This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB99.39 199.90 199.87 199.93 199.97 299.82 899.91 399.92 3899.75 499.93 699.89 30100.00 199.87 299.93 399.82 1099.96 399.90 2
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v7n99.89 299.86 399.93 199.97 299.83 499.93 199.96 1299.77 399.89 1899.99 199.86 7699.84 599.89 1199.81 1199.97 199.88 7
SixPastTwentyTwo99.89 299.85 599.93 199.97 299.88 199.92 299.97 199.66 1399.94 599.94 1199.74 10899.81 799.97 199.89 199.96 399.89 5
pmmvs699.88 499.87 199.89 999.97 299.76 2299.89 599.96 1299.82 299.90 1699.92 1699.95 2599.68 3299.93 399.88 399.95 799.86 13
anonymousdsp99.87 599.86 399.88 1399.95 1099.75 2899.90 499.96 1299.69 799.83 5299.96 499.99 399.74 2299.95 299.83 799.91 2599.88 7
FC-MVSNet-test99.84 699.80 699.89 999.96 799.83 499.84 1699.95 2399.37 4999.77 6999.95 699.96 1499.85 399.93 399.83 799.95 799.72 42
WB-MVS99.82 799.76 999.89 999.94 2399.82 899.79 2999.93 2799.67 1099.97 299.83 4599.78 10599.79 1299.72 3999.70 2299.95 799.78 28
UniMVSNet_ETH3D99.81 899.79 799.85 1999.98 199.76 2299.73 4899.96 1299.68 999.87 3099.59 8599.91 5699.58 5299.90 1099.85 699.96 399.81 21
TDRefinement99.81 899.76 999.86 1699.83 8999.53 6399.89 599.91 4499.73 599.88 2499.83 4599.96 1499.76 1799.91 999.81 1199.86 4299.59 71
WR-MVS99.79 1099.68 1499.91 599.95 1099.83 499.87 999.96 1299.39 4799.93 699.87 3599.29 15199.77 1599.83 2299.72 2099.97 199.82 18
MIMVSNet199.79 1099.75 1199.84 2299.89 4399.83 499.84 1699.89 5499.31 5599.93 699.92 1699.97 999.68 3299.89 1199.64 2899.82 5699.66 56
pm-mvs199.77 1299.69 1399.86 1699.94 2399.68 3799.84 1699.93 2799.59 2299.87 3099.92 1699.21 15499.65 3899.88 1599.77 1699.93 2199.78 28
PEN-MVS99.77 1299.65 1999.91 599.95 1099.80 1699.86 1099.97 199.08 8399.89 1899.69 6899.68 11799.84 599.81 2799.64 2899.95 799.81 21
EU-MVSNet99.76 1499.74 1299.78 4299.82 9499.81 1399.88 799.87 6099.31 5599.75 7799.91 2399.76 10799.78 1399.84 2199.74 1999.56 13999.81 21
Vis-MVSNetpermissive99.76 1499.78 899.75 5299.92 3199.77 2199.83 1999.85 7199.43 4199.85 4399.84 42100.00 199.13 11899.83 2299.66 2599.90 2999.90 2
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CS-MVS99.75 1699.66 1899.85 1999.87 5499.86 299.83 1999.91 4498.84 11999.92 1099.57 8799.85 8299.60 4799.82 2599.79 1399.94 1699.87 11
CS-MVS-test99.75 1699.67 1599.84 2299.91 3599.85 399.85 1399.92 3898.75 12999.89 1899.64 7599.95 2599.55 5599.89 1199.79 1399.92 2299.83 16
DTE-MVSNet99.75 1699.61 2599.92 499.95 1099.81 1399.86 1099.96 1299.18 7299.92 1099.66 7199.45 13699.85 399.80 2899.56 3499.96 399.79 27
tfpnnormal99.74 1999.63 2299.86 1699.93 2899.75 2899.80 2899.89 5499.31 5599.88 2499.43 10899.66 12099.77 1599.80 2899.71 2199.92 2299.76 33
DeepC-MVS99.05 599.74 1999.64 2099.84 2299.90 4099.39 9699.79 2999.81 10099.69 799.90 1699.87 3599.98 599.81 799.62 5599.32 6299.83 5399.65 59
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
thisisatest051599.73 2199.67 1599.81 3299.93 2899.74 3099.68 5799.91 4499.59 2299.88 2499.73 5799.81 9299.55 5599.59 5699.53 3999.89 3299.70 50
PS-CasMVS99.73 2199.59 3199.90 899.95 1099.80 1699.85 1399.97 198.95 10399.86 3699.73 5799.36 14399.81 799.83 2299.67 2499.95 799.83 16
WR-MVS_H99.73 2199.61 2599.88 1399.95 1099.82 899.83 1999.96 1299.01 9499.84 4799.71 6599.41 14299.74 2299.77 3399.70 2299.95 799.82 18
TransMVSNet (Re)99.72 2499.59 3199.88 1399.95 1099.76 2299.88 799.94 2499.58 2499.92 1099.90 2798.55 17199.65 3899.89 1199.76 1799.95 799.70 50
ACMH99.11 499.72 2499.63 2299.84 2299.87 5499.59 5099.83 1999.88 5999.46 3899.87 3099.66 7199.95 2599.76 1799.73 3899.47 4899.84 4899.52 103
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FC-MVSNet-train99.70 2699.67 1599.74 5899.94 2399.71 3399.82 2499.91 4499.14 8099.53 13599.70 6699.88 6899.33 9099.88 1599.61 3399.94 1699.77 30
EC-MVSNet99.70 2699.57 3499.85 1999.95 1099.81 1399.85 1399.93 2798.39 16799.76 7299.48 10599.94 3599.70 3099.85 1999.66 2599.91 2599.87 11
COLMAP_ROBcopyleft99.18 299.70 2699.60 2999.81 3299.84 8399.37 10399.76 3699.84 8099.54 3099.82 5599.64 7599.95 2599.75 1999.79 3099.56 3499.83 5399.37 133
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+98.94 699.69 2999.59 3199.81 3299.88 4999.41 9399.75 4099.86 6499.43 4199.80 5999.54 9199.97 999.73 2599.82 2599.52 4199.85 4599.43 119
test20.0399.68 3099.60 2999.76 4899.91 3599.70 3699.68 5799.87 6099.05 9099.88 2499.92 1699.88 6899.50 6899.77 3399.42 5599.75 7799.49 105
CP-MVSNet99.68 3099.51 4399.89 999.95 1099.76 2299.83 1999.96 1298.83 12399.84 4799.65 7499.09 15799.80 1099.78 3199.62 3299.95 799.82 18
casdiffmvs_mvgpermissive99.67 3299.61 2599.74 5899.94 2399.60 4699.62 7199.77 12399.54 3099.67 11099.82 4899.80 9899.52 6299.40 7799.51 4299.91 2599.59 71
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu99.66 3399.64 2099.67 7099.91 3599.71 3399.61 7299.79 11199.41 4399.91 1499.85 4099.61 12399.00 12899.67 4699.42 5599.81 5999.81 21
v1099.65 3499.51 4399.81 3299.83 8999.61 4599.75 4099.94 2499.56 2699.76 7299.94 1199.60 12599.73 2599.11 13599.01 10599.85 4599.74 37
CHOSEN 1792x268899.65 3499.55 3799.77 4799.93 2899.60 4699.79 2999.92 3899.73 599.74 8399.93 1499.98 599.80 1098.83 17599.01 10599.45 15799.76 33
UA-Net99.64 3699.62 2499.66 7299.97 299.82 899.14 16099.96 1298.95 10399.52 14199.38 11799.86 7699.55 5599.72 3999.66 2599.80 6399.94 1
GeoE99.63 3799.51 4399.78 4299.91 3599.57 5399.78 3299.97 199.23 6399.72 9399.72 6199.80 9899.50 6899.45 7499.10 9199.79 6699.71 48
Baseline_NR-MVSNet99.62 3899.48 4899.78 4299.85 7799.76 2299.59 7799.82 9298.84 11999.88 2499.91 2399.04 15899.61 4599.46 6799.78 1599.94 1699.60 69
pmmvs-eth3d99.61 3999.48 4899.75 5299.87 5499.30 11999.75 4099.89 5499.23 6399.85 4399.88 3499.97 999.49 7399.46 6799.01 10599.68 9999.52 103
v114499.61 3999.43 5699.82 2799.88 4999.41 9399.76 3699.86 6499.64 1699.84 4799.95 699.49 13499.74 2299.00 14598.93 11799.84 4899.58 80
v899.61 3999.45 5499.79 4199.80 10099.59 5099.73 4899.93 2799.48 3699.77 6999.90 2799.48 13599.67 3599.11 13598.89 12199.84 4899.73 39
casdiffmvspermissive99.61 3999.55 3799.68 6999.89 4399.53 6399.64 6599.68 15199.51 3399.62 11999.90 2799.96 1499.37 8499.28 10299.25 6599.88 3499.44 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CSCG99.61 3999.52 4299.71 6399.89 4399.62 4399.52 9399.76 13299.61 2099.69 10299.73 5799.96 1499.57 5399.27 10598.62 15199.81 5999.85 15
v119299.60 4499.41 6099.82 2799.89 4399.43 8699.81 2699.84 8099.63 1899.85 4399.95 699.35 14699.72 2799.01 14398.90 12099.82 5699.58 80
APDe-MVScopyleft99.60 4499.48 4899.73 6199.85 7799.51 7499.75 4099.85 7199.17 7399.81 5899.56 8999.94 3599.44 8099.42 7699.22 6699.67 10199.54 95
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
v192192099.59 4699.40 6399.82 2799.88 4999.45 8199.81 2699.83 8599.65 1499.86 3699.95 699.29 15199.75 1998.98 14998.86 12599.78 6899.59 71
TranMVSNet+NR-MVSNet99.59 4699.42 5999.80 3799.87 5499.55 5799.64 6599.86 6499.05 9099.88 2499.72 6199.33 14999.64 4299.47 6699.14 7799.91 2599.67 55
EG-PatchMatch MVS99.59 4699.49 4799.70 6699.82 9499.26 12699.39 12299.83 8598.99 9799.93 699.54 9199.92 5099.51 6499.78 3199.50 4399.73 8899.41 123
pmmvs599.58 4999.47 5199.70 6699.84 8399.50 7599.58 8199.80 10898.98 10099.73 9099.92 1699.81 9299.49 7399.28 10299.05 9999.77 7299.73 39
v14419299.58 4999.39 6499.80 3799.87 5499.44 8399.77 3399.84 8099.64 1699.86 3699.93 1499.35 14699.72 2798.92 15598.82 12999.74 8399.66 56
v14899.58 4999.43 5699.76 4899.87 5499.40 9599.76 3699.85 7199.48 3699.83 5299.82 4899.83 8799.51 6499.20 11998.82 12999.75 7799.45 113
v124099.58 4999.38 6799.82 2799.89 4399.49 7699.82 2499.83 8599.63 1899.86 3699.96 498.92 16499.75 1999.15 13098.96 11499.76 7499.56 87
V4299.57 5399.41 6099.75 5299.84 8399.37 10399.73 4899.83 8599.41 4399.75 7799.89 3099.42 14099.60 4799.15 13098.96 11499.76 7499.65 59
TSAR-MVS + MP.99.56 5499.54 4099.58 8899.69 14599.14 14899.73 4899.45 18899.50 3499.35 17299.60 8399.93 4299.50 6899.56 5899.37 5999.77 7299.64 62
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
v2v48299.56 5499.35 6999.81 3299.87 5499.35 10999.75 4099.85 7199.56 2699.87 3099.95 699.44 13899.66 3698.91 15898.76 13599.86 4299.45 113
Gipumacopyleft99.55 5699.23 8899.91 599.87 5499.52 7099.86 1099.93 2799.87 199.96 396.72 21299.55 13099.97 199.77 3399.46 5099.87 4099.74 37
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DVP-MVScopyleft99.53 5799.51 4399.55 9799.82 9499.58 5299.54 8999.78 11699.28 6199.21 18299.70 6699.97 999.32 9399.32 9099.14 7799.64 11399.58 80
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
NR-MVSNet99.52 5899.29 7899.80 3799.96 799.38 9999.55 8599.81 10098.86 11699.87 3099.51 10198.81 16699.72 2799.86 1899.04 10199.89 3299.54 95
ACMMPR99.51 5999.32 7399.72 6299.87 5499.33 11299.61 7299.85 7199.19 7099.73 9098.73 16699.95 2599.61 4599.35 8499.14 7799.66 10399.58 80
UniMVSNet (Re)99.50 6099.29 7899.75 5299.86 6999.47 7999.51 9699.82 9298.90 11199.89 1899.64 7599.00 15999.55 5599.32 9099.08 9499.90 2999.59 71
FMVSNet199.50 6099.57 3499.42 11999.67 15499.65 4099.60 7699.91 4499.40 4599.39 16599.83 4599.27 15398.14 16999.68 4399.50 4399.81 5999.68 52
HyFIR lowres test99.50 6099.26 8299.80 3799.95 1099.62 4399.76 3699.97 199.67 1099.56 13199.94 1198.40 17499.78 1398.84 17498.59 15499.76 7499.72 42
PM-MVS99.49 6399.43 5699.57 9299.76 12299.34 11199.53 9099.77 12398.93 10799.75 7799.46 10699.83 8799.11 12099.72 3999.29 6499.49 15299.46 112
Anonymous2023120699.48 6499.31 7599.69 6899.79 10499.57 5399.63 6999.79 11198.88 11399.91 1499.72 6199.93 4299.59 4999.24 10898.63 15099.43 16199.18 150
DU-MVS99.48 6499.26 8299.75 5299.85 7799.38 9999.50 10099.81 10098.86 11699.89 1899.51 10198.98 16099.59 4999.46 6798.97 11299.87 4099.63 63
RPSCF99.48 6499.45 5499.52 10499.73 13899.33 11299.13 16199.77 12399.33 5399.47 15299.39 11699.92 5099.36 8599.63 5299.13 8599.63 11699.41 123
ACMMP_NAP99.47 6799.33 7199.63 8099.85 7799.28 12499.56 8499.83 8598.75 12999.48 14999.03 15399.95 2599.47 7999.48 6399.19 6999.57 13599.59 71
Anonymous2023121199.47 6799.39 6499.57 9299.89 4399.60 4699.50 10099.69 14598.91 11099.62 11999.17 13999.35 14698.86 14299.63 5299.46 5099.84 4899.62 66
SteuartSystems-ACMMP99.47 6799.22 9199.76 4899.88 4999.36 10599.65 6499.84 8098.47 15499.80 5998.68 16999.96 1499.68 3299.37 8199.06 9699.72 9299.66 56
Skip Steuart: Steuart Systems R&D Blog.
ACMM98.37 1299.47 6799.23 8899.74 5899.86 6999.19 14299.68 5799.86 6499.16 7799.71 9998.52 17999.95 2599.62 4499.35 8499.02 10399.74 8399.42 122
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DVP-MVS++99.46 7199.57 3499.33 14199.75 12699.57 5399.44 11399.81 10099.38 4898.56 21399.81 5299.99 398.79 14799.33 8899.13 8599.62 12299.81 21
HFP-MVS99.46 7199.30 7699.65 7499.82 9499.25 13099.50 10099.82 9299.23 6399.58 12998.86 15799.94 3599.56 5499.14 13399.12 8999.63 11699.56 87
LGP-MVS_train99.46 7199.18 10099.78 4299.87 5499.25 13099.71 5599.87 6098.02 18699.79 6398.90 15699.96 1499.66 3699.49 6299.17 7399.79 6699.49 105
SED-MVS99.45 7499.46 5399.42 11999.77 11799.57 5399.42 11699.80 10899.06 8799.38 16699.66 7199.96 1498.65 15599.31 9299.14 7799.53 14499.55 92
ETV-MVS99.45 7499.32 7399.60 8599.79 10499.60 4699.40 12199.78 11697.88 19299.83 5299.33 12099.70 11598.97 13199.74 3699.43 5499.84 4899.58 80
ACMP98.32 1399.44 7699.18 10099.75 5299.83 8999.18 14399.64 6599.83 8598.81 12599.79 6398.42 18899.96 1499.64 4299.46 6798.98 11199.74 8399.44 116
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DCV-MVSNet99.43 7799.23 8899.67 7099.92 3199.76 2299.64 6599.93 2799.06 8799.68 10997.77 19998.97 16198.97 13199.72 3999.54 3899.88 3499.81 21
SMA-MVScopyleft99.43 7799.41 6099.45 11599.82 9499.31 11799.02 17599.59 16799.06 8799.34 17599.53 9799.96 1499.38 8399.29 9799.13 8599.53 14499.59 71
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
testgi99.43 7799.47 5199.38 12899.90 4099.67 3999.30 14099.73 14098.64 14299.53 13599.52 9999.90 5998.08 17299.65 5099.40 5899.75 7799.55 92
DELS-MVS99.42 8099.53 4199.29 14599.52 18299.43 8699.42 11699.28 20399.16 7799.72 9399.82 4899.97 998.17 16699.56 5899.16 7499.65 10599.59 71
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
3Dnovator99.16 399.42 8099.22 9199.65 7499.78 10999.13 15299.50 10099.85 7199.40 4599.80 5998.59 17599.79 10299.30 9799.20 11999.06 9699.71 9599.35 136
DPE-MVScopyleft99.41 8299.36 6899.47 11199.66 15599.48 7799.46 11199.75 13798.65 13899.41 16299.67 6999.95 2598.82 14399.21 11699.14 7799.72 9299.40 128
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
UniMVSNet_NR-MVSNet99.41 8299.12 11299.76 4899.86 6999.48 7799.50 10099.81 10098.84 11999.89 1899.45 10798.32 17799.59 4999.22 11298.89 12199.90 2999.63 63
CP-MVS99.41 8299.20 9699.65 7499.80 10099.23 13799.44 11399.75 13798.60 14799.74 8398.66 17099.93 4299.48 7699.33 8899.16 7499.73 8899.48 108
QAPM99.41 8299.21 9599.64 7999.78 10999.16 14599.51 9699.85 7199.20 6799.72 9399.43 10899.81 9299.25 10298.87 16498.71 14299.71 9599.30 141
UGNet99.40 8699.61 2599.16 16499.88 4999.64 4199.61 7299.77 12399.31 5599.63 11899.33 12099.93 4296.46 20699.63 5299.53 3999.63 11699.89 5
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Vis-MVSNet (Re-imp)99.40 8699.28 8099.55 9799.92 3199.68 3799.31 13599.87 6098.69 13599.16 18499.08 14898.64 17099.20 10699.65 5099.46 5099.83 5399.72 42
OPM-MVS99.39 8899.22 9199.59 8699.76 12298.82 17699.51 9699.79 11199.17 7399.53 13599.31 12599.95 2599.35 8699.22 11298.79 13499.60 12799.27 144
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Fast-Effi-MVS+99.39 8899.18 10099.63 8099.86 6999.28 12499.45 11299.91 4498.47 15499.61 12299.50 10399.57 12799.17 10799.24 10898.66 14799.78 6899.59 71
LS3D99.39 8899.28 8099.52 10499.77 11799.39 9699.55 8599.82 9298.93 10799.64 11698.52 17999.67 11998.58 15999.74 3699.63 3099.75 7799.06 166
diffmvspermissive99.38 9199.33 7199.45 11599.87 5499.39 9699.28 14499.58 17099.55 2899.50 14599.85 4099.85 8298.94 13798.58 18798.68 14599.51 14999.39 130
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CANet99.36 9299.39 6499.34 14099.80 10099.35 10999.41 12099.47 18699.20 6799.74 8399.54 9199.68 11798.05 17499.23 11098.97 11299.57 13599.73 39
MVS_030499.36 9299.35 6999.37 13499.85 7799.36 10599.39 12299.56 17299.36 5199.75 7799.23 13199.90 5997.97 18099.00 14598.83 12899.69 9899.77 30
ACMMPcopyleft99.36 9299.06 12099.71 6399.86 6999.36 10599.63 6999.85 7198.33 16999.72 9397.73 20199.94 3599.53 5999.37 8199.13 8599.65 10599.56 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SD-MVS99.35 9599.26 8299.46 11399.66 15599.15 14798.92 18699.67 15599.55 2899.35 17298.83 15999.91 5699.35 8699.19 12298.53 15699.78 6899.68 52
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MP-MVScopyleft99.35 9599.09 11899.65 7499.84 8399.22 13899.59 7799.78 11698.13 17899.67 11098.44 18499.93 4299.43 8299.31 9299.09 9399.60 12799.49 105
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
pmmvs499.34 9799.15 10799.57 9299.77 11798.90 16999.51 9699.77 12399.07 8599.73 9099.72 6199.84 8599.07 12298.85 16998.39 16599.55 14299.27 144
EPP-MVSNet99.34 9799.10 11699.62 8499.94 2399.74 3099.66 6399.80 10899.07 8598.93 19599.61 8096.13 19299.49 7399.67 4699.63 3099.92 2299.86 13
TSAR-MVS + GP.99.33 9999.17 10499.51 10699.71 14399.00 16498.84 19499.71 14298.23 17599.74 8399.53 9799.90 5999.35 8699.38 8098.85 12699.72 9299.31 139
PHI-MVS99.33 9999.19 9899.49 10999.69 14599.25 13099.27 14599.59 16798.44 15899.78 6799.15 14099.92 5098.95 13699.39 7899.04 10199.64 11399.18 150
MSP-MVS99.32 10199.26 8299.38 12899.76 12299.54 6099.42 11699.72 14198.92 10998.84 20398.96 15599.96 1498.91 13898.72 18299.14 7799.63 11699.58 80
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PGM-MVS99.32 10198.99 12999.71 6399.86 6999.31 11799.59 7799.86 6497.51 20199.75 7798.23 19199.94 3599.53 5999.29 9799.08 9499.65 10599.54 95
DeepC-MVS_fast98.69 999.32 10199.13 11099.53 10099.63 16198.78 17999.53 9099.33 20199.08 8399.77 6999.18 13899.89 6299.29 9899.00 14598.70 14399.65 10599.30 141
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSDG99.32 10199.09 11899.58 8899.75 12698.74 18399.36 12799.54 17599.14 8099.72 9399.24 12999.89 6299.51 6499.30 9498.76 13599.62 12298.54 185
TSAR-MVS + ACMM99.31 10599.26 8299.37 13499.66 15598.97 16799.20 15399.56 17299.33 5399.19 18399.54 9199.91 5699.32 9399.12 13498.34 16899.29 17599.65 59
3Dnovator+98.92 799.31 10599.03 12499.63 8099.77 11798.90 16999.52 9399.81 10099.37 4999.72 9398.03 19699.73 11199.32 9398.99 14898.81 13299.67 10199.36 134
X-MVS99.30 10798.99 12999.66 7299.85 7799.30 11999.49 10799.82 9298.32 17099.69 10297.31 21099.93 4299.50 6899.37 8199.16 7499.60 12799.53 98
MVS_111021_HR99.30 10799.14 10899.48 11099.58 17899.25 13099.27 14599.61 16298.74 13199.66 11399.02 15499.84 8599.33 9099.20 11998.76 13599.44 15899.18 150
TAPA-MVS98.54 1099.30 10799.24 8799.36 13999.44 19798.77 18199.00 17799.41 19299.23 6399.60 12499.50 10399.86 7699.15 11499.29 9798.95 11699.56 13999.08 162
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CLD-MVS99.30 10799.01 12899.63 8099.75 12698.89 17299.35 13099.60 16498.53 15299.86 3699.57 8799.94 3599.52 6298.96 15098.10 18199.70 9799.08 162
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
USDC99.29 11198.98 13199.65 7499.72 14098.87 17499.47 10999.66 15899.35 5299.87 3099.58 8699.87 7599.51 6498.85 16997.93 18799.65 10598.38 189
PMVScopyleft94.32 1799.27 11299.55 3798.94 18199.60 17099.43 8699.39 12299.54 17598.99 9799.69 10299.60 8399.81 9295.68 21199.88 1599.83 799.73 8899.31 139
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FA-MVS(training)99.26 11399.12 11299.44 11799.60 17099.26 12699.24 15099.97 198.84 11999.76 7299.43 10898.74 16798.47 16299.39 7899.10 9199.57 13599.07 165
MVS_111021_LR99.25 11499.13 11099.39 12499.50 19099.14 14899.23 15199.50 18398.67 13699.61 12299.12 14499.81 9299.16 11099.28 10298.67 14699.35 17199.21 149
ECVR-MVScopyleft99.24 11598.74 15499.82 2799.95 1099.78 1899.67 6199.93 2799.45 3999.80 5999.86 3892.58 21099.65 3899.93 399.88 399.94 1699.71 48
baseline99.24 11599.30 7699.17 16399.78 10999.14 14899.10 16599.69 14598.97 10199.49 14799.84 4299.88 6897.99 17998.85 16998.73 14098.98 19099.72 42
EIA-MVS99.23 11799.03 12499.47 11199.83 8999.64 4199.16 15799.81 10097.11 20899.65 11598.44 18499.78 10598.61 15899.46 6799.22 6699.75 7799.59 71
HPM-MVS++copyleft99.23 11798.98 13199.53 10099.75 12699.02 16299.44 11399.77 12398.65 13899.52 14198.72 16799.92 5099.33 9098.77 18098.40 16499.40 16599.36 134
PMMVS299.23 11799.22 9199.24 15299.80 10099.14 14899.50 10099.82 9299.12 8298.41 21999.91 2399.98 598.51 16099.48 6398.76 13599.38 16798.14 197
test111199.21 12098.67 16099.84 2299.96 799.82 899.72 5299.94 2499.54 3099.78 6799.89 3091.89 21399.69 3199.93 399.89 199.95 799.75 35
CPTT-MVS99.21 12098.89 14199.58 8899.72 14099.12 15599.30 14099.76 13298.62 14399.66 11397.51 20699.89 6299.48 7699.01 14398.64 14999.58 13499.40 128
TinyColmap99.21 12098.89 14199.59 8699.61 16698.61 19199.47 10999.67 15599.02 9399.82 5599.15 14099.74 10899.35 8699.17 12898.33 16999.63 11698.22 195
Effi-MVS+99.20 12398.93 13699.50 10899.79 10499.26 12698.82 19799.96 1298.37 16899.60 12499.12 14498.36 17599.05 12598.93 15398.82 12999.78 6899.68 52
PVSNet_BlendedMVS99.20 12399.17 10499.23 15399.69 14599.33 11299.04 17099.13 20698.41 16399.79 6399.33 12099.36 14398.10 17099.29 9798.87 12399.65 10599.56 87
PVSNet_Blended99.20 12399.17 10499.23 15399.69 14599.33 11299.04 17099.13 20698.41 16399.79 6399.33 12099.36 14398.10 17099.29 9798.87 12399.65 10599.56 87
MCST-MVS99.17 12698.82 14999.57 9299.75 12698.70 18799.25 14999.69 14598.62 14399.59 12698.54 17799.79 10299.53 5998.48 19198.15 17799.64 11399.43 119
APD-MVScopyleft99.17 12698.92 13799.46 11399.78 10999.24 13599.34 13199.78 11697.79 19599.48 14998.25 19099.88 6898.77 14899.18 12598.92 11899.63 11699.18 150
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
OpenMVScopyleft98.82 899.17 12698.85 14599.53 10099.75 12699.06 16099.36 12799.82 9298.28 17299.76 7298.47 18199.61 12398.91 13898.80 17798.70 14399.60 12799.04 170
IterMVS-LS99.16 12998.82 14999.57 9299.87 5499.71 3399.58 8199.92 3899.24 6299.71 9999.73 5795.79 19398.91 13898.82 17698.66 14799.43 16199.77 30
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DeepPCF-MVS98.38 1199.16 12999.20 9699.12 16899.20 21498.71 18698.85 19399.06 20999.17 7398.96 19499.61 8099.86 7699.29 9899.17 12898.72 14199.36 16999.15 158
IterMVS-SCA-FT99.15 13198.96 13399.38 12899.87 5499.54 6099.53 9099.79 11198.94 10599.82 5599.92 1697.65 18498.82 14398.95 15298.26 17198.45 20099.47 111
CDS-MVSNet99.15 13199.10 11699.21 15999.59 17599.22 13899.48 10899.47 18698.89 11299.41 16299.84 4298.11 18097.76 18399.26 10799.01 10599.57 13599.38 131
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IS_MVSNet99.15 13199.12 11299.19 16199.92 3199.73 3299.55 8599.86 6498.45 15796.91 22598.74 16598.33 17699.02 12799.54 6099.47 4899.88 3499.61 68
dmvs_re99.14 13498.76 15299.58 8899.75 12699.38 9999.30 14099.68 15196.94 21399.74 8397.70 20299.20 15599.29 9899.22 11299.35 6099.73 8899.55 92
MDA-MVSNet-bldmvs99.11 13599.11 11599.12 16899.91 3599.38 9999.77 3398.72 21399.31 5599.85 4399.43 10898.26 17899.48 7699.85 1998.47 15996.99 21199.08 162
OMC-MVS99.11 13598.95 13499.29 14599.37 20398.57 19399.19 15499.20 20598.87 11599.58 12999.13 14299.88 6899.00 12899.19 12298.46 16099.43 16198.57 184
MVS_Test99.09 13798.92 13799.29 14599.61 16699.07 15999.04 17099.81 10098.58 14999.37 16999.74 5598.87 16598.41 16498.61 18698.01 18599.50 15199.57 86
CNVR-MVS99.08 13898.83 14699.37 13499.61 16698.74 18399.15 15899.54 17598.59 14899.37 16998.15 19399.88 6899.08 12198.91 15898.46 16099.48 15399.06 166
IterMVS99.08 13898.90 14099.29 14599.87 5499.53 6399.52 9399.77 12398.94 10599.75 7799.91 2397.52 18898.72 15298.86 16798.14 17898.09 20399.43 119
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet299.07 14099.19 9898.93 18399.02 21999.53 6399.31 13599.84 8098.86 11698.88 19899.64 7598.44 17396.92 20099.35 8499.00 10999.61 12499.53 98
CVMVSNet99.06 14198.88 14499.28 14999.52 18299.53 6399.42 11699.69 14598.74 13198.27 22199.89 3095.48 19899.44 8099.46 6799.33 6199.32 17499.75 35
CDPH-MVS99.05 14298.63 16199.54 9999.75 12698.78 17999.59 7799.68 15197.79 19599.37 16998.20 19299.86 7699.14 11698.58 18798.01 18599.68 9999.16 156
TAMVS99.05 14299.02 12799.08 17399.69 14599.22 13899.33 13299.32 20299.16 7798.97 19399.87 3597.36 18997.76 18399.21 11699.00 10999.44 15899.33 137
CANet_DTU99.03 14499.18 10098.87 18699.58 17899.03 16199.18 15599.41 19298.65 13899.74 8399.55 9099.71 11296.13 20999.19 12298.92 11899.17 18499.18 150
Effi-MVS+-dtu99.01 14599.05 12198.98 17799.60 17099.13 15299.03 17499.61 16298.52 15399.01 18998.53 17899.83 8796.95 19999.48 6398.59 15499.66 10399.25 148
sasdasda99.00 14698.68 15899.37 13499.68 15199.42 9098.94 18499.89 5499.00 9598.99 19098.43 18695.69 19498.96 13499.18 12599.18 7099.74 8399.88 7
canonicalmvs99.00 14698.68 15899.37 13499.68 15199.42 9098.94 18499.89 5499.00 9598.99 19098.43 18695.69 19498.96 13499.18 12599.18 7099.74 8399.88 7
MIMVSNet99.00 14699.03 12498.97 18099.32 20999.32 11699.39 12299.91 4498.41 16398.76 20699.24 12999.17 15697.13 19399.30 9498.80 13399.29 17599.01 171
CHOSEN 280x42098.99 14998.91 13999.07 17499.77 11799.26 12699.55 8599.92 3898.62 14398.67 21099.62 7997.20 19098.44 16399.50 6199.18 7098.08 20498.99 174
MGCFI-Net98.98 15098.69 15799.33 14199.68 15199.42 9098.95 18299.90 5399.04 9298.88 19898.45 18395.64 19698.81 14599.15 13099.21 6899.75 7799.90 2
SF-MVS98.96 15198.95 13498.98 17799.64 16098.89 17298.00 22399.58 17098.42 16199.08 18898.63 17299.83 8798.04 17699.02 14298.76 13599.52 14699.13 159
GBi-Net98.96 15199.05 12198.85 18799.02 21999.53 6399.31 13599.78 11698.13 17898.48 21599.43 10897.58 18596.92 20099.68 4399.50 4399.61 12499.53 98
test198.96 15199.05 12198.85 18799.02 21999.53 6399.31 13599.78 11698.13 17898.48 21599.43 10897.58 18596.92 20099.68 4399.50 4399.61 12499.53 98
PCF-MVS97.86 1598.95 15498.53 16699.44 11799.70 14498.80 17898.96 17999.69 14598.65 13899.59 12699.33 12099.94 3599.12 11998.01 20197.11 19899.59 13397.83 201
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MS-PatchMatch98.94 15598.71 15699.21 15999.52 18298.22 20998.97 17899.53 18098.76 12799.50 14598.59 17599.56 12998.68 15398.63 18598.45 16299.05 18798.73 181
AdaColmapbinary98.93 15698.53 16699.39 12499.52 18298.65 19099.11 16499.59 16798.08 18299.44 15597.46 20899.45 13699.24 10398.92 15598.44 16399.44 15898.73 181
MSLP-MVS++98.92 15798.73 15599.14 16599.44 19799.00 16498.36 21399.35 19898.82 12499.38 16696.06 21499.79 10299.07 12298.88 16399.05 9999.27 17799.53 98
new_pmnet98.91 15898.89 14198.94 18199.51 18898.27 20599.15 15898.66 21499.17 7399.48 14999.79 5399.80 9898.49 16199.23 11098.20 17598.34 20197.74 205
train_agg98.89 15998.48 17199.38 12899.69 14598.76 18299.31 13599.60 16497.71 19798.98 19297.89 19799.89 6299.29 9898.32 19297.59 19499.42 16499.16 156
NCCC98.88 16098.42 17299.42 11999.62 16298.81 17799.10 16599.54 17598.76 12799.53 13595.97 21599.80 9899.16 11098.49 19098.06 18499.55 14299.05 168
PLCcopyleft97.83 1698.88 16098.52 16899.30 14499.45 19598.60 19298.65 20399.49 18498.66 13799.59 12696.33 21399.59 12699.17 10798.87 16498.53 15699.46 15599.05 168
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
pmmvs398.85 16298.60 16299.13 16699.66 15598.72 18599.37 12699.06 20998.44 15899.76 7299.74 5599.55 13099.15 11499.04 14096.00 20697.80 20598.72 183
Fast-Effi-MVS+-dtu98.82 16398.80 15198.84 18999.51 18898.90 16998.96 17999.91 4498.29 17199.11 18798.47 18199.63 12296.03 21099.21 11698.12 17999.52 14699.01 171
CNLPA98.82 16398.52 16899.18 16299.21 21398.50 19798.73 20199.34 20098.73 13399.56 13197.55 20599.42 14099.06 12498.93 15398.10 18199.21 18398.38 189
PatchMatch-RL98.80 16598.52 16899.12 16899.38 20298.70 18798.56 20699.55 17497.81 19499.34 17597.57 20499.31 15098.67 15499.27 10598.62 15199.22 18298.35 191
thisisatest053098.78 16698.26 17599.39 12499.78 10999.43 8699.07 16799.64 16098.44 15899.42 16099.22 13292.68 20998.63 15699.30 9499.14 7799.80 6399.60 69
tttt051798.77 16798.25 17799.38 12899.79 10499.46 8099.07 16799.64 16098.40 16699.38 16699.21 13492.54 21198.63 15699.34 8799.14 7799.80 6399.62 66
DI_MVS_plusplus_trai98.74 16898.08 18599.51 10699.79 10499.29 12399.61 7299.60 16499.20 6799.46 15399.09 14792.93 20398.97 13198.27 19598.35 16799.65 10599.45 113
TSAR-MVS + COLMAP98.74 16898.58 16498.93 18399.29 21098.23 20699.04 17099.24 20498.79 12698.80 20599.37 11899.71 11298.06 17398.02 20097.46 19699.16 18598.48 187
MDTV_nov1_ep13_2view98.73 17098.31 17499.22 15699.75 12699.24 13599.75 4099.93 2799.31 5599.84 4799.86 3899.81 9299.31 9697.40 20994.77 20896.73 21397.81 202
PMMVS98.71 17198.55 16598.90 18599.28 21198.45 19998.53 20999.45 18897.67 19999.15 18698.76 16399.54 13297.79 18298.77 18098.23 17399.16 18598.46 188
HQP-MVS98.70 17298.19 18199.28 14999.61 16698.52 19598.71 20299.35 19897.97 18999.53 13597.38 20999.85 8299.14 11697.53 20596.85 20299.36 16999.26 147
N_pmnet98.64 17398.23 18099.11 17199.78 10999.25 13099.75 4099.39 19699.65 1499.70 10199.78 5499.89 6298.81 14597.60 20494.28 20997.24 21097.15 209
CMPMVSbinary76.62 1998.64 17398.60 16298.68 19499.33 20797.07 22298.11 22198.50 21597.69 19899.26 17898.35 18999.66 12097.62 18699.43 7599.02 10399.24 18099.01 171
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FMVSNet398.63 17598.75 15398.49 20098.10 22599.44 8399.02 17599.78 11698.13 17898.48 21599.43 10897.58 18596.16 20898.85 16998.39 16599.40 16599.41 123
GA-MVS98.59 17698.15 18299.09 17299.59 17599.13 15298.84 19499.52 18298.61 14699.35 17299.67 6993.03 20297.73 18598.90 16298.26 17199.51 14999.48 108
MAR-MVS98.54 17798.15 18298.98 17799.37 20398.09 21298.56 20699.65 15996.11 22399.27 17797.16 21199.50 13398.03 17798.87 16498.23 17399.01 18899.13 159
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
new-patchmatchnet98.49 17897.60 18799.53 10099.90 4099.55 5799.77 3399.48 18599.67 1099.86 3699.98 399.98 599.50 6896.90 21191.52 21598.67 19795.62 215
FPMVS98.48 17998.83 14698.07 21099.09 21797.98 21599.07 16798.04 22198.99 9799.22 18198.85 15899.43 13993.79 21999.66 4899.11 9099.24 18097.76 203
MVS-HIRNet98.45 18098.25 17798.69 19399.12 21597.81 22198.55 20899.85 7198.58 14999.67 11099.61 8099.86 7697.46 18997.95 20296.37 20497.49 20797.56 206
test0.0.03 198.41 18198.41 17398.40 20499.62 16299.16 14598.87 19199.41 19297.15 20696.60 22799.31 12597.00 19196.55 20598.91 15898.51 15899.37 16898.82 178
gg-mvs-nofinetune98.40 18298.26 17598.57 19899.83 8998.86 17598.77 20099.97 199.57 2599.99 199.99 193.81 20093.50 22098.91 15898.20 17599.33 17398.52 186
baseline198.39 18397.59 18899.31 14399.78 10999.45 8199.13 16199.53 18098.06 18498.87 20098.63 17290.04 21798.76 14998.85 16998.84 12799.81 5999.28 143
pmnet_mix0298.28 18497.48 19099.22 15699.78 10999.12 15599.68 5799.39 19699.49 3599.86 3699.82 4899.89 6299.23 10495.54 21492.36 21297.38 20896.14 213
PatchT98.11 18597.12 19699.26 15199.65 15998.34 20399.57 8399.97 197.48 20299.43 15799.04 15290.84 21598.15 16798.04 19897.78 18898.82 19498.30 192
DPM-MVS98.10 18697.32 19499.01 17699.52 18297.92 21698.47 21199.45 18898.25 17398.91 19693.99 21999.69 11698.73 15196.29 21396.32 20599.00 18998.77 179
EPNet_dtu98.09 18798.25 17797.91 21299.58 17898.02 21498.19 21899.67 15597.94 19099.74 8399.07 15098.71 16993.40 22197.50 20697.09 19996.89 21299.44 116
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPNet98.06 18898.11 18498.00 21199.60 17098.99 16698.38 21299.68 15198.18 17798.85 20297.89 19795.60 19792.72 22298.30 19398.10 18198.76 19599.72 42
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CR-MVSNet97.91 18996.80 19999.22 15699.60 17098.23 20698.91 18799.97 196.89 21699.43 15799.10 14689.24 22098.15 16798.04 19897.78 18899.26 17898.30 192
thres20097.87 19096.56 20199.39 12499.76 12299.52 7099.13 16199.76 13296.88 21898.66 21192.87 22388.77 22399.16 11099.11 13599.42 5599.88 3499.33 137
baseline297.87 19097.18 19598.67 19599.34 20699.17 14498.48 21098.82 21297.08 20998.83 20498.75 16489.47 21997.03 19898.67 18498.27 17099.52 14698.83 177
thres600view797.86 19296.53 20499.41 12299.84 8399.52 7099.36 12799.76 13297.32 20498.38 22093.24 22087.25 22599.23 10499.11 13599.75 1899.88 3499.48 108
tfpn200view997.85 19396.54 20299.38 12899.74 13699.52 7099.17 15699.76 13296.10 22498.70 20892.99 22189.10 22199.00 12899.11 13599.56 3499.88 3499.41 123
thres40097.82 19496.47 20599.40 12399.81 9999.44 8399.29 14399.69 14597.15 20698.57 21292.82 22487.96 22499.16 11098.96 15099.55 3799.86 4299.41 123
IB-MVS98.10 1497.76 19597.40 19398.18 20699.62 16299.11 15798.24 21698.35 21796.56 22099.44 15591.28 22598.96 16393.84 21898.09 19798.62 15199.56 13999.18 150
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test-LLR97.74 19697.46 19198.08 20899.62 16298.37 20198.26 21499.41 19297.03 21097.38 22399.54 9192.89 20495.12 21598.78 17897.68 19298.65 19897.90 199
RPMNet97.70 19796.54 20299.06 17599.57 18198.23 20698.95 18299.97 196.89 21699.49 14799.13 14289.63 21897.09 19596.68 21297.02 20099.26 17898.19 196
thres100view90097.69 19896.37 20699.23 15399.74 13699.21 14198.81 19899.43 19196.10 22498.70 20892.99 22189.10 22198.88 14198.58 18799.31 6399.82 5699.27 144
FMVSNet597.69 19896.98 19798.53 19998.53 22399.36 10598.90 19099.54 17596.38 22198.44 21895.38 21790.08 21697.05 19799.46 6799.06 9698.73 19699.12 161
MVEpermissive91.08 1897.68 20097.65 18697.71 21898.46 22491.62 22897.92 22498.86 21198.73 13397.99 22298.64 17199.96 1499.17 10799.59 5697.75 19093.87 22797.27 207
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test-mter97.65 20197.57 18997.75 21698.90 22298.56 19498.15 21998.45 21696.92 21596.84 22699.52 9992.53 21295.24 21499.04 14098.12 17998.90 19298.29 194
TESTMET0.1,197.62 20297.46 19197.81 21499.07 21898.37 20198.26 21498.35 21797.03 21097.38 22399.54 9192.89 20495.12 21598.78 17897.68 19298.65 19897.90 199
test250697.57 20395.67 21299.78 4299.95 1099.78 1899.67 6199.93 2799.45 3999.55 13499.20 13571.73 23299.65 3899.93 399.88 399.94 1699.72 42
MVSTER97.55 20496.75 20098.48 20199.46 19499.54 6098.24 21699.77 12397.56 20099.41 16299.31 12584.86 22794.66 21798.86 16797.75 19099.34 17299.38 131
ET-MVSNet_ETH3D97.44 20596.29 20798.78 19097.93 22698.95 16898.91 18799.09 20898.00 18799.24 17998.83 15984.62 22898.02 17897.43 20897.38 19799.48 15398.84 176
MDTV_nov1_ep1397.41 20696.26 20898.76 19199.47 19298.43 20099.26 14899.82 9298.06 18499.23 18099.22 13292.86 20698.05 17495.33 21693.66 21196.73 21396.26 212
ADS-MVSNet97.29 20796.17 20998.59 19799.59 17598.70 18799.32 13399.86 6498.47 15499.56 13199.08 14898.16 17997.34 19192.92 21891.17 21695.91 21694.72 218
SCA97.25 20896.05 21098.64 19699.36 20599.02 16299.27 14599.96 1298.25 17399.69 10298.71 16894.66 19997.95 18193.95 21792.35 21395.64 21795.40 217
gm-plane-assit96.82 20994.84 21799.13 16699.95 1099.78 1899.69 5699.92 3899.19 7099.84 4799.92 1672.93 23196.44 20798.21 19697.01 20198.92 19196.87 211
PatchmatchNetpermissive96.81 21095.41 21498.43 20399.43 19998.30 20499.23 15199.93 2798.19 17699.64 11698.81 16293.50 20197.43 19092.89 21990.78 21894.94 22295.41 216
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS96.76 21195.30 21698.46 20299.42 20098.47 19899.32 13399.91 4498.42 16199.51 14399.07 15092.81 20797.12 19492.39 22091.71 21495.51 21894.20 220
E-PMN96.72 21295.78 21197.81 21499.45 19595.46 22598.14 22098.33 21997.99 18898.73 20798.09 19498.97 16197.54 18897.45 20791.09 21794.70 22491.40 223
tpm96.56 21394.68 21898.74 19299.12 21597.90 21798.79 19999.93 2796.79 21999.69 10299.19 13781.48 23097.56 18795.46 21593.97 21097.37 20997.99 198
EMVS96.47 21495.38 21597.74 21799.42 20095.37 22698.07 22298.27 22097.85 19398.90 19797.48 20798.73 16897.20 19297.21 21090.39 21994.59 22690.65 224
tpmrst96.18 21594.47 21998.18 20699.52 18297.89 21898.96 17999.79 11198.07 18399.16 18499.30 12892.69 20896.69 20390.76 22288.85 22294.96 22193.69 221
CostFormer95.61 21693.35 22298.24 20599.48 19198.03 21398.65 20399.83 8596.93 21499.42 16098.83 15983.65 22997.08 19690.39 22389.54 22194.94 22296.11 214
dps95.59 21793.46 22198.08 20899.33 20798.22 20998.87 19199.70 14396.17 22298.87 20097.75 20086.85 22696.60 20491.24 22189.62 22095.10 22094.34 219
tpm cat195.52 21893.49 22097.88 21399.28 21197.87 21998.65 20399.77 12397.27 20599.46 15398.04 19590.99 21495.46 21288.57 22488.14 22394.64 22593.54 222
test_method91.96 21995.51 21387.82 22070.84 22882.79 22992.13 22887.74 22398.88 11395.40 22899.20 13598.04 18185.65 22497.71 20394.95 20795.13 21997.00 210
GG-mvs-BLEND70.44 22096.91 19839.57 2213.32 23196.51 22391.01 2294.05 22797.03 21033.20 23094.67 21897.75 1837.59 22798.28 19496.85 20298.24 20297.26 208
testmvs22.33 22129.66 22313.79 2228.97 22910.35 23015.53 2328.09 22632.51 22619.87 23145.18 22630.56 23417.05 22629.96 22524.74 22413.21 22834.30 225
test12321.52 22228.47 22413.42 2237.29 23010.12 23115.70 2318.31 22531.54 22719.34 23236.33 22737.40 23317.14 22527.45 22623.17 22512.73 22933.30 226
uanet_test0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet-low-res0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
TPM-MVS99.47 19297.86 22097.79 22598.49 21497.62 20399.83 8795.33 21398.90 19298.77 179
Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025
RE-MVS-def99.96 3
9.1499.57 127
SR-MVS99.73 13899.74 13999.88 68
Anonymous20240521199.14 10899.87 5499.55 5799.50 10099.70 14398.55 15198.61 17498.46 17298.76 14999.66 4899.50 4399.85 4599.63 63
our_test_399.75 12699.11 15799.74 47
ambc98.83 14699.72 14098.52 19598.84 19498.96 10299.92 1099.34 11999.74 10899.04 12698.68 18397.57 19599.46 15598.99 174
MTAPA99.62 11999.95 25
MTMP99.53 13599.92 50
Patchmatch-RL test65.75 230
tmp_tt88.14 21996.68 22791.91 22793.70 22761.38 22499.61 2090.51 22999.40 11599.71 11290.32 22399.22 11299.44 5396.25 215
XVS99.86 6999.30 11999.72 5299.69 10299.93 4299.60 127
X-MVStestdata99.86 6999.30 11999.72 5299.69 10299.93 4299.60 127
mPP-MVS99.84 8399.92 50
NP-MVS97.37 203
Patchmtry98.19 21198.91 18799.97 199.43 157
DeepMVS_CXcopyleft96.39 22497.15 22688.89 22297.94 19099.51 14395.71 21697.88 18298.19 16598.92 15597.73 20697.75 204