SED-MVS | | | 98.87 1 | 99.20 2 | 98.48 1 | 99.32 11 | 99.85 2 | 99.55 7 | 96.20 6 | 99.48 3 | 96.78 3 | 98.51 15 | 99.99 1 | 99.36 1 | 98.98 8 | 97.59 29 | 99.67 19 | 99.99 3 |
|
DVP-MVS++ | | | 98.75 2 | 99.11 7 | 98.33 3 | 99.41 4 | 99.85 2 | 99.61 3 | 96.22 5 | 99.32 9 | 95.80 5 | 98.27 18 | 99.97 4 | 99.22 4 | 98.95 9 | 97.48 33 | 99.71 17 | 99.98 5 |
|
MSP-MVS | | | 98.75 2 | 99.27 1 | 98.15 8 | 99.21 17 | 99.82 7 | 99.58 5 | 96.09 13 | 99.32 9 | 95.16 9 | 98.79 6 | 99.55 9 | 99.05 6 | 99.54 1 | 97.88 21 | 99.84 3 | 99.99 3 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
CNVR-MVS | | | 98.73 4 | 99.17 5 | 98.22 5 | 99.47 3 | 99.85 2 | 99.57 6 | 96.23 3 | 99.30 11 | 94.90 11 | 98.65 10 | 98.93 20 | 99.36 1 | 99.46 3 | 98.21 11 | 99.81 6 | 99.80 33 |
|
DPE-MVS |  | | 98.69 5 | 99.14 6 | 98.16 7 | 99.37 7 | 99.82 7 | 99.66 2 | 96.26 1 | 99.18 17 | 95.02 10 | 98.62 12 | 99.98 3 | 98.88 11 | 98.90 12 | 97.51 32 | 99.75 10 | 99.97 8 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
DVP-MVS |  | | 98.65 6 | 98.87 13 | 98.38 2 | 99.30 13 | 99.85 2 | 99.14 22 | 96.23 3 | 99.51 2 | 97.16 1 | 96.01 33 | 99.99 1 | 98.90 10 | 98.89 13 | 97.88 21 | 99.56 51 | 99.98 5 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
APDe-MVS | | | 98.60 7 | 98.97 10 | 98.18 6 | 99.38 6 | 99.78 12 | 99.35 14 | 96.14 9 | 99.24 14 | 95.66 7 | 98.19 20 | 99.01 17 | 98.66 17 | 98.77 15 | 97.80 24 | 99.86 2 | 99.97 8 |
|
SF-MVS | | | 98.55 8 | 98.75 15 | 98.32 4 | 99.48 1 | 99.68 21 | 99.51 9 | 96.24 2 | 99.08 21 | 95.94 4 | 98.64 11 | 99.30 13 | 99.02 8 | 97.94 29 | 96.86 51 | 99.75 10 | 99.76 36 |
|
SMA-MVS |  | | 98.47 9 | 99.06 8 | 97.77 11 | 99.48 1 | 99.78 12 | 99.37 11 | 96.14 9 | 99.29 12 | 93.03 19 | 97.59 28 | 99.97 4 | 99.03 7 | 98.94 10 | 98.30 9 | 99.60 32 | 99.58 64 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
NCCC | | | 98.41 10 | 99.18 3 | 97.52 15 | 99.36 8 | 99.84 6 | 99.55 7 | 96.08 15 | 99.33 8 | 91.77 24 | 98.79 6 | 99.46 11 | 98.59 19 | 99.15 7 | 98.07 18 | 99.73 13 | 99.64 53 |
|
SD-MVS | | | 98.33 11 | 99.01 9 | 97.54 14 | 97.17 49 | 99.77 14 | 99.14 22 | 96.09 13 | 99.34 7 | 94.06 15 | 97.91 25 | 99.89 6 | 99.18 5 | 97.99 28 | 98.21 11 | 99.63 26 | 99.95 13 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
APD-MVS |  | | 98.28 12 | 98.69 16 | 97.80 10 | 99.31 12 | 99.62 27 | 99.31 17 | 96.15 8 | 99.19 16 | 93.60 16 | 97.28 29 | 98.35 26 | 98.72 16 | 98.27 21 | 98.22 10 | 99.73 13 | 99.89 25 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
MCST-MVS | | | 98.20 13 | 99.18 3 | 97.06 21 | 99.27 15 | 99.87 1 | 99.37 11 | 96.11 11 | 99.37 5 | 89.29 32 | 98.76 8 | 99.50 10 | 98.37 24 | 99.23 5 | 97.64 27 | 99.95 1 | 99.87 29 |
|
HPM-MVS++ |  | | 98.16 14 | 98.87 13 | 97.32 17 | 99.39 5 | 99.70 19 | 99.18 20 | 96.10 12 | 99.09 20 | 91.14 26 | 98.02 23 | 99.89 6 | 98.44 22 | 98.75 16 | 97.03 46 | 99.67 19 | 99.63 56 |
|
MSLP-MVS++ | | | 98.12 15 | 98.23 28 | 97.99 9 | 99.28 14 | 99.72 16 | 99.59 4 | 95.27 28 | 98.61 34 | 94.79 12 | 96.11 32 | 97.79 35 | 99.27 3 | 96.62 67 | 98.96 5 | 99.77 9 | 99.80 33 |
|
HFP-MVS | | | 98.02 16 | 98.55 20 | 97.40 16 | 99.11 20 | 99.69 20 | 99.41 10 | 95.41 26 | 98.79 30 | 91.86 23 | 98.61 13 | 98.16 28 | 99.02 8 | 97.87 33 | 97.40 35 | 99.60 32 | 99.35 83 |
|
TSAR-MVS + MP. | | | 97.98 17 | 98.62 19 | 97.23 19 | 97.08 50 | 99.55 33 | 99.17 21 | 95.69 21 | 99.40 4 | 93.04 18 | 96.68 31 | 98.96 19 | 98.58 20 | 98.82 14 | 96.95 48 | 99.81 6 | 99.96 10 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
SteuartSystems-ACMMP | | | 97.86 18 | 98.91 11 | 96.64 25 | 98.89 26 | 99.79 9 | 99.34 15 | 95.20 30 | 98.48 36 | 89.91 30 | 98.58 14 | 98.69 22 | 96.84 47 | 98.92 11 | 98.16 15 | 99.66 21 | 99.74 39 |
Skip Steuart: Steuart Systems R&D Blog. |
CP-MVS | | | 97.81 19 | 98.26 27 | 97.28 18 | 99.00 23 | 99.65 23 | 99.10 24 | 95.32 27 | 98.38 42 | 92.21 22 | 98.33 17 | 97.74 36 | 98.50 21 | 97.66 42 | 96.55 59 | 99.57 45 | 99.48 73 |
|
ACMMPR | | | 97.78 20 | 98.28 25 | 97.20 20 | 99.03 22 | 99.68 21 | 99.37 11 | 95.24 29 | 98.86 29 | 91.16 25 | 97.86 26 | 97.26 38 | 98.79 14 | 97.64 44 | 97.40 35 | 99.60 32 | 99.25 89 |
|
DeepC-MVS_fast | | 95.01 1 | 97.67 21 | 98.22 29 | 97.02 22 | 99.00 23 | 99.79 9 | 99.10 24 | 95.82 18 | 99.05 23 | 89.53 31 | 93.54 48 | 96.77 41 | 98.83 12 | 99.34 4 | 99.44 2 | 99.82 4 | 99.63 56 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
AdaColmap |  | | 97.54 22 | 97.35 38 | 97.77 11 | 99.17 18 | 99.55 33 | 98.57 30 | 95.76 20 | 99.04 24 | 94.66 13 | 97.94 24 | 94.39 55 | 98.82 13 | 96.21 77 | 94.78 86 | 99.62 28 | 99.52 69 |
|
ACMMP_NAP | | | 97.51 23 | 98.27 26 | 96.63 26 | 99.34 9 | 99.72 16 | 99.25 18 | 95.94 17 | 98.11 47 | 87.10 46 | 96.98 30 | 98.50 24 | 98.61 18 | 98.58 18 | 96.83 52 | 99.56 51 | 99.14 97 |
|
MP-MVS |  | | 97.46 24 | 98.30 24 | 96.48 27 | 98.93 25 | 99.43 42 | 99.20 19 | 95.42 25 | 98.43 38 | 87.60 42 | 98.19 20 | 98.01 34 | 98.09 26 | 98.05 26 | 96.67 56 | 99.64 24 | 99.35 83 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
train_agg | | | 97.42 25 | 98.88 12 | 95.71 32 | 98.46 33 | 99.60 30 | 99.05 26 | 95.16 31 | 99.10 19 | 84.38 64 | 98.47 16 | 98.85 21 | 97.61 30 | 98.54 19 | 97.66 26 | 99.62 28 | 99.93 19 |
|
CPTT-MVS | | | 97.32 26 | 97.60 37 | 96.99 23 | 98.29 36 | 99.31 54 | 99.04 27 | 94.67 35 | 97.99 53 | 93.12 17 | 98.03 22 | 98.26 27 | 98.77 15 | 96.08 80 | 94.26 94 | 98.07 180 | 99.27 88 |
|
X-MVS | | | 97.20 27 | 98.42 23 | 95.77 30 | 99.04 21 | 99.64 24 | 98.95 29 | 95.10 33 | 98.16 45 | 83.97 70 | 98.27 18 | 98.08 31 | 97.95 27 | 97.89 30 | 97.46 34 | 99.58 41 | 99.47 74 |
|
PHI-MVS | | | 97.09 28 | 98.69 16 | 95.22 36 | 97.99 41 | 99.59 32 | 97.56 43 | 92.16 39 | 98.41 40 | 87.11 45 | 98.70 9 | 99.42 12 | 96.95 43 | 96.88 60 | 98.16 15 | 99.56 51 | 99.70 45 |
|
DPM-MVS | | | 97.07 29 | 97.99 32 | 96.00 29 | 97.25 48 | 99.16 64 | 99.67 1 | 95.99 16 | 99.08 21 | 85.97 51 | 93.00 53 | 98.44 25 | 97.47 32 | 99.22 6 | 99.62 1 | 99.66 21 | 97.44 153 |
|
PGM-MVS | | | 97.03 30 | 98.14 31 | 95.73 31 | 99.34 9 | 99.61 29 | 99.34 15 | 89.99 45 | 97.70 56 | 87.67 41 | 99.44 2 | 96.45 44 | 98.44 22 | 97.65 43 | 97.09 43 | 99.58 41 | 99.06 105 |
|
PLC |  | 94.37 2 | 97.03 30 | 96.54 44 | 97.60 13 | 98.84 27 | 98.64 73 | 98.17 35 | 94.99 34 | 99.01 25 | 96.80 2 | 93.21 52 | 95.64 46 | 97.36 33 | 96.37 72 | 94.79 85 | 99.41 86 | 98.12 138 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
TSAR-MVS + ACMM | | | 96.90 32 | 98.64 18 | 94.88 38 | 98.12 39 | 99.47 38 | 99.01 28 | 95.43 24 | 99.23 15 | 81.98 89 | 95.95 34 | 99.16 16 | 95.13 67 | 98.61 17 | 98.11 17 | 99.58 41 | 99.93 19 |
|
TSAR-MVS + GP. | | | 96.47 33 | 98.45 22 | 94.17 43 | 92.12 86 | 99.29 55 | 97.76 39 | 88.05 55 | 99.36 6 | 90.26 29 | 97.82 27 | 99.21 14 | 97.21 36 | 96.78 65 | 96.74 54 | 99.63 26 | 99.94 16 |
|
EPNet | | | 96.23 34 | 97.89 34 | 94.29 41 | 97.62 44 | 99.44 41 | 97.14 50 | 88.63 51 | 98.16 45 | 88.14 37 | 99.46 1 | 94.15 58 | 94.61 77 | 97.20 52 | 97.23 39 | 99.57 45 | 99.59 61 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CNLPA | | | 96.14 35 | 95.43 54 | 96.98 24 | 98.55 30 | 99.41 46 | 95.91 56 | 95.15 32 | 99.00 26 | 95.71 6 | 84.21 103 | 94.55 53 | 97.25 34 | 95.50 102 | 96.23 65 | 99.28 107 | 99.09 104 |
|
MVS_111021_LR | | | 96.07 36 | 97.94 33 | 93.88 46 | 97.86 42 | 99.43 42 | 95.70 59 | 89.65 48 | 98.73 31 | 84.86 61 | 99.38 3 | 94.08 59 | 95.78 65 | 97.81 36 | 96.73 55 | 99.43 82 | 99.42 77 |
|
ACMMP |  | | 96.05 37 | 96.70 43 | 95.29 35 | 98.01 40 | 99.43 42 | 97.60 42 | 94.33 37 | 97.62 59 | 86.17 50 | 98.92 4 | 92.81 67 | 96.10 58 | 95.67 92 | 93.33 114 | 99.55 56 | 99.12 100 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
3Dnovator+ | | 90.72 7 | 95.99 38 | 96.42 46 | 95.50 34 | 98.18 38 | 99.33 53 | 97.44 45 | 87.73 60 | 97.93 54 | 92.36 21 | 84.67 96 | 97.33 37 | 97.55 31 | 97.32 48 | 98.47 8 | 99.72 16 | 99.88 26 |
|
DeepPCF-MVS | | 94.02 3 | 95.92 39 | 98.47 21 | 92.95 56 | 97.57 45 | 99.79 9 | 91.45 116 | 94.42 36 | 99.76 1 | 86.48 49 | 92.88 54 | 98.12 30 | 92.62 98 | 99.49 2 | 99.32 3 | 95.15 204 | 99.95 13 |
|
CDPH-MVS | | | 95.90 40 | 97.77 36 | 93.72 49 | 98.28 37 | 99.43 42 | 98.40 31 | 91.30 43 | 98.34 43 | 78.62 107 | 94.80 40 | 95.74 45 | 96.11 57 | 97.86 34 | 98.67 7 | 99.59 36 | 99.56 66 |
|
CSCG | | | 95.77 41 | 95.35 56 | 96.26 28 | 99.13 19 | 99.60 30 | 98.14 36 | 91.89 42 | 96.57 75 | 92.61 20 | 89.65 63 | 91.74 75 | 96.96 41 | 93.69 126 | 96.58 58 | 98.86 134 | 99.63 56 |
|
OMC-MVS | | | 95.75 42 | 95.84 51 | 95.64 33 | 98.52 32 | 99.34 52 | 97.15 49 | 92.02 41 | 98.94 28 | 90.45 28 | 88.31 69 | 94.64 51 | 96.35 53 | 96.02 83 | 95.99 73 | 99.34 96 | 97.65 149 |
|
MVS_111021_HR | | | 95.70 43 | 98.16 30 | 92.83 57 | 97.57 45 | 99.77 14 | 94.78 73 | 88.05 55 | 98.61 34 | 82.29 84 | 98.85 5 | 94.66 50 | 94.63 75 | 97.80 37 | 97.63 28 | 99.64 24 | 99.79 35 |
|
3Dnovator | | 90.31 8 | 95.67 44 | 96.16 49 | 95.11 37 | 98.59 29 | 99.37 51 | 97.50 44 | 87.98 57 | 98.02 52 | 89.09 33 | 85.36 95 | 94.62 52 | 97.66 28 | 97.10 56 | 98.90 6 | 99.82 4 | 99.73 41 |
|
CANet | | | 95.40 45 | 96.27 47 | 94.40 40 | 96.25 55 | 99.62 27 | 98.37 32 | 88.59 52 | 98.09 48 | 87.58 43 | 84.57 98 | 95.54 48 | 95.87 62 | 98.12 24 | 98.03 20 | 99.73 13 | 99.90 24 |
|
QAPM | | | 95.17 46 | 96.05 50 | 94.14 44 | 98.55 30 | 99.49 36 | 97.41 46 | 87.88 58 | 97.72 55 | 84.21 67 | 84.59 97 | 95.60 47 | 97.21 36 | 97.10 56 | 98.19 14 | 99.57 45 | 99.65 51 |
|
CS-MVS-test | | | 95.06 47 | 96.98 41 | 92.82 59 | 95.83 58 | 99.40 47 | 93.23 96 | 85.29 83 | 99.27 13 | 85.89 53 | 93.86 47 | 92.70 69 | 97.19 38 | 97.70 40 | 96.18 67 | 99.49 65 | 99.76 36 |
|
CS-MVS | | | 94.82 48 | 96.19 48 | 93.22 52 | 95.19 63 | 99.24 57 | 95.10 68 | 85.07 86 | 98.72 32 | 87.33 44 | 91.35 56 | 89.98 84 | 97.06 40 | 98.01 27 | 96.28 63 | 99.60 32 | 99.72 42 |
|
MVSTER | | | 94.75 49 | 96.50 45 | 92.70 61 | 90.91 102 | 94.51 144 | 97.37 47 | 83.37 96 | 98.40 41 | 89.04 34 | 93.23 51 | 97.04 40 | 95.91 61 | 97.73 38 | 95.59 82 | 99.61 30 | 99.01 107 |
|
TAPA-MVS | | 92.04 6 | 94.72 50 | 95.13 59 | 94.24 42 | 97.72 43 | 99.17 62 | 97.61 41 | 92.16 39 | 97.66 58 | 81.99 88 | 87.84 74 | 93.94 61 | 96.50 50 | 95.74 89 | 94.27 93 | 99.46 76 | 97.31 156 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
DeepC-MVS | | 92.23 5 | 94.53 51 | 94.26 72 | 94.86 39 | 96.73 52 | 99.50 35 | 97.85 38 | 95.45 23 | 96.22 82 | 82.73 79 | 80.68 112 | 88.02 89 | 96.92 44 | 97.49 47 | 98.20 13 | 99.47 70 | 99.69 48 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CHOSEN 280x420 | | | 94.51 52 | 97.78 35 | 90.70 83 | 95.54 62 | 99.49 36 | 94.14 84 | 74.91 159 | 98.43 38 | 85.32 58 | 94.78 41 | 99.19 15 | 94.95 71 | 97.02 58 | 96.18 67 | 99.35 92 | 99.36 82 |
|
ETV-MVS | | | 94.49 53 | 97.23 40 | 91.29 76 | 90.43 112 | 98.55 76 | 93.41 94 | 84.53 89 | 99.16 18 | 83.13 75 | 94.72 42 | 94.08 59 | 96.61 49 | 97.72 39 | 96.60 57 | 99.61 30 | 99.81 32 |
|
MVS_0304 | | | 94.35 54 | 95.66 53 | 92.83 57 | 94.82 65 | 99.46 40 | 98.19 34 | 87.75 59 | 97.32 65 | 81.83 92 | 83.50 105 | 93.19 66 | 94.71 73 | 98.24 23 | 98.07 18 | 99.68 18 | 99.83 31 |
|
DROMVSNet | | | 94.33 55 | 96.88 42 | 91.36 74 | 90.12 119 | 97.70 95 | 95.20 67 | 80.27 120 | 98.63 33 | 85.97 51 | 93.92 46 | 93.85 64 | 97.09 39 | 97.54 46 | 96.81 53 | 99.49 65 | 99.70 45 |
|
MAR-MVS | | | 94.18 56 | 95.12 60 | 93.09 55 | 98.40 35 | 99.17 62 | 94.20 83 | 81.92 105 | 98.47 37 | 86.52 48 | 90.92 58 | 84.21 109 | 98.12 25 | 95.88 86 | 97.59 29 | 99.40 87 | 99.58 64 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PCF-MVS | | 92.56 4 | 93.95 57 | 93.82 75 | 94.10 45 | 96.07 57 | 99.25 56 | 96.82 52 | 95.51 22 | 92.00 128 | 81.51 93 | 82.97 108 | 93.88 63 | 95.63 66 | 94.24 114 | 94.71 88 | 99.09 117 | 99.70 45 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
DELS-MVS | | | 93.82 58 | 93.82 75 | 93.81 48 | 96.34 54 | 99.47 38 | 97.26 48 | 88.53 53 | 92.13 125 | 87.80 40 | 79.67 115 | 88.01 90 | 93.14 90 | 98.28 20 | 99.22 4 | 99.80 8 | 99.98 5 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
OpenMVS |  | 88.43 11 | 93.49 59 | 93.62 78 | 93.34 50 | 98.46 33 | 99.39 48 | 97.00 51 | 87.66 62 | 95.37 89 | 81.21 95 | 75.96 132 | 91.58 77 | 96.21 56 | 96.37 72 | 97.10 42 | 99.52 60 | 99.54 68 |
|
EIA-MVS | | | 93.32 60 | 95.32 57 | 90.99 80 | 90.45 111 | 98.53 79 | 93.46 93 | 84.68 88 | 97.56 62 | 81.38 94 | 91.04 57 | 87.37 93 | 96.39 52 | 97.27 49 | 95.73 78 | 99.59 36 | 99.76 36 |
|
PVSNet_BlendedMVS | | | 93.30 61 | 93.46 82 | 93.10 53 | 95.60 60 | 99.38 49 | 93.59 91 | 88.70 49 | 98.09 48 | 88.10 38 | 86.96 82 | 75.02 133 | 93.08 91 | 97.89 30 | 96.90 49 | 99.56 51 | 100.00 1 |
|
PVSNet_Blended | | | 93.30 61 | 93.46 82 | 93.10 53 | 95.60 60 | 99.38 49 | 93.59 91 | 88.70 49 | 98.09 48 | 88.10 38 | 86.96 82 | 75.02 133 | 93.08 91 | 97.89 30 | 96.90 49 | 99.56 51 | 100.00 1 |
|
test2506 | | | 93.08 63 | 93.40 84 | 92.70 61 | 92.76 79 | 99.20 59 | 94.67 76 | 86.82 67 | 92.58 121 | 90.81 27 | 86.28 87 | 85.24 104 | 91.69 107 | 96.85 61 | 96.33 61 | 99.45 80 | 97.34 155 |
|
PMMVS | | | 93.05 64 | 95.40 55 | 90.31 87 | 91.41 94 | 97.54 101 | 92.62 107 | 83.25 98 | 98.08 51 | 79.44 105 | 95.18 38 | 88.52 88 | 96.43 51 | 95.70 90 | 93.88 97 | 98.68 150 | 98.91 110 |
|
LS3D | | | 92.70 65 | 92.23 94 | 93.26 51 | 96.24 56 | 98.72 68 | 97.93 37 | 96.17 7 | 96.41 76 | 72.46 122 | 81.39 111 | 80.76 122 | 97.66 28 | 95.69 91 | 95.62 80 | 99.07 119 | 97.02 164 |
|
baseline1 | | | 92.67 66 | 93.62 78 | 91.55 70 | 91.16 97 | 97.15 104 | 93.92 89 | 85.97 75 | 94.76 97 | 84.07 69 | 87.17 78 | 86.89 96 | 94.62 76 | 96.72 66 | 95.90 76 | 99.57 45 | 96.79 168 |
|
IS_MVSNet | | | 92.67 66 | 94.99 62 | 89.96 92 | 91.17 96 | 98.54 77 | 92.77 102 | 84.00 90 | 92.72 119 | 81.90 91 | 85.67 93 | 92.47 70 | 90.39 121 | 97.82 35 | 97.81 23 | 99.51 61 | 99.91 23 |
|
TSAR-MVS + COLMAP | | | 92.56 68 | 92.44 92 | 92.71 60 | 94.61 67 | 97.69 96 | 97.69 40 | 91.09 44 | 98.96 27 | 76.71 112 | 94.68 43 | 69.41 160 | 96.91 45 | 95.80 88 | 94.18 95 | 99.26 108 | 96.33 172 |
|
baseline | | | 92.56 68 | 94.38 68 | 90.43 86 | 90.71 106 | 98.23 86 | 95.07 69 | 80.73 119 | 97.52 63 | 82.45 83 | 87.34 77 | 85.91 100 | 94.07 84 | 96.29 76 | 95.94 75 | 99.58 41 | 99.47 74 |
|
canonicalmvs | | | 92.54 70 | 93.28 85 | 91.68 67 | 91.44 93 | 98.24 85 | 95.45 64 | 81.84 109 | 95.98 86 | 84.85 62 | 90.69 59 | 78.53 127 | 96.96 41 | 92.97 132 | 97.06 44 | 99.57 45 | 99.47 74 |
|
PatchMatch-RL | | | 92.54 70 | 92.82 91 | 92.21 63 | 96.57 53 | 98.74 67 | 91.85 113 | 86.30 70 | 96.23 81 | 85.18 59 | 95.21 37 | 73.58 139 | 94.22 83 | 95.40 105 | 93.08 118 | 99.14 114 | 97.49 152 |
|
MVS_Test | | | 92.42 72 | 94.43 64 | 90.08 91 | 90.69 107 | 98.26 84 | 94.78 73 | 80.81 118 | 97.27 66 | 78.76 106 | 87.06 80 | 84.25 108 | 95.84 63 | 97.67 41 | 97.56 31 | 99.59 36 | 98.93 109 |
|
thisisatest0530 | | | 92.31 73 | 95.14 58 | 89.02 101 | 90.02 120 | 98.45 81 | 91.30 117 | 83.58 93 | 96.90 71 | 77.90 109 | 90.45 61 | 94.33 56 | 91.98 104 | 95.57 96 | 91.43 141 | 99.31 102 | 98.81 113 |
|
tttt0517 | | | 92.29 74 | 95.12 60 | 88.99 102 | 90.02 120 | 98.44 83 | 91.19 120 | 83.58 93 | 96.88 72 | 77.86 110 | 90.45 61 | 94.32 57 | 91.98 104 | 95.54 98 | 91.43 141 | 99.31 102 | 98.78 115 |
|
EPP-MVSNet | | | 92.29 74 | 94.35 70 | 89.88 93 | 90.36 114 | 97.69 96 | 90.89 122 | 83.31 97 | 93.39 112 | 83.47 74 | 85.56 94 | 93.92 62 | 91.93 106 | 95.49 103 | 94.77 87 | 99.34 96 | 99.62 59 |
|
HQP-MVS | | | 91.94 76 | 93.03 87 | 90.66 85 | 93.69 69 | 96.48 118 | 95.92 55 | 89.73 46 | 97.33 64 | 72.65 120 | 95.37 35 | 73.56 140 | 92.75 97 | 94.85 111 | 94.12 96 | 99.23 111 | 99.51 70 |
|
MSDG | | | 91.93 77 | 90.28 122 | 93.85 47 | 97.36 47 | 97.12 105 | 95.88 57 | 94.07 38 | 94.52 101 | 84.13 68 | 76.74 125 | 80.89 121 | 92.54 99 | 93.97 122 | 93.61 108 | 99.14 114 | 95.10 181 |
|
UGNet | | | 91.71 78 | 94.43 64 | 88.53 104 | 92.72 81 | 98.00 89 | 90.22 129 | 84.81 87 | 94.45 102 | 83.05 76 | 87.65 76 | 92.74 68 | 81.04 173 | 94.51 113 | 94.45 90 | 99.32 101 | 99.21 93 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
thres100view900 | | | 91.69 79 | 91.52 100 | 91.88 66 | 91.61 88 | 98.89 65 | 95.49 62 | 86.96 64 | 93.24 113 | 80.82 97 | 87.90 71 | 71.15 151 | 96.88 46 | 96.00 84 | 93.51 110 | 99.51 61 | 99.95 13 |
|
CLD-MVS | | | 91.67 80 | 91.30 105 | 92.10 64 | 91.25 95 | 96.59 115 | 95.93 54 | 87.25 63 | 96.86 73 | 85.55 57 | 87.08 79 | 73.01 141 | 93.26 89 | 93.07 130 | 92.84 124 | 99.34 96 | 99.68 49 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
ET-MVSNet_ETH3D | | | 91.59 81 | 94.96 63 | 87.65 107 | 72.75 211 | 97.24 103 | 95.29 65 | 82.73 101 | 96.81 74 | 78.49 108 | 95.30 36 | 90.48 83 | 97.23 35 | 91.60 147 | 94.31 91 | 99.43 82 | 99.01 107 |
|
tfpn200view9 | | | 91.47 82 | 91.31 103 | 91.65 68 | 91.61 88 | 98.69 70 | 95.03 70 | 86.17 71 | 93.24 113 | 80.82 97 | 87.90 71 | 71.15 151 | 96.80 48 | 95.53 99 | 92.82 126 | 99.47 70 | 99.88 26 |
|
CANet_DTU | | | 91.36 83 | 95.75 52 | 86.23 118 | 92.31 85 | 98.71 69 | 95.60 61 | 78.41 134 | 98.20 44 | 56.48 180 | 94.38 44 | 87.96 91 | 95.11 68 | 96.89 59 | 96.07 69 | 99.48 68 | 98.01 142 |
|
thres200 | | | 91.36 83 | 91.19 107 | 91.55 70 | 91.60 90 | 98.69 70 | 94.98 71 | 86.17 71 | 92.16 124 | 80.76 99 | 87.66 75 | 71.15 151 | 96.35 53 | 95.53 99 | 93.23 116 | 99.47 70 | 99.92 22 |
|
FMVSNet3 | | | 91.25 85 | 92.13 96 | 90.21 88 | 85.64 151 | 93.14 153 | 95.29 65 | 80.09 121 | 96.40 77 | 85.74 54 | 77.13 120 | 86.81 97 | 94.98 70 | 97.19 53 | 97.11 41 | 99.55 56 | 97.13 161 |
|
thres400 | | | 91.24 86 | 91.01 113 | 91.50 73 | 91.56 91 | 98.77 66 | 94.66 78 | 86.41 69 | 91.87 130 | 80.56 100 | 87.05 81 | 71.01 154 | 96.35 53 | 95.67 92 | 92.82 126 | 99.48 68 | 99.88 26 |
|
PVSNet_Blended_VisFu | | | 91.20 87 | 92.89 90 | 89.23 99 | 93.41 72 | 98.61 75 | 89.80 131 | 85.39 80 | 92.84 117 | 82.80 78 | 74.21 136 | 91.38 79 | 84.64 152 | 97.22 51 | 96.04 72 | 99.34 96 | 99.93 19 |
|
DCV-MVSNet | | | 91.15 88 | 92.00 97 | 90.17 90 | 90.78 104 | 92.23 170 | 93.70 90 | 81.17 116 | 95.16 92 | 82.98 77 | 89.46 65 | 83.31 111 | 93.98 86 | 91.79 146 | 92.87 121 | 98.41 168 | 99.18 95 |
|
DI_MVS_plusplus_trai | | | 91.11 89 | 91.47 101 | 90.68 84 | 90.01 122 | 97.77 93 | 95.87 58 | 83.56 95 | 94.72 98 | 82.12 86 | 68.46 155 | 87.46 92 | 93.07 93 | 96.46 71 | 95.73 78 | 99.47 70 | 99.71 44 |
|
diffmvs |  | | 91.05 90 | 91.15 108 | 90.93 81 | 90.15 117 | 97.79 92 | 94.05 85 | 85.45 77 | 95.63 87 | 81.95 90 | 80.45 114 | 73.01 141 | 94.47 79 | 95.56 97 | 95.89 77 | 99.49 65 | 99.72 42 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
Vis-MVSNet (Re-imp) | | | 91.05 90 | 94.43 64 | 87.11 109 | 91.05 99 | 97.99 90 | 92.53 109 | 83.82 92 | 92.71 120 | 76.28 113 | 84.50 99 | 92.43 71 | 79.52 178 | 97.24 50 | 97.68 25 | 99.43 82 | 98.45 126 |
|
thres600view7 | | | 90.97 92 | 90.70 115 | 91.30 75 | 91.53 92 | 98.69 70 | 94.33 79 | 86.17 71 | 91.75 132 | 80.19 101 | 86.06 91 | 70.90 155 | 96.10 58 | 95.53 99 | 92.08 134 | 99.47 70 | 99.86 30 |
|
baseline2 | | | 90.91 93 | 94.40 67 | 86.84 112 | 87.54 142 | 96.83 111 | 89.95 130 | 79.22 129 | 96.00 85 | 77.04 111 | 88.68 66 | 89.73 85 | 88.01 141 | 96.35 74 | 93.51 110 | 99.29 104 | 99.68 49 |
|
casdiffmvs_mvg |  | | 90.83 94 | 90.52 119 | 91.20 78 | 90.56 108 | 97.67 98 | 94.96 72 | 85.45 77 | 90.72 137 | 82.03 87 | 76.70 126 | 77.08 128 | 94.61 77 | 96.57 69 | 95.62 80 | 99.57 45 | 99.28 87 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
ACMP | | 89.80 9 | 90.72 95 | 91.15 108 | 90.21 88 | 92.55 83 | 96.52 117 | 92.63 106 | 85.71 76 | 94.65 99 | 81.06 96 | 93.32 49 | 70.56 157 | 90.52 120 | 92.68 136 | 91.05 146 | 98.76 142 | 99.31 86 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
casdiffmvs |  | | 90.69 96 | 90.56 118 | 90.85 82 | 90.14 118 | 97.81 91 | 92.94 100 | 85.30 81 | 93.47 111 | 82.50 82 | 76.34 130 | 74.12 137 | 94.67 74 | 96.51 70 | 96.26 64 | 99.55 56 | 99.42 77 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
FA-MVS(training) | | | 90.67 97 | 93.03 87 | 87.92 106 | 90.95 101 | 98.45 81 | 92.61 108 | 66.04 193 | 94.90 94 | 84.47 63 | 77.52 119 | 91.74 75 | 94.07 84 | 97.11 55 | 92.46 132 | 99.40 87 | 99.03 106 |
|
ACMM | | 89.40 10 | 90.58 98 | 90.02 125 | 91.23 77 | 93.30 74 | 94.75 140 | 90.69 125 | 88.22 54 | 95.20 90 | 82.70 80 | 88.54 67 | 71.40 149 | 93.48 88 | 93.64 127 | 90.94 147 | 98.99 125 | 95.72 177 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
GBi-Net | | | 90.49 99 | 91.12 111 | 89.75 95 | 84.99 154 | 92.73 158 | 93.94 86 | 80.09 121 | 96.40 77 | 85.74 54 | 77.13 120 | 86.81 97 | 94.42 80 | 94.12 116 | 93.73 99 | 99.35 92 | 96.90 165 |
|
test1 | | | 90.49 99 | 91.12 111 | 89.75 95 | 84.99 154 | 92.73 158 | 93.94 86 | 80.09 121 | 96.40 77 | 85.74 54 | 77.13 120 | 86.81 97 | 94.42 80 | 94.12 116 | 93.73 99 | 99.35 92 | 96.90 165 |
|
ECVR-MVS |  | | 90.37 101 | 88.96 134 | 92.01 65 | 92.76 79 | 99.20 59 | 94.67 76 | 86.82 67 | 92.58 121 | 86.71 47 | 68.95 154 | 71.46 148 | 91.69 107 | 96.85 61 | 96.33 61 | 99.45 80 | 97.38 154 |
|
LGP-MVS_train | | | 90.34 102 | 91.63 99 | 88.83 103 | 93.31 73 | 96.14 123 | 95.49 62 | 85.24 84 | 93.91 106 | 68.71 134 | 93.96 45 | 71.63 146 | 91.12 116 | 93.82 124 | 92.79 128 | 99.07 119 | 99.16 96 |
|
test1111 | | | 90.01 103 | 88.67 136 | 91.57 69 | 92.68 82 | 99.20 59 | 94.25 82 | 86.90 66 | 92.03 127 | 85.04 60 | 67.79 159 | 71.21 150 | 91.12 116 | 96.83 63 | 96.34 60 | 99.42 85 | 97.28 157 |
|
EPNet_dtu | | | 89.82 104 | 94.18 73 | 84.74 128 | 96.87 51 | 95.54 133 | 92.65 105 | 86.91 65 | 96.99 68 | 54.17 191 | 92.41 55 | 88.54 87 | 78.35 181 | 96.15 79 | 96.05 71 | 99.47 70 | 93.60 189 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
RPSCF | | | 89.81 105 | 89.75 126 | 89.88 93 | 93.22 76 | 93.99 147 | 94.78 73 | 85.23 85 | 94.01 105 | 82.52 81 | 95.00 39 | 87.23 94 | 92.01 103 | 85.16 199 | 83.48 204 | 91.54 209 | 89.38 203 |
|
MDTV_nov1_ep13 | | | 89.63 106 | 94.38 68 | 84.09 135 | 88.76 134 | 97.53 102 | 89.37 139 | 68.46 191 | 96.95 69 | 70.27 129 | 87.88 73 | 93.67 65 | 91.04 118 | 93.12 128 | 93.83 98 | 96.62 198 | 97.68 148 |
|
UA-Net | | | 89.56 107 | 93.03 87 | 85.52 124 | 92.46 84 | 97.55 100 | 91.92 112 | 81.91 106 | 85.24 164 | 71.39 124 | 83.57 104 | 96.56 43 | 76.01 192 | 96.81 64 | 97.04 45 | 99.46 76 | 94.41 184 |
|
FMVSNet2 | | | 89.51 108 | 89.63 127 | 89.38 97 | 84.99 154 | 92.73 158 | 93.94 86 | 79.28 128 | 93.73 108 | 84.28 66 | 69.36 153 | 82.32 114 | 94.42 80 | 96.16 78 | 96.22 66 | 99.35 92 | 96.90 165 |
|
CostFormer | | | 89.42 109 | 91.67 98 | 86.80 114 | 89.99 123 | 96.33 120 | 90.75 123 | 64.79 195 | 95.17 91 | 83.62 73 | 86.20 89 | 82.15 116 | 92.96 94 | 89.22 169 | 92.94 119 | 98.68 150 | 99.65 51 |
|
FC-MVSNet-train | | | 89.37 110 | 89.62 128 | 89.08 100 | 90.48 110 | 94.16 146 | 89.45 135 | 83.99 91 | 91.09 135 | 80.09 102 | 82.84 109 | 74.52 136 | 91.44 113 | 93.79 125 | 91.57 140 | 99.01 123 | 99.35 83 |
|
OPM-MVS | | | 89.33 111 | 87.45 145 | 91.53 72 | 94.49 68 | 96.20 122 | 96.47 53 | 89.72 47 | 82.77 171 | 75.43 114 | 80.53 113 | 70.86 156 | 93.80 87 | 94.00 120 | 91.85 138 | 99.29 104 | 95.91 175 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
test-LLR | | | 89.31 112 | 93.60 80 | 84.30 132 | 88.08 138 | 96.98 107 | 88.10 144 | 78.00 135 | 94.83 95 | 62.43 154 | 84.29 101 | 90.96 80 | 89.70 126 | 95.63 94 | 92.86 122 | 99.51 61 | 99.64 53 |
|
EPMVS | | | 89.31 112 | 93.70 77 | 84.18 134 | 91.10 98 | 98.10 87 | 89.17 141 | 62.71 199 | 96.24 80 | 70.21 131 | 86.46 86 | 92.37 72 | 92.79 95 | 91.95 144 | 93.59 109 | 99.10 116 | 97.19 158 |
|
Anonymous20231211 | | | 89.22 114 | 87.56 143 | 91.16 79 | 90.23 116 | 96.62 114 | 93.22 97 | 85.44 79 | 92.89 116 | 84.37 65 | 60.13 175 | 81.25 119 | 96.02 60 | 90.61 154 | 92.01 135 | 97.70 188 | 99.41 79 |
|
Effi-MVS+ | | | 88.96 115 | 91.13 110 | 86.43 116 | 89.12 130 | 97.62 99 | 93.15 98 | 75.52 153 | 93.90 107 | 66.40 138 | 86.23 88 | 70.51 158 | 95.03 69 | 95.89 85 | 94.28 92 | 99.37 89 | 99.51 70 |
|
SCA | | | 88.76 116 | 94.29 71 | 82.30 151 | 89.33 128 | 96.81 112 | 87.68 146 | 61.52 204 | 96.95 69 | 64.68 144 | 88.35 68 | 94.80 49 | 91.58 110 | 92.23 138 | 93.21 117 | 98.99 125 | 97.70 147 |
|
test0.0.03 1 | | | 88.71 117 | 92.22 95 | 84.63 130 | 88.08 138 | 94.71 142 | 85.91 169 | 78.00 135 | 95.54 88 | 72.96 118 | 86.10 90 | 85.88 102 | 83.59 160 | 92.95 134 | 93.24 115 | 99.25 110 | 97.09 162 |
|
PatchmatchNet |  | | 88.67 118 | 94.10 74 | 82.34 150 | 89.38 127 | 97.72 94 | 87.24 152 | 62.18 202 | 97.00 67 | 64.79 143 | 87.97 70 | 94.43 54 | 91.55 111 | 91.21 152 | 92.77 129 | 98.90 130 | 97.60 151 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
dps | | | 88.66 119 | 90.19 123 | 86.88 111 | 89.94 124 | 96.48 118 | 89.56 133 | 64.08 197 | 94.12 104 | 89.00 35 | 83.39 106 | 82.56 113 | 90.16 124 | 86.81 191 | 89.26 165 | 98.53 163 | 98.71 117 |
|
TESTMET0.1,1 | | | 88.63 120 | 93.60 80 | 82.84 147 | 84.07 161 | 96.98 107 | 88.10 144 | 73.22 173 | 94.83 95 | 62.43 154 | 84.29 101 | 90.96 80 | 89.70 126 | 95.63 94 | 92.86 122 | 99.51 61 | 99.64 53 |
|
CHOSEN 1792x2688 | | | 88.63 120 | 89.01 132 | 88.19 105 | 94.83 64 | 99.21 58 | 92.66 104 | 79.85 125 | 92.40 123 | 72.18 123 | 56.38 195 | 80.22 124 | 90.24 122 | 97.64 44 | 97.28 38 | 99.37 89 | 99.94 16 |
|
CDS-MVSNet | | | 88.59 122 | 90.13 124 | 86.79 115 | 86.98 147 | 95.43 134 | 92.03 111 | 81.33 114 | 85.54 161 | 74.51 117 | 77.07 123 | 85.14 105 | 87.03 146 | 93.90 123 | 95.18 83 | 98.88 132 | 98.67 119 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
IB-MVS | | 84.67 14 | 88.34 123 | 90.61 117 | 85.70 121 | 92.99 78 | 98.62 74 | 78.85 195 | 86.07 74 | 94.35 103 | 88.64 36 | 85.99 92 | 75.69 131 | 68.09 205 | 88.21 172 | 91.43 141 | 99.55 56 | 99.96 10 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
test-mter | | | 88.25 124 | 93.27 86 | 82.38 149 | 83.89 162 | 96.86 110 | 87.10 156 | 72.80 175 | 94.58 100 | 61.85 159 | 83.21 107 | 90.65 82 | 89.18 130 | 95.43 104 | 92.58 131 | 99.46 76 | 99.61 60 |
|
COLMAP_ROB |  | 84.42 15 | 88.24 125 | 87.32 146 | 89.32 98 | 95.83 58 | 95.82 127 | 92.81 101 | 87.68 61 | 92.09 126 | 72.64 121 | 72.34 144 | 79.96 125 | 88.79 132 | 89.54 164 | 89.46 161 | 98.16 177 | 92.00 195 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
IterMVS-LS | | | 87.95 126 | 89.40 130 | 86.26 117 | 88.79 133 | 90.93 185 | 91.23 119 | 76.05 150 | 90.87 136 | 71.07 126 | 75.51 133 | 81.18 120 | 91.21 115 | 94.11 119 | 95.01 84 | 99.20 113 | 98.23 133 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
HyFIR lowres test | | | 87.86 127 | 88.25 139 | 87.40 108 | 94.67 66 | 98.54 77 | 90.33 128 | 76.51 149 | 89.60 145 | 70.89 127 | 51.43 206 | 85.69 103 | 92.79 95 | 96.59 68 | 95.96 74 | 99.22 112 | 99.94 16 |
|
Vis-MVSNet |  | | 87.60 128 | 91.31 103 | 83.27 142 | 89.14 129 | 98.04 88 | 90.35 127 | 79.42 126 | 87.23 150 | 66.92 137 | 79.10 118 | 84.63 107 | 74.34 199 | 95.81 87 | 96.06 70 | 99.46 76 | 98.32 130 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
GeoE | | | 87.55 129 | 88.17 140 | 86.82 113 | 88.74 135 | 96.32 121 | 92.75 103 | 74.93 158 | 90.13 142 | 72.73 119 | 69.47 152 | 74.03 138 | 92.51 100 | 93.99 121 | 93.62 107 | 99.29 104 | 99.59 61 |
|
RPMNet | | | 87.35 130 | 92.41 93 | 81.45 155 | 88.85 132 | 96.06 124 | 89.42 138 | 59.59 211 | 93.57 109 | 61.81 160 | 76.48 129 | 91.48 78 | 90.18 123 | 96.32 75 | 93.37 113 | 98.87 133 | 99.59 61 |
|
tpm cat1 | | | 87.34 131 | 88.52 138 | 85.95 119 | 89.83 125 | 95.80 128 | 90.73 124 | 64.91 194 | 92.99 115 | 82.21 85 | 71.19 150 | 82.68 112 | 90.13 125 | 86.38 192 | 90.87 149 | 97.90 185 | 99.74 39 |
|
MS-PatchMatch | | | 87.19 132 | 88.59 137 | 85.55 123 | 93.15 77 | 96.58 116 | 92.35 110 | 74.19 166 | 91.97 129 | 70.33 128 | 71.42 148 | 85.89 101 | 84.28 154 | 93.12 128 | 89.16 167 | 99.00 124 | 91.99 196 |
|
Effi-MVS+-dtu | | | 87.18 133 | 90.48 120 | 83.32 141 | 86.51 148 | 95.76 130 | 91.16 121 | 74.28 165 | 90.44 141 | 61.31 163 | 86.72 85 | 72.68 144 | 91.25 114 | 95.01 109 | 93.64 102 | 95.45 203 | 99.12 100 |
|
FMVSNet5 | | | 87.06 134 | 89.52 129 | 84.20 133 | 79.92 199 | 86.57 205 | 87.11 155 | 72.37 177 | 96.06 83 | 75.41 115 | 84.33 100 | 91.76 74 | 91.60 109 | 91.51 148 | 91.22 144 | 98.77 139 | 85.16 208 |
|
Fast-Effi-MVS+-dtu | | | 86.94 135 | 91.27 106 | 81.89 152 | 86.27 149 | 95.06 135 | 90.68 126 | 68.93 188 | 91.76 131 | 57.18 178 | 89.56 64 | 75.85 130 | 89.19 129 | 94.56 112 | 92.84 124 | 99.07 119 | 99.23 90 |
|
Fast-Effi-MVS+ | | | 86.94 135 | 87.88 142 | 85.84 120 | 86.99 146 | 95.80 128 | 91.24 118 | 73.48 172 | 92.75 118 | 69.22 132 | 72.70 142 | 65.71 166 | 94.84 72 | 94.98 110 | 94.71 88 | 99.26 108 | 98.48 125 |
|
tpmrst | | | 86.78 137 | 90.29 121 | 82.69 148 | 90.55 109 | 96.95 109 | 88.49 143 | 62.58 200 | 95.09 93 | 63.52 150 | 76.67 128 | 84.00 110 | 92.05 102 | 87.93 175 | 91.89 137 | 98.98 127 | 99.50 72 |
|
CR-MVSNet | | | 86.73 138 | 91.47 101 | 81.20 158 | 88.56 136 | 96.06 124 | 89.43 136 | 61.37 205 | 93.57 109 | 60.81 165 | 72.89 141 | 88.85 86 | 88.13 139 | 96.03 81 | 93.64 102 | 98.89 131 | 99.22 91 |
|
ADS-MVSNet | | | 86.68 139 | 90.79 114 | 81.88 153 | 90.38 113 | 96.81 112 | 86.90 157 | 60.50 209 | 96.01 84 | 63.93 147 | 81.67 110 | 84.72 106 | 90.78 119 | 87.03 185 | 91.67 139 | 98.77 139 | 97.63 150 |
|
FMVSNet1 | | | 85.85 140 | 84.91 156 | 86.96 110 | 82.70 167 | 91.39 179 | 91.54 115 | 77.45 141 | 85.29 163 | 79.56 104 | 60.70 172 | 72.68 144 | 92.37 101 | 94.12 116 | 93.73 99 | 98.12 178 | 96.44 169 |
|
FC-MVSNet-test | | | 85.51 141 | 89.08 131 | 81.35 156 | 85.31 153 | 93.35 149 | 87.65 147 | 77.55 140 | 90.01 143 | 64.07 146 | 79.63 116 | 81.83 118 | 74.94 196 | 92.08 141 | 90.83 151 | 98.55 160 | 95.81 176 |
|
ACMH | | 85.22 13 | 85.40 142 | 85.73 153 | 85.02 126 | 91.76 87 | 94.46 145 | 84.97 175 | 81.54 112 | 85.18 165 | 65.22 142 | 76.92 124 | 64.22 167 | 88.58 135 | 90.17 156 | 90.25 157 | 98.03 181 | 98.90 111 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
TAMVS | | | 85.35 143 | 86.00 152 | 84.59 131 | 84.97 157 | 95.57 132 | 88.98 142 | 77.29 144 | 81.44 176 | 71.36 125 | 71.48 147 | 75.00 135 | 87.03 146 | 91.92 145 | 92.21 133 | 97.92 184 | 94.40 185 |
|
ACMH+ | | 85.62 12 | 85.27 144 | 84.96 155 | 85.64 122 | 90.84 103 | 94.78 139 | 87.46 149 | 81.30 115 | 86.94 151 | 67.35 136 | 74.56 135 | 64.09 168 | 88.70 133 | 88.14 173 | 89.00 168 | 98.22 176 | 97.19 158 |
|
USDC | | | 85.11 145 | 85.35 154 | 84.83 127 | 89.45 126 | 94.93 138 | 92.98 99 | 77.30 143 | 90.53 139 | 61.80 161 | 76.69 127 | 59.62 178 | 88.90 131 | 92.78 135 | 90.79 153 | 98.53 163 | 92.12 193 |
|
IterMVS | | | 85.02 146 | 88.98 133 | 80.41 164 | 87.03 145 | 90.34 193 | 89.78 132 | 69.45 185 | 89.77 144 | 54.04 192 | 73.71 138 | 82.05 117 | 83.44 163 | 95.11 107 | 93.64 102 | 98.75 143 | 98.22 135 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 84.91 147 | 88.90 135 | 80.25 167 | 87.04 144 | 90.27 194 | 89.23 140 | 69.25 187 | 89.17 146 | 54.04 192 | 73.65 139 | 82.22 115 | 83.23 168 | 95.11 107 | 93.63 106 | 98.73 144 | 98.23 133 |
|
PatchT | | | 84.89 148 | 90.67 116 | 78.13 187 | 87.83 141 | 94.99 137 | 72.46 207 | 60.22 210 | 91.74 133 | 60.81 165 | 72.16 145 | 86.95 95 | 88.13 139 | 96.03 81 | 93.64 102 | 99.36 91 | 99.22 91 |
|
pmmvs4 | | | 84.88 149 | 84.67 157 | 85.13 125 | 82.80 166 | 92.37 163 | 87.29 150 | 79.08 130 | 90.51 140 | 74.94 116 | 70.37 151 | 62.49 171 | 88.17 138 | 92.01 143 | 88.51 173 | 98.49 166 | 96.44 169 |
|
CVMVSNet | | | 84.01 150 | 86.91 147 | 80.61 162 | 88.39 137 | 93.29 150 | 86.06 165 | 82.29 103 | 83.13 169 | 54.29 188 | 72.68 143 | 79.59 126 | 75.11 195 | 91.23 151 | 92.91 120 | 97.54 192 | 95.58 178 |
|
tpm | | | 83.97 151 | 87.97 141 | 79.31 177 | 87.35 143 | 93.21 152 | 86.00 167 | 61.90 203 | 90.69 138 | 54.01 194 | 79.42 117 | 75.61 132 | 88.65 134 | 87.18 183 | 90.48 155 | 97.95 183 | 99.21 93 |
|
GA-MVS | | | 83.83 152 | 86.63 148 | 80.58 163 | 85.40 152 | 94.73 141 | 87.27 151 | 78.76 133 | 86.49 153 | 49.57 202 | 74.21 136 | 67.67 163 | 83.38 164 | 95.28 106 | 90.92 148 | 99.08 118 | 97.09 162 |
|
UniMVSNet_NR-MVSNet | | | 83.83 152 | 83.70 160 | 83.98 136 | 81.41 177 | 92.56 162 | 86.54 160 | 82.96 99 | 85.98 158 | 66.27 139 | 66.16 163 | 63.63 169 | 87.78 143 | 87.65 178 | 90.81 152 | 98.94 128 | 99.13 98 |
|
UniMVSNet (Re) | | | 83.28 154 | 83.16 161 | 83.42 140 | 81.93 172 | 93.12 154 | 86.27 163 | 80.83 117 | 85.88 159 | 68.23 135 | 64.56 166 | 60.58 173 | 84.25 155 | 89.13 170 | 89.44 163 | 99.04 122 | 99.40 80 |
|
thisisatest0515 | | | 83.17 155 | 86.49 149 | 79.30 178 | 82.04 170 | 93.12 154 | 78.70 196 | 77.92 137 | 86.43 154 | 63.05 151 | 74.91 134 | 73.01 141 | 75.56 194 | 92.10 140 | 88.05 186 | 98.50 165 | 97.76 146 |
|
TinyColmap | | | 83.03 156 | 82.24 165 | 83.95 137 | 88.88 131 | 93.22 151 | 89.48 134 | 76.89 146 | 87.53 149 | 62.12 156 | 68.46 155 | 55.03 194 | 88.43 137 | 90.87 153 | 89.65 159 | 97.89 186 | 90.91 199 |
|
testgi | | | 82.88 157 | 86.14 151 | 79.08 180 | 86.05 150 | 92.20 171 | 81.23 192 | 74.77 161 | 88.70 147 | 57.63 177 | 86.73 84 | 61.53 172 | 76.83 189 | 90.33 155 | 89.43 164 | 97.99 182 | 94.05 186 |
|
DU-MVS | | | 82.87 158 | 82.16 166 | 83.70 139 | 80.77 186 | 92.24 167 | 86.54 160 | 81.91 106 | 86.41 155 | 66.27 139 | 63.95 167 | 55.66 192 | 87.78 143 | 86.83 188 | 90.86 150 | 98.94 128 | 99.13 98 |
|
MIMVSNet | | | 82.87 158 | 86.17 150 | 79.02 181 | 77.23 207 | 92.88 157 | 84.88 176 | 60.62 208 | 86.72 152 | 64.16 145 | 73.58 140 | 71.48 147 | 88.51 136 | 94.14 115 | 93.50 112 | 98.72 146 | 90.87 200 |
|
NR-MVSNet | | | 82.37 160 | 81.95 168 | 82.85 146 | 82.56 169 | 92.24 167 | 87.49 148 | 81.91 106 | 86.41 155 | 65.51 141 | 63.95 167 | 52.93 203 | 80.80 175 | 89.41 166 | 89.61 160 | 98.85 135 | 99.10 103 |
|
Baseline_NR-MVSNet | | | 82.08 161 | 80.64 175 | 83.77 138 | 80.77 186 | 88.50 200 | 86.88 158 | 81.71 110 | 85.58 160 | 68.80 133 | 58.20 187 | 57.75 184 | 86.16 148 | 86.83 188 | 88.68 170 | 98.33 173 | 98.90 111 |
|
TranMVSNet+NR-MVSNet | | | 82.07 162 | 81.36 171 | 82.90 145 | 80.43 192 | 91.39 179 | 87.16 154 | 82.75 100 | 84.28 167 | 62.98 152 | 62.28 171 | 56.01 191 | 85.30 151 | 86.06 194 | 90.69 154 | 98.80 136 | 98.80 114 |
|
pm-mvs1 | | | 81.68 163 | 81.70 169 | 81.65 154 | 82.61 168 | 92.26 166 | 85.54 173 | 78.95 131 | 76.29 198 | 63.81 148 | 58.43 186 | 66.33 165 | 80.63 176 | 92.30 137 | 89.93 158 | 98.37 172 | 96.39 171 |
|
TDRefinement | | | 81.49 164 | 80.08 181 | 83.13 144 | 91.02 100 | 94.53 143 | 91.66 114 | 82.43 102 | 81.70 174 | 62.12 156 | 62.30 170 | 59.32 179 | 73.93 200 | 87.31 181 | 85.29 197 | 97.61 189 | 90.14 201 |
|
anonymousdsp | | | 81.29 165 | 84.52 159 | 77.52 189 | 79.83 200 | 92.62 161 | 82.61 187 | 70.88 182 | 80.76 180 | 50.82 199 | 68.35 157 | 68.76 161 | 82.45 171 | 93.00 131 | 89.45 162 | 98.55 160 | 98.69 118 |
|
gg-mvs-nofinetune | | | 81.27 166 | 84.65 158 | 77.32 190 | 87.96 140 | 98.48 80 | 95.64 60 | 56.36 214 | 59.35 216 | 32.80 220 | 47.96 210 | 92.11 73 | 91.49 112 | 98.12 24 | 97.00 47 | 99.65 23 | 99.56 66 |
|
tfpnnormal | | | 81.11 167 | 79.33 189 | 83.19 143 | 84.23 159 | 92.29 165 | 86.76 159 | 82.27 104 | 72.67 204 | 62.02 158 | 56.10 197 | 53.86 200 | 85.35 150 | 92.06 142 | 89.23 166 | 98.49 166 | 99.11 102 |
|
UniMVSNet_ETH3D | | | 80.95 168 | 77.71 197 | 84.74 128 | 84.45 158 | 93.11 156 | 86.45 162 | 79.97 124 | 75.21 200 | 70.22 130 | 51.24 207 | 50.26 209 | 89.55 128 | 84.47 201 | 91.12 145 | 97.81 187 | 98.53 123 |
|
V42 | | | 80.88 169 | 80.74 173 | 81.05 159 | 81.21 180 | 92.01 173 | 85.96 168 | 77.75 139 | 81.62 175 | 59.73 172 | 59.93 178 | 58.35 183 | 82.98 170 | 86.90 187 | 88.06 185 | 98.69 149 | 98.32 130 |
|
v2v482 | | | 80.86 170 | 80.52 179 | 81.25 157 | 80.79 185 | 91.85 174 | 85.68 171 | 78.78 132 | 81.05 177 | 58.09 175 | 60.46 173 | 56.08 189 | 85.45 149 | 87.27 182 | 88.53 172 | 98.73 144 | 98.38 129 |
|
v8 | | | 80.61 171 | 80.61 177 | 80.62 161 | 81.51 175 | 91.00 184 | 86.06 165 | 74.07 168 | 81.78 173 | 59.93 171 | 60.10 177 | 58.42 182 | 83.35 165 | 86.99 186 | 88.11 183 | 98.79 137 | 97.83 144 |
|
pmmvs5 | | | 80.48 172 | 81.43 170 | 79.36 176 | 81.50 176 | 92.24 167 | 82.07 190 | 74.08 167 | 78.10 191 | 55.86 183 | 67.72 160 | 54.35 197 | 83.91 159 | 92.97 132 | 88.65 171 | 98.77 139 | 96.01 173 |
|
v10 | | | 80.38 173 | 80.73 174 | 79.96 169 | 81.22 179 | 90.40 192 | 86.11 164 | 71.63 179 | 82.42 172 | 57.65 176 | 58.74 184 | 57.47 185 | 84.44 153 | 89.75 160 | 88.28 176 | 98.71 147 | 98.06 141 |
|
v1144 | | | 80.36 174 | 80.63 176 | 80.05 168 | 80.86 184 | 91.56 177 | 85.78 170 | 75.22 155 | 80.73 181 | 55.83 184 | 58.51 185 | 56.99 187 | 83.93 158 | 89.79 159 | 88.25 177 | 98.68 150 | 98.56 122 |
|
SixPastTwentyTwo | | | 80.28 175 | 82.06 167 | 78.21 186 | 81.89 174 | 92.35 164 | 77.72 197 | 74.48 162 | 83.04 170 | 54.22 189 | 76.06 131 | 56.40 188 | 83.55 161 | 86.83 188 | 84.83 199 | 97.38 193 | 94.93 182 |
|
CP-MVSNet | | | 79.90 176 | 79.49 186 | 80.38 165 | 80.72 188 | 90.83 186 | 82.98 184 | 75.17 156 | 79.70 186 | 61.39 162 | 59.74 179 | 51.98 206 | 83.31 166 | 87.37 180 | 88.38 174 | 98.71 147 | 98.45 126 |
|
v1192 | | | 79.84 177 | 80.05 183 | 79.61 172 | 80.49 191 | 91.04 183 | 85.56 172 | 74.37 164 | 80.73 181 | 54.35 187 | 57.07 192 | 54.54 196 | 84.23 156 | 89.94 157 | 88.38 174 | 98.63 154 | 98.61 120 |
|
WR-MVS_H | | | 79.76 178 | 80.07 182 | 79.40 175 | 81.25 178 | 91.73 176 | 82.77 185 | 74.82 160 | 79.02 190 | 62.55 153 | 59.41 181 | 57.32 186 | 76.27 191 | 87.61 179 | 87.30 191 | 98.78 138 | 98.09 139 |
|
WR-MVS | | | 79.67 179 | 80.25 180 | 79.00 182 | 80.65 189 | 91.16 181 | 83.31 182 | 76.57 148 | 80.97 178 | 60.50 170 | 59.20 182 | 58.66 181 | 74.38 198 | 85.85 196 | 87.76 188 | 98.61 155 | 98.14 136 |
|
v148 | | | 79.66 180 | 79.13 191 | 80.27 166 | 81.02 182 | 91.76 175 | 81.90 191 | 79.32 127 | 79.24 188 | 63.79 149 | 58.07 189 | 54.34 198 | 77.17 187 | 84.42 202 | 87.52 190 | 98.40 169 | 98.59 121 |
|
LTVRE_ROB | | 79.45 16 | 79.66 180 | 80.55 178 | 78.61 184 | 83.01 165 | 92.19 172 | 87.18 153 | 73.69 171 | 71.70 207 | 43.22 215 | 71.22 149 | 50.85 207 | 87.82 142 | 89.47 165 | 90.43 156 | 96.75 196 | 98.00 143 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
v144192 | | | 79.61 182 | 79.77 184 | 79.41 174 | 80.28 193 | 91.06 182 | 84.87 177 | 73.86 169 | 79.65 187 | 55.38 185 | 57.76 190 | 55.20 193 | 83.46 162 | 88.42 171 | 87.89 187 | 98.61 155 | 98.42 128 |
|
v1921920 | | | 79.55 183 | 79.77 184 | 79.30 178 | 80.24 194 | 90.77 188 | 85.37 174 | 73.75 170 | 80.38 183 | 53.78 195 | 56.89 194 | 54.18 199 | 84.05 157 | 89.55 163 | 88.13 182 | 98.59 157 | 98.52 124 |
|
TransMVSNet (Re) | | | 79.51 184 | 78.36 193 | 80.84 160 | 83.17 163 | 89.72 196 | 84.22 180 | 81.45 113 | 73.98 203 | 60.79 168 | 57.20 191 | 56.05 190 | 77.11 188 | 89.88 158 | 88.86 169 | 98.30 175 | 92.83 191 |
|
MVS-HIRNet | | | 79.34 185 | 82.56 162 | 75.57 195 | 84.11 160 | 95.02 136 | 75.03 204 | 57.28 213 | 85.50 162 | 55.88 182 | 53.00 203 | 70.51 158 | 83.05 169 | 92.12 139 | 91.96 136 | 98.09 179 | 89.83 202 |
|
PS-CasMVS | | | 79.06 186 | 78.58 192 | 79.63 171 | 80.59 190 | 90.55 190 | 82.54 188 | 75.04 157 | 77.76 192 | 58.84 173 | 58.16 188 | 50.11 211 | 82.09 172 | 87.05 184 | 88.18 180 | 98.66 153 | 98.27 132 |
|
v1240 | | | 78.97 187 | 79.27 190 | 78.63 183 | 80.04 195 | 90.61 189 | 84.25 179 | 72.95 174 | 79.22 189 | 52.70 197 | 56.22 196 | 52.88 205 | 83.28 167 | 89.60 162 | 88.20 179 | 98.56 159 | 98.14 136 |
|
pmnet_mix02 | | | 78.91 188 | 81.17 172 | 76.28 194 | 81.91 173 | 90.82 187 | 74.25 205 | 77.87 138 | 86.17 157 | 49.04 203 | 67.97 158 | 62.93 170 | 77.40 185 | 82.75 207 | 82.11 206 | 97.18 194 | 95.42 179 |
|
MDTV_nov1_ep13_2view | | | 78.83 189 | 82.35 163 | 74.73 198 | 78.65 202 | 91.51 178 | 79.18 194 | 62.52 201 | 84.51 166 | 52.51 198 | 67.49 161 | 67.29 164 | 78.90 179 | 85.52 198 | 86.34 194 | 96.62 198 | 93.76 187 |
|
PEN-MVS | | | 78.80 190 | 78.13 195 | 79.58 173 | 80.03 196 | 89.67 197 | 83.61 181 | 75.83 151 | 77.71 194 | 58.41 174 | 60.11 176 | 50.00 212 | 81.02 174 | 84.08 203 | 88.14 181 | 98.59 157 | 97.18 160 |
|
EG-PatchMatch MVS | | | 78.32 191 | 79.42 188 | 77.03 192 | 83.03 164 | 93.77 148 | 84.47 178 | 69.26 186 | 75.85 199 | 53.69 196 | 55.68 198 | 60.23 176 | 73.20 201 | 89.69 161 | 88.22 178 | 98.55 160 | 92.54 192 |
|
DTE-MVSNet | | | 77.92 192 | 77.42 198 | 78.51 185 | 79.34 201 | 89.00 199 | 83.05 183 | 75.60 152 | 76.89 196 | 56.58 179 | 59.63 180 | 50.31 208 | 78.09 184 | 82.57 208 | 87.56 189 | 98.38 170 | 95.95 174 |
|
v7n | | | 77.71 193 | 78.25 194 | 77.09 191 | 78.49 203 | 90.55 190 | 82.15 189 | 71.11 181 | 76.79 197 | 54.18 190 | 55.63 199 | 50.20 210 | 78.28 182 | 89.36 168 | 87.15 192 | 98.33 173 | 98.07 140 |
|
gm-plane-assit | | | 77.20 194 | 82.26 164 | 71.30 201 | 81.10 181 | 82.00 213 | 54.33 218 | 64.41 196 | 63.80 215 | 40.93 217 | 59.04 183 | 76.57 129 | 87.30 145 | 98.26 22 | 97.36 37 | 99.74 12 | 98.76 116 |
|
N_pmnet | | | 76.83 195 | 77.97 196 | 75.50 196 | 80.96 183 | 88.23 202 | 72.81 206 | 76.83 147 | 80.87 179 | 50.55 200 | 56.94 193 | 60.09 177 | 75.70 193 | 83.28 205 | 84.23 201 | 96.14 202 | 92.12 193 |
|
pmmvs6 | | | 76.79 196 | 75.69 203 | 78.09 188 | 79.95 198 | 89.57 198 | 80.92 193 | 74.46 163 | 64.79 213 | 60.74 169 | 45.71 212 | 60.55 174 | 78.37 180 | 88.04 174 | 86.00 195 | 94.07 206 | 95.15 180 |
|
CMPMVS |  | 58.73 17 | 76.78 197 | 74.27 204 | 79.70 170 | 93.26 75 | 95.58 131 | 82.74 186 | 77.44 142 | 71.46 210 | 56.29 181 | 53.58 202 | 59.13 180 | 77.33 186 | 79.20 209 | 79.71 209 | 91.14 211 | 81.24 211 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
EU-MVSNet | | | 76.76 198 | 79.47 187 | 73.60 199 | 79.99 197 | 87.47 203 | 77.39 198 | 75.43 154 | 77.62 195 | 47.83 206 | 64.78 165 | 60.44 175 | 64.80 206 | 86.28 193 | 86.53 193 | 96.17 201 | 93.19 190 |
|
PM-MVS | | | 75.81 199 | 76.11 202 | 75.46 197 | 73.81 208 | 85.48 207 | 76.42 200 | 70.57 183 | 80.05 185 | 54.75 186 | 62.33 169 | 39.56 218 | 80.59 177 | 87.71 177 | 82.81 205 | 96.61 200 | 94.81 183 |
|
pmmvs-eth3d | | | 75.17 200 | 74.09 205 | 76.43 193 | 72.92 209 | 84.49 209 | 76.61 199 | 72.42 176 | 74.33 201 | 61.28 164 | 54.71 201 | 39.42 219 | 78.20 183 | 87.77 176 | 84.25 200 | 97.17 195 | 93.63 188 |
|
Anonymous20231206 | | | 74.59 201 | 77.00 199 | 71.78 200 | 77.89 206 | 87.45 204 | 75.14 203 | 72.29 178 | 77.76 192 | 46.65 208 | 52.14 204 | 52.93 203 | 61.10 209 | 89.37 167 | 88.09 184 | 97.59 190 | 91.30 198 |
|
test20.03 | | | 72.81 202 | 76.24 201 | 68.80 204 | 78.31 204 | 85.40 208 | 71.04 208 | 71.20 180 | 71.85 206 | 43.40 214 | 65.31 164 | 54.71 195 | 51.27 212 | 85.92 195 | 84.18 202 | 97.58 191 | 86.35 207 |
|
test_method | | | 71.90 203 | 76.72 200 | 66.28 209 | 60.87 217 | 78.37 215 | 69.75 212 | 49.81 219 | 83.44 168 | 49.63 201 | 47.13 211 | 53.23 202 | 76.38 190 | 91.32 150 | 85.76 196 | 91.22 210 | 97.77 145 |
|
new_pmnet | | | 71.86 204 | 73.67 206 | 69.75 203 | 72.56 212 | 84.20 210 | 70.95 210 | 66.81 192 | 80.34 184 | 43.62 213 | 51.60 205 | 53.81 201 | 71.24 203 | 82.91 206 | 80.93 207 | 93.35 208 | 81.92 210 |
|
MDA-MVSNet-bldmvs | | | 69.61 205 | 70.36 208 | 68.74 205 | 62.88 215 | 88.50 200 | 65.40 215 | 77.01 145 | 71.60 209 | 43.93 210 | 66.71 162 | 35.33 221 | 72.47 202 | 61.01 215 | 80.63 208 | 90.73 212 | 88.75 205 |
|
pmmvs3 | | | 69.04 206 | 70.75 207 | 67.04 207 | 66.83 213 | 78.54 214 | 64.99 216 | 60.92 207 | 64.67 214 | 40.61 218 | 55.08 200 | 40.29 217 | 74.89 197 | 83.76 204 | 84.01 203 | 93.98 207 | 88.88 204 |
|
MIMVSNet1 | | | 68.63 207 | 70.24 209 | 66.76 208 | 56.86 219 | 83.26 211 | 67.93 213 | 70.26 184 | 68.05 211 | 46.80 207 | 40.44 213 | 48.15 213 | 62.01 207 | 84.96 200 | 84.86 198 | 96.69 197 | 81.93 209 |
|
GG-mvs-BLEND | | | 67.99 208 | 97.35 38 | 33.72 216 | 1.22 225 | 99.72 16 | 98.30 33 | 0.57 223 | 97.61 61 | 1.18 226 | 93.26 50 | 96.63 42 | 1.74 222 | 97.15 54 | 97.14 40 | 99.34 96 | 99.96 10 |
|
new-patchmatchnet | | | 67.66 209 | 68.07 210 | 67.18 206 | 72.85 210 | 82.86 212 | 63.09 217 | 68.61 190 | 66.60 212 | 42.64 216 | 49.28 208 | 38.68 220 | 61.21 208 | 75.84 210 | 75.22 211 | 94.67 205 | 88.00 206 |
|
FPMVS | | | 63.27 210 | 61.31 212 | 65.57 210 | 78.25 205 | 74.42 218 | 75.23 202 | 68.92 189 | 72.33 205 | 43.87 211 | 49.01 209 | 43.94 215 | 48.64 214 | 61.15 214 | 58.81 216 | 78.51 218 | 69.49 216 |
|
Gipuma |  | | 54.59 211 | 53.98 213 | 55.30 211 | 59.03 218 | 52.63 220 | 47.17 220 | 56.08 215 | 71.68 208 | 37.54 219 | 20.90 219 | 19.00 223 | 52.33 211 | 71.69 212 | 75.20 212 | 79.64 217 | 66.79 217 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMVS |  | 49.05 18 | 51.88 212 | 50.56 215 | 53.42 212 | 64.21 214 | 43.30 222 | 42.64 221 | 62.93 198 | 50.56 217 | 43.72 212 | 37.44 214 | 42.95 216 | 35.05 217 | 58.76 217 | 54.58 217 | 71.95 219 | 66.33 218 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
PMMVS2 | | | 50.69 213 | 52.33 214 | 48.78 213 | 51.24 220 | 64.81 219 | 47.91 219 | 53.79 218 | 44.95 218 | 21.75 221 | 29.98 217 | 25.90 222 | 31.98 219 | 59.95 216 | 65.37 214 | 86.00 215 | 75.36 214 |
|
E-PMN | | | 37.15 214 | 34.82 217 | 39.86 214 | 47.53 222 | 35.42 224 | 23.79 223 | 55.26 216 | 35.18 221 | 14.12 223 | 17.38 222 | 14.13 225 | 39.73 216 | 32.24 219 | 46.98 218 | 58.76 220 | 62.39 220 |
|
EMVS | | | 36.45 215 | 33.63 218 | 39.74 215 | 48.47 221 | 35.73 223 | 23.59 224 | 55.11 217 | 35.61 220 | 12.88 224 | 17.49 220 | 14.62 224 | 41.04 215 | 29.33 220 | 43.00 219 | 57.32 221 | 59.62 221 |
|
MVE |  | 42.40 19 | 36.00 216 | 38.65 216 | 32.92 217 | 29.16 223 | 46.17 221 | 22.61 225 | 44.21 220 | 26.44 223 | 18.88 222 | 17.41 221 | 9.36 227 | 32.29 218 | 45.75 218 | 61.38 215 | 50.35 222 | 64.03 219 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
testmvs | | | 21.55 217 | 30.91 219 | 10.62 218 | 2.78 224 | 11.66 225 | 18.51 226 | 4.82 221 | 38.21 219 | 4.06 225 | 36.35 215 | 4.47 228 | 26.81 220 | 23.27 221 | 27.11 220 | 6.75 223 | 75.30 215 |
|
test123 | | | 16.81 218 | 24.80 220 | 7.48 219 | 0.82 226 | 8.38 226 | 11.92 227 | 2.60 222 | 28.96 222 | 1.12 227 | 28.39 218 | 1.26 229 | 24.51 221 | 8.93 222 | 22.19 221 | 3.90 224 | 75.49 213 |
|
uanet_test | | | 0.00 219 | 0.00 221 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 224 | 0.00 228 | 0.00 223 | 0.00 230 | 0.00 223 | 0.00 223 | 0.00 222 | 0.00 225 | 0.00 222 |
|
sosnet-low-res | | | 0.00 219 | 0.00 221 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 224 | 0.00 228 | 0.00 223 | 0.00 230 | 0.00 223 | 0.00 223 | 0.00 222 | 0.00 225 | 0.00 222 |
|
sosnet | | | 0.00 219 | 0.00 221 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 224 | 0.00 228 | 0.00 223 | 0.00 230 | 0.00 223 | 0.00 223 | 0.00 222 | 0.00 225 | 0.00 222 |
|
RE-MVS-def | | | | | | | | | | | 46.54 209 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 99.73 8 | | | | | |
|
SR-MVS | | | | | | 99.27 15 | | | 95.82 18 | | | | 99.00 18 | | | | | |
|
Anonymous202405211 | | | | 87.54 144 | | 90.72 105 | 97.10 106 | 93.40 95 | 85.30 81 | 91.41 134 | | 60.23 174 | 80.69 123 | 95.80 64 | 91.33 149 | 92.60 130 | 98.38 170 | 99.40 80 |
|
our_test_3 | | | | | | 81.94 171 | 90.26 195 | 75.39 201 | | | | | | | | | | |
|
ambc | | | | 64.61 211 | | 61.80 216 | 75.31 217 | 71.00 209 | | 74.16 202 | 48.83 204 | 36.02 216 | 13.22 226 | 58.66 210 | 85.80 197 | 76.26 210 | 88.01 213 | 91.53 197 |
|
MTAPA | | | | | | | | | | | 94.58 14 | | 98.56 23 | | | | | |
|
MTMP | | | | | | | | | | | 95.24 8 | | 98.13 29 | | | | | |
|
Patchmatch-RL test | | | | | | | | 37.05 222 | | | | | | | | | | |
|
tmp_tt | | | | | 71.24 202 | 90.29 115 | 76.39 216 | 65.81 214 | 59.43 212 | 97.62 59 | 79.65 103 | 90.60 60 | 68.71 162 | 49.71 213 | 72.71 211 | 65.70 213 | 82.54 216 | |
|
XVS | | | | | | 93.63 70 | 99.64 24 | 94.32 80 | | | 83.97 70 | | 98.08 31 | | | | 99.59 36 | |
|
X-MVStestdata | | | | | | 93.63 70 | 99.64 24 | 94.32 80 | | | 83.97 70 | | 98.08 31 | | | | 99.59 36 | |
|
mPP-MVS | | | | | | 98.66 28 | | | | | | | 97.11 39 | | | | | |
|
NP-MVS | | | | | | | | | | 97.69 57 | | | | | | | | |
|
Patchmtry | | | | | | | 95.86 126 | 89.43 136 | 61.37 205 | | 60.81 165 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 85.88 206 | 69.83 211 | 81.56 111 | 87.99 148 | 48.22 205 | 71.85 146 | 45.52 214 | 68.67 204 | 63.21 213 | | 86.64 214 | 80.03 212 |
|