| SED-MVS | | | 78.97 1 | 84.56 1 | 72.45 1 | 81.70 2 | 86.20 2 | 77.82 4 | 59.97 5 | 88.89 1 | 65.96 1 | 86.00 5 | 84.02 1 | 70.03 1 | 76.19 4 | 76.17 5 | 79.22 19 | 94.46 1 |
|
| DVP-MVS |  | | 77.54 2 | 84.41 2 | 69.54 6 | 79.93 3 | 86.08 3 | 77.20 9 | 60.31 3 | 88.62 2 | 62.54 2 | 86.67 3 | 83.77 2 | 58.04 34 | 75.84 7 | 75.69 8 | 79.21 20 | 94.17 2 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| SF-MVS | | | 76.41 3 | 80.45 6 | 71.69 2 | 82.90 1 | 86.54 1 | 82.08 1 | 64.58 1 | 81.67 11 | 59.82 5 | 86.26 4 | 77.90 8 | 61.11 16 | 71.81 27 | 70.75 34 | 79.63 12 | 88.22 23 |
|
| MSP-MVS | | | 76.38 4 | 82.99 3 | 68.68 7 | 71.93 18 | 78.65 23 | 77.61 6 | 55.44 18 | 88.04 3 | 60.25 4 | 92.24 1 | 77.08 11 | 69.84 2 | 75.48 8 | 75.69 8 | 76.99 59 | 93.75 3 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| DVP-MVS++ | | | 75.99 5 | 81.32 5 | 69.77 5 | 71.86 20 | 85.13 4 | 77.62 5 | 59.87 7 | 82.69 10 | 61.55 3 | 83.05 9 | 79.63 6 | 69.78 3 | 76.01 5 | 75.89 6 | 77.92 41 | 86.86 35 |
|
| DPE-MVS |  | | 75.74 6 | 82.82 4 | 67.49 11 | 77.07 7 | 82.01 8 | 77.05 10 | 57.70 11 | 86.55 5 | 55.44 16 | 90.50 2 | 82.52 3 | 60.33 20 | 72.99 15 | 72.98 16 | 77.33 50 | 92.19 6 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| DPM-MVS | | | 74.63 7 | 78.53 11 | 70.07 3 | 76.10 9 | 82.56 7 | 79.30 2 | 59.89 6 | 80.49 13 | 57.75 11 | 66.98 26 | 76.16 14 | 65.95 5 | 79.35 1 | 78.47 1 | 81.45 5 | 85.71 44 |
|
| APDe-MVS |  | | 74.59 8 | 80.23 7 | 68.01 10 | 76.51 8 | 80.20 15 | 77.39 7 | 58.18 9 | 85.31 6 | 56.84 13 | 84.89 6 | 76.08 15 | 60.66 18 | 71.85 26 | 71.76 21 | 78.47 29 | 91.49 9 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| MCST-MVS | | | 74.06 9 | 77.71 14 | 69.79 4 | 78.95 4 | 81.99 9 | 76.33 11 | 62.16 2 | 75.89 19 | 52.96 24 | 64.37 31 | 73.30 22 | 65.66 6 | 77.49 2 | 77.43 3 | 82.67 1 | 93.51 4 |
|
| CNVR-MVS | | | 73.87 10 | 78.60 10 | 68.35 9 | 73.32 13 | 81.97 10 | 76.19 12 | 59.29 8 | 80.12 14 | 56.70 14 | 67.09 25 | 76.48 12 | 64.26 8 | 75.88 6 | 75.75 7 | 80.32 8 | 92.93 5 |
|
| SMA-MVS |  | | 73.31 11 | 79.53 8 | 66.05 13 | 71.25 21 | 80.13 16 | 74.99 13 | 56.09 14 | 84.14 7 | 54.48 18 | 73.74 16 | 80.23 4 | 61.43 13 | 74.96 9 | 74.09 12 | 78.08 38 | 89.42 13 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| CSCG | | | 72.98 12 | 76.86 16 | 68.46 8 | 78.23 6 | 81.74 11 | 77.26 8 | 60.00 4 | 75.61 22 | 59.06 6 | 62.72 33 | 77.42 10 | 56.63 46 | 74.24 11 | 77.18 4 | 79.56 13 | 89.13 17 |
|
| HPM-MVS++ |  | | 72.44 13 | 78.73 9 | 65.11 14 | 71.88 19 | 77.31 34 | 71.98 21 | 55.67 16 | 83.11 9 | 53.59 22 | 75.90 12 | 78.49 7 | 61.00 17 | 73.99 12 | 73.31 15 | 76.55 63 | 88.97 18 |
|
| APD-MVS |  | | 71.86 14 | 77.91 13 | 64.80 16 | 70.39 25 | 75.69 44 | 74.02 15 | 56.14 13 | 83.59 8 | 52.92 25 | 84.67 7 | 73.46 21 | 59.30 26 | 69.47 43 | 69.66 44 | 76.02 70 | 88.84 19 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| ACMMP_NAP | | | 71.50 15 | 77.27 15 | 64.77 17 | 69.64 27 | 79.26 17 | 73.53 16 | 54.73 24 | 79.32 16 | 54.23 19 | 74.81 13 | 74.61 19 | 59.40 25 | 73.00 14 | 72.17 19 | 77.10 58 | 87.72 27 |
|
| NCCC | | | 71.36 16 | 75.44 18 | 66.60 12 | 72.46 16 | 79.18 19 | 74.16 14 | 57.83 10 | 76.93 17 | 54.19 20 | 63.47 32 | 71.08 26 | 61.30 15 | 73.56 13 | 73.70 13 | 79.69 11 | 90.19 10 |
|
| train_agg | | | 70.74 17 | 76.53 17 | 63.98 19 | 70.33 26 | 75.16 48 | 72.33 20 | 55.78 15 | 75.74 20 | 50.41 33 | 80.08 11 | 73.15 23 | 57.75 38 | 71.96 25 | 70.94 31 | 77.25 54 | 88.69 21 |
|
| TSAR-MVS + MP. | | | 70.28 18 | 75.09 19 | 64.66 18 | 69.34 29 | 64.61 133 | 72.60 19 | 56.29 12 | 80.73 12 | 58.36 9 | 84.56 8 | 75.22 17 | 55.37 53 | 69.11 49 | 69.45 45 | 75.97 72 | 81.97 79 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| DeepPCF-MVS | | 62.48 1 | 70.07 19 | 78.36 12 | 60.39 41 | 62.38 59 | 76.96 37 | 65.54 58 | 52.23 32 | 87.46 4 | 49.07 34 | 74.05 15 | 76.19 13 | 59.01 28 | 72.79 19 | 71.61 23 | 74.13 112 | 89.49 12 |
|
| SteuartSystems-ACMMP | | | 69.78 20 | 74.76 20 | 63.98 19 | 73.45 12 | 78.56 24 | 73.13 18 | 55.24 21 | 70.68 34 | 48.93 36 | 70.43 21 | 69.10 28 | 54.00 59 | 72.78 21 | 72.98 16 | 79.14 21 | 88.74 20 |
| Skip Steuart: Steuart Systems R&D Blog. |
| HFP-MVS | | | 68.75 21 | 72.84 22 | 63.98 19 | 68.87 33 | 75.09 49 | 71.87 22 | 51.22 36 | 73.50 26 | 58.17 10 | 68.05 24 | 68.67 29 | 57.79 37 | 70.49 36 | 69.23 47 | 75.98 71 | 84.84 56 |
|
| SD-MVS | | | 68.30 22 | 72.58 24 | 63.31 24 | 69.24 30 | 67.85 106 | 70.81 27 | 53.65 29 | 79.64 15 | 58.52 8 | 74.31 14 | 75.37 16 | 53.52 65 | 65.63 75 | 63.56 110 | 74.13 112 | 81.73 84 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| DELS-MVS | | | 67.36 23 | 70.34 38 | 63.89 22 | 69.12 31 | 81.55 12 | 70.82 26 | 55.02 22 | 53.38 77 | 48.83 37 | 56.45 49 | 59.35 58 | 60.05 23 | 74.93 10 | 74.78 10 | 79.51 14 | 91.95 7 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| MP-MVS |  | | 67.34 24 | 73.08 21 | 60.64 38 | 66.20 38 | 76.62 39 | 69.22 33 | 50.92 38 | 70.07 35 | 48.81 38 | 69.66 22 | 70.12 27 | 53.68 62 | 68.41 54 | 69.13 49 | 74.98 91 | 87.53 29 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| DeepC-MVS | | 60.65 2 | 67.33 25 | 71.52 31 | 62.44 27 | 59.79 80 | 74.84 51 | 68.89 34 | 55.56 17 | 73.91 25 | 53.50 23 | 55.00 55 | 65.63 34 | 60.08 22 | 71.99 24 | 71.33 27 | 76.85 60 | 87.94 26 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| HQP-MVS | | | 67.22 26 | 72.08 26 | 61.56 33 | 66.76 36 | 73.58 60 | 71.41 23 | 52.98 30 | 69.92 37 | 43.85 61 | 70.58 20 | 58.75 60 | 56.76 44 | 72.90 17 | 71.88 20 | 77.57 46 | 86.94 34 |
|
| CANet | | | 67.21 27 | 71.83 28 | 61.83 29 | 64.51 44 | 79.25 18 | 66.72 50 | 48.73 55 | 68.49 42 | 50.63 32 | 61.40 37 | 66.47 32 | 61.44 12 | 69.31 47 | 69.90 39 | 78.94 25 | 88.00 24 |
|
| CDPH-MVS | | | 67.03 28 | 71.64 29 | 61.65 32 | 69.10 32 | 76.84 38 | 71.35 25 | 55.42 19 | 67.02 45 | 42.83 66 | 65.27 30 | 64.60 38 | 53.16 68 | 69.70 42 | 71.40 25 | 78.02 40 | 86.67 36 |
|
| MAR-MVS | | | 66.85 29 | 69.81 39 | 63.39 23 | 73.56 11 | 80.51 14 | 69.87 29 | 51.51 35 | 67.78 44 | 46.44 47 | 51.09 69 | 61.60 52 | 60.38 19 | 72.67 22 | 73.61 14 | 78.59 26 | 81.44 88 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| DeepC-MVS_fast | | 60.18 3 | 66.84 30 | 70.69 36 | 62.36 28 | 62.76 53 | 73.21 63 | 67.96 37 | 52.31 31 | 72.26 29 | 51.03 27 | 56.50 48 | 64.26 39 | 63.37 9 | 71.64 28 | 70.85 32 | 76.70 62 | 86.10 41 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| TSAR-MVS + GP. | | | 66.77 31 | 72.21 25 | 60.44 40 | 61.23 68 | 70.00 86 | 64.26 62 | 47.79 68 | 72.98 27 | 56.32 15 | 71.35 19 | 72.33 24 | 55.68 52 | 65.49 76 | 66.66 71 | 77.35 48 | 86.62 37 |
|
| MVS_0304 | | | 66.31 32 | 71.61 30 | 60.14 43 | 62.59 57 | 78.98 21 | 67.13 46 | 45.75 95 | 64.35 50 | 45.23 55 | 60.69 41 | 67.67 31 | 61.73 11 | 71.09 31 | 71.03 29 | 78.41 33 | 87.44 30 |
|
| ACMMPR | | | 66.20 33 | 71.51 32 | 60.00 45 | 65.34 42 | 74.04 55 | 69.39 31 | 50.92 38 | 71.97 30 | 46.04 49 | 66.79 27 | 65.68 33 | 53.07 69 | 68.93 51 | 69.12 50 | 75.21 85 | 84.05 62 |
|
| 3Dnovator | | 58.39 4 | 65.97 34 | 66.85 54 | 64.94 15 | 73.72 10 | 79.03 20 | 67.73 40 | 54.25 25 | 61.52 53 | 52.79 26 | 42.27 96 | 60.73 56 | 62.01 10 | 71.29 29 | 71.75 22 | 79.12 22 | 81.34 91 |
|
| TSAR-MVS + ACMM | | | 65.95 35 | 72.83 23 | 57.93 56 | 69.35 28 | 65.85 125 | 73.36 17 | 39.84 151 | 76.00 18 | 48.69 39 | 82.54 10 | 75.03 18 | 49.38 97 | 65.33 78 | 63.42 112 | 66.94 173 | 81.67 85 |
|
| sasdasda | | | 65.55 36 | 70.75 34 | 59.49 49 | 62.11 62 | 78.26 28 | 66.52 51 | 43.82 119 | 71.54 31 | 47.84 41 | 61.30 38 | 61.68 49 | 58.48 31 | 67.56 61 | 69.67 42 | 78.16 36 | 85.25 51 |
|
| canonicalmvs | | | 65.55 36 | 70.75 34 | 59.49 49 | 62.11 62 | 78.26 28 | 66.52 51 | 43.82 119 | 71.54 31 | 47.84 41 | 61.30 38 | 61.68 49 | 58.48 31 | 67.56 61 | 69.67 42 | 78.16 36 | 85.25 51 |
|
| QAPM | | | 65.47 38 | 67.82 46 | 62.72 26 | 72.56 14 | 81.17 13 | 67.43 43 | 55.38 20 | 56.07 70 | 43.29 64 | 43.60 91 | 65.38 36 | 59.10 27 | 72.20 23 | 70.76 33 | 78.56 27 | 85.59 48 |
|
| PGM-MVS | | | 65.35 39 | 70.43 37 | 59.43 51 | 65.78 40 | 73.75 57 | 69.41 30 | 48.18 64 | 68.80 41 | 45.37 53 | 65.88 29 | 64.04 40 | 52.68 76 | 68.94 50 | 68.68 55 | 75.18 86 | 82.93 69 |
|
| PHI-MVS | | | 65.17 40 | 72.07 27 | 57.11 66 | 63.02 51 | 77.35 33 | 67.04 47 | 48.14 66 | 68.03 43 | 37.56 92 | 66.00 28 | 65.39 35 | 53.19 67 | 70.68 33 | 70.57 36 | 73.72 120 | 86.46 40 |
|
| CLD-MVS | | | 64.69 41 | 67.25 48 | 61.69 31 | 68.22 35 | 78.33 26 | 63.09 66 | 47.59 71 | 69.64 38 | 53.98 21 | 54.87 56 | 53.94 76 | 57.87 35 | 72.79 19 | 71.34 26 | 79.40 16 | 69.87 161 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| MVS_111021_HR | | | 64.66 42 | 67.11 51 | 61.80 30 | 71.04 22 | 77.91 30 | 62.75 69 | 54.78 23 | 51.43 80 | 47.54 43 | 53.77 59 | 54.85 73 | 56.84 42 | 70.59 34 | 71.50 24 | 77.86 42 | 89.70 11 |
|
| EPNet | | | 64.39 43 | 70.93 33 | 56.77 68 | 60.58 75 | 75.77 41 | 59.28 90 | 50.58 42 | 69.93 36 | 40.73 81 | 68.59 23 | 61.60 52 | 53.72 60 | 68.65 52 | 68.07 57 | 75.75 77 | 83.87 64 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| CP-MVS | | | 64.37 44 | 69.48 40 | 58.39 53 | 62.21 61 | 71.81 78 | 67.27 44 | 49.51 49 | 69.40 40 | 45.76 51 | 60.41 42 | 64.96 37 | 51.84 78 | 67.33 66 | 67.57 64 | 73.78 119 | 84.89 54 |
|
| EC-MVSNet | | | 64.30 45 | 68.19 42 | 59.76 47 | 62.97 52 | 75.31 47 | 67.26 45 | 44.19 113 | 60.73 56 | 47.52 44 | 55.84 51 | 62.12 47 | 57.67 39 | 70.71 32 | 67.47 65 | 78.97 24 | 85.13 53 |
|
| casdiffmvs_mvg |  | | 64.26 46 | 67.60 47 | 60.36 42 | 62.26 60 | 78.54 25 | 69.39 31 | 48.33 62 | 56.54 65 | 45.36 54 | 52.86 63 | 57.36 65 | 58.42 33 | 70.28 37 | 70.24 38 | 78.43 30 | 87.39 32 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| casdiffmvs |  | | 63.87 47 | 67.08 52 | 60.12 44 | 60.90 71 | 78.29 27 | 67.91 38 | 48.01 67 | 55.89 72 | 44.97 56 | 50.45 71 | 56.94 66 | 59.54 24 | 70.17 40 | 69.81 40 | 79.41 15 | 87.99 25 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MVS_Test | | | 63.75 48 | 67.24 49 | 59.68 48 | 60.01 76 | 76.99 36 | 68.13 36 | 45.17 99 | 57.45 64 | 43.74 62 | 53.07 62 | 56.16 71 | 61.33 14 | 70.27 38 | 71.11 28 | 79.72 10 | 85.63 47 |
|
| X-MVS | | | 63.53 49 | 68.62 41 | 57.60 60 | 64.77 43 | 73.06 64 | 65.82 56 | 50.53 43 | 65.77 47 | 42.02 74 | 58.20 46 | 63.42 43 | 47.83 108 | 68.25 58 | 68.50 56 | 74.61 101 | 83.16 68 |
|
| ACMMP |  | | 63.27 50 | 67.85 45 | 57.93 56 | 62.64 56 | 72.30 75 | 68.23 35 | 48.77 54 | 66.50 46 | 43.05 65 | 62.07 34 | 57.84 63 | 49.98 89 | 66.58 70 | 66.46 77 | 74.93 92 | 83.17 66 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| CS-MVS | | | 63.16 51 | 68.01 44 | 57.49 61 | 57.39 96 | 72.73 69 | 63.38 65 | 45.16 100 | 59.37 58 | 46.49 46 | 58.93 45 | 57.68 64 | 56.31 47 | 71.12 30 | 70.37 37 | 76.23 69 | 85.88 42 |
|
| ETV-MVS | | | 62.88 52 | 68.18 43 | 56.70 69 | 58.47 88 | 74.89 50 | 60.26 82 | 43.96 116 | 58.27 63 | 42.37 72 | 61.47 36 | 56.56 67 | 57.80 36 | 68.00 59 | 68.74 53 | 77.34 49 | 89.33 16 |
|
| AdaColmap |  | | 62.79 53 | 62.63 70 | 62.98 25 | 70.82 23 | 72.90 67 | 67.84 39 | 54.09 27 | 65.14 48 | 50.71 30 | 41.78 98 | 47.64 104 | 60.17 21 | 67.41 65 | 66.83 69 | 74.28 107 | 76.69 115 |
|
| 3Dnovator+ | | 55.76 7 | 62.70 54 | 65.10 62 | 59.90 46 | 65.89 39 | 72.15 76 | 62.94 68 | 49.82 48 | 62.77 52 | 49.06 35 | 43.62 90 | 61.47 54 | 58.60 30 | 68.51 53 | 66.75 70 | 73.08 134 | 80.40 99 |
|
| OpenMVS |  | 55.62 8 | 62.57 55 | 63.76 67 | 61.19 35 | 72.13 17 | 78.84 22 | 64.42 60 | 50.51 44 | 56.44 67 | 45.67 52 | 36.88 127 | 56.51 68 | 56.66 45 | 68.28 57 | 68.96 51 | 77.73 44 | 80.44 98 |
|
| PVSNet_BlendedMVS | | | 62.53 56 | 66.37 56 | 58.05 54 | 58.17 89 | 75.70 42 | 61.30 75 | 48.67 58 | 58.67 59 | 50.93 28 | 55.43 53 | 49.39 93 | 53.01 71 | 69.46 44 | 66.55 74 | 76.24 67 | 89.39 14 |
|
| PVSNet_Blended | | | 62.53 56 | 66.37 56 | 58.05 54 | 58.17 89 | 75.70 42 | 61.30 75 | 48.67 58 | 58.67 59 | 50.93 28 | 55.43 53 | 49.39 93 | 53.01 71 | 69.46 44 | 66.55 74 | 76.24 67 | 89.39 14 |
|
| MVSTER | | | 62.51 58 | 67.22 50 | 57.02 67 | 55.05 117 | 69.23 94 | 63.02 67 | 46.88 82 | 61.11 55 | 43.95 60 | 59.20 44 | 58.86 59 | 56.80 43 | 69.13 48 | 70.98 30 | 76.41 65 | 82.04 76 |
|
| CHOSEN 1792x2688 | | | 62.48 59 | 64.06 66 | 60.64 38 | 72.50 15 | 84.18 5 | 62.43 70 | 53.77 28 | 47.90 94 | 39.85 85 | 25.15 190 | 44.76 118 | 53.72 60 | 77.29 3 | 77.61 2 | 81.60 4 | 91.53 8 |
|
| CostFormer | | | 62.45 60 | 65.68 60 | 58.67 52 | 63.29 48 | 77.65 31 | 67.62 41 | 38.42 162 | 54.04 75 | 46.00 50 | 48.27 79 | 57.89 62 | 56.97 41 | 67.03 68 | 67.79 63 | 79.74 9 | 87.09 33 |
|
| PCF-MVS | | 55.99 6 | 62.31 61 | 66.60 55 | 57.32 64 | 59.12 87 | 73.68 59 | 67.53 42 | 48.71 56 | 61.35 54 | 42.83 66 | 51.33 68 | 63.48 42 | 53.48 66 | 65.64 74 | 64.87 94 | 72.22 139 | 85.83 43 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| diffmvs |  | | 62.30 62 | 66.05 58 | 57.92 58 | 57.08 98 | 75.60 46 | 66.90 48 | 47.06 80 | 55.45 74 | 43.37 63 | 53.45 61 | 55.60 72 | 57.21 40 | 66.57 71 | 68.00 59 | 75.89 75 | 87.70 28 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| DI_MVS_plusplus_trai | | | 61.86 63 | 65.26 61 | 57.90 59 | 57.93 93 | 74.51 53 | 66.30 53 | 46.49 88 | 49.96 84 | 41.62 77 | 42.69 94 | 61.77 48 | 58.74 29 | 70.25 39 | 69.32 46 | 76.31 66 | 88.30 22 |
|
| MSLP-MVS++ | | | 61.81 64 | 62.19 75 | 61.37 34 | 68.33 34 | 63.08 147 | 70.75 28 | 38.89 158 | 63.96 51 | 57.51 12 | 48.59 77 | 61.66 51 | 53.67 63 | 62.04 121 | 59.92 156 | 79.03 23 | 76.08 118 |
|
| CS-MVS-test | | | 61.68 65 | 65.97 59 | 56.67 70 | 57.77 94 | 72.59 72 | 57.63 97 | 45.54 97 | 58.53 62 | 47.11 45 | 59.45 43 | 56.34 69 | 55.15 54 | 64.52 88 | 65.03 92 | 76.80 61 | 85.34 50 |
|
| OPM-MVS | | | 61.59 66 | 62.30 74 | 60.76 37 | 66.53 37 | 73.35 62 | 71.41 23 | 54.18 26 | 40.82 125 | 41.57 78 | 45.70 85 | 54.84 74 | 54.43 58 | 69.92 41 | 69.19 48 | 76.45 64 | 82.25 73 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| MS-PatchMatch | | | 61.41 67 | 61.88 78 | 60.85 36 | 70.57 24 | 75.98 40 | 66.29 54 | 46.91 81 | 50.56 82 | 48.28 40 | 36.30 130 | 51.64 80 | 50.95 84 | 72.89 18 | 70.65 35 | 82.13 3 | 75.17 126 |
|
| EIA-MVS | | | 60.56 68 | 64.29 65 | 56.20 75 | 59.14 86 | 72.68 71 | 59.55 88 | 43.56 123 | 51.78 79 | 41.01 80 | 55.47 52 | 51.93 79 | 55.87 49 | 65.01 82 | 66.57 73 | 78.06 39 | 86.60 39 |
|
| ACMP | | 56.21 5 | 59.78 69 | 61.81 80 | 57.41 63 | 61.15 69 | 68.88 96 | 65.98 55 | 48.85 53 | 58.56 61 | 44.19 59 | 48.89 75 | 46.31 110 | 48.56 102 | 63.61 104 | 64.49 102 | 75.75 77 | 81.91 80 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| LGP-MVS_train | | | 59.69 70 | 62.59 71 | 56.31 73 | 61.94 64 | 68.15 103 | 66.90 48 | 48.15 65 | 59.75 57 | 38.47 88 | 50.38 72 | 48.34 101 | 46.87 113 | 65.39 77 | 64.93 93 | 75.51 81 | 81.21 93 |
|
| Effi-MVS+ | | | 59.63 71 | 61.78 81 | 57.12 65 | 61.56 65 | 71.63 79 | 63.61 63 | 47.59 71 | 47.18 95 | 37.79 89 | 45.29 86 | 49.93 89 | 56.27 48 | 67.45 63 | 67.06 67 | 75.91 73 | 83.93 63 |
|
| CPTT-MVS | | | 59.54 72 | 64.47 64 | 53.79 85 | 54.99 119 | 67.63 109 | 65.48 59 | 44.59 107 | 64.81 49 | 37.74 90 | 51.55 66 | 59.90 57 | 49.77 93 | 61.83 123 | 61.26 140 | 70.18 154 | 84.31 61 |
|
| baseline2 | | | 59.20 73 | 61.72 82 | 56.27 74 | 59.61 82 | 74.12 54 | 58.65 93 | 49.42 50 | 48.10 92 | 40.12 84 | 49.10 74 | 44.15 120 | 51.24 81 | 66.65 69 | 67.88 62 | 78.56 27 | 82.06 75 |
|
| MGCFI-Net | | | 59.19 74 | 66.89 53 | 50.20 113 | 57.15 97 | 68.62 99 | 54.79 122 | 39.20 156 | 70.99 33 | 32.93 115 | 60.83 40 | 61.00 55 | 45.54 119 | 63.77 102 | 60.71 148 | 71.59 143 | 82.29 71 |
|
| GeoE | | | 58.97 75 | 60.94 83 | 56.67 70 | 61.27 67 | 72.71 70 | 61.35 74 | 45.69 96 | 49.19 88 | 41.22 79 | 39.55 114 | 49.58 92 | 52.79 75 | 64.79 84 | 65.89 81 | 77.73 44 | 84.87 55 |
|
| baseline | | | 58.65 76 | 61.99 76 | 54.75 80 | 54.70 121 | 71.85 77 | 60.20 83 | 43.91 117 | 55.99 71 | 40.13 83 | 53.50 60 | 50.91 86 | 55.76 50 | 61.29 131 | 61.73 132 | 73.83 116 | 78.68 107 |
|
| PVSNet_Blended_VisFu | | | 58.56 77 | 62.33 73 | 54.16 82 | 56.90 99 | 73.92 56 | 57.72 96 | 46.16 93 | 44.23 103 | 42.73 69 | 46.26 82 | 51.06 85 | 46.28 116 | 67.99 60 | 65.38 87 | 75.18 86 | 87.44 30 |
|
| ACMM | | 53.73 9 | 57.91 78 | 58.27 98 | 57.49 61 | 63.10 49 | 66.45 119 | 65.65 57 | 49.02 52 | 53.69 76 | 42.67 70 | 36.41 129 | 46.07 113 | 50.38 87 | 64.74 86 | 64.63 99 | 74.14 111 | 75.91 119 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| CANet_DTU | | | 57.87 79 | 63.63 68 | 51.15 101 | 52.18 128 | 70.20 85 | 58.14 95 | 37.32 169 | 56.49 66 | 31.06 125 | 57.38 47 | 50.05 88 | 53.67 63 | 64.98 83 | 65.04 91 | 74.57 102 | 81.29 92 |
|
| ET-MVSNet_ETH3D | | | 57.84 80 | 61.91 77 | 53.09 88 | 32.91 210 | 74.53 52 | 63.51 64 | 46.80 84 | 46.52 97 | 36.14 98 | 56.00 50 | 46.20 111 | 64.41 7 | 60.75 139 | 66.99 68 | 74.79 93 | 82.35 70 |
|
| tpm cat1 | | | 57.41 81 | 58.26 99 | 56.42 72 | 60.80 73 | 72.56 73 | 64.35 61 | 38.43 161 | 49.18 89 | 46.36 48 | 36.69 128 | 43.50 124 | 54.47 56 | 61.39 129 | 62.64 120 | 74.11 114 | 81.81 81 |
|
| IB-MVS | | 53.15 10 | 57.33 82 | 59.02 90 | 55.37 77 | 60.83 72 | 77.11 35 | 54.51 123 | 50.10 47 | 43.22 109 | 42.82 68 | 40.50 104 | 37.61 145 | 44.67 129 | 59.27 153 | 69.81 40 | 79.29 18 | 85.59 48 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| tpmrst | | | 57.23 83 | 59.08 89 | 55.06 78 | 59.91 78 | 70.65 83 | 60.71 78 | 35.38 180 | 47.91 93 | 42.58 71 | 39.78 109 | 45.45 115 | 54.44 57 | 62.19 118 | 62.82 117 | 77.37 47 | 84.73 57 |
|
| baseline1 | | | 57.21 84 | 60.53 85 | 53.33 87 | 62.50 58 | 69.86 88 | 57.33 101 | 50.59 41 | 43.39 108 | 30.00 131 | 48.60 76 | 51.09 84 | 42.36 142 | 69.38 46 | 68.03 58 | 77.20 55 | 73.39 134 |
|
| FA-MVS(training) | | | 57.15 85 | 60.42 86 | 53.34 86 | 58.15 91 | 72.77 68 | 59.79 86 | 38.68 159 | 49.01 90 | 36.56 97 | 40.79 102 | 45.44 116 | 53.04 70 | 65.23 81 | 67.93 61 | 73.82 117 | 81.80 83 |
|
| HyFIR lowres test | | | 57.12 86 | 59.11 88 | 54.80 79 | 61.55 66 | 77.55 32 | 59.02 91 | 45.00 102 | 41.84 122 | 33.93 110 | 22.44 197 | 49.16 96 | 51.02 83 | 68.39 55 | 68.71 54 | 78.26 35 | 85.70 46 |
|
| MVS_111021_LR | | | 57.06 87 | 60.60 84 | 52.93 89 | 56.25 104 | 65.14 131 | 55.16 120 | 41.21 142 | 52.32 78 | 44.89 57 | 53.92 58 | 49.27 95 | 52.16 77 | 61.46 127 | 60.54 149 | 67.92 166 | 81.53 87 |
|
| DCV-MVSNet | | | 56.80 88 | 58.96 91 | 54.28 81 | 59.96 77 | 66.74 117 | 60.37 81 | 44.87 104 | 41.01 124 | 36.81 95 | 47.57 80 | 47.87 103 | 48.23 105 | 64.41 90 | 65.17 89 | 75.45 82 | 79.95 101 |
|
| Anonymous20231211 | | | 56.40 89 | 57.00 110 | 55.70 76 | 59.78 81 | 72.49 74 | 61.29 77 | 46.83 83 | 40.50 127 | 40.46 82 | 22.12 199 | 49.73 90 | 51.07 82 | 64.39 91 | 65.30 88 | 74.74 95 | 84.44 60 |
|
| PMMVS | | | 55.74 90 | 62.68 69 | 47.64 133 | 44.34 178 | 65.58 129 | 47.22 161 | 37.96 165 | 56.43 68 | 34.11 108 | 61.51 35 | 47.41 105 | 54.55 55 | 65.88 73 | 62.49 124 | 67.67 168 | 79.48 102 |
|
| Fast-Effi-MVS+ | | | 55.73 91 | 58.26 99 | 52.76 90 | 54.33 122 | 68.19 102 | 57.05 102 | 34.66 182 | 46.92 96 | 38.96 87 | 40.53 103 | 41.55 133 | 55.69 51 | 65.31 79 | 65.99 78 | 75.90 74 | 79.34 103 |
|
| FC-MVSNet-train | | | 55.68 92 | 57.00 110 | 54.13 83 | 63.37 46 | 66.16 121 | 46.77 164 | 52.14 33 | 42.36 116 | 37.67 91 | 48.50 78 | 41.42 135 | 51.28 80 | 61.58 126 | 63.22 114 | 73.56 122 | 75.76 122 |
|
| FMVSNet3 | | | 55.66 93 | 59.68 87 | 50.96 103 | 50.59 142 | 66.49 118 | 57.57 98 | 46.61 85 | 49.30 85 | 28.77 136 | 39.61 110 | 51.42 81 | 43.85 134 | 68.29 56 | 68.80 52 | 78.35 34 | 73.86 129 |
|
| OMC-MVS | | | 55.48 94 | 61.85 79 | 48.04 132 | 41.55 185 | 60.32 165 | 56.80 106 | 31.78 202 | 75.67 21 | 42.30 73 | 51.52 67 | 54.15 75 | 49.91 91 | 60.28 144 | 57.59 163 | 65.91 176 | 73.42 132 |
|
| tpm | | | 54.94 95 | 57.86 104 | 51.54 99 | 59.48 84 | 67.04 113 | 58.34 94 | 34.60 184 | 41.93 121 | 34.41 105 | 42.40 95 | 47.14 106 | 49.07 100 | 61.46 127 | 61.67 136 | 73.31 129 | 83.39 65 |
|
| GBi-Net | | | 54.66 96 | 58.42 96 | 50.26 111 | 49.36 151 | 65.81 126 | 56.80 106 | 46.61 85 | 49.30 85 | 28.77 136 | 39.61 110 | 51.42 81 | 42.71 138 | 64.25 94 | 65.54 83 | 77.32 51 | 73.03 137 |
|
| test1 | | | 54.66 96 | 58.42 96 | 50.26 111 | 49.36 151 | 65.81 126 | 56.80 106 | 46.61 85 | 49.30 85 | 28.77 136 | 39.61 110 | 51.42 81 | 42.71 138 | 64.25 94 | 65.54 83 | 77.32 51 | 73.03 137 |
|
| test-LLR | | | 54.62 98 | 58.66 94 | 49.89 118 | 51.68 134 | 65.89 123 | 47.88 155 | 46.35 89 | 42.51 113 | 29.84 132 | 41.41 99 | 48.87 97 | 45.20 122 | 62.91 112 | 64.43 103 | 78.43 30 | 84.62 58 |
|
| dmvs_re | | | 54.51 99 | 57.04 109 | 51.56 98 | 56.51 102 | 62.63 151 | 55.56 116 | 50.45 45 | 45.31 99 | 24.75 153 | 43.94 89 | 39.99 140 | 42.74 137 | 66.53 72 | 65.44 86 | 79.33 17 | 75.46 124 |
|
| TSAR-MVS + COLMAP | | | 54.37 100 | 62.43 72 | 44.98 148 | 34.33 206 | 58.94 172 | 54.11 128 | 34.15 193 | 74.06 24 | 34.57 104 | 71.63 18 | 42.03 132 | 47.88 107 | 61.26 132 | 57.33 166 | 64.83 179 | 71.74 147 |
|
| EPMVS | | | 54.07 101 | 56.06 116 | 51.75 97 | 56.74 101 | 70.80 81 | 55.32 118 | 34.20 190 | 46.46 98 | 36.59 96 | 40.38 106 | 42.55 127 | 49.77 93 | 61.25 133 | 60.90 144 | 77.86 42 | 70.08 158 |
|
| v2v482 | | | 54.00 102 | 55.12 123 | 52.69 92 | 51.73 133 | 69.42 93 | 60.65 79 | 45.09 101 | 34.56 158 | 33.73 113 | 35.29 133 | 35.36 155 | 49.92 90 | 64.05 100 | 65.16 90 | 75.00 90 | 81.98 78 |
|
| CNLPA | | | 54.00 102 | 57.08 108 | 50.40 110 | 49.83 148 | 61.75 156 | 53.47 131 | 37.27 170 | 74.55 23 | 44.85 58 | 33.58 145 | 45.42 117 | 52.94 74 | 58.89 155 | 53.66 185 | 64.06 182 | 71.68 148 |
|
| FMVSNet2 | | | 53.94 104 | 57.29 106 | 50.03 115 | 49.36 151 | 65.81 126 | 56.80 106 | 45.95 94 | 43.13 110 | 28.04 140 | 35.68 131 | 48.18 102 | 42.71 138 | 67.23 67 | 67.95 60 | 77.32 51 | 73.03 137 |
|
| v8 | | | 53.77 105 | 54.82 128 | 52.54 93 | 52.12 129 | 66.95 116 | 60.56 80 | 43.23 129 | 37.17 147 | 35.35 100 | 34.96 136 | 37.50 147 | 49.51 96 | 63.67 103 | 64.59 100 | 74.48 104 | 78.91 106 |
|
| GA-MVS | | | 53.77 105 | 56.41 115 | 50.70 105 | 51.63 136 | 69.96 87 | 57.55 99 | 44.39 108 | 34.31 159 | 27.15 142 | 40.99 101 | 36.40 151 | 47.65 110 | 67.45 63 | 67.16 66 | 75.83 76 | 78.60 108 |
|
| Effi-MVS+-dtu | | | 53.63 107 | 54.85 127 | 52.20 95 | 59.32 85 | 61.33 159 | 56.42 112 | 40.24 149 | 43.84 105 | 34.22 107 | 39.49 115 | 46.18 112 | 53.00 73 | 58.72 159 | 57.49 165 | 69.99 157 | 76.91 113 |
|
| thisisatest0530 | | | 53.61 108 | 57.22 107 | 49.40 123 | 51.30 138 | 68.22 101 | 52.72 139 | 43.34 127 | 42.72 112 | 35.31 101 | 43.57 92 | 44.14 121 | 44.37 132 | 63.00 110 | 64.86 95 | 69.34 160 | 74.00 128 |
|
| v1144 | | | 53.47 109 | 54.65 129 | 52.10 96 | 51.93 131 | 69.81 89 | 59.32 89 | 44.77 106 | 33.21 165 | 32.52 117 | 33.55 146 | 34.34 163 | 49.29 98 | 64.58 87 | 64.81 97 | 74.74 95 | 82.27 72 |
|
| v10 | | | 53.44 110 | 54.40 130 | 52.31 94 | 52.08 130 | 66.99 114 | 59.68 87 | 43.41 124 | 35.90 153 | 34.30 106 | 33.98 143 | 35.56 153 | 50.10 88 | 64.39 91 | 64.67 98 | 74.32 105 | 79.30 104 |
|
| PatchmatchNet |  | | 53.37 111 | 55.62 121 | 50.75 104 | 55.93 111 | 70.54 84 | 51.39 144 | 36.41 173 | 44.85 101 | 37.26 93 | 39.40 117 | 42.54 128 | 47.83 108 | 60.29 143 | 60.88 146 | 75.69 79 | 70.87 152 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| test2506 | | | 53.36 112 | 57.36 105 | 48.68 128 | 55.53 113 | 68.11 104 | 54.31 125 | 46.25 91 | 43.54 106 | 22.21 165 | 40.19 107 | 43.69 123 | 36.56 155 | 64.15 98 | 65.94 79 | 77.20 55 | 75.91 119 |
|
| IterMVS-LS | | | 53.36 112 | 55.65 120 | 50.68 107 | 55.34 115 | 59.04 170 | 55.00 121 | 39.98 150 | 38.72 135 | 33.22 114 | 44.52 88 | 47.05 107 | 49.63 95 | 61.82 124 | 61.77 131 | 70.92 149 | 76.61 117 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| TESTMET0.1,1 | | | 53.30 114 | 58.66 94 | 47.04 136 | 44.94 172 | 65.89 123 | 47.88 155 | 35.95 176 | 42.51 113 | 29.84 132 | 41.41 99 | 48.87 97 | 45.20 122 | 62.91 112 | 64.43 103 | 78.43 30 | 84.62 58 |
|
| tttt0517 | | | 53.05 115 | 56.73 114 | 48.76 126 | 50.35 144 | 67.51 110 | 51.96 143 | 43.34 127 | 42.00 120 | 33.88 111 | 43.19 93 | 43.49 125 | 44.37 132 | 62.58 117 | 64.86 95 | 68.67 162 | 73.46 131 |
|
| MDTV_nov1_ep13 | | | 52.99 116 | 55.59 122 | 49.95 117 | 54.08 123 | 70.69 82 | 56.47 111 | 38.42 162 | 42.78 111 | 30.19 130 | 39.56 113 | 43.31 126 | 45.78 118 | 60.07 148 | 62.11 128 | 74.74 95 | 70.62 153 |
|
| EPP-MVSNet | | | 52.91 117 | 58.91 92 | 45.91 141 | 54.99 119 | 68.84 97 | 49.27 150 | 42.71 136 | 37.53 141 | 20.20 173 | 46.09 83 | 56.19 70 | 36.90 153 | 61.37 130 | 60.90 144 | 71.41 144 | 81.41 89 |
|
| dps | | | 52.84 118 | 52.92 141 | 52.74 91 | 59.89 79 | 69.49 92 | 54.47 124 | 37.38 168 | 42.49 115 | 39.53 86 | 35.33 132 | 32.71 168 | 51.83 79 | 60.45 140 | 61.12 141 | 73.33 128 | 68.86 167 |
|
| v1192 | | | 52.69 119 | 53.86 133 | 51.31 100 | 51.22 139 | 69.76 90 | 57.37 100 | 44.39 108 | 32.21 168 | 31.39 124 | 32.41 154 | 32.44 171 | 49.19 99 | 64.25 94 | 64.17 105 | 74.31 106 | 81.81 81 |
|
| V42 | | | 52.63 120 | 55.08 124 | 49.76 120 | 44.93 173 | 67.49 112 | 60.19 84 | 42.13 139 | 37.21 146 | 34.08 109 | 34.57 139 | 37.30 148 | 47.29 111 | 63.48 106 | 64.15 106 | 69.96 158 | 81.38 90 |
|
| MSDG | | | 52.58 121 | 51.40 154 | 53.95 84 | 65.48 41 | 64.31 141 | 61.44 73 | 44.02 114 | 44.17 104 | 32.92 116 | 30.40 167 | 31.81 175 | 46.35 115 | 62.13 119 | 62.55 122 | 73.49 124 | 64.41 175 |
|
| ECVR-MVS |  | | 52.52 122 | 55.88 118 | 48.60 129 | 55.53 113 | 68.11 104 | 54.31 125 | 46.25 91 | 43.54 106 | 21.75 167 | 32.76 151 | 39.83 143 | 36.56 155 | 64.15 98 | 65.94 79 | 77.20 55 | 76.81 114 |
|
| Fast-Effi-MVS+-dtu | | | 52.47 123 | 55.89 117 | 48.48 130 | 56.25 104 | 65.07 132 | 58.75 92 | 23.79 213 | 41.27 123 | 27.07 144 | 37.95 122 | 41.34 136 | 50.85 85 | 62.90 114 | 62.34 126 | 74.17 110 | 80.37 100 |
|
| v144192 | | | 52.43 124 | 53.63 135 | 51.03 102 | 51.06 140 | 69.60 91 | 56.94 104 | 44.84 105 | 32.15 169 | 30.88 126 | 32.45 153 | 32.71 168 | 48.36 103 | 62.98 111 | 63.52 111 | 74.10 115 | 82.02 77 |
|
| thres100view900 | | | 52.33 125 | 53.91 132 | 50.48 109 | 56.10 106 | 67.79 107 | 56.18 114 | 49.18 51 | 35.86 155 | 25.22 150 | 34.74 137 | 34.10 164 | 42.41 141 | 64.45 89 | 62.62 121 | 73.81 118 | 77.85 109 |
|
| v1921920 | | | 51.95 126 | 53.19 137 | 50.51 108 | 50.82 141 | 69.14 95 | 55.45 117 | 44.34 112 | 31.53 173 | 30.53 128 | 31.96 156 | 31.67 176 | 48.31 104 | 63.12 108 | 63.28 113 | 73.59 121 | 81.60 86 |
|
| v148 | | | 51.72 127 | 53.15 138 | 50.05 114 | 50.15 146 | 67.51 110 | 56.98 103 | 42.85 134 | 32.60 167 | 32.41 119 | 33.88 144 | 34.71 160 | 44.45 130 | 61.06 134 | 63.00 116 | 73.45 125 | 79.24 105 |
|
| TAPA-MVS | | 47.92 11 | 51.66 128 | 57.88 103 | 44.40 151 | 36.46 200 | 58.42 175 | 53.82 130 | 30.83 203 | 69.51 39 | 34.97 103 | 46.90 81 | 49.67 91 | 46.99 112 | 58.00 162 | 54.64 181 | 63.33 188 | 68.00 169 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| IS_MVSNet | | | 51.53 129 | 57.98 102 | 44.01 155 | 55.96 110 | 66.16 121 | 47.65 157 | 42.84 135 | 39.82 130 | 19.09 181 | 44.97 87 | 50.28 87 | 27.20 188 | 63.43 107 | 63.84 107 | 71.33 146 | 77.33 111 |
|
| v1240 | | | 51.42 130 | 52.66 143 | 49.97 116 | 50.31 145 | 68.70 98 | 54.05 129 | 43.85 118 | 30.78 177 | 30.22 129 | 31.43 160 | 31.03 183 | 47.98 106 | 62.62 116 | 63.16 115 | 73.40 126 | 80.93 95 |
|
| pmmvs4 | | | 51.28 131 | 52.50 145 | 49.85 119 | 49.54 150 | 63.02 148 | 52.83 138 | 43.41 124 | 44.65 102 | 35.71 99 | 34.38 140 | 32.25 172 | 45.14 125 | 60.21 147 | 60.03 153 | 72.44 138 | 72.98 140 |
|
| Vis-MVSNet |  | | 51.13 132 | 58.04 101 | 43.06 161 | 47.68 158 | 67.71 108 | 49.10 151 | 39.09 157 | 37.75 139 | 22.57 162 | 51.03 70 | 48.78 99 | 32.42 173 | 62.12 120 | 61.80 130 | 67.49 170 | 77.12 112 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| UGNet | | | 51.04 133 | 58.79 93 | 42.00 167 | 40.59 187 | 65.32 130 | 46.65 166 | 39.26 154 | 39.90 129 | 27.30 141 | 54.12 57 | 52.03 78 | 30.93 177 | 59.85 150 | 59.62 158 | 67.23 172 | 80.70 96 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| tfpn200view9 | | | 50.91 134 | 52.45 146 | 49.11 125 | 56.10 106 | 64.53 136 | 53.06 135 | 47.31 76 | 35.86 155 | 25.22 150 | 34.74 137 | 34.10 164 | 41.08 144 | 60.84 136 | 61.37 138 | 71.90 142 | 75.70 123 |
|
| SCA | | | 50.88 135 | 53.70 134 | 47.59 134 | 55.99 108 | 55.81 184 | 43.14 178 | 33.45 196 | 45.16 100 | 37.14 94 | 41.83 97 | 43.82 122 | 44.43 131 | 60.37 141 | 60.02 154 | 71.38 145 | 68.90 166 |
|
| gg-mvs-nofinetune | | | 50.82 136 | 55.83 119 | 44.97 149 | 60.63 74 | 75.69 44 | 53.40 132 | 34.48 186 | 20.05 212 | 6.93 208 | 18.27 206 | 52.70 77 | 33.57 163 | 70.50 35 | 72.93 18 | 80.84 6 | 80.68 97 |
|
| thres200 | | | 50.76 137 | 52.52 144 | 48.70 127 | 55.98 109 | 64.60 134 | 55.29 119 | 47.34 74 | 33.91 162 | 24.36 154 | 34.33 141 | 33.90 166 | 37.27 151 | 60.84 136 | 62.41 125 | 71.99 140 | 77.63 110 |
|
| test1111 | | | 50.62 138 | 54.98 126 | 45.55 144 | 53.84 125 | 68.48 100 | 48.99 152 | 47.25 77 | 40.60 126 | 15.64 189 | 31.51 159 | 38.32 144 | 33.01 170 | 64.34 93 | 66.62 72 | 74.55 103 | 74.95 127 |
|
| thres400 | | | 50.39 139 | 52.22 147 | 48.26 131 | 55.02 118 | 66.32 120 | 52.97 136 | 48.33 62 | 32.68 166 | 22.94 160 | 33.21 148 | 33.38 167 | 37.27 151 | 62.74 115 | 61.38 137 | 73.04 135 | 75.81 121 |
|
| EG-PatchMatch MVS | | | 50.23 140 | 50.89 157 | 49.47 121 | 59.54 83 | 70.88 80 | 52.46 140 | 44.01 115 | 26.22 198 | 31.91 120 | 24.97 191 | 31.45 179 | 33.48 165 | 64.79 84 | 66.51 76 | 75.40 83 | 71.39 150 |
|
| IterMVS | | | 50.23 140 | 53.27 136 | 46.68 137 | 47.59 160 | 60.58 163 | 53.10 134 | 36.62 172 | 36.07 151 | 25.89 147 | 39.42 116 | 40.05 139 | 43.65 135 | 60.22 146 | 61.35 139 | 73.23 130 | 75.23 125 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| FMVSNet1 | | | 50.14 142 | 52.78 142 | 47.06 135 | 45.56 169 | 63.56 144 | 54.22 127 | 43.74 121 | 34.10 161 | 25.37 149 | 29.79 173 | 42.06 131 | 38.70 147 | 64.25 94 | 65.54 83 | 74.75 94 | 70.18 157 |
|
| ACMH | | 47.82 13 | 50.10 143 | 49.60 163 | 50.69 106 | 63.36 47 | 66.99 114 | 56.83 105 | 52.13 34 | 31.06 176 | 17.74 186 | 28.22 179 | 26.24 199 | 45.17 124 | 60.88 135 | 63.80 108 | 68.91 161 | 70.00 160 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| EPNet_dtu | | | 49.85 144 | 56.99 112 | 41.52 170 | 52.79 126 | 57.06 178 | 41.44 183 | 43.13 130 | 56.13 69 | 19.24 180 | 52.11 64 | 48.38 100 | 22.14 195 | 58.19 161 | 58.38 161 | 70.35 152 | 68.71 168 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| LS3D | | | 49.59 145 | 49.75 162 | 49.40 123 | 55.88 112 | 59.86 167 | 56.31 113 | 45.33 98 | 48.57 91 | 28.32 139 | 31.54 158 | 36.81 150 | 46.27 117 | 57.17 167 | 55.88 176 | 64.29 181 | 58.42 193 |
|
| UniMVSNet_NR-MVSNet | | | 49.56 146 | 53.04 139 | 45.49 145 | 51.59 137 | 64.42 140 | 46.97 162 | 51.01 37 | 37.87 137 | 16.42 187 | 39.87 108 | 34.91 159 | 33.43 167 | 59.59 151 | 62.70 118 | 73.52 123 | 71.94 143 |
|
| CDS-MVSNet | | | 49.25 147 | 53.97 131 | 43.75 157 | 47.53 161 | 64.53 136 | 48.59 153 | 42.27 138 | 33.77 163 | 26.64 145 | 40.46 105 | 42.26 130 | 30.01 180 | 61.77 125 | 61.71 133 | 67.48 171 | 73.28 136 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| PLC |  | 44.22 14 | 49.14 148 | 51.75 150 | 46.10 140 | 42.78 183 | 55.60 187 | 53.11 133 | 34.46 187 | 55.69 73 | 32.47 118 | 34.16 142 | 41.45 134 | 48.91 101 | 57.13 168 | 54.09 182 | 64.84 178 | 64.10 176 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| ACMH+ | | 47.85 12 | 49.13 149 | 48.86 169 | 49.44 122 | 56.75 100 | 62.01 155 | 56.62 110 | 47.55 73 | 37.49 142 | 23.98 155 | 26.68 184 | 29.46 190 | 43.12 136 | 57.45 166 | 58.85 160 | 68.62 163 | 70.05 159 |
|
| NR-MVSNet | | | 48.84 150 | 51.76 149 | 45.44 146 | 57.66 95 | 60.64 161 | 47.39 158 | 47.63 69 | 37.26 143 | 13.31 192 | 37.31 124 | 29.64 189 | 33.53 164 | 63.52 105 | 62.09 129 | 73.10 133 | 71.89 146 |
|
| CR-MVSNet | | | 48.82 151 | 51.85 148 | 45.29 147 | 46.74 163 | 55.95 182 | 52.06 141 | 34.21 188 | 42.17 117 | 31.74 121 | 32.92 150 | 42.53 129 | 45.00 126 | 58.80 156 | 61.11 142 | 61.99 193 | 69.47 162 |
|
| thres600view7 | | | 48.44 152 | 50.23 160 | 46.35 139 | 54.05 124 | 64.60 134 | 50.18 147 | 47.34 74 | 31.73 172 | 20.74 171 | 32.28 155 | 32.62 170 | 33.79 162 | 60.84 136 | 56.11 174 | 71.99 140 | 73.40 133 |
|
| test-mter | | | 48.31 153 | 55.04 125 | 40.45 174 | 34.12 207 | 59.02 171 | 41.77 182 | 28.05 207 | 38.43 136 | 22.67 161 | 39.35 118 | 44.40 119 | 41.88 143 | 60.30 142 | 61.68 135 | 74.20 108 | 82.12 74 |
|
| PatchT | | | 48.11 154 | 51.27 156 | 44.43 150 | 50.13 147 | 61.58 157 | 33.59 196 | 32.92 198 | 40.38 128 | 31.74 121 | 30.60 166 | 36.93 149 | 45.00 126 | 58.80 156 | 61.11 142 | 73.19 131 | 69.47 162 |
|
| TranMVSNet+NR-MVSNet | | | 48.06 155 | 51.36 155 | 44.21 153 | 50.38 143 | 62.09 154 | 47.28 159 | 50.88 40 | 36.11 150 | 13.25 193 | 37.51 123 | 31.60 178 | 30.70 178 | 59.34 152 | 62.53 123 | 72.81 136 | 70.31 155 |
|
| TransMVSNet (Re) | | | 47.46 156 | 48.94 168 | 45.74 143 | 57.96 92 | 64.29 142 | 48.26 154 | 48.47 61 | 26.33 197 | 19.33 178 | 29.45 176 | 31.28 182 | 25.31 192 | 63.05 109 | 62.70 118 | 75.10 89 | 65.47 173 |
|
| DU-MVS | | | 47.33 157 | 50.86 158 | 43.20 160 | 44.43 176 | 60.64 161 | 46.97 162 | 47.63 69 | 37.26 143 | 16.42 187 | 37.31 124 | 31.39 180 | 33.43 167 | 57.53 164 | 59.98 155 | 70.35 152 | 71.94 143 |
|
| v7n | | | 47.22 158 | 48.38 170 | 45.87 142 | 48.20 157 | 63.58 143 | 50.69 145 | 40.93 146 | 26.60 196 | 26.44 146 | 26.52 185 | 29.65 188 | 38.19 149 | 58.22 160 | 60.23 152 | 70.79 150 | 73.83 130 |
|
| UA-Net | | | 47.19 159 | 53.02 140 | 40.38 175 | 55.31 116 | 60.02 166 | 38.41 189 | 38.68 159 | 36.42 149 | 22.47 164 | 51.95 65 | 58.72 61 | 25.62 191 | 54.11 180 | 53.40 186 | 61.79 194 | 56.51 196 |
|
| Baseline_NR-MVSNet | | | 47.14 160 | 50.83 159 | 42.84 163 | 44.43 176 | 63.31 146 | 44.50 174 | 50.36 46 | 37.71 140 | 11.25 198 | 30.84 163 | 32.09 173 | 30.96 176 | 57.53 164 | 63.73 109 | 75.53 80 | 70.60 154 |
|
| pmmvs5 | | | 47.02 161 | 50.02 161 | 43.51 159 | 43.48 181 | 62.65 150 | 47.24 160 | 37.78 167 | 30.59 178 | 24.80 152 | 35.26 134 | 30.43 184 | 34.36 160 | 59.05 154 | 60.28 151 | 73.40 126 | 71.92 145 |
|
| UniMVSNet (Re) | | | 46.89 162 | 51.65 152 | 41.34 172 | 45.60 168 | 62.71 149 | 44.05 175 | 47.10 79 | 37.24 145 | 13.55 191 | 36.90 126 | 34.54 162 | 26.76 189 | 57.56 163 | 59.90 157 | 70.98 148 | 72.69 141 |
|
| thisisatest0515 | | | 46.88 163 | 49.57 164 | 43.74 158 | 45.33 171 | 60.46 164 | 46.19 168 | 41.06 145 | 30.34 179 | 29.73 134 | 32.50 152 | 31.63 177 | 35.43 158 | 58.75 158 | 61.71 133 | 64.70 180 | 71.59 149 |
|
| tfpnnormal | | | 46.61 164 | 46.82 177 | 46.37 138 | 52.70 127 | 62.31 152 | 50.39 146 | 47.17 78 | 25.74 200 | 21.80 166 | 23.13 195 | 24.15 207 | 33.45 166 | 60.28 144 | 60.77 147 | 72.70 137 | 71.39 150 |
|
| pm-mvs1 | | | 46.14 165 | 49.34 167 | 42.41 164 | 48.93 154 | 62.22 153 | 44.98 172 | 42.68 137 | 27.66 190 | 20.76 170 | 29.88 172 | 34.96 158 | 26.41 190 | 60.03 149 | 60.42 150 | 70.70 151 | 70.20 156 |
|
| IterMVS-SCA-FT | | | 45.87 166 | 51.55 153 | 39.24 178 | 46.22 164 | 59.43 168 | 52.89 137 | 31.93 199 | 36.01 152 | 23.68 156 | 38.86 119 | 39.88 142 | 39.05 146 | 56.25 173 | 58.17 162 | 41.70 214 | 72.25 142 |
|
| MIMVSNet | | | 45.62 167 | 49.56 165 | 41.02 173 | 38.17 191 | 64.43 139 | 49.48 149 | 35.43 179 | 36.53 148 | 20.06 175 | 22.58 196 | 35.16 157 | 28.75 185 | 61.97 122 | 62.20 127 | 74.20 108 | 64.07 177 |
|
| gm-plane-assit | | | 45.41 168 | 48.03 172 | 42.34 165 | 56.49 103 | 40.48 212 | 24.54 216 | 34.15 193 | 14.44 219 | 6.59 209 | 17.82 207 | 35.32 156 | 49.82 92 | 72.93 16 | 74.11 11 | 82.47 2 | 81.12 94 |
|
| ADS-MVSNet | | | 45.39 169 | 46.42 178 | 44.19 154 | 48.74 156 | 57.52 176 | 43.91 176 | 31.93 199 | 35.89 154 | 27.11 143 | 30.12 168 | 32.06 174 | 45.30 120 | 53.13 186 | 55.19 178 | 68.15 165 | 61.07 185 |
|
| GG-mvs-BLEND | | | 44.87 170 | 64.59 63 | 21.86 211 | 0.01 229 | 73.70 58 | 55.99 115 | 0.01 225 | 50.70 81 | 0.01 230 | 49.18 73 | 63.61 41 | 0.01 225 | 63.83 101 | 64.50 101 | 75.13 88 | 86.62 37 |
|
| pmmvs-eth3d | | | 44.67 171 | 45.27 183 | 43.98 156 | 42.56 184 | 55.72 186 | 44.97 173 | 40.81 147 | 31.96 171 | 29.13 135 | 26.09 187 | 25.27 204 | 36.69 154 | 55.13 177 | 56.62 171 | 69.68 159 | 66.12 172 |
|
| MDTV_nov1_ep13_2view | | | 44.44 172 | 45.75 181 | 42.91 162 | 46.13 165 | 63.43 145 | 46.53 167 | 34.20 190 | 29.08 185 | 19.95 176 | 26.23 186 | 27.89 194 | 35.88 157 | 53.36 185 | 56.43 172 | 74.74 95 | 63.86 178 |
|
| CMPMVS |  | 33.64 16 | 44.39 173 | 46.41 179 | 42.03 166 | 44.21 179 | 56.50 180 | 46.73 165 | 26.48 212 | 34.20 160 | 35.14 102 | 24.22 192 | 34.64 161 | 40.52 145 | 56.50 172 | 56.07 175 | 59.12 198 | 62.74 181 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| Vis-MVSNet (Re-imp) | | | 44.31 174 | 51.67 151 | 35.72 188 | 51.82 132 | 55.24 188 | 34.57 195 | 41.63 140 | 39.10 133 | 8.84 205 | 45.93 84 | 46.63 109 | 14.45 205 | 54.09 181 | 57.03 168 | 63.00 189 | 63.65 179 |
|
| TAMVS | | | 44.27 175 | 49.35 166 | 38.35 182 | 44.74 174 | 61.04 160 | 39.07 187 | 31.82 201 | 29.95 181 | 18.34 184 | 33.55 146 | 39.94 141 | 30.01 180 | 56.85 170 | 57.58 164 | 66.13 175 | 66.54 170 |
|
| MVS-HIRNet | | | 43.98 176 | 43.63 187 | 44.39 152 | 47.66 159 | 59.31 169 | 32.66 202 | 33.88 195 | 30.15 180 | 33.75 112 | 16.82 212 | 28.39 193 | 45.25 121 | 53.92 184 | 55.00 180 | 73.16 132 | 61.80 182 |
|
| UniMVSNet_ETH3D | | | 43.97 177 | 46.01 180 | 41.59 168 | 38.31 190 | 56.20 181 | 49.69 148 | 38.18 164 | 28.18 186 | 19.88 177 | 27.82 181 | 30.20 185 | 33.41 169 | 54.18 179 | 56.30 173 | 70.05 156 | 69.17 164 |
|
| RPMNet | | | 43.70 178 | 48.17 171 | 38.48 181 | 45.52 170 | 55.95 182 | 37.66 190 | 26.63 211 | 42.17 117 | 25.47 148 | 29.59 175 | 37.61 145 | 33.87 161 | 50.85 191 | 52.02 190 | 61.75 195 | 69.00 165 |
|
| PatchMatch-RL | | | 43.37 179 | 44.93 184 | 41.56 169 | 37.94 192 | 51.70 190 | 40.02 185 | 35.75 177 | 39.04 134 | 30.71 127 | 35.14 135 | 27.43 196 | 46.58 114 | 51.99 187 | 50.55 194 | 58.38 200 | 58.64 191 |
|
| FMVSNet5 | | | 43.29 180 | 47.07 175 | 38.87 179 | 30.46 212 | 50.99 192 | 45.87 169 | 37.19 171 | 42.17 117 | 19.32 179 | 26.77 183 | 40.51 137 | 30.26 179 | 56.82 171 | 55.81 177 | 70.10 155 | 56.46 197 |
|
| test0.0.03 1 | | | 43.07 181 | 46.95 176 | 38.54 180 | 51.68 134 | 58.77 173 | 35.28 191 | 46.35 89 | 32.05 170 | 12.44 194 | 28.53 178 | 35.52 154 | 14.40 206 | 57.12 169 | 56.93 169 | 71.11 147 | 59.69 187 |
|
| anonymousdsp | | | 43.03 182 | 47.19 174 | 38.18 183 | 36.00 202 | 56.92 179 | 38.44 188 | 34.56 185 | 24.22 202 | 22.53 163 | 29.69 174 | 29.92 186 | 35.21 159 | 53.96 183 | 58.98 159 | 62.32 192 | 76.66 116 |
|
| USDC | | | 42.80 183 | 45.57 182 | 39.58 176 | 34.55 205 | 51.13 191 | 42.61 179 | 36.21 174 | 39.59 131 | 23.65 157 | 33.13 149 | 20.87 213 | 37.86 150 | 55.35 176 | 57.16 167 | 62.61 190 | 61.75 183 |
|
| pmnet_mix02 | | | 42.41 184 | 43.24 189 | 41.44 171 | 45.80 167 | 57.46 177 | 42.19 180 | 41.57 141 | 29.38 183 | 23.39 158 | 26.08 188 | 23.96 208 | 27.31 187 | 51.50 188 | 53.76 184 | 68.36 164 | 60.58 186 |
|
| CHOSEN 280x420 | | | 42.39 185 | 47.40 173 | 36.54 186 | 33.56 208 | 39.66 215 | 40.67 184 | 26.88 210 | 34.66 157 | 18.03 185 | 30.09 169 | 45.59 114 | 44.82 128 | 54.46 178 | 54.00 183 | 55.28 207 | 73.32 135 |
|
| pmmvs6 | | | 41.90 186 | 44.01 186 | 39.43 177 | 44.45 175 | 58.77 173 | 41.92 181 | 39.22 155 | 21.74 205 | 19.08 182 | 17.40 210 | 31.33 181 | 24.28 194 | 55.94 174 | 56.67 170 | 67.60 169 | 66.24 171 |
|
| Anonymous20231206 | | | 40.63 187 | 43.29 188 | 37.53 184 | 48.88 155 | 55.81 184 | 34.99 192 | 44.98 103 | 28.16 187 | 10.16 202 | 17.26 211 | 27.50 195 | 18.28 199 | 54.00 182 | 55.07 179 | 67.85 167 | 65.23 174 |
|
| CVMVSNet | | | 38.91 188 | 44.49 185 | 32.40 197 | 34.57 204 | 47.20 203 | 34.81 193 | 34.20 190 | 31.45 174 | 8.95 204 | 38.86 119 | 36.38 152 | 24.30 193 | 47.77 195 | 46.94 206 | 57.59 202 | 62.85 180 |
|
| COLMAP_ROB |  | 34.79 15 | 38.65 189 | 40.72 192 | 36.23 187 | 36.41 201 | 49.22 199 | 45.51 171 | 27.60 209 | 37.81 138 | 20.54 172 | 23.37 194 | 24.25 206 | 28.11 186 | 51.02 190 | 48.55 197 | 59.22 197 | 50.82 207 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| PEN-MVS | | | 38.23 190 | 41.72 191 | 34.15 190 | 40.56 188 | 50.07 195 | 33.17 199 | 44.35 111 | 27.64 192 | 5.54 215 | 30.84 163 | 26.67 197 | 14.99 203 | 45.64 198 | 52.38 189 | 66.29 174 | 58.83 190 |
|
| WR-MVS | | | 37.61 191 | 42.15 190 | 32.31 199 | 43.64 180 | 51.85 189 | 29.39 208 | 43.35 126 | 27.65 191 | 4.40 217 | 29.90 171 | 29.80 187 | 10.46 210 | 46.73 197 | 51.98 191 | 62.60 191 | 57.16 194 |
|
| TinyColmap | | | 37.18 192 | 37.37 205 | 36.95 185 | 31.17 211 | 45.21 206 | 39.71 186 | 34.65 183 | 29.83 182 | 20.20 173 | 18.54 205 | 13.72 221 | 38.27 148 | 50.33 192 | 51.57 192 | 57.71 201 | 52.42 204 |
|
| CP-MVSNet | | | 37.09 193 | 40.62 193 | 32.99 192 | 37.56 194 | 48.25 200 | 32.75 200 | 43.05 131 | 27.88 189 | 5.93 211 | 31.27 161 | 25.82 202 | 15.09 201 | 43.37 205 | 48.82 195 | 63.54 186 | 58.90 188 |
|
| DTE-MVSNet | | | 36.91 194 | 40.44 194 | 32.79 195 | 40.74 186 | 47.55 202 | 30.71 206 | 44.39 108 | 27.03 194 | 4.32 218 | 30.88 162 | 25.99 200 | 12.73 208 | 45.58 199 | 50.80 193 | 63.86 183 | 55.23 200 |
|
| PS-CasMVS | | | 36.84 195 | 40.23 197 | 32.89 193 | 37.44 195 | 48.09 201 | 32.68 201 | 42.97 133 | 27.36 193 | 5.89 212 | 30.08 170 | 25.48 203 | 14.96 204 | 43.28 206 | 48.71 196 | 63.39 187 | 58.63 192 |
|
| WR-MVS_H | | | 36.29 196 | 40.35 196 | 31.55 201 | 37.80 193 | 49.94 197 | 30.57 207 | 41.11 144 | 26.90 195 | 4.14 219 | 30.72 165 | 28.85 191 | 10.45 211 | 42.47 207 | 47.99 201 | 65.24 177 | 55.54 198 |
|
| SixPastTwentyTwo | | | 36.11 197 | 37.80 201 | 34.13 191 | 37.13 198 | 46.72 204 | 34.58 194 | 34.96 181 | 21.20 208 | 11.66 195 | 29.15 177 | 19.88 214 | 29.77 182 | 44.93 200 | 48.34 198 | 56.67 204 | 54.41 202 |
|
| test20.03 | | | 36.00 198 | 38.92 198 | 32.60 196 | 45.92 166 | 50.99 192 | 28.05 212 | 43.69 122 | 21.62 206 | 6.03 210 | 17.61 209 | 25.91 201 | 8.34 217 | 51.26 189 | 52.60 188 | 63.58 184 | 52.46 203 |
|
| TDRefinement | | | 35.76 199 | 38.23 199 | 32.88 194 | 19.09 221 | 46.04 205 | 43.29 177 | 29.49 204 | 33.49 164 | 19.04 183 | 22.29 198 | 17.82 216 | 29.69 184 | 48.60 194 | 47.24 204 | 56.65 205 | 52.12 205 |
|
| LTVRE_ROB | | 32.83 17 | 35.10 200 | 37.46 202 | 32.35 198 | 43.12 182 | 49.99 196 | 28.52 210 | 33.23 197 | 12.73 220 | 8.18 206 | 27.71 182 | 21.34 211 | 32.64 172 | 46.92 196 | 48.11 199 | 48.41 211 | 55.45 199 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| PM-MVS | | | 34.96 201 | 38.17 200 | 31.22 202 | 22.78 216 | 40.82 211 | 33.56 197 | 23.61 214 | 29.16 184 | 21.43 169 | 28.00 180 | 21.43 210 | 31.90 174 | 44.33 203 | 42.12 209 | 54.07 209 | 61.34 184 |
|
| testgi | | | 34.51 202 | 37.42 203 | 31.12 203 | 47.37 162 | 50.34 194 | 24.38 217 | 41.21 142 | 20.32 210 | 5.64 214 | 20.56 200 | 26.55 198 | 8.06 218 | 49.28 193 | 52.65 187 | 60.05 196 | 42.23 213 |
|
| MDA-MVSNet-bldmvs | | | 34.31 203 | 34.11 209 | 34.54 189 | 24.73 214 | 49.66 198 | 33.42 198 | 43.03 132 | 21.59 207 | 11.10 199 | 19.81 203 | 12.68 222 | 31.41 175 | 35.59 213 | 48.05 200 | 63.56 185 | 51.39 206 |
|
| N_pmnet | | | 34.09 204 | 35.74 207 | 32.17 200 | 37.25 197 | 43.17 209 | 32.26 204 | 35.57 178 | 26.22 198 | 10.60 201 | 20.44 202 | 19.38 215 | 20.20 197 | 44.59 202 | 47.00 205 | 57.13 203 | 49.35 210 |
|
| RPSCF | | | 33.61 205 | 40.43 195 | 25.65 207 | 16.00 223 | 32.41 217 | 31.73 205 | 13.33 221 | 50.13 83 | 23.12 159 | 31.56 157 | 40.09 138 | 32.73 171 | 41.14 211 | 37.05 212 | 36.99 217 | 50.63 208 |
|
| EU-MVSNet | | | 33.00 206 | 36.49 206 | 28.92 204 | 33.10 209 | 42.86 210 | 29.32 209 | 35.99 175 | 22.94 203 | 5.83 213 | 25.29 189 | 24.43 205 | 15.21 200 | 41.22 210 | 41.65 211 | 54.08 208 | 57.01 195 |
|
| pmmvs3 | | | 31.22 207 | 33.62 210 | 28.43 205 | 22.82 215 | 40.26 214 | 26.40 213 | 22.05 216 | 16.89 216 | 10.99 200 | 14.72 214 | 16.26 217 | 29.70 183 | 44.82 201 | 47.39 203 | 58.61 199 | 54.98 201 |
|
| FC-MVSNet-test | | | 30.97 208 | 37.38 204 | 23.49 210 | 37.42 196 | 33.68 216 | 19.43 219 | 39.27 153 | 31.37 175 | 1.67 225 | 38.56 121 | 28.85 191 | 6.06 221 | 41.40 208 | 43.80 208 | 37.10 216 | 44.03 212 |
|
| new-patchmatchnet | | | 30.47 209 | 32.80 212 | 27.75 206 | 36.81 199 | 43.98 207 | 24.85 215 | 39.29 152 | 20.52 209 | 4.06 220 | 15.94 213 | 16.05 218 | 9.57 212 | 41.32 209 | 42.05 210 | 51.94 210 | 49.74 209 |
|
| MIMVSNet1 | | | 29.60 210 | 33.37 211 | 25.20 209 | 19.52 219 | 43.94 208 | 26.29 214 | 37.92 166 | 19.95 213 | 3.79 221 | 12.64 218 | 21.99 209 | 7.70 219 | 43.83 204 | 46.32 207 | 55.97 206 | 44.92 211 |
|
| FPMVS | | | 26.87 211 | 28.19 213 | 25.32 208 | 27.09 213 | 29.49 219 | 32.28 203 | 17.79 218 | 28.09 188 | 11.33 196 | 19.38 204 | 14.69 219 | 20.88 196 | 35.11 214 | 32.82 215 | 42.56 213 | 37.75 214 |
|
| WB-MVS | | | 22.51 212 | 25.28 214 | 19.27 213 | 35.74 203 | 31.57 218 | 11.45 222 | 40.75 148 | 15.01 218 | 0.98 228 | 20.48 201 | 12.53 223 | 1.77 223 | 36.11 212 | 35.01 214 | 24.91 220 | 26.27 217 |
|
| PMVS |  | 18.18 18 | 21.95 213 | 22.85 215 | 20.90 212 | 21.92 217 | 14.78 221 | 19.95 218 | 17.31 219 | 15.69 217 | 11.32 197 | 13.70 215 | 13.91 220 | 15.02 202 | 34.92 215 | 31.72 216 | 39.85 215 | 35.20 215 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| new_pmnet | | | 19.10 214 | 22.71 216 | 14.89 215 | 10.93 225 | 24.08 220 | 14.22 220 | 13.94 220 | 18.68 214 | 2.93 222 | 12.84 217 | 11.27 224 | 11.94 209 | 30.57 217 | 30.58 217 | 35.38 218 | 30.93 216 |
|
| Gipuma |  | | 17.16 215 | 17.83 217 | 16.36 214 | 18.76 222 | 12.15 224 | 11.97 221 | 27.78 208 | 17.94 215 | 4.86 216 | 2.53 225 | 2.73 229 | 8.90 215 | 34.32 216 | 36.09 213 | 25.92 219 | 19.06 220 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| test_method | | | 13.92 216 | 17.14 218 | 10.16 218 | 1.69 228 | 6.92 227 | 11.25 223 | 5.74 222 | 22.41 204 | 8.11 207 | 10.40 219 | 20.91 212 | 13.73 207 | 22.17 218 | 13.98 220 | 20.44 221 | 23.18 218 |
|
| PMMVS2 | | | 12.25 217 | 14.17 219 | 10.00 219 | 11.39 224 | 14.35 222 | 8.21 224 | 19.29 217 | 9.31 221 | 0.19 229 | 7.38 221 | 6.19 227 | 1.10 224 | 19.26 219 | 21.13 219 | 19.85 222 | 21.56 219 |
|
| E-PMN | | | 10.66 218 | 8.30 221 | 13.42 216 | 19.91 218 | 7.87 225 | 4.30 227 | 29.47 205 | 8.37 224 | 1.70 224 | 3.67 222 | 1.29 232 | 9.12 214 | 8.98 223 | 13.59 221 | 16.03 223 | 14.30 223 |
|
| EMVS | | | 10.15 219 | 7.67 222 | 13.05 217 | 19.22 220 | 7.77 226 | 4.48 225 | 29.34 206 | 8.65 223 | 1.67 225 | 3.55 223 | 1.36 231 | 9.15 213 | 8.15 224 | 11.79 223 | 14.44 224 | 12.43 224 |
|
| MVE |  | 10.35 19 | 9.76 220 | 11.08 220 | 8.22 220 | 4.43 226 | 13.04 223 | 3.36 228 | 23.57 215 | 5.74 225 | 1.76 223 | 3.09 224 | 1.75 230 | 6.78 220 | 12.78 221 | 23.04 218 | 9.44 225 | 18.09 221 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| testmvs | | | 0.01 221 | 0.01 223 | 0.00 222 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 226 | 0.01 226 | 0.00 231 | 0.02 226 | 0.00 233 | 0.00 227 | 0.01 225 | 0.01 224 | 0.00 228 | 0.03 225 |
|
| test123 | | | 0.01 221 | 0.01 223 | 0.00 222 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 226 | 0.01 226 | 0.00 231 | 0.02 226 | 0.00 233 | 0.01 225 | 0.00 226 | 0.01 224 | 0.00 228 | 0.03 225 |
|
| uanet_test | | | 0.00 223 | 0.00 225 | 0.00 222 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 226 | 0.00 228 | 0.00 231 | 0.00 228 | 0.00 233 | 0.00 227 | 0.00 226 | 0.00 226 | 0.00 228 | 0.00 227 |
|
| sosnet-low-res | | | 0.00 223 | 0.00 225 | 0.00 222 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 226 | 0.00 228 | 0.00 231 | 0.00 228 | 0.00 233 | 0.00 227 | 0.00 226 | 0.00 226 | 0.00 228 | 0.00 227 |
|
| sosnet | | | 0.00 223 | 0.00 225 | 0.00 222 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 226 | 0.00 228 | 0.00 231 | 0.00 228 | 0.00 233 | 0.00 227 | 0.00 226 | 0.00 226 | 0.00 228 | 0.00 227 |
|
| TPM-MVS | | | | | | 78.45 5 | 83.50 6 | 78.26 3 | | | 58.88 7 | 72.62 17 | 77.54 9 | 69.42 4 | | | 80.40 7 | 85.71 44 |
| Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025 |
| RE-MVS-def | | | | | | | | | | | 21.59 168 | | | | | | | |
|
| 9.14 | | | | | | | | | | | | | 80.07 5 | | | | | |
|
| SR-MVS | | | | | | 63.74 45 | | | 48.51 60 | | | | 73.80 20 | | | | | |
|
| Anonymous202405211 | | | | 56.81 113 | | 60.91 70 | 73.48 61 | 59.82 85 | 48.68 57 | 39.26 132 | | 24.00 193 | 46.77 108 | 50.73 86 | 65.28 80 | 65.72 82 | 75.37 84 | 83.17 66 |
|
| our_test_3 | | | | | | 49.68 149 | 61.50 158 | 45.84 170 | | | | | | | | | | |
|
| ambc | | | | 35.52 208 | | 38.36 189 | 40.40 213 | 28.38 211 | | 25.20 201 | 14.87 190 | 13.22 216 | 7.54 226 | 19.34 198 | 55.63 175 | 47.79 202 | 47.91 212 | 58.89 189 |
|
| MTAPA | | | | | | | | | | | 54.82 17 | | 71.98 25 | | | | | |
|
| MTMP | | | | | | | | | | | 50.64 31 | | 68.31 30 | | | | | |
|
| Patchmatch-RL test | | | | | | | | 0.69 230 | | | | | | | | | | |
|
| tmp_tt | | | | | 4.41 221 | 2.56 227 | 1.81 229 | 2.61 229 | 0.27 224 | 20.12 211 | 9.81 203 | 17.69 208 | 9.04 225 | 1.96 222 | 12.88 220 | 12.11 222 | 9.23 226 | |
|
| XVS | | | | | | 62.70 54 | 73.06 64 | 61.80 71 | | | 42.02 74 | | 63.42 43 | | | | 74.68 99 | |
|
| X-MVStestdata | | | | | | 62.70 54 | 73.06 64 | 61.80 71 | | | 42.02 74 | | 63.42 43 | | | | 74.68 99 | |
|
| mPP-MVS | | | | | | 63.08 50 | | | | | | | 62.34 46 | | | | | |
|
| NP-MVS | | | | | | | | | | 72.62 28 | | | | | | | | |
|
| Patchmtry | | | | | | | 64.49 138 | 52.06 141 | 34.21 188 | | 31.74 121 | | | | | | | |
|
| DeepMVS_CX |  | | | | | | 5.87 228 | 4.32 226 | 1.74 223 | 9.04 222 | 1.30 227 | 7.97 220 | 3.16 228 | 8.56 216 | 9.74 222 | | 6.30 227 | 14.51 222 |
|