| LTVRE_ROB | | 99.39 1 | 99.90 1 | 99.87 1 | 99.93 1 | 99.97 2 | 99.82 8 | 99.91 3 | 99.92 38 | 99.75 4 | 99.93 6 | 99.89 30 | 100.00 1 | 99.87 2 | 99.93 3 | 99.82 10 | 99.96 3 | 99.90 2 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| v7n | | | 99.89 2 | 99.86 3 | 99.93 1 | 99.97 2 | 99.83 4 | 99.93 1 | 99.96 12 | 99.77 3 | 99.89 18 | 99.99 1 | 99.86 76 | 99.84 5 | 99.89 11 | 99.81 11 | 99.97 1 | 99.88 6 |
|
| SixPastTwentyTwo | | | 99.89 2 | 99.85 5 | 99.93 1 | 99.97 2 | 99.88 1 | 99.92 2 | 99.97 1 | 99.66 13 | 99.94 5 | 99.94 11 | 99.74 108 | 99.81 7 | 99.97 1 | 99.89 1 | 99.96 3 | 99.89 4 |
|
| pmmvs6 | | | 99.88 4 | 99.87 1 | 99.89 9 | 99.97 2 | 99.76 22 | 99.89 5 | 99.96 12 | 99.82 2 | 99.90 16 | 99.92 16 | 99.95 25 | 99.68 32 | 99.93 3 | 99.88 3 | 99.95 7 | 99.86 11 |
|
| anonymousdsp | | | 99.87 5 | 99.86 3 | 99.88 13 | 99.95 10 | 99.75 28 | 99.90 4 | 99.96 12 | 99.69 7 | 99.83 52 | 99.96 4 | 99.99 3 | 99.74 22 | 99.95 2 | 99.83 7 | 99.91 25 | 99.88 6 |
|
| FC-MVSNet-test | | | 99.84 6 | 99.80 6 | 99.89 9 | 99.96 7 | 99.83 4 | 99.84 16 | 99.95 23 | 99.37 49 | 99.77 69 | 99.95 6 | 99.96 14 | 99.85 3 | 99.93 3 | 99.83 7 | 99.95 7 | 99.72 40 |
|
| WB-MVS | | | 99.82 7 | 99.76 9 | 99.89 9 | 99.94 23 | 99.82 8 | 99.79 29 | 99.93 27 | 99.67 10 | 99.97 2 | 99.83 45 | 99.78 105 | 99.79 12 | 99.72 39 | 99.70 22 | 99.95 7 | 99.78 26 |
|
| UniMVSNet_ETH3D | | | 99.81 8 | 99.79 7 | 99.85 19 | 99.98 1 | 99.76 22 | 99.73 48 | 99.96 12 | 99.68 9 | 99.87 30 | 99.59 85 | 99.91 56 | 99.58 52 | 99.90 10 | 99.85 6 | 99.96 3 | 99.81 19 |
|
| TDRefinement | | | 99.81 8 | 99.76 9 | 99.86 16 | 99.83 89 | 99.53 63 | 99.89 5 | 99.91 44 | 99.73 5 | 99.88 24 | 99.83 45 | 99.96 14 | 99.76 17 | 99.91 9 | 99.81 11 | 99.86 42 | 99.59 69 |
|
| WR-MVS | | | 99.79 10 | 99.68 14 | 99.91 5 | 99.95 10 | 99.83 4 | 99.87 9 | 99.96 12 | 99.39 47 | 99.93 6 | 99.87 35 | 99.29 151 | 99.77 15 | 99.83 22 | 99.72 20 | 99.97 1 | 99.82 16 |
|
| MIMVSNet1 | | | 99.79 10 | 99.75 11 | 99.84 22 | 99.89 43 | 99.83 4 | 99.84 16 | 99.89 53 | 99.31 55 | 99.93 6 | 99.92 16 | 99.97 9 | 99.68 32 | 99.89 11 | 99.64 28 | 99.82 56 | 99.66 54 |
|
| pm-mvs1 | | | 99.77 12 | 99.69 13 | 99.86 16 | 99.94 23 | 99.68 37 | 99.84 16 | 99.93 27 | 99.59 22 | 99.87 30 | 99.92 16 | 99.21 154 | 99.65 38 | 99.88 15 | 99.77 16 | 99.93 21 | 99.78 26 |
|
| PEN-MVS | | | 99.77 12 | 99.65 19 | 99.91 5 | 99.95 10 | 99.80 16 | 99.86 10 | 99.97 1 | 99.08 83 | 99.89 18 | 99.69 68 | 99.68 117 | 99.84 5 | 99.81 27 | 99.64 28 | 99.95 7 | 99.81 19 |
|
| EU-MVSNet | | | 99.76 14 | 99.74 12 | 99.78 42 | 99.82 94 | 99.81 13 | 99.88 7 | 99.87 58 | 99.31 55 | 99.75 77 | 99.91 23 | 99.76 107 | 99.78 13 | 99.84 21 | 99.74 19 | 99.56 137 | 99.81 19 |
|
| Vis-MVSNet |  | | 99.76 14 | 99.78 8 | 99.75 52 | 99.92 31 | 99.77 21 | 99.83 19 | 99.85 69 | 99.43 41 | 99.85 43 | 99.84 42 | 100.00 1 | 99.13 118 | 99.83 22 | 99.66 25 | 99.90 29 | 99.90 2 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| CS-MVS | | | 99.75 16 | 99.66 18 | 99.85 19 | 99.87 54 | 99.86 2 | 99.83 19 | 99.91 44 | 98.84 117 | 99.92 10 | 99.57 87 | 99.85 82 | 99.60 47 | 99.82 25 | 99.79 13 | 99.94 16 | 99.87 9 |
|
| CS-MVS-test | | | 99.75 16 | 99.67 15 | 99.84 22 | 99.91 35 | 99.85 3 | 99.85 13 | 99.92 38 | 98.75 127 | 99.89 18 | 99.64 75 | 99.95 25 | 99.55 55 | 99.89 11 | 99.79 13 | 99.92 22 | 99.83 14 |
|
| DTE-MVSNet | | | 99.75 16 | 99.61 25 | 99.92 4 | 99.95 10 | 99.81 13 | 99.86 10 | 99.96 12 | 99.18 72 | 99.92 10 | 99.66 71 | 99.45 136 | 99.85 3 | 99.80 28 | 99.56 34 | 99.96 3 | 99.79 25 |
|
| tfpnnormal | | | 99.74 19 | 99.63 22 | 99.86 16 | 99.93 28 | 99.75 28 | 99.80 28 | 99.89 53 | 99.31 55 | 99.88 24 | 99.43 108 | 99.66 120 | 99.77 15 | 99.80 28 | 99.71 21 | 99.92 22 | 99.76 31 |
|
| DeepC-MVS | | 99.05 5 | 99.74 19 | 99.64 20 | 99.84 22 | 99.90 40 | 99.39 94 | 99.79 29 | 99.81 98 | 99.69 7 | 99.90 16 | 99.87 35 | 99.98 5 | 99.81 7 | 99.62 55 | 99.32 62 | 99.83 53 | 99.65 57 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| thisisatest0515 | | | 99.73 21 | 99.67 15 | 99.81 32 | 99.93 28 | 99.74 30 | 99.68 57 | 99.91 44 | 99.59 22 | 99.88 24 | 99.73 57 | 99.81 92 | 99.55 55 | 99.59 56 | 99.53 39 | 99.89 32 | 99.70 48 |
|
| PS-CasMVS | | | 99.73 21 | 99.59 31 | 99.90 8 | 99.95 10 | 99.80 16 | 99.85 13 | 99.97 1 | 98.95 101 | 99.86 36 | 99.73 57 | 99.36 143 | 99.81 7 | 99.83 22 | 99.67 24 | 99.95 7 | 99.83 14 |
|
| WR-MVS_H | | | 99.73 21 | 99.61 25 | 99.88 13 | 99.95 10 | 99.82 8 | 99.83 19 | 99.96 12 | 99.01 93 | 99.84 47 | 99.71 65 | 99.41 142 | 99.74 22 | 99.77 33 | 99.70 22 | 99.95 7 | 99.82 16 |
|
| TransMVSNet (Re) | | | 99.72 24 | 99.59 31 | 99.88 13 | 99.95 10 | 99.76 22 | 99.88 7 | 99.94 24 | 99.58 24 | 99.92 10 | 99.90 27 | 98.55 171 | 99.65 38 | 99.89 11 | 99.76 17 | 99.95 7 | 99.70 48 |
|
| ACMH | | 99.11 4 | 99.72 24 | 99.63 22 | 99.84 22 | 99.87 54 | 99.59 50 | 99.83 19 | 99.88 57 | 99.46 38 | 99.87 30 | 99.66 71 | 99.95 25 | 99.76 17 | 99.73 38 | 99.47 48 | 99.84 48 | 99.52 101 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| FC-MVSNet-train | | | 99.70 26 | 99.67 15 | 99.74 58 | 99.94 23 | 99.71 33 | 99.82 24 | 99.91 44 | 99.14 80 | 99.53 135 | 99.70 66 | 99.88 68 | 99.33 90 | 99.88 15 | 99.61 33 | 99.94 16 | 99.77 28 |
|
| EC-MVSNet | | | 99.70 26 | 99.57 34 | 99.85 19 | 99.95 10 | 99.81 13 | 99.85 13 | 99.93 27 | 98.39 165 | 99.76 72 | 99.48 105 | 99.94 35 | 99.70 30 | 99.85 19 | 99.66 25 | 99.91 25 | 99.87 9 |
|
| COLMAP_ROB |  | 99.18 2 | 99.70 26 | 99.60 29 | 99.81 32 | 99.84 83 | 99.37 101 | 99.76 36 | 99.84 78 | 99.54 30 | 99.82 55 | 99.64 75 | 99.95 25 | 99.75 19 | 99.79 30 | 99.56 34 | 99.83 53 | 99.37 131 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| ACMH+ | | 98.94 6 | 99.69 29 | 99.59 31 | 99.81 32 | 99.88 49 | 99.41 91 | 99.75 40 | 99.86 62 | 99.43 41 | 99.80 59 | 99.54 91 | 99.97 9 | 99.73 25 | 99.82 25 | 99.52 41 | 99.85 45 | 99.43 117 |
|
| test20.03 | | | 99.68 30 | 99.60 29 | 99.76 48 | 99.91 35 | 99.70 36 | 99.68 57 | 99.87 58 | 99.05 90 | 99.88 24 | 99.92 16 | 99.88 68 | 99.50 68 | 99.77 33 | 99.42 55 | 99.75 77 | 99.49 103 |
|
| CP-MVSNet | | | 99.68 30 | 99.51 43 | 99.89 9 | 99.95 10 | 99.76 22 | 99.83 19 | 99.96 12 | 98.83 121 | 99.84 47 | 99.65 74 | 99.09 157 | 99.80 10 | 99.78 31 | 99.62 32 | 99.95 7 | 99.82 16 |
|
| casdiffmvs_mvg |  | | 99.67 32 | 99.61 25 | 99.74 58 | 99.94 23 | 99.60 46 | 99.62 71 | 99.77 121 | 99.54 30 | 99.67 110 | 99.82 48 | 99.80 98 | 99.52 62 | 99.40 77 | 99.51 42 | 99.91 25 | 99.59 69 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| PVSNet_Blended_VisFu | | | 99.66 33 | 99.64 20 | 99.67 70 | 99.91 35 | 99.71 33 | 99.61 72 | 99.79 109 | 99.41 43 | 99.91 14 | 99.85 40 | 99.61 123 | 99.00 128 | 99.67 46 | 99.42 55 | 99.81 59 | 99.81 19 |
|
| v10 | | | 99.65 34 | 99.51 43 | 99.81 32 | 99.83 89 | 99.61 45 | 99.75 40 | 99.94 24 | 99.56 26 | 99.76 72 | 99.94 11 | 99.60 125 | 99.73 25 | 99.11 133 | 99.01 103 | 99.85 45 | 99.74 35 |
|
| CHOSEN 1792x2688 | | | 99.65 34 | 99.55 37 | 99.77 47 | 99.93 28 | 99.60 46 | 99.79 29 | 99.92 38 | 99.73 5 | 99.74 83 | 99.93 14 | 99.98 5 | 99.80 10 | 98.83 173 | 99.01 103 | 99.45 155 | 99.76 31 |
|
| UA-Net | | | 99.64 36 | 99.62 24 | 99.66 72 | 99.97 2 | 99.82 8 | 99.14 160 | 99.96 12 | 98.95 101 | 99.52 141 | 99.38 117 | 99.86 76 | 99.55 55 | 99.72 39 | 99.66 25 | 99.80 63 | 99.94 1 |
|
| GeoE | | | 99.63 37 | 99.51 43 | 99.78 42 | 99.91 35 | 99.57 53 | 99.78 32 | 99.97 1 | 99.23 63 | 99.72 93 | 99.72 61 | 99.80 98 | 99.50 68 | 99.45 74 | 99.10 89 | 99.79 66 | 99.71 46 |
|
| Baseline_NR-MVSNet | | | 99.62 38 | 99.48 48 | 99.78 42 | 99.85 77 | 99.76 22 | 99.59 77 | 99.82 90 | 98.84 117 | 99.88 24 | 99.91 23 | 99.04 158 | 99.61 45 | 99.46 67 | 99.78 15 | 99.94 16 | 99.60 67 |
|
| pmmvs-eth3d | | | 99.61 39 | 99.48 48 | 99.75 52 | 99.87 54 | 99.30 117 | 99.75 40 | 99.89 53 | 99.23 63 | 99.85 43 | 99.88 34 | 99.97 9 | 99.49 73 | 99.46 67 | 99.01 103 | 99.68 97 | 99.52 101 |
|
| v1144 | | | 99.61 39 | 99.43 56 | 99.82 27 | 99.88 49 | 99.41 91 | 99.76 36 | 99.86 62 | 99.64 16 | 99.84 47 | 99.95 6 | 99.49 134 | 99.74 22 | 99.00 143 | 98.93 115 | 99.84 48 | 99.58 78 |
|
| v8 | | | 99.61 39 | 99.45 54 | 99.79 41 | 99.80 100 | 99.59 50 | 99.73 48 | 99.93 27 | 99.48 36 | 99.77 69 | 99.90 27 | 99.48 135 | 99.67 35 | 99.11 133 | 98.89 119 | 99.84 48 | 99.73 37 |
|
| casdiffmvs |  | | 99.61 39 | 99.55 37 | 99.68 69 | 99.89 43 | 99.53 63 | 99.64 65 | 99.68 149 | 99.51 33 | 99.62 119 | 99.90 27 | 99.96 14 | 99.37 84 | 99.28 102 | 99.25 65 | 99.88 34 | 99.44 114 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| CSCG | | | 99.61 39 | 99.52 42 | 99.71 63 | 99.89 43 | 99.62 43 | 99.52 93 | 99.76 130 | 99.61 20 | 99.69 102 | 99.73 57 | 99.96 14 | 99.57 53 | 99.27 105 | 98.62 149 | 99.81 59 | 99.85 13 |
|
| v1192 | | | 99.60 44 | 99.41 60 | 99.82 27 | 99.89 43 | 99.43 86 | 99.81 26 | 99.84 78 | 99.63 18 | 99.85 43 | 99.95 6 | 99.35 146 | 99.72 27 | 99.01 141 | 98.90 118 | 99.82 56 | 99.58 78 |
|
| APDe-MVS |  | | 99.60 44 | 99.48 48 | 99.73 61 | 99.85 77 | 99.51 74 | 99.75 40 | 99.85 69 | 99.17 73 | 99.81 58 | 99.56 89 | 99.94 35 | 99.44 80 | 99.42 76 | 99.22 66 | 99.67 99 | 99.54 93 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| v1921920 | | | 99.59 46 | 99.40 63 | 99.82 27 | 99.88 49 | 99.45 81 | 99.81 26 | 99.83 83 | 99.65 14 | 99.86 36 | 99.95 6 | 99.29 151 | 99.75 19 | 98.98 147 | 98.86 123 | 99.78 68 | 99.59 69 |
|
| TranMVSNet+NR-MVSNet | | | 99.59 46 | 99.42 59 | 99.80 37 | 99.87 54 | 99.55 57 | 99.64 65 | 99.86 62 | 99.05 90 | 99.88 24 | 99.72 61 | 99.33 149 | 99.64 42 | 99.47 66 | 99.14 75 | 99.91 25 | 99.67 53 |
|
| EG-PatchMatch MVS | | | 99.59 46 | 99.49 47 | 99.70 66 | 99.82 94 | 99.26 124 | 99.39 122 | 99.83 83 | 98.99 95 | 99.93 6 | 99.54 91 | 99.92 50 | 99.51 64 | 99.78 31 | 99.50 43 | 99.73 86 | 99.41 121 |
|
| pmmvs5 | | | 99.58 49 | 99.47 51 | 99.70 66 | 99.84 83 | 99.50 75 | 99.58 81 | 99.80 106 | 98.98 98 | 99.73 90 | 99.92 16 | 99.81 92 | 99.49 73 | 99.28 102 | 99.05 97 | 99.77 72 | 99.73 37 |
|
| v144192 | | | 99.58 49 | 99.39 64 | 99.80 37 | 99.87 54 | 99.44 83 | 99.77 33 | 99.84 78 | 99.64 16 | 99.86 36 | 99.93 14 | 99.35 146 | 99.72 27 | 98.92 153 | 98.82 127 | 99.74 82 | 99.66 54 |
|
| v148 | | | 99.58 49 | 99.43 56 | 99.76 48 | 99.87 54 | 99.40 93 | 99.76 36 | 99.85 69 | 99.48 36 | 99.83 52 | 99.82 48 | 99.83 87 | 99.51 64 | 99.20 119 | 98.82 127 | 99.75 77 | 99.45 111 |
|
| v1240 | | | 99.58 49 | 99.38 67 | 99.82 27 | 99.89 43 | 99.49 76 | 99.82 24 | 99.83 83 | 99.63 18 | 99.86 36 | 99.96 4 | 98.92 164 | 99.75 19 | 99.15 129 | 98.96 112 | 99.76 74 | 99.56 85 |
|
| V42 | | | 99.57 53 | 99.41 60 | 99.75 52 | 99.84 83 | 99.37 101 | 99.73 48 | 99.83 83 | 99.41 43 | 99.75 77 | 99.89 30 | 99.42 140 | 99.60 47 | 99.15 129 | 98.96 112 | 99.76 74 | 99.65 57 |
|
| TSAR-MVS + MP. | | | 99.56 54 | 99.54 40 | 99.58 88 | 99.69 145 | 99.14 146 | 99.73 48 | 99.45 186 | 99.50 34 | 99.35 172 | 99.60 83 | 99.93 42 | 99.50 68 | 99.56 58 | 99.37 59 | 99.77 72 | 99.64 60 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| v2v482 | | | 99.56 54 | 99.35 69 | 99.81 32 | 99.87 54 | 99.35 107 | 99.75 40 | 99.85 69 | 99.56 26 | 99.87 30 | 99.95 6 | 99.44 138 | 99.66 36 | 98.91 156 | 98.76 133 | 99.86 42 | 99.45 111 |
|
| Gipuma |  | | 99.55 56 | 99.23 88 | 99.91 5 | 99.87 54 | 99.52 70 | 99.86 10 | 99.93 27 | 99.87 1 | 99.96 3 | 96.72 210 | 99.55 130 | 99.97 1 | 99.77 33 | 99.46 50 | 99.87 40 | 99.74 35 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| DVP-MVS |  | | 99.53 57 | 99.51 43 | 99.55 97 | 99.82 94 | 99.58 52 | 99.54 89 | 99.78 114 | 99.28 61 | 99.21 182 | 99.70 66 | 99.97 9 | 99.32 93 | 99.32 90 | 99.14 75 | 99.64 111 | 99.58 78 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| NR-MVSNet | | | 99.52 58 | 99.29 78 | 99.80 37 | 99.96 7 | 99.38 97 | 99.55 85 | 99.81 98 | 98.86 114 | 99.87 30 | 99.51 101 | 98.81 166 | 99.72 27 | 99.86 18 | 99.04 99 | 99.89 32 | 99.54 93 |
|
| ACMMPR | | | 99.51 59 | 99.32 73 | 99.72 62 | 99.87 54 | 99.33 110 | 99.61 72 | 99.85 69 | 99.19 70 | 99.73 90 | 98.73 166 | 99.95 25 | 99.61 45 | 99.35 84 | 99.14 75 | 99.66 101 | 99.58 78 |
|
| UniMVSNet (Re) | | | 99.50 60 | 99.29 78 | 99.75 52 | 99.86 69 | 99.47 79 | 99.51 96 | 99.82 90 | 98.90 109 | 99.89 18 | 99.64 75 | 99.00 159 | 99.55 55 | 99.32 90 | 99.08 92 | 99.90 29 | 99.59 69 |
|
| FMVSNet1 | | | 99.50 60 | 99.57 34 | 99.42 119 | 99.67 152 | 99.65 40 | 99.60 76 | 99.91 44 | 99.40 45 | 99.39 165 | 99.83 45 | 99.27 153 | 98.14 167 | 99.68 43 | 99.50 43 | 99.81 59 | 99.68 50 |
|
| HyFIR lowres test | | | 99.50 60 | 99.26 82 | 99.80 37 | 99.95 10 | 99.62 43 | 99.76 36 | 99.97 1 | 99.67 10 | 99.56 131 | 99.94 11 | 98.40 174 | 99.78 13 | 98.84 172 | 98.59 152 | 99.76 74 | 99.72 40 |
|
| PM-MVS | | | 99.49 63 | 99.43 56 | 99.57 92 | 99.76 122 | 99.34 109 | 99.53 90 | 99.77 121 | 98.93 105 | 99.75 77 | 99.46 106 | 99.83 87 | 99.11 120 | 99.72 39 | 99.29 64 | 99.49 150 | 99.46 110 |
|
| Anonymous20231206 | | | 99.48 64 | 99.31 75 | 99.69 68 | 99.79 104 | 99.57 53 | 99.63 69 | 99.79 109 | 98.88 111 | 99.91 14 | 99.72 61 | 99.93 42 | 99.59 49 | 99.24 108 | 98.63 148 | 99.43 159 | 99.18 148 |
|
| DU-MVS | | | 99.48 64 | 99.26 82 | 99.75 52 | 99.85 77 | 99.38 97 | 99.50 100 | 99.81 98 | 98.86 114 | 99.89 18 | 99.51 101 | 98.98 160 | 99.59 49 | 99.46 67 | 98.97 110 | 99.87 40 | 99.63 61 |
|
| RPSCF | | | 99.48 64 | 99.45 54 | 99.52 104 | 99.73 138 | 99.33 110 | 99.13 161 | 99.77 121 | 99.33 53 | 99.47 152 | 99.39 116 | 99.92 50 | 99.36 85 | 99.63 52 | 99.13 83 | 99.63 114 | 99.41 121 |
|
| ACMMP_NAP | | | 99.47 67 | 99.33 71 | 99.63 80 | 99.85 77 | 99.28 122 | 99.56 84 | 99.83 83 | 98.75 127 | 99.48 149 | 99.03 153 | 99.95 25 | 99.47 79 | 99.48 63 | 99.19 68 | 99.57 133 | 99.59 69 |
|
| Anonymous20231211 | | | 99.47 67 | 99.39 64 | 99.57 92 | 99.89 43 | 99.60 46 | 99.50 100 | 99.69 143 | 98.91 108 | 99.62 119 | 99.17 139 | 99.35 146 | 98.86 141 | 99.63 52 | 99.46 50 | 99.84 48 | 99.62 64 |
|
| SteuartSystems-ACMMP | | | 99.47 67 | 99.22 91 | 99.76 48 | 99.88 49 | 99.36 103 | 99.65 64 | 99.84 78 | 98.47 152 | 99.80 59 | 98.68 169 | 99.96 14 | 99.68 32 | 99.37 81 | 99.06 94 | 99.72 90 | 99.66 54 |
| Skip Steuart: Steuart Systems R&D Blog. |
| ACMM | | 98.37 12 | 99.47 67 | 99.23 88 | 99.74 58 | 99.86 69 | 99.19 140 | 99.68 57 | 99.86 62 | 99.16 77 | 99.71 99 | 98.52 179 | 99.95 25 | 99.62 44 | 99.35 84 | 99.02 101 | 99.74 82 | 99.42 120 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| DVP-MVS++ | | | 99.46 71 | 99.57 34 | 99.33 140 | 99.75 126 | 99.57 53 | 99.44 113 | 99.81 98 | 99.38 48 | 98.56 211 | 99.81 52 | 99.99 3 | 98.79 145 | 99.33 88 | 99.13 83 | 99.62 120 | 99.81 19 |
|
| HFP-MVS | | | 99.46 71 | 99.30 76 | 99.65 74 | 99.82 94 | 99.25 128 | 99.50 100 | 99.82 90 | 99.23 63 | 99.58 129 | 98.86 157 | 99.94 35 | 99.56 54 | 99.14 131 | 99.12 87 | 99.63 114 | 99.56 85 |
|
| LGP-MVS_train | | | 99.46 71 | 99.18 100 | 99.78 42 | 99.87 54 | 99.25 128 | 99.71 55 | 99.87 58 | 98.02 184 | 99.79 63 | 98.90 156 | 99.96 14 | 99.66 36 | 99.49 62 | 99.17 71 | 99.79 66 | 99.49 103 |
|
| SED-MVS | | | 99.45 74 | 99.46 53 | 99.42 119 | 99.77 117 | 99.57 53 | 99.42 116 | 99.80 106 | 99.06 87 | 99.38 166 | 99.66 71 | 99.96 14 | 98.65 153 | 99.31 92 | 99.14 75 | 99.53 142 | 99.55 90 |
|
| ETV-MVS | | | 99.45 74 | 99.32 73 | 99.60 85 | 99.79 104 | 99.60 46 | 99.40 121 | 99.78 114 | 97.88 190 | 99.83 52 | 99.33 120 | 99.70 115 | 98.97 131 | 99.74 36 | 99.43 54 | 99.84 48 | 99.58 78 |
|
| ACMP | | 98.32 13 | 99.44 76 | 99.18 100 | 99.75 52 | 99.83 89 | 99.18 141 | 99.64 65 | 99.83 83 | 98.81 123 | 99.79 63 | 98.42 186 | 99.96 14 | 99.64 42 | 99.46 67 | 98.98 109 | 99.74 82 | 99.44 114 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| DCV-MVSNet | | | 99.43 77 | 99.23 88 | 99.67 70 | 99.92 31 | 99.76 22 | 99.64 65 | 99.93 27 | 99.06 87 | 99.68 109 | 97.77 197 | 98.97 161 | 98.97 131 | 99.72 39 | 99.54 38 | 99.88 34 | 99.81 19 |
|
| SMA-MVS |  | | 99.43 77 | 99.41 60 | 99.45 115 | 99.82 94 | 99.31 115 | 99.02 175 | 99.59 165 | 99.06 87 | 99.34 175 | 99.53 97 | 99.96 14 | 99.38 83 | 99.29 97 | 99.13 83 | 99.53 142 | 99.59 69 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| testgi | | | 99.43 77 | 99.47 51 | 99.38 128 | 99.90 40 | 99.67 39 | 99.30 140 | 99.73 138 | 98.64 140 | 99.53 135 | 99.52 99 | 99.90 59 | 98.08 170 | 99.65 50 | 99.40 58 | 99.75 77 | 99.55 90 |
|
| DELS-MVS | | | 99.42 80 | 99.53 41 | 99.29 143 | 99.52 180 | 99.43 86 | 99.42 116 | 99.28 201 | 99.16 77 | 99.72 93 | 99.82 48 | 99.97 9 | 98.17 164 | 99.56 58 | 99.16 72 | 99.65 103 | 99.59 69 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| 3Dnovator | | 99.16 3 | 99.42 80 | 99.22 91 | 99.65 74 | 99.78 109 | 99.13 150 | 99.50 100 | 99.85 69 | 99.40 45 | 99.80 59 | 98.59 175 | 99.79 102 | 99.30 97 | 99.20 119 | 99.06 94 | 99.71 93 | 99.35 134 |
|
| DPE-MVS |  | | 99.41 82 | 99.36 68 | 99.47 111 | 99.66 153 | 99.48 77 | 99.46 111 | 99.75 135 | 98.65 136 | 99.41 162 | 99.67 69 | 99.95 25 | 98.82 142 | 99.21 116 | 99.14 75 | 99.72 90 | 99.40 126 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| UniMVSNet_NR-MVSNet | | | 99.41 82 | 99.12 112 | 99.76 48 | 99.86 69 | 99.48 77 | 99.50 100 | 99.81 98 | 98.84 117 | 99.89 18 | 99.45 107 | 98.32 177 | 99.59 49 | 99.22 112 | 98.89 119 | 99.90 29 | 99.63 61 |
|
| CP-MVS | | | 99.41 82 | 99.20 96 | 99.65 74 | 99.80 100 | 99.23 135 | 99.44 113 | 99.75 135 | 98.60 145 | 99.74 83 | 98.66 170 | 99.93 42 | 99.48 76 | 99.33 88 | 99.16 72 | 99.73 86 | 99.48 106 |
|
| QAPM | | | 99.41 82 | 99.21 95 | 99.64 79 | 99.78 109 | 99.16 143 | 99.51 96 | 99.85 69 | 99.20 67 | 99.72 93 | 99.43 108 | 99.81 92 | 99.25 102 | 98.87 162 | 98.71 140 | 99.71 93 | 99.30 139 |
|
| UGNet | | | 99.40 86 | 99.61 25 | 99.16 162 | 99.88 49 | 99.64 41 | 99.61 72 | 99.77 121 | 99.31 55 | 99.63 118 | 99.33 120 | 99.93 42 | 96.46 204 | 99.63 52 | 99.53 39 | 99.63 114 | 99.89 4 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| Vis-MVSNet (Re-imp) | | | 99.40 86 | 99.28 80 | 99.55 97 | 99.92 31 | 99.68 37 | 99.31 135 | 99.87 58 | 98.69 133 | 99.16 184 | 99.08 148 | 98.64 170 | 99.20 106 | 99.65 50 | 99.46 50 | 99.83 53 | 99.72 40 |
|
| OPM-MVS | | | 99.39 88 | 99.22 91 | 99.59 86 | 99.76 122 | 98.82 174 | 99.51 96 | 99.79 109 | 99.17 73 | 99.53 135 | 99.31 125 | 99.95 25 | 99.35 86 | 99.22 112 | 98.79 132 | 99.60 125 | 99.27 142 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| Fast-Effi-MVS+ | | | 99.39 88 | 99.18 100 | 99.63 80 | 99.86 69 | 99.28 122 | 99.45 112 | 99.91 44 | 98.47 152 | 99.61 122 | 99.50 103 | 99.57 127 | 99.17 107 | 99.24 108 | 98.66 145 | 99.78 68 | 99.59 69 |
|
| LS3D | | | 99.39 88 | 99.28 80 | 99.52 104 | 99.77 117 | 99.39 94 | 99.55 85 | 99.82 90 | 98.93 105 | 99.64 116 | 98.52 179 | 99.67 119 | 98.58 157 | 99.74 36 | 99.63 30 | 99.75 77 | 99.06 164 |
|
| diffmvs |  | | 99.38 91 | 99.33 71 | 99.45 115 | 99.87 54 | 99.39 94 | 99.28 144 | 99.58 168 | 99.55 28 | 99.50 145 | 99.85 40 | 99.85 82 | 98.94 136 | 98.58 185 | 98.68 143 | 99.51 147 | 99.39 128 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| CANet | | | 99.36 92 | 99.39 64 | 99.34 139 | 99.80 100 | 99.35 107 | 99.41 120 | 99.47 184 | 99.20 67 | 99.74 83 | 99.54 91 | 99.68 117 | 98.05 172 | 99.23 110 | 98.97 110 | 99.57 133 | 99.73 37 |
|
| MVS_0304 | | | 99.36 92 | 99.35 69 | 99.37 134 | 99.85 77 | 99.36 103 | 99.39 122 | 99.56 170 | 99.36 51 | 99.75 77 | 99.23 131 | 99.90 59 | 97.97 178 | 99.00 143 | 98.83 126 | 99.69 96 | 99.77 28 |
|
| ACMMP |  | | 99.36 92 | 99.06 120 | 99.71 63 | 99.86 69 | 99.36 103 | 99.63 69 | 99.85 69 | 98.33 167 | 99.72 93 | 97.73 199 | 99.94 35 | 99.53 59 | 99.37 81 | 99.13 83 | 99.65 103 | 99.56 85 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| SD-MVS | | | 99.35 95 | 99.26 82 | 99.46 113 | 99.66 153 | 99.15 145 | 98.92 184 | 99.67 153 | 99.55 28 | 99.35 172 | 98.83 159 | 99.91 56 | 99.35 86 | 99.19 122 | 98.53 154 | 99.78 68 | 99.68 50 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| MP-MVS |  | | 99.35 95 | 99.09 118 | 99.65 74 | 99.84 83 | 99.22 136 | 99.59 77 | 99.78 114 | 98.13 176 | 99.67 110 | 98.44 183 | 99.93 42 | 99.43 82 | 99.31 92 | 99.09 91 | 99.60 125 | 99.49 103 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| pmmvs4 | | | 99.34 97 | 99.15 107 | 99.57 92 | 99.77 117 | 98.90 167 | 99.51 96 | 99.77 121 | 99.07 85 | 99.73 90 | 99.72 61 | 99.84 85 | 99.07 122 | 98.85 167 | 98.39 163 | 99.55 140 | 99.27 142 |
|
| EPP-MVSNet | | | 99.34 97 | 99.10 116 | 99.62 84 | 99.94 23 | 99.74 30 | 99.66 63 | 99.80 106 | 99.07 85 | 98.93 194 | 99.61 80 | 96.13 192 | 99.49 73 | 99.67 46 | 99.63 30 | 99.92 22 | 99.86 11 |
|
| TSAR-MVS + GP. | | | 99.33 99 | 99.17 104 | 99.51 106 | 99.71 143 | 99.00 162 | 98.84 192 | 99.71 140 | 98.23 173 | 99.74 83 | 99.53 97 | 99.90 59 | 99.35 86 | 99.38 80 | 98.85 124 | 99.72 90 | 99.31 137 |
|
| PHI-MVS | | | 99.33 99 | 99.19 98 | 99.49 109 | 99.69 145 | 99.25 128 | 99.27 145 | 99.59 165 | 98.44 156 | 99.78 67 | 99.15 140 | 99.92 50 | 98.95 135 | 99.39 78 | 99.04 99 | 99.64 111 | 99.18 148 |
|
| MSP-MVS | | | 99.32 101 | 99.26 82 | 99.38 128 | 99.76 122 | 99.54 60 | 99.42 116 | 99.72 139 | 98.92 107 | 98.84 201 | 98.96 155 | 99.96 14 | 98.91 137 | 98.72 180 | 99.14 75 | 99.63 114 | 99.58 78 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| PGM-MVS | | | 99.32 101 | 98.99 129 | 99.71 63 | 99.86 69 | 99.31 115 | 99.59 77 | 99.86 62 | 97.51 199 | 99.75 77 | 98.23 189 | 99.94 35 | 99.53 59 | 99.29 97 | 99.08 92 | 99.65 103 | 99.54 93 |
|
| DeepC-MVS_fast | | 98.69 9 | 99.32 101 | 99.13 110 | 99.53 100 | 99.63 159 | 98.78 177 | 99.53 90 | 99.33 199 | 99.08 83 | 99.77 69 | 99.18 138 | 99.89 62 | 99.29 98 | 99.00 143 | 98.70 141 | 99.65 103 | 99.30 139 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| MSDG | | | 99.32 101 | 99.09 118 | 99.58 88 | 99.75 126 | 98.74 181 | 99.36 127 | 99.54 173 | 99.14 80 | 99.72 93 | 99.24 129 | 99.89 62 | 99.51 64 | 99.30 94 | 98.76 133 | 99.62 120 | 98.54 183 |
|
| TSAR-MVS + ACMM | | | 99.31 105 | 99.26 82 | 99.37 134 | 99.66 153 | 98.97 165 | 99.20 153 | 99.56 170 | 99.33 53 | 99.19 183 | 99.54 91 | 99.91 56 | 99.32 93 | 99.12 132 | 98.34 166 | 99.29 173 | 99.65 57 |
|
| 3Dnovator+ | | 98.92 7 | 99.31 105 | 99.03 124 | 99.63 80 | 99.77 117 | 98.90 167 | 99.52 93 | 99.81 98 | 99.37 49 | 99.72 93 | 98.03 194 | 99.73 111 | 99.32 93 | 98.99 146 | 98.81 130 | 99.67 99 | 99.36 132 |
|
| X-MVS | | | 99.30 107 | 98.99 129 | 99.66 72 | 99.85 77 | 99.30 117 | 99.49 107 | 99.82 90 | 98.32 168 | 99.69 102 | 97.31 208 | 99.93 42 | 99.50 68 | 99.37 81 | 99.16 72 | 99.60 125 | 99.53 96 |
|
| MVS_111021_HR | | | 99.30 107 | 99.14 108 | 99.48 110 | 99.58 176 | 99.25 128 | 99.27 145 | 99.61 160 | 98.74 129 | 99.66 113 | 99.02 154 | 99.84 85 | 99.33 90 | 99.20 119 | 98.76 133 | 99.44 156 | 99.18 148 |
|
| TAPA-MVS | | 98.54 10 | 99.30 107 | 99.24 87 | 99.36 138 | 99.44 195 | 98.77 179 | 99.00 177 | 99.41 190 | 99.23 63 | 99.60 124 | 99.50 103 | 99.86 76 | 99.15 114 | 99.29 97 | 98.95 114 | 99.56 137 | 99.08 160 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| CLD-MVS | | | 99.30 107 | 99.01 128 | 99.63 80 | 99.75 126 | 98.89 170 | 99.35 130 | 99.60 162 | 98.53 150 | 99.86 36 | 99.57 87 | 99.94 35 | 99.52 62 | 98.96 148 | 98.10 179 | 99.70 95 | 99.08 160 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| USDC | | | 99.29 111 | 98.98 131 | 99.65 74 | 99.72 140 | 98.87 172 | 99.47 109 | 99.66 156 | 99.35 52 | 99.87 30 | 99.58 86 | 99.87 75 | 99.51 64 | 98.85 167 | 97.93 185 | 99.65 103 | 98.38 187 |
|
| PMVS |  | 94.32 17 | 99.27 112 | 99.55 37 | 98.94 179 | 99.60 168 | 99.43 86 | 99.39 122 | 99.54 173 | 98.99 95 | 99.69 102 | 99.60 83 | 99.81 92 | 95.68 209 | 99.88 15 | 99.83 7 | 99.73 86 | 99.31 137 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| FA-MVS(training) | | | 99.26 113 | 99.12 112 | 99.44 117 | 99.60 168 | 99.26 124 | 99.24 150 | 99.97 1 | 98.84 117 | 99.76 72 | 99.43 108 | 98.74 167 | 98.47 160 | 99.39 78 | 99.10 89 | 99.57 133 | 99.07 163 |
|
| MVS_111021_LR | | | 99.25 114 | 99.13 110 | 99.39 124 | 99.50 188 | 99.14 146 | 99.23 151 | 99.50 181 | 98.67 134 | 99.61 122 | 99.12 144 | 99.81 92 | 99.16 110 | 99.28 102 | 98.67 144 | 99.35 169 | 99.21 147 |
|
| ECVR-MVS |  | | 99.24 115 | 98.74 154 | 99.82 27 | 99.95 10 | 99.78 18 | 99.67 61 | 99.93 27 | 99.45 39 | 99.80 59 | 99.86 38 | 92.58 208 | 99.65 38 | 99.93 3 | 99.88 3 | 99.94 16 | 99.71 46 |
|
| baseline | | | 99.24 115 | 99.30 76 | 99.17 161 | 99.78 109 | 99.14 146 | 99.10 165 | 99.69 143 | 98.97 99 | 99.49 147 | 99.84 42 | 99.88 68 | 97.99 177 | 98.85 167 | 98.73 138 | 98.98 188 | 99.72 40 |
|
| EIA-MVS | | | 99.23 117 | 99.03 124 | 99.47 111 | 99.83 89 | 99.64 41 | 99.16 157 | 99.81 98 | 97.11 206 | 99.65 115 | 98.44 183 | 99.78 105 | 98.61 156 | 99.46 67 | 99.22 66 | 99.75 77 | 99.59 69 |
|
| HPM-MVS++ |  | | 99.23 117 | 98.98 131 | 99.53 100 | 99.75 126 | 99.02 160 | 99.44 113 | 99.77 121 | 98.65 136 | 99.52 141 | 98.72 167 | 99.92 50 | 99.33 90 | 98.77 178 | 98.40 162 | 99.40 163 | 99.36 132 |
|
| PMMVS2 | | | 99.23 117 | 99.22 91 | 99.24 150 | 99.80 100 | 99.14 146 | 99.50 100 | 99.82 90 | 99.12 82 | 98.41 217 | 99.91 23 | 99.98 5 | 98.51 158 | 99.48 63 | 98.76 133 | 99.38 165 | 98.14 195 |
|
| test1111 | | | 99.21 120 | 98.67 158 | 99.84 22 | 99.96 7 | 99.82 8 | 99.72 52 | 99.94 24 | 99.54 30 | 99.78 67 | 99.89 30 | 91.89 211 | 99.69 31 | 99.93 3 | 99.89 1 | 99.95 7 | 99.75 33 |
|
| CPTT-MVS | | | 99.21 120 | 98.89 141 | 99.58 88 | 99.72 140 | 99.12 153 | 99.30 140 | 99.76 130 | 98.62 141 | 99.66 113 | 97.51 204 | 99.89 62 | 99.48 76 | 99.01 141 | 98.64 147 | 99.58 132 | 99.40 126 |
|
| TinyColmap | | | 99.21 120 | 98.89 141 | 99.59 86 | 99.61 164 | 98.61 189 | 99.47 109 | 99.67 153 | 99.02 92 | 99.82 55 | 99.15 140 | 99.74 108 | 99.35 86 | 99.17 127 | 98.33 167 | 99.63 114 | 98.22 193 |
|
| Effi-MVS+ | | | 99.20 123 | 98.93 136 | 99.50 108 | 99.79 104 | 99.26 124 | 98.82 195 | 99.96 12 | 98.37 166 | 99.60 124 | 99.12 144 | 98.36 175 | 99.05 125 | 98.93 151 | 98.82 127 | 99.78 68 | 99.68 50 |
|
| PVSNet_BlendedMVS | | | 99.20 123 | 99.17 104 | 99.23 151 | 99.69 145 | 99.33 110 | 99.04 170 | 99.13 204 | 98.41 161 | 99.79 63 | 99.33 120 | 99.36 143 | 98.10 168 | 99.29 97 | 98.87 121 | 99.65 103 | 99.56 85 |
|
| PVSNet_Blended | | | 99.20 123 | 99.17 104 | 99.23 151 | 99.69 145 | 99.33 110 | 99.04 170 | 99.13 204 | 98.41 161 | 99.79 63 | 99.33 120 | 99.36 143 | 98.10 168 | 99.29 97 | 98.87 121 | 99.65 103 | 99.56 85 |
|
| MCST-MVS | | | 99.17 126 | 98.82 149 | 99.57 92 | 99.75 126 | 98.70 185 | 99.25 149 | 99.69 143 | 98.62 141 | 99.59 126 | 98.54 177 | 99.79 102 | 99.53 59 | 98.48 189 | 98.15 175 | 99.64 111 | 99.43 117 |
|
| APD-MVS |  | | 99.17 126 | 98.92 137 | 99.46 113 | 99.78 109 | 99.24 133 | 99.34 131 | 99.78 114 | 97.79 193 | 99.48 149 | 98.25 188 | 99.88 68 | 98.77 146 | 99.18 125 | 98.92 116 | 99.63 114 | 99.18 148 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| OpenMVS |  | 98.82 8 | 99.17 126 | 98.85 145 | 99.53 100 | 99.75 126 | 99.06 158 | 99.36 127 | 99.82 90 | 98.28 170 | 99.76 72 | 98.47 181 | 99.61 123 | 98.91 137 | 98.80 175 | 98.70 141 | 99.60 125 | 99.04 168 |
|
| IterMVS-LS | | | 99.16 129 | 98.82 149 | 99.57 92 | 99.87 54 | 99.71 33 | 99.58 81 | 99.92 38 | 99.24 62 | 99.71 99 | 99.73 57 | 95.79 193 | 98.91 137 | 98.82 174 | 98.66 145 | 99.43 159 | 99.77 28 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| DeepPCF-MVS | | 98.38 11 | 99.16 129 | 99.20 96 | 99.12 166 | 99.20 212 | 98.71 184 | 98.85 191 | 99.06 207 | 99.17 73 | 98.96 193 | 99.61 80 | 99.86 76 | 99.29 98 | 99.17 127 | 98.72 139 | 99.36 167 | 99.15 156 |
|
| IterMVS-SCA-FT | | | 99.15 131 | 98.96 133 | 99.38 128 | 99.87 54 | 99.54 60 | 99.53 90 | 99.79 109 | 98.94 103 | 99.82 55 | 99.92 16 | 97.65 184 | 98.82 142 | 98.95 150 | 98.26 169 | 98.45 198 | 99.47 109 |
|
| CDS-MVSNet | | | 99.15 131 | 99.10 116 | 99.21 157 | 99.59 173 | 99.22 136 | 99.48 108 | 99.47 184 | 98.89 110 | 99.41 162 | 99.84 42 | 98.11 180 | 97.76 181 | 99.26 107 | 99.01 103 | 99.57 133 | 99.38 129 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| IS_MVSNet | | | 99.15 131 | 99.12 112 | 99.19 159 | 99.92 31 | 99.73 32 | 99.55 85 | 99.86 62 | 98.45 155 | 96.91 223 | 98.74 165 | 98.33 176 | 99.02 127 | 99.54 60 | 99.47 48 | 99.88 34 | 99.61 66 |
|
| dmvs_re | | | 99.14 134 | 98.76 152 | 99.58 88 | 99.75 126 | 99.38 97 | 99.30 140 | 99.68 149 | 96.94 211 | 99.74 83 | 97.70 200 | 99.20 155 | 99.29 98 | 99.22 112 | 99.35 60 | 99.73 86 | 99.55 90 |
|
| MDA-MVSNet-bldmvs | | | 99.11 135 | 99.11 115 | 99.12 166 | 99.91 35 | 99.38 97 | 99.77 33 | 98.72 211 | 99.31 55 | 99.85 43 | 99.43 108 | 98.26 178 | 99.48 76 | 99.85 19 | 98.47 157 | 96.99 209 | 99.08 160 |
|
| OMC-MVS | | | 99.11 135 | 98.95 134 | 99.29 143 | 99.37 201 | 98.57 191 | 99.19 154 | 99.20 203 | 98.87 113 | 99.58 129 | 99.13 142 | 99.88 68 | 99.00 128 | 99.19 122 | 98.46 158 | 99.43 159 | 98.57 182 |
|
| MVS_Test | | | 99.09 137 | 98.92 137 | 99.29 143 | 99.61 164 | 99.07 157 | 99.04 170 | 99.81 98 | 98.58 147 | 99.37 169 | 99.74 55 | 98.87 165 | 98.41 162 | 98.61 184 | 98.01 183 | 99.50 149 | 99.57 84 |
|
| CNVR-MVS | | | 99.08 138 | 98.83 146 | 99.37 134 | 99.61 164 | 98.74 181 | 99.15 158 | 99.54 173 | 98.59 146 | 99.37 169 | 98.15 191 | 99.88 68 | 99.08 121 | 98.91 156 | 98.46 158 | 99.48 151 | 99.06 164 |
|
| IterMVS | | | 99.08 138 | 98.90 140 | 99.29 143 | 99.87 54 | 99.53 63 | 99.52 93 | 99.77 121 | 98.94 103 | 99.75 77 | 99.91 23 | 97.52 188 | 98.72 150 | 98.86 165 | 98.14 176 | 98.09 201 | 99.43 117 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| FMVSNet2 | | | 99.07 140 | 99.19 98 | 98.93 181 | 99.02 217 | 99.53 63 | 99.31 135 | 99.84 78 | 98.86 114 | 98.88 197 | 99.64 75 | 98.44 173 | 96.92 198 | 99.35 84 | 99.00 107 | 99.61 122 | 99.53 96 |
|
| CVMVSNet | | | 99.06 141 | 98.88 144 | 99.28 147 | 99.52 180 | 99.53 63 | 99.42 116 | 99.69 143 | 98.74 129 | 98.27 219 | 99.89 30 | 95.48 196 | 99.44 80 | 99.46 67 | 99.33 61 | 99.32 172 | 99.75 33 |
|
| CDPH-MVS | | | 99.05 142 | 98.63 159 | 99.54 99 | 99.75 126 | 98.78 177 | 99.59 77 | 99.68 149 | 97.79 193 | 99.37 169 | 98.20 190 | 99.86 76 | 99.14 116 | 98.58 185 | 98.01 183 | 99.68 97 | 99.16 154 |
|
| TAMVS | | | 99.05 142 | 99.02 127 | 99.08 171 | 99.69 145 | 99.22 136 | 99.33 132 | 99.32 200 | 99.16 77 | 98.97 192 | 99.87 35 | 97.36 189 | 97.76 181 | 99.21 116 | 99.00 107 | 99.44 156 | 99.33 135 |
|
| CANet_DTU | | | 99.03 144 | 99.18 100 | 98.87 184 | 99.58 176 | 99.03 159 | 99.18 155 | 99.41 190 | 98.65 136 | 99.74 83 | 99.55 90 | 99.71 112 | 96.13 207 | 99.19 122 | 98.92 116 | 99.17 182 | 99.18 148 |
|
| Effi-MVS+-dtu | | | 99.01 145 | 99.05 121 | 98.98 175 | 99.60 168 | 99.13 150 | 99.03 174 | 99.61 160 | 98.52 151 | 99.01 189 | 98.53 178 | 99.83 87 | 96.95 197 | 99.48 63 | 98.59 152 | 99.66 101 | 99.25 146 |
|
| canonicalmvs | | | 99.00 146 | 98.68 157 | 99.37 134 | 99.68 151 | 99.42 90 | 98.94 183 | 99.89 53 | 99.00 94 | 98.99 190 | 98.43 185 | 95.69 194 | 98.96 134 | 99.18 125 | 99.18 69 | 99.74 82 | 99.88 6 |
|
| MIMVSNet | | | 99.00 146 | 99.03 124 | 98.97 178 | 99.32 207 | 99.32 114 | 99.39 122 | 99.91 44 | 98.41 161 | 98.76 204 | 99.24 129 | 99.17 156 | 97.13 191 | 99.30 94 | 98.80 131 | 99.29 173 | 99.01 169 |
|
| CHOSEN 280x420 | | | 98.99 148 | 98.91 139 | 99.07 172 | 99.77 117 | 99.26 124 | 99.55 85 | 99.92 38 | 98.62 141 | 98.67 208 | 99.62 79 | 97.20 190 | 98.44 161 | 99.50 61 | 99.18 69 | 98.08 202 | 98.99 172 |
|
| SF-MVS | | | 98.96 149 | 98.95 134 | 98.98 175 | 99.64 158 | 98.89 170 | 98.00 221 | 99.58 168 | 98.42 159 | 99.08 188 | 98.63 172 | 99.83 87 | 98.04 174 | 99.02 140 | 98.76 133 | 99.52 144 | 99.13 157 |
|
| GBi-Net | | | 98.96 149 | 99.05 121 | 98.85 185 | 99.02 217 | 99.53 63 | 99.31 135 | 99.78 114 | 98.13 176 | 98.48 213 | 99.43 108 | 97.58 185 | 96.92 198 | 99.68 43 | 99.50 43 | 99.61 122 | 99.53 96 |
|
| test1 | | | 98.96 149 | 99.05 121 | 98.85 185 | 99.02 217 | 99.53 63 | 99.31 135 | 99.78 114 | 98.13 176 | 98.48 213 | 99.43 108 | 97.58 185 | 96.92 198 | 99.68 43 | 99.50 43 | 99.61 122 | 99.53 96 |
|
| PCF-MVS | | 97.86 15 | 98.95 152 | 98.53 164 | 99.44 117 | 99.70 144 | 98.80 176 | 98.96 179 | 99.69 143 | 98.65 136 | 99.59 126 | 99.33 120 | 99.94 35 | 99.12 119 | 98.01 199 | 97.11 196 | 99.59 131 | 97.83 199 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| MS-PatchMatch | | | 98.94 153 | 98.71 156 | 99.21 157 | 99.52 180 | 98.22 207 | 98.97 178 | 99.53 178 | 98.76 125 | 99.50 145 | 98.59 175 | 99.56 129 | 98.68 151 | 98.63 183 | 98.45 160 | 99.05 185 | 98.73 179 |
|
| AdaColmap |  | | 98.93 154 | 98.53 164 | 99.39 124 | 99.52 180 | 98.65 188 | 99.11 164 | 99.59 165 | 98.08 180 | 99.44 155 | 97.46 206 | 99.45 136 | 99.24 103 | 98.92 153 | 98.44 161 | 99.44 156 | 98.73 179 |
|
| MSLP-MVS++ | | | 98.92 155 | 98.73 155 | 99.14 163 | 99.44 195 | 99.00 162 | 98.36 211 | 99.35 196 | 98.82 122 | 99.38 166 | 96.06 212 | 99.79 102 | 99.07 122 | 98.88 161 | 99.05 97 | 99.27 175 | 99.53 96 |
|
| new_pmnet | | | 98.91 156 | 98.89 141 | 98.94 179 | 99.51 186 | 98.27 203 | 99.15 158 | 98.66 212 | 99.17 73 | 99.48 149 | 99.79 53 | 99.80 98 | 98.49 159 | 99.23 110 | 98.20 173 | 98.34 199 | 97.74 203 |
|
| train_agg | | | 98.89 157 | 98.48 169 | 99.38 128 | 99.69 145 | 98.76 180 | 99.31 135 | 99.60 162 | 97.71 195 | 98.98 191 | 97.89 195 | 99.89 62 | 99.29 98 | 98.32 190 | 97.59 192 | 99.42 162 | 99.16 154 |
|
| NCCC | | | 98.88 158 | 98.42 170 | 99.42 119 | 99.62 160 | 98.81 175 | 99.10 165 | 99.54 173 | 98.76 125 | 99.53 135 | 95.97 213 | 99.80 98 | 99.16 110 | 98.49 188 | 98.06 182 | 99.55 140 | 99.05 166 |
|
| PLC |  | 97.83 16 | 98.88 158 | 98.52 166 | 99.30 142 | 99.45 193 | 98.60 190 | 98.65 201 | 99.49 182 | 98.66 135 | 99.59 126 | 96.33 211 | 99.59 126 | 99.17 107 | 98.87 162 | 98.53 154 | 99.46 153 | 99.05 166 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| pmmvs3 | | | 98.85 160 | 98.60 160 | 99.13 164 | 99.66 153 | 98.72 183 | 99.37 126 | 99.06 207 | 98.44 156 | 99.76 72 | 99.74 55 | 99.55 130 | 99.15 114 | 99.04 138 | 96.00 204 | 97.80 203 | 98.72 181 |
|
| Fast-Effi-MVS+-dtu | | | 98.82 161 | 98.80 151 | 98.84 187 | 99.51 186 | 98.90 167 | 98.96 179 | 99.91 44 | 98.29 169 | 99.11 187 | 98.47 181 | 99.63 122 | 96.03 208 | 99.21 116 | 98.12 177 | 99.52 144 | 99.01 169 |
|
| CNLPA | | | 98.82 161 | 98.52 166 | 99.18 160 | 99.21 211 | 98.50 195 | 98.73 199 | 99.34 198 | 98.73 131 | 99.56 131 | 97.55 203 | 99.42 140 | 99.06 124 | 98.93 151 | 98.10 179 | 99.21 181 | 98.38 187 |
|
| PatchMatch-RL | | | 98.80 163 | 98.52 166 | 99.12 166 | 99.38 200 | 98.70 185 | 98.56 204 | 99.55 172 | 97.81 192 | 99.34 175 | 97.57 202 | 99.31 150 | 98.67 152 | 99.27 105 | 98.62 149 | 99.22 180 | 98.35 189 |
|
| thisisatest0530 | | | 98.78 164 | 98.26 173 | 99.39 124 | 99.78 109 | 99.43 86 | 99.07 167 | 99.64 158 | 98.44 156 | 99.42 160 | 99.22 132 | 92.68 207 | 98.63 154 | 99.30 94 | 99.14 75 | 99.80 63 | 99.60 67 |
|
| tttt0517 | | | 98.77 165 | 98.25 175 | 99.38 128 | 99.79 104 | 99.46 80 | 99.07 167 | 99.64 158 | 98.40 164 | 99.38 166 | 99.21 134 | 92.54 209 | 98.63 154 | 99.34 87 | 99.14 75 | 99.80 63 | 99.62 64 |
|
| DI_MVS_plusplus_trai | | | 98.74 166 | 98.08 183 | 99.51 106 | 99.79 104 | 99.29 121 | 99.61 72 | 99.60 162 | 99.20 67 | 99.46 153 | 99.09 147 | 92.93 201 | 98.97 131 | 98.27 193 | 98.35 165 | 99.65 103 | 99.45 111 |
|
| TSAR-MVS + COLMAP | | | 98.74 166 | 98.58 162 | 98.93 181 | 99.29 208 | 98.23 204 | 99.04 170 | 99.24 202 | 98.79 124 | 98.80 203 | 99.37 118 | 99.71 112 | 98.06 171 | 98.02 198 | 97.46 194 | 99.16 183 | 98.48 185 |
|
| MDTV_nov1_ep13_2view | | | 98.73 168 | 98.31 172 | 99.22 154 | 99.75 126 | 99.24 133 | 99.75 40 | 99.93 27 | 99.31 55 | 99.84 47 | 99.86 38 | 99.81 92 | 99.31 96 | 97.40 207 | 94.77 206 | 96.73 211 | 97.81 200 |
|
| PMMVS | | | 98.71 169 | 98.55 163 | 98.90 183 | 99.28 209 | 98.45 197 | 98.53 207 | 99.45 186 | 97.67 197 | 99.15 186 | 98.76 163 | 99.54 132 | 97.79 180 | 98.77 178 | 98.23 171 | 99.16 183 | 98.46 186 |
|
| HQP-MVS | | | 98.70 170 | 98.19 179 | 99.28 147 | 99.61 164 | 98.52 193 | 98.71 200 | 99.35 196 | 97.97 187 | 99.53 135 | 97.38 207 | 99.85 82 | 99.14 116 | 97.53 203 | 96.85 200 | 99.36 167 | 99.26 145 |
|
| N_pmnet | | | 98.64 171 | 98.23 178 | 99.11 169 | 99.78 109 | 99.25 128 | 99.75 40 | 99.39 194 | 99.65 14 | 99.70 101 | 99.78 54 | 99.89 62 | 98.81 144 | 97.60 202 | 94.28 207 | 97.24 208 | 97.15 207 |
|
| CMPMVS |  | 76.62 19 | 98.64 171 | 98.60 160 | 98.68 192 | 99.33 205 | 97.07 220 | 98.11 219 | 98.50 213 | 97.69 196 | 99.26 178 | 98.35 187 | 99.66 120 | 97.62 184 | 99.43 75 | 99.02 101 | 99.24 178 | 99.01 169 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| FMVSNet3 | | | 98.63 173 | 98.75 153 | 98.49 198 | 98.10 223 | 99.44 83 | 99.02 175 | 99.78 114 | 98.13 176 | 98.48 213 | 99.43 108 | 97.58 185 | 96.16 206 | 98.85 167 | 98.39 163 | 99.40 163 | 99.41 121 |
|
| GA-MVS | | | 98.59 174 | 98.15 180 | 99.09 170 | 99.59 173 | 99.13 150 | 98.84 192 | 99.52 180 | 98.61 144 | 99.35 172 | 99.67 69 | 93.03 200 | 97.73 183 | 98.90 160 | 98.26 169 | 99.51 147 | 99.48 106 |
|
| MAR-MVS | | | 98.54 175 | 98.15 180 | 98.98 175 | 99.37 201 | 98.09 210 | 98.56 204 | 99.65 157 | 96.11 221 | 99.27 177 | 97.16 209 | 99.50 133 | 98.03 175 | 98.87 162 | 98.23 171 | 99.01 186 | 99.13 157 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| new-patchmatchnet | | | 98.49 176 | 97.60 185 | 99.53 100 | 99.90 40 | 99.55 57 | 99.77 33 | 99.48 183 | 99.67 10 | 99.86 36 | 99.98 3 | 99.98 5 | 99.50 68 | 96.90 209 | 91.52 213 | 98.67 195 | 95.62 213 |
|
| FPMVS | | | 98.48 177 | 98.83 146 | 98.07 208 | 99.09 215 | 97.98 213 | 99.07 167 | 98.04 219 | 98.99 95 | 99.22 181 | 98.85 158 | 99.43 139 | 93.79 217 | 99.66 48 | 99.11 88 | 99.24 178 | 97.76 201 |
|
| MVS-HIRNet | | | 98.45 178 | 98.25 175 | 98.69 191 | 99.12 213 | 97.81 219 | 98.55 206 | 99.85 69 | 98.58 147 | 99.67 110 | 99.61 80 | 99.86 76 | 97.46 187 | 97.95 200 | 96.37 202 | 97.49 205 | 97.56 204 |
|
| test0.0.03 1 | | | 98.41 179 | 98.41 171 | 98.40 202 | 99.62 160 | 99.16 143 | 98.87 189 | 99.41 190 | 97.15 204 | 96.60 225 | 99.31 125 | 97.00 191 | 96.55 203 | 98.91 156 | 98.51 156 | 99.37 166 | 98.82 176 |
|
| gg-mvs-nofinetune | | | 98.40 180 | 98.26 173 | 98.57 196 | 99.83 89 | 98.86 173 | 98.77 198 | 99.97 1 | 99.57 25 | 99.99 1 | 99.99 1 | 93.81 198 | 93.50 218 | 98.91 156 | 98.20 173 | 99.33 171 | 98.52 184 |
|
| baseline1 | | | 98.39 181 | 97.59 186 | 99.31 141 | 99.78 109 | 99.45 81 | 99.13 161 | 99.53 178 | 98.06 182 | 98.87 198 | 98.63 172 | 90.04 215 | 98.76 147 | 98.85 167 | 98.84 125 | 99.81 59 | 99.28 141 |
|
| pmnet_mix02 | | | 98.28 182 | 97.48 188 | 99.22 154 | 99.78 109 | 99.12 153 | 99.68 57 | 99.39 194 | 99.49 35 | 99.86 36 | 99.82 48 | 99.89 62 | 99.23 104 | 95.54 212 | 92.36 210 | 97.38 206 | 96.14 211 |
|
| PatchT | | | 98.11 183 | 97.12 194 | 99.26 149 | 99.65 157 | 98.34 201 | 99.57 83 | 99.97 1 | 97.48 200 | 99.43 157 | 99.04 152 | 90.84 213 | 98.15 165 | 98.04 196 | 97.78 186 | 98.82 192 | 98.30 190 |
|
| DPM-MVS | | | 98.10 184 | 97.32 192 | 99.01 174 | 99.52 180 | 97.92 214 | 98.47 209 | 99.45 186 | 98.25 171 | 98.91 195 | 93.99 217 | 99.69 116 | 98.73 149 | 96.29 211 | 96.32 203 | 99.00 187 | 98.77 177 |
|
| EPNet_dtu | | | 98.09 185 | 98.25 175 | 97.91 210 | 99.58 176 | 98.02 212 | 98.19 216 | 99.67 153 | 97.94 188 | 99.74 83 | 99.07 150 | 98.71 169 | 93.40 219 | 97.50 204 | 97.09 197 | 96.89 210 | 99.44 114 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| EPNet | | | 98.06 186 | 98.11 182 | 98.00 209 | 99.60 168 | 98.99 164 | 98.38 210 | 99.68 149 | 98.18 175 | 98.85 200 | 97.89 195 | 95.60 195 | 92.72 220 | 98.30 191 | 98.10 179 | 98.76 193 | 99.72 40 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| CR-MVSNet | | | 97.91 187 | 96.80 197 | 99.22 154 | 99.60 168 | 98.23 204 | 98.91 185 | 99.97 1 | 96.89 214 | 99.43 157 | 99.10 146 | 89.24 218 | 98.15 165 | 98.04 196 | 97.78 186 | 99.26 176 | 98.30 190 |
|
| thres200 | | | 97.87 188 | 96.56 199 | 99.39 124 | 99.76 122 | 99.52 70 | 99.13 161 | 99.76 130 | 96.88 216 | 98.66 209 | 92.87 221 | 88.77 221 | 99.16 110 | 99.11 133 | 99.42 55 | 99.88 34 | 99.33 135 |
|
| baseline2 | | | 97.87 188 | 97.18 193 | 98.67 193 | 99.34 204 | 99.17 142 | 98.48 208 | 98.82 210 | 97.08 207 | 98.83 202 | 98.75 164 | 89.47 217 | 97.03 196 | 98.67 182 | 98.27 168 | 99.52 144 | 98.83 175 |
|
| thres600view7 | | | 97.86 190 | 96.53 202 | 99.41 122 | 99.84 83 | 99.52 70 | 99.36 127 | 99.76 130 | 97.32 202 | 98.38 218 | 93.24 218 | 87.25 223 | 99.23 104 | 99.11 133 | 99.75 18 | 99.88 34 | 99.48 106 |
|
| tfpn200view9 | | | 97.85 191 | 96.54 200 | 99.38 128 | 99.74 136 | 99.52 70 | 99.17 156 | 99.76 130 | 96.10 222 | 98.70 206 | 92.99 219 | 89.10 219 | 99.00 128 | 99.11 133 | 99.56 34 | 99.88 34 | 99.41 121 |
|
| thres400 | | | 97.82 192 | 96.47 203 | 99.40 123 | 99.81 99 | 99.44 83 | 99.29 143 | 99.69 143 | 97.15 204 | 98.57 210 | 92.82 222 | 87.96 222 | 99.16 110 | 98.96 148 | 99.55 37 | 99.86 42 | 99.41 121 |
|
| IB-MVS | | 98.10 14 | 97.76 193 | 97.40 191 | 98.18 204 | 99.62 160 | 99.11 155 | 98.24 214 | 98.35 215 | 96.56 218 | 99.44 155 | 91.28 223 | 98.96 163 | 93.84 216 | 98.09 195 | 98.62 149 | 99.56 137 | 99.18 148 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| test-LLR | | | 97.74 194 | 97.46 189 | 98.08 206 | 99.62 160 | 98.37 199 | 98.26 212 | 99.41 190 | 97.03 208 | 97.38 221 | 99.54 91 | 92.89 202 | 95.12 213 | 98.78 176 | 97.68 190 | 98.65 196 | 97.90 197 |
|
| RPMNet | | | 97.70 195 | 96.54 200 | 99.06 173 | 99.57 179 | 98.23 204 | 98.95 182 | 99.97 1 | 96.89 214 | 99.49 147 | 99.13 142 | 89.63 216 | 97.09 193 | 96.68 210 | 97.02 198 | 99.26 176 | 98.19 194 |
|
| thres100view900 | | | 97.69 196 | 96.37 204 | 99.23 151 | 99.74 136 | 99.21 139 | 98.81 196 | 99.43 189 | 96.10 222 | 98.70 206 | 92.99 219 | 89.10 219 | 98.88 140 | 98.58 185 | 99.31 63 | 99.82 56 | 99.27 142 |
|
| FMVSNet5 | | | 97.69 196 | 96.98 195 | 98.53 197 | 98.53 221 | 99.36 103 | 98.90 188 | 99.54 173 | 96.38 219 | 98.44 216 | 95.38 215 | 90.08 214 | 97.05 195 | 99.46 67 | 99.06 94 | 98.73 194 | 99.12 159 |
|
| MVE |  | 91.08 18 | 97.68 198 | 97.65 184 | 97.71 216 | 98.46 222 | 91.62 226 | 97.92 222 | 98.86 209 | 98.73 131 | 97.99 220 | 98.64 171 | 99.96 14 | 99.17 107 | 99.59 56 | 97.75 188 | 93.87 225 | 97.27 205 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| test-mter | | | 97.65 199 | 97.57 187 | 97.75 214 | 98.90 220 | 98.56 192 | 98.15 217 | 98.45 214 | 96.92 213 | 96.84 224 | 99.52 99 | 92.53 210 | 95.24 212 | 99.04 138 | 98.12 177 | 98.90 190 | 98.29 192 |
|
| TESTMET0.1,1 | | | 97.62 200 | 97.46 189 | 97.81 212 | 99.07 216 | 98.37 199 | 98.26 212 | 98.35 215 | 97.03 208 | 97.38 221 | 99.54 91 | 92.89 202 | 95.12 213 | 98.78 176 | 97.68 190 | 98.65 196 | 97.90 197 |
|
| test2506 | | | 97.57 201 | 95.67 210 | 99.78 42 | 99.95 10 | 99.78 18 | 99.67 61 | 99.93 27 | 99.45 39 | 99.55 134 | 99.20 135 | 71.73 230 | 99.65 38 | 99.93 3 | 99.88 3 | 99.94 16 | 99.72 40 |
|
| MVSTER | | | 97.55 202 | 96.75 198 | 98.48 199 | 99.46 192 | 99.54 60 | 98.24 214 | 99.77 121 | 97.56 198 | 99.41 162 | 99.31 125 | 84.86 225 | 94.66 215 | 98.86 165 | 97.75 188 | 99.34 170 | 99.38 129 |
|
| ET-MVSNet_ETH3D | | | 97.44 203 | 96.29 205 | 98.78 188 | 97.93 224 | 98.95 166 | 98.91 185 | 99.09 206 | 98.00 185 | 99.24 179 | 98.83 159 | 84.62 226 | 98.02 176 | 97.43 206 | 97.38 195 | 99.48 151 | 98.84 174 |
|
| MDTV_nov1_ep13 | | | 97.41 204 | 96.26 206 | 98.76 189 | 99.47 190 | 98.43 198 | 99.26 148 | 99.82 90 | 98.06 182 | 99.23 180 | 99.22 132 | 92.86 204 | 98.05 172 | 95.33 214 | 93.66 209 | 96.73 211 | 96.26 210 |
|
| ADS-MVSNet | | | 97.29 205 | 96.17 207 | 98.59 195 | 99.59 173 | 98.70 185 | 99.32 133 | 99.86 62 | 98.47 152 | 99.56 131 | 99.08 148 | 98.16 179 | 97.34 189 | 92.92 216 | 91.17 214 | 95.91 214 | 94.72 216 |
|
| SCA | | | 97.25 206 | 96.05 208 | 98.64 194 | 99.36 203 | 99.02 160 | 99.27 145 | 99.96 12 | 98.25 171 | 99.69 102 | 98.71 168 | 94.66 197 | 97.95 179 | 93.95 215 | 92.35 211 | 95.64 215 | 95.40 215 |
|
| gm-plane-assit | | | 96.82 207 | 94.84 215 | 99.13 164 | 99.95 10 | 99.78 18 | 99.69 56 | 99.92 38 | 99.19 70 | 99.84 47 | 99.92 16 | 72.93 229 | 96.44 205 | 98.21 194 | 97.01 199 | 98.92 189 | 96.87 209 |
|
| PatchmatchNet |  | | 96.81 208 | 95.41 212 | 98.43 201 | 99.43 197 | 98.30 202 | 99.23 151 | 99.93 27 | 98.19 174 | 99.64 116 | 98.81 162 | 93.50 199 | 97.43 188 | 92.89 217 | 90.78 216 | 94.94 220 | 95.41 214 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| EPMVS | | | 96.76 209 | 95.30 214 | 98.46 200 | 99.42 198 | 98.47 196 | 99.32 133 | 99.91 44 | 98.42 159 | 99.51 143 | 99.07 150 | 92.81 205 | 97.12 192 | 92.39 218 | 91.71 212 | 95.51 216 | 94.20 218 |
|
| E-PMN | | | 96.72 210 | 95.78 209 | 97.81 212 | 99.45 193 | 95.46 223 | 98.14 218 | 98.33 217 | 97.99 186 | 98.73 205 | 98.09 192 | 98.97 161 | 97.54 186 | 97.45 205 | 91.09 215 | 94.70 222 | 91.40 221 |
|
| tpm | | | 96.56 211 | 94.68 216 | 98.74 190 | 99.12 213 | 97.90 215 | 98.79 197 | 99.93 27 | 96.79 217 | 99.69 102 | 99.19 137 | 81.48 228 | 97.56 185 | 95.46 213 | 93.97 208 | 97.37 207 | 97.99 196 |
|
| EMVS | | | 96.47 212 | 95.38 213 | 97.74 215 | 99.42 198 | 95.37 224 | 98.07 220 | 98.27 218 | 97.85 191 | 98.90 196 | 97.48 205 | 98.73 168 | 97.20 190 | 97.21 208 | 90.39 217 | 94.59 224 | 90.65 222 |
|
| tpmrst | | | 96.18 213 | 94.47 217 | 98.18 204 | 99.52 180 | 97.89 216 | 98.96 179 | 99.79 109 | 98.07 181 | 99.16 184 | 99.30 128 | 92.69 206 | 96.69 201 | 90.76 220 | 88.85 220 | 94.96 219 | 93.69 219 |
|
| CostFormer | | | 95.61 214 | 93.35 220 | 98.24 203 | 99.48 189 | 98.03 211 | 98.65 201 | 99.83 83 | 96.93 212 | 99.42 160 | 98.83 159 | 83.65 227 | 97.08 194 | 90.39 221 | 89.54 219 | 94.94 220 | 96.11 212 |
|
| dps | | | 95.59 215 | 93.46 219 | 98.08 206 | 99.33 205 | 98.22 207 | 98.87 189 | 99.70 141 | 96.17 220 | 98.87 198 | 97.75 198 | 86.85 224 | 96.60 202 | 91.24 219 | 89.62 218 | 95.10 218 | 94.34 217 |
|
| tpm cat1 | | | 95.52 216 | 93.49 218 | 97.88 211 | 99.28 209 | 97.87 217 | 98.65 201 | 99.77 121 | 97.27 203 | 99.46 153 | 98.04 193 | 90.99 212 | 95.46 210 | 88.57 222 | 88.14 221 | 94.64 223 | 93.54 220 |
|
| test_method | | | 91.96 217 | 95.51 211 | 87.82 218 | 70.84 226 | 82.79 227 | 92.13 226 | 87.74 221 | 98.88 111 | 95.40 226 | 99.20 135 | 98.04 181 | 85.65 222 | 97.71 201 | 94.95 205 | 95.13 217 | 97.00 208 |
|
| GG-mvs-BLEND | | | 70.44 218 | 96.91 196 | 39.57 219 | 3.32 229 | 96.51 221 | 91.01 227 | 4.05 225 | 97.03 208 | 33.20 228 | 94.67 216 | 97.75 183 | 7.59 225 | 98.28 192 | 96.85 200 | 98.24 200 | 97.26 206 |
|
| testmvs | | | 22.33 219 | 29.66 221 | 13.79 220 | 8.97 227 | 10.35 228 | 15.53 230 | 8.09 224 | 32.51 224 | 19.87 229 | 45.18 224 | 30.56 232 | 17.05 224 | 29.96 223 | 24.74 222 | 13.21 226 | 34.30 223 |
|
| test123 | | | 21.52 220 | 28.47 222 | 13.42 221 | 7.29 228 | 10.12 229 | 15.70 229 | 8.31 223 | 31.54 225 | 19.34 230 | 36.33 225 | 37.40 231 | 17.14 223 | 27.45 224 | 23.17 223 | 12.73 227 | 33.30 224 |
|
| uanet_test | | | 0.00 221 | 0.00 223 | 0.00 222 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 226 | 0.00 226 | 0.00 231 | 0.00 226 | 0.00 233 | 0.00 226 | 0.00 225 | 0.00 224 | 0.00 228 | 0.00 225 |
|
| sosnet-low-res | | | 0.00 221 | 0.00 223 | 0.00 222 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 226 | 0.00 226 | 0.00 231 | 0.00 226 | 0.00 233 | 0.00 226 | 0.00 225 | 0.00 224 | 0.00 228 | 0.00 225 |
|
| sosnet | | | 0.00 221 | 0.00 223 | 0.00 222 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 226 | 0.00 226 | 0.00 231 | 0.00 226 | 0.00 233 | 0.00 226 | 0.00 225 | 0.00 224 | 0.00 228 | 0.00 225 |
|
| TPM-MVS | | | | | | 99.47 190 | 97.86 218 | 97.79 223 | | | 98.49 212 | 97.62 201 | 99.83 87 | 95.33 211 | | | 98.90 190 | 98.77 177 |
| Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025 |
| RE-MVS-def | | | | | | | | | | | 99.96 3 | | | | | | | |
|
| 9.14 | | | | | | | | | | | | | 99.57 127 | | | | | |
|
| SR-MVS | | | | | | 99.73 138 | | | 99.74 137 | | | | 99.88 68 | | | | | |
|
| Anonymous202405211 | | | | 99.14 108 | | 99.87 54 | 99.55 57 | 99.50 100 | 99.70 141 | 98.55 149 | | 98.61 174 | 98.46 172 | 98.76 147 | 99.66 48 | 99.50 43 | 99.85 45 | 99.63 61 |
|
| our_test_3 | | | | | | 99.75 126 | 99.11 155 | 99.74 47 | | | | | | | | | | |
|
| ambc | | | | 98.83 146 | | 99.72 140 | 98.52 193 | 98.84 192 | | 98.96 100 | 99.92 10 | 99.34 119 | 99.74 108 | 99.04 126 | 98.68 181 | 97.57 193 | 99.46 153 | 98.99 172 |
|
| MTAPA | | | | | | | | | | | 99.62 119 | | 99.95 25 | | | | | |
|
| MTMP | | | | | | | | | | | 99.53 135 | | 99.92 50 | | | | | |
|
| Patchmatch-RL test | | | | | | | | 65.75 228 | | | | | | | | | | |
|
| tmp_tt | | | | | 88.14 217 | 96.68 225 | 91.91 225 | 93.70 225 | 61.38 222 | 99.61 20 | 90.51 227 | 99.40 115 | 99.71 112 | 90.32 221 | 99.22 112 | 99.44 53 | 96.25 213 | |
|
| XVS | | | | | | 99.86 69 | 99.30 117 | 99.72 52 | | | 99.69 102 | | 99.93 42 | | | | 99.60 125 | |
|
| X-MVStestdata | | | | | | 99.86 69 | 99.30 117 | 99.72 52 | | | 99.69 102 | | 99.93 42 | | | | 99.60 125 | |
|
| mPP-MVS | | | | | | 99.84 83 | | | | | | | 99.92 50 | | | | | |
|
| NP-MVS | | | | | | | | | | 97.37 201 | | | | | | | | |
|
| Patchmtry | | | | | | | 98.19 209 | 98.91 185 | 99.97 1 | | 99.43 157 | | | | | | | |
|
| DeepMVS_CX |  | | | | | | 96.39 222 | 97.15 224 | 88.89 220 | 97.94 188 | 99.51 143 | 95.71 214 | 97.88 182 | 98.19 163 | 98.92 153 | | 97.73 204 | 97.75 202 |
|