This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS98.87 199.20 298.48 199.32 1299.85 299.55 896.20 699.48 396.78 398.51 1599.99 199.36 298.98 897.59 2999.67 2099.99 3
DVP-MVS++98.75 299.11 798.33 399.41 599.85 299.61 496.22 599.32 995.80 598.27 1899.97 499.22 598.95 997.48 3399.71 1899.98 5
MSP-MVS98.75 299.27 198.15 899.21 1899.82 799.58 696.09 1399.32 995.16 998.79 699.55 999.05 799.54 197.88 2199.84 399.99 3
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS98.73 499.17 598.22 599.47 499.85 299.57 796.23 399.30 1194.90 1198.65 1098.93 2099.36 299.46 398.21 1199.81 699.80 33
DPE-MVScopyleft98.69 599.14 698.16 799.37 899.82 799.66 396.26 199.18 1795.02 1098.62 1299.98 398.88 1298.90 1297.51 3299.75 1199.97 8
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft98.65 698.87 1398.38 299.30 1499.85 299.14 2396.23 399.51 297.16 196.01 3499.99 198.90 1198.89 1397.88 2199.56 5399.98 5
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APDe-MVScopyleft98.60 798.97 1098.18 699.38 799.78 1299.35 1596.14 999.24 1495.66 798.19 2099.01 1798.66 1898.77 1597.80 2499.86 299.97 8
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SF-MVS98.55 898.75 1598.32 499.48 299.68 2299.51 1096.24 299.08 2195.94 498.64 1199.30 1399.02 997.94 2996.86 5399.75 1199.76 36
SMA-MVScopyleft98.47 999.06 897.77 1199.48 299.78 1299.37 1296.14 999.29 1293.03 1997.59 2999.97 499.03 898.94 1098.30 999.60 3399.58 64
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
NCCC98.41 1099.18 397.52 1599.36 999.84 699.55 896.08 1599.33 891.77 2498.79 699.46 1198.59 2099.15 798.07 1899.73 1499.64 53
SD-MVS98.33 1199.01 997.54 1497.17 5099.77 1599.14 2396.09 1399.34 794.06 1597.91 2599.89 699.18 697.99 2898.21 1199.63 2799.95 13
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVScopyleft98.28 1298.69 1697.80 1099.31 1399.62 2899.31 1896.15 899.19 1693.60 1697.28 3098.35 2798.72 1798.27 2198.22 1099.73 1499.89 25
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MCST-MVS98.20 1399.18 397.06 2199.27 1699.87 199.37 1296.11 1199.37 589.29 3298.76 899.50 1098.37 2599.23 597.64 2799.95 199.87 29
HPM-MVS++copyleft98.16 1498.87 1397.32 1799.39 699.70 2099.18 2196.10 1299.09 2091.14 2698.02 2399.89 698.44 2398.75 1697.03 4799.67 2099.63 56
MSLP-MVS++98.12 1598.23 2897.99 999.28 1599.72 1799.59 595.27 2898.61 3494.79 1296.11 3397.79 3699.27 496.62 6798.96 599.77 999.80 33
HFP-MVS98.02 1698.55 2097.40 1699.11 2199.69 2199.41 1195.41 2698.79 3091.86 2398.61 1398.16 2999.02 997.87 3397.40 3599.60 3399.35 85
TSAR-MVS + MP.97.98 1798.62 1997.23 1997.08 5199.55 3499.17 2295.69 2199.40 493.04 1896.68 3298.96 1998.58 2198.82 1496.95 5099.81 699.96 10
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP97.86 1898.91 1196.64 2598.89 2799.79 999.34 1695.20 3098.48 3689.91 3098.58 1498.69 2396.84 4998.92 1198.16 1599.66 2299.74 39
Skip Steuart: Steuart Systems R&D Blog.
CP-MVS97.81 1998.26 2797.28 1899.00 2499.65 2499.10 2595.32 2798.38 4292.21 2298.33 1797.74 3798.50 2297.66 4296.55 6199.57 4699.48 73
ACMMPR97.78 2098.28 2597.20 2099.03 2399.68 2299.37 1295.24 2998.86 2991.16 2597.86 2797.26 3998.79 1597.64 4497.40 3599.60 3399.25 91
DeepC-MVS_fast95.01 197.67 2198.22 2997.02 2299.00 2499.79 999.10 2595.82 1899.05 2389.53 3193.54 4996.77 4298.83 1399.34 499.44 299.82 499.63 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AdaColmapbinary97.54 2297.35 3897.77 1199.17 1999.55 3498.57 3195.76 2099.04 2494.66 1397.94 2494.39 5698.82 1496.21 7794.78 8899.62 2999.52 69
ACMMP_NAP97.51 2398.27 2696.63 2699.34 1099.72 1799.25 1995.94 1798.11 4787.10 4796.98 3198.50 2598.61 1998.58 1896.83 5499.56 5399.14 99
MP-MVScopyleft97.46 2498.30 2496.48 2798.93 2699.43 4399.20 2095.42 2598.43 3887.60 4398.19 2098.01 3598.09 2798.05 2696.67 5899.64 2599.35 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
train_agg97.42 2598.88 1295.71 3298.46 3499.60 3199.05 2795.16 3199.10 1984.38 6698.47 1698.85 2197.61 3198.54 1997.66 2699.62 2999.93 19
CPTT-MVS97.32 2697.60 3796.99 2398.29 3799.31 5599.04 2894.67 3597.99 5393.12 1798.03 2298.26 2898.77 1696.08 8094.26 9698.07 18499.27 90
X-MVS97.20 2798.42 2395.77 3099.04 2299.64 2598.95 3095.10 3398.16 4583.97 7398.27 1898.08 3297.95 2897.89 3097.46 3499.58 4299.47 74
PHI-MVS97.09 2898.69 1695.22 3697.99 4299.59 3397.56 4492.16 3998.41 4087.11 4698.70 999.42 1296.95 4596.88 6098.16 1599.56 5399.70 45
DPM-MVS97.07 2997.99 3296.00 2997.25 4999.16 6599.67 295.99 1699.08 2185.97 5293.00 5498.44 2697.47 3399.22 699.62 199.66 2297.44 156
PGM-MVS97.03 3098.14 3195.73 3199.34 1099.61 3099.34 1689.99 4597.70 5687.67 4299.44 296.45 4598.44 2397.65 4397.09 4399.58 4299.06 107
PLCcopyleft94.37 297.03 3096.54 4497.60 1398.84 2898.64 7498.17 3694.99 3499.01 2596.80 293.21 5395.64 4797.36 3496.37 7294.79 8799.41 8998.12 141
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TSAR-MVS + ACMM96.90 3298.64 1894.88 3898.12 4099.47 3999.01 2995.43 2499.23 1581.98 9295.95 3599.16 1695.13 7098.61 1798.11 1799.58 4299.93 19
TSAR-MVS + GP.96.47 3398.45 2294.17 4392.12 8799.29 5697.76 4088.05 5599.36 690.26 2997.82 2899.21 1497.21 3796.78 6596.74 5699.63 2799.94 16
EPNet96.23 3497.89 3494.29 4197.62 4599.44 4297.14 5188.63 5198.16 4588.14 3899.46 194.15 5994.61 8097.20 5297.23 3999.57 4699.59 61
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNLPA96.14 3595.43 5496.98 2498.55 3199.41 4795.91 5795.15 3299.00 2695.71 684.21 10694.55 5497.25 3595.50 10296.23 6799.28 11199.09 106
MVS_111021_LR96.07 3697.94 3393.88 4697.86 4399.43 4395.70 6089.65 4898.73 3184.86 6299.38 394.08 6095.78 6897.81 3696.73 5799.43 8599.42 78
ACMMPcopyleft96.05 3796.70 4395.29 3598.01 4199.43 4397.60 4394.33 3797.62 5986.17 5198.92 492.81 6896.10 6195.67 9293.33 11699.55 5899.12 102
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
3Dnovator+90.72 795.99 3896.42 4695.50 3498.18 3999.33 5497.44 4687.73 6097.93 5492.36 2184.67 9997.33 3897.55 3297.32 4898.47 899.72 1799.88 26
DeepPCF-MVS94.02 395.92 3998.47 2192.95 5697.57 4699.79 991.45 12094.42 3699.76 186.48 5092.88 5598.12 3192.62 10199.49 299.32 395.15 20899.95 13
CDPH-MVS95.90 4097.77 3693.72 4998.28 3899.43 4398.40 3291.30 4398.34 4378.62 11094.80 4195.74 4696.11 6097.86 3498.67 799.59 3799.56 66
CSCG95.77 4195.35 5696.26 2899.13 2099.60 3198.14 3791.89 4296.57 7592.61 2089.65 6691.74 7696.96 4293.69 12696.58 6098.86 13899.63 56
OMC-MVS95.75 4295.84 5195.64 3398.52 3399.34 5397.15 5092.02 4198.94 2890.45 2888.31 7294.64 5296.35 5696.02 8395.99 7599.34 10097.65 152
MVS_111021_HR95.70 4398.16 3092.83 5797.57 4699.77 1594.78 7688.05 5598.61 3482.29 8798.85 594.66 5194.63 7897.80 3797.63 2899.64 2599.79 35
3Dnovator90.31 895.67 4496.16 4995.11 3798.59 3099.37 5297.50 4587.98 5798.02 5289.09 3385.36 9894.62 5397.66 2997.10 5698.90 699.82 499.73 41
CANet95.40 4596.27 4794.40 4096.25 5699.62 2898.37 3388.59 5298.09 4887.58 4484.57 10195.54 4995.87 6598.12 2498.03 2099.73 1499.90 24
QAPM95.17 4696.05 5094.14 4498.55 3199.49 3797.41 4787.88 5897.72 5584.21 7084.59 10095.60 4897.21 3797.10 5698.19 1499.57 4699.65 51
CS-MVS-test95.06 4796.98 4192.82 5995.83 5999.40 4893.23 9985.29 8499.27 1385.89 5493.86 4892.70 7097.19 3997.70 4096.18 6999.49 6899.76 36
CS-MVS94.82 4896.19 4893.22 5295.19 6499.24 5895.10 7185.07 8798.72 3287.33 4591.35 5789.98 8597.06 4198.01 2796.28 6599.60 3399.72 42
MVSTER94.75 4996.50 4592.70 6190.91 10594.51 14897.37 4883.37 9798.40 4189.04 3493.23 5297.04 4195.91 6497.73 3895.59 8499.61 3199.01 109
TAPA-MVS92.04 694.72 5095.13 5994.24 4297.72 4499.17 6397.61 4292.16 3997.66 5881.99 9187.84 7793.94 6296.50 5395.74 8994.27 9599.46 7997.31 160
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DeepC-MVS92.23 594.53 5194.26 7294.86 3996.73 5399.50 3697.85 3995.45 2396.22 8282.73 8280.68 11688.02 9096.92 4697.49 4798.20 1399.47 7399.69 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CHOSEN 280x42094.51 5297.78 3590.70 8595.54 6399.49 3794.14 8774.91 16298.43 3885.32 5994.78 4299.19 1594.95 7497.02 5896.18 6999.35 9699.36 84
ETV-MVS94.49 5397.23 4091.29 7890.43 11598.55 7793.41 9784.53 9099.16 1883.13 7894.72 4394.08 6096.61 5297.72 3996.60 5999.61 3199.81 32
MVS_030494.35 5495.66 5392.83 5794.82 6699.46 4198.19 3587.75 5997.32 6581.83 9583.50 10893.19 6794.71 7698.24 2398.07 1899.68 1999.83 31
EC-MVSNet94.33 5596.88 4291.36 7690.12 12297.70 9895.20 7080.27 12398.63 3385.97 5293.92 4793.85 6597.09 4097.54 4696.81 5599.49 6899.70 45
MAR-MVS94.18 5695.12 6093.09 5598.40 3699.17 6394.20 8681.92 10698.47 3786.52 4990.92 5984.21 11098.12 2695.88 8697.59 2999.40 9099.58 64
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PCF-MVS92.56 493.95 5793.82 7594.10 4596.07 5899.25 5796.82 5395.51 2292.00 13081.51 9682.97 11193.88 6495.63 6994.24 11494.71 9099.09 12199.70 45
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DELS-MVS93.82 5893.82 7593.81 4896.34 5599.47 3997.26 4988.53 5392.13 12787.80 4179.67 11988.01 9193.14 9398.28 2099.22 499.80 899.98 5
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
OpenMVScopyleft88.43 1193.49 5993.62 7893.34 5098.46 3499.39 4997.00 5287.66 6295.37 9181.21 9875.96 13691.58 7896.21 5996.37 7297.10 4299.52 6399.54 68
EIA-MVS93.32 6095.32 5790.99 8290.45 11498.53 8093.46 9684.68 8997.56 6281.38 9791.04 5887.37 9496.39 5597.27 4995.73 8099.59 3799.76 36
PVSNet_BlendedMVS93.30 6193.46 8293.10 5395.60 6199.38 5093.59 9488.70 4998.09 4888.10 3986.96 8575.02 13693.08 9497.89 3096.90 5199.56 53100.00 1
PVSNet_Blended93.30 6193.46 8293.10 5395.60 6199.38 5093.59 9488.70 4998.09 4888.10 3986.96 8575.02 13693.08 9497.89 3096.90 5199.56 53100.00 1
test250693.08 6393.40 8492.70 6192.76 8099.20 6094.67 7986.82 6792.58 12390.81 2786.28 9085.24 10591.69 11096.85 6196.33 6399.45 8397.34 159
PMMVS93.05 6495.40 5590.31 8991.41 9697.54 10492.62 11083.25 9998.08 5179.44 10895.18 3988.52 8996.43 5495.70 9093.88 9998.68 15498.91 112
LS3D92.70 6592.23 9693.26 5196.24 5798.72 6997.93 3896.17 796.41 7672.46 12581.39 11580.76 12397.66 2995.69 9195.62 8299.07 12397.02 168
baseline192.67 6693.62 7891.55 7191.16 10097.15 10793.92 9285.97 7594.76 9984.07 7287.17 8186.89 9794.62 7996.72 6695.90 7899.57 4696.79 172
IS_MVSNet92.67 6694.99 6289.96 9491.17 9998.54 7892.77 10584.00 9192.72 12181.90 9485.67 9692.47 7190.39 12497.82 3597.81 2399.51 6499.91 23
TSAR-MVS + COLMAP92.56 6892.44 9492.71 6094.61 6897.69 9997.69 4191.09 4498.96 2776.71 11594.68 4469.41 16396.91 4795.80 8894.18 9799.26 11296.33 176
baseline92.56 6894.38 6890.43 8890.71 10998.23 8895.07 7280.73 12297.52 6382.45 8687.34 8085.91 10194.07 8796.29 7695.94 7799.58 4299.47 74
sasdasda92.54 7093.28 8591.68 6791.44 9498.24 8695.45 6581.84 11095.98 8684.85 6390.69 6078.53 12896.96 4292.97 13297.06 4499.57 4699.47 74
canonicalmvs92.54 7093.28 8591.68 6791.44 9498.24 8695.45 6581.84 11095.98 8684.85 6390.69 6078.53 12896.96 4292.97 13297.06 4499.57 4699.47 74
PatchMatch-RL92.54 7092.82 9392.21 6396.57 5498.74 6891.85 11786.30 7096.23 8185.18 6095.21 3873.58 14294.22 8695.40 10593.08 12099.14 11897.49 155
MVS_Test92.42 7394.43 6490.08 9390.69 11098.26 8594.78 7680.81 12197.27 6678.76 10987.06 8384.25 10995.84 6697.67 4197.56 3199.59 3798.93 111
MGCFI-Net92.39 7493.14 8891.51 7491.38 9798.16 8995.28 6981.66 11395.82 8884.36 6890.51 6378.30 13096.80 5092.82 13696.97 4999.55 5899.42 78
thisisatest053092.31 7595.14 5889.02 10390.02 12398.45 8291.30 12183.58 9496.90 7177.90 11290.45 6494.33 5791.98 10795.57 9691.43 14499.31 10698.81 115
tttt051792.29 7695.12 6088.99 10490.02 12398.44 8491.19 12483.58 9496.88 7277.86 11390.45 6494.32 5891.98 10795.54 9891.43 14499.31 10698.78 117
EPP-MVSNet92.29 7694.35 7089.88 9590.36 11797.69 9990.89 12683.31 9893.39 11483.47 7785.56 9793.92 6391.93 10995.49 10394.77 8999.34 10099.62 59
HQP-MVS91.94 7893.03 8990.66 8793.69 7096.48 12195.92 5689.73 4697.33 6472.65 12395.37 3673.56 14392.75 10094.85 11194.12 9899.23 11599.51 70
MSDG91.93 7990.28 12493.85 4797.36 4897.12 10895.88 5894.07 3894.52 10384.13 7176.74 12980.89 12292.54 10293.97 12293.61 11099.14 11895.10 185
UGNet91.71 8094.43 6488.53 10692.72 8298.00 9290.22 13384.81 8894.45 10483.05 7987.65 7992.74 6981.04 17794.51 11394.45 9299.32 10599.21 95
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
thres100view90091.69 8191.52 10291.88 6691.61 8998.89 6695.49 6386.96 6493.24 11580.82 10087.90 7471.15 15496.88 4896.00 8493.51 11299.51 6499.95 13
CLD-MVS91.67 8291.30 10792.10 6491.25 9896.59 11895.93 5587.25 6396.86 7385.55 5887.08 8273.01 14493.26 9293.07 13092.84 12699.34 10099.68 49
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ET-MVSNet_ETH3D91.59 8394.96 6387.65 10972.75 21697.24 10695.29 6782.73 10296.81 7478.49 11195.30 3790.48 8497.23 3691.60 14994.31 9399.43 8599.01 109
tfpn200view991.47 8491.31 10591.65 6991.61 8998.69 7195.03 7386.17 7193.24 11580.82 10087.90 7471.15 15496.80 5095.53 9992.82 12899.47 7399.88 26
CANet_DTU91.36 8595.75 5286.23 12192.31 8698.71 7095.60 6278.41 13798.20 4456.48 18494.38 4587.96 9295.11 7196.89 5996.07 7199.48 7198.01 145
thres20091.36 8591.19 10991.55 7191.60 9198.69 7194.98 7486.17 7192.16 12680.76 10287.66 7871.15 15496.35 5695.53 9993.23 11899.47 7399.92 22
FMVSNet391.25 8792.13 9890.21 9085.64 15493.14 15795.29 6780.09 12496.40 7785.74 5577.13 12486.81 9894.98 7397.19 5397.11 4199.55 5897.13 165
thres40091.24 8891.01 11591.50 7591.56 9298.77 6794.66 8186.41 6991.87 13280.56 10387.05 8471.01 15796.35 5695.67 9292.82 12899.48 7199.88 26
PVSNet_Blended_VisFu91.20 8992.89 9289.23 10193.41 7398.61 7689.80 13585.39 8192.84 11982.80 8174.21 14091.38 8084.64 15697.22 5196.04 7499.34 10099.93 19
DCV-MVSNet91.15 9092.00 9990.17 9290.78 10792.23 17493.70 9381.17 11995.16 9482.98 8089.46 6883.31 11293.98 8991.79 14892.87 12398.41 17299.18 97
DI_MVS_plusplus_trai91.11 9191.47 10390.68 8690.01 12597.77 9695.87 5983.56 9694.72 10082.12 8968.46 15987.46 9393.07 9696.46 7195.73 8099.47 7399.71 44
diffmvspermissive91.05 9291.15 11090.93 8390.15 12097.79 9594.05 8885.45 7895.63 8981.95 9380.45 11873.01 14494.47 8295.56 9795.89 7999.49 6899.72 42
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNet (Re-imp)91.05 9294.43 6487.11 11191.05 10297.99 9392.53 11283.82 9392.71 12276.28 11684.50 10292.43 7279.52 18297.24 5097.68 2599.43 8598.45 129
thres600view790.97 9490.70 11791.30 7791.53 9398.69 7194.33 8286.17 7191.75 13480.19 10486.06 9470.90 15896.10 6195.53 9992.08 13699.47 7399.86 30
baseline290.91 9594.40 6786.84 11487.54 14596.83 11489.95 13479.22 13296.00 8577.04 11488.68 6989.73 8688.01 14596.35 7493.51 11299.29 10899.68 49
casdiffmvs_mvgpermissive90.83 9690.52 12191.20 8090.56 11197.67 10194.96 7585.45 7890.72 14082.03 9076.70 13077.08 13194.61 8096.57 6995.62 8299.57 4699.28 89
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMP89.80 990.72 9791.15 11090.21 9092.55 8496.52 12092.63 10985.71 7794.65 10181.06 9993.32 5070.56 16090.52 12392.68 13891.05 14998.76 14699.31 88
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
casdiffmvspermissive90.69 9890.56 12090.85 8490.14 12197.81 9492.94 10385.30 8293.47 11382.50 8576.34 13474.12 14094.67 7796.51 7096.26 6699.55 5899.42 78
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FA-MVS(training)90.67 9993.03 8987.92 10890.95 10498.45 8292.61 11166.04 19794.90 9684.47 6577.52 12391.74 7694.07 8797.11 5592.46 13499.40 9099.03 108
ACMM89.40 1090.58 10090.02 12791.23 7993.30 7594.75 14490.69 12988.22 5495.20 9282.70 8388.54 7071.40 15293.48 9193.64 12790.94 15098.99 12995.72 181
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GBi-Net90.49 10191.12 11389.75 9784.99 15792.73 16293.94 8980.09 12496.40 7785.74 5577.13 12486.81 9894.42 8394.12 11693.73 10199.35 9696.90 169
test190.49 10191.12 11389.75 9784.99 15792.73 16293.94 8980.09 12496.40 7785.74 5577.13 12486.81 9894.42 8394.12 11693.73 10199.35 9696.90 169
ECVR-MVScopyleft90.37 10388.96 13692.01 6592.76 8099.20 6094.67 7986.82 6792.58 12386.71 4868.95 15871.46 15191.69 11096.85 6196.33 6399.45 8397.38 158
LGP-MVS_train90.34 10491.63 10188.83 10593.31 7496.14 12795.49 6385.24 8593.91 10868.71 13793.96 4671.63 14991.12 11993.82 12492.79 13099.07 12399.16 98
test111190.01 10588.67 13891.57 7092.68 8399.20 6094.25 8586.90 6692.03 12985.04 6167.79 16371.21 15391.12 11996.83 6396.34 6299.42 8897.28 161
EPNet_dtu89.82 10694.18 7384.74 13196.87 5295.54 13792.65 10886.91 6596.99 6854.17 19592.41 5688.54 8878.35 18596.15 7996.05 7399.47 7393.60 193
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
RPSCF89.81 10789.75 12889.88 9593.22 7793.99 15194.78 7685.23 8694.01 10782.52 8495.00 4087.23 9592.01 10685.16 20283.48 20791.54 21389.38 207
MDTV_nov1_ep1389.63 10894.38 6884.09 13888.76 13797.53 10589.37 14368.46 19596.95 6970.27 13287.88 7693.67 6691.04 12193.12 12893.83 10096.62 20297.68 151
UA-Net89.56 10993.03 8985.52 12792.46 8597.55 10391.92 11581.91 10785.24 16771.39 12783.57 10796.56 4476.01 19696.81 6497.04 4699.46 7994.41 188
FMVSNet289.51 11089.63 12989.38 9984.99 15792.73 16293.94 8979.28 13193.73 11084.28 6969.36 15782.32 11594.42 8396.16 7896.22 6899.35 9696.90 169
CostFormer89.42 11191.67 10086.80 11689.99 12696.33 12390.75 12764.79 19995.17 9383.62 7686.20 9282.15 11792.96 9789.22 17292.94 12198.68 15499.65 51
FC-MVSNet-train89.37 11289.62 13089.08 10290.48 11394.16 15089.45 13983.99 9291.09 13880.09 10582.84 11274.52 13991.44 11693.79 12591.57 14299.01 12799.35 85
OPM-MVS89.33 11387.45 14891.53 7394.49 6996.20 12596.47 5489.72 4782.77 17475.43 11780.53 11770.86 15993.80 9094.00 12091.85 14099.29 10895.91 179
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test-LLR89.31 11493.60 8084.30 13588.08 14196.98 11088.10 14878.00 13894.83 9762.43 15884.29 10490.96 8189.70 13095.63 9492.86 12499.51 6499.64 53
EPMVS89.31 11493.70 7784.18 13791.10 10198.10 9089.17 14562.71 20396.24 8070.21 13486.46 8992.37 7392.79 9891.95 14693.59 11199.10 12097.19 162
Anonymous2023121189.22 11687.56 14691.16 8190.23 11996.62 11793.22 10085.44 8092.89 11884.37 6760.13 18081.25 12096.02 6390.61 15792.01 13797.70 19299.41 81
Effi-MVS+88.96 11791.13 11286.43 11989.12 13397.62 10293.15 10175.52 15693.90 10966.40 14286.23 9170.51 16195.03 7295.89 8594.28 9499.37 9299.51 70
SCA88.76 11894.29 7182.30 15489.33 13196.81 11587.68 15061.52 20896.95 6964.68 14888.35 7194.80 5091.58 11392.23 14093.21 11998.99 12997.70 150
test0.0.03 188.71 11992.22 9784.63 13388.08 14194.71 14685.91 17378.00 13895.54 9072.96 12186.10 9385.88 10383.59 16492.95 13593.24 11799.25 11497.09 166
PatchmatchNetpermissive88.67 12094.10 7482.34 15389.38 13097.72 9787.24 15662.18 20697.00 6764.79 14787.97 7394.43 5591.55 11491.21 15492.77 13198.90 13497.60 154
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
dps88.66 12190.19 12586.88 11389.94 12796.48 12189.56 13764.08 20194.12 10689.00 3583.39 10982.56 11490.16 12786.81 19489.26 16898.53 16798.71 119
TESTMET0.1,188.63 12293.60 8082.84 15084.07 16596.98 11088.10 14873.22 17794.83 9762.43 15884.29 10490.96 8189.70 13095.63 9492.86 12499.51 6499.64 53
CHOSEN 1792x268888.63 12289.01 13488.19 10794.83 6599.21 5992.66 10779.85 12892.40 12572.18 12656.38 20080.22 12590.24 12597.64 4497.28 3899.37 9299.94 16
CDS-MVSNet88.59 12490.13 12686.79 11786.98 15095.43 13892.03 11481.33 11785.54 16474.51 12077.07 12785.14 10687.03 15093.90 12395.18 8598.88 13698.67 121
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IB-MVS84.67 1488.34 12590.61 11985.70 12492.99 7998.62 7578.85 19986.07 7494.35 10588.64 3685.99 9575.69 13468.09 20988.21 17591.43 14499.55 5899.96 10
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test-mter88.25 12693.27 8782.38 15283.89 16696.86 11387.10 16072.80 17994.58 10261.85 16383.21 11090.65 8389.18 13495.43 10492.58 13399.46 7999.61 60
COLMAP_ROBcopyleft84.42 1588.24 12787.32 14989.32 10095.83 5995.82 13192.81 10487.68 6192.09 12872.64 12472.34 14879.96 12688.79 13689.54 16789.46 16498.16 18192.00 199
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
IterMVS-LS87.95 12889.40 13286.26 12088.79 13690.93 18991.23 12376.05 15390.87 13971.07 12975.51 13781.18 12191.21 11894.11 11995.01 8699.20 11798.23 136
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test87.86 12988.25 14187.40 11094.67 6798.54 7890.33 13276.51 15289.60 14870.89 13051.43 21185.69 10492.79 9896.59 6895.96 7699.22 11699.94 16
Vis-MVSNetpermissive87.60 13091.31 10583.27 14589.14 13298.04 9190.35 13179.42 12987.23 15366.92 14179.10 12284.63 10874.34 20395.81 8796.06 7299.46 7998.32 133
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
GeoE87.55 13188.17 14286.82 11588.74 13896.32 12492.75 10674.93 16190.13 14572.73 12269.47 15674.03 14192.51 10393.99 12193.62 10999.29 10899.59 61
dmvs_re87.43 13287.99 14386.77 11884.94 16196.19 12691.87 11685.95 7691.25 13768.58 13881.45 11466.04 16989.95 12990.91 15591.57 14299.37 9298.54 125
RPMNet87.35 13392.41 9581.45 15888.85 13596.06 12889.42 14259.59 21593.57 11161.81 16476.48 13391.48 7990.18 12696.32 7593.37 11598.87 13799.59 61
tpm cat187.34 13488.52 14085.95 12289.83 12895.80 13290.73 12864.91 19892.99 11782.21 8871.19 15482.68 11390.13 12886.38 19590.87 15297.90 18999.74 39
MS-PatchMatch87.19 13588.59 13985.55 12693.15 7896.58 11992.35 11374.19 16991.97 13170.33 13171.42 15285.89 10284.28 15893.12 12889.16 17099.00 12891.99 200
Effi-MVS+-dtu87.18 13690.48 12283.32 14486.51 15195.76 13491.16 12574.28 16890.44 14461.31 16786.72 8872.68 14791.25 11795.01 10993.64 10495.45 20799.12 102
FMVSNet587.06 13789.52 13184.20 13679.92 20386.57 20987.11 15972.37 18196.06 8375.41 11884.33 10391.76 7591.60 11291.51 15091.22 14798.77 14385.16 212
Fast-Effi-MVS+-dtu86.94 13891.27 10881.89 15586.27 15295.06 13990.68 13068.93 19291.76 13357.18 18289.56 6775.85 13389.19 13394.56 11292.84 12699.07 12399.23 92
Fast-Effi-MVS+86.94 13887.88 14585.84 12386.99 14995.80 13291.24 12273.48 17692.75 12069.22 13572.70 14665.71 17094.84 7594.98 11094.71 9099.26 11298.48 128
tpmrst86.78 14090.29 12382.69 15190.55 11296.95 11288.49 14762.58 20495.09 9563.52 15476.67 13284.00 11192.05 10587.93 17891.89 13998.98 13199.50 72
CR-MVSNet86.73 14191.47 10381.20 16188.56 13996.06 12889.43 14061.37 20993.57 11160.81 16972.89 14588.85 8788.13 14396.03 8193.64 10498.89 13599.22 93
ADS-MVSNet86.68 14290.79 11681.88 15690.38 11696.81 11586.90 16160.50 21396.01 8463.93 15181.67 11384.72 10790.78 12287.03 18891.67 14198.77 14397.63 153
FMVSNet185.85 14384.91 15986.96 11282.70 17191.39 18391.54 11977.45 14485.29 16679.56 10760.70 17772.68 14792.37 10494.12 11693.73 10198.12 18296.44 173
FC-MVSNet-test85.51 14489.08 13381.35 15985.31 15693.35 15387.65 15177.55 14390.01 14664.07 15079.63 12081.83 11974.94 20092.08 14390.83 15498.55 16495.81 180
ACMH85.22 1385.40 14585.73 15685.02 12991.76 8894.46 14984.97 17981.54 11585.18 16865.22 14676.92 12864.22 17188.58 13990.17 15990.25 16098.03 18598.90 113
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TAMVS85.35 14686.00 15584.59 13484.97 16095.57 13688.98 14677.29 14781.44 17971.36 12871.48 15175.00 13887.03 15091.92 14792.21 13597.92 18894.40 189
ACMH+85.62 1285.27 14784.96 15885.64 12590.84 10694.78 14387.46 15381.30 11886.94 15467.35 14074.56 13964.09 17288.70 13788.14 17689.00 17198.22 18097.19 162
USDC85.11 14885.35 15784.83 13089.45 12994.93 14292.98 10277.30 14690.53 14261.80 16576.69 13159.62 18288.90 13592.78 13790.79 15698.53 16792.12 197
IterMVS85.02 14988.98 13580.41 16787.03 14890.34 19789.78 13669.45 18989.77 14754.04 19673.71 14282.05 11883.44 16795.11 10793.64 10498.75 14798.22 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT84.91 15088.90 13780.25 17087.04 14790.27 19889.23 14469.25 19189.17 14954.04 19673.65 14382.22 11683.23 17295.11 10793.63 10898.73 14898.23 136
PatchT84.89 15190.67 11878.13 19087.83 14494.99 14172.46 21160.22 21491.74 13560.81 16972.16 14986.95 9688.13 14396.03 8193.64 10499.36 9599.22 93
pmmvs484.88 15284.67 16085.13 12882.80 17092.37 16787.29 15479.08 13390.51 14374.94 11970.37 15562.49 17588.17 14292.01 14588.51 17698.49 17096.44 173
CVMVSNet84.01 15386.91 15080.61 16588.39 14093.29 15486.06 16982.29 10483.13 17254.29 19272.68 14779.59 12775.11 19991.23 15392.91 12297.54 19695.58 182
tpm83.97 15487.97 14479.31 18087.35 14693.21 15686.00 17161.90 20790.69 14154.01 19879.42 12175.61 13588.65 13887.18 18690.48 15897.95 18799.21 95
GA-MVS83.83 15586.63 15180.58 16685.40 15594.73 14587.27 15578.76 13686.49 15649.57 20674.21 14067.67 16683.38 16895.28 10690.92 15199.08 12297.09 166
UniMVSNet_NR-MVSNet83.83 15583.70 16383.98 13981.41 18192.56 16686.54 16482.96 10085.98 16166.27 14366.16 16763.63 17387.78 14787.65 18190.81 15598.94 13299.13 100
UniMVSNet (Re)83.28 15783.16 16483.42 14381.93 17693.12 15886.27 16780.83 12085.88 16268.23 13964.56 17060.58 17784.25 15989.13 17389.44 16699.04 12699.40 82
thisisatest051583.17 15886.49 15279.30 18182.04 17493.12 15878.70 20077.92 14086.43 15763.05 15574.91 13873.01 14475.56 19892.10 14288.05 18998.50 16997.76 149
TinyColmap83.03 15982.24 16883.95 14088.88 13493.22 15589.48 13876.89 14987.53 15262.12 16068.46 15955.03 19888.43 14190.87 15689.65 16297.89 19090.91 203
testgi82.88 16086.14 15479.08 18386.05 15392.20 17581.23 19674.77 16488.70 15057.63 18186.73 8761.53 17676.83 19390.33 15889.43 16797.99 18694.05 190
DU-MVS82.87 16182.16 16983.70 14280.77 19092.24 17186.54 16481.91 10786.41 15866.27 14363.95 17155.66 19687.78 14786.83 19190.86 15398.94 13299.13 100
MIMVSNet82.87 16186.17 15379.02 18477.23 21192.88 16184.88 18060.62 21286.72 15564.16 14973.58 14471.48 15088.51 14094.14 11593.50 11498.72 15090.87 204
NR-MVSNet82.37 16381.95 17182.85 14982.56 17392.24 17187.49 15281.91 10786.41 15865.51 14563.95 17152.93 20780.80 17989.41 16989.61 16398.85 13999.10 105
Baseline_NR-MVSNet82.08 16480.64 17883.77 14180.77 19088.50 20486.88 16281.71 11285.58 16368.80 13658.20 19257.75 18886.16 15286.83 19188.68 17398.33 17798.90 113
TranMVSNet+NR-MVSNet82.07 16581.36 17482.90 14880.43 19691.39 18387.16 15882.75 10184.28 17062.98 15662.28 17656.01 19585.30 15586.06 19790.69 15798.80 14098.80 116
pm-mvs181.68 16681.70 17281.65 15782.61 17292.26 17085.54 17778.95 13476.29 20163.81 15258.43 19166.33 16880.63 18092.30 13989.93 16198.37 17696.39 175
TDRefinement81.49 16780.08 18483.13 14791.02 10394.53 14791.66 11882.43 10381.70 17762.12 16062.30 17559.32 18373.93 20487.31 18485.29 20097.61 19390.14 205
anonymousdsp81.29 16884.52 16277.52 19279.83 20492.62 16582.61 19170.88 18680.76 18350.82 20368.35 16168.76 16482.45 17593.00 13189.45 16598.55 16498.69 120
gg-mvs-nofinetune81.27 16984.65 16177.32 19387.96 14398.48 8195.64 6156.36 21859.35 22032.80 22447.96 21592.11 7491.49 11598.12 2497.00 4899.65 2499.56 66
tfpnnormal81.11 17079.33 19283.19 14684.23 16392.29 16986.76 16382.27 10572.67 20762.02 16256.10 20253.86 20485.35 15492.06 14489.23 16998.49 17099.11 104
UniMVSNet_ETH3D80.95 17177.71 20084.74 13184.45 16293.11 16086.45 16679.97 12775.21 20370.22 13351.24 21250.26 21389.55 13284.47 20491.12 14897.81 19198.53 126
V4280.88 17280.74 17681.05 16281.21 18492.01 17785.96 17277.75 14281.62 17859.73 17659.93 18358.35 18782.98 17486.90 19088.06 18898.69 15398.32 133
v2v48280.86 17380.52 18281.25 16080.79 18991.85 17885.68 17578.78 13581.05 18058.09 17960.46 17856.08 19385.45 15387.27 18588.53 17598.73 14898.38 132
v880.61 17480.61 18080.62 16481.51 17991.00 18886.06 16974.07 17281.78 17659.93 17560.10 18258.42 18683.35 16986.99 18988.11 18698.79 14197.83 147
pmmvs580.48 17581.43 17379.36 17981.50 18092.24 17182.07 19474.08 17178.10 19455.86 18767.72 16454.35 20183.91 16392.97 13288.65 17498.77 14396.01 177
v1080.38 17680.73 17779.96 17281.22 18390.40 19686.11 16871.63 18382.42 17557.65 18058.74 18957.47 18984.44 15789.75 16388.28 17998.71 15198.06 144
v114480.36 17780.63 17980.05 17180.86 18891.56 18185.78 17475.22 15880.73 18455.83 18858.51 19056.99 19183.93 16289.79 16288.25 18098.68 15498.56 124
SixPastTwentyTwo80.28 17882.06 17078.21 18981.89 17892.35 16877.72 20174.48 16583.04 17354.22 19376.06 13556.40 19283.55 16586.83 19184.83 20297.38 19794.93 186
CP-MVSNet79.90 17979.49 18980.38 16880.72 19290.83 19082.98 18875.17 15979.70 18961.39 16659.74 18451.98 21083.31 17087.37 18388.38 17798.71 15198.45 129
v119279.84 18080.05 18679.61 17580.49 19591.04 18785.56 17674.37 16780.73 18454.35 19157.07 19754.54 20084.23 16089.94 16088.38 17798.63 15898.61 122
WR-MVS_H79.76 18180.07 18579.40 17881.25 18291.73 18082.77 18974.82 16379.02 19362.55 15759.41 18657.32 19076.27 19587.61 18287.30 19498.78 14298.09 142
WR-MVS79.67 18280.25 18379.00 18580.65 19391.16 18583.31 18676.57 15180.97 18160.50 17459.20 18758.66 18574.38 20285.85 19987.76 19198.61 15998.14 139
v14879.66 18379.13 19480.27 16981.02 18691.76 17981.90 19579.32 13079.24 19163.79 15358.07 19454.34 20277.17 19184.42 20587.52 19398.40 17398.59 123
LTVRE_ROB79.45 1679.66 18380.55 18178.61 18783.01 16992.19 17687.18 15773.69 17571.70 21043.22 21971.22 15350.85 21187.82 14689.47 16890.43 15996.75 20098.00 146
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v14419279.61 18579.77 18779.41 17780.28 19791.06 18684.87 18173.86 17379.65 19055.38 18957.76 19555.20 19783.46 16688.42 17487.89 19098.61 15998.42 131
v192192079.55 18679.77 18779.30 18180.24 19890.77 19285.37 17873.75 17480.38 18653.78 19956.89 19954.18 20384.05 16189.55 16688.13 18598.59 16198.52 127
TransMVSNet (Re)79.51 18778.36 19680.84 16383.17 16789.72 20084.22 18481.45 11673.98 20660.79 17257.20 19656.05 19477.11 19289.88 16188.86 17298.30 17992.83 195
MVS-HIRNet79.34 18882.56 16575.57 19884.11 16495.02 14075.03 20857.28 21785.50 16555.88 18653.00 20870.51 16183.05 17392.12 14191.96 13898.09 18389.83 206
PS-CasMVS79.06 18978.58 19579.63 17480.59 19490.55 19482.54 19275.04 16077.76 19558.84 17758.16 19350.11 21582.09 17687.05 18788.18 18398.66 15798.27 135
v124078.97 19079.27 19378.63 18680.04 19990.61 19384.25 18372.95 17879.22 19252.70 20156.22 20152.88 20983.28 17189.60 16588.20 18298.56 16398.14 139
pmnet_mix0278.91 19181.17 17576.28 19781.91 17790.82 19174.25 20977.87 14186.17 16049.04 20767.97 16262.93 17477.40 18982.75 21082.11 20997.18 19895.42 183
MDTV_nov1_ep13_2view78.83 19282.35 16674.73 20178.65 20691.51 18279.18 19862.52 20584.51 16952.51 20267.49 16567.29 16778.90 18385.52 20186.34 19796.62 20293.76 191
PEN-MVS78.80 19378.13 19879.58 17680.03 20089.67 20183.61 18575.83 15477.71 19758.41 17860.11 18150.00 21681.02 17884.08 20688.14 18498.59 16197.18 164
EG-PatchMatch MVS78.32 19479.42 19177.03 19583.03 16893.77 15284.47 18269.26 19075.85 20253.69 20055.68 20360.23 18073.20 20589.69 16488.22 18198.55 16492.54 196
DTE-MVSNet77.92 19577.42 20178.51 18879.34 20589.00 20383.05 18775.60 15576.89 19956.58 18359.63 18550.31 21278.09 18882.57 21187.56 19298.38 17495.95 178
v7n77.71 19678.25 19777.09 19478.49 20790.55 19482.15 19371.11 18576.79 20054.18 19455.63 20450.20 21478.28 18689.36 17187.15 19598.33 17798.07 143
gm-plane-assit77.20 19782.26 16771.30 20481.10 18582.00 21754.33 22264.41 20063.80 21940.93 22159.04 18876.57 13287.30 14998.26 2297.36 3799.74 1398.76 118
N_pmnet76.83 19877.97 19975.50 19980.96 18788.23 20672.81 21076.83 15080.87 18250.55 20456.94 19860.09 18175.70 19783.28 20884.23 20496.14 20692.12 197
pmmvs676.79 19975.69 20678.09 19179.95 20289.57 20280.92 19774.46 16664.79 21760.74 17345.71 21760.55 17878.37 18488.04 17786.00 19894.07 21095.15 184
CMPMVSbinary58.73 1776.78 20074.27 20779.70 17393.26 7695.58 13582.74 19077.44 14571.46 21356.29 18553.58 20759.13 18477.33 19079.20 21279.71 21291.14 21581.24 215
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EU-MVSNet76.76 20179.47 19073.60 20279.99 20187.47 20777.39 20275.43 15777.62 19847.83 21064.78 16960.44 17964.80 21086.28 19686.53 19696.17 20593.19 194
PM-MVS75.81 20276.11 20575.46 20073.81 21385.48 21176.42 20470.57 18780.05 18854.75 19062.33 17439.56 22380.59 18187.71 18082.81 20896.61 20494.81 187
pmmvs-eth3d75.17 20374.09 20876.43 19672.92 21484.49 21376.61 20372.42 18074.33 20461.28 16854.71 20639.42 22478.20 18787.77 17984.25 20397.17 19993.63 192
Anonymous2023120674.59 20477.00 20271.78 20377.89 21087.45 20875.14 20772.29 18277.76 19546.65 21252.14 20952.93 20761.10 21389.37 17088.09 18797.59 19491.30 202
test20.0372.81 20576.24 20468.80 20778.31 20885.40 21271.04 21271.20 18471.85 20943.40 21865.31 16854.71 19951.27 21685.92 19884.18 20597.58 19586.35 211
test_method71.90 20676.72 20366.28 21260.87 22278.37 21969.75 21649.81 22383.44 17149.63 20547.13 21653.23 20676.38 19491.32 15285.76 19991.22 21497.77 148
new_pmnet71.86 20773.67 20969.75 20672.56 21784.20 21470.95 21466.81 19680.34 18743.62 21751.60 21053.81 20571.24 20782.91 20980.93 21093.35 21281.92 214
MDA-MVSNet-bldmvs69.61 20870.36 21168.74 20862.88 22088.50 20465.40 21977.01 14871.60 21243.93 21466.71 16635.33 22672.47 20661.01 21980.63 21190.73 21688.75 209
pmmvs369.04 20970.75 21067.04 21066.83 21878.54 21864.99 22060.92 21164.67 21840.61 22255.08 20540.29 22274.89 20183.76 20784.01 20693.98 21188.88 208
MIMVSNet168.63 21070.24 21266.76 21156.86 22483.26 21567.93 21770.26 18868.05 21546.80 21140.44 21848.15 21762.01 21184.96 20384.86 20196.69 20181.93 213
GG-mvs-BLEND67.99 21197.35 3833.72 2201.22 23099.72 1798.30 340.57 22797.61 611.18 23193.26 5196.63 431.74 22797.15 5497.14 4099.34 10099.96 10
new-patchmatchnet67.66 21268.07 21367.18 20972.85 21582.86 21663.09 22168.61 19466.60 21642.64 22049.28 21338.68 22561.21 21275.84 21375.22 21494.67 20988.00 210
FPMVS63.27 21361.31 21665.57 21378.25 20974.42 22275.23 20668.92 19372.33 20843.87 21549.01 21443.94 22048.64 21861.15 21858.81 22078.51 22269.49 220
WB-MVS56.28 21463.25 21548.16 21775.24 21265.97 22339.91 22674.13 17069.25 21410.01 22962.67 17344.05 21920.71 22670.43 21669.57 21668.94 22460.78 225
Gipumacopyleft54.59 21553.98 21755.30 21459.03 22352.63 22547.17 22456.08 21971.68 21137.54 22320.90 22419.00 22852.33 21571.69 21575.20 21579.64 22166.79 221
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft49.05 1851.88 21650.56 21953.42 21564.21 21943.30 22742.64 22562.93 20250.56 22143.72 21637.44 21942.95 22135.05 22158.76 22154.58 22171.95 22366.33 222
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS250.69 21752.33 21848.78 21651.24 22564.81 22447.91 22353.79 22244.95 22221.75 22529.98 22225.90 22731.98 22359.95 22065.37 21886.00 21975.36 218
E-PMN37.15 21834.82 22139.86 21847.53 22735.42 22923.79 22855.26 22035.18 22514.12 22717.38 22714.13 23039.73 22032.24 22346.98 22258.76 22562.39 224
EMVS36.45 21933.63 22239.74 21948.47 22635.73 22823.59 22955.11 22135.61 22412.88 22817.49 22514.62 22941.04 21929.33 22443.00 22357.32 22659.62 226
MVEpermissive42.40 1936.00 22038.65 22032.92 22129.16 22846.17 22622.61 23044.21 22426.44 22718.88 22617.41 2269.36 23232.29 22245.75 22261.38 21950.35 22764.03 223
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs21.55 22130.91 22310.62 2222.78 22911.66 23018.51 2314.82 22538.21 2234.06 23036.35 2204.47 23326.81 22423.27 22527.11 2246.75 22875.30 219
test12316.81 22224.80 2247.48 2230.82 2318.38 23111.92 2322.60 22628.96 2261.12 23228.39 2231.26 23424.51 2258.93 22622.19 2253.90 22975.49 217
uanet_test0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet-low-res0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
TPM-MVS99.50 199.78 1299.69 188.49 3797.88 2698.84 2299.42 199.76 1097.44 156
Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025
RE-MVS-def46.54 213
9.1499.73 8
SR-MVS99.27 1695.82 1899.00 18
Anonymous20240521187.54 14790.72 10897.10 10993.40 9885.30 8291.41 13660.23 17980.69 12495.80 6791.33 15192.60 13298.38 17499.40 82
our_test_381.94 17590.26 19975.39 205
ambc64.61 21461.80 22175.31 22171.00 21374.16 20548.83 20836.02 22113.22 23158.66 21485.80 20076.26 21388.01 21791.53 201
MTAPA94.58 1498.56 24
MTMP95.24 898.13 30
Patchmatch-RL test37.05 227
tmp_tt71.24 20590.29 11876.39 22065.81 21859.43 21697.62 5979.65 10690.60 6268.71 16549.71 21772.71 21465.70 21782.54 220
XVS93.63 7199.64 2594.32 8383.97 7398.08 3299.59 37
X-MVStestdata93.63 7199.64 2594.32 8383.97 7398.08 3299.59 37
mPP-MVS98.66 2997.11 40
NP-MVS97.69 57
Patchmtry95.86 13089.43 14061.37 20960.81 169
DeepMVS_CXcopyleft85.88 21069.83 21581.56 11487.99 15148.22 20971.85 15045.52 21868.67 20863.21 21786.64 21880.03 216