This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB99.39 199.90 199.87 199.93 199.97 299.82 899.91 399.92 3899.75 499.93 699.89 30100.00 199.87 299.93 399.82 1099.96 399.90 2
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v7n99.89 299.86 399.93 199.97 299.83 499.93 199.96 1299.77 399.89 1899.99 199.86 7699.84 599.89 1199.81 1199.97 199.88 6
SixPastTwentyTwo99.89 299.85 599.93 199.97 299.88 199.92 299.97 199.66 1399.94 599.94 1199.74 10899.81 799.97 199.89 199.96 399.89 4
pmmvs699.88 499.87 199.89 999.97 299.76 2299.89 599.96 1299.82 299.90 1699.92 1699.95 2599.68 3299.93 399.88 399.95 799.86 11
anonymousdsp99.87 599.86 399.88 1399.95 1099.75 2899.90 499.96 1299.69 799.83 5299.96 499.99 399.74 2299.95 299.83 799.91 2599.88 6
FC-MVSNet-test99.84 699.80 699.89 999.96 799.83 499.84 1699.95 2399.37 4999.77 6999.95 699.96 1499.85 399.93 399.83 799.95 799.72 40
WB-MVS99.82 799.76 999.89 999.94 2399.82 899.79 2999.93 2799.67 1099.97 299.83 4599.78 10599.79 1299.72 3999.70 2299.95 799.78 26
UniMVSNet_ETH3D99.81 899.79 799.85 1999.98 199.76 2299.73 4899.96 1299.68 999.87 3099.59 8599.91 5699.58 5299.90 1099.85 699.96 399.81 19
TDRefinement99.81 899.76 999.86 1699.83 8999.53 6399.89 599.91 4499.73 599.88 2499.83 4599.96 1499.76 1799.91 999.81 1199.86 4299.59 69
WR-MVS99.79 1099.68 1499.91 599.95 1099.83 499.87 999.96 1299.39 4799.93 699.87 3599.29 15199.77 1599.83 2299.72 2099.97 199.82 16
MIMVSNet199.79 1099.75 1199.84 2299.89 4399.83 499.84 1699.89 5399.31 5599.93 699.92 1699.97 999.68 3299.89 1199.64 2899.82 5699.66 54
pm-mvs199.77 1299.69 1399.86 1699.94 2399.68 3799.84 1699.93 2799.59 2299.87 3099.92 1699.21 15499.65 3899.88 1599.77 1699.93 2199.78 26
PEN-MVS99.77 1299.65 1999.91 599.95 1099.80 1699.86 1099.97 199.08 8399.89 1899.69 6899.68 11799.84 599.81 2799.64 2899.95 799.81 19
EU-MVSNet99.76 1499.74 1299.78 4299.82 9499.81 1399.88 799.87 5899.31 5599.75 7799.91 2399.76 10799.78 1399.84 2199.74 1999.56 13799.81 19
Vis-MVSNetpermissive99.76 1499.78 899.75 5299.92 3199.77 2199.83 1999.85 6999.43 4199.85 4399.84 42100.00 199.13 11899.83 2299.66 2599.90 2999.90 2
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CS-MVS99.75 1699.66 1899.85 1999.87 5499.86 299.83 1999.91 4498.84 11799.92 1099.57 8799.85 8299.60 4799.82 2599.79 1399.94 1699.87 9
CS-MVS-test99.75 1699.67 1599.84 2299.91 3599.85 399.85 1399.92 3898.75 12799.89 1899.64 7599.95 2599.55 5599.89 1199.79 1399.92 2299.83 14
DTE-MVSNet99.75 1699.61 2599.92 499.95 1099.81 1399.86 1099.96 1299.18 7299.92 1099.66 7199.45 13699.85 399.80 2899.56 3499.96 399.79 25
tfpnnormal99.74 1999.63 2299.86 1699.93 2899.75 2899.80 2899.89 5399.31 5599.88 2499.43 10899.66 12099.77 1599.80 2899.71 2199.92 2299.76 31
DeepC-MVS99.05 599.74 1999.64 2099.84 2299.90 4099.39 9499.79 2999.81 9899.69 799.90 1699.87 3599.98 599.81 799.62 5599.32 6299.83 5399.65 57
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
thisisatest051599.73 2199.67 1599.81 3299.93 2899.74 3099.68 5799.91 4499.59 2299.88 2499.73 5799.81 9299.55 5599.59 5699.53 3999.89 3299.70 48
PS-CasMVS99.73 2199.59 3199.90 899.95 1099.80 1699.85 1399.97 198.95 10199.86 3699.73 5799.36 14399.81 799.83 2299.67 2499.95 799.83 14
WR-MVS_H99.73 2199.61 2599.88 1399.95 1099.82 899.83 1999.96 1299.01 9399.84 4799.71 6599.41 14299.74 2299.77 3399.70 2299.95 799.82 16
TransMVSNet (Re)99.72 2499.59 3199.88 1399.95 1099.76 2299.88 799.94 2499.58 2499.92 1099.90 2798.55 17199.65 3899.89 1199.76 1799.95 799.70 48
ACMH99.11 499.72 2499.63 2299.84 2299.87 5499.59 5099.83 1999.88 5799.46 3899.87 3099.66 7199.95 2599.76 1799.73 3899.47 4899.84 4899.52 101
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FC-MVSNet-train99.70 2699.67 1599.74 5899.94 2399.71 3399.82 2499.91 4499.14 8099.53 13599.70 6699.88 6899.33 9099.88 1599.61 3399.94 1699.77 28
EC-MVSNet99.70 2699.57 3499.85 1999.95 1099.81 1399.85 1399.93 2798.39 16599.76 7299.48 10599.94 3599.70 3099.85 1999.66 2599.91 2599.87 9
COLMAP_ROBcopyleft99.18 299.70 2699.60 2999.81 3299.84 8399.37 10199.76 3699.84 7899.54 3099.82 5599.64 7599.95 2599.75 1999.79 3099.56 3499.83 5399.37 131
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+98.94 699.69 2999.59 3199.81 3299.88 4999.41 9199.75 4099.86 6299.43 4199.80 5999.54 9199.97 999.73 2599.82 2599.52 4199.85 4599.43 117
test20.0399.68 3099.60 2999.76 4899.91 3599.70 3699.68 5799.87 5899.05 9099.88 2499.92 1699.88 6899.50 6899.77 3399.42 5599.75 7799.49 103
CP-MVSNet99.68 3099.51 4399.89 999.95 1099.76 2299.83 1999.96 1298.83 12199.84 4799.65 7499.09 15799.80 1099.78 3199.62 3299.95 799.82 16
casdiffmvs_mvgpermissive99.67 3299.61 2599.74 5899.94 2399.60 4699.62 7199.77 12199.54 3099.67 11099.82 4899.80 9899.52 6299.40 7799.51 4299.91 2599.59 69
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu99.66 3399.64 2099.67 7099.91 3599.71 3399.61 7299.79 10999.41 4399.91 1499.85 4099.61 12399.00 12899.67 4699.42 5599.81 5999.81 19
v1099.65 3499.51 4399.81 3299.83 8999.61 4599.75 4099.94 2499.56 2699.76 7299.94 1199.60 12599.73 2599.11 13399.01 10399.85 4599.74 35
CHOSEN 1792x268899.65 3499.55 3799.77 4799.93 2899.60 4699.79 2999.92 3899.73 599.74 8399.93 1499.98 599.80 1098.83 17399.01 10399.45 15599.76 31
UA-Net99.64 3699.62 2499.66 7299.97 299.82 899.14 16099.96 1298.95 10199.52 14199.38 11799.86 7699.55 5599.72 3999.66 2599.80 6399.94 1
GeoE99.63 3799.51 4399.78 4299.91 3599.57 5399.78 3299.97 199.23 6399.72 9399.72 6199.80 9899.50 6899.45 7499.10 8999.79 6699.71 46
Baseline_NR-MVSNet99.62 3899.48 4899.78 4299.85 7799.76 2299.59 7799.82 9098.84 11799.88 2499.91 2399.04 15899.61 4599.46 6799.78 1599.94 1699.60 67
pmmvs-eth3d99.61 3999.48 4899.75 5299.87 5499.30 11799.75 4099.89 5399.23 6399.85 4399.88 3499.97 999.49 7399.46 6799.01 10399.68 9799.52 101
v114499.61 3999.43 5699.82 2799.88 4999.41 9199.76 3699.86 6299.64 1699.84 4799.95 699.49 13499.74 2299.00 14398.93 11599.84 4899.58 78
v899.61 3999.45 5499.79 4199.80 10099.59 5099.73 4899.93 2799.48 3699.77 6999.90 2799.48 13599.67 3599.11 13398.89 11999.84 4899.73 37
casdiffmvspermissive99.61 3999.55 3799.68 6999.89 4399.53 6399.64 6599.68 14999.51 3399.62 11999.90 2799.96 1499.37 8499.28 10299.25 6599.88 3499.44 114
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CSCG99.61 3999.52 4299.71 6399.89 4399.62 4399.52 9399.76 13099.61 2099.69 10299.73 5799.96 1499.57 5399.27 10598.62 14999.81 5999.85 13
v119299.60 4499.41 6099.82 2799.89 4399.43 8699.81 2699.84 7899.63 1899.85 4399.95 699.35 14699.72 2799.01 14198.90 11899.82 5699.58 78
APDe-MVScopyleft99.60 4499.48 4899.73 6199.85 7799.51 7499.75 4099.85 6999.17 7399.81 5899.56 8999.94 3599.44 8099.42 7699.22 6699.67 9999.54 93
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
v192192099.59 4699.40 6399.82 2799.88 4999.45 8199.81 2699.83 8399.65 1499.86 3699.95 699.29 15199.75 1998.98 14798.86 12399.78 6899.59 69
TranMVSNet+NR-MVSNet99.59 4699.42 5999.80 3799.87 5499.55 5799.64 6599.86 6299.05 9099.88 2499.72 6199.33 14999.64 4299.47 6699.14 7599.91 2599.67 53
EG-PatchMatch MVS99.59 4699.49 4799.70 6699.82 9499.26 12499.39 12299.83 8398.99 9599.93 699.54 9199.92 5099.51 6499.78 3199.50 4399.73 8699.41 121
pmmvs599.58 4999.47 5199.70 6699.84 8399.50 7599.58 8199.80 10698.98 9899.73 9099.92 1699.81 9299.49 7399.28 10299.05 9799.77 7299.73 37
v14419299.58 4999.39 6499.80 3799.87 5499.44 8399.77 3399.84 7899.64 1699.86 3699.93 1499.35 14699.72 2798.92 15398.82 12799.74 8299.66 54
v14899.58 4999.43 5699.76 4899.87 5499.40 9399.76 3699.85 6999.48 3699.83 5299.82 4899.83 8799.51 6499.20 11998.82 12799.75 7799.45 111
v124099.58 4999.38 6799.82 2799.89 4399.49 7699.82 2499.83 8399.63 1899.86 3699.96 498.92 16499.75 1999.15 12998.96 11299.76 7499.56 85
V4299.57 5399.41 6099.75 5299.84 8399.37 10199.73 4899.83 8399.41 4399.75 7799.89 3099.42 14099.60 4799.15 12998.96 11299.76 7499.65 57
TSAR-MVS + MP.99.56 5499.54 4099.58 8899.69 14599.14 14699.73 4899.45 18699.50 3499.35 17299.60 8399.93 4299.50 6899.56 5899.37 5999.77 7299.64 60
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
v2v48299.56 5499.35 6999.81 3299.87 5499.35 10799.75 4099.85 6999.56 2699.87 3099.95 699.44 13899.66 3698.91 15698.76 13399.86 4299.45 111
Gipumacopyleft99.55 5699.23 8899.91 599.87 5499.52 7099.86 1099.93 2799.87 199.96 396.72 21099.55 13099.97 199.77 3399.46 5099.87 4099.74 35
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DVP-MVScopyleft99.53 5799.51 4399.55 9799.82 9499.58 5299.54 8999.78 11499.28 6199.21 18299.70 6699.97 999.32 9399.32 9099.14 7599.64 11199.58 78
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
NR-MVSNet99.52 5899.29 7899.80 3799.96 799.38 9799.55 8599.81 9898.86 11499.87 3099.51 10198.81 16699.72 2799.86 1899.04 9999.89 3299.54 93
ACMMPR99.51 5999.32 7399.72 6299.87 5499.33 11099.61 7299.85 6999.19 7099.73 9098.73 16699.95 2599.61 4599.35 8499.14 7599.66 10199.58 78
UniMVSNet (Re)99.50 6099.29 7899.75 5299.86 6999.47 7999.51 9699.82 9098.90 10999.89 1899.64 7599.00 15999.55 5599.32 9099.08 9299.90 2999.59 69
FMVSNet199.50 6099.57 3499.42 11999.67 15299.65 4099.60 7699.91 4499.40 4599.39 16599.83 4599.27 15398.14 16799.68 4399.50 4399.81 5999.68 50
HyFIR lowres test99.50 6099.26 8299.80 3799.95 1099.62 4399.76 3699.97 199.67 1099.56 13199.94 1198.40 17499.78 1398.84 17298.59 15299.76 7499.72 40
PM-MVS99.49 6399.43 5699.57 9299.76 12299.34 10999.53 9099.77 12198.93 10599.75 7799.46 10699.83 8799.11 12099.72 3999.29 6499.49 15099.46 110
Anonymous2023120699.48 6499.31 7599.69 6899.79 10499.57 5399.63 6999.79 10998.88 11199.91 1499.72 6199.93 4299.59 4999.24 10898.63 14899.43 15999.18 148
DU-MVS99.48 6499.26 8299.75 5299.85 7799.38 9799.50 10099.81 9898.86 11499.89 1899.51 10198.98 16099.59 4999.46 6798.97 11099.87 4099.63 61
RPSCF99.48 6499.45 5499.52 10499.73 13899.33 11099.13 16199.77 12199.33 5399.47 15299.39 11699.92 5099.36 8599.63 5299.13 8399.63 11499.41 121
ACMMP_NAP99.47 6799.33 7199.63 8099.85 7799.28 12299.56 8499.83 8398.75 12799.48 14999.03 15399.95 2599.47 7999.48 6399.19 6899.57 13399.59 69
Anonymous2023121199.47 6799.39 6499.57 9299.89 4399.60 4699.50 10099.69 14398.91 10899.62 11999.17 13999.35 14698.86 14199.63 5299.46 5099.84 4899.62 64
SteuartSystems-ACMMP99.47 6799.22 9199.76 4899.88 4999.36 10399.65 6499.84 7898.47 15299.80 5998.68 16999.96 1499.68 3299.37 8199.06 9499.72 9099.66 54
Skip Steuart: Steuart Systems R&D Blog.
ACMM98.37 1299.47 6799.23 8899.74 5899.86 6999.19 14099.68 5799.86 6299.16 7799.71 9998.52 17999.95 2599.62 4499.35 8499.02 10199.74 8299.42 120
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DVP-MVS++99.46 7199.57 3499.33 14099.75 12699.57 5399.44 11399.81 9899.38 4898.56 21199.81 5299.99 398.79 14599.33 8899.13 8399.62 12099.81 19
HFP-MVS99.46 7199.30 7699.65 7499.82 9499.25 12899.50 10099.82 9099.23 6399.58 12998.86 15799.94 3599.56 5499.14 13199.12 8799.63 11499.56 85
LGP-MVS_train99.46 7199.18 10099.78 4299.87 5499.25 12899.71 5599.87 5898.02 18499.79 6398.90 15699.96 1499.66 3699.49 6299.17 7199.79 6699.49 103
SED-MVS99.45 7499.46 5399.42 11999.77 11799.57 5399.42 11699.80 10699.06 8799.38 16699.66 7199.96 1498.65 15399.31 9299.14 7599.53 14299.55 90
ETV-MVS99.45 7499.32 7399.60 8599.79 10499.60 4699.40 12199.78 11497.88 19099.83 5299.33 12099.70 11598.97 13199.74 3699.43 5499.84 4899.58 78
ACMP98.32 1399.44 7699.18 10099.75 5299.83 8999.18 14199.64 6599.83 8398.81 12399.79 6398.42 18699.96 1499.64 4299.46 6798.98 10999.74 8299.44 114
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DCV-MVSNet99.43 7799.23 8899.67 7099.92 3199.76 2299.64 6599.93 2799.06 8799.68 10997.77 19798.97 16198.97 13199.72 3999.54 3899.88 3499.81 19
SMA-MVScopyleft99.43 7799.41 6099.45 11599.82 9499.31 11599.02 17599.59 16599.06 8799.34 17599.53 9799.96 1499.38 8399.29 9799.13 8399.53 14299.59 69
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
testgi99.43 7799.47 5199.38 12899.90 4099.67 3999.30 14099.73 13898.64 14099.53 13599.52 9999.90 5998.08 17099.65 5099.40 5899.75 7799.55 90
DELS-MVS99.42 8099.53 4199.29 14399.52 18099.43 8699.42 11699.28 20199.16 7799.72 9399.82 4899.97 998.17 16499.56 5899.16 7299.65 10399.59 69
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
3Dnovator99.16 399.42 8099.22 9199.65 7499.78 10999.13 15099.50 10099.85 6999.40 4599.80 5998.59 17599.79 10299.30 9799.20 11999.06 9499.71 9399.35 134
DPE-MVScopyleft99.41 8299.36 6899.47 11199.66 15399.48 7799.46 11199.75 13598.65 13699.41 16299.67 6999.95 2598.82 14299.21 11699.14 7599.72 9099.40 126
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
UniMVSNet_NR-MVSNet99.41 8299.12 11299.76 4899.86 6999.48 7799.50 10099.81 9898.84 11799.89 1899.45 10798.32 17799.59 4999.22 11298.89 11999.90 2999.63 61
CP-MVS99.41 8299.20 9699.65 7499.80 10099.23 13599.44 11399.75 13598.60 14599.74 8398.66 17099.93 4299.48 7699.33 8899.16 7299.73 8699.48 106
QAPM99.41 8299.21 9599.64 7999.78 10999.16 14399.51 9699.85 6999.20 6799.72 9399.43 10899.81 9299.25 10298.87 16298.71 14099.71 9399.30 139
UGNet99.40 8699.61 2599.16 16299.88 4999.64 4199.61 7299.77 12199.31 5599.63 11899.33 12099.93 4296.46 20499.63 5299.53 3999.63 11499.89 4
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Vis-MVSNet (Re-imp)99.40 8699.28 8099.55 9799.92 3199.68 3799.31 13599.87 5898.69 13399.16 18499.08 14898.64 17099.20 10699.65 5099.46 5099.83 5399.72 40
OPM-MVS99.39 8899.22 9199.59 8699.76 12298.82 17499.51 9699.79 10999.17 7399.53 13599.31 12599.95 2599.35 8699.22 11298.79 13299.60 12599.27 142
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Fast-Effi-MVS+99.39 8899.18 10099.63 8099.86 6999.28 12299.45 11299.91 4498.47 15299.61 12299.50 10399.57 12799.17 10799.24 10898.66 14599.78 6899.59 69
LS3D99.39 8899.28 8099.52 10499.77 11799.39 9499.55 8599.82 9098.93 10599.64 11698.52 17999.67 11998.58 15799.74 3699.63 3099.75 7799.06 164
diffmvspermissive99.38 9199.33 7199.45 11599.87 5499.39 9499.28 14499.58 16899.55 2899.50 14599.85 4099.85 8298.94 13698.58 18598.68 14399.51 14799.39 128
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CANet99.36 9299.39 6499.34 13999.80 10099.35 10799.41 12099.47 18499.20 6799.74 8399.54 9199.68 11798.05 17299.23 11098.97 11099.57 13399.73 37
MVS_030499.36 9299.35 6999.37 13499.85 7799.36 10399.39 12299.56 17099.36 5199.75 7799.23 13199.90 5997.97 17899.00 14398.83 12699.69 9699.77 28
ACMMPcopyleft99.36 9299.06 12099.71 6399.86 6999.36 10399.63 6999.85 6998.33 16799.72 9397.73 19999.94 3599.53 5999.37 8199.13 8399.65 10399.56 85
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SD-MVS99.35 9599.26 8299.46 11399.66 15399.15 14598.92 18499.67 15399.55 2899.35 17298.83 15999.91 5699.35 8699.19 12298.53 15499.78 6899.68 50
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MP-MVScopyleft99.35 9599.09 11899.65 7499.84 8399.22 13699.59 7799.78 11498.13 17699.67 11098.44 18399.93 4299.43 8299.31 9299.09 9199.60 12599.49 103
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
pmmvs499.34 9799.15 10799.57 9299.77 11798.90 16799.51 9699.77 12199.07 8599.73 9099.72 6199.84 8599.07 12298.85 16798.39 16399.55 14099.27 142
EPP-MVSNet99.34 9799.10 11699.62 8499.94 2399.74 3099.66 6399.80 10699.07 8598.93 19499.61 8096.13 19299.49 7399.67 4699.63 3099.92 2299.86 11
TSAR-MVS + GP.99.33 9999.17 10499.51 10699.71 14399.00 16298.84 19299.71 14098.23 17399.74 8399.53 9799.90 5999.35 8699.38 8098.85 12499.72 9099.31 137
PHI-MVS99.33 9999.19 9899.49 10999.69 14599.25 12899.27 14599.59 16598.44 15699.78 6799.15 14099.92 5098.95 13599.39 7899.04 9999.64 11199.18 148
MSP-MVS99.32 10199.26 8299.38 12899.76 12299.54 6099.42 11699.72 13998.92 10798.84 20198.96 15599.96 1498.91 13798.72 18099.14 7599.63 11499.58 78
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PGM-MVS99.32 10198.99 12999.71 6399.86 6999.31 11599.59 7799.86 6297.51 19999.75 7798.23 18999.94 3599.53 5999.29 9799.08 9299.65 10399.54 93
DeepC-MVS_fast98.69 999.32 10199.13 11099.53 10099.63 15998.78 17799.53 9099.33 19999.08 8399.77 6999.18 13899.89 6299.29 9899.00 14398.70 14199.65 10399.30 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSDG99.32 10199.09 11899.58 8899.75 12698.74 18199.36 12799.54 17399.14 8099.72 9399.24 12999.89 6299.51 6499.30 9498.76 13399.62 12098.54 183
TSAR-MVS + ACMM99.31 10599.26 8299.37 13499.66 15398.97 16599.20 15399.56 17099.33 5399.19 18399.54 9199.91 5699.32 9399.12 13298.34 16699.29 17399.65 57
3Dnovator+98.92 799.31 10599.03 12499.63 8099.77 11798.90 16799.52 9399.81 9899.37 4999.72 9398.03 19499.73 11199.32 9398.99 14698.81 13099.67 9999.36 132
X-MVS99.30 10798.99 12999.66 7299.85 7799.30 11799.49 10799.82 9098.32 16899.69 10297.31 20899.93 4299.50 6899.37 8199.16 7299.60 12599.53 96
MVS_111021_HR99.30 10799.14 10899.48 11099.58 17699.25 12899.27 14599.61 16098.74 12999.66 11399.02 15499.84 8599.33 9099.20 11998.76 13399.44 15699.18 148
TAPA-MVS98.54 1099.30 10799.24 8799.36 13899.44 19598.77 17999.00 17799.41 19099.23 6399.60 12499.50 10399.86 7699.15 11499.29 9798.95 11499.56 13799.08 160
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CLD-MVS99.30 10799.01 12899.63 8099.75 12698.89 17099.35 13099.60 16298.53 15099.86 3699.57 8799.94 3599.52 6298.96 14898.10 17999.70 9599.08 160
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
USDC99.29 11198.98 13199.65 7499.72 14098.87 17299.47 10999.66 15699.35 5299.87 3099.58 8699.87 7599.51 6498.85 16797.93 18599.65 10398.38 187
PMVScopyleft94.32 1799.27 11299.55 3798.94 17999.60 16899.43 8699.39 12299.54 17398.99 9599.69 10299.60 8399.81 9295.68 20999.88 1599.83 799.73 8699.31 137
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FA-MVS(training)99.26 11399.12 11299.44 11799.60 16899.26 12499.24 15099.97 198.84 11799.76 7299.43 10898.74 16798.47 16099.39 7899.10 8999.57 13399.07 163
MVS_111021_LR99.25 11499.13 11099.39 12499.50 18899.14 14699.23 15199.50 18198.67 13499.61 12299.12 14499.81 9299.16 11099.28 10298.67 14499.35 16999.21 147
ECVR-MVScopyleft99.24 11598.74 15499.82 2799.95 1099.78 1899.67 6199.93 2799.45 3999.80 5999.86 3892.58 20899.65 3899.93 399.88 399.94 1699.71 46
baseline99.24 11599.30 7699.17 16199.78 10999.14 14699.10 16599.69 14398.97 9999.49 14799.84 4299.88 6897.99 17798.85 16798.73 13898.98 18899.72 40
EIA-MVS99.23 11799.03 12499.47 11199.83 8999.64 4199.16 15799.81 9897.11 20699.65 11598.44 18399.78 10598.61 15699.46 6799.22 6699.75 7799.59 69
HPM-MVS++copyleft99.23 11798.98 13199.53 10099.75 12699.02 16099.44 11399.77 12198.65 13699.52 14198.72 16799.92 5099.33 9098.77 17898.40 16299.40 16399.36 132
PMMVS299.23 11799.22 9199.24 15099.80 10099.14 14699.50 10099.82 9099.12 8298.41 21799.91 2399.98 598.51 15899.48 6398.76 13399.38 16598.14 195
test111199.21 12098.67 15899.84 2299.96 799.82 899.72 5299.94 2499.54 3099.78 6799.89 3091.89 21199.69 3199.93 399.89 199.95 799.75 33
CPTT-MVS99.21 12098.89 14199.58 8899.72 14099.12 15399.30 14099.76 13098.62 14199.66 11397.51 20499.89 6299.48 7699.01 14198.64 14799.58 13299.40 126
TinyColmap99.21 12098.89 14199.59 8699.61 16498.61 18999.47 10999.67 15399.02 9299.82 5599.15 14099.74 10899.35 8699.17 12798.33 16799.63 11498.22 193
Effi-MVS+99.20 12398.93 13699.50 10899.79 10499.26 12498.82 19599.96 1298.37 16699.60 12499.12 14498.36 17599.05 12598.93 15198.82 12799.78 6899.68 50
PVSNet_BlendedMVS99.20 12399.17 10499.23 15199.69 14599.33 11099.04 17099.13 20498.41 16199.79 6399.33 12099.36 14398.10 16899.29 9798.87 12199.65 10399.56 85
PVSNet_Blended99.20 12399.17 10499.23 15199.69 14599.33 11099.04 17099.13 20498.41 16199.79 6399.33 12099.36 14398.10 16899.29 9798.87 12199.65 10399.56 85
MCST-MVS99.17 12698.82 14999.57 9299.75 12698.70 18599.25 14999.69 14398.62 14199.59 12698.54 17799.79 10299.53 5998.48 18998.15 17599.64 11199.43 117
APD-MVScopyleft99.17 12698.92 13799.46 11399.78 10999.24 13399.34 13199.78 11497.79 19399.48 14998.25 18899.88 6898.77 14699.18 12598.92 11699.63 11499.18 148
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
OpenMVScopyleft98.82 899.17 12698.85 14599.53 10099.75 12699.06 15899.36 12799.82 9098.28 17099.76 7298.47 18199.61 12398.91 13798.80 17598.70 14199.60 12599.04 168
IterMVS-LS99.16 12998.82 14999.57 9299.87 5499.71 3399.58 8199.92 3899.24 6299.71 9999.73 5795.79 19398.91 13798.82 17498.66 14599.43 15999.77 28
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DeepPCF-MVS98.38 1199.16 12999.20 9699.12 16699.20 21298.71 18498.85 19199.06 20799.17 7398.96 19399.61 8099.86 7699.29 9899.17 12798.72 13999.36 16799.15 156
IterMVS-SCA-FT99.15 13198.96 13399.38 12899.87 5499.54 6099.53 9099.79 10998.94 10399.82 5599.92 1697.65 18498.82 14298.95 15098.26 16998.45 19899.47 109
CDS-MVSNet99.15 13199.10 11699.21 15799.59 17399.22 13699.48 10899.47 18498.89 11099.41 16299.84 4298.11 18097.76 18199.26 10799.01 10399.57 13399.38 129
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IS_MVSNet99.15 13199.12 11299.19 15999.92 3199.73 3299.55 8599.86 6298.45 15596.91 22398.74 16598.33 17699.02 12799.54 6099.47 4899.88 3499.61 66
dmvs_re99.14 13498.76 15299.58 8899.75 12699.38 9799.30 14099.68 14996.94 21199.74 8397.70 20099.20 15599.29 9899.22 11299.35 6099.73 8699.55 90
MDA-MVSNet-bldmvs99.11 13599.11 11599.12 16699.91 3599.38 9799.77 3398.72 21199.31 5599.85 4399.43 10898.26 17899.48 7699.85 1998.47 15796.99 20999.08 160
OMC-MVS99.11 13598.95 13499.29 14399.37 20198.57 19199.19 15499.20 20398.87 11399.58 12999.13 14299.88 6899.00 12899.19 12298.46 15899.43 15998.57 182
MVS_Test99.09 13798.92 13799.29 14399.61 16499.07 15799.04 17099.81 9898.58 14799.37 16999.74 5598.87 16598.41 16298.61 18498.01 18399.50 14999.57 84
CNVR-MVS99.08 13898.83 14699.37 13499.61 16498.74 18199.15 15899.54 17398.59 14699.37 16998.15 19199.88 6899.08 12198.91 15698.46 15899.48 15199.06 164
IterMVS99.08 13898.90 14099.29 14399.87 5499.53 6399.52 9399.77 12198.94 10399.75 7799.91 2397.52 18898.72 15098.86 16598.14 17698.09 20199.43 117
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet299.07 14099.19 9898.93 18199.02 21799.53 6399.31 13599.84 7898.86 11498.88 19799.64 7598.44 17396.92 19899.35 8499.00 10799.61 12299.53 96
CVMVSNet99.06 14198.88 14499.28 14799.52 18099.53 6399.42 11699.69 14398.74 12998.27 21999.89 3095.48 19699.44 8099.46 6799.33 6199.32 17299.75 33
CDPH-MVS99.05 14298.63 15999.54 9999.75 12698.78 17799.59 7799.68 14997.79 19399.37 16998.20 19099.86 7699.14 11698.58 18598.01 18399.68 9799.16 154
TAMVS99.05 14299.02 12799.08 17199.69 14599.22 13699.33 13299.32 20099.16 7798.97 19299.87 3597.36 18997.76 18199.21 11699.00 10799.44 15699.33 135
CANet_DTU99.03 14499.18 10098.87 18499.58 17699.03 15999.18 15599.41 19098.65 13699.74 8399.55 9099.71 11296.13 20799.19 12298.92 11699.17 18299.18 148
Effi-MVS+-dtu99.01 14599.05 12198.98 17599.60 16899.13 15099.03 17499.61 16098.52 15199.01 18998.53 17899.83 8796.95 19799.48 6398.59 15299.66 10199.25 146
canonicalmvs99.00 14698.68 15799.37 13499.68 15199.42 9098.94 18399.89 5399.00 9498.99 19098.43 18595.69 19498.96 13499.18 12599.18 6999.74 8299.88 6
MIMVSNet99.00 14699.03 12498.97 17899.32 20799.32 11499.39 12299.91 4498.41 16198.76 20499.24 12999.17 15697.13 19199.30 9498.80 13199.29 17399.01 169
CHOSEN 280x42098.99 14898.91 13999.07 17299.77 11799.26 12499.55 8599.92 3898.62 14198.67 20899.62 7997.20 19098.44 16199.50 6199.18 6998.08 20298.99 172
SF-MVS98.96 14998.95 13498.98 17599.64 15898.89 17098.00 22199.58 16898.42 15999.08 18898.63 17299.83 8798.04 17499.02 14098.76 13399.52 14499.13 157
GBi-Net98.96 14999.05 12198.85 18599.02 21799.53 6399.31 13599.78 11498.13 17698.48 21399.43 10897.58 18596.92 19899.68 4399.50 4399.61 12299.53 96
test198.96 14999.05 12198.85 18599.02 21799.53 6399.31 13599.78 11498.13 17698.48 21399.43 10897.58 18596.92 19899.68 4399.50 4399.61 12299.53 96
PCF-MVS97.86 1598.95 15298.53 16499.44 11799.70 14498.80 17698.96 17999.69 14398.65 13699.59 12699.33 12099.94 3599.12 11998.01 19997.11 19699.59 13197.83 199
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MS-PatchMatch98.94 15398.71 15699.21 15799.52 18098.22 20798.97 17899.53 17898.76 12599.50 14598.59 17599.56 12998.68 15198.63 18398.45 16099.05 18598.73 179
AdaColmapbinary98.93 15498.53 16499.39 12499.52 18098.65 18899.11 16499.59 16598.08 18099.44 15597.46 20699.45 13699.24 10398.92 15398.44 16199.44 15698.73 179
MSLP-MVS++98.92 15598.73 15599.14 16399.44 19599.00 16298.36 21199.35 19698.82 12299.38 16696.06 21299.79 10299.07 12298.88 16199.05 9799.27 17599.53 96
new_pmnet98.91 15698.89 14198.94 17999.51 18698.27 20399.15 15898.66 21299.17 7399.48 14999.79 5399.80 9898.49 15999.23 11098.20 17398.34 19997.74 203
train_agg98.89 15798.48 16999.38 12899.69 14598.76 18099.31 13599.60 16297.71 19598.98 19197.89 19599.89 6299.29 9898.32 19097.59 19299.42 16299.16 154
NCCC98.88 15898.42 17099.42 11999.62 16098.81 17599.10 16599.54 17398.76 12599.53 13595.97 21399.80 9899.16 11098.49 18898.06 18299.55 14099.05 166
PLCcopyleft97.83 1698.88 15898.52 16699.30 14299.45 19398.60 19098.65 20199.49 18298.66 13599.59 12696.33 21199.59 12699.17 10798.87 16298.53 15499.46 15399.05 166
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
pmmvs398.85 16098.60 16099.13 16499.66 15398.72 18399.37 12699.06 20798.44 15699.76 7299.74 5599.55 13099.15 11499.04 13896.00 20497.80 20398.72 181
Fast-Effi-MVS+-dtu98.82 16198.80 15198.84 18799.51 18698.90 16798.96 17999.91 4498.29 16999.11 18798.47 18199.63 12296.03 20899.21 11698.12 17799.52 14499.01 169
CNLPA98.82 16198.52 16699.18 16099.21 21198.50 19598.73 19999.34 19898.73 13199.56 13197.55 20399.42 14099.06 12498.93 15198.10 17999.21 18198.38 187
PatchMatch-RL98.80 16398.52 16699.12 16699.38 20098.70 18598.56 20499.55 17297.81 19299.34 17597.57 20299.31 15098.67 15299.27 10598.62 14999.22 18098.35 189
thisisatest053098.78 16498.26 17399.39 12499.78 10999.43 8699.07 16799.64 15898.44 15699.42 16099.22 13292.68 20798.63 15499.30 9499.14 7599.80 6399.60 67
tttt051798.77 16598.25 17599.38 12899.79 10499.46 8099.07 16799.64 15898.40 16499.38 16699.21 13492.54 20998.63 15499.34 8799.14 7599.80 6399.62 64
DI_MVS_plusplus_trai98.74 16698.08 18399.51 10699.79 10499.29 12199.61 7299.60 16299.20 6799.46 15399.09 14792.93 20198.97 13198.27 19398.35 16599.65 10399.45 111
TSAR-MVS + COLMAP98.74 16698.58 16298.93 18199.29 20898.23 20499.04 17099.24 20298.79 12498.80 20399.37 11899.71 11298.06 17198.02 19897.46 19499.16 18398.48 185
MDTV_nov1_ep13_2view98.73 16898.31 17299.22 15499.75 12699.24 13399.75 4099.93 2799.31 5599.84 4799.86 3899.81 9299.31 9697.40 20794.77 20696.73 21197.81 200
PMMVS98.71 16998.55 16398.90 18399.28 20998.45 19798.53 20799.45 18697.67 19799.15 18698.76 16399.54 13297.79 18098.77 17898.23 17199.16 18398.46 186
HQP-MVS98.70 17098.19 17999.28 14799.61 16498.52 19398.71 20099.35 19697.97 18799.53 13597.38 20799.85 8299.14 11697.53 20396.85 20099.36 16799.26 145
N_pmnet98.64 17198.23 17899.11 16999.78 10999.25 12899.75 4099.39 19499.65 1499.70 10199.78 5499.89 6298.81 14497.60 20294.28 20797.24 20897.15 207
CMPMVSbinary76.62 1998.64 17198.60 16098.68 19299.33 20597.07 22098.11 21998.50 21397.69 19699.26 17898.35 18799.66 12097.62 18499.43 7599.02 10199.24 17899.01 169
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FMVSNet398.63 17398.75 15398.49 19898.10 22399.44 8399.02 17599.78 11498.13 17698.48 21399.43 10897.58 18596.16 20698.85 16798.39 16399.40 16399.41 121
GA-MVS98.59 17498.15 18099.09 17099.59 17399.13 15098.84 19299.52 18098.61 14499.35 17299.67 6993.03 20097.73 18398.90 16098.26 16999.51 14799.48 106
MAR-MVS98.54 17598.15 18098.98 17599.37 20198.09 21098.56 20499.65 15796.11 22199.27 17797.16 20999.50 13398.03 17598.87 16298.23 17199.01 18699.13 157
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
new-patchmatchnet98.49 17697.60 18599.53 10099.90 4099.55 5799.77 3399.48 18399.67 1099.86 3699.98 399.98 599.50 6896.90 20991.52 21398.67 19595.62 213
FPMVS98.48 17798.83 14698.07 20899.09 21597.98 21399.07 16798.04 21998.99 9599.22 18198.85 15899.43 13993.79 21799.66 4899.11 8899.24 17897.76 201
MVS-HIRNet98.45 17898.25 17598.69 19199.12 21397.81 21998.55 20699.85 6998.58 14799.67 11099.61 8099.86 7697.46 18797.95 20096.37 20297.49 20597.56 204
test0.0.03 198.41 17998.41 17198.40 20299.62 16099.16 14398.87 18999.41 19097.15 20496.60 22599.31 12597.00 19196.55 20398.91 15698.51 15699.37 16698.82 176
gg-mvs-nofinetune98.40 18098.26 17398.57 19699.83 8998.86 17398.77 19899.97 199.57 2599.99 199.99 193.81 19893.50 21898.91 15698.20 17399.33 17198.52 184
baseline198.39 18197.59 18699.31 14199.78 10999.45 8199.13 16199.53 17898.06 18298.87 19898.63 17290.04 21598.76 14798.85 16798.84 12599.81 5999.28 141
pmnet_mix0298.28 18297.48 18899.22 15499.78 10999.12 15399.68 5799.39 19499.49 3599.86 3699.82 4899.89 6299.23 10495.54 21292.36 21097.38 20696.14 211
PatchT98.11 18397.12 19499.26 14999.65 15798.34 20199.57 8399.97 197.48 20099.43 15799.04 15290.84 21398.15 16598.04 19697.78 18698.82 19298.30 190
DPM-MVS98.10 18497.32 19299.01 17499.52 18097.92 21498.47 20999.45 18698.25 17198.91 19593.99 21799.69 11698.73 14996.29 21196.32 20399.00 18798.77 177
EPNet_dtu98.09 18598.25 17597.91 21099.58 17698.02 21298.19 21699.67 15397.94 18899.74 8399.07 15098.71 16993.40 21997.50 20497.09 19796.89 21099.44 114
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPNet98.06 18698.11 18298.00 20999.60 16898.99 16498.38 21099.68 14998.18 17598.85 20097.89 19595.60 19592.72 22098.30 19198.10 17998.76 19399.72 40
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CR-MVSNet97.91 18796.80 19799.22 15499.60 16898.23 20498.91 18599.97 196.89 21499.43 15799.10 14689.24 21898.15 16598.04 19697.78 18699.26 17698.30 190
thres20097.87 18896.56 19999.39 12499.76 12299.52 7099.13 16199.76 13096.88 21698.66 20992.87 22188.77 22199.16 11099.11 13399.42 5599.88 3499.33 135
baseline297.87 18897.18 19398.67 19399.34 20499.17 14298.48 20898.82 21097.08 20798.83 20298.75 16489.47 21797.03 19698.67 18298.27 16899.52 14498.83 175
thres600view797.86 19096.53 20299.41 12299.84 8399.52 7099.36 12799.76 13097.32 20298.38 21893.24 21887.25 22399.23 10499.11 13399.75 1899.88 3499.48 106
tfpn200view997.85 19196.54 20099.38 12899.74 13699.52 7099.17 15699.76 13096.10 22298.70 20692.99 21989.10 21999.00 12899.11 13399.56 3499.88 3499.41 121
thres40097.82 19296.47 20399.40 12399.81 9999.44 8399.29 14399.69 14397.15 20498.57 21092.82 22287.96 22299.16 11098.96 14899.55 3799.86 4299.41 121
IB-MVS98.10 1497.76 19397.40 19198.18 20499.62 16099.11 15598.24 21498.35 21596.56 21899.44 15591.28 22398.96 16393.84 21698.09 19598.62 14999.56 13799.18 148
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test-LLR97.74 19497.46 18998.08 20699.62 16098.37 19998.26 21299.41 19097.03 20897.38 22199.54 9192.89 20295.12 21398.78 17697.68 19098.65 19697.90 197
RPMNet97.70 19596.54 20099.06 17399.57 17998.23 20498.95 18299.97 196.89 21499.49 14799.13 14289.63 21697.09 19396.68 21097.02 19899.26 17698.19 194
thres100view90097.69 19696.37 20499.23 15199.74 13699.21 13998.81 19699.43 18996.10 22298.70 20692.99 21989.10 21998.88 14098.58 18599.31 6399.82 5699.27 142
FMVSNet597.69 19696.98 19598.53 19798.53 22199.36 10398.90 18899.54 17396.38 21998.44 21695.38 21590.08 21497.05 19599.46 6799.06 9498.73 19499.12 159
MVEpermissive91.08 1897.68 19897.65 18497.71 21698.46 22291.62 22697.92 22298.86 20998.73 13197.99 22098.64 17199.96 1499.17 10799.59 5697.75 18893.87 22597.27 205
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test-mter97.65 19997.57 18797.75 21498.90 22098.56 19298.15 21798.45 21496.92 21396.84 22499.52 9992.53 21095.24 21299.04 13898.12 17798.90 19098.29 192
TESTMET0.1,197.62 20097.46 18997.81 21299.07 21698.37 19998.26 21298.35 21597.03 20897.38 22199.54 9192.89 20295.12 21398.78 17697.68 19098.65 19697.90 197
test250697.57 20195.67 21099.78 4299.95 1099.78 1899.67 6199.93 2799.45 3999.55 13499.20 13571.73 23099.65 3899.93 399.88 399.94 1699.72 40
MVSTER97.55 20296.75 19898.48 19999.46 19299.54 6098.24 21499.77 12197.56 19899.41 16299.31 12584.86 22594.66 21598.86 16597.75 18899.34 17099.38 129
ET-MVSNet_ETH3D97.44 20396.29 20598.78 18897.93 22498.95 16698.91 18599.09 20698.00 18599.24 17998.83 15984.62 22698.02 17697.43 20697.38 19599.48 15198.84 174
MDTV_nov1_ep1397.41 20496.26 20698.76 18999.47 19098.43 19899.26 14899.82 9098.06 18299.23 18099.22 13292.86 20498.05 17295.33 21493.66 20996.73 21196.26 210
ADS-MVSNet97.29 20596.17 20798.59 19599.59 17398.70 18599.32 13399.86 6298.47 15299.56 13199.08 14898.16 17997.34 18992.92 21691.17 21495.91 21494.72 216
SCA97.25 20696.05 20898.64 19499.36 20399.02 16099.27 14599.96 1298.25 17199.69 10298.71 16894.66 19797.95 17993.95 21592.35 21195.64 21595.40 215
gm-plane-assit96.82 20794.84 21599.13 16499.95 1099.78 1899.69 5699.92 3899.19 7099.84 4799.92 1672.93 22996.44 20598.21 19497.01 19998.92 18996.87 209
PatchmatchNetpermissive96.81 20895.41 21298.43 20199.43 19798.30 20299.23 15199.93 2798.19 17499.64 11698.81 16293.50 19997.43 18892.89 21790.78 21694.94 22095.41 214
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS96.76 20995.30 21498.46 20099.42 19898.47 19699.32 13399.91 4498.42 15999.51 14399.07 15092.81 20597.12 19292.39 21891.71 21295.51 21694.20 218
E-PMN96.72 21095.78 20997.81 21299.45 19395.46 22398.14 21898.33 21797.99 18698.73 20598.09 19298.97 16197.54 18697.45 20591.09 21594.70 22291.40 221
tpm96.56 21194.68 21698.74 19099.12 21397.90 21598.79 19799.93 2796.79 21799.69 10299.19 13781.48 22897.56 18595.46 21393.97 20897.37 20797.99 196
EMVS96.47 21295.38 21397.74 21599.42 19895.37 22498.07 22098.27 21897.85 19198.90 19697.48 20598.73 16897.20 19097.21 20890.39 21794.59 22490.65 222
tpmrst96.18 21394.47 21798.18 20499.52 18097.89 21698.96 17999.79 10998.07 18199.16 18499.30 12892.69 20696.69 20190.76 22088.85 22094.96 21993.69 219
CostFormer95.61 21493.35 22098.24 20399.48 18998.03 21198.65 20199.83 8396.93 21299.42 16098.83 15983.65 22797.08 19490.39 22189.54 21994.94 22096.11 212
dps95.59 21593.46 21998.08 20699.33 20598.22 20798.87 18999.70 14196.17 22098.87 19897.75 19886.85 22496.60 20291.24 21989.62 21895.10 21894.34 217
tpm cat195.52 21693.49 21897.88 21199.28 20997.87 21798.65 20199.77 12197.27 20399.46 15398.04 19390.99 21295.46 21088.57 22288.14 22194.64 22393.54 220
test_method91.96 21795.51 21187.82 21870.84 22682.79 22792.13 22687.74 22198.88 11195.40 22699.20 13598.04 18185.65 22297.71 20194.95 20595.13 21797.00 208
GG-mvs-BLEND70.44 21896.91 19639.57 2193.32 22996.51 22191.01 2274.05 22597.03 20833.20 22894.67 21697.75 1837.59 22598.28 19296.85 20098.24 20097.26 206
testmvs22.33 21929.66 22113.79 2208.97 22710.35 22815.53 2308.09 22432.51 22419.87 22945.18 22430.56 23217.05 22429.96 22324.74 22213.21 22634.30 223
test12321.52 22028.47 22213.42 2217.29 22810.12 22915.70 2298.31 22331.54 22519.34 23036.33 22537.40 23117.14 22327.45 22423.17 22312.73 22733.30 224
uanet_test0.00 2210.00 2230.00 2220.00 2300.00 2300.00 2310.00 2260.00 2260.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet-low-res0.00 2210.00 2230.00 2220.00 2300.00 2300.00 2310.00 2260.00 2260.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet0.00 2210.00 2230.00 2220.00 2300.00 2300.00 2310.00 2260.00 2260.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
TPM-MVS99.47 19097.86 21897.79 22398.49 21297.62 20199.83 8795.33 21198.90 19098.77 177
Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025
RE-MVS-def99.96 3
9.1499.57 127
SR-MVS99.73 13899.74 13799.88 68
Anonymous20240521199.14 10899.87 5499.55 5799.50 10099.70 14198.55 14998.61 17498.46 17298.76 14799.66 4899.50 4399.85 4599.63 61
our_test_399.75 12699.11 15599.74 47
ambc98.83 14699.72 14098.52 19398.84 19298.96 10099.92 1099.34 11999.74 10899.04 12698.68 18197.57 19399.46 15398.99 172
MTAPA99.62 11999.95 25
MTMP99.53 13599.92 50
Patchmatch-RL test65.75 228
tmp_tt88.14 21796.68 22591.91 22593.70 22561.38 22299.61 2090.51 22799.40 11599.71 11290.32 22199.22 11299.44 5396.25 213
XVS99.86 6999.30 11799.72 5299.69 10299.93 4299.60 125
X-MVStestdata99.86 6999.30 11799.72 5299.69 10299.93 4299.60 125
mPP-MVS99.84 8399.92 50
NP-MVS97.37 201
Patchmtry98.19 20998.91 18599.97 199.43 157
DeepMVS_CXcopyleft96.39 22297.15 22488.89 22097.94 18899.51 14395.71 21497.88 18298.19 16398.92 15397.73 20497.75 202