This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB99.39 199.90 199.87 199.93 199.97 299.82 899.91 399.92 3799.75 499.93 599.89 30100.00 199.87 299.93 399.82 1099.96 399.90 2
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v7n99.89 299.86 399.93 199.97 299.83 499.93 199.96 1299.77 399.89 1799.99 199.86 7699.84 599.89 1199.81 1199.97 199.88 6
SixPastTwentyTwo99.89 299.85 599.93 199.97 299.88 199.92 299.97 199.66 1299.94 499.94 1199.74 10699.81 799.97 199.89 199.96 399.89 4
pmmvs699.88 499.87 199.89 999.97 299.76 2199.89 599.96 1299.82 299.90 1599.92 1699.95 2599.68 3199.93 399.88 399.95 799.86 11
anonymousdsp99.87 599.86 399.88 1299.95 1099.75 2799.90 499.96 1299.69 799.83 5199.96 499.99 399.74 2199.95 299.83 799.91 2499.88 6
FC-MVSNet-test99.84 699.80 699.89 999.96 799.83 499.84 1699.95 2399.37 4899.77 6899.95 699.96 1499.85 399.93 399.83 799.95 799.72 39
UniMVSNet_ETH3D99.81 799.79 799.85 1899.98 199.76 2199.73 4799.96 1299.68 999.87 2999.59 8499.91 5699.58 5199.90 1099.85 699.96 399.81 19
TDRefinement99.81 799.76 999.86 1599.83 8899.53 6299.89 599.91 4399.73 599.88 2399.83 4599.96 1499.76 1699.91 999.81 1199.86 4199.59 68
WR-MVS99.79 999.68 1399.91 599.95 1099.83 499.87 999.96 1299.39 4699.93 599.87 3599.29 14999.77 1499.83 2299.72 2099.97 199.82 16
MIMVSNet199.79 999.75 1099.84 2199.89 4299.83 499.84 1699.89 5299.31 5499.93 599.92 1699.97 999.68 3199.89 1199.64 2799.82 5599.66 53
pm-mvs199.77 1199.69 1299.86 1599.94 2399.68 3699.84 1699.93 2799.59 2199.87 2999.92 1699.21 15299.65 3799.88 1599.77 1699.93 2099.78 26
PEN-MVS99.77 1199.65 1899.91 599.95 1099.80 1599.86 1099.97 199.08 8299.89 1799.69 6799.68 11599.84 599.81 2799.64 2799.95 799.81 19
EU-MVSNet99.76 1399.74 1199.78 4199.82 9399.81 1299.88 799.87 5799.31 5499.75 7699.91 2399.76 10599.78 1299.84 2199.74 1999.56 13599.81 19
Vis-MVSNetpermissive99.76 1399.78 899.75 5199.92 3099.77 2099.83 1999.85 6899.43 4099.85 4299.84 42100.00 199.13 11699.83 2299.66 2499.90 2899.90 2
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CS-MVS99.75 1599.66 1799.85 1899.87 5399.86 299.83 1999.91 4398.84 11699.92 999.57 8699.85 8299.60 4699.82 2599.79 1399.94 1599.87 9
CS-MVS-test99.75 1599.67 1499.84 2199.91 3499.85 399.85 1399.92 3798.75 12699.89 1799.64 7499.95 2599.55 5499.89 1199.79 1399.92 2199.83 14
DTE-MVSNet99.75 1599.61 2499.92 499.95 1099.81 1299.86 1099.96 1299.18 7199.92 999.66 7099.45 13499.85 399.80 2899.56 3399.96 399.79 25
tfpnnormal99.74 1899.63 2199.86 1599.93 2799.75 2799.80 2899.89 5299.31 5499.88 2399.43 10799.66 11899.77 1499.80 2899.71 2199.92 2199.76 30
DeepC-MVS99.05 599.74 1899.64 1999.84 2199.90 3999.39 9399.79 2999.81 9799.69 799.90 1599.87 3599.98 599.81 799.62 5499.32 6099.83 5299.65 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
thisisatest051599.73 2099.67 1499.81 3199.93 2799.74 2999.68 5699.91 4399.59 2199.88 2399.73 5699.81 9199.55 5499.59 5599.53 3899.89 3199.70 47
PS-CasMVS99.73 2099.59 3099.90 899.95 1099.80 1599.85 1399.97 198.95 10099.86 3599.73 5699.36 14199.81 799.83 2299.67 2399.95 799.83 14
WR-MVS_H99.73 2099.61 2499.88 1299.95 1099.82 899.83 1999.96 1299.01 9299.84 4699.71 6499.41 14099.74 2199.77 3399.70 2299.95 799.82 16
TransMVSNet (Re)99.72 2399.59 3099.88 1299.95 1099.76 2199.88 799.94 2499.58 2399.92 999.90 2798.55 16899.65 3799.89 1199.76 1799.95 799.70 47
ACMH99.11 499.72 2399.63 2199.84 2199.87 5399.59 4999.83 1999.88 5699.46 3799.87 2999.66 7099.95 2599.76 1699.73 3899.47 4799.84 4799.52 99
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FC-MVSNet-train99.70 2599.67 1499.74 5799.94 2399.71 3299.82 2499.91 4399.14 7999.53 13399.70 6599.88 6899.33 8999.88 1599.61 3299.94 1599.77 27
DROMVSNet99.70 2599.57 3399.85 1899.95 1099.81 1299.85 1399.93 2798.39 16499.76 7199.48 10499.94 3599.70 2999.85 1999.66 2499.91 2499.87 9
COLMAP_ROBcopyleft99.18 299.70 2599.60 2899.81 3199.84 8299.37 9999.76 3599.84 7799.54 2999.82 5499.64 7499.95 2599.75 1899.79 3099.56 3399.83 5299.37 129
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+98.94 699.69 2899.59 3099.81 3199.88 4899.41 9099.75 3999.86 6199.43 4099.80 5899.54 9099.97 999.73 2499.82 2599.52 4099.85 4499.43 115
test20.0399.68 2999.60 2899.76 4799.91 3499.70 3599.68 5699.87 5799.05 8999.88 2399.92 1699.88 6899.50 6799.77 3399.42 5499.75 7699.49 101
CP-MVSNet99.68 2999.51 4299.89 999.95 1099.76 2199.83 1999.96 1298.83 12099.84 4699.65 7399.09 15499.80 1099.78 3199.62 3199.95 799.82 16
casdiffmvs_mvgpermissive99.67 3199.61 2499.74 5799.94 2399.60 4599.62 7099.77 12099.54 2999.67 10899.82 4799.80 9799.52 6199.40 7699.51 4199.91 2499.59 68
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu99.66 3299.64 1999.67 6999.91 3499.71 3299.61 7199.79 10899.41 4299.91 1399.85 4099.61 12199.00 12699.67 4599.42 5499.81 5899.81 19
v1099.65 3399.51 4299.81 3199.83 8899.61 4499.75 3999.94 2499.56 2599.76 7199.94 1199.60 12399.73 2499.11 13199.01 10199.85 4499.74 34
CHOSEN 1792x268899.65 3399.55 3699.77 4699.93 2799.60 4599.79 2999.92 3799.73 599.74 8299.93 1499.98 599.80 1098.83 17199.01 10199.45 15399.76 30
UA-Net99.64 3599.62 2399.66 7199.97 299.82 899.14 15899.96 1298.95 10099.52 13999.38 11699.86 7699.55 5499.72 3999.66 2499.80 6299.94 1
GeoE99.63 3699.51 4299.78 4199.91 3499.57 5299.78 3199.97 199.23 6299.72 9199.72 6099.80 9799.50 6799.45 7399.10 8799.79 6599.71 45
Baseline_NR-MVSNet99.62 3799.48 4799.78 4199.85 7699.76 2199.59 7699.82 8998.84 11699.88 2399.91 2399.04 15599.61 4499.46 6699.78 1599.94 1599.60 66
pmmvs-eth3d99.61 3899.48 4799.75 5199.87 5399.30 11599.75 3999.89 5299.23 6299.85 4299.88 3499.97 999.49 7299.46 6699.01 10199.68 9599.52 99
v114499.61 3899.43 5599.82 2699.88 4899.41 9099.76 3599.86 6199.64 1599.84 4699.95 699.49 13299.74 2199.00 14198.93 11399.84 4799.58 77
v899.61 3899.45 5399.79 4099.80 9999.59 4999.73 4799.93 2799.48 3599.77 6899.90 2799.48 13399.67 3499.11 13198.89 11799.84 4799.73 36
casdiffmvspermissive99.61 3899.55 3699.68 6899.89 4299.53 6299.64 6499.68 14899.51 3299.62 11799.90 2799.96 1499.37 8399.28 10199.25 6399.88 3399.44 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CSCG99.61 3899.52 4199.71 6299.89 4299.62 4299.52 9299.76 12999.61 1999.69 10099.73 5699.96 1499.57 5299.27 10498.62 14799.81 5899.85 13
v119299.60 4399.41 5999.82 2699.89 4299.43 8599.81 2699.84 7799.63 1799.85 4299.95 699.35 14499.72 2699.01 13998.90 11699.82 5599.58 77
APDe-MVS99.60 4399.48 4799.73 6099.85 7699.51 7399.75 3999.85 6899.17 7299.81 5799.56 8899.94 3599.44 7999.42 7599.22 6499.67 9799.54 91
v192192099.59 4599.40 6299.82 2699.88 4899.45 8099.81 2699.83 8299.65 1399.86 3599.95 699.29 14999.75 1898.98 14598.86 12199.78 6799.59 68
TranMVSNet+NR-MVSNet99.59 4599.42 5899.80 3699.87 5399.55 5699.64 6499.86 6199.05 8999.88 2399.72 6099.33 14799.64 4199.47 6599.14 7399.91 2499.67 52
EG-PatchMatch MVS99.59 4599.49 4699.70 6599.82 9399.26 12299.39 12199.83 8298.99 9499.93 599.54 9099.92 5099.51 6399.78 3199.50 4299.73 8599.41 119
pmmvs599.58 4899.47 5099.70 6599.84 8299.50 7499.58 8099.80 10598.98 9799.73 8899.92 1699.81 9199.49 7299.28 10199.05 9599.77 7199.73 36
v14419299.58 4899.39 6399.80 3699.87 5399.44 8299.77 3299.84 7799.64 1599.86 3599.93 1499.35 14499.72 2698.92 15198.82 12599.74 8199.66 53
v14899.58 4899.43 5599.76 4799.87 5399.40 9299.76 3599.85 6899.48 3599.83 5199.82 4799.83 8799.51 6399.20 11798.82 12599.75 7699.45 109
v124099.58 4899.38 6699.82 2699.89 4299.49 7599.82 2499.83 8299.63 1799.86 3599.96 498.92 16199.75 1899.15 12798.96 11099.76 7399.56 84
V4299.57 5299.41 5999.75 5199.84 8299.37 9999.73 4799.83 8299.41 4299.75 7699.89 3099.42 13899.60 4699.15 12798.96 11099.76 7399.65 56
TSAR-MVS + MP.99.56 5399.54 3999.58 8799.69 14399.14 14499.73 4799.45 18499.50 3399.35 17099.60 8299.93 4299.50 6799.56 5799.37 5899.77 7199.64 59
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
v2v48299.56 5399.35 6899.81 3199.87 5399.35 10599.75 3999.85 6899.56 2599.87 2999.95 699.44 13699.66 3598.91 15498.76 13199.86 4199.45 109
Gipumacopyleft99.55 5599.23 8799.91 599.87 5399.52 6999.86 1099.93 2799.87 199.96 296.72 20799.55 12899.97 199.77 3399.46 4999.87 3999.74 34
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DVP-MVScopyleft99.53 5699.51 4299.55 9599.82 9399.58 5199.54 8899.78 11399.28 6099.21 18099.70 6599.97 999.32 9299.32 8999.14 7399.64 10999.58 77
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
NR-MVSNet99.52 5799.29 7799.80 3699.96 799.38 9699.55 8499.81 9798.86 11399.87 2999.51 10098.81 16399.72 2699.86 1899.04 9799.89 3199.54 91
ACMMPR99.51 5899.32 7299.72 6199.87 5399.33 10899.61 7199.85 6899.19 6999.73 8898.73 16599.95 2599.61 4499.35 8399.14 7399.66 9999.58 77
UniMVSNet (Re)99.50 5999.29 7799.75 5199.86 6899.47 7899.51 9599.82 8998.90 10899.89 1799.64 7499.00 15699.55 5499.32 8999.08 9099.90 2899.59 68
FMVSNet199.50 5999.57 3399.42 11799.67 15099.65 3999.60 7599.91 4399.40 4499.39 16399.83 4599.27 15198.14 16599.68 4299.50 4299.81 5899.68 49
HyFIR lowres test99.50 5999.26 8199.80 3699.95 1099.62 4299.76 3599.97 199.67 1099.56 12999.94 1198.40 17199.78 1298.84 17098.59 15099.76 7399.72 39
PM-MVS99.49 6299.43 5599.57 9099.76 12199.34 10799.53 8999.77 12098.93 10499.75 7699.46 10599.83 8799.11 11899.72 3999.29 6299.49 14899.46 108
Anonymous2023120699.48 6399.31 7499.69 6799.79 10399.57 5299.63 6899.79 10898.88 11099.91 1399.72 6099.93 4299.59 4899.24 10798.63 14699.43 15799.18 146
DU-MVS99.48 6399.26 8199.75 5199.85 7699.38 9699.50 9999.81 9798.86 11399.89 1799.51 10098.98 15799.59 4899.46 6698.97 10899.87 3999.63 60
RPSCF99.48 6399.45 5399.52 10299.73 13699.33 10899.13 15999.77 12099.33 5299.47 15099.39 11599.92 5099.36 8499.63 5199.13 8199.63 11299.41 119
ACMMP_NAP99.47 6699.33 7099.63 7999.85 7699.28 12099.56 8399.83 8298.75 12699.48 14799.03 15299.95 2599.47 7899.48 6299.19 6699.57 13199.59 68
Anonymous2023121199.47 6699.39 6399.57 9099.89 4299.60 4599.50 9999.69 14298.91 10799.62 11799.17 13899.35 14498.86 13999.63 5199.46 4999.84 4799.62 63
SteuartSystems-ACMMP99.47 6699.22 9099.76 4799.88 4899.36 10199.65 6399.84 7798.47 15199.80 5898.68 16899.96 1499.68 3199.37 8099.06 9299.72 8899.66 53
Skip Steuart: Steuart Systems R&D Blog.
ACMM98.37 1299.47 6699.23 8799.74 5799.86 6899.19 13899.68 5699.86 6199.16 7699.71 9798.52 17899.95 2599.62 4399.35 8399.02 9999.74 8199.42 118
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DVP-MVS++99.46 7099.57 3399.33 13899.75 12599.57 5299.44 11299.81 9799.38 4798.56 20999.81 5199.99 398.79 14399.33 8799.13 8199.62 11899.81 19
HFP-MVS99.46 7099.30 7599.65 7399.82 9399.25 12699.50 9999.82 8999.23 6299.58 12798.86 15699.94 3599.56 5399.14 12999.12 8599.63 11299.56 84
LGP-MVS_train99.46 7099.18 9999.78 4199.87 5399.25 12699.71 5499.87 5798.02 18399.79 6298.90 15599.96 1499.66 3599.49 6199.17 6999.79 6599.49 101
SED-MVS99.45 7399.46 5299.42 11799.77 11699.57 5299.42 11599.80 10599.06 8699.38 16499.66 7099.96 1498.65 15199.31 9199.14 7399.53 14099.55 89
ETV-MVS99.45 7399.32 7299.60 8499.79 10399.60 4599.40 12099.78 11397.88 18999.83 5199.33 11999.70 11398.97 12999.74 3699.43 5399.84 4799.58 77
ACMP98.32 1399.44 7599.18 9999.75 5199.83 8899.18 13999.64 6499.83 8298.81 12299.79 6298.42 18599.96 1499.64 4199.46 6698.98 10799.74 8199.44 112
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DCV-MVSNet99.43 7699.23 8799.67 6999.92 3099.76 2199.64 6499.93 2799.06 8699.68 10797.77 19698.97 15898.97 12999.72 3999.54 3799.88 3399.81 19
SMA-MVScopyleft99.43 7699.41 5999.45 11399.82 9399.31 11399.02 17399.59 16399.06 8699.34 17399.53 9699.96 1499.38 8299.29 9699.13 8199.53 14099.59 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
testgi99.43 7699.47 5099.38 12699.90 3999.67 3899.30 13999.73 13798.64 13999.53 13399.52 9899.90 5998.08 16899.65 4999.40 5799.75 7699.55 89
DELS-MVS99.42 7999.53 4099.29 14199.52 17899.43 8599.42 11599.28 19999.16 7699.72 9199.82 4799.97 998.17 16299.56 5799.16 7099.65 10199.59 68
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
3Dnovator99.16 399.42 7999.22 9099.65 7399.78 10899.13 14899.50 9999.85 6899.40 4499.80 5898.59 17499.79 10199.30 9699.20 11799.06 9299.71 9199.35 132
DPE-MVScopyleft99.41 8199.36 6799.47 10999.66 15199.48 7699.46 11099.75 13498.65 13599.41 16099.67 6899.95 2598.82 14099.21 11499.14 7399.72 8899.40 124
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
UniMVSNet_NR-MVSNet99.41 8199.12 11199.76 4799.86 6899.48 7699.50 9999.81 9798.84 11699.89 1799.45 10698.32 17499.59 4899.22 11198.89 11799.90 2899.63 60
CP-MVS99.41 8199.20 9599.65 7399.80 9999.23 13399.44 11299.75 13498.60 14499.74 8298.66 16999.93 4299.48 7599.33 8799.16 7099.73 8599.48 104
QAPM99.41 8199.21 9499.64 7899.78 10899.16 14199.51 9599.85 6899.20 6699.72 9199.43 10799.81 9199.25 10098.87 16098.71 13899.71 9199.30 137
UGNet99.40 8599.61 2499.16 16099.88 4899.64 4099.61 7199.77 12099.31 5499.63 11699.33 11999.93 4296.46 20299.63 5199.53 3899.63 11299.89 4
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Vis-MVSNet (Re-imp)99.40 8599.28 7999.55 9599.92 3099.68 3699.31 13499.87 5798.69 13299.16 18299.08 14798.64 16799.20 10499.65 4999.46 4999.83 5299.72 39
OPM-MVS99.39 8799.22 9099.59 8599.76 12198.82 17299.51 9599.79 10899.17 7299.53 13399.31 12499.95 2599.35 8599.22 11198.79 13099.60 12399.27 140
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Fast-Effi-MVS+99.39 8799.18 9999.63 7999.86 6899.28 12099.45 11199.91 4398.47 15199.61 12099.50 10299.57 12599.17 10599.24 10798.66 14399.78 6799.59 68
LS3D99.39 8799.28 7999.52 10299.77 11699.39 9399.55 8499.82 8998.93 10499.64 11498.52 17899.67 11798.58 15599.74 3699.63 2999.75 7699.06 162
diffmvspermissive99.38 9099.33 7099.45 11399.87 5399.39 9399.28 14299.58 16699.55 2799.50 14399.85 4099.85 8298.94 13498.58 18398.68 14199.51 14599.39 126
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CANet99.36 9199.39 6399.34 13799.80 9999.35 10599.41 11999.47 18299.20 6699.74 8299.54 9099.68 11598.05 17099.23 10998.97 10899.57 13199.73 36
MVS_030499.36 9199.35 6899.37 13299.85 7699.36 10199.39 12199.56 16899.36 5099.75 7699.23 13099.90 5997.97 17699.00 14198.83 12499.69 9499.77 27
ACMMPcopyleft99.36 9199.06 11999.71 6299.86 6899.36 10199.63 6899.85 6898.33 16699.72 9197.73 19899.94 3599.53 5899.37 8099.13 8199.65 10199.56 84
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SD-MVS99.35 9499.26 8199.46 11199.66 15199.15 14398.92 18299.67 15199.55 2799.35 17098.83 15899.91 5699.35 8599.19 12098.53 15299.78 6799.68 49
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MP-MVScopyleft99.35 9499.09 11799.65 7399.84 8299.22 13499.59 7699.78 11398.13 17599.67 10898.44 18299.93 4299.43 8199.31 9199.09 8999.60 12399.49 101
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
pmmvs499.34 9699.15 10699.57 9099.77 11698.90 16599.51 9599.77 12099.07 8499.73 8899.72 6099.84 8599.07 12098.85 16598.39 16199.55 13899.27 140
EPP-MVSNet99.34 9699.10 11599.62 8399.94 2399.74 2999.66 6299.80 10599.07 8498.93 19299.61 7996.13 18999.49 7299.67 4599.63 2999.92 2199.86 11
TSAR-MVS + GP.99.33 9899.17 10399.51 10499.71 14199.00 16098.84 19099.71 13998.23 17299.74 8299.53 9699.90 5999.35 8599.38 7998.85 12299.72 8899.31 135
PHI-MVS99.33 9899.19 9799.49 10799.69 14399.25 12699.27 14399.59 16398.44 15599.78 6699.15 13999.92 5098.95 13399.39 7799.04 9799.64 10999.18 146
MSP-MVS99.32 10099.26 8199.38 12699.76 12199.54 5999.42 11599.72 13898.92 10698.84 19998.96 15499.96 1498.91 13598.72 17899.14 7399.63 11299.58 77
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PGM-MVS99.32 10098.99 12899.71 6299.86 6899.31 11399.59 7699.86 6197.51 19899.75 7698.23 18899.94 3599.53 5899.29 9699.08 9099.65 10199.54 91
DeepC-MVS_fast98.69 999.32 10099.13 10999.53 9899.63 15798.78 17599.53 8999.33 19799.08 8299.77 6899.18 13799.89 6299.29 9799.00 14198.70 13999.65 10199.30 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSDG99.32 10099.09 11799.58 8799.75 12598.74 17999.36 12699.54 17199.14 7999.72 9199.24 12899.89 6299.51 6399.30 9398.76 13199.62 11898.54 180
TSAR-MVS + ACMM99.31 10499.26 8199.37 13299.66 15198.97 16399.20 15199.56 16899.33 5299.19 18199.54 9099.91 5699.32 9299.12 13098.34 16499.29 17199.65 56
3Dnovator+98.92 799.31 10499.03 12399.63 7999.77 11698.90 16599.52 9299.81 9799.37 4899.72 9198.03 19399.73 10999.32 9298.99 14498.81 12899.67 9799.36 130
X-MVS99.30 10698.99 12899.66 7199.85 7699.30 11599.49 10699.82 8998.32 16799.69 10097.31 20599.93 4299.50 6799.37 8099.16 7099.60 12399.53 94
MVS_111021_HR99.30 10699.14 10799.48 10899.58 17499.25 12699.27 14399.61 15898.74 12899.66 11199.02 15399.84 8599.33 8999.20 11798.76 13199.44 15499.18 146
TAPA-MVS98.54 1099.30 10699.24 8699.36 13699.44 19298.77 17799.00 17599.41 18899.23 6299.60 12299.50 10299.86 7699.15 11299.29 9698.95 11299.56 13599.08 158
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CLD-MVS99.30 10699.01 12799.63 7999.75 12598.89 16899.35 12999.60 16098.53 14999.86 3599.57 8699.94 3599.52 6198.96 14698.10 17799.70 9399.08 158
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
USDC99.29 11098.98 13099.65 7399.72 13898.87 17099.47 10899.66 15499.35 5199.87 2999.58 8599.87 7599.51 6398.85 16597.93 18399.65 10198.38 184
PMVScopyleft94.32 1799.27 11199.55 3698.94 17799.60 16699.43 8599.39 12199.54 17198.99 9499.69 10099.60 8299.81 9195.68 20799.88 1599.83 799.73 8599.31 135
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FA-MVS(training)99.26 11299.12 11199.44 11599.60 16699.26 12299.24 14899.97 198.84 11699.76 7199.43 10798.74 16498.47 15899.39 7799.10 8799.57 13199.07 161
MVS_111021_LR99.25 11399.13 10999.39 12299.50 18699.14 14499.23 14999.50 17998.67 13399.61 12099.12 14399.81 9199.16 10899.28 10198.67 14299.35 16799.21 145
ECVR-MVScopyleft99.24 11498.74 15299.82 2699.95 1099.78 1799.67 6099.93 2799.45 3899.80 5899.86 3892.58 20599.65 3799.93 399.88 399.94 1599.71 45
baseline99.24 11499.30 7599.17 15999.78 10899.14 14499.10 16399.69 14298.97 9899.49 14599.84 4299.88 6897.99 17598.85 16598.73 13698.98 18699.72 39
EIA-MVS99.23 11699.03 12399.47 10999.83 8899.64 4099.16 15599.81 9797.11 20599.65 11398.44 18299.78 10498.61 15499.46 6699.22 6499.75 7699.59 68
HPM-MVS++copyleft99.23 11698.98 13099.53 9899.75 12599.02 15899.44 11299.77 12098.65 13599.52 13998.72 16699.92 5099.33 8998.77 17698.40 16099.40 16199.36 130
PMMVS299.23 11699.22 9099.24 14899.80 9999.14 14499.50 9999.82 8999.12 8198.41 21499.91 2399.98 598.51 15699.48 6298.76 13199.38 16398.14 192
test111199.21 11998.67 15699.84 2199.96 799.82 899.72 5199.94 2499.54 2999.78 6699.89 3091.89 20899.69 3099.93 399.89 199.95 799.75 32
CPTT-MVS99.21 11998.89 14099.58 8799.72 13899.12 15199.30 13999.76 12998.62 14099.66 11197.51 20199.89 6299.48 7599.01 13998.64 14599.58 13099.40 124
TinyColmap99.21 11998.89 14099.59 8599.61 16298.61 18799.47 10899.67 15199.02 9199.82 5499.15 13999.74 10699.35 8599.17 12598.33 16599.63 11298.22 190
Effi-MVS+99.20 12298.93 13599.50 10699.79 10399.26 12298.82 19399.96 1298.37 16599.60 12299.12 14398.36 17299.05 12398.93 14998.82 12599.78 6799.68 49
PVSNet_BlendedMVS99.20 12299.17 10399.23 14999.69 14399.33 10899.04 16899.13 20298.41 16099.79 6299.33 11999.36 14198.10 16699.29 9698.87 11999.65 10199.56 84
PVSNet_Blended99.20 12299.17 10399.23 14999.69 14399.33 10899.04 16899.13 20298.41 16099.79 6299.33 11999.36 14198.10 16699.29 9698.87 11999.65 10199.56 84
MCST-MVS99.17 12598.82 14899.57 9099.75 12598.70 18399.25 14799.69 14298.62 14099.59 12498.54 17699.79 10199.53 5898.48 18798.15 17399.64 10999.43 115
APD-MVScopyleft99.17 12598.92 13699.46 11199.78 10899.24 13199.34 13099.78 11397.79 19299.48 14798.25 18799.88 6898.77 14499.18 12398.92 11499.63 11299.18 146
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
OpenMVScopyleft98.82 899.17 12598.85 14499.53 9899.75 12599.06 15699.36 12699.82 8998.28 16999.76 7198.47 18099.61 12198.91 13598.80 17398.70 13999.60 12399.04 166
IterMVS-LS99.16 12898.82 14899.57 9099.87 5399.71 3299.58 8099.92 3799.24 6199.71 9799.73 5695.79 19098.91 13598.82 17298.66 14399.43 15799.77 27
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DeepPCF-MVS98.38 1199.16 12899.20 9599.12 16499.20 20998.71 18298.85 18999.06 20599.17 7298.96 19199.61 7999.86 7699.29 9799.17 12598.72 13799.36 16599.15 154
IterMVS-SCA-FT99.15 13098.96 13299.38 12699.87 5399.54 5999.53 8999.79 10898.94 10299.82 5499.92 1697.65 18198.82 14098.95 14898.26 16798.45 19599.47 107
CDS-MVSNet99.15 13099.10 11599.21 15599.59 17199.22 13499.48 10799.47 18298.89 10999.41 16099.84 4298.11 17797.76 17999.26 10699.01 10199.57 13199.38 127
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IS_MVSNet99.15 13099.12 11199.19 15799.92 3099.73 3199.55 8499.86 6198.45 15496.91 22098.74 16498.33 17399.02 12599.54 5999.47 4799.88 3399.61 65
MDA-MVSNet-bldmvs99.11 13399.11 11499.12 16499.91 3499.38 9699.77 3298.72 20999.31 5499.85 4299.43 10798.26 17599.48 7599.85 1998.47 15596.99 20699.08 158
OMC-MVS99.11 13398.95 13399.29 14199.37 19898.57 18999.19 15299.20 20198.87 11299.58 12799.13 14199.88 6899.00 12699.19 12098.46 15699.43 15798.57 179
MVS_Test99.09 13598.92 13699.29 14199.61 16299.07 15599.04 16899.81 9798.58 14699.37 16799.74 5498.87 16298.41 16098.61 18298.01 18199.50 14799.57 83
CNVR-MVS99.08 13698.83 14599.37 13299.61 16298.74 17999.15 15699.54 17198.59 14599.37 16798.15 19099.88 6899.08 11998.91 15498.46 15699.48 14999.06 162
IterMVS99.08 13698.90 13999.29 14199.87 5399.53 6299.52 9299.77 12098.94 10299.75 7699.91 2397.52 18598.72 14898.86 16398.14 17498.09 19899.43 115
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet299.07 13899.19 9798.93 17999.02 21499.53 6299.31 13499.84 7798.86 11398.88 19599.64 7498.44 17096.92 19699.35 8399.00 10599.61 12099.53 94
CVMVSNet99.06 13998.88 14399.28 14599.52 17899.53 6299.42 11599.69 14298.74 12898.27 21699.89 3095.48 19399.44 7999.46 6699.33 5999.32 17099.75 32
CDPH-MVS99.05 14098.63 15799.54 9799.75 12598.78 17599.59 7699.68 14897.79 19299.37 16798.20 18999.86 7699.14 11498.58 18398.01 18199.68 9599.16 152
TAMVS99.05 14099.02 12699.08 16999.69 14399.22 13499.33 13199.32 19899.16 7698.97 19099.87 3597.36 18697.76 17999.21 11499.00 10599.44 15499.33 133
CANet_DTU99.03 14299.18 9998.87 18299.58 17499.03 15799.18 15399.41 18898.65 13599.74 8299.55 8999.71 11096.13 20599.19 12098.92 11499.17 18099.18 146
Effi-MVS+-dtu99.01 14399.05 12098.98 17399.60 16699.13 14899.03 17299.61 15898.52 15099.01 18798.53 17799.83 8796.95 19599.48 6298.59 15099.66 9999.25 144
canonicalmvs99.00 14498.68 15599.37 13299.68 14999.42 8998.94 18199.89 5299.00 9398.99 18898.43 18495.69 19198.96 13299.18 12399.18 6799.74 8199.88 6
MIMVSNet99.00 14499.03 12398.97 17699.32 20499.32 11299.39 12199.91 4398.41 16098.76 20299.24 12899.17 15397.13 18999.30 9398.80 12999.29 17199.01 167
CHOSEN 280x42098.99 14698.91 13899.07 17099.77 11699.26 12299.55 8499.92 3798.62 14098.67 20699.62 7897.20 18798.44 15999.50 6099.18 6798.08 19998.99 170
SF-MVS98.96 14798.95 13398.98 17399.64 15698.89 16898.00 21999.58 16698.42 15899.08 18698.63 17199.83 8798.04 17299.02 13898.76 13199.52 14299.13 155
GBi-Net98.96 14799.05 12098.85 18399.02 21499.53 6299.31 13499.78 11398.13 17598.48 21099.43 10797.58 18296.92 19699.68 4299.50 4299.61 12099.53 94
test198.96 14799.05 12098.85 18399.02 21499.53 6299.31 13499.78 11398.13 17598.48 21099.43 10797.58 18296.92 19699.68 4299.50 4299.61 12099.53 94
PCF-MVS97.86 1598.95 15098.53 16299.44 11599.70 14298.80 17498.96 17799.69 14298.65 13599.59 12499.33 11999.94 3599.12 11798.01 19797.11 19499.59 12997.83 196
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MS-PatchMatch98.94 15198.71 15499.21 15599.52 17898.22 20598.97 17699.53 17698.76 12499.50 14398.59 17499.56 12798.68 14998.63 18198.45 15899.05 18398.73 176
AdaColmapbinary98.93 15298.53 16299.39 12299.52 17898.65 18699.11 16299.59 16398.08 17999.44 15397.46 20399.45 13499.24 10198.92 15198.44 15999.44 15498.73 176
MSLP-MVS++98.92 15398.73 15399.14 16199.44 19299.00 16098.36 20999.35 19498.82 12199.38 16496.06 20999.79 10199.07 12098.88 15999.05 9599.27 17399.53 94
new_pmnet98.91 15498.89 14098.94 17799.51 18498.27 20199.15 15698.66 21099.17 7299.48 14799.79 5299.80 9798.49 15799.23 10998.20 17198.34 19697.74 200
train_agg98.89 15598.48 16799.38 12699.69 14398.76 17899.31 13499.60 16097.71 19498.98 18997.89 19499.89 6299.29 9798.32 18897.59 19099.42 16099.16 152
NCCC98.88 15698.42 16899.42 11799.62 15898.81 17399.10 16399.54 17198.76 12499.53 13395.97 21099.80 9799.16 10898.49 18698.06 18099.55 13899.05 164
PLCcopyleft97.83 1698.88 15698.52 16499.30 14099.45 19098.60 18898.65 19999.49 18098.66 13499.59 12496.33 20899.59 12499.17 10598.87 16098.53 15299.46 15199.05 164
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
pmmvs398.85 15898.60 15899.13 16299.66 15198.72 18199.37 12599.06 20598.44 15599.76 7199.74 5499.55 12899.15 11299.04 13696.00 20297.80 20098.72 178
Fast-Effi-MVS+-dtu98.82 15998.80 15098.84 18599.51 18498.90 16598.96 17799.91 4398.29 16899.11 18598.47 18099.63 12096.03 20699.21 11498.12 17599.52 14299.01 167
CNLPA98.82 15998.52 16499.18 15899.21 20898.50 19398.73 19799.34 19698.73 13099.56 12997.55 20099.42 13899.06 12298.93 14998.10 17799.21 17998.38 184
PatchMatch-RL98.80 16198.52 16499.12 16499.38 19798.70 18398.56 20299.55 17097.81 19199.34 17397.57 19999.31 14898.67 15099.27 10498.62 14799.22 17898.35 186
thisisatest053098.78 16298.26 17199.39 12299.78 10899.43 8599.07 16599.64 15698.44 15599.42 15899.22 13192.68 20498.63 15299.30 9399.14 7399.80 6299.60 66
tttt051798.77 16398.25 17399.38 12699.79 10399.46 7999.07 16599.64 15698.40 16399.38 16499.21 13392.54 20698.63 15299.34 8699.14 7399.80 6299.62 63
DI_MVS_plusplus_trai98.74 16498.08 18199.51 10499.79 10399.29 11999.61 7199.60 16099.20 6699.46 15199.09 14692.93 19898.97 12998.27 19198.35 16399.65 10199.45 109
TSAR-MVS + COLMAP98.74 16498.58 16098.93 17999.29 20598.23 20299.04 16899.24 20098.79 12398.80 20199.37 11799.71 11098.06 16998.02 19697.46 19299.16 18198.48 182
MDTV_nov1_ep13_2view98.73 16698.31 17099.22 15299.75 12599.24 13199.75 3999.93 2799.31 5499.84 4699.86 3899.81 9199.31 9597.40 20594.77 20496.73 20897.81 197
PMMVS98.71 16798.55 16198.90 18199.28 20698.45 19598.53 20599.45 18497.67 19699.15 18498.76 16299.54 13097.79 17898.77 17698.23 16999.16 18198.46 183
HQP-MVS98.70 16898.19 17799.28 14599.61 16298.52 19198.71 19899.35 19497.97 18699.53 13397.38 20499.85 8299.14 11497.53 20196.85 19899.36 16599.26 143
N_pmnet98.64 16998.23 17699.11 16799.78 10899.25 12699.75 3999.39 19299.65 1399.70 9999.78 5399.89 6298.81 14297.60 20094.28 20597.24 20597.15 204
CMPMVSbinary76.62 1998.64 16998.60 15898.68 19099.33 20297.07 21798.11 21798.50 21197.69 19599.26 17698.35 18699.66 11897.62 18299.43 7499.02 9999.24 17699.01 167
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FMVSNet398.63 17198.75 15198.49 19698.10 22099.44 8299.02 17399.78 11398.13 17598.48 21099.43 10797.58 18296.16 20498.85 16598.39 16199.40 16199.41 119
GA-MVS98.59 17298.15 17899.09 16899.59 17199.13 14898.84 19099.52 17898.61 14399.35 17099.67 6893.03 19797.73 18198.90 15898.26 16799.51 14599.48 104
MAR-MVS98.54 17398.15 17898.98 17399.37 19898.09 20898.56 20299.65 15596.11 21999.27 17597.16 20699.50 13198.03 17398.87 16098.23 16999.01 18499.13 155
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
new-patchmatchnet98.49 17497.60 18399.53 9899.90 3999.55 5699.77 3299.48 18199.67 1099.86 3599.98 399.98 599.50 6796.90 20791.52 21198.67 19295.62 210
FPMVS98.48 17598.83 14598.07 20699.09 21297.98 21199.07 16598.04 21798.99 9499.22 17998.85 15799.43 13793.79 21499.66 4799.11 8699.24 17697.76 198
MVS-HIRNet98.45 17698.25 17398.69 18999.12 21097.81 21698.55 20499.85 6898.58 14699.67 10899.61 7999.86 7697.46 18597.95 19896.37 20097.49 20297.56 201
test0.0.03 198.41 17798.41 16998.40 20099.62 15899.16 14198.87 18799.41 18897.15 20396.60 22299.31 12497.00 18896.55 20198.91 15498.51 15499.37 16498.82 174
gg-mvs-nofinetune98.40 17898.26 17198.57 19499.83 8898.86 17198.77 19699.97 199.57 2499.99 199.99 193.81 19593.50 21598.91 15498.20 17199.33 16998.52 181
baseline198.39 17997.59 18499.31 13999.78 10899.45 8099.13 15999.53 17698.06 18198.87 19698.63 17190.04 21298.76 14598.85 16598.84 12399.81 5899.28 139
pmnet_mix0298.28 18097.48 18699.22 15299.78 10899.12 15199.68 5699.39 19299.49 3499.86 3599.82 4799.89 6299.23 10295.54 21092.36 20897.38 20396.14 208
PatchT98.11 18197.12 19299.26 14799.65 15598.34 19999.57 8299.97 197.48 19999.43 15599.04 15190.84 21098.15 16398.04 19497.78 18498.82 18998.30 187
DPM-MVS98.10 18297.32 19099.01 17299.52 17897.92 21298.47 20799.45 18498.25 17098.91 19393.99 21499.69 11498.73 14796.29 20996.32 20199.00 18598.77 175
EPNet_dtu98.09 18398.25 17397.91 20899.58 17498.02 21098.19 21499.67 15197.94 18799.74 8299.07 14998.71 16693.40 21697.50 20297.09 19596.89 20799.44 112
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPNet98.06 18498.11 18098.00 20799.60 16698.99 16298.38 20899.68 14898.18 17498.85 19897.89 19495.60 19292.72 21798.30 18998.10 17798.76 19099.72 39
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CR-MVSNet97.91 18596.80 19599.22 15299.60 16698.23 20298.91 18399.97 196.89 21299.43 15599.10 14589.24 21598.15 16398.04 19497.78 18499.26 17498.30 187
thres20097.87 18696.56 19799.39 12299.76 12199.52 6999.13 15999.76 12996.88 21498.66 20792.87 21888.77 21899.16 10899.11 13199.42 5499.88 3399.33 133
baseline297.87 18697.18 19198.67 19199.34 20199.17 14098.48 20698.82 20897.08 20698.83 20098.75 16389.47 21497.03 19498.67 18098.27 16699.52 14298.83 173
thres600view797.86 18896.53 20099.41 12099.84 8299.52 6999.36 12699.76 12997.32 20198.38 21593.24 21587.25 22099.23 10299.11 13199.75 1899.88 3399.48 104
tfpn200view997.85 18996.54 19899.38 12699.74 13499.52 6999.17 15499.76 12996.10 22098.70 20492.99 21689.10 21699.00 12699.11 13199.56 3399.88 3399.41 119
thres40097.82 19096.47 20199.40 12199.81 9899.44 8299.29 14199.69 14297.15 20398.57 20892.82 21987.96 21999.16 10898.96 14699.55 3699.86 4199.41 119
IB-MVS98.10 1497.76 19197.40 18998.18 20299.62 15899.11 15398.24 21298.35 21396.56 21699.44 15391.28 22098.96 16093.84 21398.09 19398.62 14799.56 13599.18 146
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test-LLR97.74 19297.46 18798.08 20499.62 15898.37 19798.26 21099.41 18897.03 20797.38 21899.54 9092.89 19995.12 21098.78 17497.68 18898.65 19397.90 194
RPMNet97.70 19396.54 19899.06 17199.57 17798.23 20298.95 18099.97 196.89 21299.49 14599.13 14189.63 21397.09 19196.68 20897.02 19699.26 17498.19 191
thres100view90097.69 19496.37 20299.23 14999.74 13499.21 13798.81 19499.43 18796.10 22098.70 20492.99 21689.10 21698.88 13898.58 18399.31 6199.82 5599.27 140
FMVSNet597.69 19496.98 19398.53 19598.53 21899.36 10198.90 18699.54 17196.38 21798.44 21395.38 21290.08 21197.05 19399.46 6699.06 9298.73 19199.12 157
MVEpermissive91.08 1897.68 19697.65 18297.71 21498.46 21991.62 22397.92 22098.86 20798.73 13097.99 21798.64 17099.96 1499.17 10599.59 5597.75 18693.87 22297.27 202
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test-mter97.65 19797.57 18597.75 21298.90 21798.56 19098.15 21598.45 21296.92 21196.84 22199.52 9892.53 20795.24 20999.04 13698.12 17598.90 18898.29 189
TESTMET0.1,197.62 19897.46 18797.81 21099.07 21398.37 19798.26 21098.35 21397.03 20797.38 21899.54 9092.89 19995.12 21098.78 17497.68 18898.65 19397.90 194
test250697.57 19995.67 20899.78 4199.95 1099.78 1799.67 6099.93 2799.45 3899.55 13299.20 13471.73 22799.65 3799.93 399.88 399.94 1599.72 39
MVSTER97.55 20096.75 19698.48 19799.46 18999.54 5998.24 21299.77 12097.56 19799.41 16099.31 12484.86 22294.66 21298.86 16397.75 18699.34 16899.38 127
ET-MVSNet_ETH3D97.44 20196.29 20398.78 18697.93 22198.95 16498.91 18399.09 20498.00 18499.24 17798.83 15884.62 22398.02 17497.43 20497.38 19399.48 14998.84 172
MDTV_nov1_ep1397.41 20296.26 20498.76 18799.47 18898.43 19699.26 14699.82 8998.06 18199.23 17899.22 13192.86 20198.05 17095.33 21293.66 20796.73 20896.26 207
ADS-MVSNet97.29 20396.17 20598.59 19399.59 17198.70 18399.32 13299.86 6198.47 15199.56 12999.08 14798.16 17697.34 18792.92 21491.17 21295.91 21194.72 213
SCA97.25 20496.05 20698.64 19299.36 20099.02 15899.27 14399.96 1298.25 17099.69 10098.71 16794.66 19497.95 17793.95 21392.35 20995.64 21295.40 212
gm-plane-assit96.82 20594.84 21399.13 16299.95 1099.78 1799.69 5599.92 3799.19 6999.84 4699.92 1672.93 22696.44 20398.21 19297.01 19798.92 18796.87 206
PatchmatchNetpermissive96.81 20695.41 21098.43 19999.43 19498.30 20099.23 14999.93 2798.19 17399.64 11498.81 16193.50 19697.43 18692.89 21590.78 21494.94 21795.41 211
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS96.76 20795.30 21298.46 19899.42 19598.47 19499.32 13299.91 4398.42 15899.51 14199.07 14992.81 20297.12 19092.39 21691.71 21095.51 21394.20 215
E-PMN96.72 20895.78 20797.81 21099.45 19095.46 22098.14 21698.33 21597.99 18598.73 20398.09 19198.97 15897.54 18497.45 20391.09 21394.70 21991.40 218
tpm96.56 20994.68 21498.74 18899.12 21097.90 21398.79 19599.93 2796.79 21599.69 10099.19 13681.48 22597.56 18395.46 21193.97 20697.37 20497.99 193
EMVS96.47 21095.38 21197.74 21399.42 19595.37 22198.07 21898.27 21697.85 19098.90 19497.48 20298.73 16597.20 18897.21 20690.39 21594.59 22190.65 219
tpmrst96.18 21194.47 21598.18 20299.52 17897.89 21498.96 17799.79 10898.07 18099.16 18299.30 12792.69 20396.69 19990.76 21888.85 21894.96 21693.69 216
CostFormer95.61 21293.35 21898.24 20199.48 18798.03 20998.65 19999.83 8296.93 21099.42 15898.83 15883.65 22497.08 19290.39 21989.54 21794.94 21796.11 209
dps95.59 21393.46 21798.08 20499.33 20298.22 20598.87 18799.70 14096.17 21898.87 19697.75 19786.85 22196.60 20091.24 21789.62 21695.10 21594.34 214
tpm cat195.52 21493.49 21697.88 20999.28 20697.87 21598.65 19999.77 12097.27 20299.46 15198.04 19290.99 20995.46 20888.57 22088.14 21994.64 22093.54 217
test_method91.96 21595.51 20987.82 21670.84 22382.79 22492.13 22387.74 21998.88 11095.40 22399.20 13498.04 17885.65 21997.71 19994.95 20395.13 21497.00 205
GG-mvs-BLEND70.44 21696.91 19439.57 2173.32 22696.51 21891.01 2244.05 22397.03 20733.20 22594.67 21397.75 1807.59 22298.28 19096.85 19898.24 19797.26 203
testmvs22.33 21729.66 21913.79 2188.97 22410.35 22515.53 2278.09 22232.51 22219.87 22645.18 22130.56 22917.05 22129.96 22124.74 22013.21 22334.30 220
test12321.52 21828.47 22013.42 2197.29 22510.12 22615.70 2268.31 22131.54 22319.34 22736.33 22237.40 22817.14 22027.45 22223.17 22112.73 22433.30 221
uanet_test0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
RE-MVS-def99.96 2
9.1499.57 125
SR-MVS99.73 13699.74 13699.88 68
Anonymous20240521199.14 10799.87 5399.55 5699.50 9999.70 14098.55 14898.61 17398.46 16998.76 14599.66 4799.50 4299.85 4499.63 60
our_test_399.75 12599.11 15399.74 46
ambc98.83 14599.72 13898.52 19198.84 19098.96 9999.92 999.34 11899.74 10699.04 12498.68 17997.57 19199.46 15198.99 170
MTAPA99.62 11799.95 25
MTMP99.53 13399.92 50
Patchmatch-RL test65.75 225
tmp_tt88.14 21596.68 22291.91 22293.70 22261.38 22099.61 1990.51 22499.40 11499.71 11090.32 21899.22 11199.44 5296.25 210
XVS99.86 6899.30 11599.72 5199.69 10099.93 4299.60 123
X-MVStestdata99.86 6899.30 11599.72 5199.69 10099.93 4299.60 123
mPP-MVS99.84 8299.92 50
NP-MVS97.37 200
Patchmtry98.19 20798.91 18399.97 199.43 155
DeepMVS_CXcopyleft96.39 21997.15 22188.89 21897.94 18799.51 14195.71 21197.88 17998.19 16198.92 15197.73 20197.75 199