| SED-MVS | | | 95.53 1 | 95.79 1 | 95.23 1 | 97.60 10 | 98.92 1 | 95.99 5 | 92.05 7 | 97.14 1 | 94.19 1 | 94.71 6 | 93.25 2 | 95.08 1 | 94.32 11 | 92.59 15 | 96.49 18 | 99.58 3 |
|
| DPE-MVS |  | | 95.10 2 | 95.53 2 | 94.60 5 | 97.77 8 | 98.64 5 | 96.60 4 | 92.45 5 | 96.34 6 | 91.41 6 | 96.70 2 | 92.26 6 | 93.56 6 | 93.68 18 | 91.73 30 | 95.79 39 | 99.37 7 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| DVP-MVS |  | | 95.06 3 | 95.37 4 | 94.70 3 | 97.59 11 | 98.89 2 | 95.37 12 | 92.04 8 | 96.85 3 | 94.00 2 | 92.81 14 | 93.02 3 | 92.93 7 | 94.22 14 | 92.15 21 | 96.30 25 | 99.61 2 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| DVP-MVS++ | | | 95.03 4 | 95.03 5 | 95.03 2 | 97.91 6 | 98.84 3 | 95.80 6 | 91.88 10 | 96.65 5 | 93.15 3 | 93.79 8 | 90.11 12 | 95.03 2 | 94.20 16 | 92.39 16 | 96.44 22 | 99.22 10 |
|
| MSP-MVS | | | 95.00 5 | 95.47 3 | 94.45 6 | 96.78 19 | 98.11 10 | 95.72 8 | 90.91 14 | 96.68 4 | 91.57 5 | 96.98 1 | 89.47 14 | 94.76 3 | 95.24 3 | 92.15 21 | 96.98 7 | 99.64 1 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| CNVR-MVS | | | 94.53 6 | 94.85 7 | 94.15 8 | 98.03 4 | 98.59 6 | 95.56 9 | 92.91 2 | 94.86 13 | 88.46 14 | 91.32 21 | 90.83 10 | 94.03 5 | 95.20 4 | 94.16 5 | 95.89 34 | 99.01 16 |
|
| SF-MVS | | | 94.40 7 | 94.15 12 | 94.70 3 | 98.25 3 | 98.24 8 | 96.86 3 | 93.46 1 | 94.87 12 | 90.26 9 | 95.96 3 | 88.42 17 | 92.76 10 | 92.29 31 | 90.84 43 | 96.62 13 | 98.44 26 |
|
| APDe-MVS |  | | 94.31 8 | 94.30 10 | 94.33 7 | 97.57 12 | 98.06 12 | 95.79 7 | 91.98 9 | 95.50 9 | 92.19 4 | 95.25 4 | 87.97 20 | 92.93 7 | 93.01 24 | 91.02 41 | 95.52 41 | 99.29 8 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| MCST-MVS | | | 94.10 9 | 94.77 8 | 93.31 10 | 98.31 2 | 98.34 7 | 95.43 10 | 92.54 4 | 94.41 16 | 83.05 31 | 91.38 19 | 90.97 9 | 92.24 14 | 95.05 6 | 94.02 6 | 98.31 1 | 99.20 11 |
|
| HPM-MVS++ |  | | 94.04 10 | 94.96 6 | 92.96 12 | 97.93 5 | 97.71 18 | 94.65 15 | 91.01 13 | 95.91 7 | 87.43 16 | 93.52 11 | 92.63 5 | 92.29 13 | 94.22 14 | 92.34 18 | 94.47 63 | 98.37 27 |
|
| NCCC | | | 93.59 11 | 94.00 14 | 93.10 11 | 97.90 7 | 97.93 14 | 95.40 11 | 92.39 6 | 94.47 15 | 84.94 21 | 91.21 22 | 89.32 15 | 92.53 11 | 93.90 17 | 92.98 12 | 95.44 43 | 98.22 30 |
|
| SMA-MVS |  | | 93.47 12 | 94.29 11 | 92.52 14 | 97.72 9 | 97.77 17 | 94.46 18 | 90.19 17 | 94.96 11 | 87.15 17 | 90.15 26 | 90.99 8 | 91.49 17 | 94.31 12 | 93.33 10 | 94.10 69 | 98.53 24 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| APD-MVS |  | | 93.47 12 | 93.44 17 | 93.50 9 | 97.06 15 | 97.09 27 | 95.27 13 | 91.47 11 | 95.71 8 | 89.57 11 | 93.66 9 | 86.28 26 | 92.81 9 | 92.06 34 | 90.70 44 | 94.83 60 | 98.60 21 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| SD-MVS | | | 93.36 14 | 94.33 9 | 92.22 16 | 94.68 43 | 97.89 16 | 94.56 16 | 90.89 15 | 94.80 14 | 90.04 10 | 93.53 10 | 90.14 11 | 89.78 23 | 92.74 27 | 92.17 19 | 93.35 109 | 99.07 14 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| TSAR-MVS + MP. | | | 93.07 15 | 93.53 16 | 92.53 13 | 94.23 46 | 97.54 21 | 94.75 14 | 89.87 18 | 95.26 10 | 89.20 13 | 93.16 12 | 88.19 19 | 92.15 15 | 91.79 39 | 89.65 60 | 94.99 56 | 99.16 12 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| DPM-MVS | | | 92.86 16 | 93.19 19 | 92.47 15 | 95.78 35 | 97.40 22 | 97.39 1 | 92.56 3 | 92.88 24 | 81.84 38 | 81.31 39 | 92.95 4 | 91.21 18 | 96.54 1 | 97.33 1 | 96.01 32 | 93.94 112 |
|
| SteuartSystems-ACMMP | | | 92.31 17 | 93.31 18 | 91.15 22 | 96.88 17 | 97.36 23 | 93.95 22 | 89.44 20 | 92.62 25 | 83.20 28 | 94.34 7 | 85.55 28 | 88.95 30 | 93.07 23 | 91.90 26 | 94.51 62 | 98.30 28 |
| Skip Steuart: Steuart Systems R&D Blog. |
| ACMMP_NAP | | | 92.16 18 | 92.91 22 | 91.28 21 | 96.95 16 | 97.36 23 | 93.66 23 | 89.23 22 | 93.33 19 | 83.71 26 | 90.53 23 | 86.84 23 | 90.39 20 | 93.30 22 | 91.56 32 | 93.74 81 | 97.43 46 |
|
| HFP-MVS | | | 92.02 19 | 92.13 24 | 91.89 19 | 97.16 14 | 96.46 39 | 93.57 24 | 87.60 25 | 93.79 18 | 88.17 15 | 93.15 13 | 83.94 38 | 91.19 19 | 90.81 49 | 89.83 55 | 93.66 85 | 96.94 62 |
|
| train_agg | | | 91.99 20 | 93.71 15 | 89.98 27 | 96.42 27 | 97.03 29 | 94.31 20 | 89.05 23 | 93.33 19 | 77.75 46 | 95.06 5 | 88.27 18 | 88.38 37 | 92.02 36 | 91.41 35 | 94.00 73 | 98.84 19 |
|
| DeepC-MVS_fast | | 86.59 2 | 91.69 21 | 91.39 27 | 92.05 18 | 97.43 13 | 96.92 32 | 94.05 21 | 90.23 16 | 93.31 22 | 83.19 29 | 77.91 45 | 84.23 34 | 92.42 12 | 94.62 9 | 94.83 3 | 95.00 55 | 97.88 36 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| TSAR-MVS + GP. | | | 91.29 22 | 93.11 21 | 89.18 32 | 87.81 91 | 96.21 45 | 92.51 33 | 83.83 44 | 94.24 17 | 83.77 25 | 91.87 18 | 89.62 13 | 90.07 21 | 90.40 54 | 90.31 48 | 97.09 6 | 99.10 13 |
|
| ACMMPR | | | 91.15 23 | 91.44 26 | 90.81 23 | 96.61 21 | 96.25 43 | 93.09 25 | 87.08 28 | 93.32 21 | 84.78 22 | 92.08 17 | 82.10 44 | 89.71 24 | 90.24 55 | 89.82 56 | 93.61 90 | 96.30 76 |
|
| DeepPCF-MVS | | 86.71 1 | 91.00 24 | 94.05 13 | 87.43 43 | 95.58 38 | 98.17 9 | 86.22 76 | 88.59 24 | 97.01 2 | 76.77 55 | 85.11 35 | 88.90 16 | 87.29 45 | 95.02 7 | 94.69 4 | 90.15 182 | 99.48 6 |
|
| TSAR-MVS + ACMM | | | 90.98 25 | 93.18 20 | 88.42 37 | 95.69 36 | 96.73 34 | 94.52 17 | 86.97 31 | 92.99 23 | 76.32 56 | 92.31 16 | 86.64 24 | 84.40 72 | 92.97 25 | 92.02 23 | 92.62 134 | 98.59 22 |
|
| MP-MVS |  | | 90.81 26 | 91.45 25 | 90.06 26 | 96.59 22 | 96.33 42 | 92.46 34 | 87.19 27 | 90.27 39 | 82.54 34 | 91.38 19 | 84.88 31 | 88.27 38 | 90.58 52 | 89.30 65 | 93.30 111 | 97.44 44 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| CP-MVS | | | 90.57 27 | 90.68 29 | 90.44 24 | 96.13 29 | 95.90 51 | 92.77 30 | 86.86 32 | 92.12 29 | 84.19 23 | 89.18 29 | 82.37 42 | 89.43 27 | 89.65 67 | 88.43 76 | 93.27 112 | 97.13 54 |
|
| MSLP-MVS++ | | | 90.33 28 | 88.82 39 | 92.10 17 | 96.52 25 | 95.93 47 | 94.35 19 | 86.26 33 | 88.37 54 | 89.24 12 | 75.94 53 | 82.60 41 | 89.71 24 | 89.45 70 | 92.17 19 | 96.51 17 | 97.24 51 |
|
| CANet | | | 89.98 29 | 90.42 33 | 89.47 31 | 94.13 47 | 98.05 13 | 91.76 39 | 83.27 47 | 90.87 36 | 81.90 37 | 72.32 61 | 84.82 32 | 88.42 35 | 94.52 10 | 93.78 8 | 97.34 4 | 98.58 23 |
|
| PGM-MVS | | | 89.97 30 | 90.64 31 | 89.18 32 | 96.53 24 | 95.90 51 | 93.06 26 | 82.48 55 | 90.04 41 | 80.37 40 | 92.75 15 | 80.96 49 | 88.93 31 | 89.88 63 | 89.08 69 | 93.69 84 | 95.86 80 |
|
| PHI-MVS | | | 89.88 31 | 92.75 23 | 86.52 53 | 94.97 40 | 97.57 20 | 89.99 50 | 84.56 40 | 92.52 27 | 69.72 90 | 90.35 25 | 87.11 22 | 84.89 64 | 91.82 38 | 92.37 17 | 95.02 54 | 97.51 42 |
|
| CSCG | | | 89.81 32 | 89.69 34 | 89.96 28 | 96.55 23 | 97.90 15 | 92.89 28 | 87.06 29 | 88.74 51 | 86.17 18 | 78.24 44 | 86.53 25 | 84.75 67 | 87.82 91 | 90.59 45 | 92.32 139 | 98.01 33 |
|
| X-MVS | | | 89.73 33 | 90.65 30 | 88.66 35 | 96.44 26 | 95.93 47 | 92.26 36 | 86.98 30 | 90.73 37 | 76.32 56 | 89.56 28 | 82.05 45 | 86.51 51 | 89.98 61 | 89.60 61 | 93.43 104 | 96.72 71 |
|
| EPNet | | | 89.30 34 | 90.89 28 | 87.44 42 | 95.67 37 | 96.81 33 | 91.13 42 | 83.12 49 | 91.14 33 | 76.31 60 | 87.60 31 | 80.40 53 | 84.45 70 | 92.13 33 | 91.12 40 | 93.96 74 | 97.01 58 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| DeepC-MVS | | 84.14 3 | 88.80 35 | 88.03 45 | 89.71 30 | 94.83 41 | 96.56 35 | 92.57 32 | 89.38 21 | 89.25 47 | 79.59 42 | 70.02 70 | 77.05 65 | 88.24 39 | 92.44 29 | 92.79 13 | 93.65 88 | 98.10 32 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| CDPH-MVS | | | 88.76 36 | 90.43 32 | 86.81 49 | 96.04 31 | 96.53 38 | 92.95 27 | 85.95 35 | 90.36 38 | 67.93 96 | 85.80 34 | 80.69 50 | 83.82 75 | 90.81 49 | 91.85 29 | 94.18 67 | 96.99 59 |
|
| 3Dnovator+ | | 81.14 5 | 88.59 37 | 87.49 48 | 89.88 29 | 95.83 34 | 96.45 41 | 91.94 38 | 82.41 56 | 87.09 61 | 85.94 20 | 62.80 100 | 85.37 29 | 89.46 26 | 91.51 41 | 91.89 28 | 93.72 82 | 97.30 49 |
|
| ACMMP |  | | 88.48 38 | 88.71 40 | 88.22 39 | 94.61 44 | 95.53 57 | 90.64 46 | 85.60 37 | 90.97 34 | 78.62 44 | 89.88 27 | 74.20 79 | 86.29 53 | 88.16 88 | 86.37 96 | 93.57 91 | 95.86 80 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| AdaColmap |  | | 88.46 39 | 85.75 64 | 91.62 20 | 96.25 28 | 95.35 62 | 90.71 44 | 91.08 12 | 90.22 40 | 86.17 18 | 74.33 57 | 73.67 82 | 92.00 16 | 86.31 109 | 85.82 105 | 93.52 94 | 94.53 99 |
|
| MVS_0304 | | | 88.43 40 | 89.46 36 | 87.21 44 | 91.85 59 | 97.60 19 | 92.62 31 | 81.10 62 | 87.16 60 | 73.80 67 | 72.19 63 | 83.36 40 | 87.03 46 | 94.64 8 | 93.67 9 | 96.88 9 | 97.64 41 |
|
| 3Dnovator | | 80.58 8 | 88.20 41 | 86.53 54 | 90.15 25 | 96.86 18 | 96.46 39 | 91.97 37 | 83.06 50 | 85.16 66 | 83.66 27 | 62.28 103 | 82.15 43 | 88.98 29 | 90.99 46 | 92.65 14 | 96.38 24 | 96.03 77 |
|
| CPTT-MVS | | | 88.17 42 | 87.84 46 | 88.55 36 | 93.33 49 | 93.75 84 | 92.33 35 | 84.75 39 | 89.87 43 | 81.72 39 | 83.93 36 | 81.12 48 | 88.45 34 | 85.42 118 | 84.07 124 | 90.72 174 | 96.72 71 |
|
| MVS_111021_HR | | | 87.82 43 | 88.84 38 | 86.62 51 | 94.42 45 | 97.36 23 | 88.21 61 | 83.26 48 | 83.42 69 | 72.52 77 | 82.63 37 | 76.93 66 | 84.95 63 | 91.93 37 | 91.15 39 | 96.39 23 | 98.49 25 |
|
| DELS-MVS | | | 87.75 44 | 86.92 52 | 88.71 34 | 94.69 42 | 97.34 26 | 92.78 29 | 84.50 41 | 77.87 93 | 81.94 36 | 67.17 78 | 75.49 74 | 82.84 81 | 95.38 2 | 95.93 2 | 95.55 40 | 99.27 9 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| MVSTER | | | 87.68 45 | 89.12 37 | 86.01 55 | 88.11 89 | 90.05 121 | 89.28 54 | 77.05 87 | 91.37 30 | 79.97 41 | 76.70 49 | 85.25 30 | 84.89 64 | 93.53 19 | 91.41 35 | 96.73 11 | 95.55 87 |
|
| MVS_111021_LR | | | 87.58 46 | 88.67 41 | 86.31 54 | 92.58 53 | 95.89 53 | 86.20 77 | 82.49 54 | 89.08 49 | 77.47 51 | 86.20 33 | 74.22 78 | 85.49 58 | 90.03 60 | 88.52 74 | 93.66 85 | 96.74 69 |
|
| QAPM | | | 87.06 47 | 86.46 55 | 87.75 40 | 96.63 20 | 97.09 27 | 91.71 40 | 82.62 53 | 80.58 82 | 71.28 82 | 66.04 85 | 84.24 33 | 87.01 47 | 89.93 62 | 89.91 54 | 97.26 5 | 97.44 44 |
|
| PVSNet_BlendedMVS | | | 86.98 48 | 87.05 50 | 86.90 46 | 93.03 50 | 96.98 30 | 86.57 73 | 81.82 58 | 89.78 44 | 82.78 32 | 71.54 64 | 66.07 115 | 80.73 93 | 93.46 20 | 91.97 24 | 96.45 20 | 99.53 4 |
|
| PVSNet_Blended | | | 86.98 48 | 87.05 50 | 86.90 46 | 93.03 50 | 96.98 30 | 86.57 73 | 81.82 58 | 89.78 44 | 82.78 32 | 71.54 64 | 66.07 115 | 80.73 93 | 93.46 20 | 91.97 24 | 96.45 20 | 99.53 4 |
|
| ETV-MVS | | | 86.94 50 | 89.49 35 | 83.95 71 | 87.28 98 | 95.61 56 | 83.58 105 | 76.37 94 | 92.59 26 | 73.20 69 | 80.35 40 | 76.42 69 | 87.38 44 | 92.20 32 | 90.45 47 | 95.90 33 | 98.83 20 |
|
| CS-MVS-test | | | 86.72 51 | 88.35 42 | 84.83 64 | 91.78 60 | 96.03 46 | 81.71 116 | 76.71 88 | 91.19 32 | 77.12 54 | 77.64 47 | 75.63 73 | 87.59 43 | 90.82 48 | 89.11 67 | 94.06 71 | 97.99 35 |
|
| CS-MVS | | | 86.70 52 | 87.61 47 | 85.65 56 | 91.33 64 | 95.64 55 | 84.73 93 | 76.64 90 | 88.68 52 | 77.78 45 | 74.87 54 | 72.86 86 | 89.09 28 | 92.89 26 | 90.18 51 | 94.31 66 | 98.16 31 |
|
| EC-MVSNet | | | 86.42 53 | 88.31 43 | 84.20 68 | 86.61 105 | 94.08 78 | 86.20 77 | 72.18 127 | 89.06 50 | 76.02 61 | 74.48 56 | 80.47 52 | 88.90 32 | 92.03 35 | 90.07 52 | 95.30 44 | 98.00 34 |
|
| OMC-MVS | | | 86.38 54 | 86.21 60 | 86.57 52 | 92.30 55 | 94.35 77 | 87.60 65 | 83.51 46 | 92.32 28 | 77.37 52 | 72.27 62 | 77.83 58 | 86.59 50 | 87.62 93 | 85.95 102 | 92.08 143 | 93.11 126 |
|
| HQP-MVS | | | 86.17 55 | 87.35 49 | 84.80 65 | 91.41 63 | 92.37 101 | 91.05 43 | 84.35 43 | 88.52 53 | 64.21 103 | 87.05 32 | 68.91 102 | 84.80 66 | 89.12 73 | 88.16 80 | 92.96 125 | 97.31 48 |
|
| sasdasda | | | 85.93 56 | 86.26 58 | 85.54 57 | 88.94 77 | 95.44 58 | 89.56 51 | 76.01 96 | 87.83 55 | 77.70 47 | 76.43 50 | 68.66 104 | 87.80 41 | 87.02 96 | 91.51 33 | 93.25 113 | 96.95 60 |
|
| canonicalmvs | | | 85.93 56 | 86.26 58 | 85.54 57 | 88.94 77 | 95.44 58 | 89.56 51 | 76.01 96 | 87.83 55 | 77.70 47 | 76.43 50 | 68.66 104 | 87.80 41 | 87.02 96 | 91.51 33 | 93.25 113 | 96.95 60 |
|
| MAR-MVS | | | 85.65 58 | 86.30 57 | 84.88 63 | 95.51 39 | 95.89 53 | 86.50 75 | 76.71 88 | 89.23 48 | 68.59 93 | 70.93 68 | 74.49 76 | 88.55 33 | 89.40 71 | 90.30 49 | 93.42 105 | 93.88 117 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| PCF-MVS | | 82.38 4 | 85.52 59 | 84.41 69 | 86.81 49 | 91.51 62 | 96.23 44 | 90.27 47 | 89.81 19 | 77.87 93 | 70.67 86 | 69.20 72 | 77.86 56 | 85.55 57 | 85.92 114 | 86.38 95 | 93.03 122 | 97.43 46 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| CLD-MVS | | | 85.43 60 | 84.24 72 | 86.83 48 | 87.69 94 | 93.16 92 | 90.01 49 | 82.72 52 | 87.17 59 | 79.28 43 | 71.43 67 | 65.81 118 | 86.02 54 | 87.33 95 | 86.96 89 | 95.25 50 | 97.83 38 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| OpenMVS |  | 77.91 11 | 85.09 61 | 83.42 76 | 87.03 45 | 96.12 30 | 96.55 37 | 89.36 53 | 81.59 60 | 79.19 89 | 75.20 63 | 55.84 131 | 79.04 55 | 84.45 70 | 88.47 82 | 89.35 64 | 95.48 42 | 95.48 88 |
|
| MGCFI-Net | | | 85.07 62 | 85.99 61 | 83.99 69 | 88.81 80 | 95.23 67 | 89.06 56 | 75.74 99 | 87.40 58 | 70.72 85 | 75.99 52 | 68.44 106 | 86.51 51 | 86.83 100 | 91.24 37 | 93.11 120 | 96.78 68 |
|
| TSAR-MVS + COLMAP | | | 84.93 63 | 85.79 63 | 83.92 72 | 90.90 66 | 93.57 88 | 89.25 55 | 82.00 57 | 91.29 31 | 61.66 112 | 88.25 30 | 59.46 138 | 86.71 49 | 89.79 64 | 87.09 86 | 93.01 123 | 91.09 148 |
|
| TAPA-MVS | | 80.99 7 | 84.83 64 | 84.42 68 | 85.31 60 | 91.89 58 | 93.73 86 | 88.53 60 | 82.80 51 | 89.99 42 | 69.78 89 | 71.53 66 | 75.03 75 | 85.47 59 | 86.26 110 | 84.54 119 | 93.39 107 | 89.90 158 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| PLC |  | 81.02 6 | 84.81 65 | 81.81 95 | 88.31 38 | 93.77 48 | 90.35 116 | 88.80 58 | 84.47 42 | 86.76 62 | 82.17 35 | 66.56 81 | 71.01 94 | 88.41 36 | 85.48 116 | 84.28 122 | 92.26 141 | 88.21 171 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| EIA-MVS | | | 84.75 66 | 86.43 56 | 82.79 77 | 86.88 101 | 95.36 61 | 82.84 112 | 76.39 93 | 87.61 57 | 71.03 83 | 74.33 57 | 71.12 93 | 85.16 60 | 89.69 66 | 88.70 73 | 94.40 64 | 98.23 29 |
|
| CNLPA | | | 84.72 67 | 82.14 89 | 87.73 41 | 92.85 52 | 93.83 83 | 84.70 94 | 85.07 38 | 90.90 35 | 83.16 30 | 56.28 127 | 71.53 90 | 88.14 40 | 84.19 123 | 84.00 128 | 92.48 136 | 94.26 106 |
|
| MVS_Test | | | 84.60 68 | 85.13 67 | 83.99 69 | 88.17 87 | 95.27 66 | 88.21 61 | 73.15 118 | 84.31 68 | 70.55 87 | 68.67 76 | 68.78 103 | 86.99 48 | 91.71 40 | 91.90 26 | 96.84 10 | 95.27 93 |
|
| casdiffmvs_mvg |  | | 83.97 69 | 82.62 85 | 85.54 57 | 87.71 92 | 94.38 76 | 88.93 57 | 80.11 66 | 77.34 97 | 77.57 50 | 63.01 99 | 65.95 117 | 84.96 62 | 90.69 51 | 90.23 50 | 93.95 75 | 96.74 69 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| casdiffmvs |  | | 83.84 70 | 82.65 84 | 85.22 61 | 87.25 99 | 94.62 73 | 86.01 81 | 79.62 67 | 79.48 86 | 77.59 49 | 61.92 106 | 64.34 122 | 85.57 56 | 90.55 53 | 90.51 46 | 95.26 48 | 97.14 53 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| baseline | | | 83.83 71 | 84.38 70 | 83.18 76 | 86.65 103 | 94.59 74 | 85.79 84 | 73.78 115 | 85.83 64 | 72.94 70 | 69.28 71 | 70.80 96 | 83.45 78 | 86.80 101 | 87.59 82 | 96.47 19 | 95.77 84 |
|
| diffmvs |  | | 83.69 72 | 83.17 80 | 84.31 66 | 85.45 117 | 93.92 79 | 86.89 68 | 78.62 70 | 82.71 75 | 75.95 62 | 66.78 80 | 63.90 125 | 83.84 74 | 87.90 90 | 89.16 66 | 95.10 53 | 97.82 39 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| CANet_DTU | | | 83.33 73 | 86.59 53 | 79.53 101 | 88.88 79 | 94.87 70 | 86.63 72 | 68.85 150 | 85.45 65 | 50.54 158 | 77.86 46 | 69.94 99 | 85.62 55 | 92.63 28 | 90.88 42 | 96.63 12 | 94.46 100 |
|
| DI_MVS_plusplus_trai | | | 83.32 74 | 82.53 87 | 84.25 67 | 86.26 111 | 93.66 87 | 90.23 48 | 77.16 86 | 77.05 101 | 74.06 66 | 53.74 140 | 74.33 77 | 83.61 77 | 91.40 43 | 89.82 56 | 94.17 68 | 97.73 40 |
|
| baseline1 | | | 82.63 75 | 82.02 90 | 83.34 75 | 88.30 86 | 91.89 105 | 88.03 64 | 80.86 63 | 75.05 108 | 65.96 98 | 64.27 92 | 72.20 88 | 80.01 97 | 91.32 44 | 89.56 62 | 96.90 8 | 89.85 159 |
|
| PVSNet_Blended_VisFu | | | 82.55 76 | 83.70 75 | 81.21 88 | 89.66 70 | 95.15 69 | 82.41 113 | 77.36 85 | 72.53 127 | 73.64 68 | 61.15 109 | 77.19 64 | 70.35 155 | 91.31 45 | 89.72 59 | 93.84 77 | 98.85 18 |
|
| ET-MVSNet_ETH3D | | | 82.37 77 | 85.68 65 | 78.51 111 | 62.90 215 | 94.66 71 | 87.06 67 | 73.57 116 | 83.13 71 | 61.52 114 | 78.37 43 | 76.01 71 | 89.99 22 | 84.14 124 | 89.03 70 | 96.03 31 | 94.42 101 |
|
| PMMVS | | | 82.26 78 | 85.48 66 | 78.51 111 | 85.92 114 | 91.92 104 | 78.30 144 | 70.77 135 | 86.30 63 | 61.11 116 | 82.46 38 | 70.88 95 | 84.70 68 | 88.05 89 | 84.78 115 | 90.24 181 | 93.98 110 |
|
| ACMP | | 79.58 9 | 82.23 79 | 81.82 94 | 82.71 78 | 88.15 88 | 90.95 113 | 85.23 89 | 78.52 72 | 81.70 77 | 72.52 77 | 78.41 42 | 60.63 133 | 80.48 95 | 82.88 135 | 83.44 132 | 91.37 160 | 94.70 97 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| CHOSEN 280x420 | | | 82.15 80 | 85.87 62 | 77.80 116 | 86.54 107 | 93.42 90 | 81.74 115 | 59.96 193 | 78.99 91 | 63.99 104 | 74.50 55 | 83.95 37 | 80.99 88 | 89.53 69 | 85.01 110 | 93.56 93 | 95.71 86 |
|
| LGP-MVS_train | | | 82.12 81 | 82.57 86 | 81.59 84 | 89.26 74 | 90.23 119 | 88.76 59 | 78.05 73 | 81.26 79 | 61.64 113 | 79.52 41 | 62.11 128 | 79.59 99 | 85.20 119 | 84.68 117 | 92.27 140 | 95.02 95 |
|
| FMVSNet3 | | | 81.93 82 | 81.98 91 | 81.88 83 | 79.49 154 | 87.02 137 | 88.15 63 | 72.57 121 | 83.02 72 | 72.63 74 | 56.55 123 | 73.48 83 | 82.34 84 | 91.49 42 | 91.20 38 | 96.07 27 | 91.13 147 |
|
| test2506 | | | 81.91 83 | 81.78 97 | 82.06 82 | 89.09 75 | 95.32 63 | 84.61 96 | 77.54 81 | 74.61 112 | 68.77 92 | 63.80 96 | 67.53 109 | 77.09 108 | 90.19 57 | 89.01 71 | 95.27 45 | 92.00 139 |
|
| thisisatest0530 | | | 81.67 84 | 84.27 71 | 78.63 107 | 85.53 115 | 93.88 82 | 81.77 114 | 73.84 112 | 81.35 78 | 63.85 106 | 68.79 74 | 77.64 60 | 73.02 136 | 88.73 80 | 85.73 106 | 93.76 80 | 93.80 121 |
|
| tttt0517 | | | 81.51 85 | 84.12 74 | 78.47 113 | 85.33 119 | 93.74 85 | 81.42 119 | 73.84 112 | 81.21 80 | 63.59 107 | 68.73 75 | 77.46 63 | 73.02 136 | 88.47 82 | 85.73 106 | 93.63 89 | 93.49 125 |
|
| FA-MVS(training) | | | 81.41 86 | 81.98 91 | 80.76 94 | 87.58 95 | 94.59 74 | 83.09 107 | 61.18 190 | 79.80 85 | 74.74 64 | 58.46 115 | 69.76 100 | 82.12 85 | 88.90 76 | 87.00 87 | 95.83 37 | 95.33 90 |
|
| OPM-MVS | | | 81.34 87 | 78.18 113 | 85.02 62 | 91.27 65 | 91.78 106 | 90.66 45 | 83.62 45 | 62.39 156 | 65.91 99 | 63.35 97 | 64.33 123 | 85.03 61 | 87.77 92 | 85.88 104 | 93.66 85 | 91.75 143 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| baseline2 | | | 81.21 88 | 83.36 79 | 78.70 105 | 83.22 132 | 92.71 94 | 80.32 125 | 74.25 111 | 80.39 83 | 63.94 105 | 68.89 73 | 68.44 106 | 74.67 122 | 89.61 68 | 86.68 93 | 95.83 37 | 96.81 67 |
|
| IS_MVSNet | | | 80.92 89 | 84.14 73 | 77.16 119 | 87.43 96 | 93.90 81 | 80.44 121 | 74.64 105 | 75.05 108 | 61.10 117 | 65.59 87 | 76.89 67 | 67.39 163 | 90.88 47 | 90.05 53 | 91.95 147 | 96.62 74 |
|
| ACMM | | 78.09 10 | 80.91 90 | 78.39 110 | 83.86 73 | 89.61 73 | 87.71 134 | 85.16 90 | 80.67 65 | 79.04 90 | 74.18 65 | 63.82 95 | 60.84 132 | 82.59 82 | 84.33 121 | 83.59 131 | 90.96 168 | 89.39 164 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| EPP-MVSNet | | | 80.82 91 | 82.79 82 | 78.52 109 | 86.31 110 | 92.37 101 | 79.83 128 | 74.51 106 | 73.79 119 | 64.46 102 | 67.01 79 | 80.63 51 | 74.33 125 | 85.63 115 | 84.35 121 | 91.68 153 | 95.79 83 |
|
| CostFormer | | | 80.72 92 | 81.81 95 | 79.44 103 | 86.50 108 | 91.65 107 | 84.31 98 | 59.84 194 | 80.86 81 | 72.69 72 | 62.46 102 | 73.74 80 | 79.93 98 | 82.58 139 | 84.50 120 | 93.37 108 | 96.90 65 |
|
| GBi-Net | | | 80.72 92 | 80.49 99 | 81.00 91 | 78.18 158 | 86.19 151 | 86.73 69 | 72.57 121 | 83.02 72 | 72.63 74 | 56.55 123 | 73.48 83 | 80.99 88 | 86.57 103 | 86.83 90 | 94.89 57 | 90.77 151 |
|
| test1 | | | 80.72 92 | 80.49 99 | 81.00 91 | 78.18 158 | 86.19 151 | 86.73 69 | 72.57 121 | 83.02 72 | 72.63 74 | 56.55 123 | 73.48 83 | 80.99 88 | 86.57 103 | 86.83 90 | 94.89 57 | 90.77 151 |
|
| UGNet | | | 80.71 95 | 83.09 81 | 77.93 115 | 87.02 100 | 92.71 94 | 80.28 126 | 76.53 91 | 73.83 118 | 71.35 81 | 70.07 69 | 73.71 81 | 58.93 183 | 87.39 94 | 86.97 88 | 93.48 101 | 96.94 62 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| CHOSEN 1792x2688 | | | 80.23 96 | 79.16 107 | 81.48 86 | 91.97 56 | 96.56 35 | 86.18 79 | 75.40 102 | 76.17 104 | 61.32 115 | 37.43 201 | 61.08 131 | 76.52 114 | 92.35 30 | 91.64 31 | 97.46 3 | 98.86 17 |
|
| thres100view900 | | | 79.83 97 | 77.79 117 | 82.21 79 | 88.42 83 | 93.54 89 | 87.07 66 | 81.11 61 | 70.15 134 | 61.01 118 | 56.65 121 | 51.22 155 | 81.78 86 | 89.77 65 | 85.95 102 | 93.84 77 | 97.26 50 |
|
| Effi-MVS+ | | | 79.80 98 | 80.04 101 | 79.52 102 | 85.53 115 | 93.31 91 | 85.28 87 | 70.68 137 | 74.15 114 | 58.79 127 | 62.03 105 | 60.51 134 | 83.37 79 | 88.41 84 | 86.09 101 | 93.49 100 | 95.80 82 |
|
| ECVR-MVS |  | | 79.76 99 | 78.27 111 | 81.50 85 | 89.09 75 | 95.32 63 | 84.61 96 | 77.54 81 | 74.61 112 | 65.38 100 | 50.22 152 | 56.31 149 | 77.09 108 | 90.19 57 | 89.01 71 | 95.27 45 | 92.25 134 |
|
| DCV-MVSNet | | | 79.76 99 | 79.17 106 | 80.44 97 | 84.65 123 | 84.51 175 | 84.20 99 | 72.36 126 | 75.17 107 | 70.81 84 | 66.21 84 | 66.56 112 | 80.99 88 | 82.89 134 | 84.56 118 | 89.65 187 | 94.30 105 |
|
| FC-MVSNet-train | | | 79.54 101 | 78.20 112 | 81.09 90 | 86.55 106 | 88.63 130 | 79.96 127 | 78.53 71 | 70.90 132 | 68.24 94 | 65.87 86 | 56.45 148 | 80.29 96 | 86.20 112 | 84.08 123 | 92.97 124 | 95.31 92 |
|
| test-LLR | | | 79.52 102 | 83.42 76 | 74.97 128 | 81.79 137 | 91.26 108 | 76.17 165 | 70.57 138 | 77.71 95 | 52.14 145 | 66.26 82 | 77.47 61 | 73.10 132 | 87.02 96 | 87.16 84 | 96.05 29 | 97.02 56 |
|
| FMVSNet2 | | | 79.24 103 | 78.14 114 | 80.53 96 | 78.18 158 | 86.19 151 | 86.73 69 | 71.91 128 | 72.97 122 | 70.48 88 | 50.63 150 | 66.56 112 | 80.99 88 | 90.10 59 | 89.77 58 | 94.89 57 | 90.77 151 |
|
| TESTMET0.1,1 | | | 79.15 104 | 83.42 76 | 74.18 134 | 79.81 152 | 91.26 108 | 76.17 165 | 67.83 163 | 77.71 95 | 52.14 145 | 66.26 82 | 77.47 61 | 73.10 132 | 87.02 96 | 87.16 84 | 96.05 29 | 97.02 56 |
|
| tfpn200view9 | | | 79.05 105 | 77.21 121 | 81.18 89 | 88.42 83 | 92.55 99 | 85.12 91 | 77.94 75 | 70.15 134 | 61.01 118 | 56.65 121 | 51.22 155 | 81.11 87 | 88.23 85 | 84.80 114 | 93.50 99 | 96.90 65 |
|
| test1111 | | | 78.99 106 | 77.77 118 | 80.42 98 | 88.64 81 | 95.31 65 | 83.39 106 | 77.67 79 | 72.76 125 | 61.91 110 | 49.58 155 | 55.59 151 | 75.67 119 | 90.23 56 | 89.09 68 | 95.23 51 | 91.83 142 |
|
| PatchMatch-RL | | | 78.75 107 | 76.47 128 | 81.41 87 | 88.53 82 | 91.10 110 | 78.09 145 | 77.51 84 | 77.33 98 | 71.98 79 | 64.38 91 | 48.10 168 | 82.55 83 | 84.06 125 | 82.35 141 | 89.78 184 | 87.97 173 |
|
| LS3D | | | 78.72 108 | 75.79 133 | 82.15 80 | 91.91 57 | 89.39 126 | 83.66 103 | 85.88 36 | 76.81 102 | 59.22 126 | 57.67 118 | 58.53 142 | 83.72 76 | 82.07 144 | 81.63 152 | 88.50 195 | 84.39 184 |
|
| thres200 | | | 78.69 109 | 76.71 124 | 80.99 93 | 88.35 85 | 92.56 97 | 86.03 80 | 77.94 75 | 66.27 141 | 60.66 120 | 56.08 128 | 51.11 157 | 79.45 100 | 88.23 85 | 85.54 109 | 93.52 94 | 97.20 52 |
|
| Anonymous20231211 | | | 78.61 110 | 75.57 136 | 82.15 80 | 84.43 127 | 90.26 117 | 84.08 101 | 77.68 78 | 71.09 130 | 72.90 71 | 39.24 195 | 66.21 114 | 84.23 73 | 82.15 142 | 84.04 125 | 89.61 188 | 96.03 77 |
|
| IB-MVS | | 74.10 12 | 78.52 111 | 78.51 109 | 78.52 109 | 90.15 68 | 95.39 60 | 71.95 185 | 77.53 83 | 74.95 110 | 77.25 53 | 58.93 113 | 55.92 150 | 58.37 185 | 79.01 169 | 87.89 81 | 95.88 35 | 97.47 43 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| EPNet_dtu | | | 78.49 112 | 81.96 93 | 74.45 133 | 92.57 54 | 88.74 129 | 82.98 108 | 78.83 69 | 83.28 70 | 44.64 189 | 77.40 48 | 67.73 108 | 53.98 194 | 85.44 117 | 84.91 111 | 93.71 83 | 86.22 179 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| thres400 | | | 78.39 113 | 76.39 129 | 80.73 95 | 88.02 90 | 92.94 93 | 84.77 92 | 78.88 68 | 65.20 149 | 59.70 124 | 55.20 134 | 50.85 158 | 79.45 100 | 88.81 77 | 84.81 113 | 93.57 91 | 96.91 64 |
|
| UA-Net | | | 78.30 114 | 80.92 98 | 75.25 127 | 87.42 97 | 92.48 100 | 79.54 131 | 75.49 101 | 60.47 160 | 60.52 121 | 68.44 77 | 84.08 36 | 57.54 187 | 88.54 81 | 88.45 75 | 90.96 168 | 83.97 186 |
|
| Vis-MVSNet (Re-imp) | | | 78.28 115 | 82.68 83 | 73.16 145 | 86.64 104 | 92.68 96 | 78.07 146 | 74.48 107 | 74.05 115 | 53.47 138 | 64.22 93 | 76.52 68 | 54.28 190 | 88.96 75 | 88.29 78 | 92.03 145 | 94.00 109 |
|
| MSDG | | | 78.11 116 | 73.17 149 | 83.86 73 | 91.78 60 | 86.83 139 | 85.25 88 | 86.02 34 | 72.84 124 | 69.69 91 | 51.43 147 | 54.00 153 | 77.61 104 | 81.95 147 | 82.27 143 | 92.83 130 | 82.91 191 |
|
| HyFIR lowres test | | | 78.08 117 | 76.81 122 | 79.56 100 | 90.77 67 | 94.64 72 | 82.97 109 | 69.85 143 | 69.81 136 | 59.53 125 | 33.52 207 | 64.66 119 | 78.97 102 | 88.77 79 | 88.38 77 | 95.27 45 | 97.86 37 |
|
| GeoE | | | 78.04 118 | 77.52 120 | 78.65 106 | 84.51 125 | 90.84 114 | 80.94 120 | 69.24 148 | 72.86 123 | 66.06 97 | 53.45 141 | 60.46 135 | 77.37 105 | 84.20 122 | 84.85 112 | 93.78 79 | 96.00 79 |
|
| test-mter | | | 77.90 119 | 82.44 88 | 72.60 150 | 78.52 156 | 90.24 118 | 73.85 178 | 65.31 178 | 76.37 103 | 51.29 149 | 65.58 88 | 75.94 72 | 71.36 146 | 85.98 113 | 86.26 97 | 95.26 48 | 96.71 73 |
|
| thres600view7 | | | 77.66 120 | 75.67 134 | 79.98 99 | 87.71 92 | 92.56 97 | 83.79 102 | 77.94 75 | 64.41 151 | 58.69 128 | 54.32 139 | 50.54 159 | 78.23 103 | 88.23 85 | 83.06 135 | 93.52 94 | 96.55 75 |
|
| MS-PatchMatch | | | 77.47 121 | 76.48 127 | 78.63 107 | 89.89 69 | 90.42 115 | 85.42 86 | 69.53 145 | 70.79 133 | 60.43 122 | 50.05 153 | 70.62 98 | 70.66 152 | 86.71 102 | 82.54 138 | 95.86 36 | 84.23 185 |
|
| Fast-Effi-MVS+ | | | 77.37 122 | 76.68 125 | 78.17 114 | 82.84 134 | 89.94 122 | 81.47 118 | 68.01 159 | 72.99 121 | 60.26 123 | 55.07 135 | 53.20 154 | 82.99 80 | 86.47 108 | 86.12 100 | 93.46 102 | 92.98 129 |
|
| dmvs_re | | | 77.25 123 | 75.86 132 | 78.86 104 | 81.08 143 | 89.36 127 | 84.15 100 | 80.73 64 | 73.02 120 | 55.58 134 | 58.33 116 | 48.97 164 | 75.32 120 | 83.92 128 | 86.25 98 | 96.29 26 | 91.20 146 |
|
| Vis-MVSNet |  | | 77.24 124 | 79.99 104 | 74.02 135 | 84.62 124 | 93.92 79 | 80.33 124 | 72.55 124 | 62.58 155 | 55.25 136 | 64.45 90 | 69.49 101 | 57.00 188 | 88.78 78 | 88.21 79 | 94.36 65 | 92.54 131 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| MDTV_nov1_ep13 | | | 77.20 125 | 80.04 101 | 73.90 137 | 82.22 135 | 90.14 120 | 79.25 135 | 61.52 188 | 78.63 92 | 56.98 129 | 65.52 89 | 72.80 87 | 73.05 134 | 80.93 155 | 83.20 133 | 90.36 178 | 89.05 167 |
|
| EPMVS | | | 77.16 126 | 79.08 108 | 74.92 129 | 86.73 102 | 91.98 103 | 78.62 140 | 55.44 202 | 79.43 87 | 56.59 131 | 61.24 108 | 70.73 97 | 76.97 111 | 80.59 158 | 81.43 158 | 95.15 52 | 88.17 172 |
|
| tpm cat1 | | | 76.93 127 | 76.19 131 | 77.79 117 | 85.08 122 | 88.58 131 | 82.96 110 | 59.33 195 | 75.72 106 | 72.64 73 | 51.25 148 | 64.41 121 | 75.74 118 | 77.90 177 | 80.10 174 | 90.97 167 | 95.35 89 |
|
| PatchmatchNet |  | | 76.85 128 | 80.03 103 | 73.15 146 | 84.08 129 | 91.04 112 | 77.76 150 | 55.85 201 | 79.43 87 | 52.74 143 | 62.08 104 | 76.02 70 | 74.56 123 | 79.92 163 | 81.41 159 | 93.92 76 | 90.29 156 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| IterMVS-LS | | | 76.80 129 | 76.33 130 | 77.35 118 | 84.07 130 | 84.11 176 | 81.54 117 | 68.52 152 | 66.17 142 | 61.74 111 | 57.84 117 | 64.31 124 | 74.88 121 | 83.48 131 | 86.21 99 | 93.34 110 | 92.16 136 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| CDS-MVSNet | | | 76.57 130 | 76.78 123 | 76.32 122 | 80.94 145 | 89.75 123 | 82.94 111 | 72.64 120 | 59.01 166 | 62.95 109 | 58.60 114 | 62.67 127 | 66.91 165 | 86.26 110 | 87.20 83 | 91.57 155 | 93.97 111 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| SCA | | | 76.41 131 | 79.90 105 | 72.35 154 | 84.26 128 | 85.24 166 | 75.57 172 | 54.56 204 | 79.95 84 | 52.72 144 | 64.22 93 | 77.84 57 | 73.73 129 | 80.48 159 | 81.37 160 | 93.25 113 | 90.20 157 |
|
| tpmrst | | | 76.27 132 | 77.65 119 | 74.66 131 | 86.13 113 | 89.53 125 | 79.31 134 | 54.91 203 | 77.19 100 | 56.27 132 | 55.87 130 | 64.58 120 | 77.25 106 | 80.85 156 | 80.21 171 | 94.07 70 | 95.32 91 |
|
| dps | | | 75.76 133 | 75.02 138 | 76.63 121 | 84.51 125 | 88.12 132 | 77.51 151 | 58.33 197 | 75.91 105 | 71.98 79 | 57.37 119 | 57.85 143 | 76.81 113 | 77.89 178 | 78.40 183 | 90.63 175 | 89.63 161 |
|
| CR-MVSNet | | | 74.84 134 | 77.91 115 | 71.26 167 | 81.77 139 | 85.52 162 | 78.32 142 | 54.14 206 | 74.05 115 | 51.09 152 | 50.00 154 | 71.38 92 | 70.77 150 | 86.48 106 | 84.03 126 | 91.46 159 | 93.92 114 |
|
| Effi-MVS+-dtu | | | 74.57 135 | 74.60 142 | 74.53 132 | 81.38 141 | 86.74 141 | 80.39 123 | 67.70 164 | 67.36 140 | 53.06 139 | 59.86 111 | 57.50 144 | 75.84 117 | 80.19 161 | 78.62 181 | 88.79 194 | 91.95 141 |
|
| RPSCF | | | 74.27 136 | 73.24 148 | 75.48 126 | 81.01 144 | 80.18 198 | 76.24 164 | 72.37 125 | 74.84 111 | 68.24 94 | 72.47 60 | 67.39 110 | 73.89 126 | 71.05 202 | 69.38 209 | 81.14 214 | 77.37 203 |
|
| FMVSNet1 | | | 74.26 137 | 71.95 154 | 76.95 120 | 74.28 190 | 83.94 178 | 83.61 104 | 69.99 141 | 57.08 172 | 65.08 101 | 42.39 184 | 57.41 145 | 76.98 110 | 86.57 103 | 86.83 90 | 91.77 152 | 89.42 162 |
|
| GA-MVS | | | 73.62 138 | 74.52 143 | 72.58 151 | 79.93 150 | 89.29 128 | 78.02 147 | 71.67 131 | 60.79 159 | 42.68 193 | 54.41 138 | 49.07 163 | 70.07 156 | 89.39 72 | 86.55 94 | 93.13 119 | 92.12 137 |
|
| Fast-Effi-MVS+-dtu | | | 73.56 139 | 75.32 137 | 71.50 163 | 80.35 147 | 86.83 139 | 79.72 129 | 58.07 198 | 67.64 139 | 44.83 186 | 60.28 110 | 54.07 152 | 73.59 131 | 81.90 149 | 82.30 142 | 92.46 137 | 94.18 107 |
|
| tpm | | | 73.50 140 | 74.85 139 | 71.93 157 | 83.19 133 | 86.84 138 | 78.61 141 | 55.91 200 | 65.64 144 | 48.90 165 | 56.30 126 | 61.09 130 | 72.31 138 | 79.10 168 | 80.61 170 | 92.68 132 | 94.35 104 |
|
| RPMNet | | | 73.46 141 | 77.85 116 | 68.34 177 | 81.71 140 | 85.52 162 | 73.83 179 | 50.54 213 | 74.05 115 | 46.10 180 | 53.03 144 | 71.91 89 | 66.31 167 | 83.55 129 | 82.18 145 | 91.55 157 | 94.71 96 |
|
| USDC | | | 73.43 142 | 72.31 152 | 74.73 130 | 80.86 146 | 86.21 149 | 80.42 122 | 71.83 130 | 71.69 129 | 46.94 173 | 59.60 112 | 42.58 189 | 76.47 115 | 82.66 138 | 81.22 163 | 91.88 149 | 82.24 197 |
|
| pmmvs4 | | | 73.38 143 | 71.53 157 | 75.55 125 | 75.95 176 | 85.24 166 | 77.25 155 | 71.59 132 | 71.03 131 | 63.10 108 | 49.09 160 | 44.22 179 | 73.73 129 | 82.04 145 | 80.18 172 | 91.68 153 | 88.89 169 |
|
| UniMVSNet_NR-MVSNet | | | 73.11 144 | 72.59 150 | 73.71 140 | 76.90 167 | 86.58 145 | 77.01 156 | 75.82 98 | 65.59 145 | 48.82 166 | 50.97 149 | 48.42 166 | 71.61 142 | 79.19 167 | 83.03 136 | 92.11 142 | 94.37 102 |
|
| FMVSNet5 | | | 72.83 145 | 73.89 146 | 71.59 161 | 67.42 208 | 76.28 206 | 75.88 169 | 63.74 182 | 77.27 99 | 54.59 137 | 53.32 142 | 71.48 91 | 73.85 127 | 81.95 147 | 81.69 150 | 94.06 71 | 75.20 207 |
|
| PatchT | | | 72.66 146 | 76.58 126 | 68.09 179 | 79.02 155 | 86.09 155 | 59.81 207 | 51.78 211 | 72.00 128 | 51.09 152 | 46.84 164 | 66.70 111 | 70.77 150 | 86.48 106 | 84.03 126 | 96.07 27 | 93.92 114 |
|
| ACMH | | 71.22 14 | 72.65 147 | 70.13 162 | 75.59 124 | 86.19 112 | 86.14 154 | 75.76 170 | 77.63 80 | 54.79 180 | 46.16 179 | 53.28 143 | 47.28 170 | 77.24 107 | 78.91 170 | 81.18 164 | 90.57 176 | 89.33 165 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| IterMVS | | | 72.43 148 | 74.05 144 | 70.55 171 | 80.34 148 | 81.17 192 | 77.44 152 | 61.00 192 | 63.57 154 | 46.82 175 | 55.88 129 | 59.09 141 | 65.03 169 | 83.15 132 | 83.83 129 | 92.67 133 | 91.65 144 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| ACMH+ | | 72.14 13 | 72.38 149 | 69.34 169 | 75.93 123 | 85.21 120 | 84.89 170 | 76.96 159 | 76.04 95 | 59.76 161 | 51.63 148 | 50.37 151 | 48.69 165 | 76.90 112 | 76.06 186 | 78.69 179 | 88.85 193 | 86.90 177 |
|
| DU-MVS | | | 72.19 150 | 71.35 158 | 73.17 144 | 75.95 176 | 86.02 156 | 77.01 156 | 74.42 108 | 65.39 147 | 48.82 166 | 49.10 158 | 42.81 187 | 71.61 142 | 78.67 171 | 83.10 134 | 91.22 163 | 94.37 102 |
|
| IterMVS-SCA-FT | | | 72.18 151 | 73.96 145 | 70.11 173 | 80.15 149 | 81.11 193 | 77.42 153 | 61.09 191 | 63.67 153 | 46.73 176 | 55.77 132 | 59.15 140 | 63.95 172 | 82.83 136 | 83.70 130 | 91.31 161 | 91.49 145 |
|
| UniMVSNet (Re) | | | 72.12 152 | 72.28 153 | 71.93 157 | 76.77 168 | 87.38 136 | 75.73 171 | 73.51 117 | 65.76 143 | 50.24 160 | 48.65 161 | 46.49 171 | 63.85 173 | 80.10 162 | 82.47 139 | 91.49 158 | 95.13 94 |
|
| ADS-MVSNet | | | 72.11 153 | 73.72 147 | 70.24 172 | 81.24 142 | 86.59 144 | 74.75 175 | 50.56 212 | 72.58 126 | 49.17 163 | 55.40 133 | 61.46 129 | 73.80 128 | 76.01 187 | 78.14 184 | 91.93 148 | 85.86 180 |
|
| gg-mvs-nofinetune | | | 72.10 154 | 74.79 140 | 68.97 176 | 83.31 131 | 95.22 68 | 85.66 85 | 48.77 214 | 35.68 216 | 22.17 223 | 30.49 210 | 77.73 59 | 76.37 116 | 94.30 13 | 93.03 11 | 97.55 2 | 97.05 55 |
|
| TAMVS | | | 72.06 155 | 71.76 156 | 72.41 153 | 76.68 169 | 88.12 132 | 74.82 174 | 68.09 157 | 53.52 185 | 56.91 130 | 52.94 145 | 56.93 147 | 66.91 165 | 81.37 152 | 82.44 140 | 91.07 165 | 86.99 176 |
|
| v2v482 | | | 71.73 156 | 69.80 164 | 73.99 136 | 75.88 180 | 86.66 143 | 79.58 130 | 71.90 129 | 57.58 170 | 50.41 159 | 45.35 168 | 43.24 185 | 73.05 134 | 79.69 164 | 82.18 145 | 93.08 121 | 93.87 118 |
|
| test0.0.03 1 | | | 71.70 157 | 74.68 141 | 68.23 178 | 81.79 137 | 83.81 179 | 68.64 189 | 70.57 138 | 68.81 138 | 43.47 190 | 62.77 101 | 60.09 137 | 51.77 201 | 82.48 140 | 81.67 151 | 93.16 117 | 83.13 189 |
|
| V42 | | | 71.58 158 | 70.11 163 | 73.30 143 | 75.66 183 | 86.68 142 | 79.17 137 | 69.92 142 | 59.29 165 | 52.80 142 | 44.36 172 | 45.66 173 | 68.83 157 | 79.48 166 | 81.49 155 | 93.44 103 | 93.82 120 |
|
| NR-MVSNet | | | 71.47 159 | 71.11 159 | 71.90 159 | 77.73 163 | 86.02 156 | 76.88 160 | 74.42 108 | 65.39 147 | 46.09 181 | 49.10 158 | 39.87 202 | 64.27 171 | 81.40 151 | 82.24 144 | 91.99 146 | 93.75 122 |
|
| v8 | | | 71.42 160 | 69.69 165 | 73.43 142 | 76.45 172 | 85.12 169 | 79.53 132 | 67.47 167 | 59.34 164 | 52.90 141 | 44.60 170 | 45.82 172 | 71.05 148 | 79.56 165 | 81.45 157 | 93.17 116 | 91.96 140 |
|
| TranMVSNet+NR-MVSNet | | | 71.12 161 | 70.24 161 | 72.15 155 | 76.01 175 | 84.80 172 | 76.55 162 | 75.65 100 | 61.99 157 | 45.29 184 | 48.42 162 | 43.07 186 | 67.55 161 | 78.28 174 | 82.83 137 | 91.85 150 | 92.29 132 |
|
| v10 | | | 70.97 162 | 69.44 166 | 72.75 147 | 75.90 179 | 84.58 174 | 79.43 133 | 66.45 172 | 58.07 168 | 49.93 161 | 43.87 178 | 43.68 180 | 71.91 140 | 82.04 145 | 81.70 149 | 92.89 128 | 92.11 138 |
|
| v1144 | | | 70.93 163 | 69.42 168 | 72.70 148 | 75.48 184 | 86.26 147 | 79.22 136 | 69.39 147 | 55.61 177 | 48.05 171 | 43.47 179 | 42.55 190 | 71.51 144 | 82.11 143 | 81.74 148 | 92.56 135 | 94.17 108 |
|
| thisisatest0515 | | | 70.62 164 | 71.94 155 | 69.07 175 | 76.48 171 | 85.59 161 | 68.03 190 | 68.02 158 | 59.70 162 | 52.94 140 | 52.19 146 | 50.36 160 | 58.10 186 | 83.15 132 | 81.63 152 | 90.87 171 | 90.99 149 |
|
| Baseline_NR-MVSNet | | | 70.61 165 | 68.87 172 | 72.65 149 | 75.95 176 | 80.49 196 | 75.92 168 | 74.75 104 | 65.10 150 | 48.78 168 | 41.28 190 | 44.28 178 | 68.45 158 | 78.67 171 | 79.64 175 | 92.04 144 | 92.62 130 |
|
| v148 | | | 70.34 166 | 68.46 175 | 72.54 152 | 76.04 174 | 86.38 146 | 74.83 173 | 72.73 119 | 55.88 176 | 55.26 135 | 43.32 181 | 43.49 181 | 64.52 170 | 76.93 184 | 80.11 173 | 91.85 150 | 93.11 126 |
|
| v1192 | | | 70.32 167 | 68.77 173 | 72.12 156 | 74.76 186 | 85.62 160 | 78.73 138 | 68.53 151 | 55.08 179 | 46.34 178 | 42.39 184 | 40.67 197 | 71.90 141 | 82.27 141 | 81.53 154 | 92.43 138 | 93.86 119 |
|
| v144192 | | | 70.10 168 | 68.55 174 | 71.90 159 | 74.55 187 | 85.67 159 | 77.81 148 | 68.22 156 | 54.65 181 | 46.91 174 | 42.76 182 | 41.27 194 | 70.95 149 | 80.48 159 | 81.11 168 | 92.96 125 | 93.90 116 |
|
| pmmvs5 | | | 70.01 169 | 69.31 170 | 70.82 170 | 75.80 182 | 86.26 147 | 72.94 180 | 67.91 160 | 53.84 184 | 47.22 172 | 47.31 163 | 41.47 193 | 67.61 160 | 83.93 127 | 81.93 147 | 93.42 105 | 90.42 155 |
|
| COLMAP_ROB |  | 66.31 15 | 69.91 170 | 66.61 180 | 73.76 138 | 86.44 109 | 82.76 183 | 76.59 161 | 76.46 92 | 63.82 152 | 50.92 156 | 45.60 167 | 49.13 162 | 65.87 168 | 74.96 192 | 74.45 199 | 86.30 204 | 75.57 206 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| v1921920 | | | 69.85 171 | 68.38 176 | 71.58 162 | 74.35 188 | 85.39 164 | 77.78 149 | 67.88 162 | 54.64 182 | 45.39 183 | 42.11 187 | 39.97 201 | 71.10 147 | 81.68 150 | 81.17 166 | 92.96 125 | 93.69 124 |
|
| pm-mvs1 | | | 69.62 172 | 68.07 178 | 71.44 164 | 77.21 165 | 85.32 165 | 76.11 167 | 71.05 133 | 46.55 205 | 51.17 151 | 41.83 188 | 48.20 167 | 61.81 179 | 84.00 126 | 81.14 167 | 91.28 162 | 89.42 162 |
|
| UniMVSNet_ETH3D | | | 69.49 173 | 65.86 182 | 73.72 139 | 76.51 170 | 85.88 158 | 78.65 139 | 70.52 140 | 48.08 202 | 55.71 133 | 37.64 198 | 40.56 198 | 71.38 145 | 75.05 191 | 81.49 155 | 89.57 190 | 92.29 132 |
|
| tfpnnormal | | | 69.29 174 | 65.58 183 | 73.62 141 | 79.87 151 | 84.82 171 | 76.97 158 | 75.12 103 | 45.29 206 | 49.03 164 | 35.57 205 | 37.20 210 | 68.02 159 | 82.70 137 | 81.24 162 | 92.69 131 | 92.20 135 |
|
| v1240 | | | 69.28 175 | 67.82 179 | 71.00 169 | 74.09 192 | 85.13 168 | 76.54 163 | 67.28 169 | 53.17 186 | 44.70 187 | 41.55 189 | 39.38 203 | 70.51 154 | 81.29 153 | 81.18 164 | 92.88 129 | 93.02 128 |
|
| CVMVSNet | | | 68.95 176 | 70.79 160 | 66.79 185 | 79.69 153 | 83.75 180 | 72.05 184 | 70.90 134 | 56.20 174 | 36.30 205 | 54.94 137 | 59.22 139 | 54.03 193 | 78.33 173 | 78.65 180 | 87.77 200 | 84.44 183 |
|
| MIMVSNet | | | 68.66 177 | 69.43 167 | 67.76 180 | 64.92 212 | 84.68 173 | 74.16 176 | 54.10 208 | 60.85 158 | 51.27 150 | 39.47 194 | 49.48 161 | 67.48 162 | 84.86 120 | 85.57 108 | 94.63 61 | 81.10 198 |
|
| TDRefinement | | | 67.82 178 | 64.91 189 | 71.22 168 | 82.08 136 | 81.45 188 | 77.42 153 | 73.79 114 | 59.62 163 | 48.35 170 | 42.35 186 | 42.40 191 | 60.87 181 | 74.69 193 | 74.64 198 | 84.83 208 | 79.20 201 |
|
| anonymousdsp | | | 67.61 179 | 68.94 171 | 66.04 186 | 71.44 204 | 83.97 177 | 66.45 194 | 63.53 184 | 50.54 195 | 42.42 194 | 49.39 156 | 45.63 174 | 62.84 176 | 77.99 176 | 81.34 161 | 89.59 189 | 93.75 122 |
|
| TinyColmap | | | 67.16 180 | 63.51 196 | 71.42 165 | 77.94 161 | 79.54 202 | 72.80 181 | 69.78 144 | 56.58 173 | 45.52 182 | 44.53 171 | 33.53 215 | 74.45 124 | 76.91 185 | 77.06 190 | 88.03 199 | 76.41 204 |
|
| FC-MVSNet-test | | | 67.04 181 | 72.47 151 | 60.70 203 | 76.92 166 | 81.41 189 | 61.52 204 | 69.45 146 | 65.58 146 | 26.74 219 | 61.79 107 | 60.40 136 | 41.17 210 | 77.60 180 | 77.78 186 | 88.41 196 | 82.70 193 |
|
| TransMVSNet (Re) | | | 66.87 182 | 64.30 191 | 69.88 174 | 78.32 157 | 81.35 191 | 73.88 177 | 74.34 110 | 43.19 210 | 45.20 185 | 40.12 192 | 42.37 192 | 55.97 189 | 80.85 156 | 79.15 176 | 91.56 156 | 83.06 190 |
|
| CMPMVS |  | 50.59 17 | 66.74 183 | 62.72 200 | 71.42 165 | 85.40 118 | 89.72 124 | 72.69 182 | 70.72 136 | 51.24 191 | 51.75 147 | 38.91 196 | 44.40 176 | 63.74 174 | 70.84 203 | 71.52 203 | 84.19 209 | 72.45 211 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| v7n | | | 66.43 184 | 65.51 184 | 67.51 181 | 71.63 203 | 83.10 181 | 70.89 188 | 65.02 179 | 50.13 198 | 44.68 188 | 39.59 193 | 38.77 204 | 62.57 177 | 77.59 181 | 78.91 177 | 90.29 180 | 90.44 154 |
|
| EG-PatchMatch MVS | | | 66.23 185 | 65.20 186 | 67.43 182 | 77.74 162 | 86.20 150 | 72.51 183 | 63.68 183 | 43.95 208 | 43.44 191 | 36.22 204 | 45.43 175 | 54.04 192 | 81.00 154 | 80.95 169 | 93.15 118 | 82.67 194 |
|
| WR-MVS | | | 64.98 186 | 66.59 181 | 63.09 196 | 74.34 189 | 82.68 184 | 64.98 200 | 69.17 149 | 54.42 183 | 36.18 206 | 44.32 173 | 44.35 177 | 44.65 204 | 73.60 194 | 77.83 185 | 89.21 192 | 88.96 168 |
|
| gm-plane-assit | | | 64.86 187 | 68.15 177 | 61.02 202 | 76.44 173 | 68.29 215 | 41.60 220 | 53.37 209 | 34.68 218 | 26.19 221 | 33.22 208 | 57.09 146 | 71.97 139 | 95.12 5 | 93.97 7 | 96.54 16 | 94.66 98 |
|
| CP-MVSNet | | | 64.84 188 | 64.97 187 | 64.69 191 | 72.09 199 | 81.04 194 | 66.66 193 | 67.53 166 | 52.45 188 | 37.40 201 | 44.00 177 | 38.37 206 | 53.54 196 | 72.26 198 | 76.93 191 | 90.94 170 | 89.75 160 |
|
| MDTV_nov1_ep13_2view | | | 64.72 189 | 64.94 188 | 64.46 192 | 71.14 205 | 81.94 187 | 67.53 191 | 54.54 205 | 55.92 175 | 43.29 192 | 44.02 176 | 43.27 184 | 59.87 182 | 71.85 200 | 74.77 197 | 90.36 178 | 82.82 192 |
|
| MVS-HIRNet | | | 64.63 190 | 64.03 195 | 65.33 188 | 75.01 185 | 82.84 182 | 58.54 211 | 52.10 210 | 55.42 178 | 49.29 162 | 29.83 213 | 43.48 182 | 66.97 164 | 78.28 174 | 78.81 178 | 90.07 183 | 79.52 200 |
|
| pmnet_mix02 | | | 64.58 191 | 64.11 194 | 65.12 189 | 74.16 191 | 80.17 199 | 63.24 202 | 67.91 160 | 57.87 169 | 41.69 195 | 45.86 166 | 40.99 196 | 53.97 195 | 69.92 206 | 71.67 202 | 89.77 185 | 82.29 196 |
|
| LTVRE_ROB | | 63.07 16 | 64.49 192 | 63.16 199 | 66.04 186 | 77.47 164 | 82.64 185 | 70.98 187 | 65.02 179 | 34.01 219 | 29.61 215 | 49.12 157 | 35.58 214 | 70.57 153 | 75.10 190 | 78.45 182 | 82.60 212 | 87.24 175 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| PEN-MVS | | | 64.35 193 | 64.29 192 | 64.42 193 | 72.67 195 | 79.83 200 | 66.97 192 | 68.24 155 | 51.21 192 | 35.29 208 | 44.09 174 | 38.51 205 | 52.36 199 | 71.06 201 | 77.65 187 | 90.99 166 | 87.68 174 |
|
| pmmvs6 | | | 64.24 194 | 61.77 204 | 67.12 183 | 72.39 198 | 81.39 190 | 71.33 186 | 65.95 177 | 36.05 215 | 48.48 169 | 30.55 209 | 43.45 183 | 58.75 184 | 77.88 179 | 76.36 194 | 85.83 205 | 86.70 178 |
|
| pmmvs-eth3d | | | 64.24 194 | 61.96 202 | 66.90 184 | 66.35 209 | 76.04 208 | 66.09 196 | 66.31 174 | 52.59 187 | 50.94 155 | 37.61 199 | 32.79 217 | 62.43 178 | 75.78 188 | 75.48 196 | 89.27 191 | 83.39 188 |
|
| PS-CasMVS | | | 64.22 196 | 64.19 193 | 64.25 194 | 71.86 201 | 80.67 195 | 66.42 195 | 67.43 168 | 50.64 194 | 36.48 203 | 42.60 183 | 37.46 209 | 52.56 198 | 71.98 199 | 76.69 193 | 90.76 172 | 89.29 166 |
|
| WR-MVS_H | | | 64.14 197 | 65.36 185 | 62.71 198 | 72.47 197 | 82.33 186 | 65.13 197 | 66.99 170 | 51.81 190 | 36.47 204 | 43.33 180 | 42.77 188 | 43.99 206 | 72.41 197 | 75.99 195 | 91.20 164 | 88.86 170 |
|
| SixPastTwentyTwo | | | 63.75 198 | 63.42 197 | 64.13 195 | 72.91 194 | 80.34 197 | 61.29 205 | 63.90 181 | 49.58 199 | 40.42 197 | 54.99 136 | 37.13 211 | 60.90 180 | 68.46 207 | 70.80 204 | 85.37 207 | 82.65 195 |
|
| PM-MVS | | | 63.52 199 | 62.51 201 | 64.70 190 | 64.79 214 | 76.08 207 | 65.07 198 | 62.08 186 | 58.13 167 | 46.56 177 | 44.98 169 | 31.31 218 | 62.89 175 | 72.58 196 | 69.93 208 | 86.81 202 | 84.55 182 |
|
| DTE-MVSNet | | | 63.26 200 | 63.41 198 | 63.08 197 | 72.59 196 | 78.56 203 | 65.03 199 | 68.28 154 | 50.53 196 | 32.38 212 | 44.03 175 | 37.79 208 | 49.48 202 | 70.83 204 | 76.73 192 | 90.73 173 | 85.42 181 |
|
| testgi | | | 63.11 201 | 64.88 190 | 61.05 201 | 75.83 181 | 78.51 204 | 60.42 206 | 66.20 175 | 48.77 200 | 34.56 209 | 56.96 120 | 40.35 199 | 40.95 211 | 77.46 182 | 77.22 189 | 88.37 198 | 74.86 209 |
|
| GG-mvs-BLEND | | | 62.08 202 | 88.31 43 | 31.46 217 | 0.16 229 | 98.10 11 | 91.57 41 | 0.09 225 | 85.07 67 | 0.21 230 | 73.90 59 | 83.74 39 | 0.19 227 | 88.98 74 | 89.39 63 | 96.58 14 | 99.02 15 |
|
| Anonymous20231206 | | | 62.05 203 | 61.83 203 | 62.30 200 | 72.09 199 | 77.84 205 | 63.10 203 | 67.62 165 | 50.20 197 | 36.68 202 | 29.59 214 | 37.05 212 | 43.90 207 | 77.33 183 | 77.31 188 | 90.41 177 | 83.49 187 |
|
| N_pmnet | | | 60.52 204 | 58.83 207 | 62.50 199 | 68.97 207 | 75.61 209 | 59.72 209 | 66.47 171 | 51.90 189 | 41.26 196 | 35.42 206 | 35.63 213 | 52.25 200 | 67.07 210 | 70.08 207 | 86.35 203 | 76.10 205 |
|
| EU-MVSNet | | | 58.73 205 | 60.92 205 | 56.17 206 | 66.17 211 | 72.39 212 | 58.85 210 | 61.24 189 | 48.47 201 | 27.91 217 | 46.70 165 | 40.06 200 | 39.07 212 | 68.27 208 | 70.34 206 | 83.77 210 | 80.23 199 |
|
| test20.03 | | | 57.93 206 | 59.22 206 | 56.44 205 | 71.84 202 | 73.78 211 | 53.55 214 | 65.96 176 | 43.02 211 | 28.46 216 | 37.50 200 | 38.17 207 | 30.41 216 | 75.25 189 | 74.42 200 | 88.41 196 | 72.37 212 |
|
| MDA-MVSNet-bldmvs | | | 54.99 207 | 52.66 211 | 57.71 204 | 52.74 220 | 74.87 210 | 55.61 212 | 68.41 153 | 43.65 209 | 32.54 210 | 37.93 197 | 22.11 225 | 54.11 191 | 48.85 218 | 67.34 210 | 82.85 211 | 73.88 210 |
|
| new-patchmatchnet | | | 53.91 208 | 52.69 210 | 55.33 208 | 64.83 213 | 70.90 213 | 52.24 215 | 61.75 187 | 41.09 212 | 30.82 213 | 29.90 212 | 28.22 220 | 36.69 213 | 61.52 212 | 65.08 211 | 85.64 206 | 72.14 213 |
|
| MIMVSNet1 | | | 52.76 209 | 53.95 209 | 51.38 210 | 41.96 223 | 70.79 214 | 53.56 213 | 63.03 185 | 39.36 213 | 27.83 218 | 22.73 219 | 33.07 216 | 34.47 215 | 70.49 205 | 72.69 201 | 87.41 201 | 68.51 214 |
|
| pmmvs3 | | | 52.59 210 | 52.43 212 | 52.78 209 | 54.53 219 | 64.49 217 | 50.07 216 | 46.89 217 | 35.31 217 | 30.19 214 | 27.27 216 | 26.96 222 | 53.02 197 | 67.28 209 | 70.54 205 | 81.96 213 | 75.20 207 |
|
| new_pmnet | | | 50.32 211 | 51.36 213 | 49.11 211 | 49.19 221 | 64.89 216 | 48.66 218 | 47.99 216 | 47.55 203 | 26.27 220 | 29.51 215 | 28.66 219 | 44.89 203 | 61.12 213 | 62.74 213 | 77.66 215 | 65.03 215 |
|
| FPMVS | | | 50.25 212 | 45.67 215 | 55.58 207 | 70.48 206 | 60.12 218 | 59.78 208 | 59.33 195 | 46.66 204 | 37.94 199 | 30.22 211 | 27.51 221 | 35.94 214 | 50.98 217 | 47.90 217 | 70.02 217 | 56.31 216 |
|
| test_method | | | 47.92 213 | 55.39 208 | 39.21 214 | 19.90 227 | 49.24 221 | 39.29 221 | 34.65 222 | 57.37 171 | 32.54 210 | 25.11 217 | 41.02 195 | 44.31 205 | 66.58 211 | 57.57 215 | 64.59 220 | 90.82 150 |
|
| PMVS |  | 36.83 18 | 40.62 214 | 36.39 217 | 45.56 212 | 58.40 216 | 33.20 224 | 32.62 223 | 56.02 199 | 28.25 221 | 37.92 200 | 22.29 220 | 26.15 223 | 25.29 218 | 48.49 219 | 43.82 220 | 63.13 221 | 52.53 219 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| WB-MVS | | | 39.74 215 | 42.23 216 | 36.84 215 | 66.24 210 | 50.82 220 | 26.18 226 | 66.39 173 | 31.14 220 | 4.85 228 | 37.06 202 | 24.28 224 | 7.95 224 | 54.48 214 | 54.23 216 | 49.46 224 | 43.61 220 |
|
| Gipuma |  | | 35.20 216 | 33.96 218 | 36.65 216 | 43.30 222 | 32.51 225 | 26.96 225 | 48.31 215 | 38.87 214 | 20.08 224 | 8.08 222 | 7.41 229 | 26.44 217 | 53.60 215 | 58.43 214 | 54.81 222 | 38.79 222 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| PMMVS2 | | | 32.52 217 | 33.92 219 | 30.88 218 | 34.15 226 | 44.70 223 | 27.79 224 | 39.69 221 | 22.21 222 | 4.31 229 | 15.73 221 | 14.13 227 | 12.45 223 | 40.11 220 | 47.00 218 | 66.88 218 | 53.54 217 |
|
| E-PMN | | | 21.42 218 | 17.56 221 | 25.94 219 | 36.25 225 | 19.02 228 | 11.56 227 | 43.72 219 | 15.25 224 | 6.99 226 | 8.04 223 | 4.53 231 | 21.77 220 | 16.13 223 | 26.16 222 | 35.34 225 | 33.77 223 |
|
| MVE |  | 25.07 19 | 21.25 219 | 23.51 220 | 18.62 221 | 15.07 228 | 29.77 227 | 10.67 229 | 34.60 223 | 12.51 225 | 9.46 225 | 7.84 224 | 3.82 232 | 14.38 222 | 27.45 222 | 42.42 221 | 27.56 227 | 40.74 221 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| EMVS | | | 20.61 220 | 16.32 222 | 25.62 220 | 36.41 224 | 18.93 229 | 11.51 228 | 43.75 218 | 15.65 223 | 6.53 227 | 7.56 225 | 4.68 230 | 22.03 219 | 14.56 224 | 23.10 223 | 33.51 226 | 29.77 224 |
|
| testmvs | | | 0.76 221 | 1.23 223 | 0.21 222 | 0.05 230 | 0.21 230 | 0.38 231 | 0.09 225 | 0.94 226 | 0.05 231 | 2.13 227 | 0.08 233 | 0.60 226 | 0.82 225 | 0.77 224 | 0.11 228 | 3.62 226 |
|
| test123 | | | 0.67 222 | 1.11 224 | 0.16 223 | 0.01 231 | 0.14 231 | 0.20 232 | 0.04 227 | 0.77 227 | 0.02 232 | 2.15 226 | 0.02 234 | 0.61 225 | 0.23 226 | 0.72 225 | 0.07 229 | 3.76 225 |
|
| uanet_test | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 232 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 235 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| sosnet-low-res | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 232 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 235 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| sosnet | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 232 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 235 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| TPM-MVS | | | | | | 98.35 1 | 98.66 4 | 96.92 2 | | | 83.78 24 | 90.39 24 | 94.36 1 | 94.48 4 | | | 96.58 14 | 93.94 112 |
| Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025 |
| RE-MVS-def | | | | | | | | | | | 39.41 198 | | | | | | | |
|
| 9.14 | | | | | | | | | | | | | 91.16 7 | | | | | |
|
| SR-MVS | | | | | | 96.04 31 | | | 87.51 26 | | | | 87.60 21 | | | | | |
|
| Anonymous202405211 | | | | 75.59 135 | | 85.13 121 | 91.06 111 | 84.62 95 | 77.96 74 | 69.47 137 | | 40.79 191 | 63.84 126 | 84.57 69 | 83.55 129 | 84.69 116 | 89.69 186 | 95.75 85 |
|
| our_test_3 | | | | | | 73.80 193 | 79.57 201 | 64.47 201 | | | | | | | | | | |
|
| ambc | | | | 50.35 214 | | 55.61 218 | 59.93 219 | 48.73 217 | | 44.08 207 | 35.81 207 | 24.01 218 | 10.64 228 | 41.57 209 | 72.83 195 | 63.35 212 | 74.99 216 | 77.61 202 |
|
| MTAPA | | | | | | | | | | | 91.14 7 | | 85.84 27 | | | | | |
|
| MTMP | | | | | | | | | | | 90.95 8 | | 84.13 35 | | | | | |
|
| Patchmatch-RL test | | | | | | | | 8.17 230 | | | | | | | | | | |
|
| tmp_tt | | | | | 39.78 213 | 56.31 217 | 31.71 226 | 35.84 222 | 15.08 224 | 82.57 76 | 50.83 157 | 63.07 98 | 47.51 169 | 15.28 221 | 52.23 216 | 44.24 219 | 65.35 219 | |
|
| XVS | | | | | | 89.65 71 | 95.93 47 | 85.97 82 | | | 76.32 56 | | 82.05 45 | | | | 93.51 97 | |
|
| X-MVStestdata | | | | | | 89.65 71 | 95.93 47 | 85.97 82 | | | 76.32 56 | | 82.05 45 | | | | 93.51 97 | |
|
| mPP-MVS | | | | | | 95.90 33 | | | | | | | 80.22 54 | | | | | |
|
| NP-MVS | | | | | | | | | | 89.55 46 | | | | | | | | |
|
| Patchmtry | | | | | | | 87.41 135 | 78.32 142 | 54.14 206 | | 51.09 152 | | | | | | | |
|
| DeepMVS_CX |  | | | | | | 48.96 222 | 43.77 219 | 40.58 220 | 50.93 193 | 24.67 222 | 36.95 203 | 20.18 226 | 41.60 208 | 38.92 221 | | 52.37 223 | 53.31 218 |
|