SED-MVS | | | 97.92 1 | 98.27 2 | 97.52 1 | 98.88 11 | 99.60 1 | 98.80 4 | 95.08 7 | 98.57 2 | 95.63 2 | 96.98 9 | 99.73 1 | 97.67 1 | 97.26 10 | 95.86 22 | 99.04 15 | 99.89 5 |
|
MSP-MVS | | | 97.74 2 | 98.32 1 | 97.06 7 | 98.66 14 | 99.35 7 | 98.66 7 | 94.75 13 | 98.22 5 | 93.60 6 | 97.99 1 | 98.58 8 | 97.41 4 | 98.24 2 | 95.95 18 | 99.27 4 | 99.91 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DVP-MVS++ | | | 97.71 3 | 98.01 6 | 97.37 2 | 98.98 5 | 99.58 3 | 98.79 5 | 95.06 8 | 98.24 4 | 94.66 3 | 96.35 15 | 99.20 4 | 97.63 2 | 97.20 12 | 95.68 23 | 99.08 13 | 99.84 7 |
|
DPE-MVS |  | | 97.69 4 | 98.16 3 | 97.14 5 | 99.01 4 | 99.52 5 | 99.12 2 | 95.38 2 | 98.00 8 | 93.31 9 | 97.71 2 | 99.61 3 | 96.94 5 | 96.99 16 | 95.45 27 | 99.09 12 | 99.81 9 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
DVP-MVS |  | | 97.61 5 | 97.87 7 | 97.30 3 | 98.94 10 | 99.60 1 | 98.21 12 | 95.11 4 | 98.39 3 | 95.83 1 | 94.40 28 | 99.70 2 | 96.79 6 | 97.16 13 | 95.95 18 | 98.92 25 | 99.90 2 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
CNVR-MVS | | | 97.60 6 | 98.08 4 | 97.03 8 | 99.14 1 | 99.55 4 | 98.67 6 | 95.32 3 | 97.91 9 | 92.55 11 | 97.11 6 | 97.23 13 | 97.49 3 | 98.16 3 | 97.05 5 | 99.04 15 | 99.55 19 |
|
APDe-MVS | | | 97.31 7 | 97.51 12 | 97.08 6 | 98.95 9 | 99.29 12 | 98.58 9 | 95.11 4 | 97.69 14 | 94.16 4 | 96.91 10 | 96.81 17 | 96.57 9 | 96.71 20 | 95.39 29 | 99.08 13 | 99.79 10 |
|
SF-MVS | | | 97.17 8 | 97.18 15 | 97.17 4 | 99.11 2 | 99.20 14 | 99.05 3 | 95.55 1 | 97.39 17 | 93.56 7 | 97.48 4 | 96.71 19 | 96.75 7 | 95.73 32 | 94.40 44 | 98.98 20 | 99.33 24 |
|
NCCC | | | 97.01 9 | 97.74 8 | 96.16 11 | 99.02 3 | 99.35 7 | 98.63 8 | 95.04 9 | 97.84 11 | 88.95 24 | 96.83 12 | 97.02 16 | 96.39 14 | 97.44 7 | 96.51 9 | 98.90 27 | 99.16 40 |
|
SMA-MVS |  | | 96.96 10 | 97.65 11 | 96.15 12 | 98.98 5 | 99.31 11 | 97.91 17 | 94.68 15 | 97.52 15 | 90.59 18 | 94.54 27 | 99.20 4 | 96.54 11 | 97.29 9 | 96.48 10 | 98.22 62 | 99.19 36 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
MCST-MVS | | | 96.93 11 | 98.07 5 | 95.61 18 | 98.98 5 | 99.44 6 | 98.04 13 | 95.04 9 | 98.10 6 | 86.55 30 | 97.65 3 | 97.56 11 | 95.60 22 | 97.67 6 | 96.45 11 | 99.43 1 | 99.61 18 |
|
HPM-MVS++ |  | | 96.91 12 | 97.70 9 | 96.00 13 | 98.97 8 | 99.16 16 | 97.82 19 | 94.81 12 | 98.04 7 | 89.61 21 | 96.56 14 | 98.60 7 | 96.39 14 | 97.09 14 | 95.22 31 | 98.39 56 | 99.22 32 |
|
SD-MVS | | | 96.87 13 | 97.69 10 | 95.92 14 | 96.38 46 | 99.25 13 | 97.76 20 | 94.75 13 | 97.72 12 | 92.46 13 | 95.94 16 | 99.09 6 | 96.48 13 | 96.01 29 | 96.08 16 | 97.68 93 | 99.73 13 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
APD-MVS |  | | 96.79 14 | 96.99 18 | 96.56 9 | 98.76 13 | 98.87 25 | 98.42 10 | 94.93 11 | 97.70 13 | 91.83 14 | 95.52 19 | 95.94 24 | 96.63 8 | 95.94 30 | 95.47 26 | 98.80 33 | 99.47 22 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
TSAR-MVS + MP. | | | 96.50 15 | 97.08 16 | 95.82 16 | 96.12 50 | 98.97 22 | 98.00 14 | 94.13 20 | 97.89 10 | 91.49 15 | 95.11 24 | 97.52 12 | 96.26 18 | 96.27 27 | 94.07 54 | 98.91 26 | 99.74 12 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
SteuartSystems-ACMMP | | | 96.20 16 | 97.22 14 | 95.01 22 | 98.40 21 | 99.11 17 | 97.93 16 | 93.62 23 | 96.28 29 | 87.45 27 | 97.05 8 | 96.00 23 | 94.23 30 | 96.83 19 | 95.97 17 | 98.40 55 | 99.27 29 |
Skip Steuart: Steuart Systems R&D Blog. |
HFP-MVS | | | 96.09 17 | 96.41 23 | 95.72 17 | 98.58 16 | 98.84 26 | 97.95 15 | 93.08 27 | 96.96 22 | 90.24 19 | 96.60 13 | 94.40 30 | 96.52 12 | 95.13 42 | 94.33 45 | 97.93 83 | 98.59 65 |
|
ACMMP_NAP | | | 95.81 18 | 96.50 22 | 95.01 22 | 98.79 12 | 99.17 15 | 97.52 25 | 94.20 19 | 96.19 30 | 85.71 34 | 93.80 31 | 96.20 22 | 95.89 19 | 96.62 22 | 94.98 37 | 97.93 83 | 98.52 68 |
|
train_agg | | | 95.72 19 | 97.37 13 | 93.80 28 | 97.82 30 | 98.92 23 | 97.84 18 | 93.50 24 | 96.86 24 | 81.35 53 | 97.10 7 | 97.71 9 | 94.19 31 | 96.02 28 | 95.37 30 | 98.07 70 | 99.64 16 |
|
ACMMPR | | | 95.59 20 | 95.89 25 | 95.25 20 | 98.41 20 | 98.74 28 | 97.69 23 | 92.73 31 | 96.88 23 | 88.95 24 | 95.33 21 | 92.91 37 | 95.79 20 | 94.73 52 | 94.33 45 | 97.92 85 | 98.32 77 |
|
DeepC-MVS_fast | | 91.53 1 | 95.57 21 | 95.67 28 | 95.45 19 | 98.57 17 | 99.00 21 | 97.76 20 | 94.41 17 | 97.06 19 | 86.84 29 | 86.39 44 | 92.27 42 | 96.38 16 | 97.89 5 | 98.06 3 | 98.73 38 | 99.01 48 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MSLP-MVS++ | | | 95.49 22 | 94.84 33 | 96.25 10 | 98.64 15 | 98.63 31 | 98.35 11 | 92.37 33 | 95.04 48 | 92.62 10 | 87.12 43 | 93.79 31 | 96.55 10 | 93.53 72 | 96.78 6 | 98.98 20 | 98.99 49 |
|
CP-MVS | | | 95.43 23 | 95.67 28 | 95.14 21 | 98.24 26 | 98.60 32 | 97.45 26 | 92.80 29 | 95.98 33 | 89.21 23 | 95.22 22 | 93.60 32 | 95.43 23 | 94.37 59 | 93.22 73 | 97.68 93 | 98.72 56 |
|
DPM-MVS | | | 95.36 24 | 95.84 26 | 94.82 24 | 96.70 42 | 98.49 42 | 99.27 1 | 95.09 6 | 96.71 25 | 83.87 42 | 86.34 46 | 96.44 21 | 95.06 25 | 98.35 1 | 98.82 1 | 98.89 28 | 95.69 131 |
|
MP-MVS |  | | 95.24 25 | 95.96 24 | 94.40 26 | 98.32 23 | 98.38 47 | 97.12 28 | 92.87 28 | 95.17 46 | 85.50 35 | 95.68 17 | 94.91 28 | 94.58 27 | 95.11 43 | 93.76 59 | 98.05 73 | 98.68 58 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
TSAR-MVS + ACMM | | | 94.99 26 | 97.02 17 | 92.61 38 | 97.19 36 | 98.71 30 | 97.74 22 | 93.21 26 | 96.97 21 | 79.27 69 | 94.09 29 | 97.14 14 | 90.84 64 | 96.64 21 | 95.94 20 | 97.42 108 | 99.67 15 |
|
X-MVS | | | 94.70 27 | 95.71 27 | 93.52 32 | 98.38 22 | 98.56 34 | 96.99 29 | 92.62 32 | 95.58 37 | 81.00 60 | 94.57 26 | 93.49 33 | 94.16 33 | 94.82 48 | 94.29 48 | 97.99 79 | 98.68 58 |
|
PGM-MVS | | | 94.64 28 | 95.49 30 | 93.66 30 | 98.55 18 | 98.51 40 | 97.63 24 | 87.77 46 | 94.45 52 | 84.92 38 | 97.23 5 | 91.90 44 | 95.22 24 | 94.56 55 | 93.80 58 | 97.87 89 | 97.97 88 |
|
TSAR-MVS + GP. | | | 94.59 29 | 96.60 21 | 92.25 39 | 90.25 91 | 98.17 54 | 96.22 35 | 86.53 52 | 97.49 16 | 87.26 28 | 95.21 23 | 97.06 15 | 94.07 35 | 94.34 61 | 94.20 50 | 99.18 5 | 99.71 14 |
|
PHI-MVS | | | 94.49 30 | 96.72 20 | 91.88 41 | 97.06 37 | 98.88 24 | 94.99 46 | 89.13 41 | 96.15 31 | 79.70 65 | 96.91 10 | 95.78 25 | 91.87 54 | 94.65 53 | 95.68 23 | 98.53 47 | 98.98 51 |
|
AdaColmap |  | | 94.28 31 | 92.94 45 | 95.84 15 | 98.32 23 | 98.33 49 | 96.06 37 | 94.62 16 | 96.29 28 | 91.22 16 | 89.89 37 | 85.50 73 | 96.38 16 | 91.85 101 | 90.89 88 | 98.44 51 | 97.81 91 |
|
DeepPCF-MVS | | 91.00 2 | 94.15 32 | 96.87 19 | 90.97 49 | 96.82 40 | 99.33 10 | 89.40 99 | 92.76 30 | 98.76 1 | 82.36 49 | 88.74 38 | 95.49 27 | 90.58 71 | 98.13 4 | 97.80 4 | 93.88 188 | 99.88 6 |
|
CPTT-MVS | | | 94.11 33 | 93.99 38 | 94.25 27 | 96.58 43 | 97.66 62 | 97.31 27 | 91.94 34 | 94.84 49 | 88.72 26 | 92.51 32 | 93.04 36 | 95.78 21 | 91.51 104 | 89.97 105 | 95.15 177 | 98.37 74 |
|
EPNet | | | 93.69 34 | 95.34 31 | 91.76 42 | 96.98 39 | 98.47 44 | 95.40 43 | 86.79 49 | 95.47 39 | 82.84 46 | 95.66 18 | 89.17 50 | 90.47 73 | 95.25 41 | 94.69 40 | 98.10 67 | 98.68 58 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
ACMMP |  | | 93.32 35 | 93.59 41 | 93.00 36 | 97.03 38 | 98.24 50 | 95.27 44 | 91.66 37 | 95.20 44 | 83.25 44 | 95.39 20 | 85.52 71 | 92.80 45 | 92.60 91 | 90.21 101 | 98.01 76 | 97.99 86 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
CANet | | | 93.23 36 | 93.72 40 | 92.65 37 | 95.48 53 | 99.09 19 | 96.55 33 | 86.74 50 | 95.28 42 | 85.22 36 | 77.30 72 | 91.25 46 | 92.60 47 | 97.06 15 | 96.63 7 | 99.31 2 | 99.45 23 |
|
CDPH-MVS | | | 93.22 37 | 95.08 32 | 91.04 48 | 97.57 33 | 98.49 42 | 96.74 31 | 89.35 40 | 95.19 45 | 73.57 98 | 90.26 35 | 91.59 45 | 90.68 68 | 95.09 45 | 96.15 14 | 98.31 61 | 98.81 54 |
|
CSCG | | | 93.16 38 | 92.65 47 | 93.76 29 | 98.32 23 | 99.09 19 | 96.12 36 | 89.91 39 | 93.15 61 | 89.64 20 | 83.62 54 | 88.91 53 | 92.40 49 | 91.09 109 | 93.70 60 | 96.14 160 | 98.99 49 |
|
MVS_111021_LR | | | 93.05 39 | 94.53 35 | 91.32 46 | 96.43 45 | 98.38 47 | 92.81 59 | 87.20 48 | 95.94 35 | 81.45 52 | 94.75 25 | 86.08 67 | 92.12 52 | 94.83 47 | 93.34 67 | 97.89 88 | 98.42 73 |
|
3Dnovator+ | | 86.26 7 | 92.90 40 | 92.45 49 | 93.42 33 | 97.25 35 | 98.45 46 | 95.82 38 | 85.71 58 | 93.83 56 | 89.55 22 | 72.31 102 | 92.28 41 | 94.01 37 | 95.10 44 | 95.92 21 | 98.17 63 | 99.23 31 |
|
MVS_111021_HR | | | 92.73 41 | 94.83 34 | 90.28 55 | 96.27 47 | 99.10 18 | 92.77 60 | 86.15 55 | 93.41 59 | 77.11 87 | 93.82 30 | 87.39 59 | 90.61 69 | 95.60 34 | 95.15 33 | 98.79 34 | 99.32 25 |
|
PLC |  | 89.12 3 | 92.67 42 | 90.84 59 | 94.81 25 | 97.69 31 | 96.10 90 | 95.42 42 | 91.70 35 | 95.82 36 | 92.52 12 | 81.24 58 | 86.01 68 | 94.36 28 | 92.44 95 | 90.27 98 | 97.19 117 | 93.99 157 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
3Dnovator | | 85.78 8 | 92.53 43 | 91.96 51 | 93.20 34 | 97.99 27 | 98.47 44 | 95.78 39 | 85.94 56 | 93.07 63 | 86.40 31 | 73.43 94 | 89.00 52 | 94.08 34 | 94.74 51 | 96.44 12 | 99.01 19 | 98.57 66 |
|
DeepC-MVS | | 88.77 4 | 92.39 44 | 91.74 53 | 93.14 35 | 96.21 48 | 98.55 37 | 96.30 34 | 93.84 21 | 93.06 64 | 81.09 58 | 74.69 87 | 85.20 77 | 93.48 40 | 95.41 37 | 96.13 15 | 97.92 85 | 99.18 37 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
OMC-MVS | | | 92.05 45 | 91.88 52 | 92.25 39 | 96.51 44 | 97.94 56 | 93.18 56 | 88.97 43 | 96.53 26 | 84.47 40 | 80.79 60 | 87.85 55 | 93.25 43 | 92.48 94 | 91.81 81 | 97.12 118 | 95.73 130 |
|
MVSTER | | | 91.91 46 | 93.43 44 | 90.14 56 | 89.81 98 | 92.32 130 | 94.53 49 | 81.32 88 | 96.00 32 | 84.77 39 | 85.41 51 | 92.39 40 | 91.32 56 | 96.41 23 | 94.01 56 | 99.11 8 | 97.45 100 |
|
MVS_0304 | | | 91.90 47 | 92.93 46 | 90.69 53 | 93.66 63 | 98.78 27 | 96.73 32 | 85.43 62 | 93.13 62 | 78.11 81 | 77.02 75 | 89.09 51 | 91.10 60 | 96.98 17 | 96.54 8 | 99.11 8 | 98.96 52 |
|
CS-MVS-test | | | 91.76 48 | 93.47 42 | 89.76 59 | 94.64 58 | 98.22 52 | 88.13 108 | 81.58 85 | 97.02 20 | 82.47 48 | 85.49 50 | 85.41 75 | 93.28 42 | 95.33 39 | 93.61 62 | 98.45 50 | 99.22 32 |
|
QAPM | | | 91.68 49 | 91.97 50 | 91.34 45 | 97.86 29 | 98.72 29 | 95.60 41 | 85.72 57 | 90.86 77 | 77.14 86 | 76.06 76 | 90.35 47 | 92.69 46 | 94.10 64 | 94.60 41 | 99.04 15 | 99.09 42 |
|
CS-MVS | | | 91.55 50 | 92.49 48 | 90.45 54 | 94.00 61 | 97.91 58 | 91.17 80 | 81.40 87 | 95.22 43 | 83.51 43 | 82.37 56 | 82.29 83 | 94.07 35 | 96.36 26 | 94.03 55 | 98.56 45 | 99.22 32 |
|
CNLPA | | | 91.53 51 | 89.74 71 | 93.63 31 | 96.75 41 | 97.63 64 | 91.16 81 | 91.70 35 | 96.38 27 | 90.82 17 | 69.66 113 | 85.52 71 | 93.76 38 | 90.44 115 | 91.14 87 | 97.55 102 | 97.40 101 |
|
ETV-MVS | | | 91.51 52 | 94.06 37 | 88.54 69 | 89.39 104 | 97.52 65 | 89.48 96 | 80.88 91 | 97.09 18 | 79.41 67 | 87.87 39 | 86.18 66 | 92.95 44 | 95.94 30 | 94.33 45 | 99.13 7 | 99.52 21 |
|
DROMVSNet | | | 91.25 53 | 93.45 43 | 88.68 67 | 88.90 110 | 96.18 89 | 91.66 69 | 76.70 122 | 95.57 38 | 82.00 50 | 84.18 52 | 89.28 49 | 94.17 32 | 95.64 33 | 94.19 51 | 98.68 40 | 99.14 41 |
|
DELS-MVS | | | 91.09 54 | 90.56 67 | 91.71 43 | 95.82 51 | 98.59 33 | 95.74 40 | 86.68 51 | 85.86 105 | 85.12 37 | 72.71 97 | 81.36 86 | 88.06 93 | 97.31 8 | 98.27 2 | 98.86 31 | 99.82 8 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
TAPA-MVS | | 87.40 6 | 90.98 55 | 90.71 61 | 91.30 47 | 96.14 49 | 97.66 62 | 94.80 47 | 89.00 42 | 94.74 51 | 77.42 85 | 80.22 61 | 86.70 62 | 92.27 50 | 91.65 103 | 90.17 103 | 98.15 66 | 93.83 161 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
PVSNet_BlendedMVS | | | 90.74 56 | 90.66 63 | 90.82 51 | 94.75 56 | 98.54 38 | 91.30 77 | 86.53 52 | 95.43 40 | 85.75 32 | 78.66 67 | 70.67 123 | 87.60 94 | 96.37 24 | 95.08 35 | 98.98 20 | 99.90 2 |
|
PVSNet_Blended | | | 90.74 56 | 90.66 63 | 90.82 51 | 94.75 56 | 98.54 38 | 91.30 77 | 86.53 52 | 95.43 40 | 85.75 32 | 78.66 67 | 70.67 123 | 87.60 94 | 96.37 24 | 95.08 35 | 98.98 20 | 99.90 2 |
|
CHOSEN 280x420 | | | 90.61 58 | 94.27 36 | 86.35 89 | 93.12 67 | 98.16 55 | 89.99 92 | 69.62 176 | 92.48 68 | 76.89 90 | 87.28 42 | 96.72 18 | 90.31 75 | 94.81 49 | 92.33 78 | 98.17 63 | 98.08 84 |
|
MAR-MVS | | | 90.44 59 | 91.17 57 | 89.59 60 | 97.48 34 | 97.92 57 | 90.96 84 | 79.80 96 | 95.07 47 | 77.03 88 | 80.83 59 | 79.10 96 | 94.68 26 | 93.16 77 | 94.46 43 | 97.59 101 | 97.63 93 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PCF-MVS | | 88.14 5 | 90.42 60 | 89.56 76 | 91.41 44 | 94.44 59 | 98.18 53 | 94.35 50 | 94.33 18 | 84.55 118 | 76.61 91 | 75.84 79 | 88.47 54 | 91.29 57 | 90.37 117 | 90.66 94 | 97.46 104 | 98.88 53 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
OpenMVS |  | 83.41 11 | 89.84 61 | 88.89 82 | 90.95 50 | 97.63 32 | 98.51 40 | 94.64 48 | 85.47 61 | 88.14 91 | 78.39 78 | 65.06 127 | 85.42 74 | 91.04 62 | 93.06 80 | 93.70 60 | 98.53 47 | 98.37 74 |
|
EIA-MVS | | | 89.82 62 | 91.48 55 | 87.89 78 | 89.16 106 | 97.31 67 | 88.99 100 | 80.92 90 | 94.29 53 | 77.65 83 | 82.16 57 | 79.77 94 | 91.90 53 | 94.61 54 | 93.03 75 | 98.70 39 | 99.21 35 |
|
canonicalmvs | | | 89.62 63 | 89.87 70 | 89.33 62 | 90.47 86 | 97.02 73 | 93.46 55 | 79.67 99 | 92.45 69 | 81.05 59 | 82.84 55 | 73.00 112 | 93.71 39 | 90.38 116 | 94.85 38 | 97.65 97 | 98.54 67 |
|
TSAR-MVS + COLMAP | | | 89.59 64 | 89.64 73 | 89.53 61 | 93.32 66 | 96.51 81 | 95.03 45 | 88.53 44 | 95.98 33 | 69.10 114 | 91.81 33 | 64.53 146 | 93.40 41 | 93.53 72 | 91.35 86 | 97.77 90 | 93.75 164 |
|
HQP-MVS | | | 89.57 65 | 90.57 66 | 88.41 71 | 92.77 68 | 94.71 106 | 94.24 51 | 87.97 45 | 93.44 58 | 68.18 117 | 91.75 34 | 71.54 122 | 89.90 78 | 92.31 98 | 91.43 84 | 97.39 109 | 98.80 55 |
|
MVS_Test | | | 89.02 66 | 90.20 68 | 87.64 80 | 89.83 97 | 97.05 72 | 92.30 63 | 77.59 118 | 92.89 65 | 75.01 96 | 77.36 71 | 76.10 106 | 92.27 50 | 95.30 40 | 95.42 28 | 98.83 32 | 97.30 105 |
|
CLD-MVS | | | 88.99 67 | 88.07 85 | 90.07 57 | 89.61 100 | 94.94 103 | 93.82 54 | 85.70 59 | 92.73 67 | 82.73 47 | 79.97 62 | 69.59 127 | 90.44 74 | 90.32 118 | 89.93 107 | 98.10 67 | 99.04 45 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
baseline | | | 88.91 68 | 89.94 69 | 87.70 79 | 89.44 103 | 96.74 79 | 91.62 71 | 77.92 115 | 93.79 57 | 78.76 73 | 77.55 70 | 78.46 99 | 89.38 84 | 92.26 99 | 92.52 77 | 99.10 10 | 98.23 78 |
|
PMMVS | | | 88.56 69 | 91.22 56 | 85.47 97 | 90.04 93 | 95.60 99 | 86.62 123 | 78.49 110 | 93.86 55 | 70.62 109 | 90.00 36 | 80.08 92 | 91.64 55 | 92.36 96 | 89.80 111 | 95.40 172 | 96.84 114 |
|
test2506 | | | 88.38 70 | 88.02 87 | 88.80 66 | 91.55 77 | 97.78 59 | 90.87 86 | 83.36 70 | 84.51 119 | 83.06 45 | 74.13 90 | 76.93 103 | 85.39 104 | 94.34 61 | 93.33 69 | 98.60 41 | 95.10 146 |
|
baseline1 | | | 88.16 71 | 88.15 84 | 88.17 75 | 90.02 94 | 94.79 105 | 91.85 68 | 83.89 65 | 87.37 97 | 75.67 94 | 73.75 92 | 79.89 93 | 88.44 92 | 94.41 56 | 93.33 69 | 99.18 5 | 93.55 166 |
|
thisisatest0530 | | | 87.99 72 | 90.76 60 | 84.75 101 | 88.36 115 | 96.82 76 | 87.65 113 | 79.67 99 | 91.77 71 | 70.93 105 | 79.94 63 | 87.65 57 | 84.21 114 | 92.98 83 | 89.07 122 | 97.66 96 | 97.13 108 |
|
tttt0517 | | | 87.93 73 | 90.71 61 | 84.68 102 | 88.33 116 | 96.76 78 | 87.42 116 | 79.67 99 | 91.74 72 | 70.83 106 | 79.91 64 | 87.61 58 | 84.21 114 | 92.88 88 | 89.07 122 | 97.62 99 | 97.03 110 |
|
CANet_DTU | | | 87.91 74 | 91.57 54 | 83.64 109 | 90.96 80 | 97.12 70 | 91.90 67 | 75.97 130 | 92.83 66 | 53.16 171 | 86.02 47 | 79.02 97 | 90.80 65 | 95.40 38 | 94.15 52 | 99.03 18 | 96.47 125 |
|
diffmvs |  | | 87.86 75 | 87.40 93 | 88.39 72 | 88.57 113 | 96.10 90 | 91.24 79 | 83.15 73 | 90.62 78 | 79.13 71 | 72.45 100 | 67.71 133 | 90.07 77 | 92.58 92 | 93.31 72 | 98.17 63 | 99.03 46 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
IS_MVSNet | | | 87.83 76 | 90.66 63 | 84.53 103 | 90.08 92 | 96.79 77 | 88.16 107 | 79.89 95 | 85.44 107 | 72.20 100 | 75.50 83 | 87.14 60 | 80.21 141 | 95.53 35 | 95.22 31 | 96.65 134 | 99.02 47 |
|
EPP-MVSNet | | | 87.72 77 | 89.74 71 | 85.37 98 | 89.11 107 | 95.57 100 | 86.31 124 | 79.44 102 | 85.83 106 | 75.73 93 | 77.23 73 | 90.05 48 | 84.78 110 | 91.22 107 | 90.25 99 | 96.83 125 | 98.04 85 |
|
casdiffmvs_mvg |  | | 87.64 78 | 86.46 100 | 89.01 65 | 89.45 102 | 96.09 92 | 92.69 61 | 83.42 69 | 84.60 117 | 80.01 64 | 68.55 116 | 70.29 125 | 90.51 72 | 93.93 67 | 93.59 63 | 97.96 80 | 98.18 79 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
ET-MVSNet_ETH3D | | | 87.63 79 | 91.08 58 | 83.59 110 | 67.96 211 | 96.30 88 | 92.06 65 | 78.47 111 | 91.95 70 | 69.87 111 | 87.57 41 | 84.14 81 | 94.34 29 | 88.58 131 | 92.10 79 | 98.88 29 | 96.93 111 |
|
DI_MVS_plusplus_trai | | | 87.63 79 | 87.13 95 | 88.22 74 | 88.61 112 | 95.92 95 | 94.09 53 | 81.41 86 | 87.00 100 | 78.38 79 | 59.70 146 | 80.52 90 | 89.08 87 | 94.37 59 | 93.34 67 | 97.73 91 | 99.05 44 |
|
casdiffmvs |  | | 87.59 81 | 86.69 99 | 88.64 68 | 89.06 108 | 96.32 87 | 90.18 89 | 83.21 72 | 87.74 95 | 80.20 63 | 67.99 118 | 68.34 131 | 90.79 66 | 93.83 68 | 94.08 53 | 98.41 54 | 98.50 70 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
PVSNet_Blended_VisFu | | | 87.44 82 | 88.72 83 | 85.95 93 | 92.02 72 | 97.26 68 | 86.88 121 | 82.66 80 | 83.86 125 | 79.16 70 | 66.96 121 | 84.91 78 | 77.26 158 | 94.97 46 | 93.48 64 | 97.73 91 | 99.64 16 |
|
FMVSNet3 | | | 87.19 83 | 87.32 94 | 87.04 87 | 82.82 150 | 90.21 145 | 92.88 58 | 76.53 125 | 91.69 73 | 81.31 54 | 64.81 130 | 80.64 87 | 89.79 82 | 94.80 50 | 94.76 39 | 98.88 29 | 94.32 153 |
|
LS3D | | | 87.19 83 | 85.48 107 | 89.18 63 | 94.96 55 | 95.47 101 | 92.02 66 | 93.36 25 | 88.69 89 | 67.01 118 | 70.56 109 | 72.10 117 | 92.47 48 | 89.96 121 | 89.93 107 | 95.25 174 | 91.68 175 |
|
ACMP | | 85.16 9 | 87.15 85 | 87.04 96 | 87.27 84 | 90.80 82 | 94.45 109 | 89.41 98 | 83.09 77 | 89.15 85 | 76.98 89 | 86.35 45 | 65.80 140 | 86.94 97 | 88.45 132 | 87.52 141 | 96.42 149 | 97.56 98 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
UGNet | | | 87.04 86 | 89.59 75 | 84.07 105 | 90.94 81 | 95.95 94 | 86.02 126 | 81.65 84 | 85.94 104 | 78.54 77 | 78.00 69 | 85.40 76 | 69.62 178 | 91.83 102 | 91.53 83 | 97.63 98 | 98.51 69 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
LGP-MVS_train | | | 86.95 87 | 87.65 90 | 86.12 92 | 91.77 75 | 93.84 115 | 93.04 57 | 82.77 79 | 88.04 92 | 65.33 123 | 87.69 40 | 67.09 137 | 86.79 98 | 90.20 119 | 88.99 125 | 97.05 120 | 97.71 92 |
|
PatchMatch-RL | | | 86.75 88 | 85.43 108 | 88.29 73 | 94.06 60 | 96.37 86 | 86.82 122 | 82.94 78 | 88.94 87 | 79.59 66 | 79.83 65 | 59.17 159 | 89.46 83 | 91.12 108 | 88.81 129 | 96.88 124 | 93.78 162 |
|
FA-MVS(training) | | | 86.74 89 | 88.01 88 | 85.26 99 | 89.86 95 | 96.99 74 | 88.54 104 | 64.26 192 | 89.04 86 | 81.30 57 | 66.74 123 | 81.52 85 | 89.11 86 | 94.04 65 | 90.37 97 | 98.47 49 | 97.37 102 |
|
baseline2 | | | 86.51 90 | 89.35 79 | 83.19 112 | 85.70 136 | 94.88 104 | 85.75 131 | 77.13 120 | 89.87 82 | 70.65 108 | 79.03 66 | 79.14 95 | 81.51 134 | 93.70 69 | 90.22 100 | 98.38 57 | 98.60 64 |
|
thres100view900 | | | 86.48 91 | 85.08 110 | 88.12 76 | 90.54 83 | 96.90 75 | 92.39 62 | 84.82 63 | 84.16 123 | 71.65 101 | 70.86 106 | 60.49 154 | 91.23 59 | 93.65 70 | 90.19 102 | 98.10 67 | 99.32 25 |
|
ACMM | | 84.23 10 | 86.40 92 | 84.64 113 | 88.46 70 | 91.90 73 | 91.93 136 | 88.11 109 | 85.59 60 | 88.61 90 | 79.13 71 | 75.31 84 | 66.25 138 | 89.86 81 | 89.88 122 | 87.64 138 | 96.16 159 | 92.86 171 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
GBi-Net | | | 86.16 93 | 86.00 103 | 86.35 89 | 81.81 156 | 89.52 154 | 91.40 73 | 76.53 125 | 91.69 73 | 81.31 54 | 64.81 130 | 80.64 87 | 88.72 88 | 90.54 112 | 90.72 90 | 98.34 58 | 94.08 154 |
|
test1 | | | 86.16 93 | 86.00 103 | 86.35 89 | 81.81 156 | 89.52 154 | 91.40 73 | 76.53 125 | 91.69 73 | 81.31 54 | 64.81 130 | 80.64 87 | 88.72 88 | 90.54 112 | 90.72 90 | 98.34 58 | 94.08 154 |
|
tfpn200view9 | | | 86.07 95 | 84.76 112 | 87.61 81 | 90.54 83 | 96.39 83 | 91.35 76 | 83.15 73 | 84.16 123 | 71.65 101 | 70.86 106 | 60.49 154 | 90.91 63 | 92.89 85 | 89.34 114 | 98.05 73 | 99.17 38 |
|
DCV-MVSNet | | | 85.90 96 | 85.88 105 | 85.93 94 | 87.86 121 | 88.37 171 | 89.45 97 | 77.46 119 | 87.33 98 | 77.51 84 | 76.06 76 | 75.76 108 | 88.48 91 | 87.40 140 | 88.89 128 | 94.80 183 | 97.37 102 |
|
Vis-MVSNet (Re-imp) | | | 85.89 97 | 89.62 74 | 81.55 122 | 89.85 96 | 96.08 93 | 87.55 114 | 79.80 96 | 84.80 114 | 66.55 120 | 73.70 93 | 86.71 61 | 68.25 185 | 94.40 57 | 94.53 42 | 97.32 112 | 97.09 109 |
|
MSDG | | | 85.81 98 | 82.29 137 | 89.93 58 | 95.52 52 | 92.61 125 | 91.51 72 | 91.46 38 | 85.12 111 | 78.56 75 | 63.25 136 | 69.01 129 | 85.31 107 | 88.45 132 | 88.23 132 | 97.21 116 | 89.33 186 |
|
thres200 | | | 85.80 99 | 84.38 114 | 87.46 82 | 90.51 85 | 96.39 83 | 91.64 70 | 83.15 73 | 81.59 133 | 71.54 103 | 70.24 110 | 60.41 156 | 89.88 79 | 92.89 85 | 89.85 110 | 98.06 71 | 99.26 30 |
|
ECVR-MVS |  | | 85.74 100 | 83.80 122 | 88.00 77 | 91.55 77 | 97.78 59 | 90.87 86 | 83.36 70 | 84.51 119 | 78.21 80 | 58.65 151 | 62.75 150 | 85.39 104 | 94.34 61 | 93.33 69 | 98.60 41 | 95.25 140 |
|
OPM-MVS | | | 85.69 101 | 82.79 130 | 89.06 64 | 93.42 64 | 94.21 113 | 94.21 52 | 87.61 47 | 72.68 158 | 70.79 107 | 71.09 104 | 67.27 136 | 90.74 67 | 91.29 106 | 89.05 124 | 97.61 100 | 93.94 159 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
thres400 | | | 85.59 102 | 84.08 117 | 87.36 83 | 90.45 87 | 96.60 80 | 90.95 85 | 83.67 67 | 80.99 136 | 71.17 104 | 69.08 115 | 60.25 157 | 89.88 79 | 93.14 78 | 89.34 114 | 98.02 75 | 99.17 38 |
|
CostFormer | | | 85.47 103 | 86.98 97 | 83.71 108 | 88.70 111 | 94.02 114 | 88.07 110 | 62.72 194 | 89.78 83 | 78.68 74 | 72.69 98 | 78.37 100 | 87.35 96 | 85.96 153 | 89.32 118 | 96.73 131 | 98.72 56 |
|
test1111 | | | 85.17 104 | 83.46 125 | 87.17 85 | 91.36 79 | 97.75 61 | 90.06 91 | 83.44 68 | 83.41 127 | 75.25 95 | 58.08 154 | 62.19 152 | 84.39 113 | 94.39 58 | 93.38 66 | 98.54 46 | 95.00 148 |
|
thres600view7 | | | 85.14 105 | 83.58 124 | 86.96 88 | 90.37 90 | 96.39 83 | 90.33 88 | 83.15 73 | 80.46 137 | 70.60 110 | 67.96 119 | 60.04 158 | 89.22 85 | 92.89 85 | 88.28 131 | 98.06 71 | 99.08 43 |
|
test-LLR | | | 85.11 106 | 89.49 77 | 80.00 131 | 85.32 140 | 94.49 107 | 82.27 161 | 74.18 139 | 87.83 93 | 56.70 149 | 75.55 81 | 86.26 63 | 82.75 127 | 93.06 80 | 90.60 95 | 98.77 35 | 98.65 62 |
|
FMVSNet2 | | | 84.89 107 | 84.02 119 | 85.91 95 | 81.81 156 | 89.52 154 | 91.40 73 | 75.79 131 | 84.45 121 | 79.39 68 | 58.75 149 | 74.35 110 | 88.72 88 | 93.51 74 | 93.46 65 | 98.34 58 | 94.08 154 |
|
FC-MVSNet-train | | | 84.88 108 | 84.08 117 | 85.82 96 | 89.21 105 | 91.74 137 | 85.87 127 | 81.20 89 | 81.71 132 | 74.66 97 | 73.38 95 | 64.99 144 | 86.60 99 | 90.75 110 | 88.08 133 | 97.36 110 | 97.90 89 |
|
EPNet_dtu | | | 84.87 109 | 89.01 80 | 80.05 130 | 95.25 54 | 92.88 123 | 88.84 102 | 84.11 64 | 91.69 73 | 49.28 187 | 85.69 48 | 78.95 98 | 65.39 190 | 92.22 100 | 91.66 82 | 97.43 107 | 89.95 182 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
Effi-MVS+ | | | 84.80 110 | 85.71 106 | 83.73 107 | 87.94 120 | 95.76 96 | 90.08 90 | 73.45 146 | 85.12 111 | 62.66 132 | 72.39 101 | 64.97 145 | 90.59 70 | 92.95 84 | 90.69 93 | 97.67 95 | 98.12 81 |
|
UA-Net | | | 84.69 111 | 87.64 91 | 81.25 124 | 90.38 89 | 95.67 97 | 87.33 117 | 79.41 103 | 72.07 162 | 66.48 121 | 75.09 85 | 92.48 39 | 66.88 186 | 94.03 66 | 94.25 49 | 97.01 123 | 89.88 183 |
|
TESTMET0.1,1 | | | 84.62 112 | 89.49 77 | 78.94 140 | 82.18 153 | 94.49 107 | 82.27 161 | 70.94 166 | 87.83 93 | 56.70 149 | 75.55 81 | 86.26 63 | 82.75 127 | 93.06 80 | 90.60 95 | 98.77 35 | 98.65 62 |
|
CHOSEN 1792x2688 | | | 84.59 113 | 84.30 116 | 84.93 100 | 93.71 62 | 98.23 51 | 89.91 93 | 77.96 114 | 84.81 113 | 65.93 122 | 45.19 195 | 71.76 121 | 83.13 125 | 95.46 36 | 95.13 34 | 98.94 24 | 99.53 20 |
|
Anonymous20231211 | | | 84.23 114 | 81.71 142 | 87.17 85 | 87.38 128 | 93.59 118 | 88.95 101 | 82.14 82 | 83.82 126 | 78.56 75 | 48.09 189 | 73.89 111 | 91.25 58 | 86.38 147 | 88.06 135 | 94.74 184 | 98.14 80 |
|
MDTV_nov1_ep13 | | | 84.17 115 | 88.03 86 | 79.66 133 | 86.00 134 | 94.41 110 | 85.05 133 | 66.01 188 | 90.36 79 | 64.34 128 | 77.13 74 | 84.56 79 | 82.71 129 | 87.12 144 | 88.92 126 | 93.84 190 | 93.69 165 |
|
test-mter | | | 84.06 116 | 89.00 81 | 78.29 145 | 81.92 154 | 94.23 112 | 81.07 171 | 70.38 170 | 87.12 99 | 56.10 158 | 74.75 86 | 85.80 69 | 81.81 133 | 92.52 93 | 90.10 104 | 98.43 52 | 98.49 71 |
|
IB-MVS | | 79.58 12 | 83.83 117 | 84.81 111 | 82.68 114 | 91.85 74 | 97.35 66 | 75.75 190 | 82.57 81 | 86.55 102 | 84.01 41 | 70.90 105 | 65.43 142 | 63.18 196 | 84.19 167 | 89.92 109 | 98.74 37 | 99.31 27 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
EPMVS | | | 83.71 118 | 86.76 98 | 80.16 129 | 89.72 99 | 95.64 98 | 84.68 134 | 59.73 199 | 89.61 84 | 62.67 131 | 72.65 99 | 81.80 84 | 86.22 101 | 86.23 149 | 88.03 136 | 97.96 80 | 93.35 167 |
|
HyFIR lowres test | | | 83.43 119 | 82.94 128 | 84.01 106 | 93.41 65 | 97.10 71 | 87.21 118 | 74.04 141 | 80.15 139 | 64.98 124 | 41.09 203 | 76.61 105 | 86.51 100 | 93.31 75 | 93.01 76 | 97.91 87 | 99.30 28 |
|
PatchmatchNet |  | | 83.28 120 | 87.57 92 | 78.29 145 | 87.46 126 | 94.95 102 | 83.36 143 | 59.43 202 | 90.20 81 | 58.10 144 | 74.29 89 | 86.20 65 | 84.13 116 | 85.27 159 | 87.39 142 | 97.25 115 | 94.67 151 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
SCA | | | 83.26 121 | 87.76 89 | 78.00 150 | 87.45 127 | 92.20 131 | 82.63 157 | 58.42 204 | 90.30 80 | 58.23 142 | 75.74 80 | 87.75 56 | 83.97 119 | 86.10 152 | 87.64 138 | 97.30 113 | 94.62 152 |
|
GeoE | | | 83.17 122 | 82.86 129 | 83.53 111 | 87.24 129 | 93.78 116 | 87.94 111 | 72.75 151 | 82.19 130 | 69.76 112 | 60.54 143 | 65.95 139 | 86.01 102 | 89.41 126 | 89.72 112 | 97.47 103 | 98.43 72 |
|
CDS-MVSNet | | | 83.13 123 | 83.73 123 | 82.43 120 | 84.52 145 | 92.92 122 | 88.26 106 | 77.67 117 | 72.08 161 | 69.08 115 | 66.96 121 | 74.66 109 | 78.61 147 | 90.70 111 | 91.96 80 | 96.46 148 | 96.86 113 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
RPSCF | | | 82.91 124 | 81.86 139 | 84.13 104 | 88.25 117 | 88.32 172 | 87.67 112 | 80.86 92 | 84.78 115 | 76.57 92 | 85.56 49 | 76.00 107 | 84.61 111 | 78.20 202 | 76.52 205 | 86.81 210 | 83.63 203 |
|
Vis-MVSNet |  | | 82.88 125 | 86.04 102 | 79.20 138 | 87.77 124 | 96.42 82 | 86.10 125 | 76.70 122 | 74.82 152 | 61.38 134 | 70.70 108 | 77.91 101 | 64.83 192 | 93.22 76 | 93.19 74 | 98.43 52 | 96.01 128 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
dps | | | 82.63 126 | 82.64 133 | 82.62 116 | 87.81 123 | 92.81 124 | 84.39 135 | 61.96 195 | 86.43 103 | 81.63 51 | 69.72 112 | 67.60 135 | 84.42 112 | 82.51 180 | 83.90 179 | 95.52 168 | 95.50 138 |
|
IterMVS-LS | | | 82.62 127 | 82.75 132 | 82.48 117 | 87.09 130 | 87.48 185 | 87.19 119 | 72.85 149 | 79.09 140 | 66.63 119 | 65.22 125 | 72.14 116 | 84.06 118 | 88.33 135 | 91.39 85 | 97.03 122 | 95.60 137 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Fast-Effi-MVS+ | | | 82.61 128 | 82.51 135 | 82.72 113 | 85.49 139 | 93.06 121 | 87.17 120 | 71.39 163 | 84.18 122 | 64.59 126 | 63.03 137 | 58.89 160 | 90.22 76 | 91.39 105 | 90.83 89 | 97.44 105 | 96.21 127 |
|
tpm cat1 | | | 82.39 129 | 82.32 136 | 82.47 118 | 88.13 118 | 92.42 129 | 87.43 115 | 62.79 193 | 85.30 108 | 78.05 82 | 60.14 144 | 72.10 117 | 83.20 124 | 82.26 183 | 85.67 158 | 95.23 175 | 98.35 76 |
|
MS-PatchMatch | | | 82.16 130 | 82.18 138 | 82.12 121 | 91.65 76 | 93.50 119 | 89.51 95 | 71.95 157 | 81.48 134 | 64.45 127 | 59.58 148 | 77.54 102 | 77.23 159 | 89.88 122 | 85.62 159 | 97.94 82 | 87.68 190 |
|
tpmrst | | | 81.71 131 | 83.87 121 | 79.20 138 | 89.01 109 | 93.67 117 | 84.22 136 | 60.14 197 | 87.45 96 | 59.49 138 | 64.97 128 | 71.86 120 | 85.30 108 | 84.72 163 | 86.30 150 | 97.04 121 | 98.09 83 |
|
RPMNet | | | 81.47 132 | 86.24 101 | 75.90 168 | 86.72 131 | 92.12 133 | 82.82 155 | 55.76 210 | 85.21 109 | 53.73 169 | 63.45 134 | 83.16 82 | 80.13 142 | 92.34 97 | 89.52 113 | 96.23 157 | 97.90 89 |
|
CR-MVSNet | | | 81.44 133 | 85.29 109 | 76.94 159 | 86.53 132 | 92.12 133 | 83.86 137 | 58.37 205 | 85.21 109 | 56.28 153 | 59.60 147 | 80.39 91 | 80.50 139 | 92.77 89 | 89.32 118 | 96.12 161 | 97.59 96 |
|
Effi-MVS+-dtu | | | 81.18 134 | 82.77 131 | 79.33 136 | 84.70 144 | 92.54 127 | 85.81 128 | 71.55 161 | 78.84 141 | 57.06 148 | 71.98 103 | 63.77 148 | 85.09 109 | 88.94 128 | 87.62 140 | 91.79 203 | 95.68 132 |
|
test0.0.03 1 | | | 80.99 135 | 84.37 115 | 77.05 157 | 85.32 140 | 89.79 150 | 78.43 181 | 74.18 139 | 84.78 115 | 57.98 147 | 76.06 76 | 72.88 113 | 69.14 182 | 88.02 137 | 87.70 137 | 97.27 114 | 91.37 176 |
|
Fast-Effi-MVS+-dtu | | | 80.57 136 | 83.44 126 | 77.22 155 | 83.98 148 | 91.52 139 | 85.78 130 | 64.54 191 | 80.38 138 | 50.28 183 | 74.06 91 | 62.89 149 | 82.00 132 | 89.10 127 | 88.91 127 | 96.75 129 | 97.21 107 |
|
FMVSNet5 | | | 80.56 137 | 82.53 134 | 78.26 147 | 73.80 206 | 81.52 204 | 82.26 163 | 68.36 181 | 88.85 88 | 64.21 129 | 69.09 114 | 84.38 80 | 83.49 123 | 87.13 143 | 86.76 147 | 97.44 105 | 79.95 206 |
|
ADS-MVSNet | | | 80.25 138 | 82.96 127 | 77.08 156 | 87.86 121 | 92.60 126 | 81.82 168 | 56.19 209 | 86.95 101 | 56.16 156 | 68.19 117 | 72.42 115 | 83.70 122 | 82.05 184 | 85.45 164 | 96.75 129 | 93.08 170 |
|
FMVSNet1 | | | 80.18 139 | 78.07 153 | 82.65 115 | 78.55 180 | 87.57 184 | 88.41 105 | 73.93 142 | 70.16 167 | 73.57 98 | 49.80 179 | 64.45 147 | 85.35 106 | 90.54 112 | 90.72 90 | 96.10 162 | 93.21 168 |
|
USDC | | | 80.10 140 | 79.33 149 | 81.00 126 | 86.36 133 | 91.71 138 | 88.74 103 | 75.77 132 | 81.90 131 | 54.90 163 | 67.67 120 | 52.05 172 | 83.94 120 | 88.44 134 | 86.25 151 | 96.31 152 | 87.28 194 |
|
COLMAP_ROB |  | 75.69 15 | 79.47 141 | 76.90 160 | 82.46 119 | 92.20 69 | 90.53 141 | 85.30 132 | 83.69 66 | 78.27 144 | 61.47 133 | 58.26 152 | 62.75 150 | 78.28 150 | 82.41 181 | 82.13 192 | 93.83 192 | 83.98 202 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
pmmvs4 | | | 79.32 142 | 77.78 155 | 81.11 125 | 80.18 165 | 88.96 166 | 83.39 141 | 76.07 128 | 81.27 135 | 69.35 113 | 58.66 150 | 51.19 175 | 82.01 131 | 87.16 142 | 84.39 176 | 95.66 166 | 92.82 172 |
|
PatchT | | | 79.28 143 | 83.88 120 | 73.93 177 | 85.54 138 | 90.95 140 | 66.14 207 | 56.53 208 | 83.21 128 | 56.28 153 | 56.50 156 | 76.80 104 | 80.50 139 | 92.77 89 | 89.32 118 | 98.57 44 | 97.59 96 |
|
ACMH | | 78.51 14 | 79.27 144 | 78.08 152 | 80.65 127 | 89.52 101 | 90.40 142 | 80.45 173 | 79.77 98 | 69.54 172 | 54.85 164 | 64.83 129 | 56.16 166 | 83.94 120 | 84.58 165 | 86.01 155 | 95.41 171 | 95.03 147 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
TAMVS | | | 79.23 145 | 78.95 151 | 79.56 134 | 81.89 155 | 92.52 128 | 82.97 150 | 73.70 143 | 67.27 178 | 64.97 125 | 61.66 142 | 65.06 143 | 78.61 147 | 87.12 144 | 88.07 134 | 95.23 175 | 90.95 178 |
|
ACMH+ | | 79.09 13 | 79.12 146 | 77.22 159 | 81.35 123 | 88.50 114 | 90.36 143 | 82.14 165 | 79.38 105 | 72.78 157 | 58.59 139 | 62.31 141 | 56.44 165 | 84.10 117 | 82.03 185 | 84.05 177 | 95.40 172 | 92.55 173 |
|
UniMVSNet_NR-MVSNet | | | 78.89 147 | 78.04 154 | 79.88 132 | 79.40 171 | 89.70 151 | 82.92 152 | 80.17 93 | 76.37 150 | 58.56 140 | 57.10 155 | 54.92 168 | 81.44 135 | 83.51 172 | 87.12 144 | 96.76 128 | 97.60 94 |
|
tpm | | | 78.87 148 | 81.33 145 | 76.00 166 | 85.57 137 | 90.19 146 | 82.81 156 | 59.66 200 | 78.35 143 | 51.40 178 | 66.30 124 | 67.92 132 | 80.94 137 | 83.28 175 | 85.73 156 | 95.65 167 | 97.56 98 |
|
GA-MVS | | | 78.86 149 | 80.42 146 | 77.05 157 | 83.27 149 | 92.17 132 | 83.24 145 | 75.73 133 | 73.75 154 | 46.27 197 | 62.43 139 | 57.12 162 | 76.94 161 | 93.14 78 | 89.34 114 | 96.83 125 | 95.00 148 |
|
IterMVS | | | 78.85 150 | 81.36 143 | 75.93 167 | 84.27 147 | 85.74 191 | 83.83 139 | 66.35 186 | 76.82 145 | 50.48 181 | 63.48 133 | 68.82 130 | 73.99 166 | 89.68 124 | 89.34 114 | 96.63 137 | 95.67 133 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 78.71 151 | 81.34 144 | 75.64 172 | 84.31 146 | 85.67 192 | 83.51 140 | 66.14 187 | 76.67 146 | 50.38 182 | 63.45 134 | 69.02 128 | 73.23 168 | 89.66 125 | 89.22 121 | 96.24 156 | 95.67 133 |
|
UniMVSNet (Re) | | | 78.00 152 | 77.52 156 | 78.57 143 | 79.66 170 | 90.36 143 | 82.09 166 | 77.86 116 | 76.38 149 | 60.26 135 | 54.63 162 | 52.07 171 | 75.31 164 | 84.97 162 | 86.10 153 | 96.22 158 | 98.11 82 |
|
DU-MVS | | | 77.98 153 | 76.71 161 | 79.46 135 | 78.68 177 | 89.26 160 | 82.92 152 | 79.06 107 | 76.52 147 | 58.56 140 | 54.89 160 | 48.35 189 | 81.44 135 | 83.16 177 | 87.21 143 | 96.08 163 | 97.60 94 |
|
FC-MVSNet-test | | | 77.95 154 | 81.85 140 | 73.39 182 | 82.31 151 | 88.99 165 | 79.33 177 | 74.24 138 | 78.75 142 | 47.40 195 | 70.22 111 | 72.09 119 | 60.78 202 | 86.66 146 | 85.62 159 | 96.30 153 | 90.61 179 |
|
NR-MVSNet | | | 77.21 155 | 76.41 162 | 78.14 149 | 80.18 165 | 89.26 160 | 83.38 142 | 79.06 107 | 76.52 147 | 56.59 151 | 54.89 160 | 45.32 199 | 72.89 170 | 85.39 158 | 86.12 152 | 96.71 132 | 97.36 104 |
|
thisisatest0515 | | | 77.13 156 | 79.36 148 | 74.52 174 | 79.79 169 | 89.65 152 | 73.54 195 | 73.69 144 | 74.10 153 | 58.14 143 | 62.79 138 | 60.57 153 | 66.49 188 | 88.08 136 | 85.16 169 | 95.49 170 | 95.15 144 |
|
gg-mvs-nofinetune | | | 77.08 157 | 79.79 147 | 73.92 178 | 85.95 135 | 97.23 69 | 92.18 64 | 52.65 213 | 46.19 216 | 27.79 220 | 38.27 207 | 85.63 70 | 85.67 103 | 96.95 18 | 95.62 25 | 99.30 3 | 98.67 61 |
|
TranMVSNet+NR-MVSNet | | | 77.02 158 | 75.76 164 | 78.49 144 | 78.46 183 | 88.24 173 | 83.03 149 | 79.97 94 | 73.49 156 | 54.73 165 | 54.00 165 | 48.74 184 | 78.15 152 | 82.36 182 | 86.90 146 | 96.59 139 | 96.55 119 |
|
CVMVSNet | | | 76.86 159 | 79.09 150 | 74.26 175 | 85.29 142 | 89.44 157 | 79.91 176 | 78.47 111 | 68.94 175 | 44.45 202 | 62.35 140 | 69.70 126 | 64.50 193 | 85.82 154 | 87.03 145 | 92.94 198 | 90.33 180 |
|
Baseline_NR-MVSNet | | | 76.71 160 | 74.56 171 | 79.23 137 | 78.68 177 | 84.15 200 | 82.45 159 | 78.87 109 | 75.83 151 | 60.05 136 | 47.92 190 | 50.18 181 | 79.06 146 | 83.16 177 | 83.86 180 | 96.26 154 | 96.80 115 |
|
v2v482 | | | 76.25 161 | 74.78 168 | 77.96 151 | 78.50 182 | 89.14 163 | 83.05 148 | 76.02 129 | 68.78 176 | 54.11 166 | 51.36 171 | 48.59 186 | 79.49 144 | 83.53 171 | 85.60 162 | 96.59 139 | 96.49 124 |
|
V42 | | | 76.21 162 | 75.04 167 | 77.58 152 | 78.68 177 | 89.33 159 | 82.93 151 | 74.64 136 | 69.84 169 | 56.13 157 | 50.42 176 | 50.93 176 | 76.30 163 | 83.32 173 | 84.89 173 | 96.83 125 | 96.54 120 |
|
v8 | | | 75.89 163 | 74.74 169 | 77.23 154 | 79.09 173 | 88.00 176 | 83.19 146 | 71.08 165 | 70.03 168 | 56.29 152 | 50.50 174 | 50.88 177 | 77.06 160 | 83.32 173 | 84.99 171 | 96.68 133 | 95.49 139 |
|
TinyColmap | | | 75.75 164 | 73.19 182 | 78.74 142 | 84.82 143 | 87.69 180 | 81.59 169 | 74.62 137 | 71.81 163 | 54.01 167 | 55.79 159 | 44.42 204 | 82.89 126 | 84.61 164 | 83.76 181 | 94.50 185 | 84.22 201 |
|
MIMVSNet | | | 75.71 165 | 77.26 157 | 73.90 179 | 70.93 207 | 88.71 169 | 79.98 175 | 57.67 207 | 73.58 155 | 58.08 146 | 53.93 166 | 58.56 161 | 79.41 145 | 90.04 120 | 89.97 105 | 97.34 111 | 86.04 195 |
|
UniMVSNet_ETH3D | | | 75.63 166 | 71.59 191 | 80.35 128 | 81.03 160 | 89.90 149 | 83.25 144 | 76.58 124 | 60.08 199 | 64.19 130 | 42.89 202 | 45.01 200 | 82.14 130 | 80.20 195 | 86.75 148 | 94.90 180 | 96.29 126 |
|
pm-mvs1 | | | 75.61 167 | 74.19 173 | 77.26 153 | 80.16 167 | 88.79 167 | 81.49 170 | 75.49 135 | 59.49 201 | 58.09 145 | 48.32 187 | 55.53 167 | 72.35 171 | 88.61 130 | 85.48 163 | 95.99 164 | 93.12 169 |
|
v10 | | | 75.57 168 | 74.67 170 | 76.62 162 | 78.73 176 | 87.46 186 | 83.14 147 | 69.41 177 | 69.27 173 | 53.44 170 | 49.73 180 | 49.21 183 | 78.44 149 | 86.17 151 | 85.18 168 | 96.53 144 | 95.65 136 |
|
v1144 | | | 75.54 169 | 74.55 172 | 76.69 160 | 78.33 186 | 88.77 168 | 82.89 154 | 72.76 150 | 67.18 180 | 51.73 175 | 49.34 182 | 48.37 187 | 78.10 153 | 86.22 150 | 85.24 166 | 96.35 151 | 96.74 116 |
|
TDRefinement | | | 75.54 169 | 73.22 180 | 78.25 148 | 87.65 125 | 89.65 152 | 85.81 128 | 79.28 106 | 71.14 165 | 56.06 159 | 52.17 169 | 51.96 173 | 68.74 184 | 81.60 186 | 80.58 194 | 91.94 201 | 85.45 196 |
|
pmmvs5 | | | 75.46 171 | 75.12 166 | 75.87 169 | 79.39 172 | 89.44 157 | 78.12 183 | 72.27 155 | 65.98 185 | 51.54 176 | 55.83 158 | 46.23 194 | 76.80 162 | 88.77 129 | 85.73 156 | 97.07 119 | 93.84 160 |
|
tfpnnormal | | | 75.27 172 | 72.12 188 | 78.94 140 | 82.30 152 | 88.52 170 | 82.41 160 | 79.41 103 | 58.03 202 | 55.59 161 | 43.83 201 | 44.71 201 | 77.35 156 | 87.70 139 | 85.45 164 | 96.60 138 | 96.61 118 |
|
anonymousdsp | | | 75.14 173 | 77.25 158 | 72.69 185 | 76.68 196 | 89.26 160 | 75.26 192 | 68.44 180 | 65.53 188 | 46.65 196 | 58.16 153 | 56.67 164 | 73.96 167 | 87.84 138 | 86.05 154 | 95.13 178 | 97.22 106 |
|
v148 | | | 74.98 174 | 73.52 178 | 76.69 160 | 78.84 175 | 89.02 164 | 78.78 179 | 76.82 121 | 67.22 179 | 59.61 137 | 49.18 183 | 47.94 191 | 70.57 177 | 80.76 190 | 83.99 178 | 95.52 168 | 96.52 122 |
|
v1192 | | | 74.96 175 | 73.92 174 | 76.17 163 | 77.76 189 | 88.19 175 | 82.54 158 | 71.94 158 | 66.84 181 | 50.07 185 | 48.10 188 | 46.14 195 | 78.28 150 | 86.30 148 | 85.23 167 | 96.41 150 | 96.67 117 |
|
v144192 | | | 74.76 176 | 73.64 175 | 76.06 165 | 77.58 190 | 88.23 174 | 81.87 167 | 71.63 160 | 66.03 184 | 51.08 179 | 48.63 186 | 46.77 193 | 77.59 155 | 84.53 166 | 84.76 174 | 96.64 136 | 96.54 120 |
|
v1921920 | | | 74.60 177 | 73.56 177 | 75.81 170 | 77.43 192 | 87.94 177 | 82.18 164 | 71.33 164 | 66.48 183 | 49.23 189 | 47.84 191 | 45.56 197 | 78.03 154 | 85.70 156 | 84.92 172 | 96.65 134 | 96.50 123 |
|
v1240 | | | 74.04 178 | 73.04 184 | 75.20 173 | 77.19 194 | 87.69 180 | 80.93 172 | 70.72 169 | 65.08 189 | 48.47 190 | 47.31 192 | 44.71 201 | 77.33 157 | 85.50 157 | 85.07 170 | 96.59 139 | 95.94 129 |
|
testgi | | | 73.22 179 | 75.84 163 | 70.16 196 | 81.67 159 | 85.50 195 | 71.45 197 | 70.81 167 | 69.56 171 | 44.74 201 | 74.52 88 | 49.25 182 | 58.45 203 | 84.10 169 | 83.37 185 | 93.86 189 | 84.56 200 |
|
CP-MVSNet | | | 73.19 180 | 72.37 186 | 74.15 176 | 77.54 191 | 86.77 189 | 76.34 186 | 72.05 156 | 65.66 187 | 51.47 177 | 50.49 175 | 43.66 205 | 70.90 173 | 80.93 189 | 83.40 184 | 96.59 139 | 95.66 135 |
|
WR-MVS | | | 72.93 181 | 73.57 176 | 72.19 188 | 78.14 187 | 87.71 179 | 76.21 188 | 73.02 148 | 67.78 177 | 50.09 184 | 50.35 177 | 50.53 179 | 61.27 201 | 80.42 193 | 83.10 188 | 94.43 186 | 95.11 145 |
|
TransMVSNet (Re) | | | 72.90 182 | 70.51 195 | 75.69 171 | 80.88 161 | 85.26 197 | 79.25 178 | 78.43 113 | 56.13 208 | 52.81 172 | 46.81 193 | 48.20 190 | 66.77 187 | 85.18 161 | 83.70 182 | 95.98 165 | 88.28 189 |
|
WR-MVS_H | | | 72.69 183 | 72.80 185 | 72.56 187 | 77.94 188 | 87.83 178 | 75.26 192 | 71.53 162 | 64.75 190 | 52.19 174 | 49.83 178 | 48.62 185 | 61.96 199 | 81.12 188 | 82.44 190 | 96.50 145 | 95.00 148 |
|
SixPastTwentyTwo | | | 72.65 184 | 73.22 180 | 71.98 191 | 78.40 184 | 87.64 182 | 70.09 200 | 70.37 171 | 66.49 182 | 47.60 193 | 65.09 126 | 45.94 196 | 73.09 169 | 78.94 197 | 78.66 200 | 92.33 199 | 89.82 184 |
|
LTVRE_ROB | | 71.82 16 | 72.62 185 | 71.77 189 | 73.62 180 | 80.74 162 | 87.59 183 | 80.42 174 | 70.37 171 | 49.73 212 | 37.12 214 | 59.76 145 | 42.52 210 | 80.92 138 | 83.20 176 | 85.61 161 | 92.13 200 | 93.95 158 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
PS-CasMVS | | | 72.37 186 | 71.47 193 | 73.43 181 | 77.32 193 | 86.43 190 | 75.99 189 | 71.94 158 | 63.37 193 | 49.24 188 | 49.07 184 | 42.42 211 | 69.60 179 | 80.59 192 | 83.18 187 | 96.48 147 | 95.23 142 |
|
MVS-HIRNet | | | 72.32 187 | 73.45 179 | 71.00 194 | 80.58 163 | 89.97 147 | 68.51 204 | 55.28 211 | 70.89 166 | 52.27 173 | 39.09 205 | 57.11 163 | 75.02 165 | 85.76 155 | 86.33 149 | 94.36 187 | 85.00 198 |
|
PEN-MVS | | | 72.24 188 | 71.30 194 | 73.33 183 | 77.08 195 | 85.57 193 | 76.75 184 | 72.52 153 | 63.89 192 | 48.12 191 | 50.79 172 | 43.09 208 | 69.03 183 | 78.54 199 | 83.46 183 | 96.50 145 | 93.76 163 |
|
v7n | | | 72.11 189 | 71.66 190 | 72.63 186 | 75.26 201 | 86.85 187 | 76.74 185 | 68.77 179 | 62.70 196 | 49.40 186 | 45.92 194 | 43.51 206 | 70.63 176 | 84.16 168 | 83.21 186 | 94.99 179 | 95.25 140 |
|
EG-PatchMatch MVS | | | 71.81 190 | 71.54 192 | 72.12 189 | 80.53 164 | 89.94 148 | 78.51 180 | 66.56 185 | 57.38 204 | 47.46 194 | 44.28 200 | 52.22 170 | 63.10 197 | 85.22 160 | 84.42 175 | 96.56 143 | 87.35 193 |
|
CMPMVS |  | 54.54 17 | 71.74 191 | 67.94 200 | 76.16 164 | 90.41 88 | 93.25 120 | 78.32 182 | 75.60 134 | 59.81 200 | 53.95 168 | 44.64 198 | 51.22 174 | 70.70 174 | 74.59 208 | 75.88 206 | 88.01 207 | 76.23 209 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
MDTV_nov1_ep13_2view | | | 71.65 192 | 73.08 183 | 69.97 197 | 75.22 202 | 86.81 188 | 73.98 194 | 59.61 201 | 69.75 170 | 48.01 192 | 54.21 164 | 53.06 169 | 69.19 181 | 78.50 200 | 80.43 195 | 93.84 190 | 88.79 187 |
|
pmnet_mix02 | | | 71.64 193 | 72.36 187 | 70.81 195 | 78.39 185 | 85.57 193 | 68.64 202 | 73.65 145 | 72.13 159 | 45.07 200 | 56.01 157 | 50.61 178 | 65.34 191 | 76.21 205 | 76.60 204 | 93.75 193 | 89.35 185 |
|
gm-plane-assit | | | 71.33 194 | 75.18 165 | 66.83 200 | 79.06 174 | 75.57 211 | 48.05 218 | 60.33 196 | 48.28 213 | 34.67 218 | 44.34 199 | 67.70 134 | 79.78 143 | 97.25 11 | 96.21 13 | 99.10 10 | 96.92 112 |
|
DTE-MVSNet | | | 71.19 195 | 70.45 196 | 72.06 190 | 76.61 197 | 84.59 199 | 75.61 191 | 72.32 154 | 63.12 195 | 45.70 199 | 50.72 173 | 43.02 209 | 65.89 189 | 77.53 204 | 82.23 191 | 96.26 154 | 91.93 174 |
|
pmmvs6 | | | 70.29 196 | 67.90 201 | 73.07 184 | 76.17 198 | 85.31 196 | 76.29 187 | 70.75 168 | 47.39 215 | 55.33 162 | 37.15 211 | 50.49 180 | 69.55 180 | 82.96 179 | 80.85 193 | 90.34 206 | 91.18 177 |
|
PM-MVS | | | 70.17 197 | 69.42 198 | 71.04 193 | 70.82 208 | 81.26 206 | 71.25 198 | 67.80 182 | 69.16 174 | 51.04 180 | 53.15 168 | 34.93 215 | 72.19 172 | 80.30 194 | 76.95 203 | 93.16 197 | 90.21 181 |
|
pmmvs-eth3d | | | 69.59 198 | 67.57 203 | 71.95 192 | 70.04 209 | 80.05 207 | 71.48 196 | 70.00 175 | 62.57 197 | 55.99 160 | 44.92 196 | 35.73 214 | 70.64 175 | 81.56 187 | 79.69 196 | 93.55 194 | 88.43 188 |
|
N_pmnet | | | 68.54 199 | 67.83 202 | 69.38 198 | 75.77 199 | 81.90 203 | 66.21 206 | 72.53 152 | 65.91 186 | 46.09 198 | 44.67 197 | 45.48 198 | 63.82 195 | 74.66 207 | 77.39 202 | 91.87 202 | 84.77 199 |
|
Anonymous20231206 | | | 68.09 200 | 68.68 199 | 67.39 199 | 75.16 203 | 82.55 201 | 69.33 201 | 70.06 174 | 63.34 194 | 42.28 205 | 37.91 209 | 43.12 207 | 52.67 206 | 83.56 170 | 82.71 189 | 94.84 182 | 87.59 191 |
|
EU-MVSNet | | | 68.07 201 | 70.25 197 | 65.52 201 | 74.68 205 | 81.30 205 | 68.53 203 | 70.31 173 | 62.40 198 | 37.43 213 | 54.62 163 | 48.36 188 | 51.34 207 | 78.32 201 | 79.27 197 | 90.84 204 | 87.47 192 |
|
GG-mvs-BLEND | | | 65.67 202 | 93.78 39 | 32.89 214 | 0.47 224 | 99.35 7 | 96.92 30 | 0.22 223 | 93.28 60 | 0.51 225 | 84.07 53 | 92.50 38 | 0.62 222 | 93.59 71 | 93.86 57 | 98.59 43 | 99.79 10 |
|
test20.03 | | | 65.17 203 | 67.41 204 | 62.55 203 | 75.35 200 | 79.31 208 | 62.22 208 | 68.83 178 | 56.50 207 | 35.35 217 | 51.97 170 | 44.70 203 | 40.01 212 | 80.69 191 | 79.25 198 | 93.55 194 | 79.47 208 |
|
MDA-MVSNet-bldmvs | | | 62.23 204 | 61.13 208 | 63.52 202 | 58.94 215 | 82.44 202 | 60.71 211 | 73.28 147 | 57.22 205 | 38.42 211 | 49.63 181 | 27.64 221 | 62.83 198 | 54.98 214 | 74.16 207 | 86.96 209 | 81.83 205 |
|
new_pmnet | | | 61.60 205 | 62.68 206 | 60.35 206 | 63.02 212 | 74.93 212 | 60.97 210 | 58.86 203 | 64.21 191 | 35.38 216 | 39.51 204 | 39.89 212 | 57.37 204 | 72.78 209 | 72.56 209 | 86.49 211 | 74.85 211 |
|
new-patchmatchnet | | | 60.74 206 | 59.78 210 | 61.87 204 | 69.52 210 | 76.67 210 | 57.99 214 | 65.78 189 | 52.63 210 | 38.47 210 | 38.08 208 | 32.92 218 | 48.88 209 | 68.50 210 | 69.87 210 | 90.56 205 | 79.75 207 |
|
pmmvs3 | | | 60.52 207 | 60.87 209 | 60.12 207 | 61.38 213 | 71.62 213 | 57.42 215 | 53.94 212 | 48.09 214 | 35.95 215 | 38.62 206 | 32.19 220 | 64.12 194 | 75.33 206 | 77.99 201 | 87.89 208 | 82.28 204 |
|
MIMVSNet1 | | | 60.51 208 | 61.43 207 | 59.44 208 | 48.75 218 | 77.21 209 | 60.98 209 | 66.84 184 | 52.09 211 | 38.74 209 | 29.29 214 | 39.40 213 | 48.08 210 | 77.60 203 | 78.87 199 | 93.22 196 | 75.56 210 |
|
test_method | | | 60.40 209 | 66.30 205 | 53.52 210 | 37.48 222 | 64.10 217 | 55.56 216 | 42.45 218 | 71.79 164 | 41.87 206 | 33.74 212 | 46.80 192 | 61.71 200 | 79.18 196 | 73.33 208 | 82.01 213 | 95.17 143 |
|
FPMVS | | | 56.54 210 | 52.82 212 | 60.87 205 | 74.90 204 | 67.58 216 | 67.69 205 | 65.38 190 | 57.86 203 | 41.51 207 | 37.83 210 | 34.19 216 | 41.21 211 | 55.88 213 | 53.09 215 | 74.55 216 | 63.31 214 |
|
PMVS |  | 42.57 18 | 45.71 211 | 42.61 214 | 49.32 211 | 61.35 214 | 37.82 221 | 36.96 220 | 60.10 198 | 37.20 217 | 41.50 208 | 28.53 215 | 33.11 217 | 28.82 217 | 53.45 215 | 48.70 217 | 67.22 218 | 59.42 215 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
Gipuma |  | | 43.95 212 | 42.62 213 | 45.50 212 | 50.79 217 | 41.20 220 | 35.55 221 | 52.51 214 | 52.95 209 | 29.09 219 | 12.92 217 | 11.48 224 | 38.15 213 | 62.01 212 | 66.62 212 | 66.89 219 | 51.17 216 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMMVS2 | | | 41.25 213 | 42.55 215 | 39.74 213 | 43.25 219 | 55.05 219 | 38.15 219 | 47.11 217 | 31.78 218 | 11.83 222 | 21.16 216 | 19.12 222 | 20.98 219 | 49.95 217 | 56.09 214 | 77.09 214 | 64.68 213 |
|
E-PMN | | | 27.87 214 | 24.36 217 | 31.97 215 | 41.27 221 | 25.56 224 | 16.62 223 | 49.16 215 | 22.00 220 | 9.90 223 | 11.75 219 | 7.86 226 | 29.57 216 | 22.22 219 | 34.70 218 | 45.27 220 | 46.41 218 |
|
MVE |  | 32.98 19 | 27.61 215 | 29.89 216 | 24.94 217 | 21.97 223 | 37.22 222 | 15.56 225 | 38.83 219 | 17.49 221 | 14.72 221 | 11.64 221 | 5.62 227 | 21.26 218 | 35.20 218 | 50.95 216 | 37.29 222 | 51.13 217 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
EMVS | | | 26.96 216 | 22.96 218 | 31.63 216 | 41.91 220 | 25.73 223 | 16.30 224 | 49.10 216 | 22.38 219 | 9.03 224 | 11.22 222 | 8.12 225 | 29.93 215 | 20.16 220 | 31.04 219 | 43.49 221 | 42.04 219 |
|
testmvs | | | 5.16 217 | 8.14 219 | 1.69 218 | 0.36 225 | 1.65 225 | 3.02 226 | 0.66 221 | 7.17 222 | 0.50 226 | 12.58 218 | 0.69 228 | 4.67 220 | 5.42 221 | 5.65 220 | 0.92 223 | 23.86 221 |
|
test123 | | | 4.39 218 | 7.11 220 | 1.21 219 | 0.11 226 | 1.16 226 | 1.67 227 | 0.35 222 | 5.91 223 | 0.16 227 | 11.65 220 | 0.16 229 | 4.45 221 | 1.72 222 | 4.92 221 | 0.51 224 | 24.28 220 |
|
uanet_test | | | 0.00 219 | 0.00 221 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 224 | 0.00 228 | 0.00 223 | 0.00 230 | 0.00 223 | 0.00 223 | 0.00 222 | 0.00 225 | 0.00 222 |
|
sosnet-low-res | | | 0.00 219 | 0.00 221 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 224 | 0.00 228 | 0.00 223 | 0.00 230 | 0.00 223 | 0.00 223 | 0.00 222 | 0.00 225 | 0.00 222 |
|
sosnet | | | 0.00 219 | 0.00 221 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 224 | 0.00 228 | 0.00 223 | 0.00 230 | 0.00 223 | 0.00 223 | 0.00 222 | 0.00 225 | 0.00 222 |
|
RE-MVS-def | | | | | | | | | | | 43.17 203 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 97.59 10 | | | | | |
|
SR-MVS | | | | | | 98.52 19 | | | 93.70 22 | | | | 96.63 20 | | | | | |
|
Anonymous202405211 | | | | 81.72 141 | | 88.09 119 | 94.27 111 | 89.62 94 | 82.14 82 | 82.27 129 | | 48.83 185 | 72.58 114 | 91.08 61 | 87.40 140 | 88.70 130 | 94.90 180 | 97.99 86 |
|
our_test_3 | | | | | | 78.55 180 | 84.98 198 | 70.12 199 | | | | | | | | | | |
|
ambc | | | | 57.08 211 | | 58.68 216 | 67.71 215 | 60.07 212 | | 57.13 206 | 42.79 204 | 30.00 213 | 11.64 223 | 50.18 208 | 78.89 198 | 69.14 211 | 82.64 212 | 85.02 197 |
|
MTAPA | | | | | | | | | | | 93.37 8 | | 95.71 26 | | | | | |
|
MTMP | | | | | | | | | | | 93.84 5 | | 94.86 29 | | | | | |
|
Patchmatch-RL test | | | | | | | | 19.65 222 | | | | | | | | | | |
|
tmp_tt | | | | | 57.89 209 | 79.94 168 | 59.29 218 | 52.84 217 | 36.65 220 | 94.77 50 | 68.22 116 | 72.96 96 | 65.62 141 | 33.65 214 | 66.20 211 | 58.02 213 | 76.06 215 | |
|
XVS | | | | | | 92.16 70 | 98.56 34 | 91.04 82 | | | 81.00 60 | | 93.49 33 | | | | 98.00 77 | |
|
X-MVStestdata | | | | | | 92.16 70 | 98.56 34 | 91.04 82 | | | 81.00 60 | | 93.49 33 | | | | 98.00 77 | |
|
mPP-MVS | | | | | | 97.95 28 | | | | | | | 92.24 43 | | | | | |
|
NP-MVS | | | | | | | | | | 94.12 54 | | | | | | | | |
|
Patchmtry | | | | | | | 92.08 135 | 83.86 137 | 58.37 205 | | 56.28 153 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 70.68 214 | 59.61 213 | 67.36 183 | 72.12 160 | 38.41 212 | 53.88 167 | 32.44 219 | 55.15 205 | 50.88 216 | | 74.35 217 | 68.42 212 |
|