This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
DPE-MVScopyleft88.63 491.29 485.53 390.87 892.20 491.98 276.00 690.55 882.09 693.85 190.75 281.25 188.62 887.59 1490.96 995.48 4
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS88.09 590.84 584.88 790.00 2391.80 691.63 575.80 791.99 481.23 892.54 289.18 680.89 487.99 1587.91 989.70 4594.51 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SED-MVS88.85 291.59 385.67 290.54 1592.29 391.71 376.40 292.41 383.24 292.50 390.64 481.10 389.53 388.02 791.00 895.73 3
DVP-MVS++89.14 191.86 185.97 192.55 292.38 191.69 476.31 393.31 183.11 392.44 491.18 181.17 289.55 287.93 891.01 796.21 1
APDe-MVScopyleft88.00 690.50 685.08 590.95 791.58 792.03 175.53 1291.15 580.10 1492.27 588.34 1180.80 588.00 1486.99 1891.09 595.16 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DVP-MVScopyleft88.67 391.62 285.22 490.47 1692.36 290.69 976.15 493.08 282.75 492.19 690.71 380.45 689.27 687.91 990.82 1195.84 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
TSAR-MVS + MP.86.88 1189.23 1084.14 1289.78 2688.67 3090.59 1073.46 2688.99 1180.52 1291.26 788.65 979.91 886.96 2986.22 3190.59 1993.83 14
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SF-MVS87.47 889.70 884.86 891.26 691.10 890.90 675.65 889.21 981.25 791.12 888.93 778.82 1087.42 1986.23 3091.28 393.90 13
TSAR-MVS + ACMM85.10 2388.81 1580.77 3489.55 2988.53 3288.59 2772.55 3087.39 1571.90 4290.95 987.55 1374.57 3687.08 2686.54 2687.47 9393.67 17
APD-MVScopyleft86.84 1288.91 1484.41 1090.66 1190.10 1290.78 775.64 987.38 1678.72 1890.68 1086.82 1780.15 787.13 2486.45 2890.51 2193.83 14
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SD-MVS86.96 1089.45 984.05 1490.13 1989.23 2289.77 1874.59 1489.17 1080.70 1089.93 1189.67 578.47 1287.57 1886.79 2290.67 1793.76 16
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
train_agg84.86 2487.21 2282.11 2690.59 1385.47 5589.81 1673.55 2583.95 3173.30 3889.84 1287.23 1575.61 3386.47 3385.46 3889.78 4092.06 31
HPM-MVS++copyleft87.09 988.92 1384.95 692.61 187.91 4090.23 1576.06 588.85 1281.20 987.33 1387.93 1279.47 988.59 988.23 590.15 3493.60 20
SteuartSystems-ACMMP85.99 1688.31 1683.27 2090.73 1089.84 1490.27 1474.31 1584.56 2975.88 3087.32 1485.04 2477.31 2389.01 788.46 391.14 493.96 12
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP86.52 1389.01 1183.62 1690.28 1890.09 1390.32 1374.05 1988.32 1379.74 1587.04 1585.59 2376.97 2889.35 488.44 490.35 3094.27 11
HFP-MVS86.15 1587.95 1884.06 1390.80 989.20 2389.62 1974.26 1687.52 1480.63 1186.82 1684.19 2878.22 1487.58 1787.19 1690.81 1293.13 24
SMA-MVScopyleft87.56 790.17 784.52 991.71 390.57 990.77 875.19 1390.67 780.50 1386.59 1788.86 878.09 1589.92 189.41 190.84 1095.19 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMPR85.52 1787.53 2083.17 2190.13 1989.27 2089.30 2073.97 2086.89 1977.14 2486.09 1883.18 3277.74 1987.42 1987.20 1590.77 1392.63 25
TSAR-MVS + COLMAP78.34 6081.64 4574.48 7380.13 9485.01 6081.73 5865.93 7484.75 2761.68 8585.79 1966.27 10771.39 6182.91 7080.78 8086.01 13485.98 80
MP-MVScopyleft85.50 1887.40 2183.28 1990.65 1289.51 1989.16 2374.11 1883.70 3378.06 2185.54 2084.89 2777.31 2387.40 2187.14 1790.41 2893.65 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TSAR-MVS + GP.83.69 2986.58 2580.32 3585.14 5486.96 4484.91 5070.25 4184.71 2873.91 3685.16 2185.63 2277.92 1785.44 4285.71 3689.77 4192.45 26
DeepPCF-MVS79.04 185.30 2088.93 1281.06 3188.77 3690.48 1085.46 4673.08 2890.97 673.77 3784.81 2285.95 2077.43 2288.22 1187.73 1187.85 8694.34 9
PGM-MVS84.42 2786.29 2782.23 2590.04 2288.82 2689.23 2271.74 3582.82 3874.61 3384.41 2382.09 3577.03 2787.13 2486.73 2490.73 1592.06 31
ACMMPcopyleft83.42 3085.27 3181.26 3088.47 3788.49 3388.31 3172.09 3283.42 3472.77 4082.65 2478.22 5075.18 3486.24 3885.76 3590.74 1492.13 30
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CDPH-MVS82.64 3385.03 3379.86 3889.41 3188.31 3688.32 3071.84 3480.11 4567.47 6482.09 2581.44 4171.85 5685.89 4186.15 3290.24 3291.25 37
CP-MVS84.74 2686.43 2682.77 2389.48 3088.13 3988.64 2573.93 2184.92 2476.77 2681.94 2683.50 3077.29 2586.92 3086.49 2790.49 2293.14 23
PHI-MVS82.36 3585.89 2978.24 4786.40 4789.52 1885.52 4469.52 4882.38 4165.67 7181.35 2782.36 3473.07 4787.31 2386.76 2389.24 5291.56 34
CNVR-MVS86.36 1488.19 1784.23 1191.33 589.84 1490.34 1175.56 1087.36 1778.97 1781.19 2886.76 1878.74 1189.30 588.58 290.45 2794.33 10
CSCG85.28 2187.68 1982.49 2489.95 2491.99 588.82 2471.20 3786.41 2179.63 1679.26 2988.36 1073.94 4186.64 3186.67 2591.40 294.41 8
HQP-MVS81.19 4083.27 3778.76 4487.40 4185.45 5686.95 3570.47 4081.31 4266.91 6879.24 3076.63 5471.67 5984.43 5483.78 5289.19 5692.05 33
MCST-MVS85.13 2286.62 2383.39 1790.55 1489.82 1689.29 2173.89 2284.38 3076.03 2979.01 3185.90 2178.47 1287.81 1686.11 3392.11 193.29 22
X-MVS83.23 3285.20 3280.92 3389.71 2788.68 2788.21 3273.60 2382.57 3971.81 4577.07 3281.92 3771.72 5886.98 2886.86 2090.47 2392.36 28
EPNet79.08 5680.62 5377.28 5188.90 3583.17 8283.65 5472.41 3174.41 5867.15 6776.78 3374.37 6664.43 9983.70 6083.69 5387.15 9788.19 62
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
NCCC85.34 1986.59 2483.88 1591.48 488.88 2589.79 1775.54 1186.67 2077.94 2276.55 3484.99 2578.07 1688.04 1287.68 1290.46 2693.31 21
MVS_111021_LR78.13 6179.85 6076.13 5981.12 8181.50 9280.28 6865.25 7776.09 5471.32 5076.49 3572.87 7372.21 5182.79 7281.29 7386.59 11987.91 64
LGP-MVS_train79.83 4381.22 4978.22 4886.28 4885.36 5886.76 3669.59 4677.34 5065.14 7475.68 3670.79 8171.37 6284.60 5084.01 4790.18 3390.74 42
TPM-MVS90.07 2188.36 3588.45 2977.10 2575.60 3783.98 2971.33 6389.75 4389.62 53
Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025
CS-MVS-test78.79 5880.72 5276.53 5781.11 8283.88 7079.69 7663.72 9173.80 6369.95 5575.40 3876.17 5674.85 3584.50 5382.78 6089.87 3988.54 60
DeepC-MVS_fast78.24 384.27 2885.50 3082.85 2290.46 1789.24 2187.83 3374.24 1784.88 2576.23 2875.26 3981.05 4377.62 2088.02 1387.62 1390.69 1692.41 27
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS78.47 284.81 2586.03 2883.37 1889.29 3290.38 1188.61 2676.50 186.25 2277.22 2375.12 4080.28 4577.59 2188.39 1088.17 691.02 693.66 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet81.62 3983.41 3679.53 4087.06 4288.59 3185.47 4567.96 5776.59 5374.05 3474.69 4181.98 3672.98 4986.14 3985.47 3789.68 4690.42 46
MVS_030481.73 3883.86 3579.26 4186.22 4989.18 2486.41 3867.15 6475.28 5570.75 5274.59 4283.49 3174.42 3887.05 2786.34 2990.58 2091.08 39
ACMP73.23 779.79 4480.53 5478.94 4285.61 5285.68 5385.61 4369.59 4677.33 5171.00 5174.45 4369.16 9271.88 5483.15 6783.37 5589.92 3790.57 45
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVS_111021_HR80.13 4281.46 4678.58 4585.77 5185.17 5983.45 5569.28 4974.08 6270.31 5474.31 4475.26 6373.13 4686.46 3485.15 4189.53 4789.81 51
CPTT-MVS81.77 3783.10 3880.21 3685.93 5086.45 4987.72 3470.98 3882.54 4071.53 4874.23 4581.49 4076.31 3182.85 7181.87 6788.79 6592.26 29
CS-MVS79.22 5181.11 5077.01 5481.36 7784.03 6780.35 6763.25 9673.43 6670.37 5374.10 4676.03 5976.40 3086.32 3783.95 5090.34 3189.93 49
EC-MVSNet79.44 4881.35 4777.22 5282.95 6384.67 6381.31 6063.65 9272.47 6968.75 5773.15 4778.33 4975.99 3286.06 4083.96 4990.67 1790.79 41
CLD-MVS79.35 5081.23 4877.16 5385.01 5786.92 4585.87 4160.89 13380.07 4775.35 3272.96 4873.21 7168.43 7985.41 4484.63 4487.41 9485.44 89
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
sasdasda79.16 5382.37 4275.41 6382.33 6986.38 5080.80 6363.18 9882.90 3667.34 6572.79 4976.07 5769.62 6983.46 6484.41 4589.20 5490.60 43
canonicalmvs79.16 5382.37 4275.41 6382.33 6986.38 5080.80 6363.18 9882.90 3667.34 6572.79 4976.07 5769.62 6983.46 6484.41 4589.20 5490.60 43
MGCFI-Net76.55 6881.71 4470.52 9381.71 7384.62 6475.02 12062.17 12182.91 3553.58 12572.78 5175.87 6161.75 12282.96 6982.61 6288.86 6390.26 48
DPM-MVS83.30 3184.33 3482.11 2689.56 2888.49 3390.33 1273.24 2783.85 3276.46 2772.43 5282.65 3373.02 4886.37 3586.91 1990.03 3689.62 53
UA-Net74.47 7877.80 6870.59 9285.33 5385.40 5773.54 14565.98 7360.65 13156.00 11072.11 5379.15 4654.63 17083.13 6882.25 6488.04 8081.92 127
OMC-MVS80.26 4182.59 4177.54 5083.04 6285.54 5483.25 5665.05 7987.32 1872.42 4172.04 5478.97 4773.30 4583.86 5781.60 7188.15 7588.83 58
UGNet72.78 8777.67 6967.07 13871.65 16783.24 8075.20 11463.62 9364.93 9656.72 10671.82 5573.30 6949.02 18381.02 9380.70 8786.22 12588.67 59
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DELS-MVS79.15 5581.07 5176.91 5583.54 6187.31 4284.45 5164.92 8069.98 7169.34 5671.62 5676.26 5569.84 6886.57 3285.90 3489.39 4989.88 50
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
diffmvspermissive74.86 7777.37 7471.93 8275.62 12980.35 10879.42 7960.15 14372.81 6864.63 7771.51 5773.11 7266.53 9379.02 12377.98 12585.25 14886.83 76
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ET-MVSNet_ETH3D72.46 9074.19 8970.44 9462.50 20281.17 9779.90 7262.46 11864.52 10157.52 10271.49 5859.15 13272.08 5378.61 12881.11 7588.16 7483.29 115
CANet_DTU73.29 8576.96 7869.00 11377.04 11882.06 8879.49 7856.30 17067.85 8153.29 12771.12 5970.37 8561.81 12181.59 7980.96 7886.09 12884.73 101
ETV-MVS77.32 6478.81 6375.58 6282.24 7183.64 7579.98 6964.02 8869.64 7663.90 7970.89 6069.94 8773.41 4485.39 4583.91 5189.92 3788.31 61
casdiffmvs_mvgpermissive77.79 6279.55 6175.73 6181.56 7484.70 6282.12 5764.26 8774.27 6067.93 6170.83 6174.66 6569.19 7483.33 6681.94 6689.29 5187.14 72
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test75.37 7477.13 7773.31 7879.07 10081.32 9579.98 6960.12 14469.72 7464.11 7870.53 6273.22 7068.90 7580.14 10979.48 10887.67 9085.50 87
FC-MVSNet-train72.60 8975.07 8569.71 10481.10 8378.79 12373.74 14465.23 7866.10 8953.34 12670.36 6363.40 11656.92 15481.44 8280.96 7887.93 8284.46 105
Vis-MVSNetpermissive72.77 8877.20 7667.59 12874.19 14384.01 6876.61 10861.69 12760.62 13250.61 14270.25 6471.31 7955.57 16583.85 5882.28 6386.90 10688.08 63
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
baseline70.45 10874.09 9066.20 14770.95 17575.67 15474.26 13453.57 17568.33 7858.42 9669.87 6571.45 7661.55 12374.84 15974.76 16278.42 18183.72 112
PMMVS65.06 15969.17 13260.26 17655.25 21763.43 20366.71 17843.01 21262.41 11750.64 14169.44 6667.04 10463.29 10574.36 16273.54 16882.68 16673.99 185
casdiffmvspermissive76.76 6678.46 6574.77 6980.32 9183.73 7480.65 6563.24 9773.58 6566.11 7069.39 6774.09 6869.49 7282.52 7479.35 11188.84 6486.52 77
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EIA-MVS75.64 7376.60 8074.53 7282.43 6883.84 7178.32 9162.28 12065.96 9063.28 8368.95 6867.54 10271.61 6082.55 7381.63 7089.24 5285.72 83
MVSTER72.06 9274.24 8869.51 10770.39 17875.97 15376.91 10457.36 16764.64 9961.39 8768.86 6963.76 11463.46 10481.44 8279.70 10187.56 9285.31 91
TAPA-MVS71.42 977.69 6380.05 5974.94 6780.68 8684.52 6581.36 5963.14 10084.77 2664.82 7668.72 7075.91 6071.86 5581.62 7879.55 10687.80 8885.24 92
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
EPP-MVSNet74.00 8177.41 7370.02 10180.53 8883.91 6974.99 12162.68 11365.06 9549.77 14768.68 7172.09 7563.06 10782.49 7580.73 8189.12 5888.91 57
MSLP-MVS++82.09 3682.66 4081.42 2987.03 4387.22 4385.82 4270.04 4280.30 4478.66 1968.67 7281.04 4477.81 1885.19 4684.88 4389.19 5691.31 36
PVSNet_BlendedMVS76.21 6977.52 7174.69 7079.46 9783.79 7277.50 9864.34 8569.88 7271.88 4368.54 7370.42 8367.05 8383.48 6279.63 10287.89 8486.87 74
PVSNet_Blended76.21 6977.52 7174.69 7079.46 9783.79 7277.50 9864.34 8569.88 7271.88 4368.54 7370.42 8367.05 8383.48 6279.63 10287.89 8486.87 74
PCF-MVS73.28 679.42 4980.41 5678.26 4684.88 6088.17 3786.08 3969.85 4375.23 5768.43 5868.03 7578.38 4871.76 5781.26 8980.65 8988.56 6891.18 38
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OPM-MVS79.68 4779.28 6280.15 3787.99 3986.77 4688.52 2872.72 2964.55 10067.65 6367.87 7674.33 6774.31 3986.37 3585.25 4089.73 4489.81 51
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
RPSCF67.64 14371.25 11163.43 16461.86 20470.73 17867.26 17250.86 19274.20 6158.91 9267.49 7769.33 9064.10 10271.41 17868.45 19277.61 18377.17 164
EPNet_dtu68.08 13371.00 11264.67 15579.64 9668.62 18775.05 11963.30 9566.36 8745.27 17367.40 7866.84 10643.64 19275.37 15574.98 16181.15 17177.44 162
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Vis-MVSNet (Re-imp)67.83 13873.52 9361.19 17178.37 10576.72 14766.80 17762.96 10265.50 9334.17 19867.19 7969.68 8939.20 20179.39 11979.44 10985.68 14076.73 168
IS_MVSNet73.33 8477.34 7568.65 11681.29 7883.47 7674.45 12763.58 9465.75 9248.49 15267.11 8070.61 8254.63 17084.51 5283.58 5489.48 4886.34 79
PVSNet_Blended_VisFu76.57 6777.90 6775.02 6680.56 8786.58 4879.24 8066.18 6964.81 9768.18 6065.61 8171.45 7667.05 8384.16 5581.80 6888.90 6090.92 40
FC-MVSNet-test56.90 19765.20 16847.21 20766.98 19063.20 20549.11 21658.60 16059.38 13811.50 22365.60 8256.68 14624.66 21571.17 18171.36 17872.38 20569.02 196
QAPM78.47 5980.22 5876.43 5885.03 5686.75 4780.62 6666.00 7273.77 6465.35 7365.54 8378.02 5172.69 5083.71 5983.36 5688.87 6290.41 47
DCV-MVSNet73.65 8375.78 8371.16 8680.19 9279.27 11777.45 10061.68 12866.73 8558.72 9465.31 8469.96 8662.19 11281.29 8880.97 7786.74 11286.91 73
baseline170.10 11372.17 10667.69 12579.74 9576.80 14573.91 13864.38 8462.74 11648.30 15464.94 8564.08 11354.17 17281.46 8178.92 11485.66 14176.22 169
IterMVS-LS71.69 9672.82 10270.37 9577.54 11476.34 15075.13 11860.46 13961.53 12557.57 10164.89 8667.33 10366.04 9677.09 14477.37 13885.48 14485.18 93
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
3Dnovator+75.73 482.40 3482.76 3981.97 2888.02 3889.67 1786.60 3771.48 3681.28 4378.18 2064.78 8777.96 5277.13 2687.32 2286.83 2190.41 2891.48 35
MAR-MVS79.21 5280.32 5777.92 4987.46 4088.15 3883.95 5367.48 6374.28 5968.25 5964.70 8877.04 5372.17 5285.42 4385.00 4288.22 7287.62 67
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
thisisatest053071.48 9973.01 9869.70 10573.83 14878.62 12574.53 12659.12 15364.13 10358.63 9564.60 8958.63 13464.27 10080.28 10580.17 9787.82 8784.64 103
tttt051771.41 10072.95 9969.60 10673.70 15078.70 12474.42 13059.12 15363.89 10758.35 9864.56 9058.39 13664.27 10080.29 10480.17 9787.74 8984.69 102
Effi-MVS+75.28 7576.20 8174.20 7481.15 8083.24 8081.11 6163.13 10166.37 8660.27 8964.30 9168.88 9670.93 6681.56 8081.69 6988.61 6687.35 68
CostFormer68.92 12569.58 12668.15 11975.98 12576.17 15278.22 9351.86 18765.80 9161.56 8663.57 9262.83 11761.85 11970.40 19168.67 18879.42 17779.62 150
AdaColmapbinary79.74 4678.62 6481.05 3289.23 3386.06 5284.95 4971.96 3379.39 4875.51 3163.16 9368.84 9776.51 2983.55 6182.85 5988.13 7686.46 78
ACMM72.26 878.86 5778.13 6679.71 3986.89 4483.40 7786.02 4070.50 3975.28 5571.49 4963.01 9469.26 9173.57 4384.11 5683.98 4889.76 4287.84 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
3Dnovator73.76 579.75 4580.52 5578.84 4384.94 5987.35 4184.43 5265.54 7578.29 4973.97 3563.00 9575.62 6274.07 4085.00 4785.34 3990.11 3589.04 56
FA-MVS(training)73.66 8274.95 8672.15 8178.63 10480.46 10678.92 8554.79 17369.71 7565.37 7262.04 9666.89 10567.10 8280.72 9679.87 9988.10 7984.97 97
baseline269.69 11670.27 11869.01 11275.72 12877.13 14373.82 14158.94 15761.35 12657.09 10461.68 9757.17 14261.99 11678.10 13376.58 14986.48 12279.85 146
DI_MVS_plusplus_trai75.13 7676.12 8273.96 7578.18 10681.55 9080.97 6262.54 11568.59 7765.13 7561.43 9874.81 6469.32 7381.01 9479.59 10487.64 9185.89 81
test250671.72 9572.95 9970.29 9681.49 7583.27 7875.74 10967.59 6168.19 7949.81 14661.15 9949.73 19358.82 13684.76 4882.94 5788.27 7080.63 138
USDC67.36 14767.90 14866.74 14471.72 16575.23 16171.58 15560.28 14067.45 8250.54 14360.93 10045.20 20662.08 11376.56 15074.50 16384.25 15775.38 177
SCA65.40 15766.58 16064.02 15970.65 17673.37 16967.35 17153.46 17763.66 10854.14 11760.84 10160.20 12761.50 12469.96 19268.14 19377.01 18869.91 192
IterMVS-SCA-FT66.89 15269.22 13164.17 15771.30 17375.64 15571.33 15653.17 17957.63 14849.08 15160.72 10260.05 12863.09 10674.99 15873.92 16577.07 18781.57 130
IterMVS66.36 15368.30 14464.10 15869.48 18574.61 16573.41 14850.79 19357.30 15048.28 15560.64 10359.92 12960.85 13174.14 16372.66 17281.80 16878.82 155
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_NR-MVSNet70.59 10672.19 10568.72 11477.72 11280.72 10373.81 14269.65 4561.99 12043.23 17960.54 10457.50 13958.57 13879.56 11581.07 7689.34 5083.97 107
EPMVS60.00 19061.97 19157.71 18768.46 18863.17 20664.54 18848.23 20563.30 11044.72 17660.19 10556.05 14950.85 18065.27 20562.02 20769.44 21163.81 205
GA-MVS68.14 13169.17 13266.93 14173.77 14978.50 12774.45 12758.28 16155.11 16648.44 15360.08 10653.99 16161.50 12478.43 13077.57 13285.13 14980.54 139
MDTV_nov1_ep1364.37 16365.24 16763.37 16568.94 18770.81 17772.40 15450.29 19660.10 13553.91 12160.07 10759.15 13257.21 15069.43 19567.30 19577.47 18469.78 194
Fast-Effi-MVS+73.11 8673.66 9272.48 8077.72 11280.88 10278.55 8858.83 15965.19 9460.36 8859.98 10862.42 11971.22 6481.66 7780.61 9188.20 7384.88 100
tpm62.41 17563.15 18161.55 17072.24 16163.79 20271.31 15746.12 21057.82 14355.33 11259.90 10954.74 15553.63 17367.24 20164.29 20370.65 20974.25 184
PatchmatchNetpermissive64.21 16564.65 17363.69 16171.29 17468.66 18669.63 16251.70 18963.04 11253.77 12259.83 11058.34 13760.23 13368.54 19866.06 20075.56 19468.08 198
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
GeoE74.23 7974.84 8773.52 7680.42 9081.46 9379.77 7361.06 13167.23 8363.67 8059.56 11168.74 9867.90 8080.25 10779.37 11088.31 6987.26 71
CDS-MVSNet67.65 14269.83 12365.09 15175.39 13176.55 14874.42 13063.75 9053.55 17749.37 14959.41 11262.45 11844.44 19079.71 11279.82 10083.17 16577.36 163
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CVMVSNet62.55 17265.89 16158.64 18466.95 19169.15 18466.49 18156.29 17152.46 18332.70 19959.27 11358.21 13850.09 18171.77 17771.39 17779.31 17878.99 154
PLCcopyleft68.99 1175.68 7275.31 8476.12 6082.94 6481.26 9679.94 7166.10 7077.15 5266.86 6959.13 11468.53 9973.73 4280.38 10279.04 11287.13 10181.68 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TranMVSNet+NR-MVSNet69.25 12270.81 11467.43 12977.23 11779.46 11573.48 14769.66 4460.43 13339.56 18758.82 11553.48 16755.74 16379.59 11381.21 7488.89 6182.70 117
DU-MVS69.63 11770.91 11368.13 12075.99 12379.54 11373.81 14269.20 5061.20 12843.23 17958.52 11653.50 16558.57 13879.22 12080.45 9287.97 8183.97 107
NR-MVSNet68.79 12770.56 11566.71 14577.48 11579.54 11373.52 14669.20 5061.20 12839.76 18658.52 11650.11 19151.37 17980.26 10680.71 8688.97 5983.59 113
Effi-MVS+-dtu71.82 9471.86 10971.78 8378.77 10180.47 10578.55 8861.67 12960.68 13055.49 11158.48 11865.48 10968.85 7676.92 14575.55 15787.35 9585.46 88
GBi-Net70.78 10373.37 9667.76 12172.95 15578.00 13075.15 11562.72 10864.13 10351.44 13558.37 11969.02 9357.59 14681.33 8580.72 8286.70 11382.02 121
test170.78 10373.37 9667.76 12172.95 15578.00 13075.15 11562.72 10864.13 10351.44 13558.37 11969.02 9357.59 14681.33 8580.72 8286.70 11382.02 121
FMVSNet370.49 10772.90 10167.67 12672.88 15877.98 13374.96 12462.72 10864.13 10351.44 13558.37 11969.02 9357.43 14979.43 11879.57 10586.59 11981.81 128
UniMVSNet (Re)69.53 11871.90 10866.76 14376.42 12180.93 9972.59 15268.03 5661.75 12341.68 18458.34 12257.23 14153.27 17579.53 11680.62 9088.57 6784.90 99
tpmrst62.00 17962.35 19061.58 16971.62 16864.14 19969.07 16548.22 20662.21 11953.93 12058.26 12355.30 15255.81 16263.22 20762.62 20670.85 20870.70 191
OpenMVScopyleft70.44 1076.15 7176.82 7975.37 6585.01 5784.79 6178.99 8462.07 12271.27 7067.88 6257.91 12472.36 7470.15 6782.23 7681.41 7288.12 7787.78 66
LS3D74.08 8073.39 9574.88 6885.05 5582.62 8679.71 7568.66 5272.82 6758.80 9357.61 12561.31 12271.07 6580.32 10378.87 11686.00 13580.18 144
test-LLR64.42 16264.36 17564.49 15675.02 13463.93 20066.61 17961.96 12354.41 17247.77 15757.46 12660.25 12555.20 16770.80 18569.33 18380.40 17574.38 182
TESTMET0.1,161.10 18664.36 17557.29 18857.53 21263.93 20066.61 17936.22 21654.41 17247.77 15757.46 12660.25 12555.20 16770.80 18569.33 18380.40 17574.38 182
test-mter60.84 18764.62 17456.42 19155.99 21564.18 19865.39 18434.23 21754.39 17446.21 16857.40 12859.49 13155.86 16171.02 18469.65 18280.87 17476.20 170
SixPastTwentyTwo61.84 18262.45 18861.12 17269.20 18672.20 17262.03 19757.40 16546.54 20238.03 19357.14 12941.72 21158.12 14269.67 19371.58 17681.94 16778.30 157
PatchMatch-RL67.78 13966.65 15969.10 11173.01 15472.69 17168.49 16761.85 12562.93 11460.20 9056.83 13050.42 18969.52 7175.62 15474.46 16481.51 16973.62 186
CNLPA77.20 6577.54 7076.80 5682.63 6584.31 6679.77 7364.64 8185.17 2373.18 3956.37 13169.81 8874.53 3781.12 9278.69 11786.04 13387.29 70
Fast-Effi-MVS+-dtu68.34 13069.47 12767.01 13975.15 13277.97 13577.12 10255.40 17257.87 14246.68 16456.17 13260.39 12462.36 11076.32 15276.25 15385.35 14781.34 131
ECVR-MVScopyleft72.20 9173.91 9170.20 9881.49 7583.27 7875.74 10967.59 6168.19 7949.31 15055.77 13362.00 12058.82 13684.76 4882.94 5788.27 7080.41 142
FMVSNet270.39 10972.67 10367.72 12472.95 15578.00 13075.15 11562.69 11263.29 11151.25 13955.64 13468.49 10057.59 14680.91 9580.35 9486.70 11382.02 121
GG-mvs-BLEND46.86 21167.51 15122.75 2170.05 22976.21 15164.69 1870.04 22561.90 1210.09 23055.57 13571.32 780.08 22570.54 18767.19 19671.58 20669.86 193
dps64.00 16662.99 18265.18 15073.29 15272.07 17368.98 16653.07 18057.74 14658.41 9755.55 13647.74 19960.89 13069.53 19467.14 19776.44 19171.19 190
thisisatest051567.40 14668.78 13665.80 14970.02 18075.24 16069.36 16457.37 16654.94 17053.67 12355.53 13754.85 15458.00 14378.19 13278.91 11586.39 12383.78 111
v2v48270.05 11469.46 12870.74 8774.62 13980.32 10979.00 8360.62 13657.41 14956.89 10555.43 13855.14 15366.39 9477.25 14177.14 14186.90 10683.57 114
test111171.56 9773.44 9469.38 10981.16 7982.95 8374.99 12167.68 5966.89 8446.33 16655.19 13960.91 12357.99 14484.59 5182.70 6188.12 7780.85 135
v870.23 11069.86 12270.67 9074.69 13879.82 11278.79 8659.18 15258.80 14058.20 9955.00 14057.33 14066.31 9577.51 13876.71 14786.82 10983.88 110
pmmvs467.89 13667.39 15468.48 11771.60 16973.57 16874.45 12760.98 13264.65 9857.97 10054.95 14151.73 18361.88 11873.78 16575.11 15983.99 16177.91 159
TAMVS59.58 19162.81 18555.81 19366.03 19465.64 19763.86 19148.74 20149.95 19337.07 19554.77 14258.54 13544.44 19072.29 17171.79 17474.70 19866.66 200
ACMH65.37 1470.71 10570.00 12071.54 8482.51 6782.47 8777.78 9568.13 5456.19 15946.06 16954.30 14351.20 18568.68 7780.66 9880.72 8286.07 12984.45 106
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
dmvs_re67.22 14967.92 14766.40 14675.94 12670.55 18074.97 12363.87 8957.07 15144.75 17554.29 14456.72 14554.65 16979.53 11677.51 13484.20 15879.78 148
anonymousdsp65.28 15867.98 14662.13 16758.73 21173.98 16767.10 17450.69 19448.41 19747.66 16054.27 14552.75 17761.45 12676.71 14980.20 9587.13 10189.53 55
CR-MVSNet64.83 16065.54 16564.01 16070.64 17769.41 18265.97 18252.74 18257.81 14452.65 13054.27 14556.31 14760.92 12872.20 17473.09 17081.12 17275.69 174
V4268.76 12869.63 12567.74 12364.93 19878.01 12978.30 9256.48 16958.65 14156.30 10954.26 14757.03 14364.85 9877.47 13977.01 14385.60 14284.96 98
pmmvs562.37 17864.04 17760.42 17465.03 19671.67 17567.17 17352.70 18450.30 19144.80 17454.23 14851.19 18649.37 18272.88 16873.48 16983.45 16274.55 181
v1070.22 11169.76 12470.74 8774.79 13780.30 11079.22 8159.81 14757.71 14756.58 10854.22 14955.31 15166.95 8678.28 13177.47 13587.12 10385.07 95
WR-MVS63.03 16867.40 15357.92 18675.14 13377.60 14060.56 20066.10 7054.11 17623.88 20953.94 15053.58 16334.50 20573.93 16477.71 12987.35 9580.94 134
v114469.93 11569.36 12970.61 9174.89 13680.93 9979.11 8260.64 13555.97 16155.31 11353.85 15154.14 15866.54 9278.10 13377.44 13687.14 10085.09 94
v14867.85 13767.53 15068.23 11873.25 15377.57 14174.26 13457.36 16755.70 16257.45 10353.53 15255.42 15061.96 11775.23 15673.92 16585.08 15081.32 132
PEN-MVS62.96 16965.77 16359.70 17973.98 14675.45 15763.39 19367.61 6052.49 18225.49 20853.39 15349.12 19540.85 19871.94 17677.26 14086.86 10880.72 137
CP-MVSNet62.68 17165.49 16659.40 18271.84 16375.34 15862.87 19567.04 6552.64 18127.19 20653.38 15448.15 19741.40 19671.26 17975.68 15586.07 12982.00 124
DTE-MVSNet61.85 18164.96 17258.22 18574.32 14274.39 16661.01 19967.85 5851.76 18921.91 21653.28 15548.17 19637.74 20272.22 17376.44 15086.52 12178.49 156
IB-MVS66.94 1271.21 10271.66 11070.68 8979.18 9982.83 8572.61 15161.77 12659.66 13663.44 8253.26 15659.65 13059.16 13576.78 14882.11 6587.90 8387.33 69
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpm cat165.41 15663.81 17967.28 13475.61 13072.88 17075.32 11252.85 18162.97 11363.66 8153.24 15753.29 17361.83 12065.54 20264.14 20474.43 19974.60 180
MSDG71.52 9869.87 12173.44 7782.21 7279.35 11679.52 7764.59 8266.15 8861.87 8453.21 15856.09 14865.85 9778.94 12478.50 11986.60 11876.85 167
MS-PatchMatch70.17 11270.49 11669.79 10380.98 8477.97 13577.51 9758.95 15662.33 11855.22 11453.14 15965.90 10862.03 11579.08 12277.11 14284.08 15977.91 159
WR-MVS_H61.83 18365.87 16257.12 18971.72 16576.87 14461.45 19866.19 6851.97 18722.92 21353.13 16052.30 18033.80 20671.03 18375.00 16086.65 11780.78 136
thres40067.95 13568.62 14067.17 13577.90 10778.59 12674.27 13362.72 10856.34 15845.77 17153.00 16153.35 17156.46 15680.21 10878.43 12085.91 13880.43 141
thres20067.98 13468.55 14167.30 13377.89 10978.86 12174.18 13662.75 10656.35 15746.48 16552.98 16253.54 16456.46 15680.41 9977.97 12686.05 13179.78 148
v14419269.34 12168.68 13970.12 9974.06 14480.54 10478.08 9460.54 13754.99 16954.13 11852.92 16352.80 17666.73 9077.13 14376.72 14687.15 9785.63 84
thres600view767.68 14068.43 14266.80 14277.90 10778.86 12173.84 14062.75 10656.07 16044.70 17752.85 16452.81 17555.58 16480.41 9977.77 12886.05 13180.28 143
v119269.50 11968.83 13570.29 9674.49 14080.92 10178.55 8860.54 13755.04 16754.21 11652.79 16552.33 17866.92 8777.88 13577.35 13987.04 10485.51 86
thres100view90067.60 14468.02 14567.12 13777.83 11077.75 13773.90 13962.52 11656.64 15446.82 16252.65 16653.47 16855.92 16078.77 12677.62 13185.72 13979.23 152
tfpn200view968.11 13268.72 13867.40 13077.83 11078.93 11974.28 13262.81 10556.64 15446.82 16252.65 16653.47 16856.59 15580.41 9978.43 12086.11 12780.52 140
LTVRE_ROB59.44 1661.82 18462.64 18660.87 17372.83 15977.19 14264.37 18958.97 15533.56 21828.00 20552.59 16842.21 21063.93 10374.52 16076.28 15177.15 18682.13 120
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v192192069.03 12468.32 14369.86 10274.03 14580.37 10777.55 9660.25 14154.62 17153.59 12452.36 16951.50 18466.75 8977.17 14276.69 14886.96 10585.56 85
ADS-MVSNet55.94 19958.01 20053.54 20162.48 20358.48 21259.12 20546.20 20959.65 13742.88 18252.34 17053.31 17246.31 18762.00 20960.02 21064.23 21660.24 212
PS-CasMVS62.38 17765.06 16959.25 18371.73 16475.21 16262.77 19666.99 6651.94 18826.96 20752.00 17147.52 20041.06 19771.16 18275.60 15685.97 13681.97 126
v124068.64 12967.89 14969.51 10773.89 14780.26 11176.73 10659.97 14653.43 17953.08 12851.82 17250.84 18766.62 9176.79 14776.77 14586.78 11185.34 90
ACMH+66.54 1371.36 10170.09 11972.85 7982.59 6681.13 9878.56 8768.04 5561.55 12452.52 13351.50 17354.14 15868.56 7878.85 12579.50 10786.82 10983.94 109
Baseline_NR-MVSNet67.53 14568.77 13766.09 14875.99 12374.75 16472.43 15368.41 5361.33 12738.33 19151.31 17454.13 16056.03 15979.22 12078.19 12385.37 14682.45 119
pm-mvs165.62 15567.42 15263.53 16373.66 15176.39 14969.66 16160.87 13449.73 19443.97 17851.24 17557.00 14448.16 18479.89 11077.84 12784.85 15579.82 147
PatchT61.97 18064.04 17759.55 18160.49 20667.40 19056.54 20748.65 20256.69 15352.65 13051.10 17652.14 18160.92 12872.20 17473.09 17078.03 18275.69 174
RPMNet61.71 18562.88 18360.34 17569.51 18469.41 18263.48 19249.23 19857.81 14445.64 17250.51 17750.12 19053.13 17668.17 20068.49 19181.07 17375.62 176
EU-MVSNet54.63 20158.69 19949.90 20556.99 21362.70 20856.41 20850.64 19545.95 20423.14 21250.42 17846.51 20236.63 20365.51 20364.85 20275.57 19374.91 179
TransMVSNet (Re)64.74 16165.66 16463.66 16277.40 11675.33 15969.86 16062.67 11447.63 19941.21 18550.01 17952.33 17845.31 18979.57 11477.69 13085.49 14377.07 166
FMVSNet168.84 12670.47 11766.94 14071.35 17277.68 13874.71 12562.35 11956.93 15249.94 14550.01 17964.59 11157.07 15181.33 8580.72 8286.25 12482.00 124
PM-MVS60.48 18860.94 19659.94 17758.85 20966.83 19364.27 19051.39 19055.03 16848.03 15650.00 18140.79 21358.26 14169.20 19667.13 19878.84 18077.60 161
pmnet_mix0255.30 20057.01 20453.30 20264.14 19959.09 21158.39 20650.24 19753.47 17838.68 19049.75 18245.86 20440.14 20065.38 20460.22 20968.19 21365.33 202
test0.0.03 158.80 19261.58 19355.56 19475.02 13468.45 18859.58 20461.96 12352.74 18029.57 20249.75 18254.56 15631.46 20871.19 18069.77 18175.75 19264.57 203
UniMVSNet_ETH3D67.18 15067.03 15567.36 13174.44 14178.12 12874.07 13766.38 6752.22 18446.87 16148.64 18451.84 18256.96 15277.29 14078.53 11885.42 14582.59 118
CHOSEN 280x42058.70 19361.88 19254.98 19655.45 21650.55 21964.92 18640.36 21355.21 16438.13 19248.31 18563.76 11463.03 10873.73 16668.58 19068.00 21473.04 187
v7n67.05 15166.94 15667.17 13572.35 16078.97 11873.26 15058.88 15851.16 19050.90 14048.21 18650.11 19160.96 12777.70 13677.38 13786.68 11685.05 96
MDTV_nov1_ep13_2view60.16 18960.51 19759.75 17865.39 19569.05 18568.00 16948.29 20451.99 18545.95 17048.01 18749.64 19453.39 17468.83 19766.52 19977.47 18469.55 195
TinyColmap62.84 17061.03 19564.96 15369.61 18371.69 17468.48 16859.76 14855.41 16347.69 15947.33 18834.20 21862.76 10974.52 16072.59 17381.44 17071.47 189
COLMAP_ROBcopyleft62.73 1567.66 14166.76 15868.70 11580.49 8977.98 13375.29 11362.95 10363.62 10949.96 14447.32 18950.72 18858.57 13876.87 14675.50 15884.94 15375.33 178
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous20240521172.16 10780.85 8581.85 8976.88 10565.40 7662.89 11546.35 19067.99 10162.05 11481.15 9180.38 9385.97 13684.50 104
pmmvs-eth3d63.52 16762.44 18964.77 15466.82 19370.12 18169.41 16359.48 15054.34 17552.71 12946.24 19144.35 20856.93 15372.37 16973.77 16783.30 16375.91 171
TDRefinement66.09 15465.03 17167.31 13269.73 18276.75 14675.33 11164.55 8360.28 13449.72 14845.63 19242.83 20960.46 13275.75 15375.95 15484.08 15978.04 158
testgi54.39 20357.86 20150.35 20471.59 17067.24 19154.95 20953.25 17843.36 20623.78 21044.64 19347.87 19824.96 21370.45 18868.66 18973.60 20262.78 208
Anonymous2023121171.90 9372.48 10471.21 8580.14 9381.53 9176.92 10362.89 10464.46 10258.94 9143.80 19470.98 8062.22 11180.70 9780.19 9686.18 12685.73 82
EG-PatchMatch MVS67.24 14866.94 15667.60 12778.73 10281.35 9473.28 14959.49 14946.89 20151.42 13843.65 19553.49 16655.50 16681.38 8480.66 8887.15 9781.17 133
CMPMVSbinary47.78 1762.49 17462.52 18762.46 16670.01 18170.66 17962.97 19451.84 18851.98 18656.71 10742.87 19653.62 16257.80 14572.23 17270.37 18075.45 19675.91 171
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
tfpnnormal64.27 16463.64 18065.02 15275.84 12775.61 15671.24 15862.52 11647.79 19842.97 18142.65 19744.49 20752.66 17778.77 12676.86 14484.88 15479.29 151
CHOSEN 1792x268869.20 12369.26 13069.13 11076.86 11978.93 11977.27 10160.12 14461.86 12254.42 11542.54 19861.61 12166.91 8878.55 12978.14 12479.23 17983.23 116
MDA-MVSNet-bldmvs53.37 20553.01 20853.79 20043.67 22167.95 18959.69 20357.92 16343.69 20532.41 20041.47 19927.89 22452.38 17856.97 21665.99 20176.68 18967.13 199
WB-MVS40.01 21345.06 21434.13 21358.84 21053.28 21728.60 22258.10 16232.93 2204.65 22840.92 20028.33 2237.26 22258.86 21456.09 21247.36 22044.98 217
FMVSNet557.24 19560.02 19853.99 19956.45 21462.74 20765.27 18547.03 20755.14 16539.55 18840.88 20153.42 17041.83 19372.35 17071.10 17973.79 20164.50 204
N_pmnet47.35 20950.13 21044.11 21059.98 20751.64 21851.86 21244.80 21149.58 19520.76 21740.65 20240.05 21529.64 20959.84 21155.15 21457.63 21754.00 215
MIMVSNet58.52 19461.34 19455.22 19560.76 20567.01 19266.81 17649.02 20056.43 15638.90 18940.59 20354.54 15740.57 19973.16 16771.65 17575.30 19766.00 201
HyFIR lowres test69.47 12068.94 13470.09 10076.77 12082.93 8476.63 10760.17 14259.00 13954.03 11940.54 20465.23 11067.89 8176.54 15178.30 12285.03 15180.07 145
gm-plane-assit57.00 19657.62 20356.28 19276.10 12262.43 20947.62 21746.57 20833.84 21723.24 21137.52 20540.19 21459.61 13479.81 11177.55 13384.55 15672.03 188
pmmvs662.41 17562.88 18361.87 16871.38 17175.18 16367.76 17059.45 15141.64 20942.52 18337.33 20652.91 17446.87 18677.67 13776.26 15283.23 16479.18 153
test20.0353.93 20456.28 20551.19 20372.19 16265.83 19553.20 21161.08 13042.74 20722.08 21437.07 20745.76 20524.29 21670.44 18969.04 18574.31 20063.05 207
gg-mvs-nofinetune62.55 17265.05 17059.62 18078.72 10377.61 13970.83 15953.63 17439.71 21322.04 21536.36 20864.32 11247.53 18581.16 9079.03 11385.00 15277.17 164
FPMVS51.87 20650.00 21154.07 19866.83 19257.25 21360.25 20250.91 19150.25 19234.36 19736.04 20932.02 22041.49 19558.98 21356.07 21370.56 21059.36 213
new-patchmatchnet46.97 21049.47 21244.05 21162.82 20156.55 21445.35 21852.01 18642.47 20817.04 22135.73 21035.21 21721.84 21961.27 21054.83 21565.26 21560.26 210
Anonymous2023120656.36 19857.80 20254.67 19770.08 17966.39 19460.46 20157.54 16449.50 19629.30 20333.86 21146.64 20135.18 20470.44 18968.88 18775.47 19568.88 197
MVS-HIRNet54.41 20252.10 20957.11 19058.99 20856.10 21549.68 21549.10 19946.18 20352.15 13433.18 21246.11 20356.10 15863.19 20859.70 21176.64 19060.25 211
pmmvs347.65 20849.08 21345.99 20844.61 21954.79 21650.04 21331.95 22033.91 21629.90 20130.37 21333.53 21946.31 18763.50 20663.67 20573.14 20463.77 206
new_pmnet38.40 21442.64 21633.44 21437.54 22445.00 22036.60 22032.72 21940.27 21112.72 22229.89 21428.90 22224.78 21453.17 21752.90 21756.31 21848.34 216
ambc53.42 20664.99 19763.36 20449.96 21447.07 20037.12 19428.97 21516.36 22741.82 19475.10 15767.34 19471.55 20775.72 173
PMVScopyleft39.38 1846.06 21243.30 21549.28 20662.93 20038.75 22141.88 21953.50 17633.33 21935.46 19628.90 21631.01 22133.04 20758.61 21554.63 21668.86 21257.88 214
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MIMVSNet149.27 20753.25 20744.62 20944.61 21961.52 21053.61 21052.18 18541.62 21018.68 21928.14 21741.58 21225.50 21168.46 19969.04 18573.15 20362.37 209
tmp_tt14.50 22114.68 2267.17 22810.46 2292.21 22437.73 21428.71 20425.26 21816.98 2254.37 22431.49 22029.77 22026.56 225
DeepMVS_CXcopyleft18.74 22718.55 2258.02 22226.96 2217.33 22423.81 21913.05 22825.99 21025.17 22222.45 22736.25 221
test_method22.26 21725.94 21917.95 2193.24 2287.17 22823.83 2237.27 22337.35 21520.44 21821.87 22039.16 21618.67 22034.56 21920.84 22334.28 22220.64 224
PMMVS225.60 21629.75 21820.76 21828.00 22530.93 22323.10 22429.18 22123.14 2221.46 22918.23 22116.54 2265.08 22340.22 21841.40 21937.76 22137.79 220
E-PMN21.77 21818.24 22125.89 21540.22 22219.58 22512.46 22739.87 21418.68 2246.71 2259.57 2224.31 23222.36 21819.89 22327.28 22133.73 22328.34 222
EMVS20.98 21917.15 22225.44 21639.51 22319.37 22612.66 22639.59 21519.10 2236.62 2269.27 2234.40 23122.43 21717.99 22424.40 22231.81 22425.53 223
MVEpermissive19.12 1920.47 22023.27 22017.20 22012.66 22725.41 22410.52 22834.14 21814.79 2256.53 2278.79 2244.68 23016.64 22129.49 22141.63 21822.73 22638.11 219
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft36.38 21535.80 21737.07 21245.76 21833.90 22229.81 22148.47 20339.91 21218.02 2208.00 2258.14 22925.14 21259.29 21261.02 20855.19 21940.31 218
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test1230.09 2210.14 2240.02 2220.00 2310.02 2300.02 2320.01 2260.09 2270.00 2320.30 2260.00 2340.08 2250.03 2260.09 2250.01 2280.45 225
testmvs0.09 2210.15 2230.02 2220.01 2300.02 2300.05 2310.01 2260.11 2260.01 2310.26 2270.01 2330.06 2270.10 2250.10 2240.01 2280.43 226
uanet_test0.00 2230.00 2250.00 2240.00 2310.00 2320.00 2330.00 2280.00 2280.00 2320.00 2280.00 2340.00 2280.00 2270.00 2260.00 2300.00 227
sosnet-low-res0.00 2230.00 2250.00 2240.00 2310.00 2320.00 2330.00 2280.00 2280.00 2320.00 2280.00 2340.00 2280.00 2270.00 2260.00 2300.00 227
sosnet0.00 2230.00 2250.00 2240.00 2310.00 2320.00 2330.00 2280.00 2280.00 2320.00 2280.00 2340.00 2280.00 2270.00 2260.00 2300.00 227
RE-MVS-def46.24 167
9.1486.88 16
SR-MVS88.99 3473.57 2487.54 14
our_test_367.93 18970.99 17666.89 175
MTAPA83.48 186.45 19
MTMP82.66 584.91 26
Patchmatch-RL test2.85 230
XVS86.63 4588.68 2785.00 4771.81 4581.92 3790.47 23
X-MVStestdata86.63 4588.68 2785.00 4771.81 4581.92 3790.47 23
mPP-MVS89.90 2581.29 42
NP-MVS80.10 46
Patchmtry65.80 19665.97 18252.74 18252.65 130