| SED-MVS | | | 97.92 1 | 98.27 2 | 97.52 1 | 98.88 12 | 99.60 1 | 98.80 5 | 95.08 7 | 98.57 2 | 95.63 2 | 96.98 9 | 99.73 1 | 97.67 2 | 97.26 10 | 95.86 22 | 99.04 15 | 99.89 5 |
|
| MSP-MVS | | | 97.74 2 | 98.32 1 | 97.06 7 | 98.66 15 | 99.35 8 | 98.66 8 | 94.75 13 | 98.22 5 | 93.60 6 | 97.99 1 | 98.58 8 | 97.41 5 | 98.24 2 | 95.95 18 | 99.27 4 | 99.91 1 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| DVP-MVS++ | | | 97.71 3 | 98.01 6 | 97.37 2 | 98.98 6 | 99.58 3 | 98.79 6 | 95.06 8 | 98.24 4 | 94.66 3 | 96.35 15 | 99.20 4 | 97.63 3 | 97.20 12 | 95.68 23 | 99.08 13 | 99.84 7 |
|
| DPE-MVS |  | | 97.69 4 | 98.16 3 | 97.14 5 | 99.01 5 | 99.52 5 | 99.12 3 | 95.38 2 | 98.00 8 | 93.31 9 | 97.71 2 | 99.61 3 | 96.94 6 | 96.99 16 | 95.45 27 | 99.09 12 | 99.81 9 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| DVP-MVS |  | | 97.61 5 | 97.87 7 | 97.30 3 | 98.94 11 | 99.60 1 | 98.21 13 | 95.11 4 | 98.39 3 | 95.83 1 | 94.40 29 | 99.70 2 | 96.79 7 | 97.16 13 | 95.95 18 | 98.92 26 | 99.90 2 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| CNVR-MVS | | | 97.60 6 | 98.08 4 | 97.03 8 | 99.14 2 | 99.55 4 | 98.67 7 | 95.32 3 | 97.91 9 | 92.55 11 | 97.11 6 | 97.23 14 | 97.49 4 | 98.16 3 | 97.05 5 | 99.04 15 | 99.55 19 |
|
| APDe-MVS |  | | 97.31 7 | 97.51 12 | 97.08 6 | 98.95 10 | 99.29 13 | 98.58 10 | 95.11 4 | 97.69 14 | 94.16 4 | 96.91 10 | 96.81 18 | 96.57 10 | 96.71 20 | 95.39 29 | 99.08 13 | 99.79 10 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| SF-MVS | | | 97.17 8 | 97.18 15 | 97.17 4 | 99.11 3 | 99.20 15 | 99.05 4 | 95.55 1 | 97.39 17 | 93.56 7 | 97.48 4 | 96.71 20 | 96.75 8 | 95.73 32 | 94.40 46 | 98.98 20 | 99.33 24 |
|
| NCCC | | | 97.01 9 | 97.74 8 | 96.16 11 | 99.02 4 | 99.35 8 | 98.63 9 | 95.04 9 | 97.84 11 | 88.95 24 | 96.83 12 | 97.02 17 | 96.39 15 | 97.44 7 | 96.51 9 | 98.90 28 | 99.16 40 |
|
| SMA-MVS |  | | 96.96 10 | 97.65 11 | 96.15 12 | 98.98 6 | 99.31 12 | 97.91 18 | 94.68 15 | 97.52 15 | 90.59 18 | 94.54 28 | 99.20 4 | 96.54 12 | 97.29 9 | 96.48 10 | 98.22 64 | 99.19 36 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| MCST-MVS | | | 96.93 11 | 98.07 5 | 95.61 18 | 98.98 6 | 99.44 6 | 98.04 14 | 95.04 9 | 98.10 6 | 86.55 30 | 97.65 3 | 97.56 11 | 95.60 23 | 97.67 6 | 96.45 11 | 99.43 1 | 99.61 18 |
|
| HPM-MVS++ |  | | 96.91 12 | 97.70 9 | 96.00 13 | 98.97 9 | 99.16 17 | 97.82 20 | 94.81 12 | 98.04 7 | 89.61 21 | 96.56 14 | 98.60 7 | 96.39 15 | 97.09 14 | 95.22 31 | 98.39 58 | 99.22 32 |
|
| SD-MVS | | | 96.87 13 | 97.69 10 | 95.92 14 | 96.38 47 | 99.25 14 | 97.76 21 | 94.75 13 | 97.72 12 | 92.46 13 | 95.94 16 | 99.09 6 | 96.48 14 | 96.01 29 | 96.08 16 | 97.68 95 | 99.73 13 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| APD-MVS |  | | 96.79 14 | 96.99 18 | 96.56 9 | 98.76 14 | 98.87 26 | 98.42 11 | 94.93 11 | 97.70 13 | 91.83 14 | 95.52 19 | 95.94 25 | 96.63 9 | 95.94 30 | 95.47 26 | 98.80 34 | 99.47 22 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| TSAR-MVS + MP. | | | 96.50 15 | 97.08 16 | 95.82 16 | 96.12 51 | 98.97 23 | 98.00 15 | 94.13 20 | 97.89 10 | 91.49 15 | 95.11 24 | 97.52 12 | 96.26 19 | 96.27 27 | 94.07 56 | 98.91 27 | 99.74 12 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| SteuartSystems-ACMMP | | | 96.20 16 | 97.22 14 | 95.01 22 | 98.40 22 | 99.11 18 | 97.93 17 | 93.62 23 | 96.28 29 | 87.45 27 | 97.05 8 | 96.00 24 | 94.23 31 | 96.83 19 | 95.97 17 | 98.40 57 | 99.27 29 |
| Skip Steuart: Steuart Systems R&D Blog. |
| HFP-MVS | | | 96.09 17 | 96.41 23 | 95.72 17 | 98.58 17 | 98.84 27 | 97.95 16 | 93.08 27 | 96.96 22 | 90.24 19 | 96.60 13 | 94.40 31 | 96.52 13 | 95.13 42 | 94.33 47 | 97.93 85 | 98.59 65 |
|
| ACMMP_NAP | | | 95.81 18 | 96.50 22 | 95.01 22 | 98.79 13 | 99.17 16 | 97.52 26 | 94.20 19 | 96.19 30 | 85.71 35 | 93.80 32 | 96.20 23 | 95.89 20 | 96.62 22 | 94.98 37 | 97.93 85 | 98.52 69 |
|
| train_agg | | | 95.72 19 | 97.37 13 | 93.80 28 | 97.82 31 | 98.92 24 | 97.84 19 | 93.50 24 | 96.86 24 | 81.35 54 | 97.10 7 | 97.71 9 | 94.19 32 | 96.02 28 | 95.37 30 | 98.07 72 | 99.64 16 |
|
| ACMMPR | | | 95.59 20 | 95.89 25 | 95.25 20 | 98.41 21 | 98.74 29 | 97.69 24 | 92.73 31 | 96.88 23 | 88.95 24 | 95.33 21 | 92.91 38 | 95.79 21 | 94.73 52 | 94.33 47 | 97.92 87 | 98.32 79 |
|
| DeepC-MVS_fast | | 91.53 1 | 95.57 21 | 95.67 28 | 95.45 19 | 98.57 18 | 99.00 22 | 97.76 21 | 94.41 17 | 97.06 19 | 86.84 29 | 86.39 45 | 92.27 43 | 96.38 17 | 97.89 5 | 98.06 3 | 98.73 39 | 99.01 48 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| MSLP-MVS++ | | | 95.49 22 | 94.84 33 | 96.25 10 | 98.64 16 | 98.63 32 | 98.35 12 | 92.37 33 | 95.04 48 | 92.62 10 | 87.12 44 | 93.79 32 | 96.55 11 | 93.53 72 | 96.78 6 | 98.98 20 | 98.99 49 |
|
| CP-MVS | | | 95.43 23 | 95.67 28 | 95.14 21 | 98.24 27 | 98.60 33 | 97.45 27 | 92.80 29 | 95.98 33 | 89.21 23 | 95.22 22 | 93.60 33 | 95.43 24 | 94.37 59 | 93.22 75 | 97.68 95 | 98.72 56 |
|
| DPM-MVS | | | 95.36 24 | 95.84 26 | 94.82 24 | 96.70 43 | 98.49 43 | 99.27 1 | 95.09 6 | 96.71 25 | 83.87 43 | 86.34 47 | 96.44 22 | 95.06 26 | 98.35 1 | 98.82 1 | 98.89 29 | 95.69 133 |
|
| MP-MVS |  | | 95.24 25 | 95.96 24 | 94.40 26 | 98.32 24 | 98.38 48 | 97.12 29 | 92.87 28 | 95.17 46 | 85.50 36 | 95.68 17 | 94.91 29 | 94.58 28 | 95.11 43 | 93.76 61 | 98.05 75 | 98.68 58 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| TSAR-MVS + ACMM | | | 94.99 26 | 97.02 17 | 92.61 38 | 97.19 37 | 98.71 31 | 97.74 23 | 93.21 26 | 96.97 21 | 79.27 72 | 94.09 30 | 97.14 15 | 90.84 67 | 96.64 21 | 95.94 20 | 97.42 112 | 99.67 15 |
|
| X-MVS | | | 94.70 27 | 95.71 27 | 93.52 32 | 98.38 23 | 98.56 35 | 96.99 30 | 92.62 32 | 95.58 37 | 81.00 62 | 94.57 27 | 93.49 34 | 94.16 34 | 94.82 48 | 94.29 50 | 97.99 81 | 98.68 58 |
|
| PGM-MVS | | | 94.64 28 | 95.49 30 | 93.66 30 | 98.55 19 | 98.51 41 | 97.63 25 | 87.77 46 | 94.45 52 | 84.92 39 | 97.23 5 | 91.90 45 | 95.22 25 | 94.56 55 | 93.80 60 | 97.87 91 | 97.97 90 |
|
| TSAR-MVS + GP. | | | 94.59 29 | 96.60 21 | 92.25 39 | 90.25 94 | 98.17 55 | 96.22 36 | 86.53 52 | 97.49 16 | 87.26 28 | 95.21 23 | 97.06 16 | 94.07 36 | 94.34 61 | 94.20 52 | 99.18 5 | 99.71 14 |
|
| PHI-MVS | | | 94.49 30 | 96.72 20 | 91.88 41 | 97.06 38 | 98.88 25 | 94.99 47 | 89.13 41 | 96.15 31 | 79.70 68 | 96.91 10 | 95.78 26 | 91.87 57 | 94.65 53 | 95.68 23 | 98.53 49 | 98.98 51 |
|
| AdaColmap |  | | 94.28 31 | 92.94 45 | 95.84 15 | 98.32 24 | 98.33 50 | 96.06 38 | 94.62 16 | 96.29 28 | 91.22 16 | 89.89 38 | 85.50 74 | 96.38 17 | 91.85 101 | 90.89 90 | 98.44 53 | 97.81 93 |
|
| DeepPCF-MVS | | 91.00 2 | 94.15 32 | 96.87 19 | 90.97 49 | 96.82 41 | 99.33 11 | 89.40 102 | 92.76 30 | 98.76 1 | 82.36 50 | 88.74 39 | 95.49 28 | 90.58 74 | 98.13 4 | 97.80 4 | 93.88 192 | 99.88 6 |
|
| CPTT-MVS | | | 94.11 33 | 93.99 38 | 94.25 27 | 96.58 44 | 97.66 63 | 97.31 28 | 91.94 34 | 94.84 49 | 88.72 26 | 92.51 33 | 93.04 37 | 95.78 22 | 91.51 104 | 89.97 107 | 95.15 181 | 98.37 76 |
|
| EPNet | | | 93.69 34 | 95.34 31 | 91.76 42 | 96.98 40 | 98.47 45 | 95.40 44 | 86.79 49 | 95.47 39 | 82.84 47 | 95.66 18 | 89.17 51 | 90.47 76 | 95.25 41 | 94.69 41 | 98.10 69 | 98.68 58 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| ACMMP |  | | 93.32 35 | 93.59 41 | 93.00 36 | 97.03 39 | 98.24 51 | 95.27 45 | 91.66 37 | 95.20 44 | 83.25 45 | 95.39 20 | 85.52 72 | 92.80 48 | 92.60 91 | 90.21 103 | 98.01 78 | 97.99 88 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| CANet | | | 93.23 36 | 93.72 40 | 92.65 37 | 95.48 54 | 99.09 20 | 96.55 34 | 86.74 50 | 95.28 42 | 85.22 37 | 77.30 75 | 91.25 47 | 92.60 50 | 97.06 15 | 96.63 7 | 99.31 2 | 99.45 23 |
|
| CDPH-MVS | | | 93.22 37 | 95.08 32 | 91.04 48 | 97.57 34 | 98.49 43 | 96.74 32 | 89.35 40 | 95.19 45 | 73.57 101 | 90.26 36 | 91.59 46 | 90.68 71 | 95.09 45 | 96.15 14 | 98.31 63 | 98.81 54 |
|
| CSCG | | | 93.16 38 | 92.65 47 | 93.76 29 | 98.32 24 | 99.09 20 | 96.12 37 | 89.91 39 | 93.15 61 | 89.64 20 | 83.62 55 | 88.91 54 | 92.40 52 | 91.09 109 | 93.70 62 | 96.14 164 | 98.99 49 |
|
| MVS_111021_LR | | | 93.05 39 | 94.53 35 | 91.32 46 | 96.43 46 | 98.38 48 | 92.81 62 | 87.20 48 | 95.94 35 | 81.45 53 | 94.75 25 | 86.08 68 | 92.12 55 | 94.83 47 | 93.34 69 | 97.89 90 | 98.42 75 |
|
| 3Dnovator+ | | 86.26 7 | 92.90 40 | 92.45 49 | 93.42 33 | 97.25 36 | 98.45 47 | 95.82 39 | 85.71 58 | 93.83 56 | 89.55 22 | 72.31 105 | 92.28 42 | 94.01 38 | 95.10 44 | 95.92 21 | 98.17 65 | 99.23 31 |
|
| MVS_111021_HR | | | 92.73 41 | 94.83 34 | 90.28 55 | 96.27 48 | 99.10 19 | 92.77 63 | 86.15 55 | 93.41 59 | 77.11 90 | 93.82 31 | 87.39 60 | 90.61 72 | 95.60 34 | 95.15 33 | 98.79 35 | 99.32 25 |
|
| PLC |  | 89.12 3 | 92.67 42 | 90.84 59 | 94.81 25 | 97.69 32 | 96.10 93 | 95.42 43 | 91.70 35 | 95.82 36 | 92.52 12 | 81.24 61 | 86.01 69 | 94.36 29 | 92.44 95 | 90.27 100 | 97.19 121 | 93.99 161 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| 3Dnovator | | 85.78 8 | 92.53 43 | 91.96 51 | 93.20 34 | 97.99 28 | 98.47 45 | 95.78 40 | 85.94 56 | 93.07 63 | 86.40 31 | 73.43 97 | 89.00 53 | 94.08 35 | 94.74 51 | 96.44 12 | 99.01 19 | 98.57 66 |
|
| DeepC-MVS | | 88.77 4 | 92.39 44 | 91.74 53 | 93.14 35 | 96.21 49 | 98.55 38 | 96.30 35 | 93.84 21 | 93.06 64 | 81.09 59 | 74.69 90 | 85.20 78 | 93.48 42 | 95.41 37 | 96.13 15 | 97.92 87 | 99.18 37 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| OMC-MVS | | | 92.05 45 | 91.88 52 | 92.25 39 | 96.51 45 | 97.94 57 | 93.18 59 | 88.97 43 | 96.53 26 | 84.47 41 | 80.79 63 | 87.85 56 | 93.25 46 | 92.48 94 | 91.81 83 | 97.12 122 | 95.73 132 |
|
| MVSTER | | | 91.91 46 | 93.43 44 | 90.14 56 | 89.81 101 | 92.32 134 | 94.53 50 | 81.32 89 | 96.00 32 | 84.77 40 | 85.41 52 | 92.39 41 | 91.32 59 | 96.41 23 | 94.01 58 | 99.11 8 | 97.45 102 |
|
| MVS_0304 | | | 91.90 47 | 92.93 46 | 90.69 53 | 93.66 64 | 98.78 28 | 96.73 33 | 85.43 62 | 93.13 62 | 78.11 84 | 77.02 78 | 89.09 52 | 91.10 63 | 96.98 17 | 96.54 8 | 99.11 8 | 98.96 52 |
|
| CS-MVS-test | | | 91.76 48 | 93.47 42 | 89.76 59 | 94.64 59 | 98.22 53 | 88.13 112 | 81.58 86 | 97.02 20 | 82.47 49 | 85.49 51 | 85.41 76 | 93.28 44 | 95.33 39 | 93.61 64 | 98.45 52 | 99.22 32 |
|
| QAPM | | | 91.68 49 | 91.97 50 | 91.34 45 | 97.86 30 | 98.72 30 | 95.60 42 | 85.72 57 | 90.86 79 | 77.14 89 | 76.06 79 | 90.35 48 | 92.69 49 | 94.10 64 | 94.60 43 | 99.04 15 | 99.09 42 |
|
| CS-MVS | | | 91.55 50 | 92.49 48 | 90.45 54 | 94.00 62 | 97.91 59 | 91.17 83 | 81.40 88 | 95.22 43 | 83.51 44 | 82.37 59 | 82.29 84 | 94.07 36 | 96.36 26 | 94.03 57 | 98.56 46 | 99.22 32 |
|
| CNLPA | | | 91.53 51 | 89.74 72 | 93.63 31 | 96.75 42 | 97.63 65 | 91.16 84 | 91.70 35 | 96.38 27 | 90.82 17 | 69.66 116 | 85.52 72 | 93.76 39 | 90.44 115 | 91.14 89 | 97.55 105 | 97.40 103 |
|
| ETV-MVS | | | 91.51 52 | 94.06 37 | 88.54 71 | 89.39 107 | 97.52 66 | 89.48 99 | 80.88 92 | 97.09 18 | 79.41 70 | 87.87 40 | 86.18 67 | 92.95 47 | 95.94 30 | 94.33 47 | 99.13 7 | 99.52 21 |
|
| EC-MVSNet | | | 91.25 53 | 93.45 43 | 88.68 69 | 88.90 113 | 96.18 92 | 91.66 72 | 76.70 125 | 95.57 38 | 82.00 51 | 84.18 53 | 89.28 50 | 94.17 33 | 95.64 33 | 94.19 53 | 98.68 41 | 99.14 41 |
|
| DELS-MVS | | | 91.09 54 | 90.56 67 | 91.71 43 | 95.82 52 | 98.59 34 | 95.74 41 | 86.68 51 | 85.86 107 | 85.12 38 | 72.71 100 | 81.36 87 | 88.06 96 | 97.31 8 | 98.27 2 | 98.86 32 | 99.82 8 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| TAPA-MVS | | 87.40 6 | 90.98 55 | 90.71 61 | 91.30 47 | 96.14 50 | 97.66 63 | 94.80 48 | 89.00 42 | 94.74 51 | 77.42 88 | 80.22 64 | 86.70 63 | 92.27 53 | 91.65 103 | 90.17 105 | 98.15 68 | 93.83 165 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| PVSNet_BlendedMVS | | | 90.74 56 | 90.66 63 | 90.82 51 | 94.75 57 | 98.54 39 | 91.30 80 | 86.53 52 | 95.43 40 | 85.75 33 | 78.66 70 | 70.67 126 | 87.60 97 | 96.37 24 | 95.08 35 | 98.98 20 | 99.90 2 |
|
| PVSNet_Blended | | | 90.74 56 | 90.66 63 | 90.82 51 | 94.75 57 | 98.54 39 | 91.30 80 | 86.53 52 | 95.43 40 | 85.75 33 | 78.66 70 | 70.67 126 | 87.60 97 | 96.37 24 | 95.08 35 | 98.98 20 | 99.90 2 |
|
| CHOSEN 280x420 | | | 90.61 58 | 94.27 36 | 86.35 91 | 93.12 68 | 98.16 56 | 89.99 95 | 69.62 180 | 92.48 68 | 76.89 93 | 87.28 43 | 96.72 19 | 90.31 78 | 94.81 49 | 92.33 80 | 98.17 65 | 98.08 86 |
|
| MAR-MVS | | | 90.44 59 | 91.17 57 | 89.59 60 | 97.48 35 | 97.92 58 | 90.96 87 | 79.80 97 | 95.07 47 | 77.03 91 | 80.83 62 | 79.10 97 | 94.68 27 | 93.16 77 | 94.46 45 | 97.59 104 | 97.63 95 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| PCF-MVS | | 88.14 5 | 90.42 60 | 89.56 78 | 91.41 44 | 94.44 60 | 98.18 54 | 94.35 51 | 94.33 18 | 84.55 120 | 76.61 94 | 75.84 82 | 88.47 55 | 91.29 60 | 90.37 118 | 90.66 96 | 97.46 108 | 98.88 53 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| OpenMVS |  | 83.41 11 | 89.84 61 | 88.89 84 | 90.95 50 | 97.63 33 | 98.51 41 | 94.64 49 | 85.47 61 | 88.14 93 | 78.39 81 | 65.06 131 | 85.42 75 | 91.04 65 | 93.06 80 | 93.70 62 | 98.53 49 | 98.37 76 |
|
| EIA-MVS | | | 89.82 62 | 91.48 55 | 87.89 80 | 89.16 109 | 97.31 68 | 88.99 103 | 80.92 91 | 94.29 53 | 77.65 86 | 82.16 60 | 79.77 95 | 91.90 56 | 94.61 54 | 93.03 77 | 98.70 40 | 99.21 35 |
|
| sasdasda | | | 89.62 63 | 89.87 70 | 89.33 62 | 90.47 87 | 97.02 74 | 93.46 56 | 79.67 100 | 92.45 69 | 81.05 60 | 82.84 56 | 73.00 113 | 93.71 40 | 90.38 116 | 94.85 38 | 97.65 99 | 98.54 67 |
|
| canonicalmvs | | | 89.62 63 | 89.87 70 | 89.33 62 | 90.47 87 | 97.02 74 | 93.46 56 | 79.67 100 | 92.45 69 | 81.05 60 | 82.84 56 | 73.00 113 | 93.71 40 | 90.38 116 | 94.85 38 | 97.65 99 | 98.54 67 |
|
| TSAR-MVS + COLMAP | | | 89.59 65 | 89.64 75 | 89.53 61 | 93.32 67 | 96.51 84 | 95.03 46 | 88.53 44 | 95.98 33 | 69.10 117 | 91.81 34 | 64.53 149 | 93.40 43 | 93.53 72 | 91.35 88 | 97.77 92 | 93.75 168 |
|
| HQP-MVS | | | 89.57 66 | 90.57 66 | 88.41 73 | 92.77 69 | 94.71 109 | 94.24 52 | 87.97 45 | 93.44 58 | 68.18 120 | 91.75 35 | 71.54 125 | 89.90 81 | 92.31 98 | 91.43 86 | 97.39 113 | 98.80 55 |
|
| MGCFI-Net | | | 89.36 67 | 89.66 74 | 89.02 66 | 90.40 91 | 96.92 77 | 93.26 58 | 79.54 104 | 92.10 71 | 80.11 66 | 82.55 58 | 72.65 116 | 93.26 45 | 90.24 120 | 94.69 41 | 97.53 106 | 98.46 73 |
|
| MVS_Test | | | 89.02 68 | 90.20 68 | 87.64 82 | 89.83 100 | 97.05 73 | 92.30 66 | 77.59 121 | 92.89 65 | 75.01 99 | 77.36 74 | 76.10 107 | 92.27 53 | 95.30 40 | 95.42 28 | 98.83 33 | 97.30 107 |
|
| CLD-MVS | | | 88.99 69 | 88.07 87 | 90.07 57 | 89.61 103 | 94.94 106 | 93.82 55 | 85.70 59 | 92.73 67 | 82.73 48 | 79.97 65 | 69.59 130 | 90.44 77 | 90.32 119 | 89.93 109 | 98.10 69 | 99.04 45 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| baseline | | | 88.91 70 | 89.94 69 | 87.70 81 | 89.44 106 | 96.74 82 | 91.62 74 | 77.92 118 | 93.79 57 | 78.76 76 | 77.55 73 | 78.46 100 | 89.38 87 | 92.26 99 | 92.52 79 | 99.10 10 | 98.23 80 |
|
| PMMVS | | | 88.56 71 | 91.22 56 | 85.47 99 | 90.04 96 | 95.60 102 | 86.62 127 | 78.49 113 | 93.86 55 | 70.62 112 | 90.00 37 | 80.08 93 | 91.64 58 | 92.36 96 | 89.80 113 | 95.40 176 | 96.84 116 |
|
| test2506 | | | 88.38 72 | 88.02 89 | 88.80 68 | 91.55 78 | 97.78 60 | 90.87 89 | 83.36 71 | 84.51 121 | 83.06 46 | 74.13 93 | 76.93 104 | 85.39 107 | 94.34 61 | 93.33 71 | 98.60 42 | 95.10 150 |
|
| baseline1 | | | 88.16 73 | 88.15 86 | 88.17 77 | 90.02 97 | 94.79 108 | 91.85 71 | 83.89 65 | 87.37 99 | 75.67 97 | 73.75 95 | 79.89 94 | 88.44 95 | 94.41 56 | 93.33 71 | 99.18 5 | 93.55 170 |
|
| thisisatest0530 | | | 87.99 74 | 90.76 60 | 84.75 103 | 88.36 118 | 96.82 79 | 87.65 117 | 79.67 100 | 91.77 73 | 70.93 108 | 79.94 66 | 87.65 58 | 84.21 117 | 92.98 83 | 89.07 125 | 97.66 98 | 97.13 110 |
|
| tttt0517 | | | 87.93 75 | 90.71 61 | 84.68 104 | 88.33 119 | 96.76 81 | 87.42 120 | 79.67 100 | 91.74 74 | 70.83 109 | 79.91 67 | 87.61 59 | 84.21 117 | 92.88 88 | 89.07 125 | 97.62 102 | 97.03 112 |
|
| CANet_DTU | | | 87.91 76 | 91.57 54 | 83.64 111 | 90.96 81 | 97.12 71 | 91.90 70 | 75.97 133 | 92.83 66 | 53.16 175 | 86.02 48 | 79.02 98 | 90.80 68 | 95.40 38 | 94.15 54 | 99.03 18 | 96.47 127 |
|
| diffmvs |  | | 87.86 77 | 87.40 95 | 88.39 74 | 88.57 116 | 96.10 93 | 91.24 82 | 83.15 74 | 90.62 80 | 79.13 74 | 72.45 103 | 67.71 136 | 90.07 80 | 92.58 92 | 93.31 74 | 98.17 65 | 99.03 46 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| IS_MVSNet | | | 87.83 78 | 90.66 63 | 84.53 105 | 90.08 95 | 96.79 80 | 88.16 111 | 79.89 96 | 85.44 109 | 72.20 103 | 75.50 86 | 87.14 61 | 80.21 145 | 95.53 35 | 95.22 31 | 96.65 138 | 99.02 47 |
|
| EPP-MVSNet | | | 87.72 79 | 89.74 72 | 85.37 100 | 89.11 110 | 95.57 103 | 86.31 128 | 79.44 105 | 85.83 108 | 75.73 96 | 77.23 76 | 90.05 49 | 84.78 113 | 91.22 107 | 90.25 101 | 96.83 129 | 98.04 87 |
|
| casdiffmvs_mvg |  | | 87.64 80 | 86.46 102 | 89.01 67 | 89.45 105 | 96.09 95 | 92.69 64 | 83.42 70 | 84.60 119 | 80.01 67 | 68.55 119 | 70.29 128 | 90.51 75 | 93.93 67 | 93.59 65 | 97.96 82 | 98.18 81 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| ET-MVSNet_ETH3D | | | 87.63 81 | 91.08 58 | 83.59 112 | 67.96 216 | 96.30 91 | 92.06 68 | 78.47 114 | 91.95 72 | 69.87 114 | 87.57 42 | 84.14 82 | 94.34 30 | 88.58 133 | 92.10 81 | 98.88 30 | 96.93 113 |
|
| DI_MVS_plusplus_trai | | | 87.63 81 | 87.13 97 | 88.22 76 | 88.61 115 | 95.92 98 | 94.09 54 | 81.41 87 | 87.00 102 | 78.38 82 | 59.70 150 | 80.52 91 | 89.08 90 | 94.37 59 | 93.34 69 | 97.73 93 | 99.05 44 |
|
| casdiffmvs |  | | 87.59 83 | 86.69 101 | 88.64 70 | 89.06 111 | 96.32 90 | 90.18 92 | 83.21 73 | 87.74 97 | 80.20 65 | 67.99 121 | 68.34 134 | 90.79 69 | 93.83 68 | 94.08 55 | 98.41 56 | 98.50 71 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| PVSNet_Blended_VisFu | | | 87.44 84 | 88.72 85 | 85.95 95 | 92.02 73 | 97.26 69 | 86.88 125 | 82.66 81 | 83.86 127 | 79.16 73 | 66.96 125 | 84.91 79 | 77.26 162 | 94.97 46 | 93.48 66 | 97.73 93 | 99.64 16 |
|
| FMVSNet3 | | | 87.19 85 | 87.32 96 | 87.04 89 | 82.82 154 | 90.21 149 | 92.88 61 | 76.53 128 | 91.69 75 | 81.31 55 | 64.81 134 | 80.64 88 | 89.79 85 | 94.80 50 | 94.76 40 | 98.88 30 | 94.32 157 |
|
| LS3D | | | 87.19 85 | 85.48 109 | 89.18 64 | 94.96 56 | 95.47 104 | 92.02 69 | 93.36 25 | 88.69 91 | 67.01 121 | 70.56 112 | 72.10 120 | 92.47 51 | 89.96 123 | 89.93 109 | 95.25 178 | 91.68 179 |
|
| ACMP | | 85.16 9 | 87.15 87 | 87.04 98 | 87.27 86 | 90.80 83 | 94.45 112 | 89.41 101 | 83.09 78 | 89.15 87 | 76.98 92 | 86.35 46 | 65.80 143 | 86.94 100 | 88.45 134 | 87.52 144 | 96.42 153 | 97.56 100 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| UGNet | | | 87.04 88 | 89.59 77 | 84.07 107 | 90.94 82 | 95.95 97 | 86.02 130 | 81.65 85 | 85.94 106 | 78.54 80 | 78.00 72 | 85.40 77 | 69.62 182 | 91.83 102 | 91.53 85 | 97.63 101 | 98.51 70 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| LGP-MVS_train | | | 86.95 89 | 87.65 92 | 86.12 94 | 91.77 76 | 93.84 118 | 93.04 60 | 82.77 80 | 88.04 94 | 65.33 126 | 87.69 41 | 67.09 140 | 86.79 101 | 90.20 121 | 88.99 128 | 97.05 124 | 97.71 94 |
|
| PatchMatch-RL | | | 86.75 90 | 85.43 110 | 88.29 75 | 94.06 61 | 96.37 89 | 86.82 126 | 82.94 79 | 88.94 89 | 79.59 69 | 79.83 68 | 59.17 162 | 89.46 86 | 91.12 108 | 88.81 132 | 96.88 128 | 93.78 166 |
|
| FA-MVS(training) | | | 86.74 91 | 88.01 90 | 85.26 101 | 89.86 98 | 96.99 76 | 88.54 108 | 64.26 196 | 89.04 88 | 81.30 58 | 66.74 127 | 81.52 86 | 89.11 89 | 94.04 65 | 90.37 99 | 98.47 51 | 97.37 104 |
|
| baseline2 | | | 86.51 92 | 89.35 81 | 83.19 114 | 85.70 139 | 94.88 107 | 85.75 135 | 77.13 123 | 89.87 84 | 70.65 111 | 79.03 69 | 79.14 96 | 81.51 138 | 93.70 69 | 90.22 102 | 98.38 59 | 98.60 64 |
|
| thres100view900 | | | 86.48 93 | 85.08 112 | 88.12 78 | 90.54 84 | 96.90 78 | 92.39 65 | 84.82 63 | 84.16 125 | 71.65 104 | 70.86 109 | 60.49 157 | 91.23 62 | 93.65 70 | 90.19 104 | 98.10 69 | 99.32 25 |
|
| ACMM | | 84.23 10 | 86.40 94 | 84.64 115 | 88.46 72 | 91.90 74 | 91.93 140 | 88.11 113 | 85.59 60 | 88.61 92 | 79.13 74 | 75.31 87 | 66.25 141 | 89.86 84 | 89.88 124 | 87.64 141 | 96.16 163 | 92.86 175 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| GBi-Net | | | 86.16 95 | 86.00 105 | 86.35 91 | 81.81 160 | 89.52 158 | 91.40 76 | 76.53 128 | 91.69 75 | 81.31 55 | 64.81 134 | 80.64 88 | 88.72 91 | 90.54 112 | 90.72 92 | 98.34 60 | 94.08 158 |
|
| test1 | | | 86.16 95 | 86.00 105 | 86.35 91 | 81.81 160 | 89.52 158 | 91.40 76 | 76.53 128 | 91.69 75 | 81.31 55 | 64.81 134 | 80.64 88 | 88.72 91 | 90.54 112 | 90.72 92 | 98.34 60 | 94.08 158 |
|
| tfpn200view9 | | | 86.07 97 | 84.76 114 | 87.61 83 | 90.54 84 | 96.39 86 | 91.35 79 | 83.15 74 | 84.16 125 | 71.65 104 | 70.86 109 | 60.49 157 | 90.91 66 | 92.89 85 | 89.34 116 | 98.05 75 | 99.17 38 |
|
| DCV-MVSNet | | | 85.90 98 | 85.88 107 | 85.93 96 | 87.86 124 | 88.37 175 | 89.45 100 | 77.46 122 | 87.33 100 | 77.51 87 | 76.06 79 | 75.76 109 | 88.48 94 | 87.40 143 | 88.89 131 | 94.80 187 | 97.37 104 |
|
| Vis-MVSNet (Re-imp) | | | 85.89 99 | 89.62 76 | 81.55 125 | 89.85 99 | 96.08 96 | 87.55 118 | 79.80 97 | 84.80 116 | 66.55 123 | 73.70 96 | 86.71 62 | 68.25 189 | 94.40 57 | 94.53 44 | 97.32 116 | 97.09 111 |
|
| MSDG | | | 85.81 100 | 82.29 139 | 89.93 58 | 95.52 53 | 92.61 129 | 91.51 75 | 91.46 38 | 85.12 113 | 78.56 78 | 63.25 140 | 69.01 132 | 85.31 110 | 88.45 134 | 88.23 135 | 97.21 120 | 89.33 190 |
|
| thres200 | | | 85.80 101 | 84.38 116 | 87.46 84 | 90.51 86 | 96.39 86 | 91.64 73 | 83.15 74 | 81.59 136 | 71.54 106 | 70.24 113 | 60.41 159 | 89.88 82 | 92.89 85 | 89.85 112 | 98.06 73 | 99.26 30 |
|
| ECVR-MVS |  | | 85.74 102 | 83.80 124 | 88.00 79 | 91.55 78 | 97.78 60 | 90.87 89 | 83.36 71 | 84.51 121 | 78.21 83 | 58.65 155 | 62.75 153 | 85.39 107 | 94.34 61 | 93.33 71 | 98.60 42 | 95.25 144 |
|
| OPM-MVS | | | 85.69 103 | 82.79 132 | 89.06 65 | 93.42 65 | 94.21 116 | 94.21 53 | 87.61 47 | 72.68 161 | 70.79 110 | 71.09 107 | 67.27 139 | 90.74 70 | 91.29 106 | 89.05 127 | 97.61 103 | 93.94 163 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| thres400 | | | 85.59 104 | 84.08 119 | 87.36 85 | 90.45 89 | 96.60 83 | 90.95 88 | 83.67 68 | 80.99 139 | 71.17 107 | 69.08 118 | 60.25 160 | 89.88 82 | 93.14 78 | 89.34 116 | 98.02 77 | 99.17 38 |
|
| CostFormer | | | 85.47 105 | 86.98 99 | 83.71 110 | 88.70 114 | 94.02 117 | 88.07 114 | 62.72 198 | 89.78 85 | 78.68 77 | 72.69 101 | 78.37 101 | 87.35 99 | 85.96 156 | 89.32 120 | 96.73 135 | 98.72 56 |
|
| test1111 | | | 85.17 106 | 83.46 127 | 87.17 87 | 91.36 80 | 97.75 62 | 90.06 94 | 83.44 69 | 83.41 129 | 75.25 98 | 58.08 158 | 62.19 155 | 84.39 116 | 94.39 58 | 93.38 68 | 98.54 48 | 95.00 152 |
|
| thres600view7 | | | 85.14 107 | 83.58 126 | 86.96 90 | 90.37 93 | 96.39 86 | 90.33 91 | 83.15 74 | 80.46 140 | 70.60 113 | 67.96 122 | 60.04 161 | 89.22 88 | 92.89 85 | 88.28 134 | 98.06 73 | 99.08 43 |
|
| test-LLR | | | 85.11 108 | 89.49 79 | 80.00 134 | 85.32 143 | 94.49 110 | 82.27 165 | 74.18 142 | 87.83 95 | 56.70 153 | 75.55 84 | 86.26 64 | 82.75 131 | 93.06 80 | 90.60 97 | 98.77 36 | 98.65 62 |
|
| FMVSNet2 | | | 84.89 109 | 84.02 121 | 85.91 97 | 81.81 160 | 89.52 158 | 91.40 76 | 75.79 134 | 84.45 123 | 79.39 71 | 58.75 153 | 74.35 111 | 88.72 91 | 93.51 74 | 93.46 67 | 98.34 60 | 94.08 158 |
|
| FC-MVSNet-train | | | 84.88 110 | 84.08 119 | 85.82 98 | 89.21 108 | 91.74 141 | 85.87 131 | 81.20 90 | 81.71 135 | 74.66 100 | 73.38 98 | 64.99 147 | 86.60 102 | 90.75 110 | 88.08 136 | 97.36 114 | 97.90 91 |
|
| EPNet_dtu | | | 84.87 111 | 89.01 82 | 80.05 133 | 95.25 55 | 92.88 127 | 88.84 105 | 84.11 64 | 91.69 75 | 49.28 191 | 85.69 49 | 78.95 99 | 65.39 194 | 92.22 100 | 91.66 84 | 97.43 111 | 89.95 186 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| Effi-MVS+ | | | 84.80 112 | 85.71 108 | 83.73 109 | 87.94 123 | 95.76 99 | 90.08 93 | 73.45 149 | 85.12 113 | 62.66 135 | 72.39 104 | 64.97 148 | 90.59 73 | 92.95 84 | 90.69 95 | 97.67 97 | 98.12 83 |
|
| UA-Net | | | 84.69 113 | 87.64 93 | 81.25 127 | 90.38 92 | 95.67 100 | 87.33 121 | 79.41 106 | 72.07 165 | 66.48 124 | 75.09 88 | 92.48 40 | 66.88 190 | 94.03 66 | 94.25 51 | 97.01 127 | 89.88 187 |
|
| TESTMET0.1,1 | | | 84.62 114 | 89.49 79 | 78.94 143 | 82.18 157 | 94.49 110 | 82.27 165 | 70.94 169 | 87.83 95 | 56.70 153 | 75.55 84 | 86.26 64 | 82.75 131 | 93.06 80 | 90.60 97 | 98.77 36 | 98.65 62 |
|
| CHOSEN 1792x2688 | | | 84.59 115 | 84.30 118 | 84.93 102 | 93.71 63 | 98.23 52 | 89.91 96 | 77.96 117 | 84.81 115 | 65.93 125 | 45.19 200 | 71.76 124 | 83.13 129 | 95.46 36 | 95.13 34 | 98.94 25 | 99.53 20 |
|
| Anonymous20231211 | | | 84.23 116 | 81.71 144 | 87.17 87 | 87.38 131 | 93.59 121 | 88.95 104 | 82.14 83 | 83.82 128 | 78.56 78 | 48.09 194 | 73.89 112 | 91.25 61 | 86.38 150 | 88.06 138 | 94.74 188 | 98.14 82 |
|
| MDTV_nov1_ep13 | | | 84.17 117 | 88.03 88 | 79.66 136 | 86.00 137 | 94.41 113 | 85.05 137 | 66.01 192 | 90.36 81 | 64.34 131 | 77.13 77 | 84.56 80 | 82.71 133 | 87.12 147 | 88.92 129 | 93.84 194 | 93.69 169 |
|
| test-mter | | | 84.06 118 | 89.00 83 | 78.29 148 | 81.92 158 | 94.23 115 | 81.07 175 | 70.38 174 | 87.12 101 | 56.10 162 | 74.75 89 | 85.80 70 | 81.81 137 | 92.52 93 | 90.10 106 | 98.43 54 | 98.49 72 |
|
| IB-MVS | | 79.58 12 | 83.83 119 | 84.81 113 | 82.68 117 | 91.85 75 | 97.35 67 | 75.75 194 | 82.57 82 | 86.55 104 | 84.01 42 | 70.90 108 | 65.43 145 | 63.18 200 | 84.19 170 | 89.92 111 | 98.74 38 | 99.31 27 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| EPMVS | | | 83.71 120 | 86.76 100 | 80.16 132 | 89.72 102 | 95.64 101 | 84.68 138 | 59.73 203 | 89.61 86 | 62.67 134 | 72.65 102 | 81.80 85 | 86.22 104 | 86.23 152 | 88.03 139 | 97.96 82 | 93.35 171 |
|
| HyFIR lowres test | | | 83.43 121 | 82.94 130 | 84.01 108 | 93.41 66 | 97.10 72 | 87.21 122 | 74.04 144 | 80.15 142 | 64.98 127 | 41.09 208 | 76.61 106 | 86.51 103 | 93.31 75 | 93.01 78 | 97.91 89 | 99.30 28 |
|
| PatchmatchNet |  | | 83.28 122 | 87.57 94 | 78.29 148 | 87.46 129 | 94.95 105 | 83.36 147 | 59.43 206 | 90.20 83 | 58.10 148 | 74.29 92 | 86.20 66 | 84.13 119 | 85.27 162 | 87.39 145 | 97.25 119 | 94.67 155 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| SCA | | | 83.26 123 | 87.76 91 | 78.00 153 | 87.45 130 | 92.20 135 | 82.63 161 | 58.42 208 | 90.30 82 | 58.23 146 | 75.74 83 | 87.75 57 | 83.97 122 | 86.10 155 | 87.64 141 | 97.30 117 | 94.62 156 |
|
| GeoE | | | 83.17 124 | 82.86 131 | 83.53 113 | 87.24 132 | 93.78 119 | 87.94 115 | 72.75 154 | 82.19 133 | 69.76 115 | 60.54 147 | 65.95 142 | 86.01 105 | 89.41 128 | 89.72 114 | 97.47 107 | 98.43 74 |
|
| CDS-MVSNet | | | 83.13 125 | 83.73 125 | 82.43 123 | 84.52 148 | 92.92 126 | 88.26 110 | 77.67 120 | 72.08 164 | 69.08 118 | 66.96 125 | 74.66 110 | 78.61 151 | 90.70 111 | 91.96 82 | 96.46 152 | 96.86 115 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| RPSCF | | | 82.91 126 | 81.86 141 | 84.13 106 | 88.25 120 | 88.32 176 | 87.67 116 | 80.86 93 | 84.78 117 | 76.57 95 | 85.56 50 | 76.00 108 | 84.61 114 | 78.20 205 | 76.52 208 | 86.81 214 | 83.63 207 |
|
| Vis-MVSNet |  | | 82.88 127 | 86.04 104 | 79.20 141 | 87.77 127 | 96.42 85 | 86.10 129 | 76.70 125 | 74.82 155 | 61.38 138 | 70.70 111 | 77.91 102 | 64.83 196 | 93.22 76 | 93.19 76 | 98.43 54 | 96.01 130 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| dps | | | 82.63 128 | 82.64 135 | 82.62 119 | 87.81 126 | 92.81 128 | 84.39 139 | 61.96 199 | 86.43 105 | 81.63 52 | 69.72 115 | 67.60 138 | 84.42 115 | 82.51 183 | 83.90 182 | 95.52 172 | 95.50 141 |
|
| IterMVS-LS | | | 82.62 129 | 82.75 134 | 82.48 120 | 87.09 133 | 87.48 189 | 87.19 123 | 72.85 152 | 79.09 143 | 66.63 122 | 65.22 129 | 72.14 119 | 84.06 121 | 88.33 137 | 91.39 87 | 97.03 126 | 95.60 140 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| Fast-Effi-MVS+ | | | 82.61 130 | 82.51 137 | 82.72 116 | 85.49 142 | 93.06 125 | 87.17 124 | 71.39 166 | 84.18 124 | 64.59 129 | 63.03 141 | 58.89 163 | 90.22 79 | 91.39 105 | 90.83 91 | 97.44 109 | 96.21 129 |
|
| tpm cat1 | | | 82.39 131 | 82.32 138 | 82.47 121 | 88.13 121 | 92.42 133 | 87.43 119 | 62.79 197 | 85.30 110 | 78.05 85 | 60.14 148 | 72.10 120 | 83.20 128 | 82.26 186 | 85.67 161 | 95.23 179 | 98.35 78 |
|
| dmvs_re | | | 82.31 132 | 81.55 145 | 83.19 114 | 83.15 153 | 93.17 124 | 88.68 107 | 83.72 66 | 82.73 131 | 61.70 136 | 67.43 124 | 55.43 171 | 83.35 127 | 87.51 142 | 89.27 123 | 98.56 46 | 95.31 143 |
|
| MS-PatchMatch | | | 82.16 133 | 82.18 140 | 82.12 124 | 91.65 77 | 93.50 122 | 89.51 98 | 71.95 160 | 81.48 137 | 64.45 130 | 59.58 152 | 77.54 103 | 77.23 163 | 89.88 124 | 85.62 162 | 97.94 84 | 87.68 194 |
|
| tpmrst | | | 81.71 134 | 83.87 123 | 79.20 141 | 89.01 112 | 93.67 120 | 84.22 140 | 60.14 201 | 87.45 98 | 59.49 142 | 64.97 132 | 71.86 123 | 85.30 111 | 84.72 166 | 86.30 153 | 97.04 125 | 98.09 85 |
|
| RPMNet | | | 81.47 135 | 86.24 103 | 75.90 171 | 86.72 134 | 92.12 137 | 82.82 159 | 55.76 214 | 85.21 111 | 53.73 173 | 63.45 138 | 83.16 83 | 80.13 146 | 92.34 97 | 89.52 115 | 96.23 161 | 97.90 91 |
|
| CR-MVSNet | | | 81.44 136 | 85.29 111 | 76.94 162 | 86.53 135 | 92.12 137 | 83.86 141 | 58.37 209 | 85.21 111 | 56.28 157 | 59.60 151 | 80.39 92 | 80.50 143 | 92.77 89 | 89.32 120 | 96.12 165 | 97.59 98 |
|
| Effi-MVS+-dtu | | | 81.18 137 | 82.77 133 | 79.33 139 | 84.70 147 | 92.54 131 | 85.81 132 | 71.55 164 | 78.84 144 | 57.06 152 | 71.98 106 | 63.77 151 | 85.09 112 | 88.94 130 | 87.62 143 | 91.79 207 | 95.68 135 |
|
| test0.0.03 1 | | | 80.99 138 | 84.37 117 | 77.05 160 | 85.32 143 | 89.79 154 | 78.43 185 | 74.18 142 | 84.78 117 | 57.98 151 | 76.06 79 | 72.88 115 | 69.14 186 | 88.02 139 | 87.70 140 | 97.27 118 | 91.37 180 |
|
| Fast-Effi-MVS+-dtu | | | 80.57 139 | 83.44 128 | 77.22 158 | 83.98 151 | 91.52 143 | 85.78 134 | 64.54 195 | 80.38 141 | 50.28 187 | 74.06 94 | 62.89 152 | 82.00 136 | 89.10 129 | 88.91 130 | 96.75 133 | 97.21 109 |
|
| FMVSNet5 | | | 80.56 140 | 82.53 136 | 78.26 150 | 73.80 210 | 81.52 208 | 82.26 167 | 68.36 185 | 88.85 90 | 64.21 132 | 69.09 117 | 84.38 81 | 83.49 126 | 87.13 146 | 86.76 150 | 97.44 109 | 79.95 210 |
|
| ADS-MVSNet | | | 80.25 141 | 82.96 129 | 77.08 159 | 87.86 124 | 92.60 130 | 81.82 172 | 56.19 213 | 86.95 103 | 56.16 160 | 68.19 120 | 72.42 118 | 83.70 125 | 82.05 187 | 85.45 167 | 96.75 133 | 93.08 174 |
|
| FMVSNet1 | | | 80.18 142 | 78.07 156 | 82.65 118 | 78.55 184 | 87.57 188 | 88.41 109 | 73.93 145 | 70.16 170 | 73.57 101 | 49.80 183 | 64.45 150 | 85.35 109 | 90.54 112 | 90.72 92 | 96.10 166 | 93.21 172 |
|
| USDC | | | 80.10 143 | 79.33 152 | 81.00 129 | 86.36 136 | 91.71 142 | 88.74 106 | 75.77 135 | 81.90 134 | 54.90 167 | 67.67 123 | 52.05 176 | 83.94 123 | 88.44 136 | 86.25 154 | 96.31 156 | 87.28 198 |
|
| COLMAP_ROB |  | 75.69 15 | 79.47 144 | 76.90 163 | 82.46 122 | 92.20 70 | 90.53 145 | 85.30 136 | 83.69 67 | 78.27 147 | 61.47 137 | 58.26 156 | 62.75 153 | 78.28 154 | 82.41 184 | 82.13 195 | 93.83 196 | 83.98 206 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| pmmvs4 | | | 79.32 145 | 77.78 158 | 81.11 128 | 80.18 169 | 88.96 170 | 83.39 145 | 76.07 131 | 81.27 138 | 69.35 116 | 58.66 154 | 51.19 179 | 82.01 135 | 87.16 145 | 84.39 179 | 95.66 170 | 92.82 176 |
|
| PatchT | | | 79.28 146 | 83.88 122 | 73.93 180 | 85.54 141 | 90.95 144 | 66.14 211 | 56.53 212 | 83.21 130 | 56.28 157 | 56.50 160 | 76.80 105 | 80.50 143 | 92.77 89 | 89.32 120 | 98.57 45 | 97.59 98 |
|
| ACMH | | 78.51 14 | 79.27 147 | 78.08 155 | 80.65 130 | 89.52 104 | 90.40 146 | 80.45 177 | 79.77 99 | 69.54 175 | 54.85 168 | 64.83 133 | 56.16 169 | 83.94 123 | 84.58 168 | 86.01 158 | 95.41 175 | 95.03 151 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| TAMVS | | | 79.23 148 | 78.95 154 | 79.56 137 | 81.89 159 | 92.52 132 | 82.97 154 | 73.70 146 | 67.27 181 | 64.97 128 | 61.66 146 | 65.06 146 | 78.61 151 | 87.12 147 | 88.07 137 | 95.23 179 | 90.95 182 |
|
| ACMH+ | | 79.09 13 | 79.12 149 | 77.22 162 | 81.35 126 | 88.50 117 | 90.36 147 | 82.14 169 | 79.38 108 | 72.78 160 | 58.59 143 | 62.31 145 | 56.44 168 | 84.10 120 | 82.03 188 | 84.05 180 | 95.40 176 | 92.55 177 |
|
| UniMVSNet_NR-MVSNet | | | 78.89 150 | 78.04 157 | 79.88 135 | 79.40 175 | 89.70 155 | 82.92 156 | 80.17 94 | 76.37 153 | 58.56 144 | 57.10 159 | 54.92 172 | 81.44 139 | 83.51 175 | 87.12 147 | 96.76 132 | 97.60 96 |
|
| tpm | | | 78.87 151 | 81.33 148 | 76.00 169 | 85.57 140 | 90.19 150 | 82.81 160 | 59.66 204 | 78.35 146 | 51.40 182 | 66.30 128 | 67.92 135 | 80.94 141 | 83.28 178 | 85.73 159 | 95.65 171 | 97.56 100 |
|
| GA-MVS | | | 78.86 152 | 80.42 149 | 77.05 160 | 83.27 152 | 92.17 136 | 83.24 149 | 75.73 136 | 73.75 157 | 46.27 201 | 62.43 143 | 57.12 165 | 76.94 165 | 93.14 78 | 89.34 116 | 96.83 129 | 95.00 152 |
|
| IterMVS | | | 78.85 153 | 81.36 146 | 75.93 170 | 84.27 150 | 85.74 195 | 83.83 143 | 66.35 190 | 76.82 148 | 50.48 185 | 63.48 137 | 68.82 133 | 73.99 170 | 89.68 126 | 89.34 116 | 96.63 141 | 95.67 136 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| IterMVS-SCA-FT | | | 78.71 154 | 81.34 147 | 75.64 175 | 84.31 149 | 85.67 196 | 83.51 144 | 66.14 191 | 76.67 149 | 50.38 186 | 63.45 138 | 69.02 131 | 73.23 172 | 89.66 127 | 89.22 124 | 96.24 160 | 95.67 136 |
|
| UniMVSNet (Re) | | | 78.00 155 | 77.52 159 | 78.57 146 | 79.66 174 | 90.36 147 | 82.09 170 | 77.86 119 | 76.38 152 | 60.26 139 | 54.63 166 | 52.07 175 | 75.31 168 | 84.97 165 | 86.10 156 | 96.22 162 | 98.11 84 |
|
| DU-MVS | | | 77.98 156 | 76.71 164 | 79.46 138 | 78.68 181 | 89.26 164 | 82.92 156 | 79.06 110 | 76.52 150 | 58.56 144 | 54.89 164 | 48.35 193 | 81.44 139 | 83.16 180 | 87.21 146 | 96.08 167 | 97.60 96 |
|
| FC-MVSNet-test | | | 77.95 157 | 81.85 142 | 73.39 185 | 82.31 155 | 88.99 169 | 79.33 181 | 74.24 141 | 78.75 145 | 47.40 199 | 70.22 114 | 72.09 122 | 60.78 206 | 86.66 149 | 85.62 162 | 96.30 157 | 90.61 183 |
|
| NR-MVSNet | | | 77.21 158 | 76.41 165 | 78.14 152 | 80.18 169 | 89.26 164 | 83.38 146 | 79.06 110 | 76.52 150 | 56.59 155 | 54.89 164 | 45.32 203 | 72.89 174 | 85.39 161 | 86.12 155 | 96.71 136 | 97.36 106 |
|
| thisisatest0515 | | | 77.13 159 | 79.36 151 | 74.52 177 | 79.79 173 | 89.65 156 | 73.54 199 | 73.69 147 | 74.10 156 | 58.14 147 | 62.79 142 | 60.57 156 | 66.49 192 | 88.08 138 | 85.16 172 | 95.49 174 | 95.15 148 |
|
| gg-mvs-nofinetune | | | 77.08 160 | 79.79 150 | 73.92 181 | 85.95 138 | 97.23 70 | 92.18 67 | 52.65 217 | 46.19 220 | 27.79 224 | 38.27 212 | 85.63 71 | 85.67 106 | 96.95 18 | 95.62 25 | 99.30 3 | 98.67 61 |
|
| TranMVSNet+NR-MVSNet | | | 77.02 161 | 75.76 167 | 78.49 147 | 78.46 187 | 88.24 177 | 83.03 153 | 79.97 95 | 73.49 159 | 54.73 169 | 54.00 169 | 48.74 188 | 78.15 156 | 82.36 185 | 86.90 149 | 96.59 143 | 96.55 121 |
|
| CVMVSNet | | | 76.86 162 | 79.09 153 | 74.26 178 | 85.29 145 | 89.44 161 | 79.91 180 | 78.47 114 | 68.94 178 | 44.45 206 | 62.35 144 | 69.70 129 | 64.50 197 | 85.82 157 | 87.03 148 | 92.94 202 | 90.33 184 |
|
| Baseline_NR-MVSNet | | | 76.71 163 | 74.56 174 | 79.23 140 | 78.68 181 | 84.15 204 | 82.45 163 | 78.87 112 | 75.83 154 | 60.05 140 | 47.92 195 | 50.18 185 | 79.06 150 | 83.16 180 | 83.86 183 | 96.26 158 | 96.80 117 |
|
| v2v482 | | | 76.25 164 | 74.78 171 | 77.96 154 | 78.50 186 | 89.14 167 | 83.05 152 | 76.02 132 | 68.78 179 | 54.11 170 | 51.36 175 | 48.59 190 | 79.49 148 | 83.53 174 | 85.60 165 | 96.59 143 | 96.49 126 |
|
| V42 | | | 76.21 165 | 75.04 170 | 77.58 155 | 78.68 181 | 89.33 163 | 82.93 155 | 74.64 139 | 69.84 172 | 56.13 161 | 50.42 180 | 50.93 180 | 76.30 167 | 83.32 176 | 84.89 176 | 96.83 129 | 96.54 122 |
|
| v8 | | | 75.89 166 | 74.74 172 | 77.23 157 | 79.09 177 | 88.00 180 | 83.19 150 | 71.08 168 | 70.03 171 | 56.29 156 | 50.50 178 | 50.88 181 | 77.06 164 | 83.32 176 | 84.99 174 | 96.68 137 | 95.49 142 |
|
| TinyColmap | | | 75.75 167 | 73.19 185 | 78.74 145 | 84.82 146 | 87.69 184 | 81.59 173 | 74.62 140 | 71.81 166 | 54.01 171 | 55.79 163 | 44.42 208 | 82.89 130 | 84.61 167 | 83.76 184 | 94.50 189 | 84.22 205 |
|
| MIMVSNet | | | 75.71 168 | 77.26 160 | 73.90 182 | 70.93 212 | 88.71 173 | 79.98 179 | 57.67 211 | 73.58 158 | 58.08 150 | 53.93 170 | 58.56 164 | 79.41 149 | 90.04 122 | 89.97 107 | 97.34 115 | 86.04 199 |
|
| UniMVSNet_ETH3D | | | 75.63 169 | 71.59 194 | 80.35 131 | 81.03 164 | 89.90 153 | 83.25 148 | 76.58 127 | 60.08 202 | 64.19 133 | 42.89 207 | 45.01 204 | 82.14 134 | 80.20 198 | 86.75 151 | 94.90 184 | 96.29 128 |
|
| pm-mvs1 | | | 75.61 170 | 74.19 176 | 77.26 156 | 80.16 171 | 88.79 171 | 81.49 174 | 75.49 138 | 59.49 204 | 58.09 149 | 48.32 191 | 55.53 170 | 72.35 175 | 88.61 132 | 85.48 166 | 95.99 168 | 93.12 173 |
|
| v10 | | | 75.57 171 | 74.67 173 | 76.62 165 | 78.73 180 | 87.46 190 | 83.14 151 | 69.41 181 | 69.27 176 | 53.44 174 | 49.73 184 | 49.21 187 | 78.44 153 | 86.17 154 | 85.18 171 | 96.53 148 | 95.65 139 |
|
| v1144 | | | 75.54 172 | 74.55 175 | 76.69 163 | 78.33 190 | 88.77 172 | 82.89 158 | 72.76 153 | 67.18 183 | 51.73 179 | 49.34 186 | 48.37 191 | 78.10 157 | 86.22 153 | 85.24 169 | 96.35 155 | 96.74 118 |
|
| TDRefinement | | | 75.54 172 | 73.22 183 | 78.25 151 | 87.65 128 | 89.65 156 | 85.81 132 | 79.28 109 | 71.14 168 | 56.06 163 | 52.17 173 | 51.96 177 | 68.74 188 | 81.60 189 | 80.58 197 | 91.94 205 | 85.45 200 |
|
| pmmvs5 | | | 75.46 174 | 75.12 169 | 75.87 172 | 79.39 176 | 89.44 161 | 78.12 187 | 72.27 158 | 65.98 188 | 51.54 180 | 55.83 162 | 46.23 198 | 76.80 166 | 88.77 131 | 85.73 159 | 97.07 123 | 93.84 164 |
|
| tfpnnormal | | | 75.27 175 | 72.12 191 | 78.94 143 | 82.30 156 | 88.52 174 | 82.41 164 | 79.41 106 | 58.03 205 | 55.59 165 | 43.83 206 | 44.71 205 | 77.35 160 | 87.70 141 | 85.45 167 | 96.60 142 | 96.61 120 |
|
| anonymousdsp | | | 75.14 176 | 77.25 161 | 72.69 188 | 76.68 200 | 89.26 164 | 75.26 196 | 68.44 184 | 65.53 191 | 46.65 200 | 58.16 157 | 56.67 167 | 73.96 171 | 87.84 140 | 86.05 157 | 95.13 182 | 97.22 108 |
|
| v148 | | | 74.98 177 | 73.52 181 | 76.69 163 | 78.84 179 | 89.02 168 | 78.78 183 | 76.82 124 | 67.22 182 | 59.61 141 | 49.18 187 | 47.94 195 | 70.57 181 | 80.76 193 | 83.99 181 | 95.52 172 | 96.52 124 |
|
| v1192 | | | 74.96 178 | 73.92 177 | 76.17 166 | 77.76 193 | 88.19 179 | 82.54 162 | 71.94 161 | 66.84 184 | 50.07 189 | 48.10 193 | 46.14 199 | 78.28 154 | 86.30 151 | 85.23 170 | 96.41 154 | 96.67 119 |
|
| v144192 | | | 74.76 179 | 73.64 178 | 76.06 168 | 77.58 194 | 88.23 178 | 81.87 171 | 71.63 163 | 66.03 187 | 51.08 183 | 48.63 190 | 46.77 197 | 77.59 159 | 84.53 169 | 84.76 177 | 96.64 140 | 96.54 122 |
|
| v1921920 | | | 74.60 180 | 73.56 180 | 75.81 173 | 77.43 196 | 87.94 181 | 82.18 168 | 71.33 167 | 66.48 186 | 49.23 193 | 47.84 196 | 45.56 201 | 78.03 158 | 85.70 159 | 84.92 175 | 96.65 138 | 96.50 125 |
|
| v1240 | | | 74.04 181 | 73.04 187 | 75.20 176 | 77.19 198 | 87.69 184 | 80.93 176 | 70.72 173 | 65.08 192 | 48.47 194 | 47.31 197 | 44.71 205 | 77.33 161 | 85.50 160 | 85.07 173 | 96.59 143 | 95.94 131 |
|
| testgi | | | 73.22 182 | 75.84 166 | 70.16 199 | 81.67 163 | 85.50 199 | 71.45 201 | 70.81 171 | 69.56 174 | 44.74 205 | 74.52 91 | 49.25 186 | 58.45 207 | 84.10 172 | 83.37 188 | 93.86 193 | 84.56 204 |
|
| CP-MVSNet | | | 73.19 183 | 72.37 189 | 74.15 179 | 77.54 195 | 86.77 193 | 76.34 190 | 72.05 159 | 65.66 190 | 51.47 181 | 50.49 179 | 43.66 209 | 70.90 177 | 80.93 192 | 83.40 187 | 96.59 143 | 95.66 138 |
|
| WR-MVS | | | 72.93 184 | 73.57 179 | 72.19 191 | 78.14 191 | 87.71 183 | 76.21 192 | 73.02 151 | 67.78 180 | 50.09 188 | 50.35 181 | 50.53 183 | 61.27 205 | 80.42 196 | 83.10 191 | 94.43 190 | 95.11 149 |
|
| TransMVSNet (Re) | | | 72.90 185 | 70.51 198 | 75.69 174 | 80.88 165 | 85.26 201 | 79.25 182 | 78.43 116 | 56.13 211 | 52.81 176 | 46.81 198 | 48.20 194 | 66.77 191 | 85.18 164 | 83.70 185 | 95.98 169 | 88.28 193 |
|
| WR-MVS_H | | | 72.69 186 | 72.80 188 | 72.56 190 | 77.94 192 | 87.83 182 | 75.26 196 | 71.53 165 | 64.75 193 | 52.19 178 | 49.83 182 | 48.62 189 | 61.96 203 | 81.12 191 | 82.44 193 | 96.50 149 | 95.00 152 |
|
| SixPastTwentyTwo | | | 72.65 187 | 73.22 183 | 71.98 194 | 78.40 188 | 87.64 186 | 70.09 204 | 70.37 175 | 66.49 185 | 47.60 197 | 65.09 130 | 45.94 200 | 73.09 173 | 78.94 200 | 78.66 203 | 92.33 203 | 89.82 188 |
|
| LTVRE_ROB | | 71.82 16 | 72.62 188 | 71.77 192 | 73.62 183 | 80.74 166 | 87.59 187 | 80.42 178 | 70.37 175 | 49.73 215 | 37.12 218 | 59.76 149 | 42.52 214 | 80.92 142 | 83.20 179 | 85.61 164 | 92.13 204 | 93.95 162 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| PS-CasMVS | | | 72.37 189 | 71.47 196 | 73.43 184 | 77.32 197 | 86.43 194 | 75.99 193 | 71.94 161 | 63.37 196 | 49.24 192 | 49.07 188 | 42.42 215 | 69.60 183 | 80.59 195 | 83.18 190 | 96.48 151 | 95.23 146 |
|
| MVS-HIRNet | | | 72.32 190 | 73.45 182 | 71.00 197 | 80.58 167 | 89.97 151 | 68.51 208 | 55.28 215 | 70.89 169 | 52.27 177 | 39.09 210 | 57.11 166 | 75.02 169 | 85.76 158 | 86.33 152 | 94.36 191 | 85.00 202 |
|
| PEN-MVS | | | 72.24 191 | 71.30 197 | 73.33 186 | 77.08 199 | 85.57 197 | 76.75 188 | 72.52 156 | 63.89 195 | 48.12 195 | 50.79 176 | 43.09 212 | 69.03 187 | 78.54 202 | 83.46 186 | 96.50 149 | 93.76 167 |
|
| v7n | | | 72.11 192 | 71.66 193 | 72.63 189 | 75.26 205 | 86.85 191 | 76.74 189 | 68.77 183 | 62.70 199 | 49.40 190 | 45.92 199 | 43.51 210 | 70.63 180 | 84.16 171 | 83.21 189 | 94.99 183 | 95.25 144 |
|
| EG-PatchMatch MVS | | | 71.81 193 | 71.54 195 | 72.12 192 | 80.53 168 | 89.94 152 | 78.51 184 | 66.56 189 | 57.38 207 | 47.46 198 | 44.28 205 | 52.22 174 | 63.10 201 | 85.22 163 | 84.42 178 | 96.56 147 | 87.35 197 |
|
| CMPMVS |  | 54.54 17 | 71.74 194 | 67.94 203 | 76.16 167 | 90.41 90 | 93.25 123 | 78.32 186 | 75.60 137 | 59.81 203 | 53.95 172 | 44.64 203 | 51.22 178 | 70.70 178 | 74.59 211 | 75.88 209 | 88.01 211 | 76.23 213 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| MDTV_nov1_ep13_2view | | | 71.65 195 | 73.08 186 | 69.97 200 | 75.22 206 | 86.81 192 | 73.98 198 | 59.61 205 | 69.75 173 | 48.01 196 | 54.21 168 | 53.06 173 | 69.19 185 | 78.50 203 | 80.43 198 | 93.84 194 | 88.79 191 |
|
| pmnet_mix02 | | | 71.64 196 | 72.36 190 | 70.81 198 | 78.39 189 | 85.57 197 | 68.64 206 | 73.65 148 | 72.13 162 | 45.07 204 | 56.01 161 | 50.61 182 | 65.34 195 | 76.21 208 | 76.60 207 | 93.75 197 | 89.35 189 |
|
| gm-plane-assit | | | 71.33 197 | 75.18 168 | 66.83 203 | 79.06 178 | 75.57 215 | 48.05 222 | 60.33 200 | 48.28 216 | 34.67 222 | 44.34 204 | 67.70 137 | 79.78 147 | 97.25 11 | 96.21 13 | 99.10 10 | 96.92 114 |
|
| DTE-MVSNet | | | 71.19 198 | 70.45 199 | 72.06 193 | 76.61 201 | 84.59 203 | 75.61 195 | 72.32 157 | 63.12 198 | 45.70 203 | 50.72 177 | 43.02 213 | 65.89 193 | 77.53 207 | 82.23 194 | 96.26 158 | 91.93 178 |
|
| pmmvs6 | | | 70.29 199 | 67.90 204 | 73.07 187 | 76.17 202 | 85.31 200 | 76.29 191 | 70.75 172 | 47.39 218 | 55.33 166 | 37.15 216 | 50.49 184 | 69.55 184 | 82.96 182 | 80.85 196 | 90.34 210 | 91.18 181 |
|
| PM-MVS | | | 70.17 200 | 69.42 201 | 71.04 196 | 70.82 213 | 81.26 210 | 71.25 202 | 67.80 186 | 69.16 177 | 51.04 184 | 53.15 172 | 34.93 219 | 72.19 176 | 80.30 197 | 76.95 206 | 93.16 201 | 90.21 185 |
|
| pmmvs-eth3d | | | 69.59 201 | 67.57 206 | 71.95 195 | 70.04 214 | 80.05 211 | 71.48 200 | 70.00 179 | 62.57 200 | 55.99 164 | 44.92 201 | 35.73 218 | 70.64 179 | 81.56 190 | 79.69 199 | 93.55 198 | 88.43 192 |
|
| N_pmnet | | | 68.54 202 | 67.83 205 | 69.38 201 | 75.77 203 | 81.90 207 | 66.21 210 | 72.53 155 | 65.91 189 | 46.09 202 | 44.67 202 | 45.48 202 | 63.82 199 | 74.66 210 | 77.39 205 | 91.87 206 | 84.77 203 |
|
| Anonymous20231206 | | | 68.09 203 | 68.68 202 | 67.39 202 | 75.16 207 | 82.55 205 | 69.33 205 | 70.06 178 | 63.34 197 | 42.28 209 | 37.91 214 | 43.12 211 | 52.67 210 | 83.56 173 | 82.71 192 | 94.84 186 | 87.59 195 |
|
| EU-MVSNet | | | 68.07 204 | 70.25 200 | 65.52 204 | 74.68 209 | 81.30 209 | 68.53 207 | 70.31 177 | 62.40 201 | 37.43 217 | 54.62 167 | 48.36 192 | 51.34 211 | 78.32 204 | 79.27 200 | 90.84 208 | 87.47 196 |
|
| GG-mvs-BLEND | | | 65.67 205 | 93.78 39 | 32.89 218 | 0.47 229 | 99.35 8 | 96.92 31 | 0.22 227 | 93.28 60 | 0.51 230 | 84.07 54 | 92.50 39 | 0.62 227 | 93.59 71 | 93.86 59 | 98.59 44 | 99.79 10 |
|
| test20.03 | | | 65.17 206 | 67.41 207 | 62.55 206 | 75.35 204 | 79.31 212 | 62.22 212 | 68.83 182 | 56.50 210 | 35.35 221 | 51.97 174 | 44.70 207 | 40.01 216 | 80.69 194 | 79.25 201 | 93.55 198 | 79.47 212 |
|
| MDA-MVSNet-bldmvs | | | 62.23 207 | 61.13 211 | 63.52 205 | 58.94 220 | 82.44 206 | 60.71 215 | 73.28 150 | 57.22 208 | 38.42 215 | 49.63 185 | 27.64 226 | 62.83 202 | 54.98 218 | 74.16 210 | 86.96 213 | 81.83 209 |
|
| new_pmnet | | | 61.60 208 | 62.68 209 | 60.35 209 | 63.02 217 | 74.93 216 | 60.97 214 | 58.86 207 | 64.21 194 | 35.38 220 | 39.51 209 | 39.89 216 | 57.37 208 | 72.78 212 | 72.56 212 | 86.49 215 | 74.85 215 |
|
| new-patchmatchnet | | | 60.74 209 | 59.78 213 | 61.87 207 | 69.52 215 | 76.67 214 | 57.99 218 | 65.78 193 | 52.63 213 | 38.47 214 | 38.08 213 | 32.92 222 | 48.88 213 | 68.50 213 | 69.87 213 | 90.56 209 | 79.75 211 |
|
| pmmvs3 | | | 60.52 210 | 60.87 212 | 60.12 210 | 61.38 218 | 71.62 217 | 57.42 219 | 53.94 216 | 48.09 217 | 35.95 219 | 38.62 211 | 32.19 225 | 64.12 198 | 75.33 209 | 77.99 204 | 87.89 212 | 82.28 208 |
|
| MIMVSNet1 | | | 60.51 211 | 61.43 210 | 59.44 211 | 48.75 223 | 77.21 213 | 60.98 213 | 66.84 188 | 52.09 214 | 38.74 213 | 29.29 219 | 39.40 217 | 48.08 214 | 77.60 206 | 78.87 202 | 93.22 200 | 75.56 214 |
|
| test_method | | | 60.40 212 | 66.30 208 | 53.52 213 | 37.48 227 | 64.10 221 | 55.56 220 | 42.45 222 | 71.79 167 | 41.87 210 | 33.74 217 | 46.80 196 | 61.71 204 | 79.18 199 | 73.33 211 | 82.01 217 | 95.17 147 |
|
| FPMVS | | | 56.54 213 | 52.82 215 | 60.87 208 | 74.90 208 | 67.58 220 | 67.69 209 | 65.38 194 | 57.86 206 | 41.51 211 | 37.83 215 | 34.19 220 | 41.21 215 | 55.88 217 | 53.09 219 | 74.55 220 | 63.31 218 |
|
| WB-MVS | | | 47.20 214 | 51.37 216 | 42.35 216 | 71.55 211 | 57.66 223 | 32.77 226 | 70.86 170 | 47.39 218 | 6.95 229 | 48.14 192 | 32.52 223 | 12.95 224 | 61.73 216 | 61.27 216 | 59.00 224 | 50.85 222 |
|
| PMVS |  | 42.57 18 | 45.71 215 | 42.61 218 | 49.32 214 | 61.35 219 | 37.82 226 | 36.96 224 | 60.10 202 | 37.20 221 | 41.50 212 | 28.53 220 | 33.11 221 | 28.82 221 | 53.45 219 | 48.70 221 | 67.22 222 | 59.42 219 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| Gipuma |  | | 43.95 216 | 42.62 217 | 45.50 215 | 50.79 222 | 41.20 225 | 35.55 225 | 52.51 218 | 52.95 212 | 29.09 223 | 12.92 222 | 11.48 229 | 38.15 217 | 62.01 215 | 66.62 215 | 66.89 223 | 51.17 220 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| PMMVS2 | | | 41.25 217 | 42.55 219 | 39.74 217 | 43.25 224 | 55.05 224 | 38.15 223 | 47.11 221 | 31.78 222 | 11.83 226 | 21.16 221 | 19.12 227 | 20.98 223 | 49.95 221 | 56.09 218 | 77.09 218 | 64.68 217 |
|
| E-PMN | | | 27.87 218 | 24.36 221 | 31.97 219 | 41.27 226 | 25.56 229 | 16.62 228 | 49.16 219 | 22.00 224 | 9.90 227 | 11.75 224 | 7.86 231 | 29.57 220 | 22.22 223 | 34.70 222 | 45.27 225 | 46.41 223 |
|
| MVE |  | 32.98 19 | 27.61 219 | 29.89 220 | 24.94 221 | 21.97 228 | 37.22 227 | 15.56 230 | 38.83 223 | 17.49 225 | 14.72 225 | 11.64 226 | 5.62 232 | 21.26 222 | 35.20 222 | 50.95 220 | 37.29 227 | 51.13 221 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| EMVS | | | 26.96 220 | 22.96 222 | 31.63 220 | 41.91 225 | 25.73 228 | 16.30 229 | 49.10 220 | 22.38 223 | 9.03 228 | 11.22 227 | 8.12 230 | 29.93 219 | 20.16 224 | 31.04 223 | 43.49 226 | 42.04 224 |
|
| testmvs | | | 5.16 221 | 8.14 223 | 1.69 222 | 0.36 230 | 1.65 230 | 3.02 231 | 0.66 225 | 7.17 226 | 0.50 231 | 12.58 223 | 0.69 233 | 4.67 225 | 5.42 225 | 5.65 224 | 0.92 228 | 23.86 226 |
|
| test123 | | | 4.39 222 | 7.11 224 | 1.21 223 | 0.11 231 | 1.16 231 | 1.67 232 | 0.35 226 | 5.91 227 | 0.16 232 | 11.65 225 | 0.16 234 | 4.45 226 | 1.72 226 | 4.92 225 | 0.51 229 | 24.28 225 |
|
| uanet_test | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 232 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 235 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| sosnet-low-res | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 232 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 235 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| sosnet | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 232 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 235 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| TPM-MVS | | | | | | 99.19 1 | 99.43 7 | 99.16 2 | | | 85.97 32 | 94.75 25 | 97.40 13 | 97.76 1 | | | 98.95 24 | 95.69 133 |
| Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025 |
| RE-MVS-def | | | | | | | | | | | 43.17 207 | | | | | | | |
|
| 9.14 | | | | | | | | | | | | | 97.59 10 | | | | | |
|
| SR-MVS | | | | | | 98.52 20 | | | 93.70 22 | | | | 96.63 21 | | | | | |
|
| Anonymous202405211 | | | | 81.72 143 | | 88.09 122 | 94.27 114 | 89.62 97 | 82.14 83 | 82.27 132 | | 48.83 189 | 72.58 117 | 91.08 64 | 87.40 143 | 88.70 133 | 94.90 184 | 97.99 88 |
|
| our_test_3 | | | | | | 78.55 184 | 84.98 202 | 70.12 203 | | | | | | | | | | |
|
| ambc | | | | 57.08 214 | | 58.68 221 | 67.71 219 | 60.07 216 | | 57.13 209 | 42.79 208 | 30.00 218 | 11.64 228 | 50.18 212 | 78.89 201 | 69.14 214 | 82.64 216 | 85.02 201 |
|
| MTAPA | | | | | | | | | | | 93.37 8 | | 95.71 27 | | | | | |
|
| MTMP | | | | | | | | | | | 93.84 5 | | 94.86 30 | | | | | |
|
| Patchmatch-RL test | | | | | | | | 19.65 227 | | | | | | | | | | |
|
| tmp_tt | | | | | 57.89 212 | 79.94 172 | 59.29 222 | 52.84 221 | 36.65 224 | 94.77 50 | 68.22 119 | 72.96 99 | 65.62 144 | 33.65 218 | 66.20 214 | 58.02 217 | 76.06 219 | |
|
| XVS | | | | | | 92.16 71 | 98.56 35 | 91.04 85 | | | 81.00 62 | | 93.49 34 | | | | 98.00 79 | |
|
| X-MVStestdata | | | | | | 92.16 71 | 98.56 35 | 91.04 85 | | | 81.00 62 | | 93.49 34 | | | | 98.00 79 | |
|
| mPP-MVS | | | | | | 97.95 29 | | | | | | | 92.24 44 | | | | | |
|
| NP-MVS | | | | | | | | | | 94.12 54 | | | | | | | | |
|
| Patchmtry | | | | | | | 92.08 139 | 83.86 141 | 58.37 209 | | 56.28 157 | | | | | | | |
|
| DeepMVS_CX |  | | | | | | 70.68 218 | 59.61 217 | 67.36 187 | 72.12 163 | 38.41 216 | 53.88 171 | 32.44 224 | 55.15 209 | 50.88 220 | | 74.35 221 | 68.42 216 |
|