSNet168.84 12670.47 11766.94 14071.35 17277.68 13874.71 12562.35 11956.93 15249.94 14550.01 17964.59 11157.07 15181.33 8580.72 8286.25 12482.00 124
EIA-MVS75.64 7376.60 8074.53 7282.43 6883.84 7178.32 9162.28 12065.96 9063.28 8368.95 6867.54 10271.61 6082.55 7381.63 7089.24 5285.72 83
MGCFI-Net76.55 6881.71 4470.52 9381.71 7384.62 6475.02 12062.17 12182.91 3553.58 12572.78 5175.87 6161.75 12282.96 6982.61 6288.86 6390.26 48
OpenMVScopyleft70.44 1076.15 7176.82 7975.37 6585.01 5784.79 6178.99 8462.07 12271.27 7067.88 6257.91 12472.36 7470.15 6782.23 7681.41 7288.12 7787.78 66
test-LLR64.42 16264.36 17564.49 15675.02 13463.93 20066.61 17961.96 12354.41 17247.77 15757.46 12660.25 12555.20 16770.80 18569.33 18380.40 17574.38 182
test0.0.03 158.80 19261.58 19355.56 19475.02 13468.45 18859.58 20461.96 12352.74 18029.57 20249.75 18254.56 15631.46 20871.19 18069.77 18175.75 19264.57 203
PatchMatch-RL67.78 13966.65 15969.10 11173.01 15472.69 17168.49 16761.85 12562.93 11460.20 9056.83 13050.42 18969.52 7175.62 15474.46 16481.51 16973.62 186
IB-MVS66.94 1271.21 10271.66 11070.68 8979.18 9982.83 8572.61 15161.77 12659.66 13663.44 8253.26 15659.65 13059.16 13576.78 14882.11 6587.90 8387.33 69
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Vis-MVSNetpermissive72.77 8877.20 7667.59 12874.19 14384.01 6876.61 10861.69 12760.62 13250.61 14270.25 6471.31 7955.57 16583.85 5882.28 6386.90 10688.08 63
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DCV-MVSNet73.65 8375.78 8371.16 8680.19 9279.27 11777.45 10061.68 12866.73 8558.72 9465.31 8469.96 8662.19 11281.29 8880.97 7786.74 11286.91 73
Effi-MVS+-dtu71.82 9471.86 10971.78 8378.77 10180.47 10578.55 8861.67 12960.68 13055.49 11158.48 11865.48 10968.85 7676.92 14575.55 15787.35 9585.46 88
test20.0353.93 20456.28 20551.19 20372.19 16265.83 19553.20 21161.08 13042.74 20722.08 21437.07 20745.76 20524.29 21670.44 18969.04 18574.31 20063.05 207
GeoE74.23 7974.84 8773.52 7680.42 9081.46 9379.77 7361.06 13167.23 8363.67 8059.56 11168.74 9867.90 8080.25 10779.37 11088.31 6987.26 71
pmmvs467.89 13667.39 15468.48 11771.60 16973.57 16874.45 12760.98 13264.65 9857.97 10054.95 14151.73 18361.88 11873.78 16575.11 15983.99 16177.91 159
CLD-MVS79.35 5081.23 4877.16 5385.01 5786.92 4585.87 4160.89 13380.07 4775.35 3272.96 4873.21 7168.43 7985.41 4484.63 4487.41 9485.44 89
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
pm-mvs165.62 15567.42 15263.53 16373.66 15176.39 14969.66 16160.87 13449.73 19443.97 17851.24 17557.00 14448.16 18479.89 11077.84 12784.85 15579.82 147
v114469.93 11569.36 12970.61 9174.89 13680.93 9979.11 8260.64 13555.97 16155.31 11353.85 15154.14 15866.54 9278.10 13377.44 13687.14 10085.09 94
v2v48270.05 11469.46 12870.74 8774.62 13980.32 10979.00 8360.62 13657.41 14956.89 10555.43 13855.14 15366.39 9477.25 14177.14 14186.90 10683.57 114
v14419269.34 12168.68 13970.12 9974.06 14480.54 10478.08 9460.54 13754.99 16954.13 11852.92 16352.80 17666.73 9077.13 14376.72 14687.15 9785.63 84
v119269.50 11968.83 13570.29 9674.49 14080.92 10178.55 8860.54 13755.04 16754.21 11652.79 16552.33 17866.92 8777.88 13577.35 13987.04 10485.51 86
IterMVS-LS71.69 9672.82 10270.37 9577.54 11476.34 15075.13 11860.46 13961.53 12557.57 10164.89 8667.33 10366.04 9677.09 14477.37 13885.48 14485.18 93
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
USDC67.36 14767.90 14866.74 14471.72 16575.23 16171.58 15560.28 14067.45 8250.54 14360.93 10045.20 20662.08 11376.56 15074.50 16384.25 15775.38 177
v192192069.03 12468.32 14369.86 10274.03 14580.37 10777.55 9660.25 14154.62 17153.59 12452.36 16951.50 18466.75 8977.17 14276.69 14886.96 10585.56 85
HyFIR lowres test69.47 12068.94 13470.09 10076.77 12082.93 8476.63 10760.17 14259.00 13954.03 11940.54 20465.23 11067.89 8176.54 15178.30 12285.03 15180.07 145
diffmvspermissive74.86 7777.37 7471.93 8275.62 12980.35 10879.42 7960.15 14372.81 6864.63 7771.51 5773.11 7266.53 9379.02 12377.98 12585.25 14886.83 76
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test75.37 7477.13 7773.31 7879.07 10081.32 9579.98 6960.12 14469.72 7464.11 7870.53 6273.22 7068.90 7580.14 10979.48 10887.67 9085.50 87
CHOSEN 1792x268869.20 12369.26 13069.13 11076.86 11978.93 11977.27 10160.12 14461.86 12254.42 11542.54 19861.61 12166.91 8878.55 12978.14 12479.23 17983.23 116
v124068.64 12967.89 14969.51 10773.89 14780.26 11176.73 10659.97 14653.43 17953.08 12851.82 17250.84 18766.62 9176.79 14776.77 14586.78 11185.34 90
v1070.22 11169.76 12470.74 8774.79 13780.30 11079.22 8159.81 14757.71 14756.58 10854.22 14955.31 15166.95 8678.28 13177.47 13587.12 10385.07 95
TinyColmap62.84 17061.03 19564.96 15369.61 18371.69 17468.48 16859.76 14855.41 16347.69 15947.33 18834.20 21862.76 10974.52 16072.59 17381.44 17071.47 189
EG-PatchMatch MVS67.24 14866.94 15667.60 12778.73 10281.35 9473.28 14959.49 14946.89 20151.42 13843.65 19553.49 16655.50 16681.38 8480.66 8887.15 9781.17 133
pmmvs-eth3d63.52 16762.44 18964.77 15466.82 19370.12 18169.41 16359.48 15054.34 17552.71 12946.24 19144.35 20856.93 15372.37 16973.77 16783.30 16375.91 171
pmmvs662.41 17562.88 18361.87 16871.38 17175.18 16367.76 17059.45 15141.64 20942.52 18337.33 20652.91 17446.87 18677.67 13776.26 15283.23 16479.18 153
v870.23 11069.86 12270.67 9074.69 13879.82 11278.79 8659.18 15258.80 14058.20 9955.00 14057.33 14066.31 9577.51 13876.71 14786.82 10983.88 110
thisisatest053071.48 9973.01 9869.70 10573.83 14878.62 12574.53 12659.12 15364.13 10358.63 9564.60 8958.63 13464.27 10080.28 10580.17 9787.82 8784.64 103
tttt051771.41 10072.95 9969.60 10673.70 15078.70 12474.42 13059.12 15363.89 10758.35 9864.56 9058.39 13664.27 10080.29 10480.17 9787.74 8984.69 102
LTVRE_ROB59.44 1661.82 18462.64 18660.87 17372.83 15977.19 14264.37 18958.97 15533.56 21828.00 20552.59 16842.21 21063.93 10374.52 16076.28 15177.15 18682.13 120
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MS-PatchMatch70.17 11270.49 11669.79 10380.98 8477.97 13577.51 9758.95 15662.33 11855.22 11453.14 15965.90 10862.03 11579.08 12277.11 14284.08 15977.91 159
baseline269.69 11670.27 11869.01 11275.72 12877.13 14373.82 14158.94 15761.35 12657.09 10461.68 9757.17 14261.99 11678.10 13376.58 14986.48 12279.85 146
v7n67.05 15166.94 15667.17 13572.35 16078.97 11873.26 15058.88 15851.16 19050.90 14048.21 18650.11 19160.96 12777.70 13677.38 13786.68 11685.05 96
Fast-Effi-MVS+73.11 8673.66 9272.48 8077.72 11280.88 10278.55 8858.83 15965.19 9460.36 8859.98 10862.42 11971.22 6481.66 7780.61 9188.20 7384.88 100
FC-MVSNet-test56.90 19765.20 16847.21 20766.98 19063.20 20549.11 21658.60 16059.38 13811.50 22365.60 8256.68 14624.66 21571.17 18171.36 17872.38 20569.02 196
GA-MVS68.14 13169.17 13266.93 14173.77 14978.50 12774.45 12758.28 16155.11 16648.44 15360.08 10653.99 16161.50 12478.43 13077.57 13285.13 14980.54 139
WB-MVS40.01 21345.06 21434.13 21358.84 21053.28 21728.60 22258.10 16232.93 2204.65 22840.92 20028.33 2237.26 22258.86 21456.09 21247.36 22044.98 217
MDA-MVSNet-bldmvs53.37 20553.01 20853.79 20043.67 22167.95 18959.69 20357.92 16343.69 20532.41 20041.47 19927.89 22452.38 17856.97 21665.99 20176.68 18967.13 199
Anonymous2023120656.36 19857.80 20254.67 19770.08 17966.39 19460.46 20157.54 16449.50 19629.30 20333.86 21146.64 20135.18 20470.44 18968.88 18775.47 19568.88 197
SixPastTwentyTwo61.84 18262.45 18861.12 17269.20 18672.20 17262.03 19757.40 16546.54 20238.03 19357.14 12941.72 21158.12 14269.67 19371.58 17681.94 16778.30 157
thisisatest051567.40 14668.78 13665.80 14970.02 18075.24 16069.36 16457.37 16654.94 17053.67 12355.53 13754.85 15458.00 14378.19 13278.91 11586.39 12383.78 111
v14867.85 13767.53 15068.23 11873.25 15377.57 14174.26 13457.36 16755.70 16257.45 10353.53 15255.42 15061.96 11775.23 15673.92 16585.08 15081.32 132
MVSTER72.06 9274.24 8869.51 10770.39 17875.97 15376.91 10457.36 16764.64 9961.39 8768.86 6963.76 11463.46 10481.44 8279.70 10187.56 9285.31 91
V4268.76 12869.63 12567.74 12364.93 19878.01 12978.30 9256.48 16958.65 14156.30 10954.26 14757.03 14364.85 9877.47 13977.01 14385.60 14284.96 98
CANet_DTU73.29 8576.96 7869.00 11377.04 11882.06 8879.49 7856.30 17067.85 8153.29 12771.12 5970.37 8561.81 12181.59 7980.96 7886.09 12884.73 101
CVMVSNet62.55 17265.89 16158.64 18466.95 19169.15 18466.49 18156.29 17152.46 18332.70 19959.27 11358.21 13850.09 18171.77 17771.39 17779.31 17878.99 154
Fast-Effi-MVS+-dtu68.34 13069.47 12767.01 13975.15 13277.97 13577.12 10255.40 17257.87 14246.68 16456.17 13260.39 12462.36 11076.32 15276.25 15385.35 14781.34 131
FA-MVS(training)73.66 8274.95 8672.15 8178.63 10480.46 10678.92 8554.79 17369.71 7565.37 7262.04 9666.89 10567.10 8280.72 9679.87 9988.10 7984.97 97
gg-mvs-nofinetune62.55 17265.05 17059.62 18078.72 10377.61 13970.83 15953.63 17439.71 21322.04 21536.36 20864.32 11247.53 18581.16 9079.03 11385.00 15277.17 164
baseline70.45 10874.09 9066.20 14770.95 17575.67 15474.26 13453.57 17568.33 7858.42 9669.87 6571.45 7661.55 12374.84 15974.76 16278.42 18183.72 112
PMVScopyleft39.38 1846.06 21243.30 21549.28 20662.93 20038.75 22141.88 21953.50 17633.33 21935.46 19628.90 21631.01 22133.04 20758.61 21554.63 21668.86 21257.88 214
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
SCA65.40 15766.58 16064.02 15970.65 17673.37 16967.35 17153.46 17763.66 10854.14 11760.84 10160.20 12761.50 12469.96 19268.14 19377.01 18869.91 192
testgi54.39 20357.86 20150.35 20471.59 17067.24 19154.95 20953.25 17843.36 20623.78 21044.64 19347.87 19824.96 21370.45 18868.66 18973.60 20262.78 208
IterMVS-SCA-FT66.89 15269.22 13164.17 15771.30 17375.64 15571.33 15653.17 17957.63 14849.08 15160.72 10260.05 12863.09 10674.99 15873.92 16577.07 18781.57 130
dps64.00 16662.99 18265.18 15073.29 15272.07 17368.98 16653.07 18057.74 14658.41 9755.55 13647.74 19960.89 13069.53 19467.14 19776.44 19171.19 190
tpm cat165.41 15663.81 17967.28 13475.61 13072.88 17075.32 11252.85 18162.97 11363.66 8153.24 15753.29 17361.83 12065.54 20264.14 20474.43 19974.60 180
CR-MVSNet64.83 16065.54 16564.01 16070.64 17769.41 18265.97 18252.74 18257.81 14452.65 13054.27 14556.31 14760.92 12872.20 17473.09 17081.12 17275.69 174
Patchmtry65.80 19665.97 18252.74 18252.65 130
pmmvs562.37 17864.04 17760.42 17465.03 19671.67 17567.17 17352.70 18450.30 19144.80 17454.23 14851.19 18649.37 18272.88 16873.48 16983.45 16274.55 181
MIMVSNet149.27 20753.25 20744.62 20944.61 21961.52 21053.61 21052.18 18541.62 21018.68 21928.14 21741.58 21225.50 21168.46 19969.04 18573.15 20362.37 209
new-patchmatchnet46.97 21049.47 21244.05 21162.82 20156.55 21445.35 21852.01 18642.47 20817.04 22135.73 21035.21 21721.84 21961.27 21054.83 21565.26 21560.26 210
CostFormer68.92 12569.58 12668.15 11975.98 12576.17 15278.22 9351.86 18765.80 9161.56 8663.57 9262.83 11761.85 11970.40 19168.67 18879.42 17779.62 150
CMPMVSbinary47.78 1762.49 17462.52 18762.46 16670.01 18170.66 17962.97 19451.84 18851.98 18656.71 10742.87 19653.62 16257.80 14572.23 17270.37 18075.45 19675.91 171
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PatchmatchNetpermissive64.21 16564.65 17363.69 16171.29 17468.66 18669.63 16251.70 18963.04 11253.77 12259.83 11058.34 13760.23 13368.54 19866.06 20075.56 19468.08 198
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PM-MVS60.48 18860.94 19659.94 17758.85 20966.83 19364.27 19051.39 19055.03 16848.03 15650.00 18140.79 21358.26 14169.20 19667.13 19878.84 18077.60 161
FPMVS51.87 20650.00 21154.07 19866.83 19257.25 21360.25 20250.91 19150.25 19234.36 19736.04 20932.02 22041.49 19558.98 21356.07 21370.56 21059.36 213
RPSCF67.64 14371.25 11163.43 16461.86 20470.73 17867.26 17250.86 19274.20 6158.91 9267.49 7769.33 9064.10 10271.41 17868.45 19277.61 18377.17 164
IterMVS66.36 15368.30 14464.10 15869.48 18574.61 16573.41 14850.79 19357.30 15048.28 15560.64 10359.92 12960.85 13174.14 16372.66 17281.80 16878.82 155
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
anonymousdsp65.28 15867.98 14662.13 16758.73 21173.98 16767.10 17450.69 19448.41 19747.66 16054.27 14552.75 17761.45 12676.71 14980.20 9587.13 10189.53 55
EU-MVSNet54.63 20158.69 19949.90 20556.99 21362.70 20856.41 20850.64 19545.95 20423.14 21250.42 17846.51 20236.63 20365.51 20364.85 20275.57 19374.91 179
MDTV_nov1_ep1364.37 16365.24 16763.37 16568.94 18770.81 17772.40 15450.29 19660.10 13553.91 12160.07 10759.15 13257.21 15069.43 19567.30 19577.47 18469.78 194
pmnet_mix0255.30 20057.01 20453.30 20264.14 19959.09 21158.39 20650.24 19753.47 17838.68 19049.75 18245.86 20440.14 20065.38 20460.22 20968.19 21365.33 202
RPMNet61.71 18562.88 18360.34 17569.51 18469.41 18263.48 19249.23 19857.81 14445.64 17250.51 17750.12 19053.13 17668.17 20068.49 19181.07 17375.62 176
MVS-HIRNet54.41 20252.10 20957.11 19058.99 20856.10 21549.68 21549.10 19946.18 20352.15 13433.18 21246.11 20356.10 15863.19 20859.70 21176.64 19060.25 211
MIMVSNet58.52 19461.34 19455.22 19560.76 20567.01 19266.81 17649.02 20056.43 15638.90 18940.59 20354.54 15740.57 19973.16 16771.65 17575.30 19766.00 201
TAMVS59.58 19162.81 18555.81 19366.03 19465.64 19763.86 19148.74 20149.95 19337.07 19554.77 14258.54 13544.44 19072.29 17171.79 17474.70 19866.66 200
PatchT61.97 18064.04 17759.55 18160.49 20667.40 19056.54 20748.65 20256.69 15352.65 13051.10 17652.14 18160.92 12872.20 17473.09 17078.03 18275.69 174
Gipumacopyleft36.38 21535.80 21737.07 21245.76 21833.90 22229.81 22148.47 20339.91 21218.02 2208.00 2258.14 22925.14 21259.29 21261.02 20855.19 21940.31 218
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MDTV_nov1_ep13_2view60.16 18960.51 19759.75 17865.39 19569.05 18568.00 16948.29 20451.99 18545.95 17048.01 18749.64 19453.39 17468.83 19766.52 19977.47 18469.55 195
EPMVS60.00 19061.97 19157.71 18768.46 18863.17 20664.54 18848.23 20563.30 11044.72 17660.19 10556.05 14950.85 18065.27 20562.02 20769.44 21163.81 205
tpmrst62.00 17962.35 19061.58 16971.62 16864.14 19969.07 16548.22 20662.21 11953.93 12058.26 12355.30 15255.81 16263.22 20762.62 20670.85 20870.70 191
FMVSNet557.24 19560.02 19853.99 19956.45 21462.74 20765.27 18547.03 20755.14 16539.55 18840.88 20153.42 17041.83 19372.35 17071.10 17973.79 20164.50 204
gm-plane-assit57.00 19657.62 20356.28 19276.10 12262.43 20947.62 21746.57 20833.84 21723.24 21137.52 20540.19 21459.61 13479.81 11177.55 13384.55 15672.03 188
ADS-MVSNet55.94 19958.01 20053.54 20162.48 20358.48 21259.12 20546.20 20959.65 13742.88 18252.34 17053.31 17246.31 18762.00 20960.02 21064.23 21660.24 212
tpm62.41 17563.15 18161.55 17072.24 16163.79 20271.31 15746.12 21057.82 14355.33 11259.90 10954.74 15553.63 17367.24 20164.29 20370.65 20974.25 184
N_pmnet47.35 20950.13 21044.11 21059.98 20751.64 21851.86 21244.80 21149.58 19520.76 21740.65 20240.05 21529.64 20959.84 21155.15 21457.63 21754.00 215
PMMVS65.06 15969.17 13260.26 17655.25 21763.43 20366.71 17843.01 21262.41 11750.64 14169.44 6667.04 10463.29 10574.36 16273.54 16882.68 16673.99 185
CHOSEN 280x42058.70 19361.88 19254.98 19655.45 21650.55 21964.92 18640.36 21355.21 16438.13 19248.31 18563.76 11463.03 10873.73 16668.58 19068.00 21473.04 187
E-PMN21.77 21818.24 22125.89 21540.22 22219.58 22512.46 22739.87 21418.68 2246.71 2259.57 2224.31 23222.36 21819.89 22327.28 22133.73 22328.34 222
EMVS20.98 21917.15 22225.44 21639.51 22319.37 22612.66 22639.59 21519.10 2236.62 2269.27 2234.40 23122.43 21717.99 22424.40 22231.81 22425.53 223
TESTMET0.1,161.10 18664.36 17557.29 18857.53 21263.93 20066.61 17936.22 21654.41 17247.77 15757.46 12660.25 12555.20 16770.80 18569.33 18380.40 17574.38 182
test-mter60.84 18764.62 17456.42 19155.99 21564.18 19865.39 18434.23 21754.39 17446.21 16857.40 12859.49 13155.86 16171.02 18469.65 18280.87 17476.20 170
MVEpermissive19.12 1920.47 22023.27 22017.20 22012.66 22725.41 22410.52 22834.14 21814.79 2256.53 2278.79 2244.68 23016.64 22129.49 22141.63 21822.73 22638.11 219
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
new_pmnet38.40 21442.64 21633.44 21437.54 22445.00 22036.60 22032.72 21940.27 21112.72 22229.89 21428.90 22224.78 21453.17 21752.90 21756.31 21848.34 216
pmmvs347.65 20849.08 21345.99 20844.61 21954.79 21650.04 21331.95 22033.91 21629.90 20130.37 21333.53 21946.31 18763.50 20663.67 20573.14 20463.77 206
PMMVS225.60 21629.75 21820.76 21828.00 22530.93 22323.10 22429.18 22123.14 2221.46 22918.23 22116.54 2265.08 22340.22 21841.40 21937.76 22137.79 220
DeepMVS_CXcopyleft18.74 22718.55 2258.02 22226.96 2217.33 22423.81 21913.05 22825.99 21025.17 22222.45 22736.25 221
test_method22.26 21725.94 21917.95 2193.24 2287.17 22823.83 2237.27 22337.35 21520.44 21821.87 22039.16 21618.67 22034.56 21920.84 22334.28 22220.64 224
tmp_tt14.50 22114.68 2267.17 22810.46 2292.21 22437.73 21428.71 20425.26 21816.98 2254.37 22431.49 22029.77 22026.56 225
GG-mvs-BLEND46.86 21167.51 15122.75 2170.05 22976.21 15164.69 1870.04 22561.90 1210.09 23055.57 13571.32 780.08 22570.54 18767.19 19671.58 20669.86 193
testmvs0.09 2210.15 2230.02 2220.01 2300.02 2300.05 2310.01 2260.11 2260.01 2310.26 2270.01 2330.06 2270.10 2250.10 2240.01 2280.43 226
test1230.09 2210.14 2240.02 2220.00 2310.02 2300.02 2320.01 2260.09 2270.00 2320.30 2260.00 2340.08 2250.03 2260.09 2250.01 2280.45 225
uanet_test0.00 2230.00 2250.00 2240.00 2310.00 2320.00 2330.00 2280.00 2280.00 2320.00 2280.00 2340.00 2280.00 2270.00 2260.00 2300.00 227
sosnet-low-res0.00 2230.00 2250.00 2240.00 2310.00 2320.00 2330.00 2280.00 2280.00 2320.00 2280.00 2340.00 2280.00 2270.00 2260.00 2300.00 227
sosnet0.00 2230.00 2250.00 2240.00 2310.00 2320.00 2330.00 2280.00 2280.00 2320.00 2280.00 2340.00 2280.00 2270.00 2260.00 2300.00 227
TPM-MVS90.07 2188.36 3588.45 2977.10 2575.60 3783.98 2971.33 6389.75 4389.62 53
Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025
RE-MVS-def46.24 167
9.1486.88 16
our_test_367.93 18970.99 17666.89 175
ambc53.42 20664.99 19763.36 20449.96 21447.07 20037.12 19428.97 21516.36 22741.82 19475.10 15767.34 19471.55 20775.72 173
MTAPA83.48 186.45 19
MTMP82.66 584.91 26
Patchmatch-RL test2.85 230
XVS86.63 4588.68 2785.00 4771.81 4581.92 3790.47 23
X-MVStestdata86.63 4588.68 2785.00 4771.81 4581.92 3790.47 23
mPP-MVS89.90 2581.29 42
NP-MVS80.10 46