This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
APDe-MVScopyleft99.49 199.64 199.32 299.74 499.74 1199.75 198.34 499.56 1198.72 699.57 799.97 899.53 1599.65 299.25 1599.84 1299.77 58
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DVP-MVScopyleft99.45 299.54 799.35 199.72 699.76 699.63 1298.37 299.63 799.03 398.95 3999.98 299.60 799.60 799.05 2999.74 5199.79 45
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS99.44 399.58 499.28 399.69 799.76 699.62 1498.35 399.51 1799.05 299.60 699.98 299.28 3799.61 698.83 5199.70 8599.77 58
DVP-MVS++99.41 499.64 199.14 799.69 799.75 999.64 898.33 699.67 498.10 1399.66 499.99 199.33 3099.62 598.86 4699.74 5199.90 7
DPE-MVScopyleft99.39 599.55 699.20 499.63 2099.71 1599.66 698.33 699.29 3798.40 1199.64 599.98 299.31 3399.56 998.96 3899.85 1099.70 94
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SMA-MVScopyleft99.38 699.60 399.12 999.76 299.62 3399.39 2998.23 1899.52 1698.03 1799.45 1199.98 299.64 599.58 899.30 1199.68 9699.76 63
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSP-MVS99.34 799.52 1099.14 799.68 1299.75 999.64 898.31 999.44 2198.10 1399.28 1899.98 299.30 3599.34 2399.05 2999.81 2299.79 45
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HFP-MVS99.32 899.53 999.07 1399.69 799.59 4599.63 1298.31 999.56 1197.37 2699.27 1999.97 899.70 399.35 2299.24 1799.71 7799.76 63
ACMMPR99.30 999.54 799.03 1699.66 1699.64 2699.68 498.25 1499.56 1197.12 3099.19 2199.95 1799.72 199.43 1699.25 1599.72 6799.77 58
TSAR-MVS + MP.99.27 1099.57 598.92 2298.78 5399.53 5599.72 298.11 2899.73 297.43 2599.15 2499.96 1299.59 999.73 199.07 2699.88 499.82 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CP-MVS99.27 1099.44 1799.08 1299.62 2299.58 4899.53 1898.16 2199.21 5097.79 2099.15 2499.96 1299.59 999.54 1198.86 4699.78 3499.74 75
SD-MVS99.25 1299.50 1298.96 2098.79 5299.55 5399.33 3298.29 1299.75 197.96 1899.15 2499.95 1799.61 699.17 3299.06 2899.81 2299.84 25
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVScopyleft99.25 1299.38 2299.09 1199.69 799.58 4899.56 1798.32 898.85 9797.87 1998.91 4299.92 2899.30 3599.45 1599.38 899.79 3199.58 124
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS99.23 1499.28 3199.17 599.65 1899.34 8899.46 2498.21 1999.28 3898.47 898.89 4499.94 2599.50 1699.42 1798.61 6199.73 5999.52 136
SteuartSystems-ACMMP99.20 1599.51 1198.83 2699.66 1699.66 2199.71 398.12 2799.14 6396.62 3399.16 2399.98 299.12 4999.63 399.19 2199.78 3499.83 29
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS99.18 1699.32 2899.03 1699.65 1899.41 7798.87 5498.24 1799.14 6398.73 599.11 2899.92 2898.92 6299.22 2898.84 5099.76 4199.56 130
DeepC-MVS_fast98.34 199.17 1799.45 1498.85 2499.55 2999.37 8299.64 898.05 3199.53 1496.58 3498.93 4099.92 2899.49 1899.46 1499.32 1099.80 3099.64 115
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSLP-MVS++99.15 1899.24 3499.04 1599.52 3299.49 6399.09 4498.07 2999.37 2798.47 897.79 8299.89 3599.50 1698.93 4999.45 499.61 12599.76 63
CPTT-MVS99.14 1999.20 3699.06 1499.58 2599.53 5599.45 2597.80 3699.19 5398.32 1298.58 5799.95 1799.60 799.28 2698.20 8899.64 11799.69 98
MCST-MVS99.11 2099.27 3298.93 2199.67 1399.33 9199.51 2098.31 999.28 3896.57 3599.10 3099.90 3399.71 299.19 3198.35 7799.82 1699.71 92
HPM-MVS++copyleft99.10 2199.30 3098.86 2399.69 799.48 6499.59 1698.34 499.26 4296.55 3699.10 3099.96 1299.36 2899.25 2798.37 7699.64 11799.66 108
PHI-MVS99.08 2299.43 1998.67 2899.15 4599.59 4599.11 4297.35 3999.14 6397.30 2799.44 1299.96 1299.32 3298.89 5499.39 799.79 3199.58 124
MP-MVScopyleft99.07 2399.36 2498.74 2799.63 2099.57 5099.66 698.25 1499.00 8395.62 4598.97 3799.94 2599.54 1499.51 1298.79 5599.71 7799.73 79
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
AdaColmapbinary99.06 2498.98 5199.15 699.60 2499.30 9499.38 3098.16 2199.02 8198.55 798.71 5399.57 5699.58 1299.09 3797.84 10699.64 11799.36 154
ACMMP_NAP99.05 2599.45 1498.58 3099.73 599.60 4399.64 898.28 1399.23 4594.57 6699.35 1699.97 899.55 1399.63 398.66 5899.70 8599.74 75
NCCC99.05 2599.08 4199.02 1899.62 2299.38 7999.43 2898.21 1999.36 3097.66 2397.79 8299.90 3399.45 2299.17 3298.43 7199.77 3999.51 141
CNLPA99.03 2799.05 4499.01 1999.27 4399.22 10299.03 4897.98 3299.34 3299.00 498.25 7199.71 4999.31 3398.80 6098.82 5399.48 16299.17 165
PLCcopyleft97.93 299.02 2898.94 5299.11 1099.46 3499.24 10099.06 4697.96 3399.31 3499.16 197.90 8099.79 4599.36 2898.71 6998.12 9299.65 11399.52 136
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
X-MVS98.93 2999.37 2398.42 3199.67 1399.62 3399.60 1598.15 2399.08 7293.81 8498.46 6499.95 1799.59 999.49 1399.21 2099.68 9699.75 71
CSCG98.90 3098.93 5398.85 2499.75 399.72 1299.49 2196.58 4299.38 2598.05 1698.97 3797.87 7799.49 1897.78 12798.92 4199.78 3499.90 7
PGM-MVS98.86 3199.35 2798.29 3499.77 199.63 2999.67 595.63 4598.66 12095.27 5399.11 2899.82 4299.67 499.33 2499.19 2199.73 5999.74 75
OMC-MVS98.84 3299.01 5098.65 2999.39 3699.23 10199.22 3596.70 4199.40 2497.77 2197.89 8199.80 4399.21 3899.02 4398.65 5999.57 14799.07 172
TSAR-MVS + ACMM98.77 3399.45 1497.98 4299.37 3799.46 6699.44 2798.13 2699.65 592.30 10998.91 4299.95 1799.05 5599.42 1798.95 3999.58 14399.82 30
ACMMPcopyleft98.74 3499.03 4898.40 3299.36 3999.64 2699.20 3697.75 3798.82 10495.24 5498.85 4599.87 3799.17 4598.74 6797.50 11999.71 7799.76 63
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
train_agg98.73 3599.11 3998.28 3599.36 3999.35 8699.48 2397.96 3398.83 10293.86 8398.70 5499.86 3899.44 2399.08 3998.38 7499.61 12599.58 124
3Dnovator+96.92 798.71 3699.05 4498.32 3399.53 3099.34 8899.06 4694.61 5899.65 597.49 2496.75 10599.86 3899.44 2398.78 6299.30 1199.81 2299.67 104
MVS_111021_LR98.67 3799.41 2197.81 4599.37 3799.53 5598.51 6795.52 4799.27 4094.85 6199.56 899.69 5099.04 5699.36 2098.88 4499.60 13399.58 124
3Dnovator96.92 798.67 3799.05 4498.23 3799.57 2699.45 6899.11 4294.66 5799.69 396.80 3296.55 11599.61 5399.40 2598.87 5799.49 399.85 1099.66 108
TSAR-MVS + GP.98.66 3999.36 2497.85 4497.16 8299.46 6699.03 4894.59 6199.09 7097.19 2999.73 399.95 1799.39 2698.95 4798.69 5799.75 4699.65 111
QAPM98.62 4099.04 4798.13 3899.57 2699.48 6499.17 3894.78 5499.57 1096.16 3996.73 10699.80 4399.33 3098.79 6199.29 1399.75 4699.64 115
MVS_111021_HR98.59 4199.36 2497.68 4799.42 3599.61 3898.14 9094.81 5399.31 3495.00 5999.51 999.79 4599.00 5998.94 4898.83 5199.69 8899.57 129
CS-MVS-test98.58 4299.42 2097.60 5198.52 5799.91 198.60 6494.60 6099.37 2794.62 6599.40 1499.16 6199.39 2699.36 2098.85 4999.90 399.92 3
CS-MVS98.56 4399.32 2897.68 4798.28 6299.89 298.71 6194.53 6399.41 2395.43 4999.05 3598.66 6699.19 4099.21 2999.07 2699.93 199.94 1
CANet98.46 4499.16 3797.64 4998.48 5899.64 2699.35 3194.71 5699.53 1495.17 5597.63 8899.59 5498.38 8898.88 5698.99 3699.74 5199.86 21
CDPH-MVS98.41 4599.10 4097.61 5099.32 4299.36 8399.49 2196.15 4498.82 10491.82 11398.41 6599.66 5199.10 5198.93 4998.97 3799.75 4699.58 124
TAPA-MVS97.53 598.41 4598.84 5797.91 4399.08 4799.33 9199.15 3997.13 4099.34 3293.20 9497.75 8499.19 6099.20 3998.66 7198.13 9199.66 10999.48 145
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DeepPCF-MVS97.74 398.34 4799.46 1397.04 6698.82 5199.33 9196.28 14897.47 3899.58 994.70 6498.99 3699.85 4097.24 12299.55 1099.34 997.73 20699.56 130
DeepC-MVS97.63 498.33 4898.57 6298.04 4098.62 5699.65 2299.45 2598.15 2399.51 1792.80 10195.74 13096.44 9299.46 2199.37 1999.50 299.78 3499.81 35
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DPM-MVS98.31 4998.53 6498.05 3998.76 5498.77 12499.13 4098.07 2999.10 6994.27 7796.70 10799.84 4198.70 7497.90 12198.11 9399.40 17599.28 157
MSDG98.27 5098.29 7198.24 3699.20 4499.22 10299.20 3697.82 3599.37 2794.43 7295.90 12697.31 8399.12 4998.76 6498.35 7799.67 10499.14 169
EC-MVSNet98.22 5199.44 1796.79 7595.62 12399.56 5199.01 5092.22 10099.17 5594.51 6999.41 1399.62 5299.49 1899.16 3499.26 1499.91 299.94 1
DELS-MVS98.19 5298.77 5997.52 5298.29 6199.71 1599.12 4194.58 6298.80 10795.38 5296.24 12098.24 7497.92 10399.06 4099.52 199.82 1699.79 45
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PCF-MVS97.50 698.18 5398.35 7097.99 4198.65 5599.36 8398.94 5298.14 2598.59 12293.62 8996.61 11199.76 4899.03 5797.77 12897.45 12499.57 14798.89 180
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_030498.14 5499.03 4897.10 6398.05 6699.63 2999.27 3494.33 6899.63 793.06 9797.32 9299.05 6498.09 9798.82 5998.87 4599.81 2299.89 12
ETV-MVS98.05 5599.25 3396.65 8095.61 12499.61 3898.26 8593.52 8598.90 9393.74 8899.32 1799.20 5998.90 6599.21 2998.72 5699.87 899.79 45
EPNet98.05 5598.86 5597.10 6399.02 4899.43 7398.47 7094.73 5599.05 7895.62 4598.93 4097.62 8195.48 16998.59 8198.55 6399.29 18299.84 25
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 280x42097.99 5799.24 3496.53 8598.34 6099.61 3898.36 7989.80 14699.27 4095.08 5899.81 198.58 6898.64 7899.02 4398.92 4198.93 19199.48 145
OpenMVScopyleft96.23 1197.95 5898.45 6797.35 5599.52 3299.42 7598.91 5394.61 5898.87 9492.24 11194.61 14399.05 6499.10 5198.64 7399.05 2999.74 5199.51 141
IS_MVSNet97.86 5998.86 5596.68 7896.02 10599.72 1298.35 8093.37 8998.75 11794.01 7896.88 10498.40 7198.48 8699.09 3799.42 599.83 1599.80 37
LS3D97.79 6098.25 7397.26 6098.40 5999.63 2999.53 1898.63 199.25 4488.13 13196.93 10294.14 12399.19 4099.14 3599.23 1899.69 8899.42 149
COLMAP_ROBcopyleft96.15 1297.78 6198.17 7997.32 5698.84 5099.45 6899.28 3395.43 4899.48 1991.80 11494.83 14298.36 7298.90 6598.09 10597.85 10599.68 9699.15 166
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PatchMatch-RL97.77 6298.25 7397.21 6199.11 4699.25 9897.06 13294.09 7198.72 11895.14 5798.47 6396.29 9498.43 8798.65 7297.44 12599.45 16698.94 175
EPP-MVSNet97.75 6398.71 6096.63 8395.68 12199.56 5197.51 11193.10 9699.22 4794.99 6097.18 9797.30 8498.65 7798.83 5898.93 4099.84 1299.92 3
MAR-MVS97.71 6498.04 8597.32 5699.35 4198.91 11697.65 10991.68 11098.00 15097.01 3197.72 8694.83 11398.85 7198.44 9098.86 4699.41 17399.52 136
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EIA-MVS97.70 6598.78 5896.44 9095.72 11899.65 2298.14 9093.72 8298.30 13892.31 10898.63 5597.90 7698.97 6098.92 5198.30 8399.78 3499.80 37
UGNet97.66 6699.07 4396.01 9997.19 8199.65 2297.09 13093.39 8799.35 3194.40 7498.79 4799.59 5494.24 18998.04 11398.29 8499.73 5999.80 37
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
RPSCF97.61 6798.16 8096.96 7498.10 6399.00 10998.84 5693.76 7999.45 2094.78 6399.39 1599.31 5898.53 8596.61 16695.43 17597.74 20497.93 198
baseline197.58 6898.05 8497.02 6996.21 10199.45 6897.71 10693.71 8398.47 13095.75 4498.78 4893.20 13398.91 6398.52 8598.44 6999.81 2299.53 133
DCV-MVSNet97.56 6998.36 6996.62 8496.44 9398.36 15798.37 7791.73 10999.11 6894.80 6298.36 6896.28 9598.60 8198.12 10298.44 6999.76 4199.87 18
PMMVS97.52 7098.39 6896.51 8795.82 11598.73 13197.80 10293.05 9798.76 11494.39 7599.07 3397.03 8898.55 8398.31 9497.61 11499.43 17099.21 164
PVSNet_BlendedMVS97.51 7197.71 9897.28 5898.06 6499.61 3897.31 11795.02 5199.08 7295.51 4798.05 7590.11 14698.07 9898.91 5298.40 7299.72 6799.78 51
PVSNet_Blended97.51 7197.71 9897.28 5898.06 6499.61 3897.31 11795.02 5199.08 7295.51 4798.05 7590.11 14698.07 9898.91 5298.40 7299.72 6799.78 51
baseline97.45 7398.70 6195.99 10095.89 11099.36 8398.29 8291.37 12099.21 5092.99 9998.40 6696.87 8997.96 10298.60 7998.60 6299.42 17299.86 21
PVSNet_Blended_VisFu97.41 7498.49 6696.15 9497.49 7299.76 696.02 15293.75 8199.26 4293.38 9393.73 15199.35 5796.47 14498.96 4698.46 6799.77 3999.90 7
Vis-MVSNet (Re-imp)97.40 7598.89 5495.66 10695.99 10899.62 3397.82 10193.22 9398.82 10491.40 11696.94 10198.56 6995.70 16199.14 3599.41 699.79 3199.75 71
sasdasda97.31 7697.81 9596.72 7696.20 10299.45 6898.21 8691.60 11299.22 4795.39 5098.48 6090.95 14199.16 4697.66 13499.05 2999.76 4199.90 7
canonicalmvs97.31 7697.81 9596.72 7696.20 10299.45 6898.21 8691.60 11299.22 4795.39 5098.48 6090.95 14199.16 4697.66 13499.05 2999.76 4199.90 7
MVS_Test97.30 7898.54 6395.87 10195.74 11799.28 9598.19 8891.40 11999.18 5491.59 11598.17 7396.18 9798.63 7998.61 7698.55 6399.66 10999.78 51
ECVR-MVScopyleft97.27 7997.09 12197.48 5396.95 8699.79 498.48 6894.42 6599.17 5596.28 3893.54 15389.39 15298.89 6899.03 4199.09 2499.88 499.61 122
casdiffmvs_mvgpermissive97.27 7997.97 9096.46 8995.83 11499.51 6198.42 7393.32 9098.34 13692.38 10795.64 13395.35 10798.91 6398.73 6898.45 6899.86 999.80 37
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MGCFI-Net97.26 8197.79 9796.64 8296.17 10499.43 7398.14 9091.52 11799.23 4595.16 5698.48 6090.87 14399.07 5497.59 14099.02 3499.76 4199.91 6
thisisatest053097.23 8298.25 7396.05 9695.60 12699.59 4596.96 13493.23 9199.17 5592.60 10498.75 5196.19 9698.17 9198.19 10096.10 16199.72 6799.77 58
tttt051797.23 8298.24 7696.04 9795.60 12699.60 4396.94 13593.23 9199.15 6092.56 10598.74 5296.12 9998.17 9198.21 9896.10 16199.73 5999.78 51
test250697.16 8496.68 13497.73 4696.95 8699.79 498.48 6894.42 6599.17 5597.74 2299.15 2480.93 20498.89 6899.03 4199.09 2499.88 499.62 119
MVSTER97.16 8497.71 9896.52 8695.97 10998.48 14698.63 6392.10 10298.68 11995.96 4299.23 2091.79 13896.87 13098.76 6497.37 12899.57 14799.68 103
UA-Net97.13 8699.14 3894.78 11597.21 8099.38 7997.56 11092.04 10398.48 12988.03 13298.39 6799.91 3194.03 19299.33 2499.23 1899.81 2299.25 161
Anonymous2023121197.10 8797.06 12497.14 6296.32 9599.52 5898.16 8993.76 7998.84 10195.98 4190.92 17394.58 11898.90 6597.72 13298.10 9499.71 7799.75 71
test111197.09 8896.83 13197.39 5496.92 8899.81 398.44 7294.45 6499.17 5595.85 4392.10 16788.97 15398.78 7299.02 4399.11 2399.88 499.63 117
FC-MVSNet-train97.04 8997.91 9296.03 9896.00 10798.41 15396.53 14393.42 8699.04 8093.02 9898.03 7794.32 12197.47 11897.93 11997.77 11099.75 4699.88 16
FMVSNet397.02 9098.12 8295.73 10593.59 16297.98 16698.34 8191.32 12198.80 10793.92 8097.21 9495.94 10297.63 11398.61 7698.62 6099.61 12599.65 111
GBi-Net96.98 9198.00 8895.78 10293.81 15697.98 16698.09 9391.32 12198.80 10793.92 8097.21 9495.94 10297.89 10498.07 10898.34 7999.68 9699.67 104
test196.98 9198.00 8895.78 10293.81 15697.98 16698.09 9391.32 12198.80 10793.92 8097.21 9495.94 10297.89 10498.07 10898.34 7999.68 9699.67 104
casdiffmvspermissive96.93 9397.43 10996.34 9195.70 11999.50 6297.75 10593.22 9398.98 8592.64 10294.97 13991.71 13998.93 6198.62 7598.52 6699.82 1699.72 89
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DI_MVS_plusplus_trai96.90 9497.49 10496.21 9395.61 12499.40 7898.72 6092.11 10199.14 6392.98 10093.08 16395.14 10998.13 9598.05 11297.91 10299.74 5199.73 79
diffmvspermissive96.83 9597.33 11396.25 9295.76 11699.34 8898.06 9793.22 9399.43 2292.30 10996.90 10389.83 15198.55 8398.00 11698.14 9099.64 11799.70 94
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TSAR-MVS + COLMAP96.79 9696.55 13797.06 6597.70 7198.46 14899.07 4596.23 4399.38 2591.32 11798.80 4685.61 17698.69 7697.64 13896.92 13599.37 17799.06 173
thres20096.76 9796.53 13897.03 6796.31 9699.67 1898.37 7793.99 7497.68 16694.49 7095.83 12986.77 16599.18 4398.26 9597.82 10799.82 1699.66 108
tfpn200view996.75 9896.51 14097.03 6796.31 9699.67 1898.41 7493.99 7497.35 17194.52 6795.90 12686.93 16399.14 4898.26 9597.80 10899.82 1699.70 94
CLD-MVS96.74 9996.51 14097.01 7196.71 9098.62 13798.73 5994.38 6798.94 8894.46 7197.33 9187.03 16198.07 9897.20 15596.87 13699.72 6799.54 132
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
thres100view90096.72 10096.47 14497.00 7296.31 9699.52 5898.28 8394.01 7297.35 17194.52 6795.90 12686.93 16399.09 5398.07 10897.87 10499.81 2299.63 117
thres40096.71 10196.45 14697.02 6996.28 9999.63 2998.41 7494.00 7397.82 16194.42 7395.74 13086.26 17199.18 4398.20 9997.79 10999.81 2299.70 94
thres600view796.69 10296.43 14897.00 7296.28 9999.67 1898.41 7493.99 7497.85 16094.29 7695.96 12485.91 17499.19 4098.26 9597.63 11399.82 1699.73 79
test0.0.03 196.69 10298.12 8295.01 11395.49 13198.99 11195.86 15490.82 12998.38 13392.54 10696.66 10997.33 8295.75 15997.75 13098.34 7999.60 13399.40 152
ACMM96.26 996.67 10496.69 13396.66 7997.29 7998.46 14896.48 14495.09 5099.21 5093.19 9598.78 4886.73 16698.17 9197.84 12596.32 15399.74 5199.49 144
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CANet_DTU96.64 10599.08 4193.81 13197.10 8399.42 7598.85 5590.01 14099.31 3479.98 18399.78 299.10 6397.42 11998.35 9298.05 9699.47 16499.53 133
FMVSNet296.64 10597.50 10395.63 10793.81 15697.98 16698.09 9390.87 12798.99 8493.48 9193.17 16095.25 10897.89 10498.63 7498.80 5499.68 9699.67 104
ACMP96.25 1096.62 10796.72 13296.50 8896.96 8598.75 12897.80 10294.30 6998.85 9793.12 9698.78 4886.61 16897.23 12397.73 13196.61 14399.62 12399.71 92
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CDS-MVSNet96.59 10898.02 8794.92 11494.45 14998.96 11497.46 11391.75 10897.86 15990.07 12396.02 12397.25 8596.21 14898.04 11398.38 7499.60 13399.65 111
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
FA-MVS(training)96.52 10998.29 7194.45 12195.88 11299.52 5897.66 10881.47 19898.94 8893.79 8795.54 13799.11 6298.29 9098.89 5496.49 14899.63 12299.52 136
CHOSEN 1792x268896.41 11096.99 12695.74 10498.01 6799.72 1297.70 10790.78 13199.13 6790.03 12487.35 20095.36 10698.33 8998.59 8198.91 4399.59 13999.87 18
HQP-MVS96.37 11196.58 13596.13 9597.31 7898.44 15098.45 7195.22 4998.86 9588.58 12998.33 6987.00 16297.67 11297.23 15396.56 14699.56 15099.62 119
baseline296.36 11297.82 9494.65 11794.60 14899.09 10796.45 14589.63 14898.36 13591.29 11897.60 8994.13 12496.37 14598.45 8897.70 11199.54 15699.41 150
EPNet_dtu96.30 11398.53 6493.70 13598.97 4998.24 16197.36 11594.23 7098.85 9779.18 18799.19 2198.47 7094.09 19197.89 12298.21 8798.39 19798.85 181
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LGP-MVS_train96.23 11496.89 12895.46 10997.32 7698.77 12498.81 5793.60 8498.58 12385.52 14999.08 3286.67 16797.83 11097.87 12397.51 11899.69 8899.73 79
OPM-MVS96.22 11595.85 15796.65 8097.75 6998.54 14399.00 5195.53 4696.88 18489.88 12595.95 12586.46 17098.07 9897.65 13796.63 14299.67 10498.83 182
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ET-MVSNet_ETH3D96.17 11696.99 12695.21 11188.53 21498.54 14398.28 8392.61 9898.85 9793.60 9099.06 3490.39 14598.63 7995.98 18796.68 14099.61 12599.41 150
Vis-MVSNetpermissive96.16 11798.22 7793.75 13295.33 13699.70 1797.27 11990.85 12898.30 13885.51 15095.72 13296.45 9093.69 19898.70 7099.00 3599.84 1299.69 98
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
IterMVS-LS96.12 11897.48 10594.53 11895.19 13897.56 19197.15 12689.19 15399.08 7288.23 13094.97 13994.73 11597.84 10997.86 12498.26 8599.60 13399.88 16
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FC-MVSNet-test96.07 11997.94 9193.89 12993.60 16198.67 13496.62 14090.30 13998.76 11488.62 12895.57 13697.63 8094.48 18597.97 11797.48 12299.71 7799.52 136
dmvs_re96.02 12096.49 14395.47 10893.49 16399.26 9797.25 12193.82 7797.51 16890.43 12197.52 9087.93 15698.12 9696.86 16396.59 14499.73 5999.76 63
MS-PatchMatch95.99 12197.26 11894.51 11997.46 7398.76 12797.27 11986.97 17599.09 7089.83 12693.51 15597.78 7896.18 15097.53 14395.71 17299.35 17898.41 188
HyFIR lowres test95.99 12196.56 13695.32 11097.99 6899.65 2296.54 14188.86 15598.44 13189.77 12784.14 21097.05 8799.03 5798.55 8398.19 8999.73 5999.86 21
GeoE95.98 12397.24 11994.51 11995.02 14199.38 7998.02 9887.86 17098.37 13487.86 13592.99 16593.54 12898.56 8298.61 7697.92 10099.73 5999.85 24
Effi-MVS+95.81 12497.31 11794.06 12795.09 13999.35 8697.24 12288.22 16498.54 12685.38 15198.52 5888.68 15498.70 7498.32 9397.93 9999.74 5199.84 25
FMVSNet195.77 12596.41 14995.03 11293.42 16497.86 17397.11 12989.89 14398.53 12792.00 11289.17 18593.23 13298.15 9498.07 10898.34 7999.61 12599.69 98
Effi-MVS+-dtu95.74 12698.04 8593.06 14993.92 15299.16 10497.90 9988.16 16699.07 7782.02 17198.02 7894.32 12196.74 13498.53 8497.56 11699.61 12599.62 119
testgi95.67 12797.48 10593.56 13895.07 14099.00 10995.33 16588.47 16198.80 10786.90 14197.30 9392.33 13595.97 15697.66 13497.91 10299.60 13399.38 153
MDTV_nov1_ep1395.57 12897.48 10593.35 14695.43 13398.97 11397.19 12583.72 19698.92 9287.91 13497.75 8496.12 9997.88 10796.84 16595.64 17397.96 20298.10 194
TAMVS95.53 12996.50 14294.39 12393.86 15599.03 10896.67 13889.55 15097.33 17390.64 12093.02 16491.58 14096.21 14897.72 13297.43 12699.43 17099.36 154
test-LLR95.50 13097.32 11493.37 14495.49 13198.74 12996.44 14690.82 12998.18 14382.75 16696.60 11294.67 11695.54 16798.09 10596.00 16399.20 18598.93 176
FMVSNet595.42 13196.47 14494.20 12492.26 17695.99 21295.66 15787.15 17497.87 15893.46 9296.68 10893.79 12797.52 11597.10 15997.21 13099.11 18896.62 212
ACMH+95.51 1395.40 13296.00 15194.70 11696.33 9498.79 12196.79 13691.32 12198.77 11387.18 13995.60 13585.46 17796.97 12797.15 15696.59 14499.59 13999.65 111
Fast-Effi-MVS+-dtu95.38 13398.20 7892.09 16093.91 15398.87 11897.35 11685.01 18999.08 7281.09 17598.10 7496.36 9395.62 16498.43 9197.03 13299.55 15299.50 143
Fast-Effi-MVS+95.38 13396.52 13994.05 12894.15 15199.14 10697.24 12286.79 17698.53 12787.62 13794.51 14487.06 16098.76 7398.60 7998.04 9799.72 6799.77 58
CVMVSNet95.33 13597.09 12193.27 14795.23 13798.39 15595.49 16192.58 9997.71 16583.00 16594.44 14693.28 13193.92 19597.79 12698.54 6599.41 17399.45 147
ACMH95.42 1495.27 13695.96 15394.45 12196.83 8998.78 12394.72 17991.67 11198.95 8686.82 14296.42 11783.67 18797.00 12697.48 14596.68 14099.69 8899.76 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs495.09 13795.90 15494.14 12592.29 17597.70 17795.45 16290.31 13798.60 12190.70 11993.25 15889.90 14996.67 13797.13 15795.42 17699.44 16899.28 157
EPMVS95.05 13896.86 13092.94 15195.84 11398.96 11496.68 13779.87 20499.05 7890.15 12297.12 9895.99 10197.49 11795.17 19694.75 19497.59 20896.96 208
IB-MVS93.96 1595.02 13996.44 14793.36 14597.05 8499.28 9590.43 20693.39 8798.02 14996.02 4094.92 14192.07 13783.52 21595.38 19295.82 16999.72 6799.59 123
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
SCA94.95 14097.44 10892.04 16195.55 12899.16 10496.26 14979.30 20899.02 8185.73 14898.18 7297.13 8697.69 11196.03 18594.91 18997.69 20797.65 200
TESTMET0.1,194.95 14097.32 11492.20 15892.62 16898.74 12996.44 14686.67 17898.18 14382.75 16696.60 11294.67 11695.54 16798.09 10596.00 16399.20 18598.93 176
IterMVS-SCA-FT94.89 14297.87 9391.42 17494.86 14597.70 17797.24 12284.88 19098.93 9075.74 19994.26 14798.25 7396.69 13598.52 8597.68 11299.10 18999.73 79
test-mter94.86 14397.32 11492.00 16392.41 17398.82 12096.18 15186.35 18298.05 14882.28 16996.48 11694.39 12095.46 17198.17 10196.20 15799.32 18099.13 170
IterMVS94.81 14497.71 9891.42 17494.83 14697.63 18497.38 11485.08 18798.93 9075.67 20094.02 14897.64 7996.66 13898.45 8897.60 11598.90 19299.72 89
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PatchmatchNetpermissive94.70 14597.08 12391.92 16695.53 12998.85 11995.77 15579.54 20698.95 8685.98 14598.52 5896.45 9097.39 12095.32 19394.09 19997.32 21097.38 203
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
RPMNet94.66 14697.16 12091.75 17094.98 14298.59 14097.00 13378.37 21597.98 15183.78 15696.27 11994.09 12696.91 12997.36 14896.73 13899.48 16299.09 171
ADS-MVSNet94.65 14797.04 12591.88 16995.68 12198.99 11195.89 15379.03 21199.15 6085.81 14796.96 10098.21 7597.10 12494.48 20494.24 19897.74 20497.21 204
dps94.63 14895.31 16393.84 13095.53 12998.71 13296.54 14180.12 20397.81 16397.21 2896.98 9992.37 13496.34 14792.46 21191.77 21197.26 21297.08 206
thisisatest051594.61 14996.89 12891.95 16592.00 18098.47 14792.01 20190.73 13298.18 14383.96 15394.51 14495.13 11093.38 19997.38 14794.74 19599.61 12599.79 45
UniMVSNet_NR-MVSNet94.59 15095.47 16093.55 13991.85 18597.89 17295.03 16792.00 10497.33 17386.12 14393.19 15987.29 15996.60 14096.12 18296.70 13999.72 6799.80 37
UniMVSNet (Re)94.58 15195.34 16193.71 13492.25 17798.08 16594.97 16991.29 12597.03 18287.94 13393.97 15086.25 17296.07 15396.27 17995.97 16699.72 6799.79 45
CR-MVSNet94.57 15297.34 11291.33 17794.90 14398.59 14097.15 12679.14 20997.98 15180.42 17996.59 11493.50 13096.85 13198.10 10397.49 12099.50 16199.15 166
MIMVSNet94.49 15397.59 10290.87 18691.74 18898.70 13394.68 18178.73 21397.98 15183.71 15997.71 8794.81 11496.96 12897.97 11797.92 10099.40 17598.04 195
pm-mvs194.27 15495.57 15992.75 15292.58 16998.13 16494.87 17490.71 13396.70 19083.78 15689.94 18189.85 15094.96 18297.58 14197.07 13199.61 12599.72 89
USDC94.26 15594.83 16793.59 13796.02 10598.44 15097.84 10088.65 15998.86 9582.73 16894.02 14880.56 20596.76 13397.28 15296.15 16099.55 15298.50 186
CostFormer94.25 15694.88 16693.51 14195.43 13398.34 15896.21 15080.64 20197.94 15594.01 7898.30 7086.20 17397.52 11592.71 20992.69 20597.23 21398.02 196
tpm cat194.06 15794.90 16593.06 14995.42 13598.52 14596.64 13980.67 20097.82 16192.63 10393.39 15795.00 11196.06 15491.36 21591.58 21396.98 21496.66 211
NR-MVSNet94.01 15894.51 17393.44 14292.56 17097.77 17495.67 15691.57 11497.17 17785.84 14693.13 16180.53 20695.29 17597.01 16096.17 15899.69 8899.75 71
TinyColmap94.00 15994.35 17693.60 13695.89 11098.26 15997.49 11288.82 15698.56 12583.21 16291.28 17280.48 20796.68 13697.34 14996.26 15699.53 15898.24 192
DU-MVS93.98 16094.44 17593.44 14291.66 19097.77 17495.03 16791.57 11497.17 17786.12 14393.13 16181.13 20396.60 14095.10 19897.01 13499.67 10499.80 37
PatchT93.96 16197.36 11190.00 19394.76 14798.65 13590.11 20978.57 21497.96 15480.42 17996.07 12294.10 12596.85 13198.10 10397.49 12099.26 18399.15 166
GA-MVS93.93 16296.31 15091.16 18193.61 16098.79 12195.39 16490.69 13498.25 14173.28 20896.15 12188.42 15594.39 18797.76 12995.35 17799.58 14399.45 147
Baseline_NR-MVSNet93.87 16393.98 18593.75 13291.66 19097.02 20495.53 16091.52 11797.16 17987.77 13687.93 19883.69 18696.35 14695.10 19897.23 12999.68 9699.73 79
tpmrst93.86 16495.88 15591.50 17395.69 12098.62 13795.64 15879.41 20798.80 10783.76 15895.63 13496.13 9897.25 12192.92 20892.31 20797.27 21196.74 209
tfpnnormal93.85 16594.12 18093.54 14093.22 16598.24 16195.45 16291.96 10694.61 21183.91 15490.74 17581.75 20197.04 12597.49 14496.16 15999.68 9699.84 25
TranMVSNet+NR-MVSNet93.67 16694.14 17893.13 14891.28 20497.58 18995.60 15991.97 10597.06 18084.05 15290.64 17882.22 19896.17 15194.94 20196.78 13799.69 8899.78 51
WR-MVS_H93.54 16794.67 17192.22 15691.95 18197.91 17194.58 18588.75 15796.64 19183.88 15590.66 17785.13 18094.40 18696.54 17095.91 16899.73 5999.89 12
TransMVSNet (Re)93.45 16894.08 18192.72 15392.83 16697.62 18794.94 17091.54 11695.65 20883.06 16488.93 18883.53 18894.25 18897.41 14697.03 13299.67 10498.40 191
SixPastTwentyTwo93.44 16995.32 16291.24 17992.11 17898.40 15492.77 19788.64 16098.09 14777.83 19293.51 15585.74 17596.52 14396.91 16294.89 19299.59 13999.73 79
WR-MVS93.43 17094.48 17492.21 15791.52 19797.69 17994.66 18389.98 14196.86 18583.43 16090.12 17985.03 18193.94 19496.02 18695.82 16999.71 7799.82 30
CP-MVSNet93.25 17194.00 18492.38 15591.65 19297.56 19194.38 18889.20 15296.05 20283.16 16389.51 18381.97 19996.16 15296.43 17296.56 14699.71 7799.89 12
UniMVSNet_ETH3D93.15 17292.33 20594.11 12693.91 15398.61 13994.81 17690.98 12697.06 18087.51 13882.27 21476.33 22097.87 10894.79 20297.47 12399.56 15099.81 35
anonymousdsp93.12 17395.86 15689.93 19591.09 20598.25 16095.12 16685.08 18797.44 17073.30 20790.89 17490.78 14495.25 17797.91 12095.96 16799.71 7799.82 30
V4293.05 17493.90 18892.04 16191.91 18297.66 18194.91 17189.91 14296.85 18680.58 17889.66 18283.43 19095.37 17395.03 20094.90 19099.59 13999.78 51
TDRefinement93.04 17593.57 19292.41 15496.58 9198.77 12497.78 10491.96 10698.12 14680.84 17689.13 18779.87 21287.78 21196.44 17194.50 19799.54 15698.15 193
v892.87 17693.87 18991.72 17292.05 17997.50 19494.79 17788.20 16596.85 18680.11 18290.01 18082.86 19595.48 16995.15 19794.90 19099.66 10999.80 37
LTVRE_ROB93.20 1692.84 17794.92 16490.43 19092.83 16698.63 13697.08 13187.87 16997.91 15668.42 21793.54 15379.46 21496.62 13997.55 14297.40 12799.74 5199.92 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v114492.81 17894.03 18391.40 17691.68 18997.60 18894.73 17888.40 16296.71 18978.48 19088.14 19584.46 18595.45 17296.31 17895.22 18199.65 11399.76 63
EU-MVSNet92.80 17994.76 16990.51 18891.88 18396.74 20992.48 19988.69 15896.21 19779.00 18891.51 16987.82 15791.83 20795.87 18996.27 15499.21 18498.92 179
v1092.79 18094.06 18291.31 17891.78 18797.29 20394.87 17486.10 18396.97 18379.82 18488.16 19484.56 18495.63 16396.33 17795.31 17899.65 11399.80 37
v2v48292.77 18193.52 19591.90 16891.59 19597.63 18494.57 18690.31 13796.80 18879.22 18688.74 19081.55 20296.04 15595.26 19494.97 18899.66 10999.69 98
PS-CasMVS92.72 18293.36 19691.98 16491.62 19497.52 19394.13 19288.98 15495.94 20581.51 17487.35 20079.95 21195.91 15796.37 17496.49 14899.70 8599.89 12
PEN-MVS92.72 18293.20 19892.15 15991.29 20297.31 20194.67 18289.81 14496.19 19881.83 17288.58 19179.06 21595.61 16595.21 19596.27 15499.72 6799.82 30
pmmvs592.71 18494.27 17790.90 18591.42 19997.74 17693.23 19486.66 17995.99 20478.96 18991.45 17083.44 18995.55 16697.30 15195.05 18699.58 14398.93 176
MVS-HIRNet92.51 18595.97 15288.48 20193.73 15998.37 15690.33 20775.36 22198.32 13777.78 19389.15 18694.87 11295.14 17997.62 13996.39 15198.51 19497.11 205
EG-PatchMatch MVS92.45 18693.92 18790.72 18792.56 17098.43 15294.88 17384.54 19297.18 17679.55 18586.12 20783.23 19193.15 20297.22 15496.00 16399.67 10499.27 160
pmnet_mix0292.44 18794.68 17089.83 19692.46 17297.65 18389.92 21190.49 13698.76 11473.05 21091.78 16890.08 14894.86 18394.53 20391.94 21098.21 20098.01 197
MDTV_nov1_ep13_2view92.44 18795.66 15888.68 19991.05 20697.92 17092.17 20079.64 20598.83 10276.20 19791.45 17093.51 12995.04 18095.68 19193.70 20297.96 20298.53 185
v119292.43 18993.61 19191.05 18291.53 19697.43 19794.61 18487.99 16896.60 19276.72 19587.11 20282.74 19695.85 15896.35 17695.30 17999.60 13399.74 75
DTE-MVSNet92.42 19092.85 20191.91 16790.87 20796.97 20594.53 18789.81 14495.86 20781.59 17388.83 18977.88 21895.01 18194.34 20596.35 15299.64 11799.73 79
v14419292.38 19193.55 19491.00 18391.44 19897.47 19694.27 18987.41 17396.52 19478.03 19187.50 19982.65 19795.32 17495.82 19095.15 18399.55 15299.78 51
tpm92.38 19194.79 16889.56 19794.30 15097.50 19494.24 19178.97 21297.72 16474.93 20497.97 7982.91 19396.60 14093.65 20794.81 19398.33 19898.98 174
v192192092.36 19393.57 19290.94 18491.39 20097.39 19994.70 18087.63 17296.60 19276.63 19686.98 20382.89 19495.75 15996.26 18095.14 18499.55 15299.73 79
v14892.36 19392.88 20091.75 17091.63 19397.66 18192.64 19890.55 13596.09 20083.34 16188.19 19380.00 20992.74 20393.98 20694.58 19699.58 14399.69 98
N_pmnet92.21 19594.60 17289.42 19891.88 18397.38 20089.15 21389.74 14797.89 15773.75 20687.94 19792.23 13693.85 19696.10 18393.20 20498.15 20197.43 202
v124091.99 19693.33 19790.44 18991.29 20297.30 20294.25 19086.79 17696.43 19575.49 20286.34 20681.85 20095.29 17596.42 17395.22 18199.52 15999.73 79
pmmvs691.90 19792.53 20491.17 18091.81 18697.63 18493.23 19488.37 16393.43 21680.61 17777.32 21887.47 15894.12 19096.58 16895.72 17198.88 19399.53 133
v7n91.61 19892.95 19990.04 19290.56 20897.69 17993.74 19385.59 18595.89 20676.95 19486.60 20578.60 21793.76 19797.01 16094.99 18799.65 11399.87 18
gg-mvs-nofinetune90.85 19994.14 17887.02 20494.89 14499.25 9898.64 6276.29 21988.24 22057.50 22479.93 21695.45 10595.18 17898.77 6398.07 9599.62 12399.24 162
CMPMVSbinary70.31 1890.74 20091.06 20890.36 19197.32 7697.43 19792.97 19687.82 17193.50 21575.34 20383.27 21284.90 18292.19 20692.64 21091.21 21496.50 21794.46 215
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous2023120690.70 20193.93 18686.92 20590.21 21196.79 20790.30 20886.61 18096.05 20269.25 21588.46 19284.86 18385.86 21397.11 15896.47 15099.30 18197.80 199
test20.0390.65 20293.71 19087.09 20390.44 20996.24 21089.74 21285.46 18695.59 20972.99 21190.68 17685.33 17884.41 21495.94 18895.10 18599.52 15997.06 207
new_pmnet90.45 20392.84 20287.66 20288.96 21296.16 21188.71 21484.66 19197.56 16771.91 21485.60 20886.58 16993.28 20096.07 18493.54 20398.46 19594.39 216
pmmvs-eth3d89.81 20489.65 21290.00 19386.94 21695.38 21491.08 20286.39 18194.57 21282.27 17083.03 21364.94 22393.96 19396.57 16993.82 20199.35 17899.24 162
PM-MVS89.55 20590.30 21088.67 20087.06 21595.60 21390.88 20484.51 19396.14 19975.75 19886.89 20463.47 22694.64 18496.85 16493.89 20099.17 18799.29 156
gm-plane-assit89.44 20692.82 20385.49 20891.37 20195.34 21579.55 22382.12 19791.68 21964.79 22187.98 19680.26 20895.66 16298.51 8797.56 11699.45 16698.41 188
MIMVSNet188.61 20790.68 20986.19 20781.56 22195.30 21687.78 21585.98 18494.19 21472.30 21378.84 21778.90 21690.06 20896.59 16795.47 17499.46 16595.49 214
pmmvs388.19 20891.27 20784.60 21085.60 21893.66 21885.68 21881.13 19992.36 21863.66 22389.51 18377.10 21993.22 20196.37 17492.40 20698.30 19997.46 201
MDA-MVSNet-bldmvs87.84 20989.22 21386.23 20681.74 22096.77 20883.74 21989.57 14994.50 21372.83 21296.64 11064.47 22592.71 20481.43 22092.28 20896.81 21598.47 187
test_method87.27 21091.58 20682.25 21275.65 22587.52 22486.81 21772.60 22297.51 16873.20 20985.07 20979.97 21088.69 21097.31 15095.24 18096.53 21698.41 188
new-patchmatchnet86.12 21187.30 21484.74 20986.92 21795.19 21783.57 22084.42 19492.67 21765.66 21880.32 21564.72 22489.41 20992.33 21389.21 21698.43 19696.69 210
FPMVS83.82 21284.61 21582.90 21190.39 21090.71 22090.85 20584.10 19595.47 21065.15 21983.44 21174.46 22175.48 21781.63 21979.42 22191.42 22287.14 221
Gipumacopyleft81.40 21381.78 21680.96 21483.21 21985.61 22579.73 22276.25 22097.33 17364.21 22255.32 22255.55 22786.04 21292.43 21292.20 20996.32 21893.99 217
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
WB-MVS81.36 21489.93 21171.35 21788.65 21387.85 22371.46 22588.12 16796.23 19632.21 22992.61 16683.00 19256.27 22491.92 21489.43 21591.39 22388.49 220
PMMVS277.26 21579.47 21874.70 21676.00 22488.37 22274.22 22476.34 21878.31 22254.13 22569.96 22052.50 22870.14 22184.83 21888.71 21797.35 20993.58 218
PMVScopyleft72.60 1776.39 21677.66 21974.92 21581.04 22269.37 22968.47 22680.54 20285.39 22165.07 22073.52 21972.91 22265.67 22380.35 22176.81 22288.71 22485.25 224
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
GG-mvs-BLEND69.11 21798.13 8135.26 2213.49 23198.20 16394.89 1722.38 22798.42 1325.82 23296.37 11898.60 675.97 22798.75 6697.98 9899.01 19098.61 183
E-PMN68.30 21868.43 22068.15 21874.70 22771.56 22855.64 22877.24 21677.48 22439.46 22751.95 22541.68 23073.28 21970.65 22379.51 22088.61 22586.20 223
EMVS68.12 21968.11 22168.14 21975.51 22671.76 22755.38 22977.20 21777.78 22337.79 22853.59 22343.61 22974.72 21867.05 22476.70 22388.27 22686.24 222
MVEpermissive67.97 1965.53 22067.43 22263.31 22059.33 22874.20 22653.09 23070.43 22366.27 22543.13 22645.98 22630.62 23170.65 22079.34 22286.30 21883.25 22789.33 219
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs31.24 22140.15 22320.86 22212.61 22917.99 23025.16 23113.30 22548.42 22624.82 23053.07 22430.13 23328.47 22542.73 22537.65 22420.79 22851.04 225
test12326.75 22234.25 22418.01 2237.93 23017.18 23124.85 23212.36 22644.83 22716.52 23141.80 22718.10 23428.29 22633.08 22634.79 22518.10 22949.95 226
uanet_test0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet-low-res0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
TPM-MVS99.57 2698.90 11798.79 5896.52 3798.62 5699.91 3197.56 11499.44 16899.28 157
Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025
RE-MVS-def69.05 216
9.1499.79 45
SR-MVS99.67 1398.25 1499.94 25
Anonymous20240521197.40 11096.45 9299.54 5498.08 9693.79 7898.24 14293.55 15294.41 11998.88 7098.04 11398.24 8699.75 4699.76 63
our_test_392.30 17497.58 18990.09 210
ambc80.99 21780.04 22390.84 21990.91 20396.09 20074.18 20562.81 22130.59 23282.44 21696.25 18191.77 21195.91 21998.56 184
MTAPA98.09 1599.97 8
MTMP98.46 1099.96 12
Patchmatch-RL test66.86 227
tmp_tt82.25 21297.73 7088.71 22180.18 22168.65 22499.15 6086.98 14099.47 1085.31 17968.35 22287.51 21783.81 21991.64 221
XVS97.42 7499.62 3398.59 6593.81 8499.95 1799.69 88
X-MVStestdata97.42 7499.62 3398.59 6593.81 8499.95 1799.69 88
mPP-MVS99.53 3099.89 35
NP-MVS98.57 124
Patchmtry98.59 14097.15 12679.14 20980.42 179
DeepMVS_CXcopyleft96.85 20687.43 21689.27 15198.30 13875.55 20195.05 13879.47 21392.62 20589.48 21695.18 22095.96 213