SED-MVS | | | 99.44 1 | 99.69 21 | 99.15 1 | 99.61 12 | 99.95 13 | 99.81 5 | 96.94 7 | 99.97 9 | 98.73 2 | 99.53 28 | 100.00 1 | 99.91 4 | 99.90 8 | 98.52 57 | 99.87 29 | 100.00 1 |
|
SF-MVS | | | 99.41 2 | 99.68 23 | 99.10 3 | 99.65 5 | 99.94 19 | 99.76 9 | 96.95 4 | 99.88 43 | 98.39 5 | 99.60 22 | 100.00 1 | 99.82 13 | 99.43 28 | 98.93 37 | 99.99 5 | 100.00 1 |
|
APDe-MVS | | | 99.40 3 | 99.81 2 | 98.92 8 | 99.62 7 | 99.96 7 | 99.76 9 | 96.87 15 | 99.95 26 | 97.66 7 | 99.57 26 | 100.00 1 | 99.63 28 | 99.88 11 | 99.28 26 | 100.00 1 | 100.00 1 |
|
MSLP-MVS++ | | | 99.39 4 | 99.76 9 | 98.95 6 | 99.60 16 | 99.99 1 | 99.83 4 | 96.82 17 | 99.92 36 | 97.58 10 | 99.58 25 | 100.00 1 | 99.93 1 | 98.98 35 | 99.86 8 | 99.96 12 | 100.00 1 |
|
CNVR-MVS | | | 99.39 4 | 99.75 12 | 98.98 4 | 99.69 1 | 99.95 13 | 99.76 9 | 96.91 10 | 99.98 3 | 97.59 9 | 99.64 19 | 100.00 1 | 99.93 1 | 99.94 2 | 98.75 50 | 99.97 11 | 99.97 87 |
|
DVP-MVS |  | | 99.38 6 | 99.57 36 | 99.15 1 | 99.62 7 | 99.94 19 | 99.72 22 | 96.99 2 | 99.98 3 | 98.85 1 | 98.21 75 | 100.00 1 | 99.88 7 | 99.88 11 | 98.96 35 | 99.85 33 | 100.00 1 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
MSP-MVS | | | 99.38 6 | 99.78 5 | 98.91 11 | 99.61 12 | 99.96 7 | 99.85 2 | 96.94 7 | 99.96 20 | 97.38 13 | 99.60 22 | 100.00 1 | 99.70 20 | 99.96 1 | 98.96 35 | 100.00 1 | 100.00 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DPE-MVS |  | | 99.37 8 | 99.74 15 | 98.94 7 | 99.60 16 | 99.94 19 | 99.87 1 | 96.95 4 | 99.94 29 | 97.42 11 | 99.62 21 | 100.00 1 | 99.80 16 | 99.91 5 | 98.78 48 | 99.98 9 | 100.00 1 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
DVP-MVS++ | | | 99.36 9 | 99.70 20 | 98.96 5 | 99.62 7 | 99.94 19 | 99.85 2 | 96.90 14 | 99.97 9 | 97.64 8 | 99.50 32 | 100.00 1 | 99.88 7 | 99.90 8 | 98.60 52 | 99.87 29 | 100.00 1 |
|
SMA-MVS |  | | 99.34 10 | 99.79 4 | 98.81 13 | 99.69 1 | 99.94 19 | 99.75 16 | 96.91 10 | 99.98 3 | 96.76 15 | 99.37 39 | 100.00 1 | 99.90 5 | 99.88 11 | 99.46 17 | 99.84 36 | 99.92 125 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
APD-MVS |  | | 99.33 11 | 99.85 1 | 98.73 14 | 99.61 12 | 99.92 40 | 99.77 8 | 96.91 10 | 99.93 32 | 96.31 19 | 99.59 24 | 99.95 40 | 99.84 11 | 99.73 18 | 99.84 9 | 99.95 14 | 100.00 1 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
NCCC | | | 99.24 12 | 99.75 12 | 98.65 15 | 99.63 6 | 99.96 7 | 99.76 9 | 96.91 10 | 99.97 9 | 95.86 23 | 99.67 11 | 100.00 1 | 99.75 17 | 99.85 14 | 98.80 46 | 99.98 9 | 99.97 87 |
|
CNLPA | | | 99.24 12 | 99.58 33 | 98.85 12 | 99.34 32 | 99.95 13 | 99.32 35 | 96.65 27 | 99.96 20 | 98.44 4 | 98.97 54 | 100.00 1 | 99.57 30 | 98.66 44 | 99.56 15 | 99.76 84 | 99.97 87 |
|
AdaColmap |  | | 99.21 14 | 99.45 39 | 98.92 8 | 99.67 4 | 99.95 13 | 99.65 27 | 96.77 22 | 99.97 9 | 97.67 6 | 100.00 1 | 99.69 54 | 99.93 1 | 99.26 31 | 97.25 98 | 99.85 33 | 100.00 1 |
|
HFP-MVS | | | 99.19 15 | 99.77 8 | 98.51 18 | 99.55 20 | 99.94 19 | 99.76 9 | 96.84 16 | 99.88 43 | 95.27 27 | 99.67 11 | 100.00 1 | 99.85 10 | 99.56 23 | 99.36 21 | 99.79 67 | 99.97 87 |
|
PLC |  | 98.06 1 | 99.17 16 | 99.38 41 | 98.92 8 | 99.47 22 | 99.90 48 | 99.48 32 | 96.47 32 | 99.96 20 | 98.73 2 | 99.52 31 | 100.00 1 | 99.55 32 | 98.54 57 | 97.73 85 | 99.84 36 | 99.99 59 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
SD-MVS | | | 99.16 17 | 99.73 16 | 98.49 19 | 97.93 52 | 99.95 13 | 99.74 19 | 96.94 7 | 99.96 20 | 96.60 17 | 99.47 35 | 100.00 1 | 99.88 7 | 99.15 33 | 99.59 13 | 99.84 36 | 100.00 1 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
CP-MVS | | | 99.14 18 | 99.67 24 | 98.53 17 | 99.45 24 | 99.94 19 | 99.63 29 | 96.62 29 | 99.82 56 | 95.92 22 | 99.65 16 | 100.00 1 | 99.71 19 | 99.76 17 | 98.56 54 | 99.83 42 | 100.00 1 |
|
ACMMPR | | | 99.12 19 | 99.76 9 | 98.36 20 | 99.45 24 | 99.94 19 | 99.75 16 | 96.70 26 | 99.93 32 | 94.65 31 | 99.65 16 | 99.96 38 | 99.84 11 | 99.51 26 | 99.35 22 | 99.79 67 | 99.96 107 |
|
MCST-MVS | | | 99.08 20 | 99.72 18 | 98.33 21 | 99.59 19 | 99.97 3 | 99.78 7 | 96.96 3 | 99.95 26 | 93.72 34 | 99.67 11 | 100.00 1 | 99.90 5 | 99.91 5 | 98.55 55 | 100.00 1 | 100.00 1 |
|
CPTT-MVS | | | 99.08 20 | 99.53 38 | 98.57 16 | 99.44 26 | 99.93 34 | 99.60 30 | 95.92 37 | 99.77 64 | 97.01 14 | 99.67 11 | 100.00 1 | 99.72 18 | 99.56 23 | 97.76 82 | 99.70 114 | 99.98 75 |
|
DeepC-MVS_fast | | 98.03 2 | 99.05 22 | 99.78 5 | 98.21 24 | 99.47 22 | 99.97 3 | 99.75 16 | 96.80 18 | 99.97 9 | 93.58 36 | 98.68 62 | 99.94 41 | 99.69 21 | 99.93 4 | 99.95 3 | 99.96 12 | 99.98 75 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TSAR-MVS + MP. | | | 98.99 23 | 99.61 30 | 98.27 22 | 97.88 53 | 99.92 40 | 99.71 24 | 96.80 18 | 99.96 20 | 95.58 25 | 98.71 61 | 100.00 1 | 99.68 23 | 99.91 5 | 98.78 48 | 99.99 5 | 100.00 1 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
HPM-MVS++ |  | | 98.98 24 | 99.62 29 | 98.22 23 | 99.62 7 | 99.94 19 | 99.74 19 | 96.95 4 | 99.87 47 | 93.76 33 | 99.49 34 | 100.00 1 | 99.39 38 | 99.73 18 | 98.35 60 | 99.89 25 | 99.96 107 |
|
SteuartSystems-ACMMP | | | 98.95 25 | 99.80 3 | 97.95 27 | 99.43 27 | 99.96 7 | 99.76 9 | 96.45 33 | 99.82 56 | 93.63 35 | 99.64 19 | 100.00 1 | 98.56 76 | 99.90 8 | 99.31 24 | 99.84 36 | 100.00 1 |
Skip Steuart: Steuart Systems R&D Blog. |
PHI-MVS | | | 98.85 26 | 99.67 24 | 97.89 28 | 98.63 47 | 99.93 34 | 98.95 46 | 95.20 39 | 99.84 54 | 94.94 28 | 99.74 10 | 100.00 1 | 99.69 21 | 98.40 64 | 99.75 11 | 99.93 17 | 99.99 59 |
|
MP-MVS |  | | 98.82 27 | 99.63 27 | 97.88 29 | 99.41 28 | 99.91 47 | 99.74 19 | 96.76 23 | 99.88 43 | 91.89 46 | 99.50 32 | 99.94 41 | 99.65 26 | 99.71 21 | 98.49 58 | 99.82 46 | 99.97 87 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ACMMP_NAP | | | 98.68 28 | 99.58 33 | 97.62 30 | 99.62 7 | 99.92 40 | 99.72 22 | 96.78 21 | 99.71 69 | 90.13 68 | 99.66 15 | 99.99 31 | 99.64 27 | 99.78 16 | 98.14 68 | 99.82 46 | 99.89 134 |
|
train_agg | | | 98.62 29 | 99.76 9 | 97.28 32 | 99.03 40 | 99.93 34 | 99.65 27 | 96.37 34 | 99.98 3 | 89.24 79 | 99.53 28 | 99.83 46 | 99.59 29 | 99.85 14 | 99.19 29 | 99.80 60 | 100.00 1 |
|
X-MVS | | | 98.62 29 | 99.75 12 | 97.29 31 | 99.50 21 | 99.94 19 | 99.71 24 | 96.55 30 | 99.85 51 | 88.58 84 | 99.65 16 | 99.98 33 | 99.67 24 | 99.60 22 | 99.26 27 | 99.77 78 | 99.97 87 |
|
OMC-MVS | | | 98.59 31 | 99.07 46 | 98.03 26 | 99.41 28 | 99.90 48 | 99.26 38 | 94.33 41 | 99.94 29 | 96.03 20 | 96.68 88 | 99.72 53 | 99.42 35 | 98.86 38 | 98.84 43 | 99.72 111 | 99.58 169 |
|
DPM-MVS | | | 98.58 32 | 99.78 5 | 97.17 34 | 98.02 51 | 99.64 82 | 99.80 6 | 96.72 25 | 99.96 20 | 90.05 70 | 99.57 26 | 100.00 1 | 98.66 75 | 99.56 23 | 99.96 2 | 99.80 60 | 99.80 157 |
|
PGM-MVS | | | 98.47 33 | 99.73 16 | 97.00 36 | 99.68 3 | 99.94 19 | 99.76 9 | 91.74 46 | 99.84 54 | 91.17 55 | 100.00 1 | 99.69 54 | 99.81 14 | 99.38 29 | 99.30 25 | 99.82 46 | 99.95 114 |
|
TSAR-MVS + ACMM | | | 98.30 34 | 99.64 26 | 96.74 39 | 99.08 39 | 99.94 19 | 99.67 26 | 96.73 24 | 99.97 9 | 86.30 104 | 98.30 67 | 99.99 31 | 98.78 69 | 99.73 18 | 99.57 14 | 99.88 28 | 99.98 75 |
|
CSCG | | | 98.22 35 | 98.37 68 | 98.04 25 | 99.60 16 | 99.82 59 | 99.45 33 | 93.59 42 | 99.16 103 | 96.46 18 | 98.22 74 | 95.86 104 | 99.41 37 | 96.33 135 | 99.22 28 | 99.75 93 | 99.94 119 |
|
3Dnovator+ | | 95.21 7 | 98.17 36 | 99.08 45 | 97.12 35 | 99.28 35 | 99.78 70 | 98.61 53 | 89.93 60 | 99.93 32 | 95.36 26 | 95.50 97 | 100.00 1 | 99.56 31 | 98.58 52 | 99.80 10 | 99.95 14 | 99.97 87 |
|
ACMMP |  | | 98.16 37 | 99.01 47 | 97.18 33 | 98.86 42 | 99.92 40 | 98.77 51 | 95.73 38 | 99.31 99 | 91.15 56 | 100.00 1 | 99.81 48 | 98.82 67 | 98.11 84 | 95.91 133 | 99.77 78 | 99.97 87 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
MVS_111021_LR | | | 98.15 38 | 99.69 21 | 96.36 44 | 99.23 37 | 99.93 34 | 97.79 65 | 91.84 45 | 99.87 47 | 90.53 64 | 100.00 1 | 99.57 59 | 98.93 61 | 99.44 27 | 99.08 32 | 99.85 33 | 99.95 114 |
|
EPNet | | | 98.11 39 | 99.63 27 | 96.34 45 | 98.44 49 | 99.88 54 | 98.55 54 | 90.25 56 | 99.93 32 | 92.60 43 | 100.00 1 | 99.73 51 | 98.41 78 | 98.87 37 | 99.02 33 | 99.82 46 | 99.97 87 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
TSAR-MVS + GP. | | | 98.06 40 | 99.55 37 | 96.32 46 | 94.72 80 | 99.92 40 | 99.22 39 | 89.98 58 | 99.97 9 | 94.77 30 | 99.94 9 | 100.00 1 | 99.43 34 | 98.52 61 | 98.53 56 | 99.79 67 | 100.00 1 |
|
3Dnovator | | 95.01 8 | 97.98 41 | 98.89 52 | 96.92 38 | 99.36 30 | 99.76 73 | 98.72 52 | 89.98 58 | 99.98 3 | 93.99 32 | 94.60 110 | 99.43 64 | 99.50 33 | 98.55 54 | 99.91 5 | 99.99 5 | 99.98 75 |
|
MVS_111021_HR | | | 97.94 42 | 99.59 31 | 96.02 48 | 99.27 36 | 99.97 3 | 97.03 90 | 90.44 53 | 99.89 40 | 90.75 59 | 100.00 1 | 99.73 51 | 98.68 74 | 98.67 43 | 98.89 40 | 99.95 14 | 99.97 87 |
|
QAPM | | | 97.90 43 | 98.89 52 | 96.74 39 | 99.35 31 | 99.80 65 | 98.84 48 | 90.20 57 | 99.94 29 | 92.85 38 | 94.17 113 | 99.78 49 | 99.42 35 | 98.71 41 | 99.87 7 | 99.79 67 | 99.98 75 |
|
CDPH-MVS | | | 97.88 44 | 99.59 31 | 95.89 49 | 98.90 41 | 99.95 13 | 99.40 34 | 92.86 44 | 99.86 50 | 85.33 110 | 98.62 63 | 99.45 63 | 99.06 57 | 99.29 30 | 99.94 4 | 99.81 55 | 100.00 1 |
|
CANet | | | 97.62 45 | 98.94 50 | 96.08 47 | 97.19 57 | 99.93 34 | 99.29 37 | 90.38 54 | 99.87 47 | 91.00 57 | 95.79 96 | 99.51 60 | 98.72 73 | 98.53 58 | 99.00 34 | 99.90 23 | 99.99 59 |
|
TAPA-MVS | | 96.62 5 | 97.60 46 | 98.46 67 | 96.60 42 | 98.73 45 | 99.90 48 | 99.30 36 | 94.96 40 | 99.46 87 | 87.57 92 | 96.05 95 | 98.53 76 | 99.26 47 | 98.04 89 | 97.33 97 | 99.77 78 | 99.88 139 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
DeepPCF-MVS | | 97.16 4 | 97.58 47 | 99.72 18 | 95.07 65 | 98.45 48 | 99.96 7 | 93.83 143 | 95.93 36 | 100.00 1 | 90.79 58 | 98.38 66 | 99.85 45 | 95.28 134 | 99.94 2 | 99.97 1 | 96.15 210 | 99.97 87 |
|
CS-MVS-test | | | 97.51 48 | 99.18 44 | 95.56 54 | 97.16 58 | 99.96 7 | 97.39 78 | 89.82 62 | 100.00 1 | 89.88 71 | 99.16 46 | 98.38 82 | 99.23 49 | 98.85 39 | 97.93 75 | 99.87 29 | 100.00 1 |
|
PCF-MVS | | 97.20 3 | 97.49 49 | 98.20 73 | 96.66 41 | 97.62 55 | 99.92 40 | 98.93 47 | 96.64 28 | 98.53 134 | 88.31 90 | 94.04 116 | 99.58 58 | 98.94 59 | 97.53 105 | 97.79 80 | 99.54 144 | 99.97 87 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
CS-MVS | | | 97.46 50 | 98.98 48 | 95.68 53 | 96.74 62 | 99.93 34 | 97.62 71 | 89.69 63 | 99.98 3 | 91.33 52 | 98.53 65 | 97.50 91 | 98.77 70 | 98.60 51 | 98.35 60 | 99.92 20 | 100.00 1 |
|
MSDG | | | 97.29 51 | 97.55 89 | 97.00 36 | 98.66 46 | 99.71 77 | 99.03 44 | 96.15 35 | 99.59 76 | 89.67 77 | 92.77 127 | 94.86 107 | 98.75 71 | 98.22 75 | 97.94 73 | 99.72 111 | 99.76 161 |
|
CHOSEN 280x420 | | | 97.16 52 | 99.58 33 | 94.35 79 | 96.95 61 | 99.97 3 | 97.19 84 | 81.55 145 | 99.92 36 | 91.75 47 | 100.00 1 | 100.00 1 | 98.84 66 | 98.55 54 | 98.65 51 | 99.79 67 | 99.97 87 |
|
DELS-MVS | | | 97.05 53 | 98.05 78 | 95.88 51 | 97.09 59 | 99.99 1 | 98.82 49 | 90.30 55 | 98.44 140 | 91.40 50 | 92.91 124 | 96.57 97 | 97.68 106 | 98.56 53 | 99.88 6 | 100.00 1 | 100.00 1 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
DeepC-MVS | | 96.33 6 | 97.05 53 | 97.59 88 | 96.42 43 | 97.37 56 | 99.92 40 | 99.10 42 | 96.54 31 | 99.34 98 | 86.64 101 | 91.93 132 | 93.15 118 | 99.11 55 | 99.11 34 | 99.68 12 | 99.73 107 | 99.97 87 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
test2506 | | | 97.04 55 | 98.09 77 | 95.81 52 | 94.12 85 | 99.80 65 | 97.33 80 | 89.48 68 | 98.90 120 | 95.99 21 | 99.11 49 | 92.84 120 | 98.14 88 | 98.14 80 | 98.32 64 | 99.82 46 | 99.51 174 |
|
MVS_0304 | | | 97.04 55 | 98.72 58 | 95.08 64 | 96.32 66 | 99.90 48 | 99.15 40 | 89.61 66 | 99.89 40 | 87.22 98 | 95.47 98 | 98.22 85 | 98.22 84 | 98.63 48 | 98.90 39 | 99.93 17 | 100.00 1 |
|
MAR-MVS | | | 97.03 57 | 98.00 80 | 95.89 49 | 99.32 33 | 99.74 76 | 96.76 97 | 84.89 109 | 99.97 9 | 94.86 29 | 98.29 68 | 90.58 128 | 99.67 24 | 98.02 91 | 99.50 16 | 99.82 46 | 99.92 125 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
MVSTER | | | 97.00 58 | 98.85 54 | 94.83 72 | 92.71 102 | 97.43 153 | 99.03 44 | 85.52 102 | 99.82 56 | 92.74 41 | 99.15 47 | 99.94 41 | 99.19 52 | 98.66 44 | 96.99 112 | 99.79 67 | 99.98 75 |
|
DROMVSNet | | | 96.90 59 | 99.32 42 | 94.07 80 | 91.64 132 | 99.30 105 | 98.18 61 | 85.61 101 | 99.97 9 | 89.79 72 | 99.33 40 | 99.31 67 | 99.28 45 | 98.48 63 | 98.86 41 | 99.91 21 | 100.00 1 |
|
baseline1 | | | 96.87 60 | 98.55 61 | 94.91 67 | 92.89 101 | 99.45 96 | 96.34 101 | 88.54 80 | 98.88 123 | 92.82 39 | 98.93 56 | 96.58 96 | 99.07 56 | 98.19 77 | 98.04 70 | 99.80 60 | 99.78 158 |
|
OpenMVS |  | 94.03 11 | 96.87 60 | 98.10 76 | 95.44 58 | 99.29 34 | 99.78 70 | 98.46 59 | 89.92 61 | 99.47 86 | 85.78 108 | 91.05 136 | 98.50 77 | 99.30 43 | 98.49 62 | 99.41 18 | 99.89 25 | 99.98 75 |
|
PatchMatch-RL | | | 96.84 62 | 98.03 79 | 95.47 55 | 98.84 43 | 99.81 63 | 95.61 115 | 89.20 72 | 99.65 73 | 91.28 53 | 99.39 36 | 93.46 116 | 98.18 85 | 98.05 87 | 96.28 122 | 99.69 119 | 99.55 171 |
|
ETV-MVS | | | 96.79 63 | 99.19 43 | 94.00 82 | 91.78 123 | 99.63 84 | 97.15 86 | 88.00 86 | 99.95 26 | 88.34 89 | 99.32 41 | 98.71 73 | 98.82 67 | 98.69 42 | 98.01 71 | 99.90 23 | 100.00 1 |
|
IS_MVSNet | | | 96.66 64 | 98.62 60 | 94.38 76 | 92.41 108 | 99.70 78 | 97.19 84 | 87.67 89 | 99.05 111 | 91.27 54 | 95.09 103 | 98.46 81 | 97.95 96 | 98.64 46 | 99.37 19 | 99.79 67 | 100.00 1 |
|
PMMVS | | | 96.45 65 | 98.24 72 | 94.36 78 | 92.58 103 | 99.01 116 | 97.08 89 | 87.42 95 | 99.88 43 | 90.06 69 | 99.39 36 | 94.63 108 | 99.33 41 | 97.85 97 | 96.99 112 | 99.70 114 | 99.96 107 |
|
LS3D | | | 96.44 66 | 97.31 96 | 95.41 59 | 97.06 60 | 99.87 55 | 99.51 31 | 97.48 1 | 99.57 77 | 79.00 128 | 95.39 99 | 89.19 134 | 99.81 14 | 98.55 54 | 98.84 43 | 99.62 133 | 99.78 158 |
|
EIA-MVS | | | 96.34 67 | 98.55 61 | 93.76 86 | 91.93 119 | 99.66 80 | 97.14 87 | 88.33 84 | 99.51 81 | 85.98 107 | 98.82 60 | 96.08 102 | 99.33 41 | 98.38 67 | 97.40 95 | 99.81 55 | 100.00 1 |
|
EPP-MVSNet | | | 96.29 68 | 98.34 69 | 93.90 83 | 91.77 124 | 99.38 102 | 95.45 120 | 87.25 97 | 99.38 94 | 91.36 51 | 94.86 109 | 98.49 79 | 97.83 100 | 98.01 92 | 98.23 66 | 99.75 93 | 99.99 59 |
|
UGNet | | | 96.05 69 | 98.55 61 | 93.13 95 | 94.64 81 | 99.65 81 | 94.70 131 | 87.78 87 | 99.40 93 | 89.69 76 | 98.25 71 | 99.25 69 | 92.12 166 | 96.50 127 | 97.08 107 | 99.84 36 | 99.72 163 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
COLMAP_ROB |  | 93.56 12 | 96.03 70 | 96.83 108 | 95.11 63 | 97.87 54 | 99.52 88 | 98.81 50 | 91.40 49 | 99.42 90 | 84.97 111 | 90.46 139 | 96.82 95 | 98.05 91 | 96.46 131 | 96.19 125 | 99.54 144 | 98.92 189 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
PVSNet_BlendedMVS | | | 96.01 71 | 96.48 116 | 95.46 56 | 96.47 64 | 99.89 52 | 95.64 112 | 91.23 50 | 99.75 66 | 91.59 48 | 96.80 85 | 82.44 155 | 98.05 91 | 98.53 58 | 97.92 76 | 99.80 60 | 100.00 1 |
|
PVSNet_Blended | | | 96.01 71 | 96.48 116 | 95.46 56 | 96.47 64 | 99.89 52 | 95.64 112 | 91.23 50 | 99.75 66 | 91.59 48 | 96.80 85 | 82.44 155 | 98.05 91 | 98.53 58 | 97.92 76 | 99.80 60 | 100.00 1 |
|
thisisatest0530 | | | 95.89 73 | 98.32 70 | 93.06 98 | 91.76 125 | 99.75 74 | 94.94 126 | 87.60 92 | 99.91 38 | 86.66 100 | 98.28 69 | 99.98 33 | 97.72 102 | 97.10 117 | 93.24 168 | 99.65 125 | 99.95 114 |
|
tttt0517 | | | 95.88 74 | 98.31 71 | 93.04 99 | 91.75 127 | 99.75 74 | 94.90 127 | 87.60 92 | 99.91 38 | 86.63 102 | 98.28 69 | 99.98 33 | 97.72 102 | 97.10 117 | 93.24 168 | 99.65 125 | 99.95 114 |
|
thres100view900 | | | 95.86 75 | 96.62 110 | 94.97 66 | 93.10 93 | 99.83 57 | 97.76 66 | 89.15 73 | 98.62 130 | 90.69 60 | 99.00 51 | 84.86 146 | 99.30 43 | 97.57 104 | 96.48 117 | 99.81 55 | 100.00 1 |
|
RPSCF | | | 95.86 75 | 96.94 106 | 94.61 74 | 96.52 63 | 98.67 130 | 98.54 55 | 88.43 82 | 99.56 78 | 90.51 66 | 99.39 36 | 98.70 74 | 97.72 102 | 93.77 178 | 92.00 184 | 95.93 211 | 96.50 206 |
|
DCV-MVSNet | | | 95.85 77 | 97.53 90 | 93.89 84 | 93.20 92 | 97.01 159 | 97.14 87 | 84.77 110 | 99.16 103 | 90.38 67 | 98.96 55 | 93.73 113 | 98.23 83 | 96.57 126 | 97.37 96 | 99.64 129 | 99.93 121 |
|
baseline | | | 95.85 77 | 98.13 75 | 93.20 94 | 92.29 111 | 99.58 86 | 97.49 73 | 84.33 117 | 99.44 88 | 87.28 96 | 97.00 84 | 94.04 112 | 97.93 97 | 98.36 69 | 98.47 59 | 99.87 29 | 99.99 59 |
|
canonicalmvs | | | 95.80 79 | 97.02 101 | 94.37 77 | 92.96 99 | 99.47 93 | 97.49 73 | 84.58 112 | 99.44 88 | 92.05 45 | 98.54 64 | 86.65 139 | 99.37 39 | 96.18 138 | 98.93 37 | 99.77 78 | 99.92 125 |
|
tfpn200view9 | | | 95.78 80 | 96.54 113 | 94.89 69 | 93.10 93 | 99.82 59 | 97.67 67 | 88.85 76 | 98.62 130 | 90.69 60 | 99.00 51 | 84.86 146 | 99.28 45 | 97.41 111 | 96.10 126 | 99.76 84 | 99.99 59 |
|
thres200 | | | 95.77 81 | 96.55 112 | 94.86 70 | 93.09 95 | 99.82 59 | 97.63 70 | 88.85 76 | 98.49 135 | 90.66 62 | 98.99 53 | 84.86 146 | 99.20 50 | 97.41 111 | 96.28 122 | 99.76 84 | 100.00 1 |
|
MVS_Test | | | 95.74 82 | 98.18 74 | 92.90 101 | 92.16 112 | 99.49 92 | 97.36 79 | 84.30 118 | 99.79 61 | 84.94 112 | 96.65 89 | 93.63 115 | 98.85 65 | 98.61 50 | 99.10 31 | 99.81 55 | 100.00 1 |
|
thres400 | | | 95.72 83 | 96.48 116 | 94.84 71 | 93.00 98 | 99.83 57 | 97.55 72 | 88.93 74 | 98.49 135 | 90.61 63 | 98.86 57 | 84.63 150 | 99.20 50 | 97.45 107 | 96.10 126 | 99.77 78 | 99.99 59 |
|
thres600view7 | | | 95.64 84 | 96.38 120 | 94.79 73 | 92.96 99 | 99.82 59 | 97.48 77 | 88.85 76 | 98.38 141 | 90.52 65 | 98.84 59 | 84.61 151 | 99.15 53 | 97.41 111 | 95.60 138 | 99.76 84 | 99.99 59 |
|
Vis-MVSNet (Re-imp) | | | 95.60 85 | 98.52 66 | 92.19 105 | 92.37 109 | 99.56 87 | 96.37 100 | 87.41 96 | 98.95 115 | 84.77 115 | 94.88 108 | 98.48 80 | 92.44 163 | 98.63 48 | 99.37 19 | 99.76 84 | 99.77 160 |
|
FMVSNet3 | | | 95.59 86 | 97.51 92 | 93.34 92 | 89.48 148 | 96.57 166 | 97.67 67 | 84.17 119 | 99.48 83 | 89.76 73 | 95.09 103 | 94.35 109 | 99.14 54 | 98.37 68 | 98.86 41 | 99.82 46 | 99.89 134 |
|
ECVR-MVS |  | | 95.46 87 | 95.58 133 | 95.31 61 | 94.12 85 | 99.80 65 | 97.33 80 | 89.48 68 | 98.90 120 | 92.99 37 | 87.97 151 | 86.41 141 | 98.14 88 | 98.14 80 | 98.32 64 | 99.82 46 | 99.52 173 |
|
PVSNet_Blended_VisFu | | | 95.37 88 | 97.44 94 | 92.95 100 | 95.20 73 | 99.80 65 | 92.68 151 | 88.41 83 | 99.12 106 | 87.64 91 | 88.31 150 | 99.10 70 | 94.07 150 | 98.27 72 | 97.51 91 | 99.73 107 | 100.00 1 |
|
DI_MVS_plusplus_trai | | | 95.29 89 | 97.02 101 | 93.28 93 | 91.76 125 | 99.52 88 | 97.84 64 | 85.67 100 | 99.08 110 | 87.29 95 | 87.76 154 | 97.46 92 | 97.31 110 | 97.83 98 | 97.48 92 | 99.83 42 | 100.00 1 |
|
ET-MVSNet_ETH3D | | | 95.20 90 | 97.82 85 | 92.15 106 | 80.77 209 | 98.13 141 | 97.65 69 | 86.93 98 | 99.72 68 | 88.56 87 | 99.29 44 | 97.01 94 | 99.24 48 | 94.58 166 | 95.98 131 | 99.75 93 | 99.99 59 |
|
TSAR-MVS + COLMAP | | | 95.20 90 | 95.03 140 | 95.41 59 | 96.17 67 | 98.69 129 | 99.11 41 | 93.40 43 | 99.97 9 | 84.89 113 | 98.23 73 | 75.01 175 | 99.34 40 | 97.27 116 | 96.37 121 | 99.58 137 | 99.64 168 |
|
GBi-Net | | | 95.19 92 | 96.99 104 | 93.09 96 | 89.11 149 | 96.47 168 | 96.90 91 | 84.17 119 | 99.48 83 | 89.76 73 | 95.09 103 | 94.35 109 | 98.87 62 | 96.50 127 | 97.21 99 | 99.74 97 | 99.81 154 |
|
test1 | | | 95.19 92 | 96.99 104 | 93.09 96 | 89.11 149 | 96.47 168 | 96.90 91 | 84.17 119 | 99.48 83 | 89.76 73 | 95.09 103 | 94.35 109 | 98.87 62 | 96.50 127 | 97.21 99 | 99.74 97 | 99.81 154 |
|
test1111 | | | 95.15 94 | 95.18 138 | 95.12 62 | 94.07 87 | 99.80 65 | 97.20 83 | 89.53 67 | 98.80 124 | 92.22 44 | 85.44 162 | 86.24 142 | 97.89 98 | 98.12 82 | 98.34 63 | 99.80 60 | 99.51 174 |
|
test0.0.03 1 | | | 95.15 94 | 97.87 84 | 91.99 107 | 91.69 129 | 98.82 127 | 93.04 149 | 83.60 124 | 99.65 73 | 88.80 82 | 94.15 114 | 97.67 89 | 94.97 136 | 96.62 125 | 98.16 67 | 99.83 42 | 100.00 1 |
|
baseline2 | | | 95.13 96 | 98.55 61 | 91.15 112 | 90.29 144 | 99.00 117 | 94.49 135 | 82.00 139 | 99.68 71 | 84.82 114 | 96.47 90 | 99.30 68 | 95.71 128 | 98.24 74 | 97.14 105 | 99.57 139 | 100.00 1 |
|
casdiffmvs_mvg |  | | 95.10 97 | 96.45 119 | 93.53 88 | 92.05 115 | 99.42 100 | 97.25 82 | 87.66 90 | 97.17 159 | 86.09 105 | 91.79 134 | 91.27 122 | 98.31 81 | 98.06 86 | 97.42 94 | 99.81 55 | 100.00 1 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
EPNet_dtu | | | 95.10 97 | 98.81 56 | 90.78 113 | 98.38 50 | 98.47 132 | 96.54 99 | 89.36 70 | 99.78 63 | 65.65 182 | 99.31 42 | 98.24 84 | 94.79 139 | 98.28 71 | 99.35 22 | 99.93 17 | 98.27 193 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
Anonymous20231211 | | | 94.96 99 | 94.99 141 | 94.91 67 | 93.01 97 | 99.44 99 | 96.85 95 | 88.49 81 | 98.78 125 | 92.61 42 | 83.94 168 | 90.25 130 | 98.94 59 | 95.87 146 | 96.77 114 | 99.58 137 | 99.89 134 |
|
UA-Net | | | 94.95 100 | 98.66 59 | 90.63 115 | 94.60 83 | 98.94 123 | 96.03 105 | 85.28 104 | 98.01 151 | 78.92 129 | 97.42 83 | 99.96 38 | 89.09 190 | 98.95 36 | 98.80 46 | 99.82 46 | 98.57 191 |
|
CANet_DTU | | | 94.90 101 | 98.98 48 | 90.13 123 | 94.74 79 | 99.81 63 | 98.53 56 | 82.23 138 | 99.97 9 | 66.76 179 | 100.00 1 | 98.50 77 | 98.74 72 | 97.52 106 | 97.19 104 | 99.76 84 | 99.88 139 |
|
FC-MVSNet-train | | | 94.61 102 | 96.27 121 | 92.68 103 | 92.35 110 | 97.14 157 | 93.45 147 | 87.73 88 | 98.93 116 | 87.31 94 | 96.42 91 | 89.35 132 | 95.67 129 | 96.06 144 | 96.01 130 | 99.56 141 | 99.98 75 |
|
diffmvs |  | | 94.60 103 | 95.63 132 | 93.41 90 | 91.98 118 | 99.30 105 | 96.86 94 | 87.62 91 | 99.30 100 | 86.07 106 | 94.12 115 | 81.63 160 | 98.16 86 | 97.43 108 | 97.60 89 | 99.76 84 | 100.00 1 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
casdiffmvs |  | | 94.54 104 | 95.56 134 | 93.36 91 | 91.84 121 | 99.46 95 | 95.92 107 | 87.54 94 | 98.45 138 | 86.57 103 | 90.51 138 | 84.72 149 | 98.49 77 | 97.97 93 | 97.80 79 | 99.77 78 | 100.00 1 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
CLD-MVS | | | 94.53 105 | 94.45 148 | 94.61 74 | 93.85 89 | 98.36 134 | 98.12 62 | 89.68 64 | 99.35 97 | 89.62 78 | 95.19 101 | 77.08 166 | 96.66 119 | 95.51 150 | 95.67 136 | 99.74 97 | 100.00 1 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
FMVSNet2 | | | 94.48 106 | 95.95 126 | 92.77 102 | 89.11 149 | 96.47 168 | 96.90 91 | 83.38 127 | 99.11 107 | 88.64 83 | 87.50 159 | 92.26 121 | 98.87 62 | 97.91 95 | 98.60 52 | 99.74 97 | 99.81 154 |
|
HQP-MVS | | | 94.48 106 | 95.39 136 | 93.42 89 | 95.10 74 | 98.35 135 | 98.19 60 | 91.41 48 | 99.77 64 | 79.79 125 | 99.30 43 | 77.08 166 | 96.25 122 | 96.93 119 | 96.28 122 | 99.76 84 | 99.99 59 |
|
FA-MVS(training) | | | 94.33 108 | 97.52 91 | 90.60 117 | 92.42 107 | 99.77 72 | 96.13 104 | 68.75 195 | 99.05 111 | 88.49 88 | 91.95 130 | 99.48 61 | 98.12 90 | 98.39 65 | 94.02 161 | 99.68 121 | 99.98 75 |
|
MDTV_nov1_ep13 | | | 94.32 109 | 98.77 57 | 89.14 133 | 91.70 128 | 99.52 88 | 95.21 122 | 72.09 193 | 99.80 59 | 78.91 130 | 96.32 92 | 99.62 56 | 97.71 105 | 98.39 65 | 97.71 86 | 99.22 193 | 100.00 1 |
|
CDS-MVSNet | | | 94.32 109 | 97.00 103 | 91.19 111 | 89.82 147 | 98.71 128 | 95.51 117 | 85.14 108 | 96.85 160 | 82.33 120 | 92.48 128 | 96.40 100 | 94.71 140 | 96.86 122 | 97.76 82 | 99.63 131 | 99.92 125 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
dps | | | 94.29 111 | 97.33 95 | 90.75 114 | 92.02 116 | 99.21 109 | 94.31 137 | 66.97 200 | 99.50 82 | 95.61 24 | 96.22 94 | 98.64 75 | 96.08 124 | 93.71 180 | 94.03 160 | 99.52 148 | 99.98 75 |
|
ACMM | | 94.44 10 | 94.26 112 | 94.62 145 | 93.84 85 | 94.86 78 | 97.73 148 | 93.48 146 | 90.76 52 | 99.27 101 | 87.46 93 | 99.04 50 | 76.60 168 | 96.76 117 | 96.37 134 | 93.76 163 | 99.74 97 | 99.55 171 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMP | | 94.49 9 | 94.19 113 | 94.74 144 | 93.56 87 | 94.25 84 | 98.32 137 | 96.02 106 | 89.35 71 | 98.90 120 | 87.28 96 | 99.14 48 | 76.41 171 | 94.94 137 | 96.07 143 | 94.35 157 | 99.49 155 | 99.99 59 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
EPMVS | | | 94.08 114 | 98.54 65 | 88.87 134 | 92.51 105 | 99.47 93 | 94.18 139 | 66.53 201 | 99.68 71 | 82.40 119 | 95.24 100 | 99.40 65 | 97.86 99 | 98.12 82 | 97.99 72 | 99.75 93 | 99.88 139 |
|
test-LLR | | | 93.71 115 | 97.23 97 | 89.60 127 | 91.69 129 | 99.10 113 | 94.68 133 | 83.60 124 | 99.36 95 | 71.94 156 | 93.82 118 | 96.51 98 | 95.96 126 | 97.42 109 | 94.37 154 | 99.74 97 | 99.99 59 |
|
CHOSEN 1792x2688 | | | 93.69 116 | 94.89 143 | 92.28 104 | 96.17 67 | 99.84 56 | 95.69 111 | 83.17 130 | 98.54 133 | 82.04 121 | 77.58 196 | 91.15 124 | 96.90 112 | 98.36 69 | 98.82 45 | 99.73 107 | 99.98 75 |
|
LGP-MVS_train | | | 93.60 117 | 95.05 139 | 91.90 108 | 94.90 77 | 98.29 138 | 97.93 63 | 88.06 85 | 99.14 105 | 74.83 145 | 99.26 45 | 76.50 169 | 96.07 125 | 96.31 136 | 95.90 135 | 99.59 135 | 99.97 87 |
|
SCA | | | 93.53 118 | 98.90 51 | 87.27 151 | 92.01 117 | 99.30 105 | 93.43 148 | 65.72 205 | 99.80 59 | 75.20 144 | 97.66 81 | 99.74 50 | 97.44 108 | 98.21 76 | 97.62 88 | 99.84 36 | 100.00 1 |
|
FMVSNet5 | | | 93.53 118 | 96.09 125 | 90.56 118 | 86.74 163 | 92.84 208 | 92.64 152 | 77.50 171 | 99.41 92 | 88.97 81 | 98.02 77 | 97.81 87 | 98.00 94 | 94.85 162 | 95.43 140 | 99.50 154 | 94.25 210 |
|
OPM-MVS | | | 93.50 120 | 93.00 158 | 94.07 80 | 95.82 70 | 98.26 139 | 98.49 58 | 91.62 47 | 94.69 180 | 81.93 122 | 92.82 126 | 76.18 173 | 96.82 114 | 96.12 140 | 94.57 148 | 99.74 97 | 98.39 192 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
CostFormer | | | 93.50 120 | 96.50 115 | 90.00 124 | 91.69 129 | 98.65 131 | 93.88 142 | 67.64 198 | 98.97 113 | 89.16 80 | 97.79 79 | 88.92 135 | 97.97 95 | 95.14 159 | 96.06 128 | 99.63 131 | 100.00 1 |
|
IterMVS-LS | | | 93.50 120 | 96.22 122 | 90.33 121 | 90.93 135 | 95.50 193 | 94.83 129 | 80.54 149 | 98.92 117 | 79.11 127 | 90.64 137 | 93.70 114 | 96.79 115 | 96.93 119 | 97.85 78 | 99.78 74 | 99.99 59 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
PatchmatchNet |  | | 93.48 123 | 98.84 55 | 87.22 152 | 91.93 119 | 99.39 101 | 92.55 153 | 66.06 203 | 99.71 69 | 75.61 141 | 98.24 72 | 99.59 57 | 97.35 109 | 97.87 96 | 97.64 87 | 99.83 42 | 99.43 177 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
MS-PatchMatch | | | 93.46 124 | 95.91 128 | 90.61 116 | 95.48 71 | 99.31 104 | 95.62 114 | 77.23 173 | 99.42 90 | 81.88 123 | 88.92 147 | 96.06 103 | 93.80 152 | 96.45 133 | 93.11 172 | 99.65 125 | 98.10 197 |
|
tpm cat1 | | | 93.29 125 | 96.53 114 | 89.50 129 | 91.84 121 | 99.18 111 | 94.70 131 | 67.70 197 | 98.38 141 | 86.67 99 | 89.16 144 | 99.38 66 | 96.66 119 | 94.33 167 | 95.30 141 | 99.43 171 | 100.00 1 |
|
Effi-MVS+-dtu | | | 93.13 126 | 97.13 99 | 88.47 142 | 88.86 155 | 99.19 110 | 96.79 96 | 79.08 162 | 99.64 75 | 70.01 166 | 97.51 82 | 89.38 131 | 96.53 121 | 97.60 102 | 96.55 116 | 99.57 139 | 100.00 1 |
|
HyFIR lowres test | | | 93.13 126 | 94.48 147 | 91.56 109 | 96.12 69 | 99.68 79 | 93.52 145 | 79.98 153 | 97.24 157 | 81.73 124 | 72.66 205 | 95.74 105 | 98.29 82 | 98.27 72 | 97.79 80 | 99.70 114 | 100.00 1 |
|
Vis-MVSNet |  | | 93.08 128 | 96.76 109 | 88.78 138 | 91.14 134 | 99.63 84 | 94.85 128 | 83.34 128 | 97.19 158 | 74.78 146 | 91.92 133 | 93.15 118 | 88.81 193 | 97.59 103 | 98.35 60 | 99.78 74 | 99.49 176 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
Effi-MVS+ | | | 93.06 129 | 95.94 127 | 89.70 126 | 90.82 136 | 99.45 96 | 95.71 110 | 78.94 163 | 98.72 126 | 74.71 147 | 97.92 78 | 80.73 161 | 98.35 79 | 97.72 100 | 97.05 110 | 99.70 114 | 100.00 1 |
|
ADS-MVSNet | | | 92.91 130 | 97.97 81 | 87.01 154 | 92.07 114 | 99.27 108 | 92.70 150 | 65.39 208 | 99.85 51 | 75.40 142 | 94.93 107 | 98.26 83 | 96.86 113 | 96.09 141 | 97.52 90 | 99.65 125 | 99.84 150 |
|
GeoE | | | 92.88 131 | 95.20 137 | 90.18 122 | 90.59 140 | 99.18 111 | 96.31 102 | 78.36 167 | 97.52 156 | 78.53 132 | 87.11 160 | 88.01 136 | 97.63 107 | 97.79 99 | 96.76 115 | 99.66 123 | 100.00 1 |
|
TESTMET0.1,1 | | | 92.87 132 | 97.23 97 | 87.79 148 | 86.96 162 | 99.10 113 | 94.68 133 | 77.46 172 | 99.36 95 | 71.94 156 | 93.82 118 | 96.51 98 | 95.96 126 | 97.42 109 | 94.37 154 | 99.74 97 | 99.99 59 |
|
FC-MVSNet-test | | | 92.78 133 | 96.19 124 | 88.80 137 | 88.00 159 | 97.54 150 | 93.60 144 | 82.36 137 | 98.16 145 | 79.71 126 | 91.55 135 | 95.41 106 | 89.65 185 | 96.09 141 | 95.23 142 | 99.49 155 | 99.31 180 |
|
Fast-Effi-MVS+-dtu | | | 92.73 134 | 97.62 87 | 87.02 153 | 88.91 153 | 98.83 126 | 95.79 108 | 73.98 187 | 99.89 40 | 68.62 171 | 97.73 80 | 93.30 117 | 95.21 135 | 97.67 101 | 95.96 132 | 99.59 135 | 100.00 1 |
|
IB-MVS | | 90.59 15 | 92.70 135 | 95.70 130 | 89.21 132 | 94.62 82 | 99.45 96 | 83.77 201 | 88.92 75 | 99.53 79 | 92.82 39 | 98.86 57 | 86.08 143 | 75.24 212 | 92.81 194 | 93.17 170 | 99.89 25 | 100.00 1 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
test-mter | | | 92.67 136 | 97.13 99 | 87.47 150 | 86.72 164 | 99.07 115 | 94.28 138 | 76.90 174 | 99.21 102 | 71.53 160 | 93.63 120 | 96.32 101 | 95.67 129 | 97.32 114 | 94.36 156 | 99.74 97 | 99.99 59 |
|
RPMNet | | | 92.64 137 | 97.88 83 | 86.53 159 | 90.79 137 | 98.95 121 | 95.13 123 | 64.44 212 | 99.09 108 | 72.36 152 | 93.58 121 | 99.01 71 | 96.74 118 | 98.05 87 | 96.45 119 | 99.71 113 | 100.00 1 |
|
FMVSNet1 | | | 92.55 138 | 93.66 153 | 91.26 110 | 87.91 160 | 96.12 175 | 94.75 130 | 81.69 144 | 97.67 154 | 85.63 109 | 80.56 181 | 87.88 138 | 98.15 87 | 96.50 127 | 97.21 99 | 99.41 176 | 99.71 164 |
|
tpmrst | | | 92.52 139 | 97.45 93 | 86.77 157 | 92.15 113 | 99.36 103 | 92.53 154 | 65.95 204 | 99.53 79 | 72.50 150 | 92.22 129 | 99.83 46 | 97.81 101 | 95.18 158 | 96.05 129 | 99.69 119 | 100.00 1 |
|
testgi | | | 92.47 140 | 95.68 131 | 88.73 139 | 90.68 138 | 98.35 135 | 91.67 161 | 79.50 158 | 98.96 114 | 77.12 137 | 95.17 102 | 85.84 144 | 93.95 151 | 95.75 148 | 96.47 118 | 99.45 166 | 99.21 183 |
|
TAMVS | | | 92.43 141 | 94.21 151 | 90.35 120 | 88.68 156 | 98.85 125 | 94.15 140 | 81.53 146 | 95.58 170 | 83.61 117 | 87.05 161 | 86.45 140 | 94.71 140 | 96.27 137 | 95.91 133 | 99.42 174 | 99.38 179 |
|
CR-MVSNet | | | 92.32 142 | 97.97 81 | 85.74 168 | 90.63 139 | 98.95 121 | 95.46 118 | 65.50 206 | 99.09 108 | 67.51 175 | 94.20 112 | 98.18 86 | 95.59 132 | 98.16 78 | 97.20 102 | 99.74 97 | 100.00 1 |
|
CVMVSNet | | | 92.13 143 | 95.40 135 | 88.32 145 | 91.29 133 | 97.29 155 | 91.85 158 | 86.42 99 | 96.71 162 | 71.84 158 | 89.56 142 | 91.18 123 | 88.98 192 | 96.17 139 | 97.76 82 | 99.51 152 | 99.14 185 |
|
Fast-Effi-MVS+ | | | 92.11 144 | 94.33 149 | 89.52 128 | 89.06 152 | 99.00 117 | 95.13 123 | 76.72 176 | 98.59 132 | 78.21 134 | 89.99 140 | 77.35 165 | 98.34 80 | 97.97 93 | 97.44 93 | 99.67 122 | 99.96 107 |
|
ACMH+ | | 92.61 13 | 91.80 145 | 93.03 156 | 90.37 119 | 93.03 96 | 98.17 140 | 94.00 141 | 84.13 122 | 98.12 147 | 77.39 136 | 91.95 130 | 74.62 176 | 94.36 147 | 94.62 165 | 93.82 162 | 99.32 185 | 99.87 144 |
|
IterMVS-SCA-FT | | | 91.75 146 | 96.87 107 | 85.78 166 | 90.34 142 | 95.93 182 | 95.06 125 | 73.85 188 | 98.91 118 | 61.01 195 | 89.21 143 | 98.87 72 | 94.66 143 | 98.09 85 | 97.12 106 | 99.76 84 | 99.99 59 |
|
IterMVS | | | 91.65 147 | 96.62 110 | 85.85 165 | 90.27 145 | 95.80 184 | 95.32 121 | 74.15 184 | 98.91 118 | 60.95 196 | 88.79 149 | 97.76 88 | 94.69 142 | 98.04 89 | 97.07 108 | 99.73 107 | 100.00 1 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
ACMH | | 92.34 14 | 91.59 148 | 93.02 157 | 89.92 125 | 93.97 88 | 97.98 145 | 90.10 176 | 84.70 111 | 98.46 137 | 76.80 138 | 93.38 122 | 71.94 187 | 94.39 145 | 95.34 154 | 94.04 159 | 99.54 144 | 100.00 1 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
pmmvs4 | | | 91.41 149 | 93.05 155 | 89.49 130 | 85.85 172 | 96.52 167 | 91.70 160 | 82.49 135 | 98.14 146 | 83.17 118 | 87.57 156 | 81.76 159 | 94.39 145 | 95.47 151 | 92.62 178 | 99.33 183 | 99.29 181 |
|
PatchT | | | 91.06 150 | 97.66 86 | 83.36 190 | 90.32 143 | 98.96 120 | 82.30 205 | 64.72 211 | 98.45 138 | 67.51 175 | 93.28 123 | 97.60 90 | 95.59 132 | 98.16 78 | 97.20 102 | 99.70 114 | 100.00 1 |
|
MIMVSNet | | | 91.01 151 | 96.22 122 | 84.93 176 | 85.24 176 | 98.09 142 | 90.40 171 | 64.96 210 | 97.55 155 | 72.65 148 | 96.23 93 | 90.81 126 | 96.79 115 | 96.69 123 | 97.06 109 | 99.52 148 | 97.09 203 |
|
UniMVSNet_NR-MVSNet | | | 90.50 152 | 92.31 161 | 88.38 143 | 85.04 182 | 96.34 171 | 90.94 163 | 85.32 103 | 95.87 169 | 75.69 139 | 87.68 155 | 78.49 162 | 93.78 153 | 93.21 189 | 94.60 147 | 99.53 147 | 99.97 87 |
|
UniMVSNet (Re) | | | 90.41 153 | 91.96 163 | 88.59 141 | 85.71 173 | 96.73 163 | 90.82 165 | 84.11 123 | 95.23 176 | 78.54 131 | 88.91 148 | 76.41 171 | 92.84 160 | 93.40 187 | 93.05 173 | 99.55 143 | 100.00 1 |
|
GA-MVS | | | 90.38 154 | 94.59 146 | 85.46 172 | 88.30 158 | 98.44 133 | 92.18 155 | 83.30 129 | 97.89 153 | 58.05 204 | 92.86 125 | 84.25 153 | 91.27 176 | 96.65 124 | 92.61 179 | 99.66 123 | 99.43 177 |
|
USDC | | | 90.36 155 | 91.68 164 | 88.82 136 | 92.58 103 | 98.02 143 | 96.27 103 | 79.83 154 | 98.37 143 | 70.61 165 | 89.05 145 | 67.50 203 | 94.17 148 | 95.77 147 | 94.43 152 | 99.46 163 | 98.62 190 |
|
thisisatest0515 | | | 90.28 156 | 94.32 150 | 85.57 171 | 85.23 177 | 97.23 156 | 85.44 197 | 83.09 131 | 96.80 161 | 72.41 151 | 89.82 141 | 90.87 125 | 87.93 198 | 95.27 157 | 90.39 201 | 99.33 183 | 99.88 139 |
|
TinyColmap | | | 89.94 157 | 90.88 170 | 88.84 135 | 92.43 106 | 97.91 146 | 95.59 116 | 80.10 152 | 98.12 147 | 71.33 162 | 84.56 164 | 67.46 204 | 94.15 149 | 95.57 149 | 94.27 158 | 99.43 171 | 98.26 194 |
|
pm-mvs1 | | | 89.68 158 | 92.00 162 | 86.96 155 | 86.23 168 | 96.62 165 | 90.36 172 | 83.05 132 | 93.97 188 | 72.15 155 | 81.77 176 | 82.10 157 | 90.69 182 | 95.38 153 | 94.50 150 | 99.29 189 | 99.65 166 |
|
tpm | | | 89.60 159 | 94.93 142 | 83.39 188 | 89.94 146 | 97.11 158 | 90.09 177 | 65.28 209 | 98.67 128 | 60.03 200 | 96.79 87 | 84.38 152 | 95.66 131 | 91.90 198 | 95.65 137 | 99.32 185 | 99.98 75 |
|
NR-MVSNet | | | 89.52 160 | 90.71 171 | 88.14 147 | 86.19 169 | 96.20 173 | 92.07 156 | 84.58 112 | 95.54 171 | 75.27 143 | 87.52 157 | 67.96 201 | 91.24 177 | 94.33 167 | 93.45 166 | 99.49 155 | 99.97 87 |
|
DU-MVS | | | 89.49 161 | 90.60 172 | 88.19 146 | 84.71 186 | 96.20 173 | 90.94 163 | 84.58 112 | 95.54 171 | 75.69 139 | 87.52 157 | 68.74 200 | 93.78 153 | 91.10 202 | 95.13 144 | 99.47 161 | 99.97 87 |
|
Baseline_NR-MVSNet | | | 89.13 162 | 89.53 184 | 88.66 140 | 84.71 186 | 94.43 201 | 91.79 159 | 84.49 115 | 95.54 171 | 78.28 133 | 78.52 193 | 72.46 186 | 93.29 157 | 91.10 202 | 94.82 146 | 99.42 174 | 99.86 147 |
|
tfpnnormal | | | 89.09 163 | 89.71 178 | 88.38 143 | 87.37 161 | 96.78 162 | 91.46 162 | 85.20 106 | 90.33 208 | 72.35 153 | 83.45 169 | 69.30 198 | 94.45 144 | 95.29 155 | 92.86 175 | 99.44 170 | 99.93 121 |
|
TranMVSNet+NR-MVSNet | | | 88.88 164 | 89.90 177 | 87.69 149 | 84.06 198 | 95.68 185 | 91.88 157 | 85.23 105 | 95.16 177 | 72.54 149 | 83.06 172 | 70.14 195 | 92.93 159 | 90.81 205 | 94.53 149 | 99.48 159 | 99.89 134 |
|
WR-MVS_H | | | 88.47 165 | 90.55 173 | 86.04 161 | 85.13 179 | 96.07 177 | 89.86 183 | 79.80 155 | 94.37 185 | 72.32 154 | 83.12 171 | 74.44 179 | 89.60 186 | 93.52 184 | 92.40 180 | 99.51 152 | 99.96 107 |
|
SixPastTwentyTwo | | | 88.35 166 | 91.51 166 | 84.66 178 | 85.39 175 | 96.96 160 | 86.57 193 | 79.62 157 | 96.57 163 | 63.73 189 | 87.86 153 | 75.18 174 | 93.43 156 | 94.03 171 | 90.37 202 | 99.24 192 | 99.58 169 |
|
TransMVSNet (Re) | | | 88.33 167 | 89.55 183 | 86.91 156 | 86.65 165 | 95.56 190 | 90.48 169 | 84.44 116 | 92.02 207 | 71.07 164 | 80.13 183 | 72.48 185 | 89.41 187 | 95.05 161 | 94.44 151 | 99.39 178 | 97.14 202 |
|
MVS-HIRNet | | | 88.27 168 | 94.05 152 | 81.51 196 | 88.90 154 | 98.93 124 | 83.38 203 | 60.52 219 | 98.06 149 | 63.78 188 | 80.67 180 | 90.36 129 | 92.94 158 | 97.29 115 | 96.41 120 | 99.56 141 | 96.66 205 |
|
WR-MVS | | | 88.23 169 | 90.15 175 | 86.00 163 | 84.39 193 | 95.64 186 | 89.96 180 | 81.80 141 | 94.46 183 | 71.60 159 | 82.10 174 | 74.36 180 | 88.76 194 | 92.48 195 | 92.20 182 | 99.46 163 | 99.83 152 |
|
CP-MVSNet | | | 88.09 170 | 89.57 181 | 86.36 160 | 84.63 189 | 95.46 195 | 89.48 185 | 80.53 150 | 93.42 195 | 71.26 163 | 81.25 178 | 69.90 196 | 92.78 161 | 93.30 188 | 93.69 164 | 99.47 161 | 99.96 107 |
|
pmnet_mix02 | | | 88.07 171 | 92.32 160 | 83.10 191 | 86.14 170 | 96.23 172 | 81.90 208 | 83.05 132 | 98.04 150 | 57.59 206 | 84.93 163 | 82.02 158 | 90.87 181 | 93.54 183 | 91.53 193 | 99.06 200 | 99.97 87 |
|
UniMVSNet_ETH3D | | | 88.05 172 | 87.01 202 | 89.27 131 | 88.53 157 | 97.49 151 | 90.35 173 | 83.48 126 | 94.57 181 | 77.87 135 | 70.08 209 | 61.75 215 | 96.22 123 | 90.17 206 | 95.21 143 | 99.16 197 | 99.82 153 |
|
anonymousdsp | | | 87.98 173 | 92.38 159 | 82.85 192 | 83.68 202 | 96.79 161 | 90.78 166 | 74.06 186 | 95.29 175 | 57.91 205 | 83.33 170 | 83.12 154 | 91.15 179 | 95.96 145 | 92.37 181 | 99.52 148 | 99.76 161 |
|
LTVRE_ROB | | 88.65 16 | 87.87 174 | 91.11 169 | 84.10 185 | 86.64 166 | 97.47 152 | 94.40 136 | 78.41 166 | 96.13 167 | 52.02 213 | 87.95 152 | 65.92 209 | 93.59 155 | 95.29 155 | 95.09 145 | 99.52 148 | 99.95 114 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
V42 | | | 87.84 175 | 89.42 186 | 85.99 164 | 85.16 178 | 96.01 179 | 90.52 168 | 81.78 143 | 94.43 184 | 67.59 173 | 81.32 177 | 71.87 188 | 91.48 174 | 91.25 201 | 91.16 197 | 99.43 171 | 99.92 125 |
|
TDRefinement | | | 87.79 176 | 88.76 193 | 86.66 158 | 93.54 90 | 98.02 143 | 95.76 109 | 85.18 107 | 96.57 163 | 67.90 172 | 80.51 182 | 66.51 208 | 78.37 209 | 93.20 190 | 89.73 203 | 99.22 193 | 96.75 204 |
|
MDTV_nov1_ep13_2view | | | 87.75 177 | 93.32 154 | 81.26 198 | 83.74 201 | 96.64 164 | 85.66 196 | 66.20 202 | 98.36 144 | 61.61 193 | 84.34 166 | 87.95 137 | 91.12 180 | 94.01 172 | 92.66 177 | 99.22 193 | 99.27 182 |
|
v8 | | | 87.54 178 | 89.33 187 | 85.45 173 | 85.41 174 | 95.50 193 | 90.32 174 | 78.94 163 | 94.35 186 | 66.93 178 | 81.90 175 | 70.99 192 | 91.62 172 | 91.49 200 | 91.22 196 | 99.48 159 | 99.87 144 |
|
v1144 | | | 87.49 179 | 89.64 179 | 84.97 175 | 84.73 185 | 95.84 183 | 90.17 175 | 79.30 159 | 93.96 189 | 64.65 186 | 78.83 190 | 73.38 184 | 91.51 173 | 93.77 178 | 91.77 188 | 99.45 166 | 99.93 121 |
|
v2v482 | | | 87.46 180 | 88.90 191 | 85.78 166 | 84.58 190 | 95.95 181 | 89.90 182 | 82.43 136 | 94.19 187 | 65.65 182 | 79.80 185 | 69.12 199 | 92.67 162 | 91.88 199 | 91.46 194 | 99.45 166 | 99.93 121 |
|
v10 | | | 87.40 181 | 89.62 180 | 84.80 177 | 84.93 183 | 95.07 199 | 90.44 170 | 75.63 180 | 94.51 182 | 66.52 180 | 78.87 189 | 73.47 183 | 91.86 170 | 93.69 181 | 91.87 187 | 99.45 166 | 99.86 147 |
|
pmmvs5 | | | 87.33 182 | 90.01 176 | 84.20 183 | 84.31 195 | 96.04 178 | 87.63 191 | 76.59 177 | 93.17 200 | 65.35 185 | 84.30 167 | 71.68 189 | 91.91 169 | 95.41 152 | 91.37 195 | 99.39 178 | 98.13 195 |
|
N_pmnet | | | 87.31 183 | 91.51 166 | 82.41 195 | 85.13 179 | 95.57 189 | 80.59 210 | 81.79 142 | 96.20 165 | 58.52 203 | 78.62 191 | 85.66 145 | 89.36 188 | 94.64 164 | 92.14 183 | 99.08 199 | 97.72 201 |
|
PS-CasMVS | | | 87.24 184 | 88.52 196 | 85.73 169 | 84.58 190 | 95.35 197 | 89.03 188 | 80.17 151 | 93.11 201 | 68.86 170 | 77.71 195 | 66.89 205 | 92.30 164 | 93.13 191 | 93.50 165 | 99.46 163 | 99.96 107 |
|
EU-MVSNet | | | 87.20 185 | 90.47 174 | 83.38 189 | 85.11 181 | 93.85 206 | 86.10 195 | 79.76 156 | 93.30 199 | 65.39 184 | 84.41 165 | 78.43 163 | 85.04 205 | 92.20 197 | 93.03 174 | 98.86 202 | 98.05 198 |
|
PEN-MVS | | | 87.20 185 | 88.22 197 | 86.01 162 | 84.01 200 | 94.93 200 | 90.00 179 | 81.52 148 | 93.46 194 | 69.29 168 | 79.69 186 | 65.51 210 | 91.72 171 | 91.01 204 | 93.12 171 | 99.49 155 | 99.84 150 |
|
EG-PatchMatch MVS | | | 86.96 187 | 89.56 182 | 83.93 186 | 86.29 167 | 97.61 149 | 90.75 167 | 73.31 191 | 95.43 174 | 66.08 181 | 75.88 202 | 71.31 190 | 87.55 200 | 94.79 163 | 92.74 176 | 99.61 134 | 99.13 186 |
|
v1192 | | | 86.93 188 | 89.01 189 | 84.50 179 | 84.46 192 | 95.51 192 | 89.93 181 | 78.65 165 | 93.75 190 | 62.29 191 | 77.19 197 | 70.88 193 | 92.28 165 | 93.84 175 | 91.96 185 | 99.38 180 | 99.90 131 |
|
v1921920 | | | 86.81 189 | 88.93 190 | 84.33 182 | 84.23 196 | 95.41 196 | 90.09 177 | 78.10 168 | 93.74 191 | 62.17 192 | 76.98 199 | 71.14 191 | 92.05 167 | 93.69 181 | 91.69 191 | 99.32 185 | 99.88 139 |
|
v144192 | | | 86.80 190 | 88.90 191 | 84.35 180 | 84.33 194 | 95.56 190 | 89.34 186 | 77.74 170 | 93.60 192 | 64.03 187 | 77.82 194 | 70.76 194 | 91.28 175 | 92.91 193 | 91.74 190 | 99.37 181 | 99.90 131 |
|
DTE-MVSNet | | | 86.70 191 | 87.66 201 | 85.58 170 | 83.30 203 | 94.29 202 | 89.74 184 | 81.53 146 | 92.77 203 | 68.93 169 | 80.13 183 | 64.00 213 | 90.62 183 | 89.45 207 | 93.34 167 | 99.32 185 | 99.67 165 |
|
gg-mvs-nofinetune | | | 86.69 192 | 91.30 168 | 81.30 197 | 90.42 141 | 99.64 82 | 98.50 57 | 61.68 217 | 79.23 217 | 40.35 220 | 66.58 211 | 97.14 93 | 96.92 111 | 98.64 46 | 97.94 73 | 99.91 21 | 99.97 87 |
|
v148 | | | 86.63 193 | 87.79 199 | 85.28 174 | 84.65 188 | 95.97 180 | 86.46 194 | 82.84 134 | 92.91 202 | 71.52 161 | 78.99 188 | 66.74 207 | 86.83 202 | 89.28 208 | 90.69 199 | 99.41 176 | 99.94 119 |
|
v1240 | | | 86.24 194 | 88.56 195 | 83.54 187 | 84.05 199 | 95.21 198 | 89.27 187 | 76.76 175 | 93.42 195 | 60.68 199 | 75.99 201 | 69.80 197 | 91.21 178 | 93.83 177 | 91.76 189 | 99.29 189 | 99.91 130 |
|
pmmvs6 | | | 85.75 195 | 86.97 203 | 84.34 181 | 84.88 184 | 95.59 188 | 87.41 192 | 79.19 161 | 87.81 213 | 67.56 174 | 63.05 214 | 77.76 164 | 89.15 189 | 93.45 186 | 91.90 186 | 97.83 208 | 99.21 183 |
|
v7n | | | 85.39 196 | 87.70 200 | 82.70 193 | 82.77 205 | 95.64 186 | 88.27 190 | 74.83 182 | 92.30 205 | 62.58 190 | 76.37 200 | 64.80 212 | 88.38 196 | 94.29 169 | 90.61 200 | 99.34 182 | 99.87 144 |
|
gm-plane-assit | | | 84.93 197 | 91.61 165 | 77.14 206 | 84.14 197 | 91.29 212 | 66.18 220 | 69.70 194 | 85.22 216 | 47.95 217 | 78.58 192 | 89.24 133 | 94.90 138 | 98.82 40 | 98.12 69 | 99.99 5 | 100.00 1 |
|
CMPMVS |  | 65.66 17 | 84.62 198 | 85.02 205 | 84.15 184 | 95.40 72 | 97.79 147 | 88.35 189 | 79.22 160 | 89.66 211 | 60.71 198 | 72.20 206 | 73.94 181 | 87.32 201 | 86.73 210 | 84.55 212 | 93.90 213 | 90.31 214 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
test_method | | | 84.44 199 | 89.04 188 | 79.08 201 | 81.15 208 | 92.82 209 | 82.06 207 | 61.92 215 | 96.17 166 | 59.38 201 | 74.47 204 | 67.52 202 | 91.96 168 | 96.92 121 | 95.53 139 | 97.98 207 | 99.85 149 |
|
Anonymous20231206 | | | 84.28 200 | 89.53 184 | 78.17 203 | 82.31 207 | 94.16 204 | 82.57 204 | 76.51 178 | 93.38 198 | 52.98 211 | 79.47 187 | 73.74 182 | 75.45 211 | 95.07 160 | 94.41 153 | 99.18 196 | 96.46 207 |
|
new_pmnet | | | 84.12 201 | 87.89 198 | 79.72 200 | 80.43 210 | 94.14 205 | 80.26 211 | 74.14 185 | 96.01 168 | 56.30 210 | 74.94 203 | 76.45 170 | 88.59 195 | 93.11 192 | 89.31 204 | 98.59 205 | 91.27 213 |
|
test20.03 | | | 83.86 202 | 88.73 194 | 78.16 204 | 82.60 206 | 93.00 207 | 81.61 209 | 74.68 183 | 92.36 204 | 57.50 207 | 83.01 173 | 74.48 178 | 73.30 213 | 92.40 196 | 91.14 198 | 99.29 189 | 94.75 209 |
|
pmmvs-eth3d | | | 82.92 203 | 83.31 208 | 82.47 194 | 76.97 212 | 91.76 211 | 83.79 200 | 76.10 179 | 90.33 208 | 69.95 167 | 71.04 208 | 48.09 218 | 89.02 191 | 93.85 174 | 89.14 205 | 99.02 201 | 98.96 188 |
|
PM-MVS | | | 82.79 204 | 84.51 206 | 80.77 199 | 77.22 211 | 92.13 210 | 83.61 202 | 73.31 191 | 93.50 193 | 61.06 194 | 77.15 198 | 46.52 221 | 90.55 184 | 94.14 170 | 89.05 207 | 98.85 203 | 99.12 187 |
|
pmmvs3 | | | 80.91 205 | 85.62 204 | 75.42 208 | 75.01 214 | 89.09 215 | 75.31 214 | 68.70 196 | 86.99 214 | 46.74 219 | 81.18 179 | 62.91 214 | 87.95 197 | 93.84 175 | 89.06 206 | 98.80 204 | 96.23 208 |
|
MIMVSNet1 | | | 80.64 206 | 83.97 207 | 76.76 207 | 68.91 217 | 91.15 214 | 78.32 213 | 75.47 181 | 89.58 212 | 56.64 209 | 65.10 212 | 65.17 211 | 82.14 206 | 93.51 185 | 91.64 192 | 99.10 198 | 91.66 212 |
|
MDA-MVSNet-bldmvs | | | 80.30 207 | 82.83 209 | 77.34 205 | 69.16 216 | 94.29 202 | 72.16 215 | 81.97 140 | 90.14 210 | 57.32 208 | 94.01 117 | 47.97 219 | 86.81 203 | 68.74 217 | 86.82 209 | 96.63 209 | 97.86 199 |
|
new-patchmatchnet | | | 78.17 208 | 80.82 210 | 75.07 209 | 76.93 213 | 91.20 213 | 71.90 216 | 73.32 190 | 86.59 215 | 48.91 214 | 67.11 210 | 47.85 220 | 81.19 207 | 88.18 209 | 87.02 208 | 98.19 206 | 97.79 200 |
|
FPMVS | | | 73.80 209 | 74.62 211 | 72.84 210 | 83.09 204 | 84.44 217 | 83.89 199 | 73.64 189 | 92.20 206 | 48.50 215 | 72.19 207 | 59.51 216 | 63.16 215 | 69.13 216 | 66.26 220 | 84.74 218 | 78.59 220 |
|
Gipuma |  | | 71.02 210 | 72.60 214 | 69.19 211 | 71.31 215 | 75.11 220 | 66.36 219 | 61.65 218 | 94.93 178 | 47.29 218 | 38.74 219 | 38.52 222 | 75.52 210 | 86.09 211 | 85.92 211 | 93.01 214 | 88.87 216 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
GG-mvs-BLEND | | | 69.85 211 | 99.39 40 | 35.39 219 | 3.67 226 | 99.94 19 | 99.10 42 | 1.69 223 | 99.85 51 | 3.19 227 | 98.13 76 | 99.46 62 | 4.92 222 | 99.23 32 | 99.14 30 | 99.80 60 | 100.00 1 |
|
PMMVS2 | | | 65.18 212 | 68.25 215 | 61.59 212 | 61.37 220 | 79.72 219 | 59.18 223 | 61.80 216 | 64.72 220 | 37.33 221 | 53.82 216 | 35.59 223 | 54.46 220 | 73.94 215 | 80.52 213 | 95.40 212 | 89.43 215 |
|
PMVS |  | 60.14 18 | 62.67 213 | 64.05 216 | 61.06 213 | 68.32 218 | 53.27 226 | 52.23 224 | 67.63 199 | 75.07 219 | 48.30 216 | 58.27 215 | 57.43 217 | 49.99 221 | 67.20 218 | 62.42 221 | 79.87 221 | 74.68 221 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
testmvs | | | 61.76 214 | 72.90 213 | 48.76 216 | 21.21 224 | 68.61 221 | 66.11 221 | 37.38 221 | 94.83 179 | 33.06 222 | 64.31 213 | 29.72 224 | 86.08 204 | 74.44 214 | 78.71 214 | 48.74 223 | 99.65 166 |
|
E-PMN | | | 55.33 215 | 55.79 218 | 54.81 215 | 59.81 222 | 57.23 224 | 38.83 225 | 63.59 213 | 64.06 222 | 24.66 224 | 35.33 221 | 26.40 226 | 58.69 217 | 55.41 220 | 70.54 217 | 83.26 219 | 81.56 219 |
|
EMVS | | | 55.14 216 | 55.29 219 | 54.97 214 | 60.87 221 | 57.52 223 | 38.58 226 | 63.57 214 | 64.54 221 | 23.36 225 | 36.96 220 | 27.99 225 | 60.69 216 | 51.17 221 | 66.61 219 | 82.73 220 | 82.25 218 |
|
MVE |  | 58.81 19 | 52.07 217 | 55.15 220 | 48.48 217 | 42.45 223 | 62.35 222 | 36.41 227 | 54.70 220 | 49.88 223 | 27.65 223 | 29.98 222 | 18.08 227 | 54.87 219 | 65.93 219 | 77.26 215 | 74.79 222 | 82.59 217 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test123 | | | 48.14 218 | 58.11 217 | 36.51 218 | 8.71 225 | 56.81 225 | 59.55 222 | 24.08 222 | 77.50 218 | 14.41 226 | 49.20 217 | 11.94 229 | 80.98 208 | 41.62 222 | 69.81 218 | 31.32 224 | 99.90 131 |
|
uanet_test | | | 0.00 219 | 0.00 221 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 224 | 0.00 228 | 0.00 223 | 0.00 230 | 0.00 223 | 0.00 223 | 0.00 222 | 0.00 225 | 0.00 222 |
|
sosnet-low-res | | | 0.00 219 | 0.00 221 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 224 | 0.00 228 | 0.00 223 | 0.00 230 | 0.00 223 | 0.00 223 | 0.00 222 | 0.00 225 | 0.00 222 |
|
sosnet | | | 0.00 219 | 0.00 221 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 224 | 0.00 228 | 0.00 223 | 0.00 230 | 0.00 223 | 0.00 223 | 0.00 222 | 0.00 225 | 0.00 222 |
|
RE-MVS-def | | | | | | | | | | | 52.74 212 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 100.00 1 | | | | | |
|
SR-MVS | | | | | | 99.61 12 | | | 96.80 18 | | | | 100.00 1 | | | | | |
|
Anonymous202405211 | | | | 95.78 129 | | 93.26 91 | 99.52 88 | 96.70 98 | 88.55 79 | 97.93 152 | | 88.99 146 | 90.68 127 | 98.99 58 | 96.46 131 | 97.02 111 | 99.64 129 | 99.89 134 |
|
our_test_3 | | | | | | 85.89 171 | 96.09 176 | 82.15 206 | | | | | | | | | | |
|
ambc | | | | 74.33 212 | | 66.84 219 | 84.26 218 | 84.17 198 | | 93.39 197 | 58.99 202 | 45.93 218 | 18.06 228 | 70.61 214 | 93.94 173 | 86.62 210 | 92.61 216 | 98.13 195 |
|
MTAPA | | | | | | | | | | | 96.61 16 | | 100.00 1 | | | | | |
|
MTMP | | | | | | | | | | | 97.42 11 | | 100.00 1 | | | | | |
|
Patchmatch-RL test | | | | | | | | 68.01 218 | | | | | | | | | | |
|
tmp_tt | | | | | 78.81 202 | 98.80 44 | 85.73 216 | 70.08 217 | 77.87 169 | 98.68 127 | 83.71 116 | 99.53 28 | 74.55 177 | 54.97 218 | 78.28 213 | 72.43 216 | 87.45 217 | |
|
XVS | | | | | | 95.09 75 | 99.94 19 | 97.49 73 | | | 88.58 84 | | 99.98 33 | | | | 99.78 74 | |
|
X-MVStestdata | | | | | | 95.09 75 | 99.94 19 | 97.49 73 | | | 88.58 84 | | 99.98 33 | | | | 99.78 74 | |
|
mPP-MVS | | | | | | 99.23 37 | | | | | | | 99.87 44 | | | | | |
|
NP-MVS | | | | | | | | | | 99.79 61 | | | | | | | | |
|
Patchmtry | | | | | | | 99.00 117 | 95.46 118 | 65.50 206 | | 67.51 175 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 97.31 154 | 79.48 212 | 89.65 65 | 98.66 129 | 60.89 197 | 94.40 111 | 66.89 205 | 87.65 199 | 81.69 212 | | 92.76 215 | 94.24 211 |
|