This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS97.92 198.27 297.52 198.88 1199.60 198.80 495.08 798.57 295.63 296.98 999.73 197.67 197.26 1095.86 2299.04 1599.89 5
MSP-MVS97.74 298.32 197.06 798.66 1499.35 798.66 794.75 1398.22 593.60 697.99 198.58 897.41 498.24 295.95 1899.27 499.91 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVS++97.71 398.01 697.37 298.98 599.58 398.79 595.06 898.24 494.66 396.35 1599.20 497.63 297.20 1295.68 2399.08 1399.84 7
DPE-MVScopyleft97.69 498.16 397.14 599.01 499.52 599.12 295.38 298.00 893.31 997.71 299.61 396.94 596.99 1695.45 2799.09 1299.81 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft97.61 597.87 797.30 398.94 1099.60 198.21 1295.11 498.39 395.83 194.40 2899.70 296.79 697.16 1395.95 1898.92 2599.90 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CNVR-MVS97.60 698.08 497.03 899.14 199.55 498.67 695.32 397.91 992.55 1197.11 697.23 1397.49 398.16 397.05 599.04 1599.55 19
APDe-MVS97.31 797.51 1297.08 698.95 999.29 1298.58 995.11 497.69 1494.16 496.91 1096.81 1796.57 996.71 2095.39 2999.08 1399.79 10
SF-MVS97.17 897.18 1597.17 499.11 299.20 1499.05 395.55 197.39 1793.56 797.48 496.71 1996.75 795.73 3294.40 4498.98 2099.33 24
NCCC97.01 997.74 896.16 1199.02 399.35 798.63 895.04 997.84 1188.95 2496.83 1297.02 1696.39 1497.44 796.51 998.90 2799.16 40
SMA-MVScopyleft96.96 1097.65 1196.15 1298.98 599.31 1197.91 1794.68 1597.52 1590.59 1894.54 2799.20 496.54 1197.29 996.48 1098.22 6299.19 36
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MCST-MVS96.93 1198.07 595.61 1898.98 599.44 698.04 1395.04 998.10 686.55 3097.65 397.56 1195.60 2297.67 696.45 1199.43 199.61 18
HPM-MVS++copyleft96.91 1297.70 996.00 1398.97 899.16 1697.82 1994.81 1298.04 789.61 2196.56 1498.60 796.39 1497.09 1495.22 3198.39 5699.22 32
SD-MVS96.87 1397.69 1095.92 1496.38 4699.25 1397.76 2094.75 1397.72 1292.46 1395.94 1699.09 696.48 1396.01 2996.08 1697.68 9399.73 13
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVScopyleft96.79 1496.99 1896.56 998.76 1398.87 2598.42 1094.93 1197.70 1391.83 1495.52 1995.94 2496.63 895.94 3095.47 2698.80 3399.47 22
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + MP.96.50 1597.08 1695.82 1696.12 5098.97 2298.00 1494.13 2097.89 1091.49 1595.11 2497.52 1296.26 1896.27 2794.07 5498.91 2699.74 12
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP96.20 1697.22 1495.01 2298.40 2199.11 1797.93 1693.62 2396.28 2987.45 2797.05 896.00 2394.23 3096.83 1995.97 1798.40 5599.27 29
Skip Steuart: Steuart Systems R&D Blog.
HFP-MVS96.09 1796.41 2395.72 1798.58 1698.84 2697.95 1593.08 2796.96 2290.24 1996.60 1394.40 3096.52 1295.13 4294.33 4597.93 8398.59 65
ACMMP_NAP95.81 1896.50 2295.01 2298.79 1299.17 1597.52 2594.20 1996.19 3085.71 3493.80 3196.20 2295.89 1996.62 2294.98 3797.93 8398.52 68
train_agg95.72 1997.37 1393.80 2897.82 3098.92 2397.84 1893.50 2496.86 2481.35 5397.10 797.71 994.19 3196.02 2895.37 3098.07 7099.64 16
ACMMPR95.59 2095.89 2595.25 2098.41 2098.74 2897.69 2392.73 3196.88 2388.95 2495.33 2192.91 3795.79 2094.73 5294.33 4597.92 8598.32 77
DeepC-MVS_fast91.53 195.57 2195.67 2895.45 1998.57 1799.00 2197.76 2094.41 1797.06 1986.84 2986.39 4492.27 4296.38 1697.89 598.06 398.73 3899.01 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSLP-MVS++95.49 2294.84 3396.25 1098.64 1598.63 3198.35 1192.37 3395.04 4892.62 1087.12 4393.79 3196.55 1093.53 7296.78 698.98 2098.99 49
CP-MVS95.43 2395.67 2895.14 2198.24 2698.60 3297.45 2692.80 2995.98 3389.21 2395.22 2293.60 3295.43 2394.37 5993.22 7397.68 9398.72 56
DPM-MVS95.36 2495.84 2694.82 2496.70 4298.49 4299.27 195.09 696.71 2583.87 4286.34 4696.44 2195.06 2598.35 198.82 198.89 2895.69 131
MP-MVScopyleft95.24 2595.96 2494.40 2698.32 2398.38 4797.12 2892.87 2895.17 4685.50 3595.68 1794.91 2894.58 2795.11 4393.76 5998.05 7398.68 58
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TSAR-MVS + ACMM94.99 2697.02 1792.61 3897.19 3698.71 3097.74 2293.21 2696.97 2179.27 6994.09 2997.14 1490.84 6496.64 2195.94 2097.42 10899.67 15
X-MVS94.70 2795.71 2793.52 3298.38 2298.56 3496.99 2992.62 3295.58 3781.00 6094.57 2693.49 3394.16 3394.82 4894.29 4897.99 7998.68 58
PGM-MVS94.64 2895.49 3093.66 3098.55 1898.51 4097.63 2487.77 4694.45 5284.92 3897.23 591.90 4495.22 2494.56 5593.80 5897.87 8997.97 88
TSAR-MVS + GP.94.59 2996.60 2192.25 3990.25 9198.17 5496.22 3586.53 5297.49 1687.26 2895.21 2397.06 1594.07 3594.34 6194.20 5099.18 599.71 14
PHI-MVS94.49 3096.72 2091.88 4197.06 3798.88 2494.99 4689.13 4196.15 3179.70 6596.91 1095.78 2591.87 5494.65 5395.68 2398.53 4798.98 51
AdaColmapbinary94.28 3192.94 4595.84 1598.32 2398.33 4996.06 3794.62 1696.29 2891.22 1689.89 3785.50 7396.38 1691.85 10190.89 8898.44 5197.81 91
DeepPCF-MVS91.00 294.15 3296.87 1990.97 4996.82 4099.33 1089.40 9992.76 3098.76 182.36 4988.74 3895.49 2790.58 7198.13 497.80 493.88 18899.88 6
CPTT-MVS94.11 3393.99 3894.25 2796.58 4397.66 6297.31 2791.94 3494.84 4988.72 2692.51 3293.04 3695.78 2191.51 10489.97 10595.15 17798.37 74
EPNet93.69 3495.34 3191.76 4296.98 3998.47 4495.40 4386.79 4995.47 3982.84 4695.66 1889.17 5090.47 7395.25 4194.69 4098.10 6798.68 58
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMMPcopyleft93.32 3593.59 4193.00 3697.03 3898.24 5095.27 4491.66 3795.20 4483.25 4495.39 2085.52 7192.80 4592.60 9190.21 10198.01 7697.99 86
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CANet93.23 3693.72 4092.65 3795.48 5399.09 1996.55 3386.74 5095.28 4285.22 3677.30 7291.25 4692.60 4797.06 1596.63 799.31 299.45 23
CDPH-MVS93.22 3795.08 3291.04 4897.57 3398.49 4296.74 3189.35 4095.19 4573.57 9890.26 3591.59 4590.68 6895.09 4596.15 1498.31 6198.81 54
CSCG93.16 3892.65 4793.76 2998.32 2399.09 1996.12 3689.91 3993.15 6189.64 2083.62 5488.91 5392.40 4991.09 10993.70 6096.14 16098.99 49
MVS_111021_LR93.05 3994.53 3591.32 4696.43 4598.38 4792.81 5987.20 4895.94 3581.45 5294.75 2586.08 6792.12 5294.83 4793.34 6797.89 8898.42 73
3Dnovator+86.26 792.90 4092.45 4993.42 3397.25 3598.45 4695.82 3885.71 5893.83 5689.55 2272.31 10292.28 4194.01 3795.10 4495.92 2198.17 6399.23 31
MVS_111021_HR92.73 4194.83 3490.28 5596.27 4799.10 1892.77 6086.15 5593.41 5977.11 8793.82 3087.39 5990.61 6995.60 3495.15 3398.79 3499.32 25
PLCcopyleft89.12 392.67 4290.84 5994.81 2597.69 3196.10 9095.42 4291.70 3595.82 3692.52 1281.24 5886.01 6894.36 2892.44 9590.27 9897.19 11793.99 157
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
3Dnovator85.78 892.53 4391.96 5193.20 3497.99 2798.47 4495.78 3985.94 5693.07 6386.40 3173.43 9489.00 5294.08 3494.74 5196.44 1299.01 1998.57 66
DeepC-MVS88.77 492.39 4491.74 5393.14 3596.21 4898.55 3796.30 3493.84 2193.06 6481.09 5874.69 8785.20 7793.48 4095.41 3796.13 1597.92 8599.18 37
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OMC-MVS92.05 4591.88 5292.25 3996.51 4497.94 5693.18 5688.97 4396.53 2684.47 4080.79 6087.85 5593.25 4392.48 9491.81 8197.12 11895.73 130
MVSTER91.91 4693.43 4490.14 5689.81 9892.32 13094.53 4981.32 8896.00 3284.77 3985.41 5192.39 4091.32 5696.41 2394.01 5699.11 897.45 100
MVS_030491.90 4792.93 4690.69 5393.66 6398.78 2796.73 3285.43 6293.13 6278.11 8177.02 7589.09 5191.10 6096.98 1796.54 899.11 898.96 52
CS-MVS-test91.76 4893.47 4289.76 5994.64 5898.22 5288.13 10881.58 8597.02 2082.47 4885.49 5085.41 7593.28 4295.33 3993.61 6298.45 5099.22 32
QAPM91.68 4991.97 5091.34 4597.86 2998.72 2995.60 4185.72 5790.86 7777.14 8676.06 7690.35 4792.69 4694.10 6494.60 4199.04 1599.09 42
CS-MVS91.55 5092.49 4890.45 5494.00 6197.91 5891.17 8081.40 8795.22 4383.51 4382.37 5682.29 8394.07 3596.36 2694.03 5598.56 4599.22 32
CNLPA91.53 5189.74 7193.63 3196.75 4197.63 6491.16 8191.70 3596.38 2790.82 1769.66 11385.52 7193.76 3890.44 11591.14 8797.55 10297.40 101
ETV-MVS91.51 5294.06 3788.54 6989.39 10497.52 6589.48 9680.88 9197.09 1879.41 6787.87 3986.18 6692.95 4495.94 3094.33 4599.13 799.52 21
DROMVSNet91.25 5393.45 4388.68 6788.90 11096.18 8991.66 6976.70 12295.57 3882.00 5084.18 5289.28 4994.17 3295.64 3394.19 5198.68 4099.14 41
DELS-MVS91.09 5490.56 6791.71 4395.82 5198.59 3395.74 4086.68 5185.86 10585.12 3772.71 9781.36 8688.06 9397.31 898.27 298.86 3199.82 8
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TAPA-MVS87.40 690.98 5590.71 6191.30 4796.14 4997.66 6294.80 4789.00 4294.74 5177.42 8580.22 6186.70 6292.27 5091.65 10390.17 10398.15 6693.83 161
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PVSNet_BlendedMVS90.74 5690.66 6390.82 5194.75 5698.54 3891.30 7786.53 5295.43 4085.75 3278.66 6770.67 12387.60 9496.37 2495.08 3598.98 2099.90 2
PVSNet_Blended90.74 5690.66 6390.82 5194.75 5698.54 3891.30 7786.53 5295.43 4085.75 3278.66 6770.67 12387.60 9496.37 2495.08 3598.98 2099.90 2
CHOSEN 280x42090.61 5894.27 3686.35 8993.12 6798.16 5589.99 9269.62 17692.48 6876.89 9087.28 4296.72 1890.31 7594.81 4992.33 7898.17 6398.08 84
MAR-MVS90.44 5991.17 5789.59 6097.48 3497.92 5790.96 8479.80 9695.07 4777.03 8880.83 5979.10 9694.68 2693.16 7794.46 4397.59 10197.63 93
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PCF-MVS88.14 590.42 6089.56 7691.41 4494.44 5998.18 5394.35 5094.33 1884.55 11876.61 9175.84 7988.47 5491.29 5790.37 11790.66 9497.46 10498.88 53
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OpenMVScopyleft83.41 1189.84 6188.89 8290.95 5097.63 3298.51 4094.64 4885.47 6188.14 9178.39 7865.06 12785.42 7491.04 6293.06 8093.70 6098.53 4798.37 74
EIA-MVS89.82 6291.48 5587.89 7889.16 10697.31 6788.99 10080.92 9094.29 5377.65 8382.16 5779.77 9491.90 5394.61 5493.03 7598.70 3999.21 35
canonicalmvs89.62 6389.87 7089.33 6290.47 8697.02 7393.46 5579.67 9992.45 6981.05 5982.84 5573.00 11293.71 3990.38 11694.85 3897.65 9798.54 67
TSAR-MVS + COLMAP89.59 6489.64 7389.53 6193.32 6696.51 8195.03 4588.53 4495.98 3369.10 11491.81 3364.53 14693.40 4193.53 7291.35 8697.77 9093.75 164
HQP-MVS89.57 6590.57 6688.41 7192.77 6894.71 10694.24 5187.97 4593.44 5868.18 11791.75 3471.54 12289.90 7892.31 9891.43 8497.39 10998.80 55
MVS_Test89.02 6690.20 6887.64 8089.83 9797.05 7292.30 6377.59 11892.89 6575.01 9677.36 7176.10 10692.27 5095.30 4095.42 2898.83 3297.30 105
CLD-MVS88.99 6788.07 8590.07 5789.61 10094.94 10393.82 5485.70 5992.73 6782.73 4779.97 6269.59 12790.44 7490.32 11889.93 10798.10 6799.04 45
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
baseline88.91 6889.94 6987.70 7989.44 10396.74 7991.62 7177.92 11593.79 5778.76 7377.55 7078.46 9989.38 8492.26 9992.52 7799.10 1098.23 78
PMMVS88.56 6991.22 5685.47 9790.04 9395.60 9986.62 12378.49 11093.86 5570.62 10990.00 3680.08 9291.64 5592.36 9689.80 11195.40 17296.84 114
test250688.38 7088.02 8788.80 6691.55 7797.78 5990.87 8683.36 7084.51 11983.06 4574.13 9076.93 10385.39 10494.34 6193.33 6998.60 4195.10 146
baseline188.16 7188.15 8488.17 7590.02 9494.79 10591.85 6883.89 6587.37 9775.67 9473.75 9279.89 9388.44 9294.41 5693.33 6999.18 593.55 166
thisisatest053087.99 7290.76 6084.75 10188.36 11596.82 7687.65 11379.67 9991.77 7170.93 10579.94 6387.65 5784.21 11492.98 8389.07 12297.66 9697.13 108
tttt051787.93 7390.71 6184.68 10288.33 11696.76 7887.42 11679.67 9991.74 7270.83 10679.91 6487.61 5884.21 11492.88 8889.07 12297.62 9997.03 110
CANet_DTU87.91 7491.57 5483.64 10990.96 8097.12 7091.90 6775.97 13092.83 6653.16 17186.02 4779.02 9790.80 6595.40 3894.15 5299.03 1896.47 125
diffmvspermissive87.86 7587.40 9388.39 7288.57 11396.10 9091.24 7983.15 7390.62 7879.13 7172.45 10067.71 13390.07 7792.58 9293.31 7298.17 6399.03 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IS_MVSNet87.83 7690.66 6384.53 10390.08 9296.79 7788.16 10779.89 9585.44 10772.20 10075.50 8387.14 6080.21 14195.53 3595.22 3196.65 13499.02 47
EPP-MVSNet87.72 7789.74 7185.37 9889.11 10795.57 10086.31 12479.44 10285.83 10675.73 9377.23 7390.05 4884.78 11091.22 10790.25 9996.83 12598.04 85
casdiffmvs_mvgpermissive87.64 7886.46 10089.01 6589.45 10296.09 9292.69 6183.42 6984.60 11780.01 6468.55 11670.29 12590.51 7293.93 6793.59 6397.96 8098.18 79
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ET-MVSNet_ETH3D87.63 7991.08 5883.59 11067.96 21196.30 8892.06 6578.47 11191.95 7069.87 11187.57 4184.14 8194.34 2988.58 13192.10 7998.88 2996.93 111
DI_MVS_plusplus_trai87.63 7987.13 9588.22 7488.61 11295.92 9594.09 5381.41 8687.00 10078.38 7959.70 14680.52 9089.08 8794.37 5993.34 6797.73 9199.05 44
casdiffmvspermissive87.59 8186.69 9988.64 6889.06 10896.32 8790.18 8983.21 7287.74 9580.20 6367.99 11868.34 13190.79 6693.83 6894.08 5398.41 5498.50 70
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu87.44 8288.72 8385.95 9392.02 7297.26 6886.88 12182.66 8083.86 12579.16 7066.96 12184.91 7877.26 15894.97 4693.48 6497.73 9199.64 16
FMVSNet387.19 8387.32 9487.04 8782.82 15090.21 14592.88 5876.53 12591.69 7381.31 5464.81 13080.64 8789.79 8294.80 5094.76 3998.88 2994.32 153
LS3D87.19 8385.48 10789.18 6394.96 5595.47 10192.02 6693.36 2588.69 8967.01 11870.56 10972.10 11792.47 4889.96 12189.93 10795.25 17491.68 175
ACMP85.16 987.15 8587.04 9687.27 8490.80 8294.45 10989.41 9883.09 7789.15 8576.98 8986.35 4565.80 14086.94 9788.45 13287.52 14196.42 14997.56 98
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
UGNet87.04 8689.59 7584.07 10590.94 8195.95 9486.02 12681.65 8485.94 10478.54 7778.00 6985.40 7669.62 17891.83 10291.53 8397.63 9898.51 69
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LGP-MVS_train86.95 8787.65 9086.12 9291.77 7593.84 11593.04 5782.77 7988.04 9265.33 12387.69 4067.09 13786.79 9890.20 11988.99 12597.05 12097.71 92
PatchMatch-RL86.75 8885.43 10888.29 7394.06 6096.37 8686.82 12282.94 7888.94 8779.59 6679.83 6559.17 15989.46 8391.12 10888.81 12996.88 12493.78 162
FA-MVS(training)86.74 8988.01 8885.26 9989.86 9596.99 7488.54 10464.26 19289.04 8681.30 5766.74 12381.52 8589.11 8694.04 6590.37 9798.47 4997.37 102
baseline286.51 9089.35 7983.19 11285.70 13694.88 10485.75 13177.13 12089.87 8270.65 10879.03 6679.14 9581.51 13493.70 6990.22 10098.38 5798.60 64
thres100view90086.48 9185.08 11088.12 7690.54 8396.90 7592.39 6284.82 6384.16 12371.65 10170.86 10660.49 15491.23 5993.65 7090.19 10298.10 6799.32 25
ACMM84.23 1086.40 9284.64 11388.46 7091.90 7391.93 13688.11 10985.59 6088.61 9079.13 7175.31 8466.25 13889.86 8189.88 12287.64 13896.16 15992.86 171
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GBi-Net86.16 9386.00 10386.35 8981.81 15689.52 15491.40 7376.53 12591.69 7381.31 5464.81 13080.64 8788.72 8890.54 11290.72 9098.34 5894.08 154
test186.16 9386.00 10386.35 8981.81 15689.52 15491.40 7376.53 12591.69 7381.31 5464.81 13080.64 8788.72 8890.54 11290.72 9098.34 5894.08 154
tfpn200view986.07 9584.76 11287.61 8190.54 8396.39 8391.35 7683.15 7384.16 12371.65 10170.86 10660.49 15490.91 6392.89 8589.34 11498.05 7399.17 38
DCV-MVSNet85.90 9685.88 10585.93 9487.86 12188.37 17189.45 9777.46 11987.33 9877.51 8476.06 7675.76 10888.48 9187.40 14088.89 12894.80 18397.37 102
Vis-MVSNet (Re-imp)85.89 9789.62 7481.55 12289.85 9696.08 9387.55 11479.80 9684.80 11466.55 12073.70 9386.71 6168.25 18594.40 5794.53 4297.32 11297.09 109
MSDG85.81 9882.29 13789.93 5895.52 5292.61 12591.51 7291.46 3885.12 11178.56 7563.25 13669.01 12985.31 10788.45 13288.23 13297.21 11689.33 186
thres20085.80 9984.38 11487.46 8290.51 8596.39 8391.64 7083.15 7381.59 13371.54 10370.24 11060.41 15689.88 7992.89 8589.85 11098.06 7199.26 30
ECVR-MVScopyleft85.74 10083.80 12288.00 7791.55 7797.78 5990.87 8683.36 7084.51 11978.21 8058.65 15162.75 15085.39 10494.34 6193.33 6998.60 4195.25 140
OPM-MVS85.69 10182.79 13089.06 6493.42 6494.21 11394.21 5287.61 4772.68 15870.79 10771.09 10467.27 13690.74 6791.29 10689.05 12497.61 10093.94 159
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
thres40085.59 10284.08 11787.36 8390.45 8796.60 8090.95 8583.67 6780.99 13671.17 10469.08 11560.25 15789.88 7993.14 7889.34 11498.02 7599.17 38
CostFormer85.47 10386.98 9783.71 10888.70 11194.02 11488.07 11062.72 19489.78 8378.68 7472.69 9878.37 10087.35 9685.96 15389.32 11896.73 13198.72 56
test111185.17 10483.46 12587.17 8591.36 7997.75 6190.06 9183.44 6883.41 12775.25 9558.08 15462.19 15284.39 11394.39 5893.38 6698.54 4695.00 148
thres600view785.14 10583.58 12486.96 8890.37 9096.39 8390.33 8883.15 7380.46 13770.60 11067.96 11960.04 15889.22 8592.89 8588.28 13198.06 7199.08 43
test-LLR85.11 10689.49 7780.00 13185.32 14094.49 10782.27 16174.18 13987.83 9356.70 14975.55 8186.26 6382.75 12793.06 8090.60 9598.77 3598.65 62
FMVSNet284.89 10784.02 11985.91 9581.81 15689.52 15491.40 7375.79 13184.45 12179.39 6858.75 14974.35 11088.72 8893.51 7493.46 6598.34 5894.08 154
FC-MVSNet-train84.88 10884.08 11785.82 9689.21 10591.74 13785.87 12781.20 8981.71 13274.66 9773.38 9564.99 14486.60 9990.75 11088.08 13397.36 11097.90 89
EPNet_dtu84.87 10989.01 8080.05 13095.25 5492.88 12388.84 10284.11 6491.69 7349.28 18785.69 4878.95 9865.39 19092.22 10091.66 8297.43 10789.95 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Effi-MVS+84.80 11085.71 10683.73 10787.94 12095.76 9690.08 9073.45 14685.12 11162.66 13272.39 10164.97 14590.59 7092.95 8490.69 9397.67 9598.12 81
UA-Net84.69 11187.64 9181.25 12490.38 8995.67 9787.33 11779.41 10372.07 16266.48 12175.09 8592.48 3966.88 18694.03 6694.25 4997.01 12389.88 183
TESTMET0.1,184.62 11289.49 7778.94 14082.18 15394.49 10782.27 16170.94 16687.83 9356.70 14975.55 8186.26 6382.75 12793.06 8090.60 9598.77 3598.65 62
CHOSEN 1792x268884.59 11384.30 11684.93 10093.71 6298.23 5189.91 9377.96 11484.81 11365.93 12245.19 19571.76 12183.13 12595.46 3695.13 3498.94 2499.53 20
Anonymous2023121184.23 11481.71 14287.17 8587.38 12893.59 11888.95 10182.14 8283.82 12678.56 7548.09 18973.89 11191.25 5886.38 14788.06 13594.74 18498.14 80
MDTV_nov1_ep1384.17 11588.03 8679.66 13386.00 13494.41 11085.05 13366.01 18890.36 7964.34 12877.13 7484.56 7982.71 12987.12 14488.92 12693.84 19093.69 165
test-mter84.06 11689.00 8178.29 14581.92 15494.23 11281.07 17170.38 17087.12 9956.10 15874.75 8685.80 6981.81 13392.52 9390.10 10498.43 5298.49 71
IB-MVS79.58 1283.83 11784.81 11182.68 11491.85 7497.35 6675.75 19082.57 8186.55 10284.01 4170.90 10565.43 14263.18 19684.19 16789.92 10998.74 3799.31 27
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EPMVS83.71 11886.76 9880.16 12989.72 9995.64 9884.68 13459.73 19989.61 8462.67 13172.65 9981.80 8486.22 10186.23 14988.03 13697.96 8093.35 167
HyFIR lowres test83.43 11982.94 12884.01 10693.41 6597.10 7187.21 11874.04 14180.15 13964.98 12441.09 20376.61 10586.51 10093.31 7593.01 7697.91 8799.30 28
PatchmatchNetpermissive83.28 12087.57 9278.29 14587.46 12694.95 10283.36 14359.43 20290.20 8158.10 14474.29 8986.20 6584.13 11685.27 15987.39 14297.25 11594.67 151
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SCA83.26 12187.76 8978.00 15087.45 12792.20 13182.63 15758.42 20490.30 8058.23 14275.74 8087.75 5683.97 11986.10 15287.64 13897.30 11394.62 152
GeoE83.17 12282.86 12983.53 11187.24 12993.78 11687.94 11172.75 15182.19 13069.76 11260.54 14365.95 13986.01 10289.41 12689.72 11297.47 10398.43 72
CDS-MVSNet83.13 12383.73 12382.43 12084.52 14592.92 12288.26 10677.67 11772.08 16169.08 11566.96 12174.66 10978.61 14790.70 11191.96 8096.46 14896.86 113
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
RPSCF82.91 12481.86 13984.13 10488.25 11788.32 17287.67 11280.86 9284.78 11576.57 9285.56 4976.00 10784.61 11178.20 20276.52 20586.81 21083.63 203
Vis-MVSNetpermissive82.88 12586.04 10279.20 13887.77 12496.42 8286.10 12576.70 12274.82 15261.38 13470.70 10877.91 10164.83 19293.22 7693.19 7498.43 5296.01 128
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
dps82.63 12682.64 13382.62 11687.81 12392.81 12484.39 13561.96 19586.43 10381.63 5169.72 11267.60 13584.42 11282.51 18083.90 17995.52 16895.50 138
IterMVS-LS82.62 12782.75 13282.48 11787.09 13087.48 18587.19 11972.85 14979.09 14066.63 11965.22 12572.14 11684.06 11888.33 13591.39 8597.03 12295.60 137
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Fast-Effi-MVS+82.61 12882.51 13582.72 11385.49 13993.06 12187.17 12071.39 16384.18 12264.59 12663.03 13758.89 16090.22 7691.39 10590.83 8997.44 10596.21 127
tpm cat182.39 12982.32 13682.47 11888.13 11892.42 12987.43 11562.79 19385.30 10878.05 8260.14 14472.10 11783.20 12482.26 18385.67 15895.23 17598.35 76
MS-PatchMatch82.16 13082.18 13882.12 12191.65 7693.50 11989.51 9571.95 15781.48 13464.45 12759.58 14877.54 10277.23 15989.88 12285.62 15997.94 8287.68 190
tpmrst81.71 13183.87 12179.20 13889.01 10993.67 11784.22 13660.14 19787.45 9659.49 13864.97 12871.86 12085.30 10884.72 16386.30 15097.04 12198.09 83
RPMNet81.47 13286.24 10175.90 16886.72 13192.12 13382.82 15555.76 21085.21 10953.73 16963.45 13483.16 8280.13 14292.34 9789.52 11396.23 15797.90 89
CR-MVSNet81.44 13385.29 10976.94 15986.53 13292.12 13383.86 13758.37 20585.21 10956.28 15359.60 14780.39 9180.50 13992.77 8989.32 11896.12 16197.59 96
Effi-MVS+-dtu81.18 13482.77 13179.33 13684.70 14492.54 12785.81 12871.55 16178.84 14157.06 14871.98 10363.77 14885.09 10988.94 12887.62 14091.79 20395.68 132
test0.0.03 180.99 13584.37 11577.05 15785.32 14089.79 15078.43 18174.18 13984.78 11557.98 14776.06 7672.88 11369.14 18288.02 13787.70 13797.27 11491.37 176
Fast-Effi-MVS+-dtu80.57 13683.44 12677.22 15583.98 14891.52 13985.78 13064.54 19180.38 13850.28 18374.06 9162.89 14982.00 13289.10 12788.91 12796.75 12997.21 107
FMVSNet580.56 13782.53 13478.26 14773.80 20681.52 20482.26 16368.36 18188.85 8864.21 12969.09 11484.38 8083.49 12387.13 14386.76 14797.44 10579.95 206
ADS-MVSNet80.25 13882.96 12777.08 15687.86 12192.60 12681.82 16856.19 20986.95 10156.16 15668.19 11772.42 11583.70 12282.05 18485.45 16496.75 12993.08 170
FMVSNet180.18 13978.07 15382.65 11578.55 18087.57 18488.41 10573.93 14270.16 16773.57 9849.80 17964.45 14785.35 10690.54 11290.72 9096.10 16293.21 168
USDC80.10 14079.33 14981.00 12686.36 13391.71 13888.74 10375.77 13281.90 13154.90 16367.67 12052.05 17283.94 12088.44 13486.25 15196.31 15287.28 194
COLMAP_ROBcopyleft75.69 1579.47 14176.90 16082.46 11992.20 6990.53 14185.30 13283.69 6678.27 14461.47 13358.26 15262.75 15078.28 15082.41 18182.13 19293.83 19283.98 202
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
pmmvs479.32 14277.78 15581.11 12580.18 16588.96 16683.39 14176.07 12881.27 13569.35 11358.66 15051.19 17582.01 13187.16 14284.39 17695.66 16692.82 172
PatchT79.28 14383.88 12073.93 17785.54 13890.95 14066.14 20756.53 20883.21 12856.28 15356.50 15676.80 10480.50 13992.77 8989.32 11898.57 4497.59 96
ACMH78.51 1479.27 14478.08 15280.65 12789.52 10190.40 14280.45 17379.77 9869.54 17254.85 16464.83 12956.16 16683.94 12084.58 16586.01 15595.41 17195.03 147
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TAMVS79.23 14578.95 15179.56 13481.89 15592.52 12882.97 15073.70 14367.27 17864.97 12561.66 14265.06 14378.61 14787.12 14488.07 13495.23 17590.95 178
ACMH+79.09 1379.12 14677.22 15981.35 12388.50 11490.36 14382.14 16579.38 10572.78 15758.59 13962.31 14156.44 16584.10 11782.03 18584.05 17795.40 17292.55 173
UniMVSNet_NR-MVSNet78.89 14778.04 15479.88 13279.40 17189.70 15182.92 15280.17 9376.37 15058.56 14057.10 15554.92 16881.44 13583.51 17287.12 14496.76 12897.60 94
tpm78.87 14881.33 14576.00 16685.57 13790.19 14682.81 15659.66 20078.35 14351.40 17866.30 12467.92 13280.94 13783.28 17585.73 15695.65 16797.56 98
GA-MVS78.86 14980.42 14677.05 15783.27 14992.17 13283.24 14575.73 13373.75 15446.27 19762.43 13957.12 16276.94 16193.14 7889.34 11496.83 12595.00 148
IterMVS78.85 15081.36 14375.93 16784.27 14785.74 19183.83 13966.35 18676.82 14550.48 18163.48 13368.82 13073.99 16689.68 12489.34 11496.63 13795.67 133
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT78.71 15181.34 14475.64 17284.31 14685.67 19283.51 14066.14 18776.67 14650.38 18263.45 13469.02 12873.23 16889.66 12589.22 12196.24 15695.67 133
UniMVSNet (Re)78.00 15277.52 15678.57 14379.66 17090.36 14382.09 16677.86 11676.38 14960.26 13554.63 16252.07 17175.31 16484.97 16286.10 15396.22 15898.11 82
DU-MVS77.98 15376.71 16179.46 13578.68 17789.26 16082.92 15279.06 10776.52 14758.56 14054.89 16048.35 18981.44 13583.16 17787.21 14396.08 16397.60 94
FC-MVSNet-test77.95 15481.85 14073.39 18282.31 15188.99 16579.33 17774.24 13878.75 14247.40 19570.22 11172.09 11960.78 20286.66 14685.62 15996.30 15390.61 179
NR-MVSNet77.21 15576.41 16278.14 14980.18 16589.26 16083.38 14279.06 10776.52 14756.59 15154.89 16045.32 19972.89 17085.39 15886.12 15296.71 13297.36 104
thisisatest051577.13 15679.36 14874.52 17479.79 16989.65 15273.54 19573.69 14474.10 15358.14 14362.79 13860.57 15366.49 18888.08 13685.16 16995.49 17095.15 144
gg-mvs-nofinetune77.08 15779.79 14773.92 17885.95 13597.23 6992.18 6452.65 21346.19 21627.79 22038.27 20785.63 7085.67 10396.95 1895.62 2599.30 398.67 61
TranMVSNet+NR-MVSNet77.02 15875.76 16478.49 14478.46 18388.24 17383.03 14979.97 9473.49 15654.73 16554.00 16548.74 18478.15 15282.36 18286.90 14696.59 13996.55 119
CVMVSNet76.86 15979.09 15074.26 17585.29 14289.44 15779.91 17678.47 11168.94 17544.45 20262.35 14069.70 12664.50 19385.82 15487.03 14592.94 19890.33 180
Baseline_NR-MVSNet76.71 16074.56 17179.23 13778.68 17784.15 20082.45 15978.87 10975.83 15160.05 13647.92 19050.18 18179.06 14683.16 17783.86 18096.26 15496.80 115
v2v48276.25 16174.78 16877.96 15178.50 18289.14 16383.05 14876.02 12968.78 17654.11 16651.36 17148.59 18679.49 14483.53 17185.60 16296.59 13996.49 124
V4276.21 16275.04 16777.58 15278.68 17789.33 15982.93 15174.64 13669.84 16956.13 15750.42 17650.93 17676.30 16383.32 17384.89 17396.83 12596.54 120
v875.89 16374.74 16977.23 15479.09 17388.00 17683.19 14671.08 16570.03 16856.29 15250.50 17450.88 17777.06 16083.32 17384.99 17196.68 13395.49 139
TinyColmap75.75 16473.19 18278.74 14284.82 14387.69 18081.59 16974.62 13771.81 16354.01 16755.79 15944.42 20482.89 12684.61 16483.76 18194.50 18584.22 201
MIMVSNet75.71 16577.26 15773.90 17970.93 20788.71 16979.98 17557.67 20773.58 15558.08 14653.93 16658.56 16179.41 14590.04 12089.97 10597.34 11186.04 195
UniMVSNet_ETH3D75.63 16671.59 19180.35 12881.03 16089.90 14983.25 14476.58 12460.08 19964.19 13042.89 20245.01 20082.14 13080.20 19586.75 14894.90 18096.29 126
pm-mvs175.61 16774.19 17377.26 15380.16 16788.79 16781.49 17075.49 13559.49 20158.09 14548.32 18755.53 16772.35 17188.61 13085.48 16395.99 16493.12 169
v1075.57 16874.67 17076.62 16278.73 17687.46 18683.14 14769.41 17769.27 17353.44 17049.73 18049.21 18378.44 14986.17 15185.18 16896.53 14495.65 136
v114475.54 16974.55 17276.69 16078.33 18688.77 16882.89 15472.76 15067.18 18051.73 17549.34 18248.37 18778.10 15386.22 15085.24 16696.35 15196.74 116
TDRefinement75.54 16973.22 18078.25 14887.65 12589.65 15285.81 12879.28 10671.14 16556.06 15952.17 16951.96 17368.74 18481.60 18680.58 19491.94 20185.45 196
pmmvs575.46 17175.12 16675.87 16979.39 17289.44 15778.12 18372.27 15565.98 18551.54 17655.83 15846.23 19476.80 16288.77 12985.73 15697.07 11993.84 160
tfpnnormal75.27 17272.12 18878.94 14082.30 15288.52 17082.41 16079.41 10358.03 20255.59 16143.83 20144.71 20177.35 15687.70 13985.45 16496.60 13896.61 118
anonymousdsp75.14 17377.25 15872.69 18576.68 19689.26 16075.26 19268.44 18065.53 18846.65 19658.16 15356.67 16473.96 16787.84 13886.05 15495.13 17897.22 106
v14874.98 17473.52 17876.69 16078.84 17589.02 16478.78 17976.82 12167.22 17959.61 13749.18 18347.94 19170.57 17780.76 19083.99 17895.52 16896.52 122
v119274.96 17573.92 17476.17 16377.76 18988.19 17582.54 15871.94 15866.84 18150.07 18548.10 18846.14 19578.28 15086.30 14885.23 16796.41 15096.67 117
v14419274.76 17673.64 17576.06 16577.58 19088.23 17481.87 16771.63 16066.03 18451.08 17948.63 18646.77 19377.59 15584.53 16684.76 17496.64 13696.54 120
v192192074.60 17773.56 17775.81 17077.43 19287.94 17782.18 16471.33 16466.48 18349.23 18947.84 19145.56 19778.03 15485.70 15684.92 17296.65 13496.50 123
v124074.04 17873.04 18475.20 17377.19 19487.69 18080.93 17270.72 16965.08 18948.47 19047.31 19244.71 20177.33 15785.50 15785.07 17096.59 13995.94 129
testgi73.22 17975.84 16370.16 19681.67 15985.50 19571.45 19770.81 16769.56 17144.74 20174.52 8849.25 18258.45 20384.10 16983.37 18593.86 18984.56 200
CP-MVSNet73.19 18072.37 18674.15 17677.54 19186.77 18976.34 18672.05 15665.66 18751.47 17750.49 17543.66 20570.90 17380.93 18983.40 18496.59 13995.66 135
WR-MVS72.93 18173.57 17672.19 18878.14 18787.71 17976.21 18873.02 14867.78 17750.09 18450.35 17750.53 17961.27 20180.42 19383.10 18894.43 18695.11 145
TransMVSNet (Re)72.90 18270.51 19575.69 17180.88 16185.26 19779.25 17878.43 11356.13 20852.81 17246.81 19348.20 19066.77 18785.18 16183.70 18295.98 16588.28 189
WR-MVS_H72.69 18372.80 18572.56 18777.94 18887.83 17875.26 19271.53 16264.75 19052.19 17449.83 17848.62 18561.96 19981.12 18882.44 19096.50 14595.00 148
SixPastTwentyTwo72.65 18473.22 18071.98 19178.40 18487.64 18270.09 20070.37 17166.49 18247.60 19365.09 12645.94 19673.09 16978.94 19778.66 20092.33 19989.82 184
LTVRE_ROB71.82 1672.62 18571.77 18973.62 18080.74 16287.59 18380.42 17470.37 17149.73 21237.12 21459.76 14542.52 21080.92 13883.20 17685.61 16192.13 20093.95 158
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PS-CasMVS72.37 18671.47 19373.43 18177.32 19386.43 19075.99 18971.94 15863.37 19349.24 18849.07 18442.42 21169.60 17980.59 19283.18 18796.48 14795.23 142
MVS-HIRNet72.32 18773.45 17971.00 19480.58 16389.97 14768.51 20455.28 21170.89 16652.27 17339.09 20557.11 16375.02 16585.76 15586.33 14994.36 18785.00 198
PEN-MVS72.24 18871.30 19473.33 18377.08 19585.57 19376.75 18472.52 15363.89 19248.12 19150.79 17243.09 20869.03 18378.54 19983.46 18396.50 14593.76 163
v7n72.11 18971.66 19072.63 18675.26 20186.85 18776.74 18568.77 17962.70 19649.40 18645.92 19443.51 20670.63 17684.16 16883.21 18694.99 17995.25 140
EG-PatchMatch MVS71.81 19071.54 19272.12 18980.53 16489.94 14878.51 18066.56 18557.38 20447.46 19444.28 20052.22 17063.10 19785.22 16084.42 17596.56 14387.35 193
CMPMVSbinary54.54 1771.74 19167.94 20076.16 16490.41 8893.25 12078.32 18275.60 13459.81 20053.95 16844.64 19851.22 17470.70 17474.59 20875.88 20688.01 20776.23 209
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MDTV_nov1_ep13_2view71.65 19273.08 18369.97 19775.22 20286.81 18873.98 19459.61 20169.75 17048.01 19254.21 16453.06 16969.19 18178.50 20080.43 19593.84 19088.79 187
pmnet_mix0271.64 19372.36 18770.81 19578.39 18585.57 19368.64 20273.65 14572.13 15945.07 20056.01 15750.61 17865.34 19176.21 20576.60 20493.75 19389.35 185
gm-plane-assit71.33 19475.18 16566.83 20079.06 17475.57 21148.05 21860.33 19648.28 21334.67 21844.34 19967.70 13479.78 14397.25 1196.21 1399.10 1096.92 112
DTE-MVSNet71.19 19570.45 19672.06 19076.61 19784.59 19975.61 19172.32 15463.12 19545.70 19950.72 17343.02 20965.89 18977.53 20482.23 19196.26 15491.93 174
pmmvs670.29 19667.90 20173.07 18476.17 19885.31 19676.29 18770.75 16847.39 21555.33 16237.15 21150.49 18069.55 18082.96 17980.85 19390.34 20691.18 177
PM-MVS70.17 19769.42 19871.04 19370.82 20881.26 20671.25 19867.80 18269.16 17451.04 18053.15 16834.93 21572.19 17280.30 19476.95 20393.16 19790.21 181
pmmvs-eth3d69.59 19867.57 20371.95 19270.04 20980.05 20771.48 19670.00 17562.57 19755.99 16044.92 19635.73 21470.64 17581.56 18779.69 19693.55 19488.43 188
N_pmnet68.54 19967.83 20269.38 19875.77 19981.90 20366.21 20672.53 15265.91 18646.09 19844.67 19745.48 19863.82 19574.66 20777.39 20291.87 20284.77 199
Anonymous2023120668.09 20068.68 19967.39 19975.16 20382.55 20169.33 20170.06 17463.34 19442.28 20537.91 20943.12 20752.67 20683.56 17082.71 18994.84 18287.59 191
EU-MVSNet68.07 20170.25 19765.52 20174.68 20581.30 20568.53 20370.31 17362.40 19837.43 21354.62 16348.36 18851.34 20778.32 20179.27 19790.84 20487.47 192
GG-mvs-BLEND65.67 20293.78 3932.89 2140.47 22499.35 796.92 300.22 22393.28 600.51 22584.07 5392.50 380.62 22293.59 7193.86 5798.59 4399.79 10
test20.0365.17 20367.41 20462.55 20375.35 20079.31 20862.22 20868.83 17856.50 20735.35 21751.97 17044.70 20340.01 21280.69 19179.25 19893.55 19479.47 208
MDA-MVSNet-bldmvs62.23 20461.13 20863.52 20258.94 21582.44 20260.71 21173.28 14757.22 20538.42 21149.63 18127.64 22162.83 19854.98 21474.16 20786.96 20981.83 205
new_pmnet61.60 20562.68 20660.35 20663.02 21274.93 21260.97 21058.86 20364.21 19135.38 21639.51 20439.89 21257.37 20472.78 20972.56 20986.49 21174.85 211
new-patchmatchnet60.74 20659.78 21061.87 20469.52 21076.67 21057.99 21465.78 18952.63 21038.47 21038.08 20832.92 21848.88 20968.50 21069.87 21090.56 20579.75 207
pmmvs360.52 20760.87 20960.12 20761.38 21371.62 21357.42 21553.94 21248.09 21435.95 21538.62 20632.19 22064.12 19475.33 20677.99 20187.89 20882.28 204
MIMVSNet160.51 20861.43 20759.44 20848.75 21877.21 20960.98 20966.84 18452.09 21138.74 20929.29 21439.40 21348.08 21077.60 20378.87 19993.22 19675.56 210
test_method60.40 20966.30 20553.52 21037.48 22264.10 21755.56 21642.45 21871.79 16441.87 20633.74 21246.80 19261.71 20079.18 19673.33 20882.01 21395.17 143
FPMVS56.54 21052.82 21260.87 20574.90 20467.58 21667.69 20565.38 19057.86 20341.51 20737.83 21034.19 21641.21 21155.88 21353.09 21574.55 21663.31 214
PMVScopyleft42.57 1845.71 21142.61 21449.32 21161.35 21437.82 22136.96 22060.10 19837.20 21741.50 20828.53 21533.11 21728.82 21753.45 21548.70 21767.22 21859.42 215
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft43.95 21242.62 21345.50 21250.79 21741.20 22035.55 22152.51 21452.95 20929.09 21912.92 21711.48 22438.15 21362.01 21266.62 21266.89 21951.17 216
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS241.25 21342.55 21539.74 21343.25 21955.05 21938.15 21947.11 21731.78 21811.83 22221.16 21619.12 22220.98 21949.95 21756.09 21477.09 21464.68 213
E-PMN27.87 21424.36 21731.97 21541.27 22125.56 22416.62 22349.16 21522.00 2209.90 22311.75 2197.86 22629.57 21622.22 21934.70 21845.27 22046.41 218
MVEpermissive32.98 1927.61 21529.89 21624.94 21721.97 22337.22 22215.56 22538.83 21917.49 22114.72 22111.64 2215.62 22721.26 21835.20 21850.95 21637.29 22251.13 217
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS26.96 21622.96 21831.63 21641.91 22025.73 22316.30 22449.10 21622.38 2199.03 22411.22 2228.12 22529.93 21520.16 22031.04 21943.49 22142.04 219
testmvs5.16 2178.14 2191.69 2180.36 2251.65 2253.02 2260.66 2217.17 2220.50 22612.58 2180.69 2284.67 2205.42 2215.65 2200.92 22323.86 221
test1234.39 2187.11 2201.21 2190.11 2261.16 2261.67 2270.35 2225.91 2230.16 22711.65 2200.16 2294.45 2211.72 2224.92 2210.51 22424.28 220
uanet_test0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
RE-MVS-def43.17 203
9.1497.59 10
SR-MVS98.52 1993.70 2296.63 20
Anonymous20240521181.72 14188.09 11994.27 11189.62 9482.14 8282.27 12948.83 18572.58 11491.08 6187.40 14088.70 13094.90 18097.99 86
our_test_378.55 18084.98 19870.12 199
ambc57.08 21158.68 21667.71 21560.07 21257.13 20642.79 20430.00 21311.64 22350.18 20878.89 19869.14 21182.64 21285.02 197
MTAPA93.37 895.71 26
MTMP93.84 594.86 29
Patchmatch-RL test19.65 222
tmp_tt57.89 20979.94 16859.29 21852.84 21736.65 22094.77 5068.22 11672.96 9665.62 14133.65 21466.20 21158.02 21376.06 215
XVS92.16 7098.56 3491.04 8281.00 6093.49 3398.00 77
X-MVStestdata92.16 7098.56 3491.04 8281.00 6093.49 3398.00 77
mPP-MVS97.95 2892.24 43
NP-MVS94.12 54
Patchmtry92.08 13583.86 13758.37 20556.28 153
DeepMVS_CXcopyleft70.68 21459.61 21367.36 18372.12 16038.41 21253.88 16732.44 21955.15 20550.88 21674.35 21768.42 212