LTVRE_ROB | | 99.39 1 | 99.90 1 | 99.87 1 | 99.93 1 | 99.97 2 | 99.82 8 | 99.91 3 | 99.92 37 | 99.75 4 | 99.93 5 | 99.89 30 | 100.00 1 | 99.87 2 | 99.93 3 | 99.82 10 | 99.96 3 | 99.90 2 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
v7n | | | 99.89 2 | 99.86 3 | 99.93 1 | 99.97 2 | 99.83 4 | 99.93 1 | 99.96 12 | 99.77 3 | 99.89 17 | 99.99 1 | 99.86 76 | 99.84 5 | 99.89 11 | 99.81 11 | 99.97 1 | 99.88 6 |
|
SixPastTwentyTwo | | | 99.89 2 | 99.85 5 | 99.93 1 | 99.97 2 | 99.88 1 | 99.92 2 | 99.97 1 | 99.66 12 | 99.94 4 | 99.94 11 | 99.74 106 | 99.81 7 | 99.97 1 | 99.89 1 | 99.96 3 | 99.89 4 |
|
pmmvs6 | | | 99.88 4 | 99.87 1 | 99.89 9 | 99.97 2 | 99.76 21 | 99.89 5 | 99.96 12 | 99.82 2 | 99.90 15 | 99.92 16 | 99.95 25 | 99.68 31 | 99.93 3 | 99.88 3 | 99.95 7 | 99.86 11 |
|
anonymousdsp | | | 99.87 5 | 99.86 3 | 99.88 12 | 99.95 10 | 99.75 27 | 99.90 4 | 99.96 12 | 99.69 7 | 99.83 51 | 99.96 4 | 99.99 3 | 99.74 21 | 99.95 2 | 99.83 7 | 99.91 24 | 99.88 6 |
|
FC-MVSNet-test | | | 99.84 6 | 99.80 6 | 99.89 9 | 99.96 7 | 99.83 4 | 99.84 16 | 99.95 23 | 99.37 48 | 99.77 68 | 99.95 6 | 99.96 14 | 99.85 3 | 99.93 3 | 99.83 7 | 99.95 7 | 99.72 39 |
|
UniMVSNet_ETH3D | | | 99.81 7 | 99.79 7 | 99.85 18 | 99.98 1 | 99.76 21 | 99.73 47 | 99.96 12 | 99.68 9 | 99.87 29 | 99.59 84 | 99.91 56 | 99.58 51 | 99.90 10 | 99.85 6 | 99.96 3 | 99.81 19 |
|
TDRefinement | | | 99.81 7 | 99.76 9 | 99.86 15 | 99.83 88 | 99.53 62 | 99.89 5 | 99.91 43 | 99.73 5 | 99.88 23 | 99.83 45 | 99.96 14 | 99.76 16 | 99.91 9 | 99.81 11 | 99.86 41 | 99.59 68 |
|
WR-MVS | | | 99.79 9 | 99.68 13 | 99.91 5 | 99.95 10 | 99.83 4 | 99.87 9 | 99.96 12 | 99.39 46 | 99.93 5 | 99.87 35 | 99.29 149 | 99.77 14 | 99.83 22 | 99.72 20 | 99.97 1 | 99.82 16 |
|
MIMVSNet1 | | | 99.79 9 | 99.75 10 | 99.84 21 | 99.89 42 | 99.83 4 | 99.84 16 | 99.89 52 | 99.31 54 | 99.93 5 | 99.92 16 | 99.97 9 | 99.68 31 | 99.89 11 | 99.64 27 | 99.82 55 | 99.66 53 |
|
pm-mvs1 | | | 99.77 11 | 99.69 12 | 99.86 15 | 99.94 23 | 99.68 36 | 99.84 16 | 99.93 27 | 99.59 21 | 99.87 29 | 99.92 16 | 99.21 152 | 99.65 37 | 99.88 15 | 99.77 16 | 99.93 20 | 99.78 26 |
|
PEN-MVS | | | 99.77 11 | 99.65 18 | 99.91 5 | 99.95 10 | 99.80 15 | 99.86 10 | 99.97 1 | 99.08 82 | 99.89 17 | 99.69 67 | 99.68 115 | 99.84 5 | 99.81 27 | 99.64 27 | 99.95 7 | 99.81 19 |
|
EU-MVSNet | | | 99.76 13 | 99.74 11 | 99.78 41 | 99.82 93 | 99.81 12 | 99.88 7 | 99.87 57 | 99.31 54 | 99.75 76 | 99.91 23 | 99.76 105 | 99.78 12 | 99.84 21 | 99.74 19 | 99.56 135 | 99.81 19 |
|
Vis-MVSNet |  | | 99.76 13 | 99.78 8 | 99.75 51 | 99.92 30 | 99.77 20 | 99.83 19 | 99.85 68 | 99.43 40 | 99.85 42 | 99.84 42 | 100.00 1 | 99.13 116 | 99.83 22 | 99.66 24 | 99.90 28 | 99.90 2 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
CS-MVS | | | 99.75 15 | 99.66 17 | 99.85 18 | 99.87 53 | 99.86 2 | 99.83 19 | 99.91 43 | 98.84 116 | 99.92 9 | 99.57 86 | 99.85 82 | 99.60 46 | 99.82 25 | 99.79 13 | 99.94 15 | 99.87 9 |
|
CS-MVS-test | | | 99.75 15 | 99.67 14 | 99.84 21 | 99.91 34 | 99.85 3 | 99.85 13 | 99.92 37 | 98.75 126 | 99.89 17 | 99.64 74 | 99.95 25 | 99.55 54 | 99.89 11 | 99.79 13 | 99.92 21 | 99.83 14 |
|
DTE-MVSNet | | | 99.75 15 | 99.61 24 | 99.92 4 | 99.95 10 | 99.81 12 | 99.86 10 | 99.96 12 | 99.18 71 | 99.92 9 | 99.66 70 | 99.45 134 | 99.85 3 | 99.80 28 | 99.56 33 | 99.96 3 | 99.79 25 |
|
tfpnnormal | | | 99.74 18 | 99.63 21 | 99.86 15 | 99.93 27 | 99.75 27 | 99.80 28 | 99.89 52 | 99.31 54 | 99.88 23 | 99.43 107 | 99.66 118 | 99.77 14 | 99.80 28 | 99.71 21 | 99.92 21 | 99.76 30 |
|
DeepC-MVS | | 99.05 5 | 99.74 18 | 99.64 19 | 99.84 21 | 99.90 39 | 99.39 93 | 99.79 29 | 99.81 97 | 99.69 7 | 99.90 15 | 99.87 35 | 99.98 5 | 99.81 7 | 99.62 54 | 99.32 60 | 99.83 52 | 99.65 56 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
thisisatest0515 | | | 99.73 20 | 99.67 14 | 99.81 31 | 99.93 27 | 99.74 29 | 99.68 56 | 99.91 43 | 99.59 21 | 99.88 23 | 99.73 56 | 99.81 91 | 99.55 54 | 99.59 55 | 99.53 38 | 99.89 31 | 99.70 47 |
|
PS-CasMVS | | | 99.73 20 | 99.59 30 | 99.90 8 | 99.95 10 | 99.80 15 | 99.85 13 | 99.97 1 | 98.95 100 | 99.86 35 | 99.73 56 | 99.36 141 | 99.81 7 | 99.83 22 | 99.67 23 | 99.95 7 | 99.83 14 |
|
WR-MVS_H | | | 99.73 20 | 99.61 24 | 99.88 12 | 99.95 10 | 99.82 8 | 99.83 19 | 99.96 12 | 99.01 92 | 99.84 46 | 99.71 64 | 99.41 140 | 99.74 21 | 99.77 33 | 99.70 22 | 99.95 7 | 99.82 16 |
|
TransMVSNet (Re) | | | 99.72 23 | 99.59 30 | 99.88 12 | 99.95 10 | 99.76 21 | 99.88 7 | 99.94 24 | 99.58 23 | 99.92 9 | 99.90 27 | 98.55 168 | 99.65 37 | 99.89 11 | 99.76 17 | 99.95 7 | 99.70 47 |
|
ACMH | | 99.11 4 | 99.72 23 | 99.63 21 | 99.84 21 | 99.87 53 | 99.59 49 | 99.83 19 | 99.88 56 | 99.46 37 | 99.87 29 | 99.66 70 | 99.95 25 | 99.76 16 | 99.73 38 | 99.47 47 | 99.84 47 | 99.52 99 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
FC-MVSNet-train | | | 99.70 25 | 99.67 14 | 99.74 57 | 99.94 23 | 99.71 32 | 99.82 24 | 99.91 43 | 99.14 79 | 99.53 133 | 99.70 65 | 99.88 68 | 99.33 89 | 99.88 15 | 99.61 32 | 99.94 15 | 99.77 27 |
|
DROMVSNet | | | 99.70 25 | 99.57 33 | 99.85 18 | 99.95 10 | 99.81 12 | 99.85 13 | 99.93 27 | 98.39 164 | 99.76 71 | 99.48 104 | 99.94 35 | 99.70 29 | 99.85 19 | 99.66 24 | 99.91 24 | 99.87 9 |
|
COLMAP_ROB |  | 99.18 2 | 99.70 25 | 99.60 28 | 99.81 31 | 99.84 82 | 99.37 99 | 99.76 35 | 99.84 77 | 99.54 29 | 99.82 54 | 99.64 74 | 99.95 25 | 99.75 18 | 99.79 30 | 99.56 33 | 99.83 52 | 99.37 129 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
ACMH+ | | 98.94 6 | 99.69 28 | 99.59 30 | 99.81 31 | 99.88 48 | 99.41 90 | 99.75 39 | 99.86 61 | 99.43 40 | 99.80 58 | 99.54 90 | 99.97 9 | 99.73 24 | 99.82 25 | 99.52 40 | 99.85 44 | 99.43 115 |
|
test20.03 | | | 99.68 29 | 99.60 28 | 99.76 47 | 99.91 34 | 99.70 35 | 99.68 56 | 99.87 57 | 99.05 89 | 99.88 23 | 99.92 16 | 99.88 68 | 99.50 67 | 99.77 33 | 99.42 54 | 99.75 76 | 99.49 101 |
|
CP-MVSNet | | | 99.68 29 | 99.51 42 | 99.89 9 | 99.95 10 | 99.76 21 | 99.83 19 | 99.96 12 | 98.83 120 | 99.84 46 | 99.65 73 | 99.09 154 | 99.80 10 | 99.78 31 | 99.62 31 | 99.95 7 | 99.82 16 |
|
casdiffmvs_mvg |  | | 99.67 31 | 99.61 24 | 99.74 57 | 99.94 23 | 99.60 45 | 99.62 70 | 99.77 120 | 99.54 29 | 99.67 108 | 99.82 47 | 99.80 97 | 99.52 61 | 99.40 76 | 99.51 41 | 99.91 24 | 99.59 68 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
PVSNet_Blended_VisFu | | | 99.66 32 | 99.64 19 | 99.67 69 | 99.91 34 | 99.71 32 | 99.61 71 | 99.79 108 | 99.41 42 | 99.91 13 | 99.85 40 | 99.61 121 | 99.00 126 | 99.67 45 | 99.42 54 | 99.81 58 | 99.81 19 |
|
v10 | | | 99.65 33 | 99.51 42 | 99.81 31 | 99.83 88 | 99.61 44 | 99.75 39 | 99.94 24 | 99.56 25 | 99.76 71 | 99.94 11 | 99.60 123 | 99.73 24 | 99.11 131 | 99.01 101 | 99.85 44 | 99.74 34 |
|
CHOSEN 1792x2688 | | | 99.65 33 | 99.55 36 | 99.77 46 | 99.93 27 | 99.60 45 | 99.79 29 | 99.92 37 | 99.73 5 | 99.74 82 | 99.93 14 | 99.98 5 | 99.80 10 | 98.83 171 | 99.01 101 | 99.45 153 | 99.76 30 |
|
UA-Net | | | 99.64 35 | 99.62 23 | 99.66 71 | 99.97 2 | 99.82 8 | 99.14 158 | 99.96 12 | 98.95 100 | 99.52 139 | 99.38 116 | 99.86 76 | 99.55 54 | 99.72 39 | 99.66 24 | 99.80 62 | 99.94 1 |
|
GeoE | | | 99.63 36 | 99.51 42 | 99.78 41 | 99.91 34 | 99.57 52 | 99.78 31 | 99.97 1 | 99.23 62 | 99.72 91 | 99.72 60 | 99.80 97 | 99.50 67 | 99.45 73 | 99.10 87 | 99.79 65 | 99.71 45 |
|
Baseline_NR-MVSNet | | | 99.62 37 | 99.48 47 | 99.78 41 | 99.85 76 | 99.76 21 | 99.59 76 | 99.82 89 | 98.84 116 | 99.88 23 | 99.91 23 | 99.04 155 | 99.61 44 | 99.46 66 | 99.78 15 | 99.94 15 | 99.60 66 |
|
pmmvs-eth3d | | | 99.61 38 | 99.48 47 | 99.75 51 | 99.87 53 | 99.30 115 | 99.75 39 | 99.89 52 | 99.23 62 | 99.85 42 | 99.88 34 | 99.97 9 | 99.49 72 | 99.46 66 | 99.01 101 | 99.68 95 | 99.52 99 |
|
v1144 | | | 99.61 38 | 99.43 55 | 99.82 26 | 99.88 48 | 99.41 90 | 99.76 35 | 99.86 61 | 99.64 15 | 99.84 46 | 99.95 6 | 99.49 132 | 99.74 21 | 99.00 141 | 98.93 113 | 99.84 47 | 99.58 77 |
|
v8 | | | 99.61 38 | 99.45 53 | 99.79 40 | 99.80 99 | 99.59 49 | 99.73 47 | 99.93 27 | 99.48 35 | 99.77 68 | 99.90 27 | 99.48 133 | 99.67 34 | 99.11 131 | 98.89 117 | 99.84 47 | 99.73 36 |
|
casdiffmvs |  | | 99.61 38 | 99.55 36 | 99.68 68 | 99.89 42 | 99.53 62 | 99.64 64 | 99.68 148 | 99.51 32 | 99.62 117 | 99.90 27 | 99.96 14 | 99.37 83 | 99.28 101 | 99.25 63 | 99.88 33 | 99.44 112 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
CSCG | | | 99.61 38 | 99.52 41 | 99.71 62 | 99.89 42 | 99.62 42 | 99.52 92 | 99.76 129 | 99.61 19 | 99.69 100 | 99.73 56 | 99.96 14 | 99.57 52 | 99.27 104 | 98.62 147 | 99.81 58 | 99.85 13 |
|
v1192 | | | 99.60 43 | 99.41 59 | 99.82 26 | 99.89 42 | 99.43 85 | 99.81 26 | 99.84 77 | 99.63 17 | 99.85 42 | 99.95 6 | 99.35 144 | 99.72 26 | 99.01 139 | 98.90 116 | 99.82 55 | 99.58 77 |
|
APDe-MVS | | | 99.60 43 | 99.48 47 | 99.73 60 | 99.85 76 | 99.51 73 | 99.75 39 | 99.85 68 | 99.17 72 | 99.81 57 | 99.56 88 | 99.94 35 | 99.44 79 | 99.42 75 | 99.22 64 | 99.67 97 | 99.54 91 |
|
v1921920 | | | 99.59 45 | 99.40 62 | 99.82 26 | 99.88 48 | 99.45 80 | 99.81 26 | 99.83 82 | 99.65 13 | 99.86 35 | 99.95 6 | 99.29 149 | 99.75 18 | 98.98 145 | 98.86 121 | 99.78 67 | 99.59 68 |
|
TranMVSNet+NR-MVSNet | | | 99.59 45 | 99.42 58 | 99.80 36 | 99.87 53 | 99.55 56 | 99.64 64 | 99.86 61 | 99.05 89 | 99.88 23 | 99.72 60 | 99.33 147 | 99.64 41 | 99.47 65 | 99.14 73 | 99.91 24 | 99.67 52 |
|
EG-PatchMatch MVS | | | 99.59 45 | 99.49 46 | 99.70 65 | 99.82 93 | 99.26 122 | 99.39 121 | 99.83 82 | 98.99 94 | 99.93 5 | 99.54 90 | 99.92 50 | 99.51 63 | 99.78 31 | 99.50 42 | 99.73 85 | 99.41 119 |
|
pmmvs5 | | | 99.58 48 | 99.47 50 | 99.70 65 | 99.84 82 | 99.50 74 | 99.58 80 | 99.80 105 | 98.98 97 | 99.73 88 | 99.92 16 | 99.81 91 | 99.49 72 | 99.28 101 | 99.05 95 | 99.77 71 | 99.73 36 |
|
v144192 | | | 99.58 48 | 99.39 63 | 99.80 36 | 99.87 53 | 99.44 82 | 99.77 32 | 99.84 77 | 99.64 15 | 99.86 35 | 99.93 14 | 99.35 144 | 99.72 26 | 98.92 151 | 98.82 125 | 99.74 81 | 99.66 53 |
|
v148 | | | 99.58 48 | 99.43 55 | 99.76 47 | 99.87 53 | 99.40 92 | 99.76 35 | 99.85 68 | 99.48 35 | 99.83 51 | 99.82 47 | 99.83 87 | 99.51 63 | 99.20 117 | 98.82 125 | 99.75 76 | 99.45 109 |
|
v1240 | | | 99.58 48 | 99.38 66 | 99.82 26 | 99.89 42 | 99.49 75 | 99.82 24 | 99.83 82 | 99.63 17 | 99.86 35 | 99.96 4 | 98.92 161 | 99.75 18 | 99.15 127 | 98.96 110 | 99.76 73 | 99.56 84 |
|
V42 | | | 99.57 52 | 99.41 59 | 99.75 51 | 99.84 82 | 99.37 99 | 99.73 47 | 99.83 82 | 99.41 42 | 99.75 76 | 99.89 30 | 99.42 138 | 99.60 46 | 99.15 127 | 98.96 110 | 99.76 73 | 99.65 56 |
|
TSAR-MVS + MP. | | | 99.56 53 | 99.54 39 | 99.58 87 | 99.69 143 | 99.14 144 | 99.73 47 | 99.45 184 | 99.50 33 | 99.35 170 | 99.60 82 | 99.93 42 | 99.50 67 | 99.56 57 | 99.37 58 | 99.77 71 | 99.64 59 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
v2v482 | | | 99.56 53 | 99.35 68 | 99.81 31 | 99.87 53 | 99.35 105 | 99.75 39 | 99.85 68 | 99.56 25 | 99.87 29 | 99.95 6 | 99.44 136 | 99.66 35 | 98.91 154 | 98.76 131 | 99.86 41 | 99.45 109 |
|
Gipuma |  | | 99.55 55 | 99.23 87 | 99.91 5 | 99.87 53 | 99.52 69 | 99.86 10 | 99.93 27 | 99.87 1 | 99.96 2 | 96.72 207 | 99.55 128 | 99.97 1 | 99.77 33 | 99.46 49 | 99.87 39 | 99.74 34 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
DVP-MVS |  | | 99.53 56 | 99.51 42 | 99.55 95 | 99.82 93 | 99.58 51 | 99.54 88 | 99.78 113 | 99.28 60 | 99.21 180 | 99.70 65 | 99.97 9 | 99.32 92 | 99.32 89 | 99.14 73 | 99.64 109 | 99.58 77 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
NR-MVSNet | | | 99.52 57 | 99.29 77 | 99.80 36 | 99.96 7 | 99.38 96 | 99.55 84 | 99.81 97 | 98.86 113 | 99.87 29 | 99.51 100 | 98.81 163 | 99.72 26 | 99.86 18 | 99.04 97 | 99.89 31 | 99.54 91 |
|
ACMMPR | | | 99.51 58 | 99.32 72 | 99.72 61 | 99.87 53 | 99.33 108 | 99.61 71 | 99.85 68 | 99.19 69 | 99.73 88 | 98.73 165 | 99.95 25 | 99.61 44 | 99.35 83 | 99.14 73 | 99.66 99 | 99.58 77 |
|
UniMVSNet (Re) | | | 99.50 59 | 99.29 77 | 99.75 51 | 99.86 68 | 99.47 78 | 99.51 95 | 99.82 89 | 98.90 108 | 99.89 17 | 99.64 74 | 99.00 156 | 99.55 54 | 99.32 89 | 99.08 90 | 99.90 28 | 99.59 68 |
|
FMVSNet1 | | | 99.50 59 | 99.57 33 | 99.42 117 | 99.67 150 | 99.65 39 | 99.60 75 | 99.91 43 | 99.40 44 | 99.39 163 | 99.83 45 | 99.27 151 | 98.14 165 | 99.68 42 | 99.50 42 | 99.81 58 | 99.68 49 |
|
HyFIR lowres test | | | 99.50 59 | 99.26 81 | 99.80 36 | 99.95 10 | 99.62 42 | 99.76 35 | 99.97 1 | 99.67 10 | 99.56 129 | 99.94 11 | 98.40 171 | 99.78 12 | 98.84 170 | 98.59 150 | 99.76 73 | 99.72 39 |
|
PM-MVS | | | 99.49 62 | 99.43 55 | 99.57 90 | 99.76 121 | 99.34 107 | 99.53 89 | 99.77 120 | 98.93 104 | 99.75 76 | 99.46 105 | 99.83 87 | 99.11 118 | 99.72 39 | 99.29 62 | 99.49 148 | 99.46 108 |
|
Anonymous20231206 | | | 99.48 63 | 99.31 74 | 99.69 67 | 99.79 103 | 99.57 52 | 99.63 68 | 99.79 108 | 98.88 110 | 99.91 13 | 99.72 60 | 99.93 42 | 99.59 48 | 99.24 107 | 98.63 146 | 99.43 157 | 99.18 146 |
|
DU-MVS | | | 99.48 63 | 99.26 81 | 99.75 51 | 99.85 76 | 99.38 96 | 99.50 99 | 99.81 97 | 98.86 113 | 99.89 17 | 99.51 100 | 98.98 157 | 99.59 48 | 99.46 66 | 98.97 108 | 99.87 39 | 99.63 60 |
|
RPSCF | | | 99.48 63 | 99.45 53 | 99.52 102 | 99.73 136 | 99.33 108 | 99.13 159 | 99.77 120 | 99.33 52 | 99.47 150 | 99.39 115 | 99.92 50 | 99.36 84 | 99.63 51 | 99.13 81 | 99.63 112 | 99.41 119 |
|
ACMMP_NAP | | | 99.47 66 | 99.33 70 | 99.63 79 | 99.85 76 | 99.28 120 | 99.56 83 | 99.83 82 | 98.75 126 | 99.48 147 | 99.03 152 | 99.95 25 | 99.47 78 | 99.48 62 | 99.19 66 | 99.57 131 | 99.59 68 |
|
Anonymous20231211 | | | 99.47 66 | 99.39 63 | 99.57 90 | 99.89 42 | 99.60 45 | 99.50 99 | 99.69 142 | 98.91 107 | 99.62 117 | 99.17 138 | 99.35 144 | 98.86 139 | 99.63 51 | 99.46 49 | 99.84 47 | 99.62 63 |
|
SteuartSystems-ACMMP | | | 99.47 66 | 99.22 90 | 99.76 47 | 99.88 48 | 99.36 101 | 99.65 63 | 99.84 77 | 98.47 151 | 99.80 58 | 98.68 168 | 99.96 14 | 99.68 31 | 99.37 80 | 99.06 92 | 99.72 88 | 99.66 53 |
Skip Steuart: Steuart Systems R&D Blog. |
ACMM | | 98.37 12 | 99.47 66 | 99.23 87 | 99.74 57 | 99.86 68 | 99.19 138 | 99.68 56 | 99.86 61 | 99.16 76 | 99.71 97 | 98.52 178 | 99.95 25 | 99.62 43 | 99.35 83 | 99.02 99 | 99.74 81 | 99.42 118 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
DVP-MVS++ | | | 99.46 70 | 99.57 33 | 99.33 138 | 99.75 125 | 99.57 52 | 99.44 112 | 99.81 97 | 99.38 47 | 98.56 209 | 99.81 51 | 99.99 3 | 98.79 143 | 99.33 87 | 99.13 81 | 99.62 118 | 99.81 19 |
|
HFP-MVS | | | 99.46 70 | 99.30 75 | 99.65 73 | 99.82 93 | 99.25 126 | 99.50 99 | 99.82 89 | 99.23 62 | 99.58 127 | 98.86 156 | 99.94 35 | 99.56 53 | 99.14 129 | 99.12 85 | 99.63 112 | 99.56 84 |
|
LGP-MVS_train | | | 99.46 70 | 99.18 99 | 99.78 41 | 99.87 53 | 99.25 126 | 99.71 54 | 99.87 57 | 98.02 183 | 99.79 62 | 98.90 155 | 99.96 14 | 99.66 35 | 99.49 61 | 99.17 69 | 99.79 65 | 99.49 101 |
|
SED-MVS | | | 99.45 73 | 99.46 52 | 99.42 117 | 99.77 116 | 99.57 52 | 99.42 115 | 99.80 105 | 99.06 86 | 99.38 164 | 99.66 70 | 99.96 14 | 98.65 151 | 99.31 91 | 99.14 73 | 99.53 140 | 99.55 89 |
|
ETV-MVS | | | 99.45 73 | 99.32 72 | 99.60 84 | 99.79 103 | 99.60 45 | 99.40 120 | 99.78 113 | 97.88 189 | 99.83 51 | 99.33 119 | 99.70 113 | 98.97 129 | 99.74 36 | 99.43 53 | 99.84 47 | 99.58 77 |
|
ACMP | | 98.32 13 | 99.44 75 | 99.18 99 | 99.75 51 | 99.83 88 | 99.18 139 | 99.64 64 | 99.83 82 | 98.81 122 | 99.79 62 | 98.42 185 | 99.96 14 | 99.64 41 | 99.46 66 | 98.98 107 | 99.74 81 | 99.44 112 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
DCV-MVSNet | | | 99.43 76 | 99.23 87 | 99.67 69 | 99.92 30 | 99.76 21 | 99.64 64 | 99.93 27 | 99.06 86 | 99.68 107 | 97.77 196 | 98.97 158 | 98.97 129 | 99.72 39 | 99.54 37 | 99.88 33 | 99.81 19 |
|
SMA-MVS |  | | 99.43 76 | 99.41 59 | 99.45 113 | 99.82 93 | 99.31 113 | 99.02 173 | 99.59 163 | 99.06 86 | 99.34 173 | 99.53 96 | 99.96 14 | 99.38 82 | 99.29 96 | 99.13 81 | 99.53 140 | 99.59 68 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
testgi | | | 99.43 76 | 99.47 50 | 99.38 126 | 99.90 39 | 99.67 38 | 99.30 139 | 99.73 137 | 98.64 139 | 99.53 133 | 99.52 98 | 99.90 59 | 98.08 168 | 99.65 49 | 99.40 57 | 99.75 76 | 99.55 89 |
|
DELS-MVS | | | 99.42 79 | 99.53 40 | 99.29 141 | 99.52 178 | 99.43 85 | 99.42 115 | 99.28 199 | 99.16 76 | 99.72 91 | 99.82 47 | 99.97 9 | 98.17 162 | 99.56 57 | 99.16 70 | 99.65 101 | 99.59 68 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
3Dnovator | | 99.16 3 | 99.42 79 | 99.22 90 | 99.65 73 | 99.78 108 | 99.13 148 | 99.50 99 | 99.85 68 | 99.40 44 | 99.80 58 | 98.59 174 | 99.79 101 | 99.30 96 | 99.20 117 | 99.06 92 | 99.71 91 | 99.35 132 |
|
DPE-MVS |  | | 99.41 81 | 99.36 67 | 99.47 109 | 99.66 151 | 99.48 76 | 99.46 110 | 99.75 134 | 98.65 135 | 99.41 160 | 99.67 68 | 99.95 25 | 98.82 140 | 99.21 114 | 99.14 73 | 99.72 88 | 99.40 124 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
UniMVSNet_NR-MVSNet | | | 99.41 81 | 99.12 111 | 99.76 47 | 99.86 68 | 99.48 76 | 99.50 99 | 99.81 97 | 98.84 116 | 99.89 17 | 99.45 106 | 98.32 174 | 99.59 48 | 99.22 111 | 98.89 117 | 99.90 28 | 99.63 60 |
|
CP-MVS | | | 99.41 81 | 99.20 95 | 99.65 73 | 99.80 99 | 99.23 133 | 99.44 112 | 99.75 134 | 98.60 144 | 99.74 82 | 98.66 169 | 99.93 42 | 99.48 75 | 99.33 87 | 99.16 70 | 99.73 85 | 99.48 104 |
|
QAPM | | | 99.41 81 | 99.21 94 | 99.64 78 | 99.78 108 | 99.16 141 | 99.51 95 | 99.85 68 | 99.20 66 | 99.72 91 | 99.43 107 | 99.81 91 | 99.25 100 | 98.87 160 | 98.71 138 | 99.71 91 | 99.30 137 |
|
UGNet | | | 99.40 85 | 99.61 24 | 99.16 160 | 99.88 48 | 99.64 40 | 99.61 71 | 99.77 120 | 99.31 54 | 99.63 116 | 99.33 119 | 99.93 42 | 96.46 202 | 99.63 51 | 99.53 38 | 99.63 112 | 99.89 4 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
Vis-MVSNet (Re-imp) | | | 99.40 85 | 99.28 79 | 99.55 95 | 99.92 30 | 99.68 36 | 99.31 134 | 99.87 57 | 98.69 132 | 99.16 182 | 99.08 147 | 98.64 167 | 99.20 104 | 99.65 49 | 99.46 49 | 99.83 52 | 99.72 39 |
|
OPM-MVS | | | 99.39 87 | 99.22 90 | 99.59 85 | 99.76 121 | 98.82 172 | 99.51 95 | 99.79 108 | 99.17 72 | 99.53 133 | 99.31 124 | 99.95 25 | 99.35 85 | 99.22 111 | 98.79 130 | 99.60 123 | 99.27 140 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
Fast-Effi-MVS+ | | | 99.39 87 | 99.18 99 | 99.63 79 | 99.86 68 | 99.28 120 | 99.45 111 | 99.91 43 | 98.47 151 | 99.61 120 | 99.50 102 | 99.57 125 | 99.17 105 | 99.24 107 | 98.66 143 | 99.78 67 | 99.59 68 |
|
LS3D | | | 99.39 87 | 99.28 79 | 99.52 102 | 99.77 116 | 99.39 93 | 99.55 84 | 99.82 89 | 98.93 104 | 99.64 114 | 98.52 178 | 99.67 117 | 98.58 155 | 99.74 36 | 99.63 29 | 99.75 76 | 99.06 162 |
|
diffmvs |  | | 99.38 90 | 99.33 70 | 99.45 113 | 99.87 53 | 99.39 93 | 99.28 142 | 99.58 166 | 99.55 27 | 99.50 143 | 99.85 40 | 99.85 82 | 98.94 134 | 98.58 183 | 98.68 141 | 99.51 145 | 99.39 126 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
CANet | | | 99.36 91 | 99.39 63 | 99.34 137 | 99.80 99 | 99.35 105 | 99.41 119 | 99.47 182 | 99.20 66 | 99.74 82 | 99.54 90 | 99.68 115 | 98.05 170 | 99.23 109 | 98.97 108 | 99.57 131 | 99.73 36 |
|
MVS_0304 | | | 99.36 91 | 99.35 68 | 99.37 132 | 99.85 76 | 99.36 101 | 99.39 121 | 99.56 168 | 99.36 50 | 99.75 76 | 99.23 130 | 99.90 59 | 97.97 176 | 99.00 141 | 98.83 124 | 99.69 94 | 99.77 27 |
|
ACMMP |  | | 99.36 91 | 99.06 119 | 99.71 62 | 99.86 68 | 99.36 101 | 99.63 68 | 99.85 68 | 98.33 166 | 99.72 91 | 97.73 198 | 99.94 35 | 99.53 58 | 99.37 80 | 99.13 81 | 99.65 101 | 99.56 84 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
SD-MVS | | | 99.35 94 | 99.26 81 | 99.46 111 | 99.66 151 | 99.15 143 | 98.92 182 | 99.67 151 | 99.55 27 | 99.35 170 | 98.83 158 | 99.91 56 | 99.35 85 | 99.19 120 | 98.53 152 | 99.78 67 | 99.68 49 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
MP-MVS |  | | 99.35 94 | 99.09 117 | 99.65 73 | 99.84 82 | 99.22 134 | 99.59 76 | 99.78 113 | 98.13 175 | 99.67 108 | 98.44 182 | 99.93 42 | 99.43 81 | 99.31 91 | 99.09 89 | 99.60 123 | 99.49 101 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
pmmvs4 | | | 99.34 96 | 99.15 106 | 99.57 90 | 99.77 116 | 98.90 165 | 99.51 95 | 99.77 120 | 99.07 84 | 99.73 88 | 99.72 60 | 99.84 85 | 99.07 120 | 98.85 165 | 98.39 161 | 99.55 138 | 99.27 140 |
|
EPP-MVSNet | | | 99.34 96 | 99.10 115 | 99.62 83 | 99.94 23 | 99.74 29 | 99.66 62 | 99.80 105 | 99.07 84 | 98.93 192 | 99.61 79 | 96.13 189 | 99.49 72 | 99.67 45 | 99.63 29 | 99.92 21 | 99.86 11 |
|
TSAR-MVS + GP. | | | 99.33 98 | 99.17 103 | 99.51 104 | 99.71 141 | 99.00 160 | 98.84 190 | 99.71 139 | 98.23 172 | 99.74 82 | 99.53 96 | 99.90 59 | 99.35 85 | 99.38 79 | 98.85 122 | 99.72 88 | 99.31 135 |
|
PHI-MVS | | | 99.33 98 | 99.19 97 | 99.49 107 | 99.69 143 | 99.25 126 | 99.27 143 | 99.59 163 | 98.44 155 | 99.78 66 | 99.15 139 | 99.92 50 | 98.95 133 | 99.39 77 | 99.04 97 | 99.64 109 | 99.18 146 |
|
MSP-MVS | | | 99.32 100 | 99.26 81 | 99.38 126 | 99.76 121 | 99.54 59 | 99.42 115 | 99.72 138 | 98.92 106 | 98.84 199 | 98.96 154 | 99.96 14 | 98.91 135 | 98.72 178 | 99.14 73 | 99.63 112 | 99.58 77 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
PGM-MVS | | | 99.32 100 | 98.99 128 | 99.71 62 | 99.86 68 | 99.31 113 | 99.59 76 | 99.86 61 | 97.51 198 | 99.75 76 | 98.23 188 | 99.94 35 | 99.53 58 | 99.29 96 | 99.08 90 | 99.65 101 | 99.54 91 |
|
DeepC-MVS_fast | | 98.69 9 | 99.32 100 | 99.13 109 | 99.53 98 | 99.63 157 | 98.78 175 | 99.53 89 | 99.33 197 | 99.08 82 | 99.77 68 | 99.18 137 | 99.89 62 | 99.29 97 | 99.00 141 | 98.70 139 | 99.65 101 | 99.30 137 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MSDG | | | 99.32 100 | 99.09 117 | 99.58 87 | 99.75 125 | 98.74 179 | 99.36 126 | 99.54 171 | 99.14 79 | 99.72 91 | 99.24 128 | 99.89 62 | 99.51 63 | 99.30 93 | 98.76 131 | 99.62 118 | 98.54 180 |
|
TSAR-MVS + ACMM | | | 99.31 104 | 99.26 81 | 99.37 132 | 99.66 151 | 98.97 163 | 99.20 151 | 99.56 168 | 99.33 52 | 99.19 181 | 99.54 90 | 99.91 56 | 99.32 92 | 99.12 130 | 98.34 164 | 99.29 171 | 99.65 56 |
|
3Dnovator+ | | 98.92 7 | 99.31 104 | 99.03 123 | 99.63 79 | 99.77 116 | 98.90 165 | 99.52 92 | 99.81 97 | 99.37 48 | 99.72 91 | 98.03 193 | 99.73 109 | 99.32 92 | 98.99 144 | 98.81 128 | 99.67 97 | 99.36 130 |
|
X-MVS | | | 99.30 106 | 98.99 128 | 99.66 71 | 99.85 76 | 99.30 115 | 99.49 106 | 99.82 89 | 98.32 167 | 99.69 100 | 97.31 205 | 99.93 42 | 99.50 67 | 99.37 80 | 99.16 70 | 99.60 123 | 99.53 94 |
|
MVS_111021_HR | | | 99.30 106 | 99.14 107 | 99.48 108 | 99.58 174 | 99.25 126 | 99.27 143 | 99.61 158 | 98.74 128 | 99.66 111 | 99.02 153 | 99.84 85 | 99.33 89 | 99.20 117 | 98.76 131 | 99.44 154 | 99.18 146 |
|
TAPA-MVS | | 98.54 10 | 99.30 106 | 99.24 86 | 99.36 136 | 99.44 192 | 98.77 177 | 99.00 175 | 99.41 188 | 99.23 62 | 99.60 122 | 99.50 102 | 99.86 76 | 99.15 112 | 99.29 96 | 98.95 112 | 99.56 135 | 99.08 158 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
CLD-MVS | | | 99.30 106 | 99.01 127 | 99.63 79 | 99.75 125 | 98.89 168 | 99.35 129 | 99.60 160 | 98.53 149 | 99.86 35 | 99.57 86 | 99.94 35 | 99.52 61 | 98.96 146 | 98.10 177 | 99.70 93 | 99.08 158 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
USDC | | | 99.29 110 | 98.98 130 | 99.65 73 | 99.72 138 | 98.87 170 | 99.47 108 | 99.66 154 | 99.35 51 | 99.87 29 | 99.58 85 | 99.87 75 | 99.51 63 | 98.85 165 | 97.93 183 | 99.65 101 | 98.38 184 |
|
PMVS |  | 94.32 17 | 99.27 111 | 99.55 36 | 98.94 177 | 99.60 166 | 99.43 85 | 99.39 121 | 99.54 171 | 98.99 94 | 99.69 100 | 99.60 82 | 99.81 91 | 95.68 207 | 99.88 15 | 99.83 7 | 99.73 85 | 99.31 135 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
FA-MVS(training) | | | 99.26 112 | 99.12 111 | 99.44 115 | 99.60 166 | 99.26 122 | 99.24 148 | 99.97 1 | 98.84 116 | 99.76 71 | 99.43 107 | 98.74 164 | 98.47 158 | 99.39 77 | 99.10 87 | 99.57 131 | 99.07 161 |
|
MVS_111021_LR | | | 99.25 113 | 99.13 109 | 99.39 122 | 99.50 186 | 99.14 144 | 99.23 149 | 99.50 179 | 98.67 133 | 99.61 120 | 99.12 143 | 99.81 91 | 99.16 108 | 99.28 101 | 98.67 142 | 99.35 167 | 99.21 145 |
|
ECVR-MVS |  | | 99.24 114 | 98.74 152 | 99.82 26 | 99.95 10 | 99.78 17 | 99.67 60 | 99.93 27 | 99.45 38 | 99.80 58 | 99.86 38 | 92.58 205 | 99.65 37 | 99.93 3 | 99.88 3 | 99.94 15 | 99.71 45 |
|
baseline | | | 99.24 114 | 99.30 75 | 99.17 159 | 99.78 108 | 99.14 144 | 99.10 163 | 99.69 142 | 98.97 98 | 99.49 145 | 99.84 42 | 99.88 68 | 97.99 175 | 98.85 165 | 98.73 136 | 98.98 186 | 99.72 39 |
|
EIA-MVS | | | 99.23 116 | 99.03 123 | 99.47 109 | 99.83 88 | 99.64 40 | 99.16 155 | 99.81 97 | 97.11 205 | 99.65 113 | 98.44 182 | 99.78 104 | 98.61 154 | 99.46 66 | 99.22 64 | 99.75 76 | 99.59 68 |
|
HPM-MVS++ |  | | 99.23 116 | 98.98 130 | 99.53 98 | 99.75 125 | 99.02 158 | 99.44 112 | 99.77 120 | 98.65 135 | 99.52 139 | 98.72 166 | 99.92 50 | 99.33 89 | 98.77 176 | 98.40 160 | 99.40 161 | 99.36 130 |
|
PMMVS2 | | | 99.23 116 | 99.22 90 | 99.24 148 | 99.80 99 | 99.14 144 | 99.50 99 | 99.82 89 | 99.12 81 | 98.41 214 | 99.91 23 | 99.98 5 | 98.51 156 | 99.48 62 | 98.76 131 | 99.38 163 | 98.14 192 |
|
test1111 | | | 99.21 119 | 98.67 156 | 99.84 21 | 99.96 7 | 99.82 8 | 99.72 51 | 99.94 24 | 99.54 29 | 99.78 66 | 99.89 30 | 91.89 208 | 99.69 30 | 99.93 3 | 99.89 1 | 99.95 7 | 99.75 32 |
|
CPTT-MVS | | | 99.21 119 | 98.89 140 | 99.58 87 | 99.72 138 | 99.12 151 | 99.30 139 | 99.76 129 | 98.62 140 | 99.66 111 | 97.51 201 | 99.89 62 | 99.48 75 | 99.01 139 | 98.64 145 | 99.58 130 | 99.40 124 |
|
TinyColmap | | | 99.21 119 | 98.89 140 | 99.59 85 | 99.61 162 | 98.61 187 | 99.47 108 | 99.67 151 | 99.02 91 | 99.82 54 | 99.15 139 | 99.74 106 | 99.35 85 | 99.17 125 | 98.33 165 | 99.63 112 | 98.22 190 |
|
Effi-MVS+ | | | 99.20 122 | 98.93 135 | 99.50 106 | 99.79 103 | 99.26 122 | 98.82 193 | 99.96 12 | 98.37 165 | 99.60 122 | 99.12 143 | 98.36 172 | 99.05 123 | 98.93 149 | 98.82 125 | 99.78 67 | 99.68 49 |
|
PVSNet_BlendedMVS | | | 99.20 122 | 99.17 103 | 99.23 149 | 99.69 143 | 99.33 108 | 99.04 168 | 99.13 202 | 98.41 160 | 99.79 62 | 99.33 119 | 99.36 141 | 98.10 166 | 99.29 96 | 98.87 119 | 99.65 101 | 99.56 84 |
|
PVSNet_Blended | | | 99.20 122 | 99.17 103 | 99.23 149 | 99.69 143 | 99.33 108 | 99.04 168 | 99.13 202 | 98.41 160 | 99.79 62 | 99.33 119 | 99.36 141 | 98.10 166 | 99.29 96 | 98.87 119 | 99.65 101 | 99.56 84 |
|
MCST-MVS | | | 99.17 125 | 98.82 148 | 99.57 90 | 99.75 125 | 98.70 183 | 99.25 147 | 99.69 142 | 98.62 140 | 99.59 124 | 98.54 176 | 99.79 101 | 99.53 58 | 98.48 187 | 98.15 173 | 99.64 109 | 99.43 115 |
|
APD-MVS |  | | 99.17 125 | 98.92 136 | 99.46 111 | 99.78 108 | 99.24 131 | 99.34 130 | 99.78 113 | 97.79 192 | 99.48 147 | 98.25 187 | 99.88 68 | 98.77 144 | 99.18 123 | 98.92 114 | 99.63 112 | 99.18 146 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
OpenMVS |  | 98.82 8 | 99.17 125 | 98.85 144 | 99.53 98 | 99.75 125 | 99.06 156 | 99.36 126 | 99.82 89 | 98.28 169 | 99.76 71 | 98.47 180 | 99.61 121 | 98.91 135 | 98.80 173 | 98.70 139 | 99.60 123 | 99.04 166 |
|
IterMVS-LS | | | 99.16 128 | 98.82 148 | 99.57 90 | 99.87 53 | 99.71 32 | 99.58 80 | 99.92 37 | 99.24 61 | 99.71 97 | 99.73 56 | 95.79 190 | 98.91 135 | 98.82 172 | 98.66 143 | 99.43 157 | 99.77 27 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
DeepPCF-MVS | | 98.38 11 | 99.16 128 | 99.20 95 | 99.12 164 | 99.20 209 | 98.71 182 | 98.85 189 | 99.06 205 | 99.17 72 | 98.96 191 | 99.61 79 | 99.86 76 | 99.29 97 | 99.17 125 | 98.72 137 | 99.36 165 | 99.15 154 |
|
IterMVS-SCA-FT | | | 99.15 130 | 98.96 132 | 99.38 126 | 99.87 53 | 99.54 59 | 99.53 89 | 99.79 108 | 98.94 102 | 99.82 54 | 99.92 16 | 97.65 181 | 98.82 140 | 98.95 148 | 98.26 167 | 98.45 195 | 99.47 107 |
|
CDS-MVSNet | | | 99.15 130 | 99.10 115 | 99.21 155 | 99.59 171 | 99.22 134 | 99.48 107 | 99.47 182 | 98.89 109 | 99.41 160 | 99.84 42 | 98.11 177 | 97.76 179 | 99.26 106 | 99.01 101 | 99.57 131 | 99.38 127 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
IS_MVSNet | | | 99.15 130 | 99.12 111 | 99.19 157 | 99.92 30 | 99.73 31 | 99.55 84 | 99.86 61 | 98.45 154 | 96.91 220 | 98.74 164 | 98.33 173 | 99.02 125 | 99.54 59 | 99.47 47 | 99.88 33 | 99.61 65 |
|
MDA-MVSNet-bldmvs | | | 99.11 133 | 99.11 114 | 99.12 164 | 99.91 34 | 99.38 96 | 99.77 32 | 98.72 209 | 99.31 54 | 99.85 42 | 99.43 107 | 98.26 175 | 99.48 75 | 99.85 19 | 98.47 155 | 96.99 206 | 99.08 158 |
|
OMC-MVS | | | 99.11 133 | 98.95 133 | 99.29 141 | 99.37 198 | 98.57 189 | 99.19 152 | 99.20 201 | 98.87 112 | 99.58 127 | 99.13 141 | 99.88 68 | 99.00 126 | 99.19 120 | 98.46 156 | 99.43 157 | 98.57 179 |
|
MVS_Test | | | 99.09 135 | 98.92 136 | 99.29 141 | 99.61 162 | 99.07 155 | 99.04 168 | 99.81 97 | 98.58 146 | 99.37 167 | 99.74 54 | 98.87 162 | 98.41 160 | 98.61 182 | 98.01 181 | 99.50 147 | 99.57 83 |
|
CNVR-MVS | | | 99.08 136 | 98.83 145 | 99.37 132 | 99.61 162 | 98.74 179 | 99.15 156 | 99.54 171 | 98.59 145 | 99.37 167 | 98.15 190 | 99.88 68 | 99.08 119 | 98.91 154 | 98.46 156 | 99.48 149 | 99.06 162 |
|
IterMVS | | | 99.08 136 | 98.90 139 | 99.29 141 | 99.87 53 | 99.53 62 | 99.52 92 | 99.77 120 | 98.94 102 | 99.75 76 | 99.91 23 | 97.52 185 | 98.72 148 | 98.86 163 | 98.14 174 | 98.09 198 | 99.43 115 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
FMVSNet2 | | | 99.07 138 | 99.19 97 | 98.93 179 | 99.02 214 | 99.53 62 | 99.31 134 | 99.84 77 | 98.86 113 | 98.88 195 | 99.64 74 | 98.44 170 | 96.92 196 | 99.35 83 | 99.00 105 | 99.61 120 | 99.53 94 |
|
CVMVSNet | | | 99.06 139 | 98.88 143 | 99.28 145 | 99.52 178 | 99.53 62 | 99.42 115 | 99.69 142 | 98.74 128 | 98.27 216 | 99.89 30 | 95.48 193 | 99.44 79 | 99.46 66 | 99.33 59 | 99.32 170 | 99.75 32 |
|
CDPH-MVS | | | 99.05 140 | 98.63 157 | 99.54 97 | 99.75 125 | 98.78 175 | 99.59 76 | 99.68 148 | 97.79 192 | 99.37 167 | 98.20 189 | 99.86 76 | 99.14 114 | 98.58 183 | 98.01 181 | 99.68 95 | 99.16 152 |
|
TAMVS | | | 99.05 140 | 99.02 126 | 99.08 169 | 99.69 143 | 99.22 134 | 99.33 131 | 99.32 198 | 99.16 76 | 98.97 190 | 99.87 35 | 97.36 186 | 97.76 179 | 99.21 114 | 99.00 105 | 99.44 154 | 99.33 133 |
|
CANet_DTU | | | 99.03 142 | 99.18 99 | 98.87 182 | 99.58 174 | 99.03 157 | 99.18 153 | 99.41 188 | 98.65 135 | 99.74 82 | 99.55 89 | 99.71 110 | 96.13 205 | 99.19 120 | 98.92 114 | 99.17 180 | 99.18 146 |
|
Effi-MVS+-dtu | | | 99.01 143 | 99.05 120 | 98.98 173 | 99.60 166 | 99.13 148 | 99.03 172 | 99.61 158 | 98.52 150 | 99.01 187 | 98.53 177 | 99.83 87 | 96.95 195 | 99.48 62 | 98.59 150 | 99.66 99 | 99.25 144 |
|
canonicalmvs | | | 99.00 144 | 98.68 155 | 99.37 132 | 99.68 149 | 99.42 89 | 98.94 181 | 99.89 52 | 99.00 93 | 98.99 188 | 98.43 184 | 95.69 191 | 98.96 132 | 99.18 123 | 99.18 67 | 99.74 81 | 99.88 6 |
|
MIMVSNet | | | 99.00 144 | 99.03 123 | 98.97 176 | 99.32 204 | 99.32 112 | 99.39 121 | 99.91 43 | 98.41 160 | 98.76 202 | 99.24 128 | 99.17 153 | 97.13 189 | 99.30 93 | 98.80 129 | 99.29 171 | 99.01 167 |
|
CHOSEN 280x420 | | | 98.99 146 | 98.91 138 | 99.07 170 | 99.77 116 | 99.26 122 | 99.55 84 | 99.92 37 | 98.62 140 | 98.67 206 | 99.62 78 | 97.20 187 | 98.44 159 | 99.50 60 | 99.18 67 | 98.08 199 | 98.99 170 |
|
SF-MVS | | | 98.96 147 | 98.95 133 | 98.98 173 | 99.64 156 | 98.89 168 | 98.00 219 | 99.58 166 | 98.42 158 | 99.08 186 | 98.63 171 | 99.83 87 | 98.04 172 | 99.02 138 | 98.76 131 | 99.52 142 | 99.13 155 |
|
GBi-Net | | | 98.96 147 | 99.05 120 | 98.85 183 | 99.02 214 | 99.53 62 | 99.31 134 | 99.78 113 | 98.13 175 | 98.48 210 | 99.43 107 | 97.58 182 | 96.92 196 | 99.68 42 | 99.50 42 | 99.61 120 | 99.53 94 |
|
test1 | | | 98.96 147 | 99.05 120 | 98.85 183 | 99.02 214 | 99.53 62 | 99.31 134 | 99.78 113 | 98.13 175 | 98.48 210 | 99.43 107 | 97.58 182 | 96.92 196 | 99.68 42 | 99.50 42 | 99.61 120 | 99.53 94 |
|
PCF-MVS | | 97.86 15 | 98.95 150 | 98.53 162 | 99.44 115 | 99.70 142 | 98.80 174 | 98.96 177 | 99.69 142 | 98.65 135 | 99.59 124 | 99.33 119 | 99.94 35 | 99.12 117 | 98.01 197 | 97.11 194 | 99.59 129 | 97.83 196 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
MS-PatchMatch | | | 98.94 151 | 98.71 154 | 99.21 155 | 99.52 178 | 98.22 205 | 98.97 176 | 99.53 176 | 98.76 124 | 99.50 143 | 98.59 174 | 99.56 127 | 98.68 149 | 98.63 181 | 98.45 158 | 99.05 183 | 98.73 176 |
|
AdaColmap |  | | 98.93 152 | 98.53 162 | 99.39 122 | 99.52 178 | 98.65 186 | 99.11 162 | 99.59 163 | 98.08 179 | 99.44 153 | 97.46 203 | 99.45 134 | 99.24 101 | 98.92 151 | 98.44 159 | 99.44 154 | 98.73 176 |
|
MSLP-MVS++ | | | 98.92 153 | 98.73 153 | 99.14 161 | 99.44 192 | 99.00 160 | 98.36 209 | 99.35 194 | 98.82 121 | 99.38 164 | 96.06 209 | 99.79 101 | 99.07 120 | 98.88 159 | 99.05 95 | 99.27 173 | 99.53 94 |
|
new_pmnet | | | 98.91 154 | 98.89 140 | 98.94 177 | 99.51 184 | 98.27 201 | 99.15 156 | 98.66 210 | 99.17 72 | 99.48 147 | 99.79 52 | 99.80 97 | 98.49 157 | 99.23 109 | 98.20 171 | 98.34 196 | 97.74 200 |
|
train_agg | | | 98.89 155 | 98.48 167 | 99.38 126 | 99.69 143 | 98.76 178 | 99.31 134 | 99.60 160 | 97.71 194 | 98.98 189 | 97.89 194 | 99.89 62 | 99.29 97 | 98.32 188 | 97.59 190 | 99.42 160 | 99.16 152 |
|
NCCC | | | 98.88 156 | 98.42 168 | 99.42 117 | 99.62 158 | 98.81 173 | 99.10 163 | 99.54 171 | 98.76 124 | 99.53 133 | 95.97 210 | 99.80 97 | 99.16 108 | 98.49 186 | 98.06 180 | 99.55 138 | 99.05 164 |
|
PLC |  | 97.83 16 | 98.88 156 | 98.52 164 | 99.30 140 | 99.45 190 | 98.60 188 | 98.65 199 | 99.49 180 | 98.66 134 | 99.59 124 | 96.33 208 | 99.59 124 | 99.17 105 | 98.87 160 | 98.53 152 | 99.46 151 | 99.05 164 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
pmmvs3 | | | 98.85 158 | 98.60 158 | 99.13 162 | 99.66 151 | 98.72 181 | 99.37 125 | 99.06 205 | 98.44 155 | 99.76 71 | 99.74 54 | 99.55 128 | 99.15 112 | 99.04 136 | 96.00 202 | 97.80 200 | 98.72 178 |
|
Fast-Effi-MVS+-dtu | | | 98.82 159 | 98.80 150 | 98.84 185 | 99.51 184 | 98.90 165 | 98.96 177 | 99.91 43 | 98.29 168 | 99.11 185 | 98.47 180 | 99.63 120 | 96.03 206 | 99.21 114 | 98.12 175 | 99.52 142 | 99.01 167 |
|
CNLPA | | | 98.82 159 | 98.52 164 | 99.18 158 | 99.21 208 | 98.50 193 | 98.73 197 | 99.34 196 | 98.73 130 | 99.56 129 | 97.55 200 | 99.42 138 | 99.06 122 | 98.93 149 | 98.10 177 | 99.21 179 | 98.38 184 |
|
PatchMatch-RL | | | 98.80 161 | 98.52 164 | 99.12 164 | 99.38 197 | 98.70 183 | 98.56 202 | 99.55 170 | 97.81 191 | 99.34 173 | 97.57 199 | 99.31 148 | 98.67 150 | 99.27 104 | 98.62 147 | 99.22 178 | 98.35 186 |
|
thisisatest0530 | | | 98.78 162 | 98.26 171 | 99.39 122 | 99.78 108 | 99.43 85 | 99.07 165 | 99.64 156 | 98.44 155 | 99.42 158 | 99.22 131 | 92.68 204 | 98.63 152 | 99.30 93 | 99.14 73 | 99.80 62 | 99.60 66 |
|
tttt0517 | | | 98.77 163 | 98.25 173 | 99.38 126 | 99.79 103 | 99.46 79 | 99.07 165 | 99.64 156 | 98.40 163 | 99.38 164 | 99.21 133 | 92.54 206 | 98.63 152 | 99.34 86 | 99.14 73 | 99.80 62 | 99.62 63 |
|
DI_MVS_plusplus_trai | | | 98.74 164 | 98.08 181 | 99.51 104 | 99.79 103 | 99.29 119 | 99.61 71 | 99.60 160 | 99.20 66 | 99.46 151 | 99.09 146 | 92.93 198 | 98.97 129 | 98.27 191 | 98.35 163 | 99.65 101 | 99.45 109 |
|
TSAR-MVS + COLMAP | | | 98.74 164 | 98.58 160 | 98.93 179 | 99.29 205 | 98.23 202 | 99.04 168 | 99.24 200 | 98.79 123 | 98.80 201 | 99.37 117 | 99.71 110 | 98.06 169 | 98.02 196 | 97.46 192 | 99.16 181 | 98.48 182 |
|
MDTV_nov1_ep13_2view | | | 98.73 166 | 98.31 170 | 99.22 152 | 99.75 125 | 99.24 131 | 99.75 39 | 99.93 27 | 99.31 54 | 99.84 46 | 99.86 38 | 99.81 91 | 99.31 95 | 97.40 205 | 94.77 204 | 96.73 208 | 97.81 197 |
|
PMMVS | | | 98.71 167 | 98.55 161 | 98.90 181 | 99.28 206 | 98.45 195 | 98.53 205 | 99.45 184 | 97.67 196 | 99.15 184 | 98.76 162 | 99.54 130 | 97.79 178 | 98.77 176 | 98.23 169 | 99.16 181 | 98.46 183 |
|
HQP-MVS | | | 98.70 168 | 98.19 177 | 99.28 145 | 99.61 162 | 98.52 191 | 98.71 198 | 99.35 194 | 97.97 186 | 99.53 133 | 97.38 204 | 99.85 82 | 99.14 114 | 97.53 201 | 96.85 198 | 99.36 165 | 99.26 143 |
|
N_pmnet | | | 98.64 169 | 98.23 176 | 99.11 167 | 99.78 108 | 99.25 126 | 99.75 39 | 99.39 192 | 99.65 13 | 99.70 99 | 99.78 53 | 99.89 62 | 98.81 142 | 97.60 200 | 94.28 205 | 97.24 205 | 97.15 204 |
|
CMPMVS |  | 76.62 19 | 98.64 169 | 98.60 158 | 98.68 190 | 99.33 202 | 97.07 217 | 98.11 217 | 98.50 211 | 97.69 195 | 99.26 176 | 98.35 186 | 99.66 118 | 97.62 182 | 99.43 74 | 99.02 99 | 99.24 176 | 99.01 167 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
FMVSNet3 | | | 98.63 171 | 98.75 151 | 98.49 196 | 98.10 220 | 99.44 82 | 99.02 173 | 99.78 113 | 98.13 175 | 98.48 210 | 99.43 107 | 97.58 182 | 96.16 204 | 98.85 165 | 98.39 161 | 99.40 161 | 99.41 119 |
|
GA-MVS | | | 98.59 172 | 98.15 178 | 99.09 168 | 99.59 171 | 99.13 148 | 98.84 190 | 99.52 178 | 98.61 143 | 99.35 170 | 99.67 68 | 93.03 197 | 97.73 181 | 98.90 158 | 98.26 167 | 99.51 145 | 99.48 104 |
|
MAR-MVS | | | 98.54 173 | 98.15 178 | 98.98 173 | 99.37 198 | 98.09 208 | 98.56 202 | 99.65 155 | 96.11 219 | 99.27 175 | 97.16 206 | 99.50 131 | 98.03 173 | 98.87 160 | 98.23 169 | 99.01 184 | 99.13 155 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
new-patchmatchnet | | | 98.49 174 | 97.60 183 | 99.53 98 | 99.90 39 | 99.55 56 | 99.77 32 | 99.48 181 | 99.67 10 | 99.86 35 | 99.98 3 | 99.98 5 | 99.50 67 | 96.90 207 | 91.52 211 | 98.67 192 | 95.62 210 |
|
FPMVS | | | 98.48 175 | 98.83 145 | 98.07 206 | 99.09 212 | 97.98 211 | 99.07 165 | 98.04 217 | 98.99 94 | 99.22 179 | 98.85 157 | 99.43 137 | 93.79 214 | 99.66 47 | 99.11 86 | 99.24 176 | 97.76 198 |
|
MVS-HIRNet | | | 98.45 176 | 98.25 173 | 98.69 189 | 99.12 210 | 97.81 216 | 98.55 204 | 99.85 68 | 98.58 146 | 99.67 108 | 99.61 79 | 99.86 76 | 97.46 185 | 97.95 198 | 96.37 200 | 97.49 202 | 97.56 201 |
|
test0.0.03 1 | | | 98.41 177 | 98.41 169 | 98.40 200 | 99.62 158 | 99.16 141 | 98.87 187 | 99.41 188 | 97.15 203 | 96.60 222 | 99.31 124 | 97.00 188 | 96.55 201 | 98.91 154 | 98.51 154 | 99.37 164 | 98.82 174 |
|
gg-mvs-nofinetune | | | 98.40 178 | 98.26 171 | 98.57 194 | 99.83 88 | 98.86 171 | 98.77 196 | 99.97 1 | 99.57 24 | 99.99 1 | 99.99 1 | 93.81 195 | 93.50 215 | 98.91 154 | 98.20 171 | 99.33 169 | 98.52 181 |
|
baseline1 | | | 98.39 179 | 97.59 184 | 99.31 139 | 99.78 108 | 99.45 80 | 99.13 159 | 99.53 176 | 98.06 181 | 98.87 196 | 98.63 171 | 90.04 212 | 98.76 145 | 98.85 165 | 98.84 123 | 99.81 58 | 99.28 139 |
|
pmnet_mix02 | | | 98.28 180 | 97.48 186 | 99.22 152 | 99.78 108 | 99.12 151 | 99.68 56 | 99.39 192 | 99.49 34 | 99.86 35 | 99.82 47 | 99.89 62 | 99.23 102 | 95.54 210 | 92.36 208 | 97.38 203 | 96.14 208 |
|
PatchT | | | 98.11 181 | 97.12 192 | 99.26 147 | 99.65 155 | 98.34 199 | 99.57 82 | 99.97 1 | 97.48 199 | 99.43 155 | 99.04 151 | 90.84 210 | 98.15 163 | 98.04 194 | 97.78 184 | 98.82 189 | 98.30 187 |
|
DPM-MVS | | | 98.10 182 | 97.32 190 | 99.01 172 | 99.52 178 | 97.92 212 | 98.47 207 | 99.45 184 | 98.25 170 | 98.91 193 | 93.99 214 | 99.69 114 | 98.73 147 | 96.29 209 | 96.32 201 | 99.00 185 | 98.77 175 |
|
EPNet_dtu | | | 98.09 183 | 98.25 173 | 97.91 208 | 99.58 174 | 98.02 210 | 98.19 214 | 99.67 151 | 97.94 187 | 99.74 82 | 99.07 149 | 98.71 166 | 93.40 216 | 97.50 202 | 97.09 195 | 96.89 207 | 99.44 112 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
EPNet | | | 98.06 184 | 98.11 180 | 98.00 207 | 99.60 166 | 98.99 162 | 98.38 208 | 99.68 148 | 98.18 174 | 98.85 198 | 97.89 194 | 95.60 192 | 92.72 217 | 98.30 189 | 98.10 177 | 98.76 190 | 99.72 39 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CR-MVSNet | | | 97.91 185 | 96.80 195 | 99.22 152 | 99.60 166 | 98.23 202 | 98.91 183 | 99.97 1 | 96.89 212 | 99.43 155 | 99.10 145 | 89.24 215 | 98.15 163 | 98.04 194 | 97.78 184 | 99.26 174 | 98.30 187 |
|
thres200 | | | 97.87 186 | 96.56 197 | 99.39 122 | 99.76 121 | 99.52 69 | 99.13 159 | 99.76 129 | 96.88 214 | 98.66 207 | 92.87 218 | 88.77 218 | 99.16 108 | 99.11 131 | 99.42 54 | 99.88 33 | 99.33 133 |
|
baseline2 | | | 97.87 186 | 97.18 191 | 98.67 191 | 99.34 201 | 99.17 140 | 98.48 206 | 98.82 208 | 97.08 206 | 98.83 200 | 98.75 163 | 89.47 214 | 97.03 194 | 98.67 180 | 98.27 166 | 99.52 142 | 98.83 173 |
|
thres600view7 | | | 97.86 188 | 96.53 200 | 99.41 120 | 99.84 82 | 99.52 69 | 99.36 126 | 99.76 129 | 97.32 201 | 98.38 215 | 93.24 215 | 87.25 220 | 99.23 102 | 99.11 131 | 99.75 18 | 99.88 33 | 99.48 104 |
|
tfpn200view9 | | | 97.85 189 | 96.54 198 | 99.38 126 | 99.74 134 | 99.52 69 | 99.17 154 | 99.76 129 | 96.10 220 | 98.70 204 | 92.99 216 | 89.10 216 | 99.00 126 | 99.11 131 | 99.56 33 | 99.88 33 | 99.41 119 |
|
thres400 | | | 97.82 190 | 96.47 201 | 99.40 121 | 99.81 98 | 99.44 82 | 99.29 141 | 99.69 142 | 97.15 203 | 98.57 208 | 92.82 219 | 87.96 219 | 99.16 108 | 98.96 146 | 99.55 36 | 99.86 41 | 99.41 119 |
|
IB-MVS | | 98.10 14 | 97.76 191 | 97.40 189 | 98.18 202 | 99.62 158 | 99.11 153 | 98.24 212 | 98.35 213 | 96.56 216 | 99.44 153 | 91.28 220 | 98.96 160 | 93.84 213 | 98.09 193 | 98.62 147 | 99.56 135 | 99.18 146 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
test-LLR | | | 97.74 192 | 97.46 187 | 98.08 204 | 99.62 158 | 98.37 197 | 98.26 210 | 99.41 188 | 97.03 207 | 97.38 218 | 99.54 90 | 92.89 199 | 95.12 210 | 98.78 174 | 97.68 188 | 98.65 193 | 97.90 194 |
|
RPMNet | | | 97.70 193 | 96.54 198 | 99.06 171 | 99.57 177 | 98.23 202 | 98.95 180 | 99.97 1 | 96.89 212 | 99.49 145 | 99.13 141 | 89.63 213 | 97.09 191 | 96.68 208 | 97.02 196 | 99.26 174 | 98.19 191 |
|
thres100view900 | | | 97.69 194 | 96.37 202 | 99.23 149 | 99.74 134 | 99.21 137 | 98.81 194 | 99.43 187 | 96.10 220 | 98.70 204 | 92.99 216 | 89.10 216 | 98.88 138 | 98.58 183 | 99.31 61 | 99.82 55 | 99.27 140 |
|
FMVSNet5 | | | 97.69 194 | 96.98 193 | 98.53 195 | 98.53 218 | 99.36 101 | 98.90 186 | 99.54 171 | 96.38 217 | 98.44 213 | 95.38 212 | 90.08 211 | 97.05 193 | 99.46 66 | 99.06 92 | 98.73 191 | 99.12 157 |
|
MVE |  | 91.08 18 | 97.68 196 | 97.65 182 | 97.71 214 | 98.46 219 | 91.62 223 | 97.92 220 | 98.86 207 | 98.73 130 | 97.99 217 | 98.64 170 | 99.96 14 | 99.17 105 | 99.59 55 | 97.75 186 | 93.87 222 | 97.27 202 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test-mter | | | 97.65 197 | 97.57 185 | 97.75 212 | 98.90 217 | 98.56 190 | 98.15 215 | 98.45 212 | 96.92 211 | 96.84 221 | 99.52 98 | 92.53 207 | 95.24 209 | 99.04 136 | 98.12 175 | 98.90 188 | 98.29 189 |
|
TESTMET0.1,1 | | | 97.62 198 | 97.46 187 | 97.81 210 | 99.07 213 | 98.37 197 | 98.26 210 | 98.35 213 | 97.03 207 | 97.38 218 | 99.54 90 | 92.89 199 | 95.12 210 | 98.78 174 | 97.68 188 | 98.65 193 | 97.90 194 |
|
test2506 | | | 97.57 199 | 95.67 208 | 99.78 41 | 99.95 10 | 99.78 17 | 99.67 60 | 99.93 27 | 99.45 38 | 99.55 132 | 99.20 134 | 71.73 227 | 99.65 37 | 99.93 3 | 99.88 3 | 99.94 15 | 99.72 39 |
|
MVSTER | | | 97.55 200 | 96.75 196 | 98.48 197 | 99.46 189 | 99.54 59 | 98.24 212 | 99.77 120 | 97.56 197 | 99.41 160 | 99.31 124 | 84.86 222 | 94.66 212 | 98.86 163 | 97.75 186 | 99.34 168 | 99.38 127 |
|
ET-MVSNet_ETH3D | | | 97.44 201 | 96.29 203 | 98.78 186 | 97.93 221 | 98.95 164 | 98.91 183 | 99.09 204 | 98.00 184 | 99.24 177 | 98.83 158 | 84.62 223 | 98.02 174 | 97.43 204 | 97.38 193 | 99.48 149 | 98.84 172 |
|
MDTV_nov1_ep13 | | | 97.41 202 | 96.26 204 | 98.76 187 | 99.47 188 | 98.43 196 | 99.26 146 | 99.82 89 | 98.06 181 | 99.23 178 | 99.22 131 | 92.86 201 | 98.05 170 | 95.33 212 | 93.66 207 | 96.73 208 | 96.26 207 |
|
ADS-MVSNet | | | 97.29 203 | 96.17 205 | 98.59 193 | 99.59 171 | 98.70 183 | 99.32 132 | 99.86 61 | 98.47 151 | 99.56 129 | 99.08 147 | 98.16 176 | 97.34 187 | 92.92 214 | 91.17 212 | 95.91 211 | 94.72 213 |
|
SCA | | | 97.25 204 | 96.05 206 | 98.64 192 | 99.36 200 | 99.02 158 | 99.27 143 | 99.96 12 | 98.25 170 | 99.69 100 | 98.71 167 | 94.66 194 | 97.95 177 | 93.95 213 | 92.35 209 | 95.64 212 | 95.40 212 |
|
gm-plane-assit | | | 96.82 205 | 94.84 213 | 99.13 162 | 99.95 10 | 99.78 17 | 99.69 55 | 99.92 37 | 99.19 69 | 99.84 46 | 99.92 16 | 72.93 226 | 96.44 203 | 98.21 192 | 97.01 197 | 98.92 187 | 96.87 206 |
|
PatchmatchNet |  | | 96.81 206 | 95.41 210 | 98.43 199 | 99.43 194 | 98.30 200 | 99.23 149 | 99.93 27 | 98.19 173 | 99.64 114 | 98.81 161 | 93.50 196 | 97.43 186 | 92.89 215 | 90.78 214 | 94.94 217 | 95.41 211 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
EPMVS | | | 96.76 207 | 95.30 212 | 98.46 198 | 99.42 195 | 98.47 194 | 99.32 132 | 99.91 43 | 98.42 158 | 99.51 141 | 99.07 149 | 92.81 202 | 97.12 190 | 92.39 216 | 91.71 210 | 95.51 213 | 94.20 215 |
|
E-PMN | | | 96.72 208 | 95.78 207 | 97.81 210 | 99.45 190 | 95.46 220 | 98.14 216 | 98.33 215 | 97.99 185 | 98.73 203 | 98.09 191 | 98.97 158 | 97.54 184 | 97.45 203 | 91.09 213 | 94.70 219 | 91.40 218 |
|
tpm | | | 96.56 209 | 94.68 214 | 98.74 188 | 99.12 210 | 97.90 213 | 98.79 195 | 99.93 27 | 96.79 215 | 99.69 100 | 99.19 136 | 81.48 225 | 97.56 183 | 95.46 211 | 93.97 206 | 97.37 204 | 97.99 193 |
|
EMVS | | | 96.47 210 | 95.38 211 | 97.74 213 | 99.42 195 | 95.37 221 | 98.07 218 | 98.27 216 | 97.85 190 | 98.90 194 | 97.48 202 | 98.73 165 | 97.20 188 | 97.21 206 | 90.39 215 | 94.59 221 | 90.65 219 |
|
tpmrst | | | 96.18 211 | 94.47 215 | 98.18 202 | 99.52 178 | 97.89 214 | 98.96 177 | 99.79 108 | 98.07 180 | 99.16 182 | 99.30 127 | 92.69 203 | 96.69 199 | 90.76 218 | 88.85 218 | 94.96 216 | 93.69 216 |
|
CostFormer | | | 95.61 212 | 93.35 218 | 98.24 201 | 99.48 187 | 98.03 209 | 98.65 199 | 99.83 82 | 96.93 210 | 99.42 158 | 98.83 158 | 83.65 224 | 97.08 192 | 90.39 219 | 89.54 217 | 94.94 217 | 96.11 209 |
|
dps | | | 95.59 213 | 93.46 217 | 98.08 204 | 99.33 202 | 98.22 205 | 98.87 187 | 99.70 140 | 96.17 218 | 98.87 196 | 97.75 197 | 86.85 221 | 96.60 200 | 91.24 217 | 89.62 216 | 95.10 215 | 94.34 214 |
|
tpm cat1 | | | 95.52 214 | 93.49 216 | 97.88 209 | 99.28 206 | 97.87 215 | 98.65 199 | 99.77 120 | 97.27 202 | 99.46 151 | 98.04 192 | 90.99 209 | 95.46 208 | 88.57 220 | 88.14 219 | 94.64 220 | 93.54 217 |
|
test_method | | | 91.96 215 | 95.51 209 | 87.82 216 | 70.84 223 | 82.79 224 | 92.13 223 | 87.74 219 | 98.88 110 | 95.40 223 | 99.20 134 | 98.04 178 | 85.65 219 | 97.71 199 | 94.95 203 | 95.13 214 | 97.00 205 |
|
GG-mvs-BLEND | | | 70.44 216 | 96.91 194 | 39.57 217 | 3.32 226 | 96.51 218 | 91.01 224 | 4.05 223 | 97.03 207 | 33.20 225 | 94.67 213 | 97.75 180 | 7.59 222 | 98.28 190 | 96.85 198 | 98.24 197 | 97.26 203 |
|
testmvs | | | 22.33 217 | 29.66 219 | 13.79 218 | 8.97 224 | 10.35 225 | 15.53 227 | 8.09 222 | 32.51 222 | 19.87 226 | 45.18 221 | 30.56 229 | 17.05 221 | 29.96 221 | 24.74 220 | 13.21 223 | 34.30 220 |
|
test123 | | | 21.52 218 | 28.47 220 | 13.42 219 | 7.29 225 | 10.12 226 | 15.70 226 | 8.31 221 | 31.54 223 | 19.34 227 | 36.33 222 | 37.40 228 | 17.14 220 | 27.45 222 | 23.17 221 | 12.73 224 | 33.30 221 |
|
uanet_test | | | 0.00 219 | 0.00 221 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 224 | 0.00 228 | 0.00 223 | 0.00 230 | 0.00 223 | 0.00 223 | 0.00 222 | 0.00 225 | 0.00 222 |
|
sosnet-low-res | | | 0.00 219 | 0.00 221 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 224 | 0.00 228 | 0.00 223 | 0.00 230 | 0.00 223 | 0.00 223 | 0.00 222 | 0.00 225 | 0.00 222 |
|
sosnet | | | 0.00 219 | 0.00 221 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 224 | 0.00 228 | 0.00 223 | 0.00 230 | 0.00 223 | 0.00 223 | 0.00 222 | 0.00 225 | 0.00 222 |
|
RE-MVS-def | | | | | | | | | | | 99.96 2 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 99.57 125 | | | | | |
|
SR-MVS | | | | | | 99.73 136 | | | 99.74 136 | | | | 99.88 68 | | | | | |
|
Anonymous202405211 | | | | 99.14 107 | | 99.87 53 | 99.55 56 | 99.50 99 | 99.70 140 | 98.55 148 | | 98.61 173 | 98.46 169 | 98.76 145 | 99.66 47 | 99.50 42 | 99.85 44 | 99.63 60 |
|
our_test_3 | | | | | | 99.75 125 | 99.11 153 | 99.74 46 | | | | | | | | | | |
|
ambc | | | | 98.83 145 | | 99.72 138 | 98.52 191 | 98.84 190 | | 98.96 99 | 99.92 9 | 99.34 118 | 99.74 106 | 99.04 124 | 98.68 179 | 97.57 191 | 99.46 151 | 98.99 170 |
|
MTAPA | | | | | | | | | | | 99.62 117 | | 99.95 25 | | | | | |
|
MTMP | | | | | | | | | | | 99.53 133 | | 99.92 50 | | | | | |
|
Patchmatch-RL test | | | | | | | | 65.75 225 | | | | | | | | | | |
|
tmp_tt | | | | | 88.14 215 | 96.68 222 | 91.91 222 | 93.70 222 | 61.38 220 | 99.61 19 | 90.51 224 | 99.40 114 | 99.71 110 | 90.32 218 | 99.22 111 | 99.44 52 | 96.25 210 | |
|
XVS | | | | | | 99.86 68 | 99.30 115 | 99.72 51 | | | 99.69 100 | | 99.93 42 | | | | 99.60 123 | |
|
X-MVStestdata | | | | | | 99.86 68 | 99.30 115 | 99.72 51 | | | 99.69 100 | | 99.93 42 | | | | 99.60 123 | |
|
mPP-MVS | | | | | | 99.84 82 | | | | | | | 99.92 50 | | | | | |
|
NP-MVS | | | | | | | | | | 97.37 200 | | | | | | | | |
|
Patchmtry | | | | | | | 98.19 207 | 98.91 183 | 99.97 1 | | 99.43 155 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 96.39 219 | 97.15 221 | 88.89 218 | 97.94 187 | 99.51 141 | 95.71 211 | 97.88 179 | 98.19 161 | 98.92 151 | | 97.73 201 | 97.75 199 |
|