| SED-MVS | | | 98.87 1 | 99.20 2 | 98.48 1 | 99.32 12 | 99.85 2 | 99.55 8 | 96.20 6 | 99.48 3 | 96.78 3 | 98.51 15 | 99.99 1 | 99.36 2 | 98.98 8 | 97.59 29 | 99.67 20 | 99.99 3 |
|
| DVP-MVS++ | | | 98.75 2 | 99.11 7 | 98.33 3 | 99.41 5 | 99.85 2 | 99.61 4 | 96.22 5 | 99.32 9 | 95.80 5 | 98.27 18 | 99.97 4 | 99.22 5 | 98.95 9 | 97.48 33 | 99.71 18 | 99.98 5 |
|
| MSP-MVS | | | 98.75 2 | 99.27 1 | 98.15 8 | 99.21 18 | 99.82 7 | 99.58 6 | 96.09 13 | 99.32 9 | 95.16 9 | 98.79 6 | 99.55 9 | 99.05 7 | 99.54 1 | 97.88 21 | 99.84 3 | 99.99 3 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| CNVR-MVS | | | 98.73 4 | 99.17 5 | 98.22 5 | 99.47 4 | 99.85 2 | 99.57 7 | 96.23 3 | 99.30 11 | 94.90 11 | 98.65 10 | 98.93 20 | 99.36 2 | 99.46 3 | 98.21 11 | 99.81 6 | 99.80 33 |
|
| DPE-MVS |  | | 98.69 5 | 99.14 6 | 98.16 7 | 99.37 8 | 99.82 7 | 99.66 3 | 96.26 1 | 99.18 17 | 95.02 10 | 98.62 12 | 99.98 3 | 98.88 12 | 98.90 12 | 97.51 32 | 99.75 11 | 99.97 8 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| DVP-MVS |  | | 98.65 6 | 98.87 13 | 98.38 2 | 99.30 14 | 99.85 2 | 99.14 23 | 96.23 3 | 99.51 2 | 97.16 1 | 96.01 34 | 99.99 1 | 98.90 11 | 98.89 13 | 97.88 21 | 99.56 53 | 99.98 5 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| APDe-MVS |  | | 98.60 7 | 98.97 10 | 98.18 6 | 99.38 7 | 99.78 12 | 99.35 15 | 96.14 9 | 99.24 14 | 95.66 7 | 98.19 20 | 99.01 17 | 98.66 18 | 98.77 15 | 97.80 24 | 99.86 2 | 99.97 8 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| SF-MVS | | | 98.55 8 | 98.75 15 | 98.32 4 | 99.48 2 | 99.68 22 | 99.51 10 | 96.24 2 | 99.08 21 | 95.94 4 | 98.64 11 | 99.30 13 | 99.02 9 | 97.94 29 | 96.86 53 | 99.75 11 | 99.76 36 |
|
| SMA-MVS |  | | 98.47 9 | 99.06 8 | 97.77 11 | 99.48 2 | 99.78 12 | 99.37 12 | 96.14 9 | 99.29 12 | 93.03 19 | 97.59 29 | 99.97 4 | 99.03 8 | 98.94 10 | 98.30 9 | 99.60 33 | 99.58 64 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| NCCC | | | 98.41 10 | 99.18 3 | 97.52 15 | 99.36 9 | 99.84 6 | 99.55 8 | 96.08 15 | 99.33 8 | 91.77 24 | 98.79 6 | 99.46 11 | 98.59 20 | 99.15 7 | 98.07 18 | 99.73 14 | 99.64 53 |
|
| SD-MVS | | | 98.33 11 | 99.01 9 | 97.54 14 | 97.17 50 | 99.77 15 | 99.14 23 | 96.09 13 | 99.34 7 | 94.06 15 | 97.91 25 | 99.89 6 | 99.18 6 | 97.99 28 | 98.21 11 | 99.63 27 | 99.95 13 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| APD-MVS |  | | 98.28 12 | 98.69 16 | 97.80 10 | 99.31 13 | 99.62 28 | 99.31 18 | 96.15 8 | 99.19 16 | 93.60 16 | 97.28 30 | 98.35 27 | 98.72 17 | 98.27 21 | 98.22 10 | 99.73 14 | 99.89 25 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| MCST-MVS | | | 98.20 13 | 99.18 3 | 97.06 21 | 99.27 16 | 99.87 1 | 99.37 12 | 96.11 11 | 99.37 5 | 89.29 32 | 98.76 8 | 99.50 10 | 98.37 25 | 99.23 5 | 97.64 27 | 99.95 1 | 99.87 29 |
|
| HPM-MVS++ |  | | 98.16 14 | 98.87 13 | 97.32 17 | 99.39 6 | 99.70 20 | 99.18 21 | 96.10 12 | 99.09 20 | 91.14 26 | 98.02 23 | 99.89 6 | 98.44 23 | 98.75 16 | 97.03 47 | 99.67 20 | 99.63 56 |
|
| MSLP-MVS++ | | | 98.12 15 | 98.23 28 | 97.99 9 | 99.28 15 | 99.72 17 | 99.59 5 | 95.27 28 | 98.61 34 | 94.79 12 | 96.11 33 | 97.79 36 | 99.27 4 | 96.62 67 | 98.96 5 | 99.77 9 | 99.80 33 |
|
| HFP-MVS | | | 98.02 16 | 98.55 20 | 97.40 16 | 99.11 21 | 99.69 21 | 99.41 11 | 95.41 26 | 98.79 30 | 91.86 23 | 98.61 13 | 98.16 29 | 99.02 9 | 97.87 33 | 97.40 35 | 99.60 33 | 99.35 85 |
|
| TSAR-MVS + MP. | | | 97.98 17 | 98.62 19 | 97.23 19 | 97.08 51 | 99.55 34 | 99.17 22 | 95.69 21 | 99.40 4 | 93.04 18 | 96.68 32 | 98.96 19 | 98.58 21 | 98.82 14 | 96.95 50 | 99.81 6 | 99.96 10 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| SteuartSystems-ACMMP | | | 97.86 18 | 98.91 11 | 96.64 25 | 98.89 27 | 99.79 9 | 99.34 16 | 95.20 30 | 98.48 36 | 89.91 30 | 98.58 14 | 98.69 23 | 96.84 49 | 98.92 11 | 98.16 15 | 99.66 22 | 99.74 39 |
| Skip Steuart: Steuart Systems R&D Blog. |
| CP-MVS | | | 97.81 19 | 98.26 27 | 97.28 18 | 99.00 24 | 99.65 24 | 99.10 25 | 95.32 27 | 98.38 42 | 92.21 22 | 98.33 17 | 97.74 37 | 98.50 22 | 97.66 42 | 96.55 61 | 99.57 46 | 99.48 73 |
|
| ACMMPR | | | 97.78 20 | 98.28 25 | 97.20 20 | 99.03 23 | 99.68 22 | 99.37 12 | 95.24 29 | 98.86 29 | 91.16 25 | 97.86 27 | 97.26 39 | 98.79 15 | 97.64 44 | 97.40 35 | 99.60 33 | 99.25 91 |
|
| DeepC-MVS_fast | | 95.01 1 | 97.67 21 | 98.22 29 | 97.02 22 | 99.00 24 | 99.79 9 | 99.10 25 | 95.82 18 | 99.05 23 | 89.53 31 | 93.54 49 | 96.77 42 | 98.83 13 | 99.34 4 | 99.44 2 | 99.82 4 | 99.63 56 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| AdaColmap |  | | 97.54 22 | 97.35 38 | 97.77 11 | 99.17 19 | 99.55 34 | 98.57 31 | 95.76 20 | 99.04 24 | 94.66 13 | 97.94 24 | 94.39 56 | 98.82 14 | 96.21 77 | 94.78 88 | 99.62 29 | 99.52 69 |
|
| ACMMP_NAP | | | 97.51 23 | 98.27 26 | 96.63 26 | 99.34 10 | 99.72 17 | 99.25 19 | 95.94 17 | 98.11 47 | 87.10 47 | 96.98 31 | 98.50 25 | 98.61 19 | 98.58 18 | 96.83 54 | 99.56 53 | 99.14 99 |
|
| MP-MVS |  | | 97.46 24 | 98.30 24 | 96.48 27 | 98.93 26 | 99.43 43 | 99.20 20 | 95.42 25 | 98.43 38 | 87.60 43 | 98.19 20 | 98.01 35 | 98.09 27 | 98.05 26 | 96.67 58 | 99.64 25 | 99.35 85 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| train_agg | | | 97.42 25 | 98.88 12 | 95.71 32 | 98.46 34 | 99.60 31 | 99.05 27 | 95.16 31 | 99.10 19 | 84.38 66 | 98.47 16 | 98.85 21 | 97.61 31 | 98.54 19 | 97.66 26 | 99.62 29 | 99.93 19 |
|
| CPTT-MVS | | | 97.32 26 | 97.60 37 | 96.99 23 | 98.29 37 | 99.31 55 | 99.04 28 | 94.67 35 | 97.99 53 | 93.12 17 | 98.03 22 | 98.26 28 | 98.77 16 | 96.08 80 | 94.26 96 | 98.07 184 | 99.27 90 |
|
| X-MVS | | | 97.20 27 | 98.42 23 | 95.77 30 | 99.04 22 | 99.64 25 | 98.95 30 | 95.10 33 | 98.16 45 | 83.97 73 | 98.27 18 | 98.08 32 | 97.95 28 | 97.89 30 | 97.46 34 | 99.58 42 | 99.47 74 |
|
| PHI-MVS | | | 97.09 28 | 98.69 16 | 95.22 36 | 97.99 42 | 99.59 33 | 97.56 44 | 92.16 39 | 98.41 40 | 87.11 46 | 98.70 9 | 99.42 12 | 96.95 45 | 96.88 60 | 98.16 15 | 99.56 53 | 99.70 45 |
|
| DPM-MVS | | | 97.07 29 | 97.99 32 | 96.00 29 | 97.25 49 | 99.16 65 | 99.67 2 | 95.99 16 | 99.08 21 | 85.97 52 | 93.00 54 | 98.44 26 | 97.47 33 | 99.22 6 | 99.62 1 | 99.66 22 | 97.44 156 |
|
| PGM-MVS | | | 97.03 30 | 98.14 31 | 95.73 31 | 99.34 10 | 99.61 30 | 99.34 16 | 89.99 45 | 97.70 56 | 87.67 42 | 99.44 2 | 96.45 45 | 98.44 23 | 97.65 43 | 97.09 43 | 99.58 42 | 99.06 107 |
|
| PLC |  | 94.37 2 | 97.03 30 | 96.54 44 | 97.60 13 | 98.84 28 | 98.64 74 | 98.17 36 | 94.99 34 | 99.01 25 | 96.80 2 | 93.21 53 | 95.64 47 | 97.36 34 | 96.37 72 | 94.79 87 | 99.41 89 | 98.12 141 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| TSAR-MVS + ACMM | | | 96.90 32 | 98.64 18 | 94.88 38 | 98.12 40 | 99.47 39 | 99.01 29 | 95.43 24 | 99.23 15 | 81.98 92 | 95.95 35 | 99.16 16 | 95.13 70 | 98.61 17 | 98.11 17 | 99.58 42 | 99.93 19 |
|
| TSAR-MVS + GP. | | | 96.47 33 | 98.45 22 | 94.17 43 | 92.12 87 | 99.29 56 | 97.76 40 | 88.05 55 | 99.36 6 | 90.26 29 | 97.82 28 | 99.21 14 | 97.21 37 | 96.78 65 | 96.74 56 | 99.63 27 | 99.94 16 |
|
| EPNet | | | 96.23 34 | 97.89 34 | 94.29 41 | 97.62 45 | 99.44 42 | 97.14 51 | 88.63 51 | 98.16 45 | 88.14 38 | 99.46 1 | 94.15 59 | 94.61 80 | 97.20 52 | 97.23 39 | 99.57 46 | 99.59 61 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| CNLPA | | | 96.14 35 | 95.43 54 | 96.98 24 | 98.55 31 | 99.41 47 | 95.91 57 | 95.15 32 | 99.00 26 | 95.71 6 | 84.21 106 | 94.55 54 | 97.25 35 | 95.50 102 | 96.23 67 | 99.28 111 | 99.09 106 |
|
| MVS_111021_LR | | | 96.07 36 | 97.94 33 | 93.88 46 | 97.86 43 | 99.43 43 | 95.70 60 | 89.65 48 | 98.73 31 | 84.86 62 | 99.38 3 | 94.08 60 | 95.78 68 | 97.81 36 | 96.73 57 | 99.43 85 | 99.42 78 |
|
| ACMMP |  | | 96.05 37 | 96.70 43 | 95.29 35 | 98.01 41 | 99.43 43 | 97.60 43 | 94.33 37 | 97.62 59 | 86.17 51 | 98.92 4 | 92.81 68 | 96.10 61 | 95.67 92 | 93.33 116 | 99.55 58 | 99.12 102 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| 3Dnovator+ | | 90.72 7 | 95.99 38 | 96.42 46 | 95.50 34 | 98.18 39 | 99.33 54 | 97.44 46 | 87.73 60 | 97.93 54 | 92.36 21 | 84.67 99 | 97.33 38 | 97.55 32 | 97.32 48 | 98.47 8 | 99.72 17 | 99.88 26 |
|
| DeepPCF-MVS | | 94.02 3 | 95.92 39 | 98.47 21 | 92.95 56 | 97.57 46 | 99.79 9 | 91.45 120 | 94.42 36 | 99.76 1 | 86.48 50 | 92.88 55 | 98.12 31 | 92.62 101 | 99.49 2 | 99.32 3 | 95.15 208 | 99.95 13 |
|
| CDPH-MVS | | | 95.90 40 | 97.77 36 | 93.72 49 | 98.28 38 | 99.43 43 | 98.40 32 | 91.30 43 | 98.34 43 | 78.62 110 | 94.80 41 | 95.74 46 | 96.11 60 | 97.86 34 | 98.67 7 | 99.59 37 | 99.56 66 |
|
| CSCG | | | 95.77 41 | 95.35 56 | 96.26 28 | 99.13 20 | 99.60 31 | 98.14 37 | 91.89 42 | 96.57 75 | 92.61 20 | 89.65 66 | 91.74 76 | 96.96 42 | 93.69 126 | 96.58 60 | 98.86 138 | 99.63 56 |
|
| OMC-MVS | | | 95.75 42 | 95.84 51 | 95.64 33 | 98.52 33 | 99.34 53 | 97.15 50 | 92.02 41 | 98.94 28 | 90.45 28 | 88.31 72 | 94.64 52 | 96.35 56 | 96.02 83 | 95.99 75 | 99.34 100 | 97.65 152 |
|
| MVS_111021_HR | | | 95.70 43 | 98.16 30 | 92.83 57 | 97.57 46 | 99.77 15 | 94.78 76 | 88.05 55 | 98.61 34 | 82.29 87 | 98.85 5 | 94.66 51 | 94.63 78 | 97.80 37 | 97.63 28 | 99.64 25 | 99.79 35 |
|
| 3Dnovator | | 90.31 8 | 95.67 44 | 96.16 49 | 95.11 37 | 98.59 30 | 99.37 52 | 97.50 45 | 87.98 57 | 98.02 52 | 89.09 33 | 85.36 98 | 94.62 53 | 97.66 29 | 97.10 56 | 98.90 6 | 99.82 4 | 99.73 41 |
|
| CANet | | | 95.40 45 | 96.27 47 | 94.40 40 | 96.25 56 | 99.62 28 | 98.37 33 | 88.59 52 | 98.09 48 | 87.58 44 | 84.57 101 | 95.54 49 | 95.87 65 | 98.12 24 | 98.03 20 | 99.73 14 | 99.90 24 |
|
| QAPM | | | 95.17 46 | 96.05 50 | 94.14 44 | 98.55 31 | 99.49 37 | 97.41 47 | 87.88 58 | 97.72 55 | 84.21 70 | 84.59 100 | 95.60 48 | 97.21 37 | 97.10 56 | 98.19 14 | 99.57 46 | 99.65 51 |
|
| CS-MVS-test | | | 95.06 47 | 96.98 41 | 92.82 59 | 95.83 59 | 99.40 48 | 93.23 99 | 85.29 84 | 99.27 13 | 85.89 54 | 93.86 48 | 92.70 70 | 97.19 39 | 97.70 40 | 96.18 69 | 99.49 68 | 99.76 36 |
|
| CS-MVS | | | 94.82 48 | 96.19 48 | 93.22 52 | 95.19 64 | 99.24 58 | 95.10 71 | 85.07 87 | 98.72 32 | 87.33 45 | 91.35 57 | 89.98 85 | 97.06 41 | 98.01 27 | 96.28 65 | 99.60 33 | 99.72 42 |
|
| MVSTER | | | 94.75 49 | 96.50 45 | 92.70 61 | 90.91 105 | 94.51 148 | 97.37 48 | 83.37 97 | 98.40 41 | 89.04 34 | 93.23 52 | 97.04 41 | 95.91 64 | 97.73 38 | 95.59 84 | 99.61 31 | 99.01 109 |
|
| TAPA-MVS | | 92.04 6 | 94.72 50 | 95.13 59 | 94.24 42 | 97.72 44 | 99.17 63 | 97.61 42 | 92.16 39 | 97.66 58 | 81.99 91 | 87.84 77 | 93.94 62 | 96.50 53 | 95.74 89 | 94.27 95 | 99.46 79 | 97.31 160 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| DeepC-MVS | | 92.23 5 | 94.53 51 | 94.26 72 | 94.86 39 | 96.73 53 | 99.50 36 | 97.85 39 | 95.45 23 | 96.22 82 | 82.73 82 | 80.68 116 | 88.02 90 | 96.92 46 | 97.49 47 | 98.20 13 | 99.47 73 | 99.69 48 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| CHOSEN 280x420 | | | 94.51 52 | 97.78 35 | 90.70 85 | 95.54 63 | 99.49 37 | 94.14 87 | 74.91 162 | 98.43 38 | 85.32 59 | 94.78 42 | 99.19 15 | 94.95 74 | 97.02 58 | 96.18 69 | 99.35 96 | 99.36 84 |
|
| ETV-MVS | | | 94.49 53 | 97.23 40 | 91.29 78 | 90.43 115 | 98.55 77 | 93.41 97 | 84.53 90 | 99.16 18 | 83.13 78 | 94.72 43 | 94.08 60 | 96.61 52 | 97.72 39 | 96.60 59 | 99.61 31 | 99.81 32 |
|
| MVS_0304 | | | 94.35 54 | 95.66 53 | 92.83 57 | 94.82 66 | 99.46 41 | 98.19 35 | 87.75 59 | 97.32 65 | 81.83 95 | 83.50 108 | 93.19 67 | 94.71 76 | 98.24 23 | 98.07 18 | 99.68 19 | 99.83 31 |
|
| EC-MVSNet | | | 94.33 55 | 96.88 42 | 91.36 76 | 90.12 122 | 97.70 98 | 95.20 70 | 80.27 123 | 98.63 33 | 85.97 52 | 93.92 47 | 93.85 65 | 97.09 40 | 97.54 46 | 96.81 55 | 99.49 68 | 99.70 45 |
|
| MAR-MVS | | | 94.18 56 | 95.12 60 | 93.09 55 | 98.40 36 | 99.17 63 | 94.20 86 | 81.92 106 | 98.47 37 | 86.52 49 | 90.92 59 | 84.21 110 | 98.12 26 | 95.88 86 | 97.59 29 | 99.40 90 | 99.58 64 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| PCF-MVS | | 92.56 4 | 93.95 57 | 93.82 75 | 94.10 45 | 96.07 58 | 99.25 57 | 96.82 53 | 95.51 22 | 92.00 130 | 81.51 96 | 82.97 111 | 93.88 64 | 95.63 69 | 94.24 114 | 94.71 90 | 99.09 121 | 99.70 45 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| DELS-MVS | | | 93.82 58 | 93.82 75 | 93.81 48 | 96.34 55 | 99.47 39 | 97.26 49 | 88.53 53 | 92.13 127 | 87.80 41 | 79.67 119 | 88.01 91 | 93.14 93 | 98.28 20 | 99.22 4 | 99.80 8 | 99.98 5 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| OpenMVS |  | 88.43 11 | 93.49 59 | 93.62 78 | 93.34 50 | 98.46 34 | 99.39 49 | 97.00 52 | 87.66 62 | 95.37 91 | 81.21 98 | 75.96 136 | 91.58 78 | 96.21 59 | 96.37 72 | 97.10 42 | 99.52 63 | 99.54 68 |
|
| EIA-MVS | | | 93.32 60 | 95.32 57 | 90.99 82 | 90.45 114 | 98.53 80 | 93.46 96 | 84.68 89 | 97.56 62 | 81.38 97 | 91.04 58 | 87.37 94 | 96.39 55 | 97.27 49 | 95.73 80 | 99.59 37 | 99.76 36 |
|
| PVSNet_BlendedMVS | | | 93.30 61 | 93.46 82 | 93.10 53 | 95.60 61 | 99.38 50 | 93.59 94 | 88.70 49 | 98.09 48 | 88.10 39 | 86.96 85 | 75.02 136 | 93.08 94 | 97.89 30 | 96.90 51 | 99.56 53 | 100.00 1 |
|
| PVSNet_Blended | | | 93.30 61 | 93.46 82 | 93.10 53 | 95.60 61 | 99.38 50 | 93.59 94 | 88.70 49 | 98.09 48 | 88.10 39 | 86.96 85 | 75.02 136 | 93.08 94 | 97.89 30 | 96.90 51 | 99.56 53 | 100.00 1 |
|
| test2506 | | | 93.08 63 | 93.40 84 | 92.70 61 | 92.76 80 | 99.20 60 | 94.67 79 | 86.82 67 | 92.58 123 | 90.81 27 | 86.28 90 | 85.24 105 | 91.69 110 | 96.85 61 | 96.33 63 | 99.45 83 | 97.34 159 |
|
| PMMVS | | | 93.05 64 | 95.40 55 | 90.31 89 | 91.41 96 | 97.54 104 | 92.62 110 | 83.25 99 | 98.08 51 | 79.44 108 | 95.18 39 | 88.52 89 | 96.43 54 | 95.70 90 | 93.88 99 | 98.68 154 | 98.91 112 |
|
| LS3D | | | 92.70 65 | 92.23 96 | 93.26 51 | 96.24 57 | 98.72 69 | 97.93 38 | 96.17 7 | 96.41 76 | 72.46 125 | 81.39 115 | 80.76 123 | 97.66 29 | 95.69 91 | 95.62 82 | 99.07 123 | 97.02 168 |
|
| baseline1 | | | 92.67 66 | 93.62 78 | 91.55 71 | 91.16 100 | 97.15 107 | 93.92 92 | 85.97 75 | 94.76 99 | 84.07 72 | 87.17 81 | 86.89 97 | 94.62 79 | 96.72 66 | 95.90 78 | 99.57 46 | 96.79 172 |
|
| IS_MVSNet | | | 92.67 66 | 94.99 62 | 89.96 94 | 91.17 99 | 98.54 78 | 92.77 105 | 84.00 91 | 92.72 121 | 81.90 94 | 85.67 96 | 92.47 71 | 90.39 124 | 97.82 35 | 97.81 23 | 99.51 64 | 99.91 23 |
|
| TSAR-MVS + COLMAP | | | 92.56 68 | 92.44 94 | 92.71 60 | 94.61 68 | 97.69 99 | 97.69 41 | 91.09 44 | 98.96 27 | 76.71 115 | 94.68 44 | 69.41 163 | 96.91 47 | 95.80 88 | 94.18 97 | 99.26 112 | 96.33 176 |
|
| baseline | | | 92.56 68 | 94.38 68 | 90.43 88 | 90.71 109 | 98.23 88 | 95.07 72 | 80.73 122 | 97.52 63 | 82.45 86 | 87.34 80 | 85.91 101 | 94.07 87 | 96.29 76 | 95.94 77 | 99.58 42 | 99.47 74 |
|
| sasdasda | | | 92.54 70 | 93.28 85 | 91.68 67 | 91.44 94 | 98.24 86 | 95.45 65 | 81.84 110 | 95.98 86 | 84.85 63 | 90.69 60 | 78.53 128 | 96.96 42 | 92.97 132 | 97.06 44 | 99.57 46 | 99.47 74 |
|
| canonicalmvs | | | 92.54 70 | 93.28 85 | 91.68 67 | 91.44 94 | 98.24 86 | 95.45 65 | 81.84 110 | 95.98 86 | 84.85 63 | 90.69 60 | 78.53 128 | 96.96 42 | 92.97 132 | 97.06 44 | 99.57 46 | 99.47 74 |
|
| PatchMatch-RL | | | 92.54 70 | 92.82 93 | 92.21 63 | 96.57 54 | 98.74 68 | 91.85 117 | 86.30 70 | 96.23 81 | 85.18 60 | 95.21 38 | 73.58 142 | 94.22 86 | 95.40 105 | 93.08 120 | 99.14 118 | 97.49 155 |
|
| MVS_Test | | | 92.42 73 | 94.43 64 | 90.08 93 | 90.69 110 | 98.26 85 | 94.78 76 | 80.81 121 | 97.27 66 | 78.76 109 | 87.06 83 | 84.25 109 | 95.84 66 | 97.67 41 | 97.56 31 | 99.59 37 | 98.93 111 |
|
| MGCFI-Net | | | 92.39 74 | 93.14 88 | 91.51 74 | 91.38 97 | 98.16 89 | 95.28 69 | 81.66 113 | 95.82 88 | 84.36 68 | 90.51 63 | 78.30 130 | 96.80 50 | 92.82 136 | 96.97 49 | 99.55 58 | 99.42 78 |
|
| thisisatest0530 | | | 92.31 75 | 95.14 58 | 89.02 103 | 90.02 123 | 98.45 82 | 91.30 121 | 83.58 94 | 96.90 71 | 77.90 112 | 90.45 64 | 94.33 57 | 91.98 107 | 95.57 96 | 91.43 144 | 99.31 106 | 98.81 115 |
|
| tttt0517 | | | 92.29 76 | 95.12 60 | 88.99 104 | 90.02 123 | 98.44 84 | 91.19 124 | 83.58 94 | 96.88 72 | 77.86 113 | 90.45 64 | 94.32 58 | 91.98 107 | 95.54 98 | 91.43 144 | 99.31 106 | 98.78 117 |
|
| EPP-MVSNet | | | 92.29 76 | 94.35 70 | 89.88 95 | 90.36 117 | 97.69 99 | 90.89 126 | 83.31 98 | 93.39 114 | 83.47 77 | 85.56 97 | 93.92 63 | 91.93 109 | 95.49 103 | 94.77 89 | 99.34 100 | 99.62 59 |
|
| HQP-MVS | | | 91.94 78 | 93.03 89 | 90.66 87 | 93.69 70 | 96.48 121 | 95.92 56 | 89.73 46 | 97.33 64 | 72.65 123 | 95.37 36 | 73.56 143 | 92.75 100 | 94.85 111 | 94.12 98 | 99.23 115 | 99.51 70 |
|
| MSDG | | | 91.93 79 | 90.28 124 | 93.85 47 | 97.36 48 | 97.12 108 | 95.88 58 | 94.07 38 | 94.52 103 | 84.13 71 | 76.74 129 | 80.89 122 | 92.54 102 | 93.97 122 | 93.61 110 | 99.14 118 | 95.10 185 |
|
| UGNet | | | 91.71 80 | 94.43 64 | 88.53 106 | 92.72 82 | 98.00 92 | 90.22 133 | 84.81 88 | 94.45 104 | 83.05 79 | 87.65 79 | 92.74 69 | 81.04 177 | 94.51 113 | 94.45 92 | 99.32 105 | 99.21 95 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| thres100view900 | | | 91.69 81 | 91.52 102 | 91.88 66 | 91.61 89 | 98.89 66 | 95.49 63 | 86.96 64 | 93.24 115 | 80.82 100 | 87.90 74 | 71.15 154 | 96.88 48 | 96.00 84 | 93.51 112 | 99.51 64 | 99.95 13 |
|
| CLD-MVS | | | 91.67 82 | 91.30 107 | 92.10 64 | 91.25 98 | 96.59 118 | 95.93 55 | 87.25 63 | 96.86 73 | 85.55 58 | 87.08 82 | 73.01 144 | 93.26 92 | 93.07 130 | 92.84 126 | 99.34 100 | 99.68 49 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| ET-MVSNet_ETH3D | | | 91.59 83 | 94.96 63 | 87.65 109 | 72.75 216 | 97.24 106 | 95.29 67 | 82.73 102 | 96.81 74 | 78.49 111 | 95.30 37 | 90.48 84 | 97.23 36 | 91.60 149 | 94.31 93 | 99.43 85 | 99.01 109 |
|
| tfpn200view9 | | | 91.47 84 | 91.31 105 | 91.65 69 | 91.61 89 | 98.69 71 | 95.03 73 | 86.17 71 | 93.24 115 | 80.82 100 | 87.90 74 | 71.15 154 | 96.80 50 | 95.53 99 | 92.82 128 | 99.47 73 | 99.88 26 |
|
| CANet_DTU | | | 91.36 85 | 95.75 52 | 86.23 121 | 92.31 86 | 98.71 70 | 95.60 62 | 78.41 137 | 98.20 44 | 56.48 184 | 94.38 45 | 87.96 92 | 95.11 71 | 96.89 59 | 96.07 71 | 99.48 71 | 98.01 145 |
|
| thres200 | | | 91.36 85 | 91.19 109 | 91.55 71 | 91.60 91 | 98.69 71 | 94.98 74 | 86.17 71 | 92.16 126 | 80.76 102 | 87.66 78 | 71.15 154 | 96.35 56 | 95.53 99 | 93.23 118 | 99.47 73 | 99.92 22 |
|
| FMVSNet3 | | | 91.25 87 | 92.13 98 | 90.21 90 | 85.64 154 | 93.14 157 | 95.29 67 | 80.09 124 | 96.40 77 | 85.74 55 | 77.13 124 | 86.81 98 | 94.98 73 | 97.19 53 | 97.11 41 | 99.55 58 | 97.13 165 |
|
| thres400 | | | 91.24 88 | 91.01 115 | 91.50 75 | 91.56 92 | 98.77 67 | 94.66 81 | 86.41 69 | 91.87 132 | 80.56 103 | 87.05 84 | 71.01 157 | 96.35 56 | 95.67 92 | 92.82 128 | 99.48 71 | 99.88 26 |
|
| PVSNet_Blended_VisFu | | | 91.20 89 | 92.89 92 | 89.23 101 | 93.41 73 | 98.61 76 | 89.80 135 | 85.39 81 | 92.84 119 | 82.80 81 | 74.21 140 | 91.38 80 | 84.64 156 | 97.22 51 | 96.04 74 | 99.34 100 | 99.93 19 |
|
| DCV-MVSNet | | | 91.15 90 | 92.00 99 | 90.17 92 | 90.78 107 | 92.23 174 | 93.70 93 | 81.17 119 | 95.16 94 | 82.98 80 | 89.46 68 | 83.31 112 | 93.98 89 | 91.79 148 | 92.87 123 | 98.41 172 | 99.18 97 |
|
| DI_MVS_plusplus_trai | | | 91.11 91 | 91.47 103 | 90.68 86 | 90.01 125 | 97.77 96 | 95.87 59 | 83.56 96 | 94.72 100 | 82.12 89 | 68.46 159 | 87.46 93 | 93.07 96 | 96.46 71 | 95.73 80 | 99.47 73 | 99.71 44 |
|
| diffmvs |  | | 91.05 92 | 91.15 110 | 90.93 83 | 90.15 120 | 97.79 95 | 94.05 88 | 85.45 78 | 95.63 89 | 81.95 93 | 80.45 118 | 73.01 144 | 94.47 82 | 95.56 97 | 95.89 79 | 99.49 68 | 99.72 42 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| Vis-MVSNet (Re-imp) | | | 91.05 92 | 94.43 64 | 87.11 111 | 91.05 102 | 97.99 93 | 92.53 112 | 83.82 93 | 92.71 122 | 76.28 116 | 84.50 102 | 92.43 72 | 79.52 182 | 97.24 50 | 97.68 25 | 99.43 85 | 98.45 129 |
|
| thres600view7 | | | 90.97 94 | 90.70 117 | 91.30 77 | 91.53 93 | 98.69 71 | 94.33 82 | 86.17 71 | 91.75 134 | 80.19 104 | 86.06 94 | 70.90 158 | 96.10 61 | 95.53 99 | 92.08 136 | 99.47 73 | 99.86 30 |
|
| baseline2 | | | 90.91 95 | 94.40 67 | 86.84 114 | 87.54 145 | 96.83 114 | 89.95 134 | 79.22 132 | 96.00 85 | 77.04 114 | 88.68 69 | 89.73 86 | 88.01 145 | 96.35 74 | 93.51 112 | 99.29 108 | 99.68 49 |
|
| casdiffmvs_mvg |  | | 90.83 96 | 90.52 121 | 91.20 80 | 90.56 111 | 97.67 101 | 94.96 75 | 85.45 78 | 90.72 140 | 82.03 90 | 76.70 130 | 77.08 131 | 94.61 80 | 96.57 69 | 95.62 82 | 99.57 46 | 99.28 89 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| ACMP | | 89.80 9 | 90.72 97 | 91.15 110 | 90.21 90 | 92.55 84 | 96.52 120 | 92.63 109 | 85.71 77 | 94.65 101 | 81.06 99 | 93.32 50 | 70.56 160 | 90.52 123 | 92.68 138 | 91.05 149 | 98.76 146 | 99.31 88 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| casdiffmvs |  | | 90.69 98 | 90.56 120 | 90.85 84 | 90.14 121 | 97.81 94 | 92.94 103 | 85.30 82 | 93.47 113 | 82.50 85 | 76.34 134 | 74.12 140 | 94.67 77 | 96.51 70 | 96.26 66 | 99.55 58 | 99.42 78 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| FA-MVS(training) | | | 90.67 99 | 93.03 89 | 87.92 108 | 90.95 104 | 98.45 82 | 92.61 111 | 66.04 197 | 94.90 96 | 84.47 65 | 77.52 123 | 91.74 76 | 94.07 87 | 97.11 55 | 92.46 134 | 99.40 90 | 99.03 108 |
|
| ACMM | | 89.40 10 | 90.58 100 | 90.02 127 | 91.23 79 | 93.30 75 | 94.75 144 | 90.69 129 | 88.22 54 | 95.20 92 | 82.70 83 | 88.54 70 | 71.40 152 | 93.48 91 | 93.64 127 | 90.94 150 | 98.99 129 | 95.72 181 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| GBi-Net | | | 90.49 101 | 91.12 113 | 89.75 97 | 84.99 157 | 92.73 162 | 93.94 89 | 80.09 124 | 96.40 77 | 85.74 55 | 77.13 124 | 86.81 98 | 94.42 83 | 94.12 116 | 93.73 101 | 99.35 96 | 96.90 169 |
|
| test1 | | | 90.49 101 | 91.12 113 | 89.75 97 | 84.99 157 | 92.73 162 | 93.94 89 | 80.09 124 | 96.40 77 | 85.74 55 | 77.13 124 | 86.81 98 | 94.42 83 | 94.12 116 | 93.73 101 | 99.35 96 | 96.90 169 |
|
| ECVR-MVS |  | | 90.37 103 | 88.96 136 | 92.01 65 | 92.76 80 | 99.20 60 | 94.67 79 | 86.82 67 | 92.58 123 | 86.71 48 | 68.95 158 | 71.46 151 | 91.69 110 | 96.85 61 | 96.33 63 | 99.45 83 | 97.38 158 |
|
| LGP-MVS_train | | | 90.34 104 | 91.63 101 | 88.83 105 | 93.31 74 | 96.14 127 | 95.49 63 | 85.24 85 | 93.91 108 | 68.71 137 | 93.96 46 | 71.63 149 | 91.12 119 | 93.82 124 | 92.79 130 | 99.07 123 | 99.16 98 |
|
| test1111 | | | 90.01 105 | 88.67 138 | 91.57 70 | 92.68 83 | 99.20 60 | 94.25 85 | 86.90 66 | 92.03 129 | 85.04 61 | 67.79 163 | 71.21 153 | 91.12 119 | 96.83 63 | 96.34 62 | 99.42 88 | 97.28 161 |
|
| EPNet_dtu | | | 89.82 106 | 94.18 73 | 84.74 131 | 96.87 52 | 95.54 137 | 92.65 108 | 86.91 65 | 96.99 68 | 54.17 195 | 92.41 56 | 88.54 88 | 78.35 185 | 96.15 79 | 96.05 73 | 99.47 73 | 93.60 193 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| RPSCF | | | 89.81 107 | 89.75 128 | 89.88 95 | 93.22 77 | 93.99 151 | 94.78 76 | 85.23 86 | 94.01 107 | 82.52 84 | 95.00 40 | 87.23 95 | 92.01 106 | 85.16 202 | 83.48 207 | 91.54 213 | 89.38 207 |
|
| MDTV_nov1_ep13 | | | 89.63 108 | 94.38 68 | 84.09 138 | 88.76 137 | 97.53 105 | 89.37 143 | 68.46 195 | 96.95 69 | 70.27 132 | 87.88 76 | 93.67 66 | 91.04 121 | 93.12 128 | 93.83 100 | 96.62 202 | 97.68 151 |
|
| UA-Net | | | 89.56 109 | 93.03 89 | 85.52 127 | 92.46 85 | 97.55 103 | 91.92 115 | 81.91 107 | 85.24 167 | 71.39 127 | 83.57 107 | 96.56 44 | 76.01 196 | 96.81 64 | 97.04 46 | 99.46 79 | 94.41 188 |
|
| FMVSNet2 | | | 89.51 110 | 89.63 129 | 89.38 99 | 84.99 157 | 92.73 162 | 93.94 89 | 79.28 131 | 93.73 110 | 84.28 69 | 69.36 157 | 82.32 115 | 94.42 83 | 96.16 78 | 96.22 68 | 99.35 96 | 96.90 169 |
|
| CostFormer | | | 89.42 111 | 91.67 100 | 86.80 116 | 89.99 126 | 96.33 123 | 90.75 127 | 64.79 199 | 95.17 93 | 83.62 76 | 86.20 92 | 82.15 117 | 92.96 97 | 89.22 172 | 92.94 121 | 98.68 154 | 99.65 51 |
|
| FC-MVSNet-train | | | 89.37 112 | 89.62 130 | 89.08 102 | 90.48 113 | 94.16 150 | 89.45 139 | 83.99 92 | 91.09 138 | 80.09 105 | 82.84 112 | 74.52 139 | 91.44 116 | 93.79 125 | 91.57 142 | 99.01 127 | 99.35 85 |
|
| OPM-MVS | | | 89.33 113 | 87.45 148 | 91.53 73 | 94.49 69 | 96.20 125 | 96.47 54 | 89.72 47 | 82.77 174 | 75.43 117 | 80.53 117 | 70.86 159 | 93.80 90 | 94.00 120 | 91.85 140 | 99.29 108 | 95.91 179 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| test-LLR | | | 89.31 114 | 93.60 80 | 84.30 135 | 88.08 141 | 96.98 110 | 88.10 148 | 78.00 138 | 94.83 97 | 62.43 158 | 84.29 104 | 90.96 81 | 89.70 130 | 95.63 94 | 92.86 124 | 99.51 64 | 99.64 53 |
|
| EPMVS | | | 89.31 114 | 93.70 77 | 84.18 137 | 91.10 101 | 98.10 90 | 89.17 145 | 62.71 203 | 96.24 80 | 70.21 134 | 86.46 89 | 92.37 73 | 92.79 98 | 91.95 146 | 93.59 111 | 99.10 120 | 97.19 162 |
|
| Anonymous20231211 | | | 89.22 116 | 87.56 146 | 91.16 81 | 90.23 119 | 96.62 117 | 93.22 100 | 85.44 80 | 92.89 118 | 84.37 67 | 60.13 180 | 81.25 120 | 96.02 63 | 90.61 157 | 92.01 137 | 97.70 192 | 99.41 81 |
|
| Effi-MVS+ | | | 88.96 117 | 91.13 112 | 86.43 119 | 89.12 133 | 97.62 102 | 93.15 101 | 75.52 156 | 93.90 109 | 66.40 142 | 86.23 91 | 70.51 161 | 95.03 72 | 95.89 85 | 94.28 94 | 99.37 92 | 99.51 70 |
|
| SCA | | | 88.76 118 | 94.29 71 | 82.30 154 | 89.33 131 | 96.81 115 | 87.68 150 | 61.52 208 | 96.95 69 | 64.68 148 | 88.35 71 | 94.80 50 | 91.58 113 | 92.23 140 | 93.21 119 | 98.99 129 | 97.70 150 |
|
| test0.0.03 1 | | | 88.71 119 | 92.22 97 | 84.63 133 | 88.08 141 | 94.71 146 | 85.91 173 | 78.00 138 | 95.54 90 | 72.96 121 | 86.10 93 | 85.88 103 | 83.59 164 | 92.95 135 | 93.24 117 | 99.25 114 | 97.09 166 |
|
| PatchmatchNet |  | | 88.67 120 | 94.10 74 | 82.34 153 | 89.38 130 | 97.72 97 | 87.24 156 | 62.18 206 | 97.00 67 | 64.79 147 | 87.97 73 | 94.43 55 | 91.55 114 | 91.21 154 | 92.77 131 | 98.90 134 | 97.60 154 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| dps | | | 88.66 121 | 90.19 125 | 86.88 113 | 89.94 127 | 96.48 121 | 89.56 137 | 64.08 201 | 94.12 106 | 89.00 35 | 83.39 109 | 82.56 114 | 90.16 127 | 86.81 194 | 89.26 168 | 98.53 167 | 98.71 119 |
|
| TESTMET0.1,1 | | | 88.63 122 | 93.60 80 | 82.84 150 | 84.07 165 | 96.98 110 | 88.10 148 | 73.22 177 | 94.83 97 | 62.43 158 | 84.29 104 | 90.96 81 | 89.70 130 | 95.63 94 | 92.86 124 | 99.51 64 | 99.64 53 |
|
| CHOSEN 1792x2688 | | | 88.63 122 | 89.01 134 | 88.19 107 | 94.83 65 | 99.21 59 | 92.66 107 | 79.85 128 | 92.40 125 | 72.18 126 | 56.38 200 | 80.22 125 | 90.24 125 | 97.64 44 | 97.28 38 | 99.37 92 | 99.94 16 |
|
| CDS-MVSNet | | | 88.59 124 | 90.13 126 | 86.79 117 | 86.98 150 | 95.43 138 | 92.03 114 | 81.33 117 | 85.54 164 | 74.51 120 | 77.07 127 | 85.14 106 | 87.03 150 | 93.90 123 | 95.18 85 | 98.88 136 | 98.67 121 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| IB-MVS | | 84.67 14 | 88.34 125 | 90.61 119 | 85.70 124 | 92.99 79 | 98.62 75 | 78.85 199 | 86.07 74 | 94.35 105 | 88.64 36 | 85.99 95 | 75.69 134 | 68.09 209 | 88.21 175 | 91.43 144 | 99.55 58 | 99.96 10 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| test-mter | | | 88.25 126 | 93.27 87 | 82.38 152 | 83.89 166 | 96.86 113 | 87.10 160 | 72.80 179 | 94.58 102 | 61.85 163 | 83.21 110 | 90.65 83 | 89.18 134 | 95.43 104 | 92.58 133 | 99.46 79 | 99.61 60 |
|
| COLMAP_ROB |  | 84.42 15 | 88.24 127 | 87.32 149 | 89.32 100 | 95.83 59 | 95.82 131 | 92.81 104 | 87.68 61 | 92.09 128 | 72.64 124 | 72.34 148 | 79.96 126 | 88.79 136 | 89.54 167 | 89.46 164 | 98.16 181 | 92.00 199 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| IterMVS-LS | | | 87.95 128 | 89.40 132 | 86.26 120 | 88.79 136 | 90.93 189 | 91.23 123 | 76.05 153 | 90.87 139 | 71.07 129 | 75.51 137 | 81.18 121 | 91.21 118 | 94.11 119 | 95.01 86 | 99.20 117 | 98.23 136 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| HyFIR lowres test | | | 87.86 129 | 88.25 141 | 87.40 110 | 94.67 67 | 98.54 78 | 90.33 132 | 76.51 152 | 89.60 148 | 70.89 130 | 51.43 211 | 85.69 104 | 92.79 98 | 96.59 68 | 95.96 76 | 99.22 116 | 99.94 16 |
|
| Vis-MVSNet |  | | 87.60 130 | 91.31 105 | 83.27 145 | 89.14 132 | 98.04 91 | 90.35 131 | 79.42 129 | 87.23 153 | 66.92 141 | 79.10 122 | 84.63 108 | 74.34 203 | 95.81 87 | 96.06 72 | 99.46 79 | 98.32 133 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| GeoE | | | 87.55 131 | 88.17 142 | 86.82 115 | 88.74 138 | 96.32 124 | 92.75 106 | 74.93 161 | 90.13 145 | 72.73 122 | 69.47 156 | 74.03 141 | 92.51 103 | 93.99 121 | 93.62 109 | 99.29 108 | 99.59 61 |
|
| dmvs_re | | | 87.43 132 | 87.99 143 | 86.77 118 | 84.94 161 | 96.19 126 | 91.87 116 | 85.95 76 | 91.25 137 | 68.58 138 | 81.45 114 | 66.04 169 | 89.95 129 | 90.91 155 | 91.57 142 | 99.37 92 | 98.54 125 |
|
| RPMNet | | | 87.35 133 | 92.41 95 | 81.45 158 | 88.85 135 | 96.06 128 | 89.42 142 | 59.59 215 | 93.57 111 | 61.81 164 | 76.48 133 | 91.48 79 | 90.18 126 | 96.32 75 | 93.37 115 | 98.87 137 | 99.59 61 |
|
| tpm cat1 | | | 87.34 134 | 88.52 140 | 85.95 122 | 89.83 128 | 95.80 132 | 90.73 128 | 64.91 198 | 92.99 117 | 82.21 88 | 71.19 154 | 82.68 113 | 90.13 128 | 86.38 195 | 90.87 152 | 97.90 189 | 99.74 39 |
|
| MS-PatchMatch | | | 87.19 135 | 88.59 139 | 85.55 126 | 93.15 78 | 96.58 119 | 92.35 113 | 74.19 169 | 91.97 131 | 70.33 131 | 71.42 152 | 85.89 102 | 84.28 158 | 93.12 128 | 89.16 170 | 99.00 128 | 91.99 200 |
|
| Effi-MVS+-dtu | | | 87.18 136 | 90.48 122 | 83.32 144 | 86.51 151 | 95.76 134 | 91.16 125 | 74.28 168 | 90.44 144 | 61.31 167 | 86.72 88 | 72.68 147 | 91.25 117 | 95.01 109 | 93.64 104 | 95.45 207 | 99.12 102 |
|
| FMVSNet5 | | | 87.06 137 | 89.52 131 | 84.20 136 | 79.92 203 | 86.57 209 | 87.11 159 | 72.37 181 | 96.06 83 | 75.41 118 | 84.33 103 | 91.76 75 | 91.60 112 | 91.51 150 | 91.22 147 | 98.77 143 | 85.16 212 |
|
| Fast-Effi-MVS+-dtu | | | 86.94 138 | 91.27 108 | 81.89 155 | 86.27 152 | 95.06 139 | 90.68 130 | 68.93 192 | 91.76 133 | 57.18 182 | 89.56 67 | 75.85 133 | 89.19 133 | 94.56 112 | 92.84 126 | 99.07 123 | 99.23 92 |
|
| Fast-Effi-MVS+ | | | 86.94 138 | 87.88 145 | 85.84 123 | 86.99 149 | 95.80 132 | 91.24 122 | 73.48 176 | 92.75 120 | 69.22 135 | 72.70 146 | 65.71 170 | 94.84 75 | 94.98 110 | 94.71 90 | 99.26 112 | 98.48 128 |
|
| tpmrst | | | 86.78 140 | 90.29 123 | 82.69 151 | 90.55 112 | 96.95 112 | 88.49 147 | 62.58 204 | 95.09 95 | 63.52 154 | 76.67 132 | 84.00 111 | 92.05 105 | 87.93 178 | 91.89 139 | 98.98 131 | 99.50 72 |
|
| CR-MVSNet | | | 86.73 141 | 91.47 103 | 81.20 161 | 88.56 139 | 96.06 128 | 89.43 140 | 61.37 209 | 93.57 111 | 60.81 169 | 72.89 145 | 88.85 87 | 88.13 143 | 96.03 81 | 93.64 104 | 98.89 135 | 99.22 93 |
|
| ADS-MVSNet | | | 86.68 142 | 90.79 116 | 81.88 156 | 90.38 116 | 96.81 115 | 86.90 161 | 60.50 213 | 96.01 84 | 63.93 151 | 81.67 113 | 84.72 107 | 90.78 122 | 87.03 188 | 91.67 141 | 98.77 143 | 97.63 153 |
|
| FMVSNet1 | | | 85.85 143 | 84.91 159 | 86.96 112 | 82.70 171 | 91.39 183 | 91.54 119 | 77.45 144 | 85.29 166 | 79.56 107 | 60.70 177 | 72.68 147 | 92.37 104 | 94.12 116 | 93.73 101 | 98.12 182 | 96.44 173 |
|
| FC-MVSNet-test | | | 85.51 144 | 89.08 133 | 81.35 159 | 85.31 156 | 93.35 153 | 87.65 151 | 77.55 143 | 90.01 146 | 64.07 150 | 79.63 120 | 81.83 119 | 74.94 200 | 92.08 143 | 90.83 154 | 98.55 164 | 95.81 180 |
|
| ACMH | | 85.22 13 | 85.40 145 | 85.73 156 | 85.02 129 | 91.76 88 | 94.46 149 | 84.97 179 | 81.54 115 | 85.18 168 | 65.22 146 | 76.92 128 | 64.22 171 | 88.58 139 | 90.17 159 | 90.25 160 | 98.03 185 | 98.90 113 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| TAMVS | | | 85.35 146 | 86.00 155 | 84.59 134 | 84.97 160 | 95.57 136 | 88.98 146 | 77.29 147 | 81.44 179 | 71.36 128 | 71.48 151 | 75.00 138 | 87.03 150 | 91.92 147 | 92.21 135 | 97.92 188 | 94.40 189 |
|
| ACMH+ | | 85.62 12 | 85.27 147 | 84.96 158 | 85.64 125 | 90.84 106 | 94.78 143 | 87.46 153 | 81.30 118 | 86.94 154 | 67.35 140 | 74.56 139 | 64.09 172 | 88.70 137 | 88.14 176 | 89.00 171 | 98.22 180 | 97.19 162 |
|
| USDC | | | 85.11 148 | 85.35 157 | 84.83 130 | 89.45 129 | 94.93 142 | 92.98 102 | 77.30 146 | 90.53 142 | 61.80 165 | 76.69 131 | 59.62 182 | 88.90 135 | 92.78 137 | 90.79 156 | 98.53 167 | 92.12 197 |
|
| IterMVS | | | 85.02 149 | 88.98 135 | 80.41 167 | 87.03 148 | 90.34 197 | 89.78 136 | 69.45 189 | 89.77 147 | 54.04 196 | 73.71 142 | 82.05 118 | 83.44 167 | 95.11 107 | 93.64 104 | 98.75 147 | 98.22 138 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| IterMVS-SCA-FT | | | 84.91 150 | 88.90 137 | 80.25 170 | 87.04 147 | 90.27 198 | 89.23 144 | 69.25 191 | 89.17 149 | 54.04 196 | 73.65 143 | 82.22 116 | 83.23 172 | 95.11 107 | 93.63 108 | 98.73 148 | 98.23 136 |
|
| PatchT | | | 84.89 151 | 90.67 118 | 78.13 190 | 87.83 144 | 94.99 141 | 72.46 211 | 60.22 214 | 91.74 135 | 60.81 169 | 72.16 149 | 86.95 96 | 88.13 143 | 96.03 81 | 93.64 104 | 99.36 95 | 99.22 93 |
|
| pmmvs4 | | | 84.88 152 | 84.67 160 | 85.13 128 | 82.80 170 | 92.37 167 | 87.29 154 | 79.08 133 | 90.51 143 | 74.94 119 | 70.37 155 | 62.49 175 | 88.17 142 | 92.01 145 | 88.51 176 | 98.49 170 | 96.44 173 |
|
| CVMVSNet | | | 84.01 153 | 86.91 150 | 80.61 165 | 88.39 140 | 93.29 154 | 86.06 169 | 82.29 104 | 83.13 172 | 54.29 192 | 72.68 147 | 79.59 127 | 75.11 199 | 91.23 153 | 92.91 122 | 97.54 196 | 95.58 182 |
|
| tpm | | | 83.97 154 | 87.97 144 | 79.31 180 | 87.35 146 | 93.21 156 | 86.00 171 | 61.90 207 | 90.69 141 | 54.01 198 | 79.42 121 | 75.61 135 | 88.65 138 | 87.18 186 | 90.48 158 | 97.95 187 | 99.21 95 |
|
| GA-MVS | | | 83.83 155 | 86.63 151 | 80.58 166 | 85.40 155 | 94.73 145 | 87.27 155 | 78.76 136 | 86.49 156 | 49.57 206 | 74.21 140 | 67.67 166 | 83.38 168 | 95.28 106 | 90.92 151 | 99.08 122 | 97.09 166 |
|
| UniMVSNet_NR-MVSNet | | | 83.83 155 | 83.70 163 | 83.98 139 | 81.41 181 | 92.56 166 | 86.54 164 | 82.96 100 | 85.98 161 | 66.27 143 | 66.16 167 | 63.63 173 | 87.78 147 | 87.65 181 | 90.81 155 | 98.94 132 | 99.13 100 |
|
| UniMVSNet (Re) | | | 83.28 157 | 83.16 164 | 83.42 143 | 81.93 176 | 93.12 158 | 86.27 167 | 80.83 120 | 85.88 162 | 68.23 139 | 64.56 170 | 60.58 177 | 84.25 159 | 89.13 173 | 89.44 166 | 99.04 126 | 99.40 82 |
|
| thisisatest0515 | | | 83.17 158 | 86.49 152 | 79.30 181 | 82.04 174 | 93.12 158 | 78.70 200 | 77.92 140 | 86.43 157 | 63.05 155 | 74.91 138 | 73.01 144 | 75.56 198 | 92.10 142 | 88.05 189 | 98.50 169 | 97.76 149 |
|
| TinyColmap | | | 83.03 159 | 82.24 168 | 83.95 140 | 88.88 134 | 93.22 155 | 89.48 138 | 76.89 149 | 87.53 152 | 62.12 160 | 68.46 159 | 55.03 198 | 88.43 141 | 90.87 156 | 89.65 162 | 97.89 190 | 90.91 203 |
|
| testgi | | | 82.88 160 | 86.14 154 | 79.08 183 | 86.05 153 | 92.20 175 | 81.23 196 | 74.77 164 | 88.70 150 | 57.63 181 | 86.73 87 | 61.53 176 | 76.83 193 | 90.33 158 | 89.43 167 | 97.99 186 | 94.05 190 |
|
| DU-MVS | | | 82.87 161 | 82.16 169 | 83.70 142 | 80.77 190 | 92.24 171 | 86.54 164 | 81.91 107 | 86.41 158 | 66.27 143 | 63.95 171 | 55.66 196 | 87.78 147 | 86.83 191 | 90.86 153 | 98.94 132 | 99.13 100 |
|
| MIMVSNet | | | 82.87 161 | 86.17 153 | 79.02 184 | 77.23 211 | 92.88 161 | 84.88 180 | 60.62 212 | 86.72 155 | 64.16 149 | 73.58 144 | 71.48 150 | 88.51 140 | 94.14 115 | 93.50 114 | 98.72 150 | 90.87 204 |
|
| NR-MVSNet | | | 82.37 163 | 81.95 171 | 82.85 149 | 82.56 173 | 92.24 171 | 87.49 152 | 81.91 107 | 86.41 158 | 65.51 145 | 63.95 171 | 52.93 207 | 80.80 179 | 89.41 169 | 89.61 163 | 98.85 139 | 99.10 105 |
|
| Baseline_NR-MVSNet | | | 82.08 164 | 80.64 178 | 83.77 141 | 80.77 190 | 88.50 204 | 86.88 162 | 81.71 112 | 85.58 163 | 68.80 136 | 58.20 192 | 57.75 188 | 86.16 152 | 86.83 191 | 88.68 173 | 98.33 177 | 98.90 113 |
|
| TranMVSNet+NR-MVSNet | | | 82.07 165 | 81.36 174 | 82.90 148 | 80.43 196 | 91.39 183 | 87.16 158 | 82.75 101 | 84.28 170 | 62.98 156 | 62.28 176 | 56.01 195 | 85.30 155 | 86.06 197 | 90.69 157 | 98.80 140 | 98.80 116 |
|
| pm-mvs1 | | | 81.68 166 | 81.70 172 | 81.65 157 | 82.61 172 | 92.26 170 | 85.54 177 | 78.95 134 | 76.29 201 | 63.81 152 | 58.43 191 | 66.33 168 | 80.63 180 | 92.30 139 | 89.93 161 | 98.37 176 | 96.39 175 |
|
| TDRefinement | | | 81.49 167 | 80.08 184 | 83.13 147 | 91.02 103 | 94.53 147 | 91.66 118 | 82.43 103 | 81.70 177 | 62.12 160 | 62.30 175 | 59.32 183 | 73.93 204 | 87.31 184 | 85.29 200 | 97.61 193 | 90.14 205 |
|
| anonymousdsp | | | 81.29 168 | 84.52 162 | 77.52 192 | 79.83 204 | 92.62 165 | 82.61 191 | 70.88 186 | 80.76 183 | 50.82 203 | 68.35 161 | 68.76 164 | 82.45 175 | 93.00 131 | 89.45 165 | 98.55 164 | 98.69 120 |
|
| gg-mvs-nofinetune | | | 81.27 169 | 84.65 161 | 77.32 193 | 87.96 143 | 98.48 81 | 95.64 61 | 56.36 218 | 59.35 220 | 32.80 224 | 47.96 215 | 92.11 74 | 91.49 115 | 98.12 24 | 97.00 48 | 99.65 24 | 99.56 66 |
|
| tfpnnormal | | | 81.11 170 | 79.33 192 | 83.19 146 | 84.23 163 | 92.29 169 | 86.76 163 | 82.27 105 | 72.67 207 | 62.02 162 | 56.10 202 | 53.86 204 | 85.35 154 | 92.06 144 | 89.23 169 | 98.49 170 | 99.11 104 |
|
| UniMVSNet_ETH3D | | | 80.95 171 | 77.71 200 | 84.74 131 | 84.45 162 | 93.11 160 | 86.45 166 | 79.97 127 | 75.21 203 | 70.22 133 | 51.24 212 | 50.26 213 | 89.55 132 | 84.47 204 | 91.12 148 | 97.81 191 | 98.53 126 |
|
| V42 | | | 80.88 172 | 80.74 176 | 81.05 162 | 81.21 184 | 92.01 177 | 85.96 172 | 77.75 142 | 81.62 178 | 59.73 176 | 59.93 183 | 58.35 187 | 82.98 174 | 86.90 190 | 88.06 188 | 98.69 153 | 98.32 133 |
|
| v2v482 | | | 80.86 173 | 80.52 182 | 81.25 160 | 80.79 189 | 91.85 178 | 85.68 175 | 78.78 135 | 81.05 180 | 58.09 179 | 60.46 178 | 56.08 193 | 85.45 153 | 87.27 185 | 88.53 175 | 98.73 148 | 98.38 132 |
|
| v8 | | | 80.61 174 | 80.61 180 | 80.62 164 | 81.51 179 | 91.00 188 | 86.06 169 | 74.07 172 | 81.78 176 | 59.93 175 | 60.10 182 | 58.42 186 | 83.35 169 | 86.99 189 | 88.11 186 | 98.79 141 | 97.83 147 |
|
| pmmvs5 | | | 80.48 175 | 81.43 173 | 79.36 179 | 81.50 180 | 92.24 171 | 82.07 194 | 74.08 171 | 78.10 194 | 55.86 187 | 67.72 164 | 54.35 201 | 83.91 163 | 92.97 132 | 88.65 174 | 98.77 143 | 96.01 177 |
|
| v10 | | | 80.38 176 | 80.73 177 | 79.96 172 | 81.22 183 | 90.40 196 | 86.11 168 | 71.63 183 | 82.42 175 | 57.65 180 | 58.74 189 | 57.47 189 | 84.44 157 | 89.75 163 | 88.28 179 | 98.71 151 | 98.06 144 |
|
| v1144 | | | 80.36 177 | 80.63 179 | 80.05 171 | 80.86 188 | 91.56 181 | 85.78 174 | 75.22 158 | 80.73 184 | 55.83 188 | 58.51 190 | 56.99 191 | 83.93 162 | 89.79 162 | 88.25 180 | 98.68 154 | 98.56 124 |
|
| SixPastTwentyTwo | | | 80.28 178 | 82.06 170 | 78.21 189 | 81.89 178 | 92.35 168 | 77.72 201 | 74.48 165 | 83.04 173 | 54.22 193 | 76.06 135 | 56.40 192 | 83.55 165 | 86.83 191 | 84.83 202 | 97.38 197 | 94.93 186 |
|
| CP-MVSNet | | | 79.90 179 | 79.49 189 | 80.38 168 | 80.72 192 | 90.83 190 | 82.98 188 | 75.17 159 | 79.70 189 | 61.39 166 | 59.74 184 | 51.98 210 | 83.31 170 | 87.37 183 | 88.38 177 | 98.71 151 | 98.45 129 |
|
| v1192 | | | 79.84 180 | 80.05 186 | 79.61 175 | 80.49 195 | 91.04 187 | 85.56 176 | 74.37 167 | 80.73 184 | 54.35 191 | 57.07 197 | 54.54 200 | 84.23 160 | 89.94 160 | 88.38 177 | 98.63 158 | 98.61 122 |
|
| WR-MVS_H | | | 79.76 181 | 80.07 185 | 79.40 178 | 81.25 182 | 91.73 180 | 82.77 189 | 74.82 163 | 79.02 193 | 62.55 157 | 59.41 186 | 57.32 190 | 76.27 195 | 87.61 182 | 87.30 194 | 98.78 142 | 98.09 142 |
|
| WR-MVS | | | 79.67 182 | 80.25 183 | 79.00 185 | 80.65 193 | 91.16 185 | 83.31 186 | 76.57 151 | 80.97 181 | 60.50 174 | 59.20 187 | 58.66 185 | 74.38 202 | 85.85 199 | 87.76 191 | 98.61 159 | 98.14 139 |
|
| v148 | | | 79.66 183 | 79.13 194 | 80.27 169 | 81.02 186 | 91.76 179 | 81.90 195 | 79.32 130 | 79.24 191 | 63.79 153 | 58.07 194 | 54.34 202 | 77.17 191 | 84.42 205 | 87.52 193 | 98.40 173 | 98.59 123 |
|
| LTVRE_ROB | | 79.45 16 | 79.66 183 | 80.55 181 | 78.61 187 | 83.01 169 | 92.19 176 | 87.18 157 | 73.69 175 | 71.70 210 | 43.22 219 | 71.22 153 | 50.85 211 | 87.82 146 | 89.47 168 | 90.43 159 | 96.75 200 | 98.00 146 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| v144192 | | | 79.61 185 | 79.77 187 | 79.41 177 | 80.28 197 | 91.06 186 | 84.87 181 | 73.86 173 | 79.65 190 | 55.38 189 | 57.76 195 | 55.20 197 | 83.46 166 | 88.42 174 | 87.89 190 | 98.61 159 | 98.42 131 |
|
| v1921920 | | | 79.55 186 | 79.77 187 | 79.30 181 | 80.24 198 | 90.77 192 | 85.37 178 | 73.75 174 | 80.38 186 | 53.78 199 | 56.89 199 | 54.18 203 | 84.05 161 | 89.55 166 | 88.13 185 | 98.59 161 | 98.52 127 |
|
| TransMVSNet (Re) | | | 79.51 187 | 78.36 196 | 80.84 163 | 83.17 167 | 89.72 200 | 84.22 184 | 81.45 116 | 73.98 206 | 60.79 172 | 57.20 196 | 56.05 194 | 77.11 192 | 89.88 161 | 88.86 172 | 98.30 179 | 92.83 195 |
|
| MVS-HIRNet | | | 79.34 188 | 82.56 165 | 75.57 198 | 84.11 164 | 95.02 140 | 75.03 208 | 57.28 217 | 85.50 165 | 55.88 186 | 53.00 208 | 70.51 161 | 83.05 173 | 92.12 141 | 91.96 138 | 98.09 183 | 89.83 206 |
|
| PS-CasMVS | | | 79.06 189 | 78.58 195 | 79.63 174 | 80.59 194 | 90.55 194 | 82.54 192 | 75.04 160 | 77.76 195 | 58.84 177 | 58.16 193 | 50.11 215 | 82.09 176 | 87.05 187 | 88.18 183 | 98.66 157 | 98.27 135 |
|
| v1240 | | | 78.97 190 | 79.27 193 | 78.63 186 | 80.04 199 | 90.61 193 | 84.25 183 | 72.95 178 | 79.22 192 | 52.70 201 | 56.22 201 | 52.88 209 | 83.28 171 | 89.60 165 | 88.20 182 | 98.56 163 | 98.14 139 |
|
| pmnet_mix02 | | | 78.91 191 | 81.17 175 | 76.28 197 | 81.91 177 | 90.82 191 | 74.25 209 | 77.87 141 | 86.17 160 | 49.04 207 | 67.97 162 | 62.93 174 | 77.40 189 | 82.75 210 | 82.11 209 | 97.18 198 | 95.42 183 |
|
| MDTV_nov1_ep13_2view | | | 78.83 192 | 82.35 166 | 74.73 201 | 78.65 206 | 91.51 182 | 79.18 198 | 62.52 205 | 84.51 169 | 52.51 202 | 67.49 165 | 67.29 167 | 78.90 183 | 85.52 201 | 86.34 197 | 96.62 202 | 93.76 191 |
|
| PEN-MVS | | | 78.80 193 | 78.13 198 | 79.58 176 | 80.03 200 | 89.67 201 | 83.61 185 | 75.83 154 | 77.71 197 | 58.41 178 | 60.11 181 | 50.00 216 | 81.02 178 | 84.08 206 | 88.14 184 | 98.59 161 | 97.18 164 |
|
| EG-PatchMatch MVS | | | 78.32 194 | 79.42 191 | 77.03 195 | 83.03 168 | 93.77 152 | 84.47 182 | 69.26 190 | 75.85 202 | 53.69 200 | 55.68 203 | 60.23 180 | 73.20 205 | 89.69 164 | 88.22 181 | 98.55 164 | 92.54 196 |
|
| DTE-MVSNet | | | 77.92 195 | 77.42 201 | 78.51 188 | 79.34 205 | 89.00 203 | 83.05 187 | 75.60 155 | 76.89 199 | 56.58 183 | 59.63 185 | 50.31 212 | 78.09 188 | 82.57 211 | 87.56 192 | 98.38 174 | 95.95 178 |
|
| v7n | | | 77.71 196 | 78.25 197 | 77.09 194 | 78.49 207 | 90.55 194 | 82.15 193 | 71.11 185 | 76.79 200 | 54.18 194 | 55.63 204 | 50.20 214 | 78.28 186 | 89.36 171 | 87.15 195 | 98.33 177 | 98.07 143 |
|
| gm-plane-assit | | | 77.20 197 | 82.26 167 | 71.30 204 | 81.10 185 | 82.00 217 | 54.33 222 | 64.41 200 | 63.80 219 | 40.93 221 | 59.04 188 | 76.57 132 | 87.30 149 | 98.26 22 | 97.36 37 | 99.74 13 | 98.76 118 |
|
| N_pmnet | | | 76.83 198 | 77.97 199 | 75.50 199 | 80.96 187 | 88.23 206 | 72.81 210 | 76.83 150 | 80.87 182 | 50.55 204 | 56.94 198 | 60.09 181 | 75.70 197 | 83.28 208 | 84.23 204 | 96.14 206 | 92.12 197 |
|
| pmmvs6 | | | 76.79 199 | 75.69 206 | 78.09 191 | 79.95 202 | 89.57 202 | 80.92 197 | 74.46 166 | 64.79 217 | 60.74 173 | 45.71 217 | 60.55 178 | 78.37 184 | 88.04 177 | 86.00 198 | 94.07 210 | 95.15 184 |
|
| CMPMVS |  | 58.73 17 | 76.78 200 | 74.27 207 | 79.70 173 | 93.26 76 | 95.58 135 | 82.74 190 | 77.44 145 | 71.46 213 | 56.29 185 | 53.58 207 | 59.13 184 | 77.33 190 | 79.20 212 | 79.71 212 | 91.14 215 | 81.24 215 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| EU-MVSNet | | | 76.76 201 | 79.47 190 | 73.60 202 | 79.99 201 | 87.47 207 | 77.39 202 | 75.43 157 | 77.62 198 | 47.83 210 | 64.78 169 | 60.44 179 | 64.80 210 | 86.28 196 | 86.53 196 | 96.17 205 | 93.19 194 |
|
| PM-MVS | | | 75.81 202 | 76.11 205 | 75.46 200 | 73.81 213 | 85.48 211 | 76.42 204 | 70.57 187 | 80.05 188 | 54.75 190 | 62.33 174 | 39.56 223 | 80.59 181 | 87.71 180 | 82.81 208 | 96.61 204 | 94.81 187 |
|
| pmmvs-eth3d | | | 75.17 203 | 74.09 208 | 76.43 196 | 72.92 214 | 84.49 213 | 76.61 203 | 72.42 180 | 74.33 204 | 61.28 168 | 54.71 206 | 39.42 224 | 78.20 187 | 87.77 179 | 84.25 203 | 97.17 199 | 93.63 192 |
|
| Anonymous20231206 | | | 74.59 204 | 77.00 202 | 71.78 203 | 77.89 210 | 87.45 208 | 75.14 207 | 72.29 182 | 77.76 195 | 46.65 212 | 52.14 209 | 52.93 207 | 61.10 213 | 89.37 170 | 88.09 187 | 97.59 194 | 91.30 202 |
|
| test20.03 | | | 72.81 205 | 76.24 204 | 68.80 207 | 78.31 208 | 85.40 212 | 71.04 212 | 71.20 184 | 71.85 209 | 43.40 218 | 65.31 168 | 54.71 199 | 51.27 216 | 85.92 198 | 84.18 205 | 97.58 195 | 86.35 211 |
|
| test_method | | | 71.90 206 | 76.72 203 | 66.28 212 | 60.87 222 | 78.37 219 | 69.75 216 | 49.81 223 | 83.44 171 | 49.63 205 | 47.13 216 | 53.23 206 | 76.38 194 | 91.32 152 | 85.76 199 | 91.22 214 | 97.77 148 |
|
| new_pmnet | | | 71.86 207 | 73.67 209 | 69.75 206 | 72.56 217 | 84.20 214 | 70.95 214 | 66.81 196 | 80.34 187 | 43.62 217 | 51.60 210 | 53.81 205 | 71.24 207 | 82.91 209 | 80.93 210 | 93.35 212 | 81.92 214 |
|
| MDA-MVSNet-bldmvs | | | 69.61 208 | 70.36 211 | 68.74 208 | 62.88 220 | 88.50 204 | 65.40 219 | 77.01 148 | 71.60 212 | 43.93 214 | 66.71 166 | 35.33 226 | 72.47 206 | 61.01 219 | 80.63 211 | 90.73 216 | 88.75 209 |
|
| pmmvs3 | | | 69.04 209 | 70.75 210 | 67.04 210 | 66.83 218 | 78.54 218 | 64.99 220 | 60.92 211 | 64.67 218 | 40.61 222 | 55.08 205 | 40.29 222 | 74.89 201 | 83.76 207 | 84.01 206 | 93.98 211 | 88.88 208 |
|
| MIMVSNet1 | | | 68.63 210 | 70.24 212 | 66.76 211 | 56.86 224 | 83.26 215 | 67.93 217 | 70.26 188 | 68.05 215 | 46.80 211 | 40.44 218 | 48.15 217 | 62.01 211 | 84.96 203 | 84.86 201 | 96.69 201 | 81.93 213 |
|
| GG-mvs-BLEND | | | 67.99 211 | 97.35 38 | 33.72 220 | 1.22 230 | 99.72 17 | 98.30 34 | 0.57 227 | 97.61 61 | 1.18 231 | 93.26 51 | 96.63 43 | 1.74 227 | 97.15 54 | 97.14 40 | 99.34 100 | 99.96 10 |
|
| new-patchmatchnet | | | 67.66 212 | 68.07 213 | 67.18 209 | 72.85 215 | 82.86 216 | 63.09 221 | 68.61 194 | 66.60 216 | 42.64 220 | 49.28 213 | 38.68 225 | 61.21 212 | 75.84 213 | 75.22 214 | 94.67 209 | 88.00 210 |
|
| FPMVS | | | 63.27 213 | 61.31 216 | 65.57 213 | 78.25 209 | 74.42 222 | 75.23 206 | 68.92 193 | 72.33 208 | 43.87 215 | 49.01 214 | 43.94 220 | 48.64 218 | 61.15 218 | 58.81 220 | 78.51 222 | 69.49 220 |
|
| WB-MVS | | | 56.28 214 | 63.25 215 | 48.16 217 | 75.24 212 | 65.97 223 | 39.91 226 | 74.13 170 | 69.25 214 | 10.01 229 | 62.67 173 | 44.05 219 | 20.71 226 | 70.43 216 | 69.57 216 | 68.94 224 | 60.78 225 |
|
| Gipuma |  | | 54.59 215 | 53.98 217 | 55.30 214 | 59.03 223 | 52.63 225 | 47.17 224 | 56.08 219 | 71.68 211 | 37.54 223 | 20.90 224 | 19.00 228 | 52.33 215 | 71.69 215 | 75.20 215 | 79.64 221 | 66.79 221 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| PMVS |  | 49.05 18 | 51.88 216 | 50.56 219 | 53.42 215 | 64.21 219 | 43.30 227 | 42.64 225 | 62.93 202 | 50.56 221 | 43.72 216 | 37.44 219 | 42.95 221 | 35.05 221 | 58.76 221 | 54.58 221 | 71.95 223 | 66.33 222 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| PMMVS2 | | | 50.69 217 | 52.33 218 | 48.78 216 | 51.24 225 | 64.81 224 | 47.91 223 | 53.79 222 | 44.95 222 | 21.75 225 | 29.98 222 | 25.90 227 | 31.98 223 | 59.95 220 | 65.37 218 | 86.00 219 | 75.36 218 |
|
| E-PMN | | | 37.15 218 | 34.82 221 | 39.86 218 | 47.53 227 | 35.42 229 | 23.79 228 | 55.26 220 | 35.18 225 | 14.12 227 | 17.38 227 | 14.13 230 | 39.73 220 | 32.24 223 | 46.98 222 | 58.76 225 | 62.39 224 |
|
| EMVS | | | 36.45 219 | 33.63 222 | 39.74 219 | 48.47 226 | 35.73 228 | 23.59 229 | 55.11 221 | 35.61 224 | 12.88 228 | 17.49 225 | 14.62 229 | 41.04 219 | 29.33 224 | 43.00 223 | 57.32 226 | 59.62 226 |
|
| MVE |  | 42.40 19 | 36.00 220 | 38.65 220 | 32.92 221 | 29.16 228 | 46.17 226 | 22.61 230 | 44.21 224 | 26.44 227 | 18.88 226 | 17.41 226 | 9.36 232 | 32.29 222 | 45.75 222 | 61.38 219 | 50.35 227 | 64.03 223 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| testmvs | | | 21.55 221 | 30.91 223 | 10.62 222 | 2.78 229 | 11.66 230 | 18.51 231 | 4.82 225 | 38.21 223 | 4.06 230 | 36.35 220 | 4.47 233 | 26.81 224 | 23.27 225 | 27.11 224 | 6.75 228 | 75.30 219 |
|
| test123 | | | 16.81 222 | 24.80 224 | 7.48 223 | 0.82 231 | 8.38 231 | 11.92 232 | 2.60 226 | 28.96 226 | 1.12 232 | 28.39 223 | 1.26 234 | 24.51 225 | 8.93 226 | 22.19 225 | 3.90 229 | 75.49 217 |
|
| uanet_test | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 232 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 235 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| sosnet-low-res | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 232 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 235 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| sosnet | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 232 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 235 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| TPM-MVS | | | | | | 99.50 1 | 99.78 12 | 99.69 1 | | | 88.49 37 | 97.88 26 | 98.84 22 | 99.42 1 | | | 99.76 10 | 97.44 156 |
| Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025 |
| RE-MVS-def | | | | | | | | | | | 46.54 213 | | | | | | | |
|
| 9.14 | | | | | | | | | | | | | 99.73 8 | | | | | |
|
| SR-MVS | | | | | | 99.27 16 | | | 95.82 18 | | | | 99.00 18 | | | | | |
|
| Anonymous202405211 | | | | 87.54 147 | | 90.72 108 | 97.10 109 | 93.40 98 | 85.30 82 | 91.41 136 | | 60.23 179 | 80.69 124 | 95.80 67 | 91.33 151 | 92.60 132 | 98.38 174 | 99.40 82 |
|
| our_test_3 | | | | | | 81.94 175 | 90.26 199 | 75.39 205 | | | | | | | | | | |
|
| ambc | | | | 64.61 214 | | 61.80 221 | 75.31 221 | 71.00 213 | | 74.16 205 | 48.83 208 | 36.02 221 | 13.22 231 | 58.66 214 | 85.80 200 | 76.26 213 | 88.01 217 | 91.53 201 |
|
| MTAPA | | | | | | | | | | | 94.58 14 | | 98.56 24 | | | | | |
|
| MTMP | | | | | | | | | | | 95.24 8 | | 98.13 30 | | | | | |
|
| Patchmatch-RL test | | | | | | | | 37.05 227 | | | | | | | | | | |
|
| tmp_tt | | | | | 71.24 205 | 90.29 118 | 76.39 220 | 65.81 218 | 59.43 216 | 97.62 59 | 79.65 106 | 90.60 62 | 68.71 165 | 49.71 217 | 72.71 214 | 65.70 217 | 82.54 220 | |
|
| XVS | | | | | | 93.63 71 | 99.64 25 | 94.32 83 | | | 83.97 73 | | 98.08 32 | | | | 99.59 37 | |
|
| X-MVStestdata | | | | | | 93.63 71 | 99.64 25 | 94.32 83 | | | 83.97 73 | | 98.08 32 | | | | 99.59 37 | |
|
| mPP-MVS | | | | | | 98.66 29 | | | | | | | 97.11 40 | | | | | |
|
| NP-MVS | | | | | | | | | | 97.69 57 | | | | | | | | |
|
| Patchmtry | | | | | | | 95.86 130 | 89.43 140 | 61.37 209 | | 60.81 169 | | | | | | | |
|
| DeepMVS_CX |  | | | | | | 85.88 210 | 69.83 215 | 81.56 114 | 87.99 151 | 48.22 209 | 71.85 150 | 45.52 218 | 68.67 208 | 63.21 217 | | 86.64 218 | 80.03 216 |
|