SED-MVS | | | 78.97 1 | 84.56 1 | 72.45 1 | 81.70 2 | 86.20 2 | 77.82 3 | 59.97 5 | 88.89 1 | 65.96 1 | 86.00 5 | 84.02 1 | 70.03 1 | 76.19 4 | 76.17 5 | 79.22 17 | 94.46 1 |
|
DVP-MVS |  | | 77.54 2 | 84.41 2 | 69.54 6 | 79.93 3 | 86.08 3 | 77.20 8 | 60.31 3 | 88.62 2 | 62.54 2 | 86.67 3 | 83.77 2 | 58.04 32 | 75.84 7 | 75.69 8 | 79.21 18 | 94.17 2 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
SF-MVS | | | 76.41 3 | 80.45 6 | 71.69 2 | 82.90 1 | 86.54 1 | 82.08 1 | 64.58 1 | 81.67 11 | 59.82 5 | 86.26 4 | 77.90 8 | 61.11 15 | 71.81 27 | 70.75 34 | 79.63 11 | 88.22 23 |
|
MSP-MVS | | | 76.38 4 | 82.99 3 | 68.68 7 | 71.93 17 | 78.65 22 | 77.61 5 | 55.44 18 | 88.04 3 | 60.25 4 | 92.24 1 | 77.08 10 | 69.84 2 | 75.48 8 | 75.69 8 | 76.99 56 | 93.75 3 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DVP-MVS++ | | | 75.99 5 | 81.32 5 | 69.77 5 | 71.86 19 | 85.13 4 | 77.62 4 | 59.87 7 | 82.69 10 | 61.55 3 | 83.05 9 | 79.63 6 | 69.78 3 | 76.01 5 | 75.89 6 | 77.92 38 | 86.86 35 |
|
DPE-MVS |  | | 75.74 6 | 82.82 4 | 67.49 11 | 77.07 6 | 82.01 7 | 77.05 9 | 57.70 11 | 86.55 5 | 55.44 15 | 90.50 2 | 82.52 3 | 60.33 19 | 72.99 15 | 72.98 16 | 77.33 47 | 92.19 6 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
DPM-MVS | | | 74.63 7 | 78.53 11 | 70.07 3 | 76.10 8 | 82.56 6 | 79.30 2 | 59.89 6 | 80.49 13 | 57.75 10 | 66.98 25 | 76.16 13 | 65.95 4 | 79.35 1 | 78.47 1 | 81.45 5 | 85.71 44 |
|
APDe-MVS | | | 74.59 8 | 80.23 7 | 68.01 10 | 76.51 7 | 80.20 14 | 77.39 6 | 58.18 9 | 85.31 6 | 56.84 12 | 84.89 6 | 76.08 14 | 60.66 17 | 71.85 26 | 71.76 21 | 78.47 27 | 91.49 9 |
|
MCST-MVS | | | 74.06 9 | 77.71 14 | 69.79 4 | 78.95 4 | 81.99 8 | 76.33 10 | 62.16 2 | 75.89 19 | 52.96 23 | 64.37 30 | 73.30 21 | 65.66 5 | 77.49 2 | 77.43 3 | 82.67 1 | 93.51 4 |
|
CNVR-MVS | | | 73.87 10 | 78.60 10 | 68.35 9 | 73.32 12 | 81.97 9 | 76.19 11 | 59.29 8 | 80.12 14 | 56.70 13 | 67.09 24 | 76.48 11 | 64.26 7 | 75.88 6 | 75.75 7 | 80.32 7 | 92.93 5 |
|
SMA-MVS |  | | 73.31 11 | 79.53 8 | 66.05 13 | 71.25 20 | 80.13 15 | 74.99 12 | 56.09 14 | 84.14 7 | 54.48 17 | 73.74 16 | 80.23 4 | 61.43 12 | 74.96 9 | 74.09 12 | 78.08 35 | 89.42 13 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
CSCG | | | 72.98 12 | 76.86 16 | 68.46 8 | 78.23 5 | 81.74 10 | 77.26 7 | 60.00 4 | 75.61 22 | 59.06 6 | 62.72 32 | 77.42 9 | 56.63 44 | 74.24 11 | 77.18 4 | 79.56 12 | 89.13 17 |
|
HPM-MVS++ |  | | 72.44 13 | 78.73 9 | 65.11 14 | 71.88 18 | 77.31 32 | 71.98 20 | 55.67 16 | 83.11 9 | 53.59 21 | 75.90 12 | 78.49 7 | 61.00 16 | 73.99 12 | 73.31 15 | 76.55 60 | 88.97 18 |
|
APD-MVS |  | | 71.86 14 | 77.91 13 | 64.80 16 | 70.39 24 | 75.69 42 | 74.02 14 | 56.14 13 | 83.59 8 | 52.92 24 | 84.67 7 | 73.46 20 | 59.30 25 | 69.47 43 | 69.66 43 | 76.02 67 | 88.84 19 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ACMMP_NAP | | | 71.50 15 | 77.27 15 | 64.77 17 | 69.64 26 | 79.26 16 | 73.53 15 | 54.73 24 | 79.32 16 | 54.23 18 | 74.81 13 | 74.61 18 | 59.40 24 | 73.00 14 | 72.17 19 | 77.10 55 | 87.72 27 |
|
NCCC | | | 71.36 16 | 75.44 18 | 66.60 12 | 72.46 15 | 79.18 18 | 74.16 13 | 57.83 10 | 76.93 17 | 54.19 19 | 63.47 31 | 71.08 25 | 61.30 14 | 73.56 13 | 73.70 13 | 79.69 10 | 90.19 10 |
|
train_agg | | | 70.74 17 | 76.53 17 | 63.98 19 | 70.33 25 | 75.16 46 | 72.33 19 | 55.78 15 | 75.74 20 | 50.41 32 | 80.08 11 | 73.15 22 | 57.75 36 | 71.96 25 | 70.94 31 | 77.25 51 | 88.69 21 |
|
TSAR-MVS + MP. | | | 70.28 18 | 75.09 19 | 64.66 18 | 69.34 28 | 64.61 130 | 72.60 18 | 56.29 12 | 80.73 12 | 58.36 8 | 84.56 8 | 75.22 16 | 55.37 51 | 69.11 49 | 69.45 44 | 75.97 69 | 81.97 76 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
DeepPCF-MVS | | 62.48 1 | 70.07 19 | 78.36 12 | 60.39 41 | 62.38 58 | 76.96 35 | 65.54 56 | 52.23 32 | 87.46 4 | 49.07 33 | 74.05 15 | 76.19 12 | 59.01 27 | 72.79 19 | 71.61 23 | 74.13 109 | 89.49 12 |
|
SteuartSystems-ACMMP | | | 69.78 20 | 74.76 20 | 63.98 19 | 73.45 11 | 78.56 23 | 73.13 17 | 55.24 21 | 70.68 32 | 48.93 35 | 70.43 20 | 69.10 27 | 54.00 57 | 72.78 21 | 72.98 16 | 79.14 19 | 88.74 20 |
Skip Steuart: Steuart Systems R&D Blog. |
HFP-MVS | | | 68.75 21 | 72.84 22 | 63.98 19 | 68.87 32 | 75.09 47 | 71.87 21 | 51.22 36 | 73.50 26 | 58.17 9 | 68.05 23 | 68.67 28 | 57.79 35 | 70.49 36 | 69.23 46 | 75.98 68 | 84.84 54 |
|
SD-MVS | | | 68.30 22 | 72.58 24 | 63.31 24 | 69.24 29 | 67.85 103 | 70.81 26 | 53.65 29 | 79.64 15 | 58.52 7 | 74.31 14 | 75.37 15 | 53.52 63 | 65.63 73 | 63.56 108 | 74.13 109 | 81.73 81 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
DELS-MVS | | | 67.36 23 | 70.34 37 | 63.89 22 | 69.12 30 | 81.55 11 | 70.82 25 | 55.02 22 | 53.38 75 | 48.83 36 | 56.45 46 | 59.35 55 | 60.05 22 | 74.93 10 | 74.78 10 | 79.51 13 | 91.95 7 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MP-MVS |  | | 67.34 24 | 73.08 21 | 60.64 38 | 66.20 37 | 76.62 37 | 69.22 32 | 50.92 38 | 70.07 33 | 48.81 37 | 69.66 21 | 70.12 26 | 53.68 60 | 68.41 54 | 69.13 48 | 74.98 88 | 87.53 29 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
DeepC-MVS | | 60.65 2 | 67.33 25 | 71.52 31 | 62.44 27 | 59.79 78 | 74.84 49 | 68.89 33 | 55.56 17 | 73.91 25 | 53.50 22 | 55.00 52 | 65.63 33 | 60.08 21 | 71.99 24 | 71.33 27 | 76.85 57 | 87.94 26 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
HQP-MVS | | | 67.22 26 | 72.08 26 | 61.56 33 | 66.76 35 | 73.58 58 | 71.41 22 | 52.98 30 | 69.92 35 | 43.85 59 | 70.58 19 | 58.75 57 | 56.76 42 | 72.90 17 | 71.88 20 | 77.57 43 | 86.94 34 |
|
CANet | | | 67.21 27 | 71.83 28 | 61.83 29 | 64.51 43 | 79.25 17 | 66.72 49 | 48.73 54 | 68.49 40 | 50.63 31 | 61.40 36 | 66.47 31 | 61.44 11 | 69.31 47 | 69.90 39 | 78.94 23 | 88.00 24 |
|
CDPH-MVS | | | 67.03 28 | 71.64 29 | 61.65 32 | 69.10 31 | 76.84 36 | 71.35 24 | 55.42 19 | 67.02 43 | 42.83 64 | 65.27 29 | 64.60 37 | 53.16 66 | 69.70 42 | 71.40 25 | 78.02 37 | 86.67 36 |
|
MAR-MVS | | | 66.85 29 | 69.81 38 | 63.39 23 | 73.56 10 | 80.51 13 | 69.87 28 | 51.51 35 | 67.78 42 | 46.44 45 | 51.09 66 | 61.60 50 | 60.38 18 | 72.67 22 | 73.61 14 | 78.59 24 | 81.44 85 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
DeepC-MVS_fast | | 60.18 3 | 66.84 30 | 70.69 35 | 62.36 28 | 62.76 52 | 73.21 61 | 67.96 36 | 52.31 31 | 72.26 29 | 51.03 26 | 56.50 45 | 64.26 38 | 63.37 8 | 71.64 28 | 70.85 32 | 76.70 59 | 86.10 41 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TSAR-MVS + GP. | | | 66.77 31 | 72.21 25 | 60.44 40 | 61.23 66 | 70.00 84 | 64.26 60 | 47.79 67 | 72.98 27 | 56.32 14 | 71.35 18 | 72.33 23 | 55.68 50 | 65.49 74 | 66.66 70 | 77.35 45 | 86.62 37 |
|
MVS_0304 | | | 66.31 32 | 71.61 30 | 60.14 43 | 62.59 56 | 78.98 20 | 67.13 45 | 45.75 94 | 64.35 48 | 45.23 53 | 60.69 38 | 67.67 30 | 61.73 10 | 71.09 31 | 71.03 29 | 78.41 31 | 87.44 30 |
|
ACMMPR | | | 66.20 33 | 71.51 32 | 60.00 45 | 65.34 41 | 74.04 53 | 69.39 30 | 50.92 38 | 71.97 30 | 46.04 47 | 66.79 26 | 65.68 32 | 53.07 67 | 68.93 51 | 69.12 49 | 75.21 82 | 84.05 60 |
|
3Dnovator | | 58.39 4 | 65.97 34 | 66.85 52 | 64.94 15 | 73.72 9 | 79.03 19 | 67.73 39 | 54.25 25 | 61.52 51 | 52.79 25 | 42.27 92 | 60.73 53 | 62.01 9 | 71.29 29 | 71.75 22 | 79.12 20 | 81.34 88 |
|
TSAR-MVS + ACMM | | | 65.95 35 | 72.83 23 | 57.93 55 | 69.35 27 | 65.85 122 | 73.36 16 | 39.84 148 | 76.00 18 | 48.69 38 | 82.54 10 | 75.03 17 | 49.38 95 | 65.33 76 | 63.42 110 | 66.94 169 | 81.67 82 |
|
canonicalmvs | | | 65.55 36 | 70.75 34 | 59.49 49 | 62.11 61 | 78.26 27 | 66.52 50 | 43.82 118 | 71.54 31 | 47.84 40 | 61.30 37 | 61.68 48 | 58.48 30 | 67.56 61 | 69.67 42 | 78.16 34 | 85.25 50 |
|
QAPM | | | 65.47 37 | 67.82 45 | 62.72 26 | 72.56 13 | 81.17 12 | 67.43 42 | 55.38 20 | 56.07 68 | 43.29 62 | 43.60 87 | 65.38 35 | 59.10 26 | 72.20 23 | 70.76 33 | 78.56 25 | 85.59 47 |
|
PGM-MVS | | | 65.35 38 | 70.43 36 | 59.43 50 | 65.78 39 | 73.75 55 | 69.41 29 | 48.18 63 | 68.80 39 | 45.37 51 | 65.88 28 | 64.04 39 | 52.68 74 | 68.94 50 | 68.68 54 | 75.18 83 | 82.93 67 |
|
PHI-MVS | | | 65.17 39 | 72.07 27 | 57.11 65 | 63.02 50 | 77.35 31 | 67.04 46 | 48.14 65 | 68.03 41 | 37.56 90 | 66.00 27 | 65.39 34 | 53.19 65 | 70.68 33 | 70.57 36 | 73.72 117 | 86.46 40 |
|
CLD-MVS | | | 64.69 40 | 67.25 47 | 61.69 31 | 68.22 34 | 78.33 25 | 63.09 64 | 47.59 70 | 69.64 36 | 53.98 20 | 54.87 53 | 53.94 73 | 57.87 33 | 72.79 19 | 71.34 26 | 79.40 15 | 69.87 157 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
MVS_111021_HR | | | 64.66 41 | 67.11 50 | 61.80 30 | 71.04 21 | 77.91 28 | 62.75 67 | 54.78 23 | 51.43 78 | 47.54 41 | 53.77 56 | 54.85 70 | 56.84 40 | 70.59 34 | 71.50 24 | 77.86 39 | 89.70 11 |
|
EPNet | | | 64.39 42 | 70.93 33 | 56.77 67 | 60.58 73 | 75.77 39 | 59.28 88 | 50.58 42 | 69.93 34 | 40.73 79 | 68.59 22 | 61.60 50 | 53.72 58 | 68.65 52 | 68.07 56 | 75.75 74 | 83.87 62 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CP-MVS | | | 64.37 43 | 69.48 39 | 58.39 52 | 62.21 60 | 71.81 76 | 67.27 43 | 49.51 48 | 69.40 38 | 45.76 49 | 60.41 39 | 64.96 36 | 51.84 76 | 67.33 65 | 67.57 63 | 73.78 116 | 84.89 52 |
|
DROMVSNet | | | 64.30 44 | 68.19 41 | 59.76 47 | 62.97 51 | 75.31 45 | 67.26 44 | 44.19 112 | 60.73 54 | 47.52 42 | 55.84 48 | 62.12 46 | 57.67 37 | 70.71 32 | 67.47 64 | 78.97 22 | 85.13 51 |
|
casdiffmvs_mvg |  | | 64.26 45 | 67.60 46 | 60.36 42 | 62.26 59 | 78.54 24 | 69.39 30 | 48.33 61 | 56.54 63 | 45.36 52 | 52.86 60 | 57.36 62 | 58.42 31 | 70.28 37 | 70.24 38 | 78.43 28 | 87.39 32 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
casdiffmvs |  | | 63.87 46 | 67.08 51 | 60.12 44 | 60.90 69 | 78.29 26 | 67.91 37 | 48.01 66 | 55.89 70 | 44.97 54 | 50.45 68 | 56.94 63 | 59.54 23 | 70.17 40 | 69.81 40 | 79.41 14 | 87.99 25 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
MVS_Test | | | 63.75 47 | 67.24 48 | 59.68 48 | 60.01 74 | 76.99 34 | 68.13 35 | 45.17 98 | 57.45 62 | 43.74 60 | 53.07 59 | 56.16 68 | 61.33 13 | 70.27 38 | 71.11 28 | 79.72 9 | 85.63 46 |
|
X-MVS | | | 63.53 48 | 68.62 40 | 57.60 59 | 64.77 42 | 73.06 62 | 65.82 54 | 50.53 43 | 65.77 45 | 42.02 72 | 58.20 43 | 63.42 42 | 47.83 106 | 68.25 58 | 68.50 55 | 74.61 98 | 83.16 66 |
|
ACMMP |  | | 63.27 49 | 67.85 44 | 57.93 55 | 62.64 55 | 72.30 73 | 68.23 34 | 48.77 53 | 66.50 44 | 43.05 63 | 62.07 33 | 57.84 60 | 49.98 87 | 66.58 69 | 66.46 76 | 74.93 89 | 83.17 64 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
CS-MVS | | | 63.16 50 | 68.01 43 | 57.49 60 | 57.39 94 | 72.73 67 | 63.38 63 | 45.16 99 | 59.37 56 | 46.49 44 | 58.93 42 | 57.68 61 | 56.31 45 | 71.12 30 | 70.37 37 | 76.23 66 | 85.88 42 |
|
ETV-MVS | | | 62.88 51 | 68.18 42 | 56.70 68 | 58.47 86 | 74.89 48 | 60.26 80 | 43.96 115 | 58.27 61 | 42.37 70 | 61.47 35 | 56.56 64 | 57.80 34 | 68.00 59 | 68.74 52 | 77.34 46 | 89.33 16 |
|
AdaColmap |  | | 62.79 52 | 62.63 68 | 62.98 25 | 70.82 22 | 72.90 65 | 67.84 38 | 54.09 27 | 65.14 46 | 50.71 29 | 41.78 94 | 47.64 101 | 60.17 20 | 67.41 64 | 66.83 68 | 74.28 104 | 76.69 112 |
|
3Dnovator+ | | 55.76 7 | 62.70 53 | 65.10 60 | 59.90 46 | 65.89 38 | 72.15 74 | 62.94 66 | 49.82 47 | 62.77 50 | 49.06 34 | 43.62 86 | 61.47 52 | 58.60 29 | 68.51 53 | 66.75 69 | 73.08 131 | 80.40 96 |
|
OpenMVS |  | 55.62 8 | 62.57 54 | 63.76 65 | 61.19 35 | 72.13 16 | 78.84 21 | 64.42 58 | 50.51 44 | 56.44 65 | 45.67 50 | 36.88 123 | 56.51 65 | 56.66 43 | 68.28 57 | 68.96 50 | 77.73 41 | 80.44 95 |
|
PVSNet_BlendedMVS | | | 62.53 55 | 66.37 54 | 58.05 53 | 58.17 87 | 75.70 40 | 61.30 73 | 48.67 57 | 58.67 57 | 50.93 27 | 55.43 50 | 49.39 90 | 53.01 69 | 69.46 44 | 66.55 73 | 76.24 64 | 89.39 14 |
|
PVSNet_Blended | | | 62.53 55 | 66.37 54 | 58.05 53 | 58.17 87 | 75.70 40 | 61.30 73 | 48.67 57 | 58.67 57 | 50.93 27 | 55.43 50 | 49.39 90 | 53.01 69 | 69.46 44 | 66.55 73 | 76.24 64 | 89.39 14 |
|
MVSTER | | | 62.51 57 | 67.22 49 | 57.02 66 | 55.05 113 | 69.23 92 | 63.02 65 | 46.88 81 | 61.11 53 | 43.95 58 | 59.20 41 | 58.86 56 | 56.80 41 | 69.13 48 | 70.98 30 | 76.41 62 | 82.04 73 |
|
CHOSEN 1792x2688 | | | 62.48 58 | 64.06 64 | 60.64 38 | 72.50 14 | 84.18 5 | 62.43 68 | 53.77 28 | 47.90 92 | 39.85 83 | 25.15 186 | 44.76 115 | 53.72 58 | 77.29 3 | 77.61 2 | 81.60 4 | 91.53 8 |
|
CostFormer | | | 62.45 59 | 65.68 58 | 58.67 51 | 63.29 47 | 77.65 29 | 67.62 40 | 38.42 158 | 54.04 73 | 46.00 48 | 48.27 76 | 57.89 59 | 56.97 39 | 67.03 67 | 67.79 62 | 79.74 8 | 87.09 33 |
|
PCF-MVS | | 55.99 6 | 62.31 60 | 66.60 53 | 57.32 63 | 59.12 85 | 73.68 57 | 67.53 41 | 48.71 55 | 61.35 52 | 42.83 64 | 51.33 65 | 63.48 41 | 53.48 64 | 65.64 72 | 64.87 92 | 72.22 136 | 85.83 43 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
diffmvs |  | | 62.30 61 | 66.05 56 | 57.92 57 | 57.08 95 | 75.60 44 | 66.90 47 | 47.06 79 | 55.45 72 | 43.37 61 | 53.45 58 | 55.60 69 | 57.21 38 | 66.57 70 | 68.00 58 | 75.89 72 | 87.70 28 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
DI_MVS_plusplus_trai | | | 61.86 62 | 65.26 59 | 57.90 58 | 57.93 91 | 74.51 51 | 66.30 51 | 46.49 87 | 49.96 82 | 41.62 75 | 42.69 90 | 61.77 47 | 58.74 28 | 70.25 39 | 69.32 45 | 76.31 63 | 88.30 22 |
|
MSLP-MVS++ | | | 61.81 63 | 62.19 73 | 61.37 34 | 68.33 33 | 63.08 144 | 70.75 27 | 38.89 154 | 63.96 49 | 57.51 11 | 48.59 74 | 61.66 49 | 53.67 61 | 62.04 118 | 59.92 153 | 79.03 21 | 76.08 115 |
|
CS-MVS-test | | | 61.68 64 | 65.97 57 | 56.67 69 | 57.77 92 | 72.59 70 | 57.63 95 | 45.54 96 | 58.53 60 | 47.11 43 | 59.45 40 | 56.34 66 | 55.15 52 | 64.52 86 | 65.03 90 | 76.80 58 | 85.34 49 |
|
OPM-MVS | | | 61.59 65 | 62.30 72 | 60.76 37 | 66.53 36 | 73.35 60 | 71.41 22 | 54.18 26 | 40.82 122 | 41.57 76 | 45.70 82 | 54.84 71 | 54.43 56 | 69.92 41 | 69.19 47 | 76.45 61 | 82.25 70 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
MS-PatchMatch | | | 61.41 66 | 61.88 76 | 60.85 36 | 70.57 23 | 75.98 38 | 66.29 52 | 46.91 80 | 50.56 80 | 48.28 39 | 36.30 126 | 51.64 77 | 50.95 82 | 72.89 18 | 70.65 35 | 82.13 3 | 75.17 122 |
|
EIA-MVS | | | 60.56 67 | 64.29 63 | 56.20 74 | 59.14 84 | 72.68 69 | 59.55 86 | 43.56 121 | 51.78 77 | 41.01 78 | 55.47 49 | 51.93 76 | 55.87 47 | 65.01 80 | 66.57 72 | 78.06 36 | 86.60 39 |
|
ACMP | | 56.21 5 | 59.78 68 | 61.81 78 | 57.41 62 | 61.15 67 | 68.88 94 | 65.98 53 | 48.85 52 | 58.56 59 | 44.19 57 | 48.89 72 | 46.31 107 | 48.56 100 | 63.61 101 | 64.49 100 | 75.75 74 | 81.91 77 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
LGP-MVS_train | | | 59.69 69 | 62.59 69 | 56.31 72 | 61.94 62 | 68.15 100 | 66.90 47 | 48.15 64 | 59.75 55 | 38.47 86 | 50.38 69 | 48.34 98 | 46.87 111 | 65.39 75 | 64.93 91 | 75.51 78 | 81.21 90 |
|
Effi-MVS+ | | | 59.63 70 | 61.78 79 | 57.12 64 | 61.56 63 | 71.63 77 | 63.61 61 | 47.59 70 | 47.18 93 | 37.79 87 | 45.29 83 | 49.93 86 | 56.27 46 | 67.45 62 | 67.06 66 | 75.91 70 | 83.93 61 |
|
CPTT-MVS | | | 59.54 71 | 64.47 62 | 53.79 84 | 54.99 115 | 67.63 106 | 65.48 57 | 44.59 106 | 64.81 47 | 37.74 88 | 51.55 63 | 59.90 54 | 49.77 91 | 61.83 120 | 61.26 138 | 70.18 150 | 84.31 59 |
|
baseline2 | | | 59.20 72 | 61.72 80 | 56.27 73 | 59.61 80 | 74.12 52 | 58.65 91 | 49.42 49 | 48.10 90 | 40.12 82 | 49.10 71 | 44.15 117 | 51.24 79 | 66.65 68 | 67.88 61 | 78.56 25 | 82.06 72 |
|
GeoE | | | 58.97 73 | 60.94 81 | 56.67 69 | 61.27 65 | 72.71 68 | 61.35 72 | 45.69 95 | 49.19 86 | 41.22 77 | 39.55 110 | 49.58 89 | 52.79 73 | 64.79 82 | 65.89 80 | 77.73 41 | 84.87 53 |
|
baseline | | | 58.65 74 | 61.99 74 | 54.75 79 | 54.70 117 | 71.85 75 | 60.20 81 | 43.91 116 | 55.99 69 | 40.13 81 | 53.50 57 | 50.91 83 | 55.76 48 | 61.29 128 | 61.73 130 | 73.83 113 | 78.68 104 |
|
PVSNet_Blended_VisFu | | | 58.56 75 | 62.33 71 | 54.16 81 | 56.90 96 | 73.92 54 | 57.72 94 | 46.16 92 | 44.23 100 | 42.73 67 | 46.26 79 | 51.06 82 | 46.28 114 | 67.99 60 | 65.38 85 | 75.18 83 | 87.44 30 |
|
ACMM | | 53.73 9 | 57.91 76 | 58.27 96 | 57.49 60 | 63.10 48 | 66.45 116 | 65.65 55 | 49.02 51 | 53.69 74 | 42.67 68 | 36.41 125 | 46.07 110 | 50.38 85 | 64.74 84 | 64.63 97 | 74.14 108 | 75.91 116 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CANet_DTU | | | 57.87 77 | 63.63 66 | 51.15 99 | 52.18 124 | 70.20 83 | 58.14 93 | 37.32 165 | 56.49 64 | 31.06 122 | 57.38 44 | 50.05 85 | 53.67 61 | 64.98 81 | 65.04 89 | 74.57 99 | 81.29 89 |
|
ET-MVSNet_ETH3D | | | 57.84 78 | 61.91 75 | 53.09 87 | 32.91 205 | 74.53 50 | 63.51 62 | 46.80 83 | 46.52 95 | 36.14 96 | 56.00 47 | 46.20 108 | 64.41 6 | 60.75 136 | 66.99 67 | 74.79 90 | 82.35 68 |
|
tpm cat1 | | | 57.41 79 | 58.26 97 | 56.42 71 | 60.80 71 | 72.56 71 | 64.35 59 | 38.43 157 | 49.18 87 | 46.36 46 | 36.69 124 | 43.50 121 | 54.47 54 | 61.39 126 | 62.64 118 | 74.11 111 | 81.81 78 |
|
IB-MVS | | 53.15 10 | 57.33 80 | 59.02 88 | 55.37 76 | 60.83 70 | 77.11 33 | 54.51 119 | 50.10 46 | 43.22 106 | 42.82 66 | 40.50 100 | 37.61 141 | 44.67 126 | 59.27 150 | 69.81 40 | 79.29 16 | 85.59 47 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
tpmrst | | | 57.23 81 | 59.08 87 | 55.06 77 | 59.91 76 | 70.65 81 | 60.71 76 | 35.38 176 | 47.91 91 | 42.58 69 | 39.78 105 | 45.45 112 | 54.44 55 | 62.19 115 | 62.82 115 | 77.37 44 | 84.73 55 |
|
baseline1 | | | 57.21 82 | 60.53 83 | 53.33 86 | 62.50 57 | 69.86 86 | 57.33 99 | 50.59 41 | 43.39 105 | 30.00 128 | 48.60 73 | 51.09 81 | 42.36 138 | 69.38 46 | 68.03 57 | 77.20 52 | 73.39 130 |
|
FA-MVS(training) | | | 57.15 83 | 60.42 84 | 53.34 85 | 58.15 89 | 72.77 66 | 59.79 84 | 38.68 155 | 49.01 88 | 36.56 95 | 40.79 98 | 45.44 113 | 53.04 68 | 65.23 79 | 67.93 60 | 73.82 114 | 81.80 80 |
|
HyFIR lowres test | | | 57.12 84 | 59.11 86 | 54.80 78 | 61.55 64 | 77.55 30 | 59.02 89 | 45.00 101 | 41.84 119 | 33.93 108 | 22.44 193 | 49.16 93 | 51.02 81 | 68.39 55 | 68.71 53 | 78.26 33 | 85.70 45 |
|
MVS_111021_LR | | | 57.06 85 | 60.60 82 | 52.93 88 | 56.25 100 | 65.14 128 | 55.16 117 | 41.21 140 | 52.32 76 | 44.89 55 | 53.92 55 | 49.27 92 | 52.16 75 | 61.46 124 | 60.54 146 | 67.92 162 | 81.53 84 |
|
DCV-MVSNet | | | 56.80 86 | 58.96 89 | 54.28 80 | 59.96 75 | 66.74 114 | 60.37 79 | 44.87 103 | 41.01 121 | 36.81 93 | 47.57 77 | 47.87 100 | 48.23 103 | 64.41 88 | 65.17 87 | 75.45 79 | 79.95 98 |
|
Anonymous20231211 | | | 56.40 87 | 57.00 107 | 55.70 75 | 59.78 79 | 72.49 72 | 61.29 75 | 46.83 82 | 40.50 124 | 40.46 80 | 22.12 195 | 49.73 87 | 51.07 80 | 64.39 89 | 65.30 86 | 74.74 92 | 84.44 58 |
|
PMMVS | | | 55.74 88 | 62.68 67 | 47.64 130 | 44.34 174 | 65.58 126 | 47.22 157 | 37.96 161 | 56.43 66 | 34.11 106 | 61.51 34 | 47.41 102 | 54.55 53 | 65.88 71 | 62.49 122 | 67.67 164 | 79.48 99 |
|
Fast-Effi-MVS+ | | | 55.73 89 | 58.26 97 | 52.76 89 | 54.33 118 | 68.19 99 | 57.05 100 | 34.66 178 | 46.92 94 | 38.96 85 | 40.53 99 | 41.55 130 | 55.69 49 | 65.31 77 | 65.99 77 | 75.90 71 | 79.34 100 |
|
FC-MVSNet-train | | | 55.68 90 | 57.00 107 | 54.13 82 | 63.37 45 | 66.16 118 | 46.77 160 | 52.14 33 | 42.36 113 | 37.67 89 | 48.50 75 | 41.42 132 | 51.28 78 | 61.58 123 | 63.22 112 | 73.56 119 | 75.76 119 |
|
FMVSNet3 | | | 55.66 91 | 59.68 85 | 50.96 101 | 50.59 138 | 66.49 115 | 57.57 96 | 46.61 84 | 49.30 83 | 28.77 133 | 39.61 106 | 51.42 78 | 43.85 131 | 68.29 56 | 68.80 51 | 78.35 32 | 73.86 125 |
|
OMC-MVS | | | 55.48 92 | 61.85 77 | 48.04 129 | 41.55 181 | 60.32 161 | 56.80 104 | 31.78 198 | 75.67 21 | 42.30 71 | 51.52 64 | 54.15 72 | 49.91 89 | 60.28 141 | 57.59 160 | 65.91 172 | 73.42 128 |
|
tpm | | | 54.94 93 | 57.86 102 | 51.54 97 | 59.48 82 | 67.04 110 | 58.34 92 | 34.60 180 | 41.93 118 | 34.41 103 | 42.40 91 | 47.14 103 | 49.07 98 | 61.46 124 | 61.67 134 | 73.31 126 | 83.39 63 |
|
GBi-Net | | | 54.66 94 | 58.42 94 | 50.26 109 | 49.36 147 | 65.81 123 | 56.80 104 | 46.61 84 | 49.30 83 | 28.77 133 | 39.61 106 | 51.42 78 | 42.71 134 | 64.25 92 | 65.54 82 | 77.32 48 | 73.03 133 |
|
test1 | | | 54.66 94 | 58.42 94 | 50.26 109 | 49.36 147 | 65.81 123 | 56.80 104 | 46.61 84 | 49.30 83 | 28.77 133 | 39.61 106 | 51.42 78 | 42.71 134 | 64.25 92 | 65.54 82 | 77.32 48 | 73.03 133 |
|
test-LLR | | | 54.62 96 | 58.66 92 | 49.89 115 | 51.68 130 | 65.89 120 | 47.88 151 | 46.35 88 | 42.51 110 | 29.84 129 | 41.41 95 | 48.87 94 | 45.20 119 | 62.91 109 | 64.43 101 | 78.43 28 | 84.62 56 |
|
TSAR-MVS + COLMAP | | | 54.37 97 | 62.43 70 | 44.98 145 | 34.33 201 | 58.94 168 | 54.11 124 | 34.15 189 | 74.06 24 | 34.57 102 | 71.63 17 | 42.03 129 | 47.88 105 | 61.26 129 | 57.33 163 | 64.83 175 | 71.74 143 |
|
EPMVS | | | 54.07 98 | 56.06 113 | 51.75 96 | 56.74 98 | 70.80 79 | 55.32 115 | 34.20 186 | 46.46 96 | 36.59 94 | 40.38 102 | 42.55 124 | 49.77 91 | 61.25 130 | 60.90 142 | 77.86 39 | 70.08 154 |
|
v2v482 | | | 54.00 99 | 55.12 120 | 52.69 91 | 51.73 129 | 69.42 91 | 60.65 77 | 45.09 100 | 34.56 155 | 33.73 111 | 35.29 129 | 35.36 151 | 49.92 88 | 64.05 98 | 65.16 88 | 75.00 87 | 81.98 75 |
|
CNLPA | | | 54.00 99 | 57.08 106 | 50.40 108 | 49.83 144 | 61.75 152 | 53.47 127 | 37.27 166 | 74.55 23 | 44.85 56 | 33.58 141 | 45.42 114 | 52.94 72 | 58.89 152 | 53.66 182 | 64.06 178 | 71.68 144 |
|
FMVSNet2 | | | 53.94 101 | 57.29 104 | 50.03 112 | 49.36 147 | 65.81 123 | 56.80 104 | 45.95 93 | 43.13 107 | 28.04 137 | 35.68 127 | 48.18 99 | 42.71 134 | 67.23 66 | 67.95 59 | 77.32 48 | 73.03 133 |
|
v8 | | | 53.77 102 | 54.82 125 | 52.54 92 | 52.12 125 | 66.95 113 | 60.56 78 | 43.23 127 | 37.17 144 | 35.35 98 | 34.96 132 | 37.50 143 | 49.51 94 | 63.67 100 | 64.59 98 | 74.48 101 | 78.91 103 |
|
GA-MVS | | | 53.77 102 | 56.41 112 | 50.70 103 | 51.63 132 | 69.96 85 | 57.55 97 | 44.39 107 | 34.31 156 | 27.15 139 | 40.99 97 | 36.40 147 | 47.65 108 | 67.45 62 | 67.16 65 | 75.83 73 | 78.60 105 |
|
Effi-MVS+-dtu | | | 53.63 104 | 54.85 124 | 52.20 94 | 59.32 83 | 61.33 155 | 56.42 110 | 40.24 146 | 43.84 102 | 34.22 105 | 39.49 111 | 46.18 109 | 53.00 71 | 58.72 156 | 57.49 162 | 69.99 153 | 76.91 110 |
|
thisisatest0530 | | | 53.61 105 | 57.22 105 | 49.40 120 | 51.30 134 | 68.22 98 | 52.72 135 | 43.34 125 | 42.72 109 | 35.31 99 | 43.57 88 | 44.14 118 | 44.37 129 | 63.00 107 | 64.86 93 | 69.34 156 | 74.00 124 |
|
v1144 | | | 53.47 106 | 54.65 126 | 52.10 95 | 51.93 127 | 69.81 87 | 59.32 87 | 44.77 105 | 33.21 162 | 32.52 114 | 33.55 142 | 34.34 159 | 49.29 96 | 64.58 85 | 64.81 95 | 74.74 92 | 82.27 69 |
|
v10 | | | 53.44 107 | 54.40 127 | 52.31 93 | 52.08 126 | 66.99 111 | 59.68 85 | 43.41 122 | 35.90 150 | 34.30 104 | 33.98 139 | 35.56 149 | 50.10 86 | 64.39 89 | 64.67 96 | 74.32 102 | 79.30 101 |
|
PatchmatchNet |  | | 53.37 108 | 55.62 118 | 50.75 102 | 55.93 107 | 70.54 82 | 51.39 140 | 36.41 169 | 44.85 98 | 37.26 91 | 39.40 113 | 42.54 125 | 47.83 106 | 60.29 140 | 60.88 144 | 75.69 76 | 70.87 148 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
test2506 | | | 53.36 109 | 57.36 103 | 48.68 125 | 55.53 109 | 68.11 101 | 54.31 121 | 46.25 90 | 43.54 103 | 22.21 161 | 40.19 103 | 43.69 120 | 36.56 151 | 64.15 96 | 65.94 78 | 77.20 52 | 75.91 116 |
|
IterMVS-LS | | | 53.36 109 | 55.65 117 | 50.68 105 | 55.34 111 | 59.04 166 | 55.00 118 | 39.98 147 | 38.72 132 | 33.22 112 | 44.52 85 | 47.05 104 | 49.63 93 | 61.82 121 | 61.77 129 | 70.92 145 | 76.61 114 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
TESTMET0.1,1 | | | 53.30 111 | 58.66 92 | 47.04 133 | 44.94 168 | 65.89 120 | 47.88 151 | 35.95 172 | 42.51 110 | 29.84 129 | 41.41 95 | 48.87 94 | 45.20 119 | 62.91 109 | 64.43 101 | 78.43 28 | 84.62 56 |
|
tttt0517 | | | 53.05 112 | 56.73 111 | 48.76 123 | 50.35 140 | 67.51 107 | 51.96 139 | 43.34 125 | 42.00 117 | 33.88 109 | 43.19 89 | 43.49 122 | 44.37 129 | 62.58 114 | 64.86 93 | 68.67 158 | 73.46 127 |
|
MDTV_nov1_ep13 | | | 52.99 113 | 55.59 119 | 49.95 114 | 54.08 119 | 70.69 80 | 56.47 109 | 38.42 158 | 42.78 108 | 30.19 127 | 39.56 109 | 43.31 123 | 45.78 116 | 60.07 145 | 62.11 126 | 74.74 92 | 70.62 149 |
|
EPP-MVSNet | | | 52.91 114 | 58.91 90 | 45.91 138 | 54.99 115 | 68.84 95 | 49.27 146 | 42.71 134 | 37.53 138 | 20.20 169 | 46.09 80 | 56.19 67 | 36.90 149 | 61.37 127 | 60.90 142 | 71.41 140 | 81.41 86 |
|
dps | | | 52.84 115 | 52.92 138 | 52.74 90 | 59.89 77 | 69.49 90 | 54.47 120 | 37.38 164 | 42.49 112 | 39.53 84 | 35.33 128 | 32.71 164 | 51.83 77 | 60.45 137 | 61.12 139 | 73.33 125 | 68.86 163 |
|
v1192 | | | 52.69 116 | 53.86 130 | 51.31 98 | 51.22 135 | 69.76 88 | 57.37 98 | 44.39 107 | 32.21 165 | 31.39 121 | 32.41 150 | 32.44 167 | 49.19 97 | 64.25 92 | 64.17 103 | 74.31 103 | 81.81 78 |
|
V42 | | | 52.63 117 | 55.08 121 | 49.76 117 | 44.93 169 | 67.49 109 | 60.19 82 | 42.13 137 | 37.21 143 | 34.08 107 | 34.57 135 | 37.30 144 | 47.29 109 | 63.48 103 | 64.15 104 | 69.96 154 | 81.38 87 |
|
MSDG | | | 52.58 118 | 51.40 151 | 53.95 83 | 65.48 40 | 64.31 138 | 61.44 71 | 44.02 113 | 44.17 101 | 32.92 113 | 30.40 163 | 31.81 171 | 46.35 113 | 62.13 116 | 62.55 120 | 73.49 121 | 64.41 171 |
|
ECVR-MVS |  | | 52.52 119 | 55.88 115 | 48.60 126 | 55.53 109 | 68.11 101 | 54.31 121 | 46.25 90 | 43.54 103 | 21.75 163 | 32.76 147 | 39.83 139 | 36.56 151 | 64.15 96 | 65.94 78 | 77.20 52 | 76.81 111 |
|
Fast-Effi-MVS+-dtu | | | 52.47 120 | 55.89 114 | 48.48 127 | 56.25 100 | 65.07 129 | 58.75 90 | 23.79 209 | 41.27 120 | 27.07 141 | 37.95 118 | 41.34 133 | 50.85 83 | 62.90 111 | 62.34 124 | 74.17 107 | 80.37 97 |
|
v144192 | | | 52.43 121 | 53.63 132 | 51.03 100 | 51.06 136 | 69.60 89 | 56.94 102 | 44.84 104 | 32.15 166 | 30.88 123 | 32.45 149 | 32.71 164 | 48.36 101 | 62.98 108 | 63.52 109 | 74.10 112 | 82.02 74 |
|
thres100view900 | | | 52.33 122 | 53.91 129 | 50.48 107 | 56.10 102 | 67.79 104 | 56.18 112 | 49.18 50 | 35.86 152 | 25.22 147 | 34.74 133 | 34.10 160 | 42.41 137 | 64.45 87 | 62.62 119 | 73.81 115 | 77.85 106 |
|
v1921920 | | | 51.95 123 | 53.19 134 | 50.51 106 | 50.82 137 | 69.14 93 | 55.45 114 | 44.34 111 | 31.53 170 | 30.53 125 | 31.96 152 | 31.67 172 | 48.31 102 | 63.12 105 | 63.28 111 | 73.59 118 | 81.60 83 |
|
v148 | | | 51.72 124 | 53.15 135 | 50.05 111 | 50.15 142 | 67.51 107 | 56.98 101 | 42.85 132 | 32.60 164 | 32.41 116 | 33.88 140 | 34.71 156 | 44.45 127 | 61.06 131 | 63.00 114 | 73.45 122 | 79.24 102 |
|
TAPA-MVS | | 47.92 11 | 51.66 125 | 57.88 101 | 44.40 148 | 36.46 196 | 58.42 171 | 53.82 126 | 30.83 199 | 69.51 37 | 34.97 101 | 46.90 78 | 49.67 88 | 46.99 110 | 58.00 159 | 54.64 178 | 63.33 184 | 68.00 165 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
IS_MVSNet | | | 51.53 126 | 57.98 100 | 44.01 152 | 55.96 106 | 66.16 118 | 47.65 153 | 42.84 133 | 39.82 127 | 19.09 177 | 44.97 84 | 50.28 84 | 27.20 184 | 63.43 104 | 63.84 105 | 71.33 142 | 77.33 108 |
|
v1240 | | | 51.42 127 | 52.66 140 | 49.97 113 | 50.31 141 | 68.70 96 | 54.05 125 | 43.85 117 | 30.78 174 | 30.22 126 | 31.43 156 | 31.03 179 | 47.98 104 | 62.62 113 | 63.16 113 | 73.40 123 | 80.93 92 |
|
pmmvs4 | | | 51.28 128 | 52.50 142 | 49.85 116 | 49.54 146 | 63.02 145 | 52.83 134 | 43.41 122 | 44.65 99 | 35.71 97 | 34.38 136 | 32.25 168 | 45.14 122 | 60.21 144 | 60.03 150 | 72.44 135 | 72.98 136 |
|
Vis-MVSNet |  | | 51.13 129 | 58.04 99 | 43.06 158 | 47.68 154 | 67.71 105 | 49.10 147 | 39.09 153 | 37.75 136 | 22.57 158 | 51.03 67 | 48.78 96 | 32.42 169 | 62.12 117 | 61.80 128 | 67.49 166 | 77.12 109 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
UGNet | | | 51.04 130 | 58.79 91 | 42.00 164 | 40.59 183 | 65.32 127 | 46.65 162 | 39.26 151 | 39.90 126 | 27.30 138 | 54.12 54 | 52.03 75 | 30.93 173 | 59.85 147 | 59.62 155 | 67.23 168 | 80.70 93 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
tfpn200view9 | | | 50.91 131 | 52.45 143 | 49.11 122 | 56.10 102 | 64.53 133 | 53.06 131 | 47.31 75 | 35.86 152 | 25.22 147 | 34.74 133 | 34.10 160 | 41.08 140 | 60.84 133 | 61.37 136 | 71.90 139 | 75.70 120 |
|
SCA | | | 50.88 132 | 53.70 131 | 47.59 131 | 55.99 104 | 55.81 180 | 43.14 174 | 33.45 192 | 45.16 97 | 37.14 92 | 41.83 93 | 43.82 119 | 44.43 128 | 60.37 138 | 60.02 151 | 71.38 141 | 68.90 162 |
|
gg-mvs-nofinetune | | | 50.82 133 | 55.83 116 | 44.97 146 | 60.63 72 | 75.69 42 | 53.40 128 | 34.48 182 | 20.05 209 | 6.93 204 | 18.27 201 | 52.70 74 | 33.57 159 | 70.50 35 | 72.93 18 | 80.84 6 | 80.68 94 |
|
thres200 | | | 50.76 134 | 52.52 141 | 48.70 124 | 55.98 105 | 64.60 131 | 55.29 116 | 47.34 73 | 33.91 159 | 24.36 150 | 34.33 137 | 33.90 162 | 37.27 147 | 60.84 133 | 62.41 123 | 71.99 137 | 77.63 107 |
|
test1111 | | | 50.62 135 | 54.98 123 | 45.55 141 | 53.84 121 | 68.48 97 | 48.99 148 | 47.25 76 | 40.60 123 | 15.64 185 | 31.51 155 | 38.32 140 | 33.01 166 | 64.34 91 | 66.62 71 | 74.55 100 | 74.95 123 |
|
thres400 | | | 50.39 136 | 52.22 144 | 48.26 128 | 55.02 114 | 66.32 117 | 52.97 132 | 48.33 61 | 32.68 163 | 22.94 156 | 33.21 144 | 33.38 163 | 37.27 147 | 62.74 112 | 61.38 135 | 73.04 132 | 75.81 118 |
|
EG-PatchMatch MVS | | | 50.23 137 | 50.89 154 | 49.47 118 | 59.54 81 | 70.88 78 | 52.46 136 | 44.01 114 | 26.22 195 | 31.91 117 | 24.97 187 | 31.45 175 | 33.48 161 | 64.79 82 | 66.51 75 | 75.40 80 | 71.39 146 |
|
IterMVS | | | 50.23 137 | 53.27 133 | 46.68 134 | 47.59 156 | 60.58 159 | 53.10 130 | 36.62 168 | 36.07 148 | 25.89 144 | 39.42 112 | 40.05 136 | 43.65 132 | 60.22 143 | 61.35 137 | 73.23 127 | 75.23 121 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
FMVSNet1 | | | 50.14 139 | 52.78 139 | 47.06 132 | 45.56 165 | 63.56 141 | 54.22 123 | 43.74 119 | 34.10 158 | 25.37 146 | 29.79 169 | 42.06 128 | 38.70 143 | 64.25 92 | 65.54 82 | 74.75 91 | 70.18 153 |
|
ACMH | | 47.82 13 | 50.10 140 | 49.60 160 | 50.69 104 | 63.36 46 | 66.99 111 | 56.83 103 | 52.13 34 | 31.06 173 | 17.74 182 | 28.22 175 | 26.24 195 | 45.17 121 | 60.88 132 | 63.80 106 | 68.91 157 | 70.00 156 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
EPNet_dtu | | | 49.85 141 | 56.99 109 | 41.52 167 | 52.79 122 | 57.06 174 | 41.44 179 | 43.13 128 | 56.13 67 | 19.24 176 | 52.11 61 | 48.38 97 | 22.14 191 | 58.19 158 | 58.38 158 | 70.35 148 | 68.71 164 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
LS3D | | | 49.59 142 | 49.75 159 | 49.40 120 | 55.88 108 | 59.86 163 | 56.31 111 | 45.33 97 | 48.57 89 | 28.32 136 | 31.54 154 | 36.81 146 | 46.27 115 | 57.17 164 | 55.88 173 | 64.29 177 | 58.42 189 |
|
UniMVSNet_NR-MVSNet | | | 49.56 143 | 53.04 136 | 45.49 142 | 51.59 133 | 64.42 137 | 46.97 158 | 51.01 37 | 37.87 134 | 16.42 183 | 39.87 104 | 34.91 155 | 33.43 163 | 59.59 148 | 62.70 116 | 73.52 120 | 71.94 139 |
|
CDS-MVSNet | | | 49.25 144 | 53.97 128 | 43.75 154 | 47.53 157 | 64.53 133 | 48.59 149 | 42.27 136 | 33.77 160 | 26.64 142 | 40.46 101 | 42.26 127 | 30.01 176 | 61.77 122 | 61.71 131 | 67.48 167 | 73.28 132 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
PLC |  | 44.22 14 | 49.14 145 | 51.75 147 | 46.10 137 | 42.78 179 | 55.60 183 | 53.11 129 | 34.46 183 | 55.69 71 | 32.47 115 | 34.16 138 | 41.45 131 | 48.91 99 | 57.13 165 | 54.09 179 | 64.84 174 | 64.10 172 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
ACMH+ | | 47.85 12 | 49.13 146 | 48.86 166 | 49.44 119 | 56.75 97 | 62.01 151 | 56.62 108 | 47.55 72 | 37.49 139 | 23.98 151 | 26.68 180 | 29.46 186 | 43.12 133 | 57.45 163 | 58.85 157 | 68.62 159 | 70.05 155 |
|
NR-MVSNet | | | 48.84 147 | 51.76 146 | 45.44 143 | 57.66 93 | 60.64 157 | 47.39 154 | 47.63 68 | 37.26 140 | 13.31 188 | 37.31 120 | 29.64 185 | 33.53 160 | 63.52 102 | 62.09 127 | 73.10 130 | 71.89 142 |
|
CR-MVSNet | | | 48.82 148 | 51.85 145 | 45.29 144 | 46.74 159 | 55.95 178 | 52.06 137 | 34.21 184 | 42.17 114 | 31.74 118 | 32.92 146 | 42.53 126 | 45.00 123 | 58.80 153 | 61.11 140 | 61.99 189 | 69.47 158 |
|
thres600view7 | | | 48.44 149 | 50.23 157 | 46.35 136 | 54.05 120 | 64.60 131 | 50.18 143 | 47.34 73 | 31.73 169 | 20.74 167 | 32.28 151 | 32.62 166 | 33.79 158 | 60.84 133 | 56.11 171 | 71.99 137 | 73.40 129 |
|
test-mter | | | 48.31 150 | 55.04 122 | 40.45 171 | 34.12 202 | 59.02 167 | 41.77 178 | 28.05 203 | 38.43 133 | 22.67 157 | 39.35 114 | 44.40 116 | 41.88 139 | 60.30 139 | 61.68 133 | 74.20 105 | 82.12 71 |
|
PatchT | | | 48.11 151 | 51.27 153 | 44.43 147 | 50.13 143 | 61.58 153 | 33.59 192 | 32.92 194 | 40.38 125 | 31.74 118 | 30.60 162 | 36.93 145 | 45.00 123 | 58.80 153 | 61.11 140 | 73.19 128 | 69.47 158 |
|
TranMVSNet+NR-MVSNet | | | 48.06 152 | 51.36 152 | 44.21 150 | 50.38 139 | 62.09 150 | 47.28 155 | 50.88 40 | 36.11 147 | 13.25 189 | 37.51 119 | 31.60 174 | 30.70 174 | 59.34 149 | 62.53 121 | 72.81 133 | 70.31 151 |
|
TransMVSNet (Re) | | | 47.46 153 | 48.94 165 | 45.74 140 | 57.96 90 | 64.29 139 | 48.26 150 | 48.47 60 | 26.33 194 | 19.33 174 | 29.45 172 | 31.28 178 | 25.31 188 | 63.05 106 | 62.70 116 | 75.10 86 | 65.47 169 |
|
DU-MVS | | | 47.33 154 | 50.86 155 | 43.20 157 | 44.43 172 | 60.64 157 | 46.97 158 | 47.63 68 | 37.26 140 | 16.42 183 | 37.31 120 | 31.39 176 | 33.43 163 | 57.53 161 | 59.98 152 | 70.35 148 | 71.94 139 |
|
v7n | | | 47.22 155 | 48.38 167 | 45.87 139 | 48.20 153 | 63.58 140 | 50.69 141 | 40.93 144 | 26.60 193 | 26.44 143 | 26.52 181 | 29.65 184 | 38.19 145 | 58.22 157 | 60.23 149 | 70.79 146 | 73.83 126 |
|
UA-Net | | | 47.19 156 | 53.02 137 | 40.38 172 | 55.31 112 | 60.02 162 | 38.41 185 | 38.68 155 | 36.42 146 | 22.47 160 | 51.95 62 | 58.72 58 | 25.62 187 | 54.11 177 | 53.40 183 | 61.79 190 | 56.51 192 |
|
Baseline_NR-MVSNet | | | 47.14 157 | 50.83 156 | 42.84 160 | 44.43 172 | 63.31 143 | 44.50 170 | 50.36 45 | 37.71 137 | 11.25 194 | 30.84 159 | 32.09 169 | 30.96 172 | 57.53 161 | 63.73 107 | 75.53 77 | 70.60 150 |
|
pmmvs5 | | | 47.02 158 | 50.02 158 | 43.51 156 | 43.48 177 | 62.65 147 | 47.24 156 | 37.78 163 | 30.59 175 | 24.80 149 | 35.26 130 | 30.43 180 | 34.36 156 | 59.05 151 | 60.28 148 | 73.40 123 | 71.92 141 |
|
UniMVSNet (Re) | | | 46.89 159 | 51.65 149 | 41.34 169 | 45.60 164 | 62.71 146 | 44.05 171 | 47.10 78 | 37.24 142 | 13.55 187 | 36.90 122 | 34.54 158 | 26.76 185 | 57.56 160 | 59.90 154 | 70.98 144 | 72.69 137 |
|
thisisatest0515 | | | 46.88 160 | 49.57 161 | 43.74 155 | 45.33 167 | 60.46 160 | 46.19 164 | 41.06 143 | 30.34 176 | 29.73 131 | 32.50 148 | 31.63 173 | 35.43 154 | 58.75 155 | 61.71 131 | 64.70 176 | 71.59 145 |
|
tfpnnormal | | | 46.61 161 | 46.82 174 | 46.37 135 | 52.70 123 | 62.31 148 | 50.39 142 | 47.17 77 | 25.74 197 | 21.80 162 | 23.13 191 | 24.15 203 | 33.45 162 | 60.28 141 | 60.77 145 | 72.70 134 | 71.39 146 |
|
pm-mvs1 | | | 46.14 162 | 49.34 164 | 42.41 161 | 48.93 150 | 62.22 149 | 44.98 168 | 42.68 135 | 27.66 187 | 20.76 166 | 29.88 168 | 34.96 154 | 26.41 186 | 60.03 146 | 60.42 147 | 70.70 147 | 70.20 152 |
|
IterMVS-SCA-FT | | | 45.87 163 | 51.55 150 | 39.24 175 | 46.22 160 | 59.43 164 | 52.89 133 | 31.93 195 | 36.01 149 | 23.68 152 | 38.86 115 | 39.88 138 | 39.05 142 | 56.25 170 | 58.17 159 | 41.70 210 | 72.25 138 |
|
MIMVSNet | | | 45.62 164 | 49.56 162 | 41.02 170 | 38.17 187 | 64.43 136 | 49.48 145 | 35.43 175 | 36.53 145 | 20.06 171 | 22.58 192 | 35.16 153 | 28.75 181 | 61.97 119 | 62.20 125 | 74.20 105 | 64.07 173 |
|
gm-plane-assit | | | 45.41 165 | 48.03 169 | 42.34 162 | 56.49 99 | 40.48 208 | 24.54 212 | 34.15 189 | 14.44 215 | 6.59 205 | 17.82 202 | 35.32 152 | 49.82 90 | 72.93 16 | 74.11 11 | 82.47 2 | 81.12 91 |
|
ADS-MVSNet | | | 45.39 166 | 46.42 175 | 44.19 151 | 48.74 152 | 57.52 172 | 43.91 172 | 31.93 195 | 35.89 151 | 27.11 140 | 30.12 164 | 32.06 170 | 45.30 117 | 53.13 183 | 55.19 175 | 68.15 161 | 61.07 181 |
|
GG-mvs-BLEND | | | 44.87 167 | 64.59 61 | 21.86 208 | 0.01 224 | 73.70 56 | 55.99 113 | 0.01 221 | 50.70 79 | 0.01 225 | 49.18 70 | 63.61 40 | 0.01 220 | 63.83 99 | 64.50 99 | 75.13 85 | 86.62 37 |
|
pmmvs-eth3d | | | 44.67 168 | 45.27 180 | 43.98 153 | 42.56 180 | 55.72 182 | 44.97 169 | 40.81 145 | 31.96 168 | 29.13 132 | 26.09 183 | 25.27 200 | 36.69 150 | 55.13 174 | 56.62 168 | 69.68 155 | 66.12 168 |
|
MDTV_nov1_ep13_2view | | | 44.44 169 | 45.75 178 | 42.91 159 | 46.13 161 | 63.43 142 | 46.53 163 | 34.20 186 | 29.08 182 | 19.95 172 | 26.23 182 | 27.89 190 | 35.88 153 | 53.36 182 | 56.43 169 | 74.74 92 | 63.86 174 |
|
CMPMVS |  | 33.64 16 | 44.39 170 | 46.41 176 | 42.03 163 | 44.21 175 | 56.50 176 | 46.73 161 | 26.48 208 | 34.20 157 | 35.14 100 | 24.22 188 | 34.64 157 | 40.52 141 | 56.50 169 | 56.07 172 | 59.12 194 | 62.74 177 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
Vis-MVSNet (Re-imp) | | | 44.31 171 | 51.67 148 | 35.72 185 | 51.82 128 | 55.24 184 | 34.57 191 | 41.63 138 | 39.10 130 | 8.84 201 | 45.93 81 | 46.63 106 | 14.45 201 | 54.09 178 | 57.03 165 | 63.00 185 | 63.65 175 |
|
TAMVS | | | 44.27 172 | 49.35 163 | 38.35 179 | 44.74 170 | 61.04 156 | 39.07 183 | 31.82 197 | 29.95 178 | 18.34 180 | 33.55 142 | 39.94 137 | 30.01 176 | 56.85 167 | 57.58 161 | 66.13 171 | 66.54 166 |
|
MVS-HIRNet | | | 43.98 173 | 43.63 184 | 44.39 149 | 47.66 155 | 59.31 165 | 32.66 198 | 33.88 191 | 30.15 177 | 33.75 110 | 16.82 207 | 28.39 189 | 45.25 118 | 53.92 181 | 55.00 177 | 73.16 129 | 61.80 178 |
|
UniMVSNet_ETH3D | | | 43.97 174 | 46.01 177 | 41.59 165 | 38.31 186 | 56.20 177 | 49.69 144 | 38.18 160 | 28.18 183 | 19.88 173 | 27.82 177 | 30.20 181 | 33.41 165 | 54.18 176 | 56.30 170 | 70.05 152 | 69.17 160 |
|
RPMNet | | | 43.70 175 | 48.17 168 | 38.48 178 | 45.52 166 | 55.95 178 | 37.66 186 | 26.63 207 | 42.17 114 | 25.47 145 | 29.59 171 | 37.61 141 | 33.87 157 | 50.85 188 | 52.02 187 | 61.75 191 | 69.00 161 |
|
PatchMatch-RL | | | 43.37 176 | 44.93 181 | 41.56 166 | 37.94 188 | 51.70 186 | 40.02 181 | 35.75 173 | 39.04 131 | 30.71 124 | 35.14 131 | 27.43 192 | 46.58 112 | 51.99 184 | 50.55 191 | 58.38 196 | 58.64 187 |
|
FMVSNet5 | | | 43.29 177 | 47.07 172 | 38.87 176 | 30.46 207 | 50.99 188 | 45.87 165 | 37.19 167 | 42.17 114 | 19.32 175 | 26.77 179 | 40.51 134 | 30.26 175 | 56.82 168 | 55.81 174 | 70.10 151 | 56.46 193 |
|
test0.0.03 1 | | | 43.07 178 | 46.95 173 | 38.54 177 | 51.68 130 | 58.77 169 | 35.28 187 | 46.35 88 | 32.05 167 | 12.44 190 | 28.53 174 | 35.52 150 | 14.40 202 | 57.12 166 | 56.93 166 | 71.11 143 | 59.69 183 |
|
anonymousdsp | | | 43.03 179 | 47.19 171 | 38.18 180 | 36.00 198 | 56.92 175 | 38.44 184 | 34.56 181 | 24.22 199 | 22.53 159 | 29.69 170 | 29.92 182 | 35.21 155 | 53.96 180 | 58.98 156 | 62.32 188 | 76.66 113 |
|
USDC | | | 42.80 180 | 45.57 179 | 39.58 173 | 34.55 200 | 51.13 187 | 42.61 175 | 36.21 170 | 39.59 128 | 23.65 153 | 33.13 145 | 20.87 209 | 37.86 146 | 55.35 173 | 57.16 164 | 62.61 186 | 61.75 179 |
|
pmnet_mix02 | | | 42.41 181 | 43.24 186 | 41.44 168 | 45.80 163 | 57.46 173 | 42.19 176 | 41.57 139 | 29.38 180 | 23.39 154 | 26.08 184 | 23.96 204 | 27.31 183 | 51.50 185 | 53.76 181 | 68.36 160 | 60.58 182 |
|
CHOSEN 280x420 | | | 42.39 182 | 47.40 170 | 36.54 183 | 33.56 203 | 39.66 211 | 40.67 180 | 26.88 206 | 34.66 154 | 18.03 181 | 30.09 165 | 45.59 111 | 44.82 125 | 54.46 175 | 54.00 180 | 55.28 203 | 73.32 131 |
|
pmmvs6 | | | 41.90 183 | 44.01 183 | 39.43 174 | 44.45 171 | 58.77 169 | 41.92 177 | 39.22 152 | 21.74 202 | 19.08 178 | 17.40 205 | 31.33 177 | 24.28 190 | 55.94 171 | 56.67 167 | 67.60 165 | 66.24 167 |
|
Anonymous20231206 | | | 40.63 184 | 43.29 185 | 37.53 181 | 48.88 151 | 55.81 180 | 34.99 188 | 44.98 102 | 28.16 184 | 10.16 198 | 17.26 206 | 27.50 191 | 18.28 195 | 54.00 179 | 55.07 176 | 67.85 163 | 65.23 170 |
|
CVMVSNet | | | 38.91 185 | 44.49 182 | 32.40 194 | 34.57 199 | 47.20 199 | 34.81 189 | 34.20 186 | 31.45 171 | 8.95 200 | 38.86 115 | 36.38 148 | 24.30 189 | 47.77 192 | 46.94 203 | 57.59 198 | 62.85 176 |
|
COLMAP_ROB |  | 34.79 15 | 38.65 186 | 40.72 189 | 36.23 184 | 36.41 197 | 49.22 195 | 45.51 167 | 27.60 205 | 37.81 135 | 20.54 168 | 23.37 190 | 24.25 202 | 28.11 182 | 51.02 187 | 48.55 194 | 59.22 193 | 50.82 203 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
PEN-MVS | | | 38.23 187 | 41.72 188 | 34.15 187 | 40.56 184 | 50.07 191 | 33.17 195 | 44.35 110 | 27.64 189 | 5.54 211 | 30.84 159 | 26.67 193 | 14.99 199 | 45.64 195 | 52.38 186 | 66.29 170 | 58.83 186 |
|
WR-MVS | | | 37.61 188 | 42.15 187 | 32.31 196 | 43.64 176 | 51.85 185 | 29.39 204 | 43.35 124 | 27.65 188 | 4.40 213 | 29.90 167 | 29.80 183 | 10.46 206 | 46.73 194 | 51.98 188 | 62.60 187 | 57.16 190 |
|
TinyColmap | | | 37.18 189 | 37.37 202 | 36.95 182 | 31.17 206 | 45.21 202 | 39.71 182 | 34.65 179 | 29.83 179 | 20.20 169 | 18.54 200 | 13.72 217 | 38.27 144 | 50.33 189 | 51.57 189 | 57.71 197 | 52.42 200 |
|
CP-MVSNet | | | 37.09 190 | 40.62 190 | 32.99 189 | 37.56 190 | 48.25 196 | 32.75 196 | 43.05 129 | 27.88 186 | 5.93 207 | 31.27 157 | 25.82 198 | 15.09 197 | 43.37 202 | 48.82 192 | 63.54 182 | 58.90 184 |
|
DTE-MVSNet | | | 36.91 191 | 40.44 191 | 32.79 192 | 40.74 182 | 47.55 198 | 30.71 202 | 44.39 107 | 27.03 191 | 4.32 214 | 30.88 158 | 25.99 196 | 12.73 204 | 45.58 196 | 50.80 190 | 63.86 179 | 55.23 196 |
|
PS-CasMVS | | | 36.84 192 | 40.23 194 | 32.89 190 | 37.44 191 | 48.09 197 | 32.68 197 | 42.97 131 | 27.36 190 | 5.89 208 | 30.08 166 | 25.48 199 | 14.96 200 | 43.28 203 | 48.71 193 | 63.39 183 | 58.63 188 |
|
WR-MVS_H | | | 36.29 193 | 40.35 193 | 31.55 198 | 37.80 189 | 49.94 193 | 30.57 203 | 41.11 142 | 26.90 192 | 4.14 215 | 30.72 161 | 28.85 187 | 10.45 207 | 42.47 204 | 47.99 198 | 65.24 173 | 55.54 194 |
|
SixPastTwentyTwo | | | 36.11 194 | 37.80 198 | 34.13 188 | 37.13 194 | 46.72 200 | 34.58 190 | 34.96 177 | 21.20 205 | 11.66 191 | 29.15 173 | 19.88 210 | 29.77 178 | 44.93 197 | 48.34 195 | 56.67 200 | 54.41 198 |
|
test20.03 | | | 36.00 195 | 38.92 195 | 32.60 193 | 45.92 162 | 50.99 188 | 28.05 208 | 43.69 120 | 21.62 203 | 6.03 206 | 17.61 204 | 25.91 197 | 8.34 213 | 51.26 186 | 52.60 185 | 63.58 180 | 52.46 199 |
|
TDRefinement | | | 35.76 196 | 38.23 196 | 32.88 191 | 19.09 216 | 46.04 201 | 43.29 173 | 29.49 200 | 33.49 161 | 19.04 179 | 22.29 194 | 17.82 212 | 29.69 180 | 48.60 191 | 47.24 201 | 56.65 201 | 52.12 201 |
|
LTVRE_ROB | | 32.83 17 | 35.10 197 | 37.46 199 | 32.35 195 | 43.12 178 | 49.99 192 | 28.52 206 | 33.23 193 | 12.73 216 | 8.18 202 | 27.71 178 | 21.34 207 | 32.64 168 | 46.92 193 | 48.11 196 | 48.41 207 | 55.45 195 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
PM-MVS | | | 34.96 198 | 38.17 197 | 31.22 199 | 22.78 211 | 40.82 207 | 33.56 193 | 23.61 210 | 29.16 181 | 21.43 165 | 28.00 176 | 21.43 206 | 31.90 170 | 44.33 200 | 42.12 206 | 54.07 205 | 61.34 180 |
|
testgi | | | 34.51 199 | 37.42 200 | 31.12 200 | 47.37 158 | 50.34 190 | 24.38 213 | 41.21 140 | 20.32 207 | 5.64 210 | 20.56 196 | 26.55 194 | 8.06 214 | 49.28 190 | 52.65 184 | 60.05 192 | 42.23 209 |
|
MDA-MVSNet-bldmvs | | | 34.31 200 | 34.11 206 | 34.54 186 | 24.73 209 | 49.66 194 | 33.42 194 | 43.03 130 | 21.59 204 | 11.10 195 | 19.81 198 | 12.68 218 | 31.41 171 | 35.59 209 | 48.05 197 | 63.56 181 | 51.39 202 |
|
N_pmnet | | | 34.09 201 | 35.74 204 | 32.17 197 | 37.25 193 | 43.17 205 | 32.26 200 | 35.57 174 | 26.22 195 | 10.60 197 | 20.44 197 | 19.38 211 | 20.20 193 | 44.59 199 | 47.00 202 | 57.13 199 | 49.35 206 |
|
RPSCF | | | 33.61 202 | 40.43 192 | 25.65 204 | 16.00 218 | 32.41 213 | 31.73 201 | 13.33 217 | 50.13 81 | 23.12 155 | 31.56 153 | 40.09 135 | 32.73 167 | 41.14 208 | 37.05 209 | 36.99 213 | 50.63 204 |
|
EU-MVSNet | | | 33.00 203 | 36.49 203 | 28.92 201 | 33.10 204 | 42.86 206 | 29.32 205 | 35.99 171 | 22.94 200 | 5.83 209 | 25.29 185 | 24.43 201 | 15.21 196 | 41.22 207 | 41.65 208 | 54.08 204 | 57.01 191 |
|
pmmvs3 | | | 31.22 204 | 33.62 207 | 28.43 202 | 22.82 210 | 40.26 210 | 26.40 209 | 22.05 212 | 16.89 213 | 10.99 196 | 14.72 209 | 16.26 213 | 29.70 179 | 44.82 198 | 47.39 200 | 58.61 195 | 54.98 197 |
|
FC-MVSNet-test | | | 30.97 205 | 37.38 201 | 23.49 207 | 37.42 192 | 33.68 212 | 19.43 215 | 39.27 150 | 31.37 172 | 1.67 221 | 38.56 117 | 28.85 187 | 6.06 217 | 41.40 205 | 43.80 205 | 37.10 212 | 44.03 208 |
|
new-patchmatchnet | | | 30.47 206 | 32.80 209 | 27.75 203 | 36.81 195 | 43.98 203 | 24.85 211 | 39.29 149 | 20.52 206 | 4.06 216 | 15.94 208 | 16.05 214 | 9.57 208 | 41.32 206 | 42.05 207 | 51.94 206 | 49.74 205 |
|
MIMVSNet1 | | | 29.60 207 | 33.37 208 | 25.20 206 | 19.52 214 | 43.94 204 | 26.29 210 | 37.92 162 | 19.95 210 | 3.79 217 | 12.64 213 | 21.99 205 | 7.70 215 | 43.83 201 | 46.32 204 | 55.97 202 | 44.92 207 |
|
FPMVS | | | 26.87 208 | 28.19 210 | 25.32 205 | 27.09 208 | 29.49 214 | 32.28 199 | 17.79 214 | 28.09 185 | 11.33 192 | 19.38 199 | 14.69 215 | 20.88 192 | 35.11 210 | 32.82 211 | 42.56 209 | 37.75 210 |
|
PMVS |  | 18.18 18 | 21.95 209 | 22.85 211 | 20.90 209 | 21.92 212 | 14.78 216 | 19.95 214 | 17.31 215 | 15.69 214 | 11.32 193 | 13.70 210 | 13.91 216 | 15.02 198 | 34.92 211 | 31.72 212 | 39.85 211 | 35.20 211 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
new_pmnet | | | 19.10 210 | 22.71 212 | 14.89 211 | 10.93 220 | 24.08 215 | 14.22 216 | 13.94 216 | 18.68 211 | 2.93 218 | 12.84 212 | 11.27 219 | 11.94 205 | 30.57 213 | 30.58 213 | 35.38 214 | 30.93 212 |
|
Gipuma |  | | 17.16 211 | 17.83 213 | 16.36 210 | 18.76 217 | 12.15 219 | 11.97 217 | 27.78 204 | 17.94 212 | 4.86 212 | 2.53 220 | 2.73 224 | 8.90 211 | 34.32 212 | 36.09 210 | 25.92 215 | 19.06 215 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
test_method | | | 13.92 212 | 17.14 214 | 10.16 214 | 1.69 223 | 6.92 222 | 11.25 218 | 5.74 218 | 22.41 201 | 8.11 203 | 10.40 214 | 20.91 208 | 13.73 203 | 22.17 214 | 13.98 216 | 20.44 216 | 23.18 213 |
|
PMMVS2 | | | 12.25 213 | 14.17 215 | 10.00 215 | 11.39 219 | 14.35 217 | 8.21 219 | 19.29 213 | 9.31 217 | 0.19 224 | 7.38 216 | 6.19 222 | 1.10 219 | 19.26 215 | 21.13 215 | 19.85 217 | 21.56 214 |
|
E-PMN | | | 10.66 214 | 8.30 217 | 13.42 212 | 19.91 213 | 7.87 220 | 4.30 222 | 29.47 201 | 8.37 220 | 1.70 220 | 3.67 217 | 1.29 227 | 9.12 210 | 8.98 219 | 13.59 217 | 16.03 218 | 14.30 218 |
|
EMVS | | | 10.15 215 | 7.67 218 | 13.05 213 | 19.22 215 | 7.77 221 | 4.48 220 | 29.34 202 | 8.65 219 | 1.67 221 | 3.55 218 | 1.36 226 | 9.15 209 | 8.15 220 | 11.79 219 | 14.44 219 | 12.43 219 |
|
MVE |  | 10.35 19 | 9.76 216 | 11.08 216 | 8.22 216 | 4.43 221 | 13.04 218 | 3.36 223 | 23.57 211 | 5.74 221 | 1.76 219 | 3.09 219 | 1.75 225 | 6.78 216 | 12.78 217 | 23.04 214 | 9.44 220 | 18.09 216 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
testmvs | | | 0.01 217 | 0.01 219 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.01 222 | 0.00 226 | 0.02 221 | 0.00 228 | 0.00 222 | 0.01 221 | 0.01 220 | 0.00 223 | 0.03 220 |
|
test123 | | | 0.01 217 | 0.01 219 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.01 222 | 0.00 226 | 0.02 221 | 0.00 228 | 0.01 220 | 0.00 222 | 0.01 220 | 0.00 223 | 0.03 220 |
|
uanet_test | | | 0.00 219 | 0.00 221 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 224 | 0.00 226 | 0.00 223 | 0.00 228 | 0.00 222 | 0.00 222 | 0.00 222 | 0.00 223 | 0.00 222 |
|
sosnet-low-res | | | 0.00 219 | 0.00 221 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 224 | 0.00 226 | 0.00 223 | 0.00 228 | 0.00 222 | 0.00 222 | 0.00 222 | 0.00 223 | 0.00 222 |
|
sosnet | | | 0.00 219 | 0.00 221 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 224 | 0.00 226 | 0.00 223 | 0.00 228 | 0.00 222 | 0.00 222 | 0.00 222 | 0.00 223 | 0.00 222 |
|
RE-MVS-def | | | | | | | | | | | 21.59 164 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 80.07 5 | | | | | |
|
SR-MVS | | | | | | 63.74 44 | | | 48.51 59 | | | | 73.80 19 | | | | | |
|
Anonymous202405211 | | | | 56.81 110 | | 60.91 68 | 73.48 59 | 59.82 83 | 48.68 56 | 39.26 129 | | 24.00 189 | 46.77 105 | 50.73 84 | 65.28 78 | 65.72 81 | 75.37 81 | 83.17 64 |
|
our_test_3 | | | | | | 49.68 145 | 61.50 154 | 45.84 166 | | | | | | | | | | |
|
ambc | | | | 35.52 205 | | 38.36 185 | 40.40 209 | 28.38 207 | | 25.20 198 | 14.87 186 | 13.22 211 | 7.54 221 | 19.34 194 | 55.63 172 | 47.79 199 | 47.91 208 | 58.89 185 |
|
MTAPA | | | | | | | | | | | 54.82 16 | | 71.98 24 | | | | | |
|
MTMP | | | | | | | | | | | 50.64 30 | | 68.31 29 | | | | | |
|
Patchmatch-RL test | | | | | | | | 0.69 225 | | | | | | | | | | |
|
tmp_tt | | | | | 4.41 217 | 2.56 222 | 1.81 224 | 2.61 224 | 0.27 220 | 20.12 208 | 9.81 199 | 17.69 203 | 9.04 220 | 1.96 218 | 12.88 216 | 12.11 218 | 9.23 221 | |
|
XVS | | | | | | 62.70 53 | 73.06 62 | 61.80 69 | | | 42.02 72 | | 63.42 42 | | | | 74.68 96 | |
|
X-MVStestdata | | | | | | 62.70 53 | 73.06 62 | 61.80 69 | | | 42.02 72 | | 63.42 42 | | | | 74.68 96 | |
|
mPP-MVS | | | | | | 63.08 49 | | | | | | | 62.34 45 | | | | | |
|
NP-MVS | | | | | | | | | | 72.62 28 | | | | | | | | |
|
Patchmtry | | | | | | | 64.49 135 | 52.06 137 | 34.21 184 | | 31.74 118 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 5.87 223 | 4.32 221 | 1.74 219 | 9.04 218 | 1.30 223 | 7.97 215 | 3.16 223 | 8.56 212 | 9.74 218 | | 6.30 222 | 14.51 217 |
|