| SED-MVS | | | 99.44 1 | 99.69 21 | 99.15 1 | 99.61 13 | 99.95 14 | 99.81 6 | 96.94 7 | 99.97 9 | 98.73 2 | 99.53 29 | 100.00 1 | 99.91 4 | 99.90 8 | 98.52 59 | 99.87 30 | 100.00 1 |
|
| SF-MVS | | | 99.41 2 | 99.68 23 | 99.10 3 | 99.65 6 | 99.94 20 | 99.76 10 | 96.95 4 | 99.88 43 | 98.39 5 | 99.60 23 | 100.00 1 | 99.82 14 | 99.43 28 | 98.93 37 | 99.99 5 | 100.00 1 |
|
| APDe-MVS |  | | 99.40 3 | 99.81 2 | 98.92 8 | 99.62 8 | 99.96 7 | 99.76 10 | 96.87 15 | 99.95 26 | 97.66 7 | 99.57 27 | 100.00 1 | 99.63 29 | 99.88 11 | 99.28 26 | 100.00 1 | 100.00 1 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| MSLP-MVS++ | | | 99.39 4 | 99.76 9 | 98.95 6 | 99.60 17 | 99.99 1 | 99.83 4 | 96.82 17 | 99.92 36 | 97.58 10 | 99.58 26 | 100.00 1 | 99.93 1 | 98.98 35 | 99.86 8 | 99.96 13 | 100.00 1 |
|
| CNVR-MVS | | | 99.39 4 | 99.75 12 | 98.98 4 | 99.69 1 | 99.95 14 | 99.76 10 | 96.91 10 | 99.98 3 | 97.59 9 | 99.64 20 | 100.00 1 | 99.93 1 | 99.94 2 | 98.75 52 | 99.97 12 | 99.97 88 |
|
| DVP-MVS |  | | 99.38 6 | 99.57 36 | 99.15 1 | 99.62 8 | 99.94 20 | 99.72 23 | 96.99 2 | 99.98 3 | 98.85 1 | 98.21 78 | 100.00 1 | 99.88 8 | 99.88 11 | 98.96 35 | 99.85 34 | 100.00 1 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| MSP-MVS | | | 99.38 6 | 99.78 5 | 98.91 11 | 99.61 13 | 99.96 7 | 99.85 2 | 96.94 7 | 99.96 20 | 97.38 13 | 99.60 23 | 100.00 1 | 99.70 21 | 99.96 1 | 98.96 35 | 100.00 1 | 100.00 1 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| DPE-MVS |  | | 99.37 8 | 99.74 15 | 98.94 7 | 99.60 17 | 99.94 20 | 99.87 1 | 96.95 4 | 99.94 29 | 97.42 11 | 99.62 22 | 100.00 1 | 99.80 17 | 99.91 5 | 98.78 50 | 99.98 10 | 100.00 1 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| DVP-MVS++ | | | 99.36 9 | 99.70 20 | 98.96 5 | 99.62 8 | 99.94 20 | 99.85 2 | 96.90 14 | 99.97 9 | 97.64 8 | 99.50 33 | 100.00 1 | 99.88 8 | 99.90 8 | 98.60 54 | 99.87 30 | 100.00 1 |
|
| SMA-MVS |  | | 99.34 10 | 99.79 4 | 98.81 13 | 99.69 1 | 99.94 20 | 99.75 17 | 96.91 10 | 99.98 3 | 96.76 15 | 99.37 40 | 100.00 1 | 99.90 5 | 99.88 11 | 99.46 17 | 99.84 37 | 99.92 126 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| APD-MVS |  | | 99.33 11 | 99.85 1 | 98.73 14 | 99.61 13 | 99.92 41 | 99.77 9 | 96.91 10 | 99.93 32 | 96.31 19 | 99.59 25 | 99.95 41 | 99.84 12 | 99.73 18 | 99.84 9 | 99.95 15 | 100.00 1 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| NCCC | | | 99.24 12 | 99.75 12 | 98.65 15 | 99.63 7 | 99.96 7 | 99.76 10 | 96.91 10 | 99.97 9 | 95.86 23 | 99.67 11 | 100.00 1 | 99.75 18 | 99.85 14 | 98.80 48 | 99.98 10 | 99.97 88 |
|
| CNLPA | | | 99.24 12 | 99.58 33 | 98.85 12 | 99.34 33 | 99.95 14 | 99.32 36 | 96.65 27 | 99.96 20 | 98.44 4 | 98.97 55 | 100.00 1 | 99.57 31 | 98.66 44 | 99.56 15 | 99.76 87 | 99.97 88 |
|
| AdaColmap |  | | 99.21 14 | 99.45 39 | 98.92 8 | 99.67 4 | 99.95 14 | 99.65 28 | 96.77 22 | 99.97 9 | 97.67 6 | 100.00 1 | 99.69 55 | 99.93 1 | 99.26 31 | 97.25 100 | 99.85 34 | 100.00 1 |
|
| HFP-MVS | | | 99.19 15 | 99.77 8 | 98.51 18 | 99.55 21 | 99.94 20 | 99.76 10 | 96.84 16 | 99.88 43 | 95.27 27 | 99.67 11 | 100.00 1 | 99.85 11 | 99.56 23 | 99.36 21 | 99.79 68 | 99.97 88 |
|
| PLC |  | 98.06 1 | 99.17 16 | 99.38 41 | 98.92 8 | 99.47 23 | 99.90 49 | 99.48 33 | 96.47 32 | 99.96 20 | 98.73 2 | 99.52 32 | 100.00 1 | 99.55 33 | 98.54 57 | 97.73 87 | 99.84 37 | 99.99 59 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| SD-MVS | | | 99.16 17 | 99.73 16 | 98.49 19 | 97.93 53 | 99.95 14 | 99.74 20 | 96.94 7 | 99.96 20 | 96.60 17 | 99.47 36 | 100.00 1 | 99.88 8 | 99.15 33 | 99.59 13 | 99.84 37 | 100.00 1 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| CP-MVS | | | 99.14 18 | 99.67 24 | 98.53 17 | 99.45 25 | 99.94 20 | 99.63 30 | 96.62 29 | 99.82 56 | 95.92 22 | 99.65 16 | 100.00 1 | 99.71 20 | 99.76 17 | 98.56 56 | 99.83 43 | 100.00 1 |
|
| ACMMPR | | | 99.12 19 | 99.76 9 | 98.36 20 | 99.45 25 | 99.94 20 | 99.75 17 | 96.70 26 | 99.93 32 | 94.65 31 | 99.65 16 | 99.96 39 | 99.84 12 | 99.51 26 | 99.35 22 | 99.79 68 | 99.96 108 |
|
| MCST-MVS | | | 99.08 20 | 99.72 18 | 98.33 21 | 99.59 20 | 99.97 3 | 99.78 8 | 96.96 3 | 99.95 26 | 93.72 35 | 99.67 11 | 100.00 1 | 99.90 5 | 99.91 5 | 98.55 57 | 100.00 1 | 100.00 1 |
|
| CPTT-MVS | | | 99.08 20 | 99.53 38 | 98.57 16 | 99.44 27 | 99.93 35 | 99.60 31 | 95.92 37 | 99.77 64 | 97.01 14 | 99.67 11 | 100.00 1 | 99.72 19 | 99.56 23 | 97.76 84 | 99.70 118 | 99.98 75 |
|
| DeepC-MVS_fast | | 98.03 2 | 99.05 22 | 99.78 5 | 98.21 24 | 99.47 23 | 99.97 3 | 99.75 17 | 96.80 18 | 99.97 9 | 93.58 37 | 98.68 63 | 99.94 42 | 99.69 22 | 99.93 4 | 99.95 3 | 99.96 13 | 99.98 75 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| TSAR-MVS + MP. | | | 98.99 23 | 99.61 30 | 98.27 22 | 97.88 54 | 99.92 41 | 99.71 25 | 96.80 18 | 99.96 20 | 95.58 25 | 98.71 62 | 100.00 1 | 99.68 24 | 99.91 5 | 98.78 50 | 99.99 5 | 100.00 1 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| HPM-MVS++ |  | | 98.98 24 | 99.62 29 | 98.22 23 | 99.62 8 | 99.94 20 | 99.74 20 | 96.95 4 | 99.87 47 | 93.76 34 | 99.49 35 | 100.00 1 | 99.39 39 | 99.73 18 | 98.35 62 | 99.89 26 | 99.96 108 |
|
| SteuartSystems-ACMMP | | | 98.95 25 | 99.80 3 | 97.95 27 | 99.43 28 | 99.96 7 | 99.76 10 | 96.45 33 | 99.82 56 | 93.63 36 | 99.64 20 | 100.00 1 | 98.56 79 | 99.90 8 | 99.31 24 | 99.84 37 | 100.00 1 |
| Skip Steuart: Steuart Systems R&D Blog. |
| PHI-MVS | | | 98.85 26 | 99.67 24 | 97.89 28 | 98.63 48 | 99.93 35 | 98.95 47 | 95.20 39 | 99.84 54 | 94.94 28 | 99.74 10 | 100.00 1 | 99.69 22 | 98.40 64 | 99.75 11 | 99.93 18 | 99.99 59 |
|
| MP-MVS |  | | 98.82 27 | 99.63 27 | 97.88 29 | 99.41 29 | 99.91 48 | 99.74 20 | 96.76 23 | 99.88 43 | 91.89 48 | 99.50 33 | 99.94 42 | 99.65 27 | 99.71 21 | 98.49 60 | 99.82 47 | 99.97 88 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| ACMMP_NAP | | | 98.68 28 | 99.58 33 | 97.62 30 | 99.62 8 | 99.92 41 | 99.72 23 | 96.78 21 | 99.71 69 | 90.13 71 | 99.66 15 | 99.99 32 | 99.64 28 | 99.78 16 | 98.14 70 | 99.82 47 | 99.89 137 |
|
| train_agg | | | 98.62 29 | 99.76 9 | 97.28 32 | 99.03 41 | 99.93 35 | 99.65 28 | 96.37 34 | 99.98 3 | 89.24 82 | 99.53 29 | 99.83 47 | 99.59 30 | 99.85 14 | 99.19 29 | 99.80 61 | 100.00 1 |
|
| X-MVS | | | 98.62 29 | 99.75 12 | 97.29 31 | 99.50 22 | 99.94 20 | 99.71 25 | 96.55 30 | 99.85 51 | 88.58 87 | 99.65 16 | 99.98 34 | 99.67 25 | 99.60 22 | 99.26 27 | 99.77 79 | 99.97 88 |
|
| OMC-MVS | | | 98.59 31 | 99.07 46 | 98.03 26 | 99.41 29 | 99.90 49 | 99.26 39 | 94.33 41 | 99.94 29 | 96.03 20 | 96.68 92 | 99.72 54 | 99.42 36 | 98.86 38 | 98.84 44 | 99.72 115 | 99.58 173 |
|
| DPM-MVS | | | 98.58 32 | 99.78 5 | 97.17 34 | 98.02 52 | 99.64 83 | 99.80 7 | 96.72 25 | 99.96 20 | 90.05 73 | 99.57 27 | 100.00 1 | 98.66 78 | 99.56 23 | 99.96 2 | 99.80 61 | 99.80 160 |
|
| PGM-MVS | | | 98.47 33 | 99.73 16 | 97.00 36 | 99.68 3 | 99.94 20 | 99.76 10 | 91.74 46 | 99.84 54 | 91.17 58 | 100.00 1 | 99.69 55 | 99.81 15 | 99.38 29 | 99.30 25 | 99.82 47 | 99.95 115 |
|
| TSAR-MVS + ACMM | | | 98.30 34 | 99.64 26 | 96.74 39 | 99.08 40 | 99.94 20 | 99.67 27 | 96.73 24 | 99.97 9 | 86.30 107 | 98.30 70 | 99.99 32 | 98.78 72 | 99.73 18 | 99.57 14 | 99.88 29 | 99.98 75 |
|
| CSCG | | | 98.22 35 | 98.37 68 | 98.04 25 | 99.60 17 | 99.82 60 | 99.45 34 | 93.59 42 | 99.16 105 | 96.46 18 | 98.22 77 | 95.86 105 | 99.41 38 | 96.33 135 | 99.22 28 | 99.75 96 | 99.94 120 |
|
| 3Dnovator+ | | 95.21 7 | 98.17 36 | 99.08 45 | 97.12 35 | 99.28 36 | 99.78 71 | 98.61 54 | 89.93 60 | 99.93 32 | 95.36 26 | 95.50 101 | 100.00 1 | 99.56 32 | 98.58 52 | 99.80 10 | 99.95 15 | 99.97 88 |
|
| ACMMP |  | | 98.16 37 | 99.01 47 | 97.18 33 | 98.86 43 | 99.92 41 | 98.77 52 | 95.73 38 | 99.31 101 | 91.15 59 | 100.00 1 | 99.81 49 | 98.82 70 | 98.11 84 | 95.91 135 | 99.77 79 | 99.97 88 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| MVS_111021_LR | | | 98.15 38 | 99.69 21 | 96.36 44 | 99.23 38 | 99.93 35 | 97.79 66 | 91.84 45 | 99.87 47 | 90.53 67 | 100.00 1 | 99.57 60 | 98.93 64 | 99.44 27 | 99.08 32 | 99.85 34 | 99.95 115 |
|
| EPNet | | | 98.11 39 | 99.63 27 | 96.34 45 | 98.44 50 | 99.88 55 | 98.55 55 | 90.25 56 | 99.93 32 | 92.60 44 | 100.00 1 | 99.73 52 | 98.41 81 | 98.87 37 | 99.02 33 | 99.82 47 | 99.97 88 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| TSAR-MVS + GP. | | | 98.06 40 | 99.55 37 | 96.32 46 | 94.72 81 | 99.92 41 | 99.22 40 | 89.98 58 | 99.97 9 | 94.77 30 | 99.94 9 | 100.00 1 | 99.43 35 | 98.52 61 | 98.53 58 | 99.79 68 | 100.00 1 |
|
| 3Dnovator | | 95.01 8 | 97.98 41 | 98.89 52 | 96.92 38 | 99.36 31 | 99.76 74 | 98.72 53 | 89.98 58 | 99.98 3 | 93.99 33 | 94.60 114 | 99.43 65 | 99.50 34 | 98.55 54 | 99.91 5 | 99.99 5 | 99.98 75 |
|
| MVS_111021_HR | | | 97.94 42 | 99.59 31 | 96.02 48 | 99.27 37 | 99.97 3 | 97.03 93 | 90.44 53 | 99.89 40 | 90.75 62 | 100.00 1 | 99.73 52 | 98.68 77 | 98.67 43 | 98.89 41 | 99.95 15 | 99.97 88 |
|
| QAPM | | | 97.90 43 | 98.89 52 | 96.74 39 | 99.35 32 | 99.80 66 | 98.84 49 | 90.20 57 | 99.94 29 | 92.85 39 | 94.17 117 | 99.78 50 | 99.42 36 | 98.71 41 | 99.87 7 | 99.79 68 | 99.98 75 |
|
| CDPH-MVS | | | 97.88 44 | 99.59 31 | 95.89 49 | 98.90 42 | 99.95 14 | 99.40 35 | 92.86 44 | 99.86 50 | 85.33 113 | 98.62 64 | 99.45 64 | 99.06 60 | 99.29 30 | 99.94 4 | 99.81 56 | 100.00 1 |
|
| CANet | | | 97.62 45 | 98.94 50 | 96.08 47 | 97.19 58 | 99.93 35 | 99.29 38 | 90.38 54 | 99.87 47 | 91.00 60 | 95.79 100 | 99.51 61 | 98.72 76 | 98.53 58 | 99.00 34 | 99.90 24 | 99.99 59 |
|
| TAPA-MVS | | 96.62 5 | 97.60 46 | 98.46 67 | 96.60 42 | 98.73 46 | 99.90 49 | 99.30 37 | 94.96 40 | 99.46 87 | 87.57 95 | 96.05 99 | 98.53 77 | 99.26 50 | 98.04 89 | 97.33 99 | 99.77 79 | 99.88 142 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| DeepPCF-MVS | | 97.16 4 | 97.58 47 | 99.72 18 | 95.07 65 | 98.45 49 | 99.96 7 | 93.83 147 | 95.93 36 | 100.00 1 | 90.79 61 | 98.38 69 | 99.85 46 | 95.28 138 | 99.94 2 | 99.97 1 | 96.15 214 | 99.97 88 |
|
| CS-MVS-test | | | 97.51 48 | 99.18 44 | 95.56 54 | 97.16 59 | 99.96 7 | 97.39 80 | 89.82 62 | 100.00 1 | 89.88 74 | 99.16 47 | 98.38 83 | 99.23 52 | 98.85 39 | 97.93 77 | 99.87 30 | 100.00 1 |
|
| PCF-MVS | | 97.20 3 | 97.49 49 | 98.20 73 | 96.66 41 | 97.62 56 | 99.92 41 | 98.93 48 | 96.64 28 | 98.53 136 | 88.31 93 | 94.04 120 | 99.58 59 | 98.94 62 | 97.53 105 | 97.79 82 | 99.54 148 | 99.97 88 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| CS-MVS | | | 97.46 50 | 98.98 48 | 95.68 53 | 96.74 63 | 99.93 35 | 97.62 72 | 89.69 63 | 99.98 3 | 91.33 55 | 98.53 67 | 97.50 92 | 98.77 73 | 98.60 51 | 98.35 62 | 99.92 21 | 100.00 1 |
|
| MSDG | | | 97.29 51 | 97.55 89 | 97.00 36 | 98.66 47 | 99.71 78 | 99.03 45 | 96.15 35 | 99.59 76 | 89.67 80 | 92.77 131 | 94.86 108 | 98.75 74 | 98.22 75 | 97.94 75 | 99.72 115 | 99.76 165 |
|
| CHOSEN 280x420 | | | 97.16 52 | 99.58 33 | 94.35 80 | 96.95 62 | 99.97 3 | 97.19 87 | 81.55 148 | 99.92 36 | 91.75 49 | 100.00 1 | 100.00 1 | 98.84 69 | 98.55 54 | 98.65 53 | 99.79 68 | 99.97 88 |
|
| DELS-MVS | | | 97.05 53 | 98.05 78 | 95.88 51 | 97.09 60 | 99.99 1 | 98.82 50 | 90.30 55 | 98.44 142 | 91.40 53 | 92.91 128 | 96.57 98 | 97.68 109 | 98.56 53 | 99.88 6 | 100.00 1 | 100.00 1 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| DeepC-MVS | | 96.33 6 | 97.05 53 | 97.59 88 | 96.42 43 | 97.37 57 | 99.92 41 | 99.10 43 | 96.54 31 | 99.34 100 | 86.64 104 | 91.93 136 | 93.15 119 | 99.11 58 | 99.11 34 | 99.68 12 | 99.73 110 | 99.97 88 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| test2506 | | | 97.04 55 | 98.09 77 | 95.81 52 | 94.12 86 | 99.80 66 | 97.33 83 | 89.48 68 | 98.90 122 | 95.99 21 | 99.11 50 | 92.84 121 | 98.14 91 | 98.14 80 | 98.32 66 | 99.82 47 | 99.51 178 |
|
| MVS_0304 | | | 97.04 55 | 98.72 58 | 95.08 64 | 96.32 67 | 99.90 49 | 99.15 41 | 89.61 66 | 99.89 40 | 87.22 101 | 95.47 102 | 98.22 86 | 98.22 87 | 98.63 48 | 98.90 40 | 99.93 18 | 100.00 1 |
|
| MAR-MVS | | | 97.03 57 | 98.00 80 | 95.89 49 | 99.32 34 | 99.74 77 | 96.76 100 | 84.89 110 | 99.97 9 | 94.86 29 | 98.29 71 | 90.58 129 | 99.67 25 | 98.02 91 | 99.50 16 | 99.82 47 | 99.92 126 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| MVSTER | | | 97.00 58 | 98.85 54 | 94.83 72 | 92.71 105 | 97.43 157 | 99.03 45 | 85.52 103 | 99.82 56 | 92.74 42 | 99.15 48 | 99.94 42 | 99.19 55 | 98.66 44 | 96.99 114 | 99.79 68 | 99.98 75 |
|
| EC-MVSNet | | | 96.90 59 | 99.32 42 | 94.07 82 | 91.64 135 | 99.30 108 | 98.18 62 | 85.61 102 | 99.97 9 | 89.79 75 | 99.33 41 | 99.31 68 | 99.28 48 | 98.48 63 | 98.86 42 | 99.91 22 | 100.00 1 |
|
| baseline1 | | | 96.87 60 | 98.55 61 | 94.91 67 | 92.89 104 | 99.45 98 | 96.34 104 | 88.54 81 | 98.88 125 | 92.82 40 | 98.93 57 | 96.58 97 | 99.07 59 | 98.19 77 | 98.04 72 | 99.80 61 | 99.78 162 |
|
| OpenMVS |  | 94.03 11 | 96.87 60 | 98.10 76 | 95.44 58 | 99.29 35 | 99.78 71 | 98.46 60 | 89.92 61 | 99.47 86 | 85.78 111 | 91.05 140 | 98.50 78 | 99.30 46 | 98.49 62 | 99.41 18 | 99.89 26 | 99.98 75 |
|
| PatchMatch-RL | | | 96.84 62 | 98.03 79 | 95.47 55 | 98.84 44 | 99.81 64 | 95.61 118 | 89.20 72 | 99.65 73 | 91.28 56 | 99.39 37 | 93.46 117 | 98.18 88 | 98.05 87 | 96.28 124 | 99.69 123 | 99.55 175 |
|
| ETV-MVS | | | 96.79 63 | 99.19 43 | 94.00 84 | 91.78 126 | 99.63 85 | 97.15 89 | 88.00 87 | 99.95 26 | 88.34 92 | 99.32 42 | 98.71 74 | 98.82 70 | 98.69 42 | 98.01 73 | 99.90 24 | 100.00 1 |
|
| IS_MVSNet | | | 96.66 64 | 98.62 60 | 94.38 76 | 92.41 111 | 99.70 79 | 97.19 87 | 87.67 90 | 99.05 113 | 91.27 57 | 95.09 107 | 98.46 82 | 97.95 99 | 98.64 46 | 99.37 19 | 99.79 68 | 100.00 1 |
|
| PMMVS | | | 96.45 65 | 98.24 72 | 94.36 79 | 92.58 106 | 99.01 120 | 97.08 92 | 87.42 96 | 99.88 43 | 90.06 72 | 99.39 37 | 94.63 109 | 99.33 43 | 97.85 97 | 96.99 114 | 99.70 118 | 99.96 108 |
|
| LS3D | | | 96.44 66 | 97.31 96 | 95.41 59 | 97.06 61 | 99.87 56 | 99.51 32 | 97.48 1 | 99.57 77 | 79.00 132 | 95.39 103 | 89.19 135 | 99.81 15 | 98.55 54 | 98.84 44 | 99.62 137 | 99.78 162 |
|
| EIA-MVS | | | 96.34 67 | 98.55 61 | 93.76 88 | 91.93 122 | 99.66 81 | 97.14 90 | 88.33 85 | 99.51 81 | 85.98 110 | 98.82 61 | 96.08 103 | 99.33 43 | 98.38 67 | 97.40 97 | 99.81 56 | 100.00 1 |
|
| EPP-MVSNet | | | 96.29 68 | 98.34 69 | 93.90 85 | 91.77 127 | 99.38 105 | 95.45 123 | 87.25 98 | 99.38 96 | 91.36 54 | 94.86 113 | 98.49 80 | 97.83 103 | 98.01 92 | 98.23 68 | 99.75 96 | 99.99 59 |
|
| UGNet | | | 96.05 69 | 98.55 61 | 93.13 97 | 94.64 82 | 99.65 82 | 94.70 135 | 87.78 88 | 99.40 95 | 89.69 79 | 98.25 74 | 99.25 70 | 92.12 170 | 96.50 127 | 97.08 109 | 99.84 37 | 99.72 167 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| COLMAP_ROB |  | 93.56 12 | 96.03 70 | 96.83 110 | 95.11 63 | 97.87 55 | 99.52 89 | 98.81 51 | 91.40 49 | 99.42 91 | 84.97 114 | 90.46 143 | 96.82 96 | 98.05 94 | 96.46 131 | 96.19 127 | 99.54 148 | 98.92 193 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| PVSNet_BlendedMVS | | | 96.01 71 | 96.48 118 | 95.46 56 | 96.47 65 | 99.89 53 | 95.64 115 | 91.23 50 | 99.75 66 | 91.59 51 | 96.80 89 | 82.44 158 | 98.05 94 | 98.53 58 | 97.92 78 | 99.80 61 | 100.00 1 |
|
| PVSNet_Blended | | | 96.01 71 | 96.48 118 | 95.46 56 | 96.47 65 | 99.89 53 | 95.64 115 | 91.23 50 | 99.75 66 | 91.59 51 | 96.80 89 | 82.44 158 | 98.05 94 | 98.53 58 | 97.92 78 | 99.80 61 | 100.00 1 |
|
| thisisatest0530 | | | 95.89 73 | 98.32 70 | 93.06 100 | 91.76 128 | 99.75 75 | 94.94 130 | 87.60 93 | 99.91 38 | 86.66 103 | 98.28 72 | 99.98 34 | 97.72 105 | 97.10 117 | 93.24 171 | 99.65 129 | 99.95 115 |
|
| tttt0517 | | | 95.88 74 | 98.31 71 | 93.04 101 | 91.75 130 | 99.75 75 | 94.90 131 | 87.60 93 | 99.91 38 | 86.63 105 | 98.28 72 | 99.98 34 | 97.72 105 | 97.10 117 | 93.24 171 | 99.65 129 | 99.95 115 |
|
| thres100view900 | | | 95.86 75 | 96.62 112 | 94.97 66 | 93.10 94 | 99.83 58 | 97.76 67 | 89.15 73 | 98.62 132 | 90.69 63 | 99.00 52 | 84.86 149 | 99.30 46 | 97.57 104 | 96.48 119 | 99.81 56 | 100.00 1 |
|
| RPSCF | | | 95.86 75 | 96.94 108 | 94.61 74 | 96.52 64 | 98.67 134 | 98.54 56 | 88.43 83 | 99.56 78 | 90.51 69 | 99.39 37 | 98.70 75 | 97.72 105 | 93.77 181 | 92.00 187 | 95.93 215 | 96.50 210 |
|
| DCV-MVSNet | | | 95.85 77 | 97.53 90 | 93.89 86 | 93.20 93 | 97.01 163 | 97.14 90 | 84.77 111 | 99.16 105 | 90.38 70 | 98.96 56 | 93.73 114 | 98.23 86 | 96.57 126 | 97.37 98 | 99.64 133 | 99.93 122 |
|
| baseline | | | 95.85 77 | 98.13 75 | 93.20 96 | 92.29 114 | 99.58 87 | 97.49 74 | 84.33 120 | 99.44 88 | 87.28 99 | 97.00 88 | 94.04 113 | 97.93 100 | 98.36 69 | 98.47 61 | 99.87 30 | 99.99 59 |
|
| sasdasda | | | 95.80 79 | 97.02 101 | 94.37 77 | 92.96 100 | 99.47 94 | 97.49 74 | 84.58 113 | 99.44 88 | 92.05 46 | 98.54 65 | 86.65 140 | 99.37 40 | 96.18 138 | 98.93 37 | 99.77 79 | 99.92 126 |
|
| canonicalmvs | | | 95.80 79 | 97.02 101 | 94.37 77 | 92.96 100 | 99.47 94 | 97.49 74 | 84.58 113 | 99.44 88 | 92.05 46 | 98.54 65 | 86.65 140 | 99.37 40 | 96.18 138 | 98.93 37 | 99.77 79 | 99.92 126 |
|
| tfpn200view9 | | | 95.78 81 | 96.54 115 | 94.89 69 | 93.10 94 | 99.82 60 | 97.67 68 | 88.85 76 | 98.62 132 | 90.69 63 | 99.00 52 | 84.86 149 | 99.28 48 | 97.41 111 | 96.10 128 | 99.76 87 | 99.99 59 |
|
| thres200 | | | 95.77 82 | 96.55 114 | 94.86 70 | 93.09 96 | 99.82 60 | 97.63 71 | 88.85 76 | 98.49 137 | 90.66 65 | 98.99 54 | 84.86 149 | 99.20 53 | 97.41 111 | 96.28 124 | 99.76 87 | 100.00 1 |
|
| MVS_Test | | | 95.74 83 | 98.18 74 | 92.90 103 | 92.16 115 | 99.49 93 | 97.36 81 | 84.30 121 | 99.79 61 | 84.94 115 | 96.65 93 | 93.63 116 | 98.85 68 | 98.61 50 | 99.10 31 | 99.81 56 | 100.00 1 |
|
| thres400 | | | 95.72 84 | 96.48 118 | 94.84 71 | 93.00 99 | 99.83 58 | 97.55 73 | 88.93 74 | 98.49 137 | 90.61 66 | 98.86 58 | 84.63 153 | 99.20 53 | 97.45 107 | 96.10 128 | 99.77 79 | 99.99 59 |
|
| MGCFI-Net | | | 95.71 85 | 96.97 107 | 94.25 81 | 92.90 103 | 99.44 101 | 97.35 82 | 84.44 118 | 99.42 91 | 91.70 50 | 98.51 68 | 86.56 142 | 99.33 43 | 96.09 142 | 98.83 46 | 99.77 79 | 99.92 126 |
|
| thres600view7 | | | 95.64 86 | 96.38 122 | 94.79 73 | 92.96 100 | 99.82 60 | 97.48 79 | 88.85 76 | 98.38 143 | 90.52 68 | 98.84 60 | 84.61 154 | 99.15 56 | 97.41 111 | 95.60 140 | 99.76 87 | 99.99 59 |
|
| Vis-MVSNet (Re-imp) | | | 95.60 87 | 98.52 66 | 92.19 107 | 92.37 112 | 99.56 88 | 96.37 103 | 87.41 97 | 98.95 117 | 84.77 118 | 94.88 112 | 98.48 81 | 92.44 167 | 98.63 48 | 99.37 19 | 99.76 87 | 99.77 164 |
|
| FMVSNet3 | | | 95.59 88 | 97.51 92 | 93.34 94 | 89.48 151 | 96.57 170 | 97.67 68 | 84.17 122 | 99.48 83 | 89.76 76 | 95.09 107 | 94.35 110 | 99.14 57 | 98.37 68 | 98.86 42 | 99.82 47 | 99.89 137 |
|
| ECVR-MVS |  | | 95.46 89 | 95.58 135 | 95.31 61 | 94.12 86 | 99.80 66 | 97.33 83 | 89.48 68 | 98.90 122 | 92.99 38 | 87.97 155 | 86.41 144 | 98.14 91 | 98.14 80 | 98.32 66 | 99.82 47 | 99.52 177 |
|
| PVSNet_Blended_VisFu | | | 95.37 90 | 97.44 94 | 92.95 102 | 95.20 74 | 99.80 66 | 92.68 155 | 88.41 84 | 99.12 108 | 87.64 94 | 88.31 154 | 99.10 71 | 94.07 154 | 98.27 72 | 97.51 93 | 99.73 110 | 100.00 1 |
|
| DI_MVS_plusplus_trai | | | 95.29 91 | 97.02 101 | 93.28 95 | 91.76 128 | 99.52 89 | 97.84 65 | 85.67 101 | 99.08 112 | 87.29 98 | 87.76 158 | 97.46 93 | 97.31 113 | 97.83 98 | 97.48 94 | 99.83 43 | 100.00 1 |
|
| ET-MVSNet_ETH3D | | | 95.20 92 | 97.82 85 | 92.15 108 | 80.77 213 | 98.13 145 | 97.65 70 | 86.93 99 | 99.72 68 | 88.56 90 | 99.29 45 | 97.01 95 | 99.24 51 | 94.58 169 | 95.98 133 | 99.75 96 | 99.99 59 |
|
| TSAR-MVS + COLMAP | | | 95.20 92 | 95.03 142 | 95.41 59 | 96.17 68 | 98.69 133 | 99.11 42 | 93.40 43 | 99.97 9 | 84.89 116 | 98.23 76 | 75.01 179 | 99.34 42 | 97.27 116 | 96.37 123 | 99.58 141 | 99.64 172 |
|
| GBi-Net | | | 95.19 94 | 96.99 105 | 93.09 98 | 89.11 152 | 96.47 172 | 96.90 94 | 84.17 122 | 99.48 83 | 89.76 76 | 95.09 107 | 94.35 110 | 98.87 65 | 96.50 127 | 97.21 101 | 99.74 100 | 99.81 157 |
|
| test1 | | | 95.19 94 | 96.99 105 | 93.09 98 | 89.11 152 | 96.47 172 | 96.90 94 | 84.17 122 | 99.48 83 | 89.76 76 | 95.09 107 | 94.35 110 | 98.87 65 | 96.50 127 | 97.21 101 | 99.74 100 | 99.81 157 |
|
| test1111 | | | 95.15 96 | 95.18 140 | 95.12 62 | 94.07 88 | 99.80 66 | 97.20 86 | 89.53 67 | 98.80 126 | 92.22 45 | 85.44 167 | 86.24 145 | 97.89 101 | 98.12 82 | 98.34 65 | 99.80 61 | 99.51 178 |
|
| test0.0.03 1 | | | 95.15 96 | 97.87 84 | 91.99 109 | 91.69 132 | 98.82 131 | 93.04 153 | 83.60 127 | 99.65 73 | 88.80 85 | 94.15 118 | 97.67 90 | 94.97 140 | 96.62 125 | 98.16 69 | 99.83 43 | 100.00 1 |
|
| baseline2 | | | 95.13 98 | 98.55 61 | 91.15 115 | 90.29 147 | 99.00 121 | 94.49 139 | 82.00 142 | 99.68 71 | 84.82 117 | 96.47 94 | 99.30 69 | 95.71 132 | 98.24 74 | 97.14 107 | 99.57 143 | 100.00 1 |
|
| casdiffmvs_mvg |  | | 95.10 99 | 96.45 121 | 93.53 90 | 92.05 118 | 99.42 103 | 97.25 85 | 87.66 91 | 97.17 162 | 86.09 108 | 91.79 138 | 91.27 123 | 98.31 84 | 98.06 86 | 97.42 96 | 99.81 56 | 100.00 1 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| EPNet_dtu | | | 95.10 99 | 98.81 56 | 90.78 116 | 98.38 51 | 98.47 136 | 96.54 102 | 89.36 70 | 99.78 63 | 65.65 186 | 99.31 43 | 98.24 85 | 94.79 143 | 98.28 71 | 99.35 22 | 99.93 18 | 98.27 197 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| Anonymous20231211 | | | 94.96 101 | 94.99 143 | 94.91 67 | 93.01 98 | 99.44 101 | 96.85 98 | 88.49 82 | 98.78 127 | 92.61 43 | 83.94 173 | 90.25 131 | 98.94 62 | 95.87 148 | 96.77 116 | 99.58 141 | 99.89 137 |
|
| UA-Net | | | 94.95 102 | 98.66 59 | 90.63 118 | 94.60 84 | 98.94 127 | 96.03 108 | 85.28 105 | 98.01 154 | 78.92 133 | 97.42 86 | 99.96 39 | 89.09 194 | 98.95 36 | 98.80 48 | 99.82 47 | 98.57 195 |
|
| CANet_DTU | | | 94.90 103 | 98.98 48 | 90.13 126 | 94.74 80 | 99.81 64 | 98.53 57 | 82.23 141 | 99.97 9 | 66.76 183 | 100.00 1 | 98.50 78 | 98.74 75 | 97.52 106 | 97.19 106 | 99.76 87 | 99.88 142 |
|
| FC-MVSNet-train | | | 94.61 104 | 96.27 123 | 92.68 105 | 92.35 113 | 97.14 161 | 93.45 151 | 87.73 89 | 98.93 118 | 87.31 97 | 96.42 95 | 89.35 133 | 95.67 133 | 96.06 146 | 96.01 132 | 99.56 145 | 99.98 75 |
|
| diffmvs |  | | 94.60 105 | 95.63 134 | 93.41 92 | 91.98 121 | 99.30 108 | 96.86 97 | 87.62 92 | 99.30 102 | 86.07 109 | 94.12 119 | 81.63 163 | 98.16 89 | 97.43 108 | 97.60 91 | 99.76 87 | 100.00 1 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| casdiffmvs |  | | 94.54 106 | 95.56 136 | 93.36 93 | 91.84 124 | 99.46 97 | 95.92 110 | 87.54 95 | 98.45 140 | 86.57 106 | 90.51 142 | 84.72 152 | 98.49 80 | 97.97 93 | 97.80 81 | 99.77 79 | 100.00 1 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| CLD-MVS | | | 94.53 107 | 94.45 151 | 94.61 74 | 93.85 90 | 98.36 138 | 98.12 63 | 89.68 64 | 99.35 99 | 89.62 81 | 95.19 105 | 77.08 170 | 96.66 123 | 95.51 152 | 95.67 138 | 99.74 100 | 100.00 1 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| FMVSNet2 | | | 94.48 108 | 95.95 128 | 92.77 104 | 89.11 152 | 96.47 172 | 96.90 94 | 83.38 130 | 99.11 109 | 88.64 86 | 87.50 163 | 92.26 122 | 98.87 65 | 97.91 95 | 98.60 54 | 99.74 100 | 99.81 157 |
|
| HQP-MVS | | | 94.48 108 | 95.39 138 | 93.42 91 | 95.10 75 | 98.35 139 | 98.19 61 | 91.41 48 | 99.77 64 | 79.79 129 | 99.30 44 | 77.08 170 | 96.25 126 | 96.93 119 | 96.28 124 | 99.76 87 | 99.99 59 |
|
| FA-MVS(training) | | | 94.33 110 | 97.52 91 | 90.60 120 | 92.42 110 | 99.77 73 | 96.13 107 | 68.75 199 | 99.05 113 | 88.49 91 | 91.95 134 | 99.48 62 | 98.12 93 | 98.39 65 | 94.02 163 | 99.68 125 | 99.98 75 |
|
| MDTV_nov1_ep13 | | | 94.32 111 | 98.77 57 | 89.14 136 | 91.70 131 | 99.52 89 | 95.21 126 | 72.09 197 | 99.80 59 | 78.91 134 | 96.32 96 | 99.62 57 | 97.71 108 | 98.39 65 | 97.71 88 | 99.22 197 | 100.00 1 |
|
| CDS-MVSNet | | | 94.32 111 | 97.00 104 | 91.19 114 | 89.82 150 | 98.71 132 | 95.51 120 | 85.14 109 | 96.85 163 | 82.33 124 | 92.48 132 | 96.40 101 | 94.71 144 | 96.86 122 | 97.76 84 | 99.63 135 | 99.92 126 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| dps | | | 94.29 113 | 97.33 95 | 90.75 117 | 92.02 119 | 99.21 112 | 94.31 141 | 66.97 204 | 99.50 82 | 95.61 24 | 96.22 98 | 98.64 76 | 96.08 128 | 93.71 183 | 94.03 162 | 99.52 152 | 99.98 75 |
|
| ACMM | | 94.44 10 | 94.26 114 | 94.62 147 | 93.84 87 | 94.86 79 | 97.73 152 | 93.48 150 | 90.76 52 | 99.27 103 | 87.46 96 | 99.04 51 | 76.60 172 | 96.76 121 | 96.37 134 | 93.76 166 | 99.74 100 | 99.55 175 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| ACMP | | 94.49 9 | 94.19 115 | 94.74 146 | 93.56 89 | 94.25 85 | 98.32 141 | 96.02 109 | 89.35 71 | 98.90 122 | 87.28 99 | 99.14 49 | 76.41 175 | 94.94 141 | 96.07 145 | 94.35 159 | 99.49 159 | 99.99 59 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| EPMVS | | | 94.08 116 | 98.54 65 | 88.87 137 | 92.51 108 | 99.47 94 | 94.18 143 | 66.53 205 | 99.68 71 | 82.40 123 | 95.24 104 | 99.40 66 | 97.86 102 | 98.12 82 | 97.99 74 | 99.75 96 | 99.88 142 |
|
| test-LLR | | | 93.71 117 | 97.23 97 | 89.60 130 | 91.69 132 | 99.10 117 | 94.68 137 | 83.60 127 | 99.36 97 | 71.94 160 | 93.82 122 | 96.51 99 | 95.96 130 | 97.42 109 | 94.37 156 | 99.74 100 | 99.99 59 |
|
| CHOSEN 1792x2688 | | | 93.69 118 | 94.89 145 | 92.28 106 | 96.17 68 | 99.84 57 | 95.69 114 | 83.17 133 | 98.54 135 | 82.04 125 | 77.58 201 | 91.15 125 | 96.90 116 | 98.36 69 | 98.82 47 | 99.73 110 | 99.98 75 |
|
| LGP-MVS_train | | | 93.60 119 | 95.05 141 | 91.90 110 | 94.90 78 | 98.29 142 | 97.93 64 | 88.06 86 | 99.14 107 | 74.83 149 | 99.26 46 | 76.50 173 | 96.07 129 | 96.31 136 | 95.90 137 | 99.59 139 | 99.97 88 |
|
| SCA | | | 93.53 120 | 98.90 51 | 87.27 154 | 92.01 120 | 99.30 108 | 93.43 152 | 65.72 209 | 99.80 59 | 75.20 148 | 97.66 84 | 99.74 51 | 97.44 111 | 98.21 76 | 97.62 90 | 99.84 37 | 100.00 1 |
|
| FMVSNet5 | | | 93.53 120 | 96.09 127 | 90.56 121 | 86.74 167 | 92.84 212 | 92.64 156 | 77.50 175 | 99.41 94 | 88.97 84 | 98.02 80 | 97.81 88 | 98.00 97 | 94.85 164 | 95.43 142 | 99.50 158 | 94.25 214 |
|
| OPM-MVS | | | 93.50 122 | 93.00 161 | 94.07 82 | 95.82 71 | 98.26 143 | 98.49 59 | 91.62 47 | 94.69 183 | 81.93 126 | 92.82 130 | 76.18 177 | 96.82 118 | 96.12 141 | 94.57 150 | 99.74 100 | 98.39 196 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| CostFormer | | | 93.50 122 | 96.50 117 | 90.00 127 | 91.69 132 | 98.65 135 | 93.88 146 | 67.64 202 | 98.97 115 | 89.16 83 | 97.79 82 | 88.92 136 | 97.97 98 | 95.14 161 | 96.06 130 | 99.63 135 | 100.00 1 |
|
| IterMVS-LS | | | 93.50 122 | 96.22 124 | 90.33 124 | 90.93 138 | 95.50 197 | 94.83 133 | 80.54 152 | 98.92 119 | 79.11 131 | 90.64 141 | 93.70 115 | 96.79 119 | 96.93 119 | 97.85 80 | 99.78 75 | 99.99 59 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| PatchmatchNet |  | | 93.48 125 | 98.84 55 | 87.22 155 | 91.93 122 | 99.39 104 | 92.55 157 | 66.06 207 | 99.71 69 | 75.61 145 | 98.24 75 | 99.59 58 | 97.35 112 | 97.87 96 | 97.64 89 | 99.83 43 | 99.43 181 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| MS-PatchMatch | | | 93.46 126 | 95.91 130 | 90.61 119 | 95.48 72 | 99.31 107 | 95.62 117 | 77.23 177 | 99.42 91 | 81.88 127 | 88.92 151 | 96.06 104 | 93.80 156 | 96.45 133 | 93.11 175 | 99.65 129 | 98.10 201 |
|
| dmvs_re | | | 93.34 127 | 94.59 148 | 91.88 111 | 87.97 163 | 99.14 116 | 95.29 125 | 88.61 79 | 98.09 151 | 82.71 122 | 97.34 87 | 78.96 165 | 96.98 114 | 94.62 167 | 93.98 164 | 99.73 110 | 99.98 75 |
|
| tpm cat1 | | | 93.29 128 | 96.53 116 | 89.50 132 | 91.84 124 | 99.18 114 | 94.70 135 | 67.70 201 | 98.38 143 | 86.67 102 | 89.16 148 | 99.38 67 | 96.66 123 | 94.33 170 | 95.30 143 | 99.43 175 | 100.00 1 |
|
| Effi-MVS+-dtu | | | 93.13 129 | 97.13 99 | 88.47 145 | 88.86 158 | 99.19 113 | 96.79 99 | 79.08 165 | 99.64 75 | 70.01 170 | 97.51 85 | 89.38 132 | 96.53 125 | 97.60 102 | 96.55 118 | 99.57 143 | 100.00 1 |
|
| HyFIR lowres test | | | 93.13 129 | 94.48 150 | 91.56 112 | 96.12 70 | 99.68 80 | 93.52 149 | 79.98 156 | 97.24 160 | 81.73 128 | 72.66 210 | 95.74 106 | 98.29 85 | 98.27 72 | 97.79 82 | 99.70 118 | 100.00 1 |
|
| Vis-MVSNet |  | | 93.08 131 | 96.76 111 | 88.78 141 | 91.14 137 | 99.63 85 | 94.85 132 | 83.34 131 | 97.19 161 | 74.78 150 | 91.92 137 | 93.15 119 | 88.81 197 | 97.59 103 | 98.35 62 | 99.78 75 | 99.49 180 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| Effi-MVS+ | | | 93.06 132 | 95.94 129 | 89.70 129 | 90.82 139 | 99.45 98 | 95.71 113 | 78.94 166 | 98.72 128 | 74.71 151 | 97.92 81 | 80.73 164 | 98.35 82 | 97.72 100 | 97.05 112 | 99.70 118 | 100.00 1 |
|
| ADS-MVSNet | | | 92.91 133 | 97.97 81 | 87.01 157 | 92.07 117 | 99.27 111 | 92.70 154 | 65.39 212 | 99.85 51 | 75.40 146 | 94.93 111 | 98.26 84 | 96.86 117 | 96.09 142 | 97.52 92 | 99.65 129 | 99.84 153 |
|
| GeoE | | | 92.88 134 | 95.20 139 | 90.18 125 | 90.59 143 | 99.18 114 | 96.31 105 | 78.36 171 | 97.52 159 | 78.53 136 | 87.11 164 | 88.01 137 | 97.63 110 | 97.79 99 | 96.76 117 | 99.66 127 | 100.00 1 |
|
| TESTMET0.1,1 | | | 92.87 135 | 97.23 97 | 87.79 151 | 86.96 166 | 99.10 117 | 94.68 137 | 77.46 176 | 99.36 97 | 71.94 160 | 93.82 122 | 96.51 99 | 95.96 130 | 97.42 109 | 94.37 156 | 99.74 100 | 99.99 59 |
|
| FC-MVSNet-test | | | 92.78 136 | 96.19 126 | 88.80 140 | 88.00 162 | 97.54 154 | 93.60 148 | 82.36 140 | 98.16 147 | 79.71 130 | 91.55 139 | 95.41 107 | 89.65 189 | 96.09 142 | 95.23 144 | 99.49 159 | 99.31 184 |
|
| Fast-Effi-MVS+-dtu | | | 92.73 137 | 97.62 87 | 87.02 156 | 88.91 156 | 98.83 130 | 95.79 111 | 73.98 191 | 99.89 40 | 68.62 175 | 97.73 83 | 93.30 118 | 95.21 139 | 97.67 101 | 95.96 134 | 99.59 139 | 100.00 1 |
|
| IB-MVS | | 90.59 15 | 92.70 138 | 95.70 132 | 89.21 135 | 94.62 83 | 99.45 98 | 83.77 205 | 88.92 75 | 99.53 79 | 92.82 40 | 98.86 58 | 86.08 146 | 75.24 216 | 92.81 197 | 93.17 173 | 99.89 26 | 100.00 1 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| test-mter | | | 92.67 139 | 97.13 99 | 87.47 153 | 86.72 168 | 99.07 119 | 94.28 142 | 76.90 178 | 99.21 104 | 71.53 164 | 93.63 124 | 96.32 102 | 95.67 133 | 97.32 114 | 94.36 158 | 99.74 100 | 99.99 59 |
|
| RPMNet | | | 92.64 140 | 97.88 83 | 86.53 162 | 90.79 140 | 98.95 125 | 95.13 127 | 64.44 216 | 99.09 110 | 72.36 156 | 93.58 125 | 99.01 72 | 96.74 122 | 98.05 87 | 96.45 121 | 99.71 117 | 100.00 1 |
|
| FMVSNet1 | | | 92.55 141 | 93.66 156 | 91.26 113 | 87.91 164 | 96.12 179 | 94.75 134 | 81.69 147 | 97.67 157 | 85.63 112 | 80.56 186 | 87.88 139 | 98.15 90 | 96.50 127 | 97.21 101 | 99.41 180 | 99.71 168 |
|
| tpmrst | | | 92.52 142 | 97.45 93 | 86.77 160 | 92.15 116 | 99.36 106 | 92.53 158 | 65.95 208 | 99.53 79 | 72.50 154 | 92.22 133 | 99.83 47 | 97.81 104 | 95.18 160 | 96.05 131 | 99.69 123 | 100.00 1 |
|
| testgi | | | 92.47 143 | 95.68 133 | 88.73 142 | 90.68 141 | 98.35 139 | 91.67 165 | 79.50 161 | 98.96 116 | 77.12 141 | 95.17 106 | 85.84 147 | 93.95 155 | 95.75 150 | 96.47 120 | 99.45 170 | 99.21 187 |
|
| TAMVS | | | 92.43 144 | 94.21 154 | 90.35 123 | 88.68 159 | 98.85 129 | 94.15 144 | 81.53 149 | 95.58 173 | 83.61 120 | 87.05 165 | 86.45 143 | 94.71 144 | 96.27 137 | 95.91 135 | 99.42 178 | 99.38 183 |
|
| CR-MVSNet | | | 92.32 145 | 97.97 81 | 85.74 171 | 90.63 142 | 98.95 125 | 95.46 121 | 65.50 210 | 99.09 110 | 67.51 179 | 94.20 116 | 98.18 87 | 95.59 136 | 98.16 78 | 97.20 104 | 99.74 100 | 100.00 1 |
|
| CVMVSNet | | | 92.13 146 | 95.40 137 | 88.32 148 | 91.29 136 | 97.29 159 | 91.85 162 | 86.42 100 | 96.71 165 | 71.84 162 | 89.56 146 | 91.18 124 | 88.98 196 | 96.17 140 | 97.76 84 | 99.51 156 | 99.14 189 |
|
| Fast-Effi-MVS+ | | | 92.11 147 | 94.33 152 | 89.52 131 | 89.06 155 | 99.00 121 | 95.13 127 | 76.72 180 | 98.59 134 | 78.21 138 | 89.99 144 | 77.35 169 | 98.34 83 | 97.97 93 | 97.44 95 | 99.67 126 | 99.96 108 |
|
| ACMH+ | | 92.61 13 | 91.80 148 | 93.03 159 | 90.37 122 | 93.03 97 | 98.17 144 | 94.00 145 | 84.13 125 | 98.12 149 | 77.39 140 | 91.95 134 | 74.62 180 | 94.36 151 | 94.62 167 | 93.82 165 | 99.32 189 | 99.87 147 |
|
| IterMVS-SCA-FT | | | 91.75 149 | 96.87 109 | 85.78 169 | 90.34 145 | 95.93 186 | 95.06 129 | 73.85 192 | 98.91 120 | 61.01 199 | 89.21 147 | 98.87 73 | 94.66 147 | 98.09 85 | 97.12 108 | 99.76 87 | 99.99 59 |
|
| IterMVS | | | 91.65 150 | 96.62 112 | 85.85 168 | 90.27 148 | 95.80 188 | 95.32 124 | 74.15 188 | 98.91 120 | 60.95 200 | 88.79 153 | 97.76 89 | 94.69 146 | 98.04 89 | 97.07 110 | 99.73 110 | 100.00 1 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| ACMH | | 92.34 14 | 91.59 151 | 93.02 160 | 89.92 128 | 93.97 89 | 97.98 149 | 90.10 180 | 84.70 112 | 98.46 139 | 76.80 142 | 93.38 126 | 71.94 191 | 94.39 149 | 95.34 156 | 94.04 161 | 99.54 148 | 100.00 1 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| pmmvs4 | | | 91.41 152 | 93.05 158 | 89.49 133 | 85.85 176 | 96.52 171 | 91.70 164 | 82.49 138 | 98.14 148 | 83.17 121 | 87.57 160 | 81.76 162 | 94.39 149 | 95.47 153 | 92.62 181 | 99.33 187 | 99.29 185 |
|
| PatchT | | | 91.06 153 | 97.66 86 | 83.36 193 | 90.32 146 | 98.96 124 | 82.30 209 | 64.72 215 | 98.45 140 | 67.51 179 | 93.28 127 | 97.60 91 | 95.59 136 | 98.16 78 | 97.20 104 | 99.70 118 | 100.00 1 |
|
| MIMVSNet | | | 91.01 154 | 96.22 124 | 84.93 179 | 85.24 180 | 98.09 146 | 90.40 175 | 64.96 214 | 97.55 158 | 72.65 152 | 96.23 97 | 90.81 127 | 96.79 119 | 96.69 123 | 97.06 111 | 99.52 152 | 97.09 207 |
|
| UniMVSNet_NR-MVSNet | | | 90.50 155 | 92.31 164 | 88.38 146 | 85.04 186 | 96.34 175 | 90.94 167 | 85.32 104 | 95.87 172 | 75.69 143 | 87.68 159 | 78.49 166 | 93.78 157 | 93.21 192 | 94.60 149 | 99.53 151 | 99.97 88 |
|
| UniMVSNet (Re) | | | 90.41 156 | 91.96 166 | 88.59 144 | 85.71 177 | 96.73 167 | 90.82 169 | 84.11 126 | 95.23 179 | 78.54 135 | 88.91 152 | 76.41 175 | 92.84 164 | 93.40 190 | 93.05 176 | 99.55 147 | 100.00 1 |
|
| GA-MVS | | | 90.38 157 | 94.59 148 | 85.46 175 | 88.30 161 | 98.44 137 | 92.18 159 | 83.30 132 | 97.89 156 | 58.05 208 | 92.86 129 | 84.25 156 | 91.27 180 | 96.65 124 | 92.61 182 | 99.66 127 | 99.43 181 |
|
| USDC | | | 90.36 158 | 91.68 167 | 88.82 139 | 92.58 106 | 98.02 147 | 96.27 106 | 79.83 157 | 98.37 145 | 70.61 169 | 89.05 149 | 67.50 208 | 94.17 152 | 95.77 149 | 94.43 154 | 99.46 167 | 98.62 194 |
|
| thisisatest0515 | | | 90.28 159 | 94.32 153 | 85.57 174 | 85.23 181 | 97.23 160 | 85.44 201 | 83.09 134 | 96.80 164 | 72.41 155 | 89.82 145 | 90.87 126 | 87.93 202 | 95.27 159 | 90.39 204 | 99.33 187 | 99.88 142 |
|
| TinyColmap | | | 89.94 160 | 90.88 173 | 88.84 138 | 92.43 109 | 97.91 150 | 95.59 119 | 80.10 155 | 98.12 149 | 71.33 166 | 84.56 169 | 67.46 209 | 94.15 153 | 95.57 151 | 94.27 160 | 99.43 175 | 98.26 198 |
|
| pm-mvs1 | | | 89.68 161 | 92.00 165 | 86.96 158 | 86.23 172 | 96.62 169 | 90.36 176 | 83.05 135 | 93.97 191 | 72.15 159 | 81.77 181 | 82.10 160 | 90.69 186 | 95.38 155 | 94.50 152 | 99.29 193 | 99.65 170 |
|
| tpm | | | 89.60 162 | 94.93 144 | 83.39 191 | 89.94 149 | 97.11 162 | 90.09 181 | 65.28 213 | 98.67 130 | 60.03 204 | 96.79 91 | 84.38 155 | 95.66 135 | 91.90 201 | 95.65 139 | 99.32 189 | 99.98 75 |
|
| NR-MVSNet | | | 89.52 163 | 90.71 174 | 88.14 150 | 86.19 173 | 96.20 177 | 92.07 160 | 84.58 113 | 95.54 174 | 75.27 147 | 87.52 161 | 67.96 206 | 91.24 181 | 94.33 170 | 93.45 169 | 99.49 159 | 99.97 88 |
|
| DU-MVS | | | 89.49 164 | 90.60 175 | 88.19 149 | 84.71 190 | 96.20 177 | 90.94 167 | 84.58 113 | 95.54 174 | 75.69 143 | 87.52 161 | 68.74 205 | 93.78 157 | 91.10 205 | 95.13 146 | 99.47 165 | 99.97 88 |
|
| Baseline_NR-MVSNet | | | 89.13 165 | 89.53 187 | 88.66 143 | 84.71 190 | 94.43 205 | 91.79 163 | 84.49 117 | 95.54 174 | 78.28 137 | 78.52 198 | 72.46 190 | 93.29 161 | 91.10 205 | 94.82 148 | 99.42 178 | 99.86 150 |
|
| tfpnnormal | | | 89.09 166 | 89.71 181 | 88.38 146 | 87.37 165 | 96.78 166 | 91.46 166 | 85.20 107 | 90.33 212 | 72.35 157 | 83.45 174 | 69.30 203 | 94.45 148 | 95.29 157 | 92.86 178 | 99.44 174 | 99.93 122 |
|
| TranMVSNet+NR-MVSNet | | | 88.88 167 | 89.90 180 | 87.69 152 | 84.06 202 | 95.68 189 | 91.88 161 | 85.23 106 | 95.16 180 | 72.54 153 | 83.06 177 | 70.14 200 | 92.93 163 | 90.81 208 | 94.53 151 | 99.48 163 | 99.89 137 |
|
| WR-MVS_H | | | 88.47 168 | 90.55 176 | 86.04 164 | 85.13 183 | 96.07 181 | 89.86 187 | 79.80 158 | 94.37 188 | 72.32 158 | 83.12 176 | 74.44 183 | 89.60 190 | 93.52 187 | 92.40 183 | 99.51 156 | 99.96 108 |
|
| SixPastTwentyTwo | | | 88.35 169 | 91.51 169 | 84.66 181 | 85.39 179 | 96.96 164 | 86.57 197 | 79.62 160 | 96.57 166 | 63.73 193 | 87.86 157 | 75.18 178 | 93.43 160 | 94.03 174 | 90.37 205 | 99.24 196 | 99.58 173 |
|
| TransMVSNet (Re) | | | 88.33 170 | 89.55 186 | 86.91 159 | 86.65 169 | 95.56 194 | 90.48 173 | 84.44 118 | 92.02 211 | 71.07 168 | 80.13 188 | 72.48 189 | 89.41 191 | 95.05 163 | 94.44 153 | 99.39 182 | 97.14 206 |
|
| MVS-HIRNet | | | 88.27 171 | 94.05 155 | 81.51 199 | 88.90 157 | 98.93 128 | 83.38 207 | 60.52 223 | 98.06 152 | 63.78 192 | 80.67 185 | 90.36 130 | 92.94 162 | 97.29 115 | 96.41 122 | 99.56 145 | 96.66 209 |
|
| WR-MVS | | | 88.23 172 | 90.15 178 | 86.00 166 | 84.39 197 | 95.64 190 | 89.96 184 | 81.80 144 | 94.46 186 | 71.60 163 | 82.10 179 | 74.36 184 | 88.76 198 | 92.48 198 | 92.20 185 | 99.46 167 | 99.83 155 |
|
| CP-MVSNet | | | 88.09 173 | 89.57 184 | 86.36 163 | 84.63 193 | 95.46 199 | 89.48 189 | 80.53 153 | 93.42 198 | 71.26 167 | 81.25 183 | 69.90 201 | 92.78 165 | 93.30 191 | 93.69 167 | 99.47 165 | 99.96 108 |
|
| pmnet_mix02 | | | 88.07 174 | 92.32 163 | 83.10 194 | 86.14 174 | 96.23 176 | 81.90 212 | 83.05 135 | 98.04 153 | 57.59 210 | 84.93 168 | 82.02 161 | 90.87 185 | 93.54 186 | 91.53 196 | 99.06 204 | 99.97 88 |
|
| UniMVSNet_ETH3D | | | 88.05 175 | 87.01 205 | 89.27 134 | 88.53 160 | 97.49 155 | 90.35 177 | 83.48 129 | 94.57 184 | 77.87 139 | 70.08 214 | 61.75 220 | 96.22 127 | 90.17 209 | 95.21 145 | 99.16 201 | 99.82 156 |
|
| anonymousdsp | | | 87.98 176 | 92.38 162 | 82.85 195 | 83.68 206 | 96.79 165 | 90.78 170 | 74.06 190 | 95.29 178 | 57.91 209 | 83.33 175 | 83.12 157 | 91.15 183 | 95.96 147 | 92.37 184 | 99.52 152 | 99.76 165 |
|
| LTVRE_ROB | | 88.65 16 | 87.87 177 | 91.11 172 | 84.10 188 | 86.64 170 | 97.47 156 | 94.40 140 | 78.41 170 | 96.13 170 | 52.02 217 | 87.95 156 | 65.92 214 | 93.59 159 | 95.29 157 | 95.09 147 | 99.52 152 | 99.95 115 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| V42 | | | 87.84 178 | 89.42 189 | 85.99 167 | 85.16 182 | 96.01 183 | 90.52 172 | 81.78 146 | 94.43 187 | 67.59 177 | 81.32 182 | 71.87 192 | 91.48 178 | 91.25 204 | 91.16 200 | 99.43 175 | 99.92 126 |
|
| TDRefinement | | | 87.79 179 | 88.76 196 | 86.66 161 | 93.54 91 | 98.02 147 | 95.76 112 | 85.18 108 | 96.57 166 | 67.90 176 | 80.51 187 | 66.51 213 | 78.37 213 | 93.20 193 | 89.73 206 | 99.22 197 | 96.75 208 |
|
| MDTV_nov1_ep13_2view | | | 87.75 180 | 93.32 157 | 81.26 201 | 83.74 205 | 96.64 168 | 85.66 200 | 66.20 206 | 98.36 146 | 61.61 197 | 84.34 171 | 87.95 138 | 91.12 184 | 94.01 175 | 92.66 180 | 99.22 197 | 99.27 186 |
|
| v8 | | | 87.54 181 | 89.33 190 | 85.45 176 | 85.41 178 | 95.50 197 | 90.32 178 | 78.94 166 | 94.35 189 | 66.93 182 | 81.90 180 | 70.99 197 | 91.62 176 | 91.49 203 | 91.22 199 | 99.48 163 | 99.87 147 |
|
| v1144 | | | 87.49 182 | 89.64 182 | 84.97 178 | 84.73 189 | 95.84 187 | 90.17 179 | 79.30 162 | 93.96 192 | 64.65 190 | 78.83 195 | 73.38 188 | 91.51 177 | 93.77 181 | 91.77 191 | 99.45 170 | 99.93 122 |
|
| v2v482 | | | 87.46 183 | 88.90 194 | 85.78 169 | 84.58 194 | 95.95 185 | 89.90 186 | 82.43 139 | 94.19 190 | 65.65 186 | 79.80 190 | 69.12 204 | 92.67 166 | 91.88 202 | 91.46 197 | 99.45 170 | 99.93 122 |
|
| v10 | | | 87.40 184 | 89.62 183 | 84.80 180 | 84.93 187 | 95.07 203 | 90.44 174 | 75.63 184 | 94.51 185 | 66.52 184 | 78.87 194 | 73.47 187 | 91.86 174 | 93.69 184 | 91.87 190 | 99.45 170 | 99.86 150 |
|
| pmmvs5 | | | 87.33 185 | 90.01 179 | 84.20 186 | 84.31 199 | 96.04 182 | 87.63 195 | 76.59 181 | 93.17 203 | 65.35 189 | 84.30 172 | 71.68 193 | 91.91 173 | 95.41 154 | 91.37 198 | 99.39 182 | 98.13 199 |
|
| N_pmnet | | | 87.31 186 | 91.51 169 | 82.41 198 | 85.13 183 | 95.57 193 | 80.59 214 | 81.79 145 | 96.20 168 | 58.52 207 | 78.62 196 | 85.66 148 | 89.36 192 | 94.64 166 | 92.14 186 | 99.08 203 | 97.72 205 |
|
| PS-CasMVS | | | 87.24 187 | 88.52 199 | 85.73 172 | 84.58 194 | 95.35 201 | 89.03 192 | 80.17 154 | 93.11 204 | 68.86 174 | 77.71 200 | 66.89 210 | 92.30 168 | 93.13 194 | 93.50 168 | 99.46 167 | 99.96 108 |
|
| EU-MVSNet | | | 87.20 188 | 90.47 177 | 83.38 192 | 85.11 185 | 93.85 210 | 86.10 199 | 79.76 159 | 93.30 202 | 65.39 188 | 84.41 170 | 78.43 167 | 85.04 209 | 92.20 200 | 93.03 177 | 98.86 206 | 98.05 202 |
|
| PEN-MVS | | | 87.20 188 | 88.22 200 | 86.01 165 | 84.01 204 | 94.93 204 | 90.00 183 | 81.52 151 | 93.46 197 | 69.29 172 | 79.69 191 | 65.51 215 | 91.72 175 | 91.01 207 | 93.12 174 | 99.49 159 | 99.84 153 |
|
| EG-PatchMatch MVS | | | 86.96 190 | 89.56 185 | 83.93 189 | 86.29 171 | 97.61 153 | 90.75 171 | 73.31 195 | 95.43 177 | 66.08 185 | 75.88 207 | 71.31 194 | 87.55 204 | 94.79 165 | 92.74 179 | 99.61 138 | 99.13 190 |
|
| v1192 | | | 86.93 191 | 89.01 192 | 84.50 182 | 84.46 196 | 95.51 196 | 89.93 185 | 78.65 169 | 93.75 193 | 62.29 195 | 77.19 202 | 70.88 198 | 92.28 169 | 93.84 178 | 91.96 188 | 99.38 184 | 99.90 134 |
|
| v1921920 | | | 86.81 192 | 88.93 193 | 84.33 185 | 84.23 200 | 95.41 200 | 90.09 181 | 78.10 172 | 93.74 194 | 62.17 196 | 76.98 204 | 71.14 195 | 92.05 171 | 93.69 184 | 91.69 194 | 99.32 189 | 99.88 142 |
|
| v144192 | | | 86.80 193 | 88.90 194 | 84.35 183 | 84.33 198 | 95.56 194 | 89.34 190 | 77.74 174 | 93.60 195 | 64.03 191 | 77.82 199 | 70.76 199 | 91.28 179 | 92.91 196 | 91.74 193 | 99.37 185 | 99.90 134 |
|
| DTE-MVSNet | | | 86.70 194 | 87.66 204 | 85.58 173 | 83.30 207 | 94.29 206 | 89.74 188 | 81.53 149 | 92.77 207 | 68.93 173 | 80.13 188 | 64.00 218 | 90.62 187 | 89.45 210 | 93.34 170 | 99.32 189 | 99.67 169 |
|
| gg-mvs-nofinetune | | | 86.69 195 | 91.30 171 | 81.30 200 | 90.42 144 | 99.64 83 | 98.50 58 | 61.68 221 | 79.23 221 | 40.35 224 | 66.58 216 | 97.14 94 | 96.92 115 | 98.64 46 | 97.94 75 | 99.91 22 | 99.97 88 |
|
| v148 | | | 86.63 196 | 87.79 202 | 85.28 177 | 84.65 192 | 95.97 184 | 86.46 198 | 82.84 137 | 92.91 206 | 71.52 165 | 78.99 193 | 66.74 212 | 86.83 206 | 89.28 211 | 90.69 202 | 99.41 180 | 99.94 120 |
|
| v1240 | | | 86.24 197 | 88.56 198 | 83.54 190 | 84.05 203 | 95.21 202 | 89.27 191 | 76.76 179 | 93.42 198 | 60.68 203 | 75.99 206 | 69.80 202 | 91.21 182 | 93.83 180 | 91.76 192 | 99.29 193 | 99.91 133 |
|
| pmmvs6 | | | 85.75 198 | 86.97 206 | 84.34 184 | 84.88 188 | 95.59 192 | 87.41 196 | 79.19 164 | 87.81 217 | 67.56 178 | 63.05 219 | 77.76 168 | 89.15 193 | 93.45 189 | 91.90 189 | 97.83 212 | 99.21 187 |
|
| v7n | | | 85.39 199 | 87.70 203 | 82.70 196 | 82.77 209 | 95.64 190 | 88.27 194 | 74.83 186 | 92.30 209 | 62.58 194 | 76.37 205 | 64.80 217 | 88.38 200 | 94.29 172 | 90.61 203 | 99.34 186 | 99.87 147 |
|
| gm-plane-assit | | | 84.93 200 | 91.61 168 | 77.14 209 | 84.14 201 | 91.29 216 | 66.18 224 | 69.70 198 | 85.22 220 | 47.95 221 | 78.58 197 | 89.24 134 | 94.90 142 | 98.82 40 | 98.12 71 | 99.99 5 | 100.00 1 |
|
| CMPMVS |  | 65.66 17 | 84.62 201 | 85.02 208 | 84.15 187 | 95.40 73 | 97.79 151 | 88.35 193 | 79.22 163 | 89.66 215 | 60.71 202 | 72.20 211 | 73.94 185 | 87.32 205 | 86.73 213 | 84.55 215 | 93.90 217 | 90.31 218 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| test_method | | | 84.44 202 | 89.04 191 | 79.08 204 | 81.15 212 | 92.82 213 | 82.06 211 | 61.92 219 | 96.17 169 | 59.38 205 | 74.47 209 | 67.52 207 | 91.96 172 | 96.92 121 | 95.53 141 | 97.98 211 | 99.85 152 |
|
| Anonymous20231206 | | | 84.28 203 | 89.53 187 | 78.17 206 | 82.31 211 | 94.16 208 | 82.57 208 | 76.51 182 | 93.38 201 | 52.98 215 | 79.47 192 | 73.74 186 | 75.45 215 | 95.07 162 | 94.41 155 | 99.18 200 | 96.46 211 |
|
| new_pmnet | | | 84.12 204 | 87.89 201 | 79.72 203 | 80.43 214 | 94.14 209 | 80.26 215 | 74.14 189 | 96.01 171 | 56.30 214 | 74.94 208 | 76.45 174 | 88.59 199 | 93.11 195 | 89.31 207 | 98.59 209 | 91.27 217 |
|
| test20.03 | | | 83.86 205 | 88.73 197 | 78.16 207 | 82.60 210 | 93.00 211 | 81.61 213 | 74.68 187 | 92.36 208 | 57.50 211 | 83.01 178 | 74.48 182 | 73.30 217 | 92.40 199 | 91.14 201 | 99.29 193 | 94.75 213 |
|
| pmmvs-eth3d | | | 82.92 206 | 83.31 211 | 82.47 197 | 76.97 217 | 91.76 215 | 83.79 204 | 76.10 183 | 90.33 212 | 69.95 171 | 71.04 213 | 48.09 223 | 89.02 195 | 93.85 177 | 89.14 208 | 99.02 205 | 98.96 192 |
|
| PM-MVS | | | 82.79 207 | 84.51 209 | 80.77 202 | 77.22 216 | 92.13 214 | 83.61 206 | 73.31 195 | 93.50 196 | 61.06 198 | 77.15 203 | 46.52 226 | 90.55 188 | 94.14 173 | 89.05 210 | 98.85 207 | 99.12 191 |
|
| pmmvs3 | | | 80.91 208 | 85.62 207 | 75.42 211 | 75.01 219 | 89.09 219 | 75.31 218 | 68.70 200 | 86.99 218 | 46.74 223 | 81.18 184 | 62.91 219 | 87.95 201 | 93.84 178 | 89.06 209 | 98.80 208 | 96.23 212 |
|
| MIMVSNet1 | | | 80.64 209 | 83.97 210 | 76.76 210 | 68.91 222 | 91.15 218 | 78.32 217 | 75.47 185 | 89.58 216 | 56.64 213 | 65.10 217 | 65.17 216 | 82.14 210 | 93.51 188 | 91.64 195 | 99.10 202 | 91.66 216 |
|
| MDA-MVSNet-bldmvs | | | 80.30 210 | 82.83 212 | 77.34 208 | 69.16 221 | 94.29 206 | 72.16 219 | 81.97 143 | 90.14 214 | 57.32 212 | 94.01 121 | 47.97 224 | 86.81 207 | 68.74 221 | 86.82 212 | 96.63 213 | 97.86 203 |
|
| new-patchmatchnet | | | 78.17 211 | 80.82 214 | 75.07 212 | 76.93 218 | 91.20 217 | 71.90 220 | 73.32 194 | 86.59 219 | 48.91 218 | 67.11 215 | 47.85 225 | 81.19 211 | 88.18 212 | 87.02 211 | 98.19 210 | 97.79 204 |
|
| FPMVS | | | 73.80 212 | 74.62 215 | 72.84 213 | 83.09 208 | 84.44 221 | 83.89 203 | 73.64 193 | 92.20 210 | 48.50 219 | 72.19 212 | 59.51 221 | 63.16 219 | 69.13 220 | 66.26 224 | 84.74 222 | 78.59 225 |
|
| WB-MVS | | | 71.64 213 | 82.10 213 | 59.45 217 | 79.66 215 | 78.44 224 | 55.66 228 | 78.80 168 | 93.01 205 | 19.20 230 | 86.36 166 | 71.05 196 | 39.18 226 | 85.26 215 | 81.08 216 | 84.19 223 | 79.49 224 |
|
| Gipuma |  | | 71.02 214 | 72.60 218 | 69.19 214 | 71.31 220 | 75.11 225 | 66.36 223 | 61.65 222 | 94.93 181 | 47.29 222 | 38.74 224 | 38.52 227 | 75.52 214 | 86.09 214 | 85.92 214 | 93.01 218 | 88.87 220 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| GG-mvs-BLEND | | | 69.85 215 | 99.39 40 | 35.39 223 | 3.67 231 | 99.94 20 | 99.10 43 | 1.69 227 | 99.85 51 | 3.19 232 | 98.13 79 | 99.46 63 | 4.92 227 | 99.23 32 | 99.14 30 | 99.80 61 | 100.00 1 |
|
| PMMVS2 | | | 65.18 216 | 68.25 219 | 61.59 215 | 61.37 225 | 79.72 223 | 59.18 227 | 61.80 220 | 64.72 224 | 37.33 225 | 53.82 221 | 35.59 228 | 54.46 224 | 73.94 219 | 80.52 217 | 95.40 216 | 89.43 219 |
|
| PMVS |  | 60.14 18 | 62.67 217 | 64.05 220 | 61.06 216 | 68.32 223 | 53.27 231 | 52.23 229 | 67.63 203 | 75.07 223 | 48.30 220 | 58.27 220 | 57.43 222 | 49.99 225 | 67.20 222 | 62.42 225 | 79.87 226 | 74.68 226 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| testmvs | | | 61.76 218 | 72.90 217 | 48.76 220 | 21.21 229 | 68.61 226 | 66.11 225 | 37.38 225 | 94.83 182 | 33.06 226 | 64.31 218 | 29.72 229 | 86.08 208 | 74.44 218 | 78.71 218 | 48.74 228 | 99.65 170 |
|
| E-PMN | | | 55.33 219 | 55.79 222 | 54.81 219 | 59.81 227 | 57.23 229 | 38.83 230 | 63.59 217 | 64.06 226 | 24.66 228 | 35.33 226 | 26.40 231 | 58.69 221 | 55.41 224 | 70.54 221 | 83.26 224 | 81.56 223 |
|
| EMVS | | | 55.14 220 | 55.29 223 | 54.97 218 | 60.87 226 | 57.52 228 | 38.58 231 | 63.57 218 | 64.54 225 | 23.36 229 | 36.96 225 | 27.99 230 | 60.69 220 | 51.17 225 | 66.61 223 | 82.73 225 | 82.25 222 |
|
| MVE |  | 58.81 19 | 52.07 221 | 55.15 224 | 48.48 221 | 42.45 228 | 62.35 227 | 36.41 232 | 54.70 224 | 49.88 227 | 27.65 227 | 29.98 227 | 18.08 232 | 54.87 223 | 65.93 223 | 77.26 219 | 74.79 227 | 82.59 221 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| test123 | | | 48.14 222 | 58.11 221 | 36.51 222 | 8.71 230 | 56.81 230 | 59.55 226 | 24.08 226 | 77.50 222 | 14.41 231 | 49.20 222 | 11.94 234 | 80.98 212 | 41.62 226 | 69.81 222 | 31.32 229 | 99.90 134 |
|
| uanet_test | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 232 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 235 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| sosnet-low-res | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 232 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 235 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| sosnet | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 232 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 235 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| TPM-MVS | | | | | | 99.67 4 | 99.96 7 | 99.82 5 | | | 94.63 32 | 99.65 16 | 100.00 1 | 99.90 5 | | | 99.99 5 | 99.80 160 |
| Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025 |
| RE-MVS-def | | | | | | | | | | | 52.74 216 | | | | | | | |
|
| 9.14 | | | | | | | | | | | | | 100.00 1 | | | | | |
|
| SR-MVS | | | | | | 99.61 13 | | | 96.80 18 | | | | 100.00 1 | | | | | |
|
| Anonymous202405211 | | | | 95.78 131 | | 93.26 92 | 99.52 89 | 96.70 101 | 88.55 80 | 97.93 155 | | 88.99 150 | 90.68 128 | 98.99 61 | 96.46 131 | 97.02 113 | 99.64 133 | 99.89 137 |
|
| our_test_3 | | | | | | 85.89 175 | 96.09 180 | 82.15 210 | | | | | | | | | | |
|
| ambc | | | | 74.33 216 | | 66.84 224 | 84.26 222 | 84.17 202 | | 93.39 200 | 58.99 206 | 45.93 223 | 18.06 233 | 70.61 218 | 93.94 176 | 86.62 213 | 92.61 220 | 98.13 199 |
|
| MTAPA | | | | | | | | | | | 96.61 16 | | 100.00 1 | | | | | |
|
| MTMP | | | | | | | | | | | 97.42 11 | | 100.00 1 | | | | | |
|
| Patchmatch-RL test | | | | | | | | 68.01 222 | | | | | | | | | | |
|
| tmp_tt | | | | | 78.81 205 | 98.80 45 | 85.73 220 | 70.08 221 | 77.87 173 | 98.68 129 | 83.71 119 | 99.53 29 | 74.55 181 | 54.97 222 | 78.28 217 | 72.43 220 | 87.45 221 | |
|
| XVS | | | | | | 95.09 76 | 99.94 20 | 97.49 74 | | | 88.58 87 | | 99.98 34 | | | | 99.78 75 | |
|
| X-MVStestdata | | | | | | 95.09 76 | 99.94 20 | 97.49 74 | | | 88.58 87 | | 99.98 34 | | | | 99.78 75 | |
|
| mPP-MVS | | | | | | 99.23 38 | | | | | | | 99.87 45 | | | | | |
|
| NP-MVS | | | | | | | | | | 99.79 61 | | | | | | | | |
|
| Patchmtry | | | | | | | 99.00 121 | 95.46 121 | 65.50 210 | | 67.51 179 | | | | | | | |
|
| DeepMVS_CX |  | | | | | | 97.31 158 | 79.48 216 | 89.65 65 | 98.66 131 | 60.89 201 | 94.40 115 | 66.89 210 | 87.65 203 | 81.69 216 | | 92.76 219 | 94.24 215 |
|