This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS95.53 195.79 195.23 197.60 998.92 195.99 492.05 797.14 194.19 194.71 693.25 195.08 194.32 1192.59 1596.49 1799.58 3
DPE-MVScopyleft95.10 295.53 294.60 597.77 798.64 496.60 392.45 596.34 691.41 696.70 292.26 593.56 593.68 1891.73 3095.79 3799.37 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft95.06 395.37 494.70 397.59 1098.89 295.37 1192.04 896.85 394.00 292.81 1493.02 292.93 694.22 1492.15 2196.30 2499.61 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DVP-MVS++95.03 495.03 595.03 297.91 598.84 395.80 591.88 1096.65 593.15 393.79 890.11 1195.03 294.20 1692.39 1696.44 2199.22 10
MSP-MVS95.00 595.47 394.45 696.78 1898.11 995.72 790.91 1496.68 491.57 596.98 189.47 1394.76 395.24 392.15 2196.98 799.64 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS94.53 694.85 794.15 898.03 398.59 595.56 892.91 294.86 1388.46 1491.32 2190.83 994.03 495.20 494.16 595.89 3299.01 16
SF-MVS94.40 794.15 1294.70 398.25 298.24 796.86 293.46 194.87 1290.26 995.96 388.42 1692.76 992.29 3190.84 4196.62 1398.44 26
APDe-MVS94.31 894.30 1094.33 797.57 1198.06 1195.79 691.98 995.50 992.19 495.25 487.97 1992.93 693.01 2491.02 3995.52 3999.29 8
MCST-MVS94.10 994.77 893.31 1098.31 198.34 695.43 992.54 494.41 1683.05 3091.38 1990.97 892.24 1395.05 694.02 698.31 199.20 11
HPM-MVS++copyleft94.04 1094.96 692.96 1297.93 497.71 1794.65 1491.01 1395.91 787.43 1693.52 1192.63 492.29 1294.22 1492.34 1894.47 6198.37 27
NCCC93.59 1194.00 1493.10 1197.90 697.93 1395.40 1092.39 694.47 1584.94 2191.21 2289.32 1492.53 1093.90 1792.98 1295.44 4198.22 30
SMA-MVScopyleft93.47 1294.29 1192.52 1497.72 897.77 1694.46 1790.19 1794.96 1187.15 1790.15 2590.99 791.49 1694.31 1293.33 1094.10 6798.53 24
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APD-MVScopyleft93.47 1293.44 1793.50 997.06 1497.09 2695.27 1291.47 1195.71 889.57 1193.66 986.28 2592.81 892.06 3490.70 4294.83 5898.60 21
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SD-MVS93.36 1494.33 992.22 1694.68 4297.89 1594.56 1590.89 1594.80 1490.04 1093.53 1090.14 1089.78 2292.74 2792.17 1993.35 10799.07 14
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.93.07 1593.53 1692.53 1394.23 4597.54 2094.75 1389.87 1895.26 1089.20 1393.16 1288.19 1892.15 1491.79 3989.65 5894.99 5499.16 12
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPM-MVS92.86 1693.19 1992.47 1595.78 3497.40 2197.39 192.56 392.88 2481.84 3781.31 3892.95 391.21 1796.54 197.33 196.01 3093.94 110
SteuartSystems-ACMMP92.31 1793.31 1891.15 2296.88 1697.36 2293.95 2189.44 2092.62 2583.20 2794.34 785.55 2788.95 2993.07 2391.90 2694.51 6098.30 28
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP92.16 1892.91 2291.28 2196.95 1597.36 2293.66 2289.23 2293.33 1983.71 2590.53 2386.84 2290.39 1993.30 2291.56 3293.74 7997.43 46
HFP-MVS92.02 1992.13 2491.89 1997.16 1396.46 3893.57 2387.60 2593.79 1888.17 1593.15 1383.94 3791.19 1890.81 4989.83 5393.66 8396.94 61
train_agg91.99 2093.71 1589.98 2796.42 2697.03 2894.31 1989.05 2393.33 1977.75 4595.06 588.27 1788.38 3692.02 3691.41 3494.00 7198.84 19
DeepC-MVS_fast86.59 291.69 2191.39 2792.05 1897.43 1296.92 3194.05 2090.23 1693.31 2283.19 2877.91 4484.23 3392.42 1194.62 994.83 395.00 5397.88 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + GP.91.29 2293.11 2189.18 3287.81 8896.21 4492.51 3283.83 4494.24 1783.77 2491.87 1889.62 1290.07 2090.40 5490.31 4697.09 699.10 13
ACMMPR91.15 2391.44 2690.81 2396.61 2096.25 4293.09 2487.08 2893.32 2184.78 2292.08 1782.10 4389.71 2390.24 5589.82 5493.61 8896.30 74
DeepPCF-MVS86.71 191.00 2494.05 1387.43 4395.58 3798.17 886.22 7388.59 2497.01 276.77 5385.11 3488.90 1587.29 4395.02 794.69 490.15 17899.48 6
TSAR-MVS + ACMM90.98 2593.18 2088.42 3795.69 3596.73 3394.52 1686.97 3192.99 2376.32 5492.31 1686.64 2384.40 6992.97 2592.02 2392.62 13098.59 22
MP-MVScopyleft90.81 2691.45 2590.06 2696.59 2196.33 4192.46 3387.19 2790.27 3982.54 3391.38 1984.88 3088.27 3790.58 5289.30 6393.30 10997.44 44
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVS90.57 2790.68 2990.44 2496.13 2895.90 5092.77 2986.86 3292.12 2984.19 2389.18 2882.37 4189.43 2689.65 6788.43 7493.27 11097.13 54
MSLP-MVS++90.33 2888.82 3992.10 1796.52 2495.93 4694.35 1886.26 3388.37 5489.24 1275.94 5082.60 4089.71 2389.45 7092.17 1996.51 1697.24 51
CANet89.98 2990.42 3389.47 3194.13 4698.05 1291.76 3883.27 4790.87 3681.90 3672.32 5884.82 3188.42 3494.52 1093.78 897.34 498.58 23
PGM-MVS89.97 3090.64 3189.18 3296.53 2395.90 5093.06 2582.48 5590.04 4180.37 3992.75 1580.96 4888.93 3089.88 6389.08 6793.69 8295.86 78
PHI-MVS89.88 3192.75 2386.52 5394.97 3997.57 1989.99 4984.56 4092.52 2769.72 8790.35 2487.11 2184.89 6191.82 3892.37 1795.02 5297.51 42
CSCG89.81 3289.69 3489.96 2896.55 2297.90 1492.89 2787.06 2988.74 5186.17 1878.24 4386.53 2484.75 6487.82 9190.59 4392.32 13598.01 33
X-MVS89.73 3390.65 3088.66 3596.44 2595.93 4692.26 3586.98 3090.73 3776.32 5489.56 2782.05 4486.51 4989.98 6189.60 5993.43 10296.72 69
EPNet89.30 3490.89 2887.44 4295.67 3696.81 3291.13 4183.12 4991.14 3376.31 5887.60 3080.40 5284.45 6792.13 3391.12 3893.96 7297.01 58
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepC-MVS84.14 388.80 3588.03 4589.71 3094.83 4096.56 3492.57 3189.38 2189.25 4779.59 4170.02 6777.05 6488.24 3892.44 2992.79 1393.65 8698.10 32
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CDPH-MVS88.76 3690.43 3286.81 4996.04 3096.53 3792.95 2685.95 3590.36 3867.93 9385.80 3380.69 4983.82 7290.81 4991.85 2994.18 6596.99 59
3Dnovator+81.14 588.59 3787.49 4889.88 2995.83 3396.45 4091.94 3782.41 5687.09 5985.94 2062.80 9785.37 2889.46 2591.51 4191.89 2893.72 8097.30 49
ACMMPcopyleft88.48 3888.71 4088.22 3994.61 4395.53 5690.64 4585.60 3790.97 3478.62 4389.88 2674.20 7886.29 5088.16 8886.37 9493.57 8995.86 78
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
AdaColmapbinary88.46 3985.75 6291.62 2096.25 2795.35 6090.71 4391.08 1290.22 4086.17 1874.33 5473.67 8192.00 1586.31 10785.82 10293.52 9294.53 97
MVS_030488.43 4089.46 3687.21 4491.85 5897.60 1892.62 3081.10 6287.16 5873.80 6572.19 6083.36 3987.03 4494.64 893.67 996.88 997.64 41
3Dnovator80.58 888.20 4186.53 5490.15 2596.86 1796.46 3891.97 3683.06 5085.16 6483.66 2662.28 10082.15 4288.98 2890.99 4692.65 1496.38 2396.03 75
CPTT-MVS88.17 4287.84 4688.55 3693.33 4893.75 8192.33 3484.75 3989.87 4381.72 3883.93 3581.12 4788.45 3385.42 11684.07 12190.72 17096.72 69
MVS_111021_HR87.82 4388.84 3886.62 5194.42 4497.36 2288.21 5883.26 4883.42 6772.52 7582.63 3676.93 6584.95 6091.93 3791.15 3796.39 2298.49 25
DELS-MVS87.75 4486.92 5288.71 3494.69 4197.34 2592.78 2884.50 4177.87 9181.94 3567.17 7575.49 7382.84 7895.38 295.93 295.55 3899.27 9
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVSTER87.68 4589.12 3786.01 5588.11 8690.05 11889.28 5277.05 8691.37 3079.97 4076.70 4885.25 2984.89 6193.53 1991.41 3496.73 1195.55 85
MVS_111021_LR87.58 4688.67 4186.31 5492.58 5295.89 5286.20 7482.49 5489.08 4977.47 4986.20 3274.22 7785.49 5590.03 6088.52 7293.66 8396.74 67
QAPM87.06 4786.46 5587.75 4096.63 1997.09 2691.71 3982.62 5380.58 8071.28 8066.04 8284.24 3287.01 4589.93 6289.91 5297.26 597.44 44
PVSNet_BlendedMVS86.98 4887.05 5086.90 4693.03 4996.98 2986.57 7081.82 5889.78 4482.78 3171.54 6166.07 11280.73 9093.46 2091.97 2496.45 1999.53 4
PVSNet_Blended86.98 4887.05 5086.90 4693.03 4996.98 2986.57 7081.82 5889.78 4482.78 3171.54 6166.07 11280.73 9093.46 2091.97 2496.45 1999.53 4
ETV-MVS86.94 5089.49 3583.95 6987.28 9595.61 5583.58 10176.37 9392.59 2673.20 6780.35 3976.42 6887.38 4292.20 3290.45 4595.90 3198.83 20
CS-MVS-test86.72 5188.35 4284.83 6391.78 5996.03 4581.71 11276.71 8791.19 3277.12 5277.64 4675.63 7287.59 4190.82 4889.11 6594.06 6997.99 35
CS-MVS86.70 5287.61 4785.65 5691.33 6395.64 5484.73 9076.64 8988.68 5277.78 4474.87 5172.86 8589.09 2792.89 2690.18 4994.31 6498.16 31
DROMVSNet86.42 5388.31 4384.20 6786.61 10294.08 7586.20 7472.18 12489.06 5076.02 5974.48 5380.47 5188.90 3192.03 3590.07 5095.30 4298.00 34
OMC-MVS86.38 5486.21 5986.57 5292.30 5494.35 7487.60 6283.51 4692.32 2877.37 5072.27 5977.83 5786.59 4887.62 9385.95 9992.08 13993.11 123
HQP-MVS86.17 5587.35 4984.80 6491.41 6292.37 9891.05 4284.35 4388.52 5364.21 10087.05 3168.91 10184.80 6389.12 7388.16 7892.96 12197.31 48
canonicalmvs85.93 5686.26 5885.54 5788.94 7695.44 5789.56 5076.01 9587.83 5577.70 4676.43 4968.66 10387.80 4087.02 9691.51 3393.25 11196.95 60
MAR-MVS85.65 5786.30 5784.88 6295.51 3895.89 5286.50 7276.71 8789.23 4868.59 9070.93 6574.49 7588.55 3289.40 7190.30 4793.42 10393.88 114
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PCF-MVS82.38 485.52 5884.41 6786.81 4991.51 6196.23 4390.27 4689.81 1977.87 9170.67 8369.20 6977.86 5585.55 5485.92 11286.38 9393.03 11897.43 46
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CLD-MVS85.43 5984.24 7086.83 4887.69 9193.16 8990.01 4882.72 5287.17 5779.28 4271.43 6465.81 11586.02 5187.33 9586.96 8795.25 4897.83 38
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
OpenMVScopyleft77.91 1185.09 6083.42 7487.03 4596.12 2996.55 3689.36 5181.59 6079.19 8775.20 6155.84 12779.04 5484.45 6788.47 8289.35 6295.48 4095.48 86
TSAR-MVS + COLMAP84.93 6185.79 6183.92 7090.90 6593.57 8589.25 5382.00 5791.29 3161.66 10988.25 2959.46 13586.71 4789.79 6487.09 8493.01 11991.09 144
TAPA-MVS80.99 784.83 6284.42 6685.31 5991.89 5793.73 8388.53 5782.80 5189.99 4269.78 8671.53 6375.03 7485.47 5686.26 10884.54 11693.39 10589.90 154
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PLCcopyleft81.02 684.81 6381.81 9388.31 3893.77 4790.35 11388.80 5584.47 4286.76 6082.17 3466.56 7871.01 9388.41 3585.48 11484.28 11992.26 13788.21 167
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EIA-MVS84.75 6486.43 5682.79 7586.88 9895.36 5982.84 10876.39 9287.61 5671.03 8174.33 5471.12 9285.16 5789.69 6688.70 7194.40 6298.23 29
CNLPA84.72 6582.14 8787.73 4192.85 5193.83 8084.70 9185.07 3890.90 3583.16 2956.28 12371.53 8988.14 3984.19 12184.00 12592.48 13294.26 104
MVS_Test84.60 6685.13 6583.99 6888.17 8495.27 6488.21 5873.15 11584.31 6670.55 8468.67 7368.78 10286.99 4691.71 4091.90 2696.84 1095.27 91
casdiffmvs_mvgpermissive83.97 6782.62 8385.54 5787.71 8994.38 7388.93 5480.11 6577.34 9577.57 4863.01 9665.95 11484.96 5990.69 5190.23 4893.95 7396.74 67
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvspermissive83.84 6882.65 8285.22 6087.25 9694.62 7086.01 7879.62 6679.48 8477.59 4761.92 10364.34 11985.57 5390.55 5390.51 4495.26 4697.14 53
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline83.83 6984.38 6883.18 7486.65 10094.59 7185.79 8173.78 11285.83 6272.94 6869.28 6870.80 9583.45 7586.80 9987.59 8096.47 1895.77 82
diffmvspermissive83.69 7083.17 7884.31 6585.45 11493.92 7686.89 6578.62 6982.71 7375.95 6066.78 7763.90 12283.84 7187.90 9089.16 6495.10 5197.82 39
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CANet_DTU83.33 7186.59 5379.53 9988.88 7794.87 6786.63 6968.85 14785.45 6350.54 15477.86 4569.94 9885.62 5292.63 2890.88 4096.63 1294.46 98
DI_MVS_plusplus_trai83.32 7282.53 8584.25 6686.26 10893.66 8490.23 4777.16 8577.05 9974.06 6453.74 13674.33 7683.61 7491.40 4389.82 5494.17 6697.73 40
baseline182.63 7382.02 8883.34 7388.30 8391.89 10288.03 6180.86 6375.05 10665.96 9564.27 8972.20 8780.01 9491.32 4489.56 6096.90 889.85 155
PVSNet_Blended_VisFu82.55 7483.70 7381.21 8689.66 6995.15 6682.41 10977.36 8472.53 12473.64 6661.15 10677.19 6370.35 15191.31 4589.72 5793.84 7598.85 18
ET-MVSNet_ETH3D82.37 7585.68 6378.51 10862.90 21094.66 6887.06 6473.57 11383.13 6961.52 11178.37 4276.01 7089.99 2184.14 12289.03 6896.03 2994.42 99
PMMVS82.26 7685.48 6478.51 10885.92 11191.92 10178.30 14070.77 13286.30 6161.11 11382.46 3770.88 9484.70 6588.05 8984.78 11290.24 17793.98 108
ACMP79.58 982.23 7781.82 9282.71 7688.15 8590.95 11085.23 8678.52 7181.70 7572.52 7578.41 4160.63 13080.48 9282.88 13283.44 12991.37 15694.70 95
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CHOSEN 280x42082.15 7885.87 6077.80 11386.54 10493.42 8781.74 11159.96 18978.99 8963.99 10174.50 5283.95 3680.99 8589.53 6985.01 10793.56 9195.71 84
LGP-MVS_train82.12 7982.57 8481.59 8289.26 7390.23 11688.76 5678.05 7281.26 7761.64 11079.52 4062.11 12579.59 9685.20 11784.68 11492.27 13695.02 93
FMVSNet381.93 8081.98 8981.88 8179.49 15087.02 13388.15 6072.57 11883.02 7072.63 7256.55 11973.48 8282.34 8191.49 4291.20 3696.07 2591.13 143
test250681.91 8181.78 9582.06 8089.09 7495.32 6184.61 9377.54 8074.61 11068.77 8963.80 9367.53 10677.09 10590.19 5789.01 6995.27 4392.00 136
thisisatest053081.67 8284.27 6978.63 10485.53 11293.88 7981.77 11073.84 10981.35 7663.85 10368.79 7177.64 5973.02 13288.73 8085.73 10393.76 7893.80 118
tttt051781.51 8384.12 7278.47 11085.33 11693.74 8281.42 11573.84 10981.21 7863.59 10468.73 7277.46 6273.02 13288.47 8285.73 10393.63 8793.49 122
FA-MVS(training)81.41 8481.98 8980.76 9287.58 9294.59 7183.09 10361.18 18679.80 8374.74 6258.46 11269.76 9982.12 8288.90 7687.00 8595.83 3595.33 88
OPM-MVS81.34 8578.18 11185.02 6191.27 6491.78 10390.66 4483.62 4562.39 15365.91 9663.35 9464.33 12085.03 5887.77 9285.88 10193.66 8391.75 140
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
baseline281.21 8683.36 7778.70 10283.22 12992.71 9180.32 12174.25 10880.39 8163.94 10268.89 7068.44 10474.67 11889.61 6886.68 9195.83 3596.81 66
IS_MVSNet80.92 8784.14 7177.16 11687.43 9393.90 7880.44 11774.64 10275.05 10661.10 11465.59 8476.89 6667.39 15990.88 4790.05 5191.95 14396.62 72
ACMM78.09 1080.91 8878.39 10883.86 7189.61 7287.71 13085.16 8780.67 6479.04 8874.18 6363.82 9260.84 12982.59 7984.33 11983.59 12890.96 16489.39 160
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EPP-MVSNet80.82 8982.79 8078.52 10686.31 10792.37 9879.83 12474.51 10373.79 11764.46 9967.01 7680.63 5074.33 12185.63 11384.35 11891.68 14995.79 81
CostFormer80.72 9081.81 9379.44 10186.50 10591.65 10484.31 9559.84 19080.86 7972.69 7062.46 9973.74 7979.93 9582.58 13684.50 11793.37 10696.90 64
GBi-Net80.72 9080.49 9781.00 8978.18 15486.19 14786.73 6672.57 11883.02 7072.63 7256.55 11973.48 8280.99 8586.57 10186.83 8894.89 5590.77 147
test180.72 9080.49 9781.00 8978.18 15486.19 14786.73 6672.57 11883.02 7072.63 7256.55 11973.48 8280.99 8586.57 10186.83 8894.89 5590.77 147
UGNet80.71 9383.09 7977.93 11287.02 9792.71 9180.28 12276.53 9073.83 11671.35 7970.07 6673.71 8058.93 17987.39 9486.97 8693.48 9996.94 61
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CHOSEN 1792x268880.23 9479.16 10581.48 8491.97 5596.56 3486.18 7675.40 9976.17 10261.32 11237.43 19761.08 12876.52 11192.35 3091.64 3197.46 398.86 17
thres100view90079.83 9577.79 11582.21 7788.42 8093.54 8687.07 6381.11 6170.15 13161.01 11556.65 11751.22 15281.78 8389.77 6585.95 9993.84 7597.26 50
Effi-MVS+79.80 9680.04 9979.52 10085.53 11293.31 8885.28 8470.68 13474.15 11258.79 12462.03 10260.51 13183.37 7688.41 8486.09 9893.49 9895.80 80
ECVR-MVScopyleft79.76 9778.27 10981.50 8389.09 7495.32 6184.61 9377.54 8074.61 11065.38 9750.22 14856.31 14677.09 10590.19 5789.01 6995.27 4392.25 131
DCV-MVSNet79.76 9779.17 10480.44 9584.65 12084.51 17184.20 9672.36 12375.17 10570.81 8266.21 8166.56 10980.99 8582.89 13184.56 11589.65 18394.30 103
FC-MVSNet-train79.54 9978.20 11081.09 8886.55 10388.63 12679.96 12378.53 7070.90 12968.24 9165.87 8356.45 14580.29 9386.20 11084.08 12092.97 12095.31 90
test-LLR79.52 10083.42 7474.97 12581.79 13491.26 10576.17 16170.57 13577.71 9352.14 14166.26 7977.47 6073.10 12887.02 9687.16 8296.05 2797.02 56
FMVSNet279.24 10178.14 11280.53 9478.18 15486.19 14786.73 6671.91 12572.97 11970.48 8550.63 14666.56 10980.99 8590.10 5989.77 5694.89 5590.77 147
TESTMET0.1,179.15 10283.42 7474.18 13179.81 14891.26 10576.17 16167.83 16077.71 9352.14 14166.26 7977.47 6073.10 12887.02 9687.16 8296.05 2797.02 56
tfpn200view979.05 10377.21 11981.18 8788.42 8092.55 9685.12 8877.94 7470.15 13161.01 11556.65 11751.22 15281.11 8488.23 8584.80 11193.50 9796.90 64
test111178.99 10477.77 11680.42 9688.64 7895.31 6383.39 10277.67 7872.76 12261.91 10749.58 15155.59 14875.67 11690.23 5689.09 6695.23 4991.83 139
PatchMatch-RL78.75 10576.47 12681.41 8588.53 7991.10 10778.09 14177.51 8377.33 9671.98 7764.38 8848.10 16482.55 8084.06 12382.35 13889.78 18087.97 169
LS3D78.72 10675.79 13082.15 7891.91 5689.39 12383.66 9985.88 3676.81 10059.22 12357.67 11458.53 13983.72 7382.07 14181.63 14988.50 19184.39 180
thres20078.69 10776.71 12280.99 9188.35 8292.56 9486.03 7777.94 7466.27 13860.66 11756.08 12451.11 15479.45 9788.23 8585.54 10693.52 9297.20 52
Anonymous2023121178.61 10875.57 13382.15 7884.43 12490.26 11484.08 9777.68 7771.09 12772.90 6939.24 19166.21 11184.23 7082.15 13984.04 12289.61 18496.03 75
IB-MVS74.10 1278.52 10978.51 10778.52 10690.15 6795.39 5871.95 18177.53 8274.95 10877.25 5158.93 11055.92 14758.37 18179.01 16687.89 7995.88 3397.47 43
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EPNet_dtu78.49 11081.96 9174.45 13092.57 5388.74 12582.98 10478.83 6883.28 6844.64 18577.40 4767.73 10553.98 19085.44 11584.91 10893.71 8186.22 175
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres40078.39 11176.39 12780.73 9388.02 8792.94 9084.77 8978.88 6765.20 14659.70 12155.20 13050.85 15579.45 9788.81 7784.81 11093.57 8996.91 63
UA-Net78.30 11280.92 9675.25 12487.42 9492.48 9779.54 12775.49 9860.47 15760.52 11868.44 7484.08 3557.54 18388.54 8188.45 7390.96 16483.97 182
Vis-MVSNet (Re-imp)78.28 11382.68 8173.16 14286.64 10192.68 9378.07 14274.48 10474.05 11353.47 13464.22 9076.52 6754.28 18688.96 7588.29 7692.03 14194.00 107
MSDG78.11 11473.17 14683.86 7191.78 5986.83 13585.25 8586.02 3472.84 12169.69 8851.43 14354.00 15077.61 10181.95 14482.27 14092.83 12682.91 187
HyFIR lowres test78.08 11576.81 12079.56 9890.77 6694.64 6982.97 10569.85 14069.81 13359.53 12233.52 20264.66 11678.97 9988.77 7988.38 7595.27 4397.86 37
GeoE78.04 11677.52 11878.65 10384.51 12290.84 11180.94 11669.24 14572.86 12066.06 9453.45 13760.46 13277.37 10284.20 12084.85 10993.78 7796.00 77
test-mter77.90 11782.44 8672.60 14778.52 15290.24 11573.85 17465.31 17476.37 10151.29 14565.58 8575.94 7171.36 14285.98 11186.26 9595.26 4696.71 71
thres600view777.66 11875.67 13179.98 9787.71 8992.56 9483.79 9877.94 7464.41 14858.69 12554.32 13550.54 15678.23 10088.23 8583.06 13293.52 9296.55 73
MS-PatchMatch77.47 11976.48 12578.63 10489.89 6890.42 11285.42 8369.53 14270.79 13060.43 11950.05 14970.62 9770.66 14886.71 10082.54 13595.86 3484.23 181
Fast-Effi-MVS+77.37 12076.68 12378.17 11182.84 13189.94 11981.47 11468.01 15672.99 11860.26 12055.07 13153.20 15182.99 7786.47 10686.12 9793.46 10092.98 126
Vis-MVSNetpermissive77.24 12179.99 10274.02 13284.62 12193.92 7680.33 12072.55 12162.58 15255.25 13264.45 8769.49 10057.00 18488.78 7888.21 7794.36 6392.54 128
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MDTV_nov1_ep1377.20 12280.04 9973.90 13482.22 13290.14 11779.25 13161.52 18478.63 9056.98 12665.52 8672.80 8673.05 13080.93 15283.20 13090.36 17489.05 163
EPMVS77.16 12379.08 10674.92 12686.73 9991.98 10078.62 13655.44 19879.43 8556.59 12861.24 10570.73 9676.97 10880.59 15581.43 15595.15 5088.17 168
tpm cat176.93 12476.19 12977.79 11485.08 11988.58 12782.96 10659.33 19175.72 10472.64 7151.25 14464.41 11875.74 11577.90 17480.10 17190.97 16395.35 87
PatchmatchNetpermissive76.85 12580.03 10173.15 14384.08 12691.04 10977.76 14655.85 19779.43 8552.74 13962.08 10176.02 6974.56 11979.92 16081.41 15693.92 7490.29 152
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
IterMVS-LS76.80 12676.33 12877.35 11584.07 12784.11 17281.54 11368.52 14966.17 13961.74 10857.84 11364.31 12174.88 11783.48 12886.21 9693.34 10892.16 133
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet76.57 12776.78 12176.32 11980.94 14189.75 12082.94 10772.64 11759.01 16362.95 10658.60 11162.67 12466.91 16186.26 10887.20 8191.57 15193.97 109
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
SCA76.41 12879.90 10372.35 15184.26 12585.24 16275.57 16854.56 20079.95 8252.72 14064.22 9077.84 5673.73 12580.48 15681.37 15793.25 11190.20 153
tpmrst76.27 12977.65 11774.66 12886.13 11089.53 12279.31 13054.91 19977.19 9856.27 12955.87 12664.58 11777.25 10380.85 15380.21 16894.07 6895.32 89
dps75.76 13075.02 13576.63 11884.51 12288.12 12877.51 14758.33 19375.91 10371.98 7757.37 11557.85 14076.81 11077.89 17578.40 18090.63 17189.63 157
CR-MVSNet74.84 13177.91 11371.26 16481.77 13685.52 15878.32 13854.14 20274.05 11351.09 14850.00 15071.38 9170.77 14686.48 10484.03 12391.46 15593.92 111
Effi-MVS+-dtu74.57 13274.60 13974.53 12981.38 13886.74 13780.39 11967.70 16167.36 13753.06 13559.86 10857.50 14175.84 11480.19 15878.62 17888.79 19091.95 138
RPSCF74.27 13373.24 14575.48 12381.01 14080.18 19476.24 16072.37 12274.84 10968.24 9172.47 5767.39 10773.89 12271.05 19969.38 20681.14 21077.37 199
FMVSNet174.26 13471.95 15176.95 11774.28 18683.94 17483.61 10069.99 13857.08 16965.08 9842.39 18057.41 14276.98 10786.57 10186.83 8891.77 14889.42 158
GA-MVS73.62 13574.52 14072.58 14879.93 14689.29 12478.02 14371.67 12860.79 15642.68 18954.41 13449.07 16070.07 15289.39 7286.55 9293.13 11692.12 134
Fast-Effi-MVS+-dtu73.56 13675.32 13471.50 16080.35 14386.83 13579.72 12558.07 19467.64 13644.83 18260.28 10754.07 14973.59 12781.90 14682.30 13992.46 13394.18 105
tpm73.50 13774.85 13671.93 15483.19 13086.84 13478.61 13755.91 19665.64 14148.90 16156.30 12261.09 12772.31 13479.10 16580.61 16792.68 12894.35 102
RPMNet73.46 13877.85 11468.34 17481.71 13785.52 15873.83 17550.54 20974.05 11346.10 17653.03 14071.91 8866.31 16383.55 12682.18 14291.55 15394.71 94
USDC73.43 13972.31 14974.73 12780.86 14286.21 14580.42 11871.83 12771.69 12646.94 16959.60 10942.58 18576.47 11282.66 13581.22 16091.88 14582.24 193
pmmvs473.38 14071.53 15475.55 12275.95 17285.24 16277.25 15171.59 12971.03 12863.10 10549.09 15644.22 17573.73 12582.04 14280.18 16991.68 14988.89 165
UniMVSNet_NR-MVSNet73.11 14172.59 14773.71 13776.90 16386.58 14177.01 15275.82 9665.59 14248.82 16250.97 14548.42 16271.61 13879.19 16483.03 13392.11 13894.37 100
FMVSNet572.83 14273.89 14371.59 15867.42 20476.28 20275.88 16563.74 17877.27 9754.59 13353.32 13871.48 9073.85 12381.95 14481.69 14794.06 6975.20 203
PatchT72.66 14376.58 12468.09 17679.02 15186.09 15159.81 20351.78 20772.00 12551.09 14846.84 16066.70 10870.77 14686.48 10484.03 12396.07 2593.92 111
ACMH71.22 1472.65 14470.13 15975.59 12186.19 10986.14 15075.76 16677.63 7954.79 17746.16 17553.28 13947.28 16677.24 10478.91 16781.18 16190.57 17289.33 161
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS72.43 14574.05 14170.55 16880.34 14481.17 18877.44 14861.00 18863.57 15146.82 17155.88 12559.09 13865.03 16583.15 12983.83 12692.67 12991.65 141
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH+72.14 1372.38 14669.34 16675.93 12085.21 11784.89 16676.96 15576.04 9459.76 15851.63 14450.37 14748.69 16176.90 10976.06 18378.69 17688.85 18986.90 173
DU-MVS72.19 14771.35 15573.17 14175.95 17286.02 15277.01 15274.42 10565.39 14448.82 16249.10 15442.81 18371.61 13878.67 16883.10 13191.22 15994.37 100
IterMVS-SCA-FT72.18 14873.96 14270.11 17080.15 14581.11 18977.42 14961.09 18763.67 15046.73 17255.77 12859.15 13763.95 16882.83 13383.70 12791.31 15791.49 142
UniMVSNet (Re)72.12 14972.28 15071.93 15476.77 16487.38 13275.73 16773.51 11465.76 14050.24 15648.65 15746.49 16763.85 16980.10 15982.47 13691.49 15495.13 92
ADS-MVSNet72.11 15073.72 14470.24 16981.24 13986.59 14074.75 17150.56 20872.58 12349.17 15955.40 12961.46 12673.80 12476.01 18478.14 18191.93 14485.86 176
gg-mvs-nofinetune72.10 15174.79 13768.97 17383.31 12895.22 6585.66 8248.77 21035.68 21322.17 21930.49 20577.73 5876.37 11394.30 1393.03 1197.55 297.05 55
TAMVS72.06 15271.76 15372.41 15076.68 16588.12 12874.82 17068.09 15453.52 18256.91 12752.94 14156.93 14466.91 16181.37 14982.44 13791.07 16186.99 172
v2v48271.73 15369.80 16173.99 13375.88 17686.66 13979.58 12671.90 12657.58 16750.41 15545.35 16443.24 18173.05 13079.69 16182.18 14293.08 11793.87 115
test0.0.03 171.70 15474.68 13868.23 17581.79 13483.81 17568.64 18570.57 13568.81 13543.47 18662.77 9860.09 13451.77 19782.48 13781.67 14893.16 11483.13 185
V4271.58 15570.11 16073.30 14075.66 17986.68 13879.17 13369.92 13959.29 16252.80 13844.36 16845.66 16968.83 15379.48 16381.49 15293.44 10193.82 117
NR-MVSNet71.47 15671.11 15671.90 15677.73 15986.02 15276.88 15674.42 10565.39 14446.09 17749.10 15439.87 19864.27 16781.40 14882.24 14191.99 14293.75 119
v871.42 15769.69 16273.43 13976.45 16885.12 16579.53 12867.47 16459.34 16152.90 13744.60 16645.82 16871.05 14479.56 16281.45 15493.17 11391.96 137
TranMVSNet+NR-MVSNet71.12 15870.24 15872.15 15276.01 17184.80 16876.55 15875.65 9761.99 15445.29 18048.42 15843.07 18267.55 15778.28 17182.83 13491.85 14692.29 129
v1070.97 15969.44 16372.75 14475.90 17584.58 17079.43 12966.45 16958.07 16549.93 15743.87 17443.68 17671.91 13682.04 14281.70 14692.89 12492.11 135
v114470.93 16069.42 16572.70 14575.48 18086.26 14379.22 13269.39 14455.61 17448.05 16743.47 17542.55 18671.51 14082.11 14081.74 14592.56 13194.17 106
thisisatest051570.62 16171.94 15269.07 17276.48 16785.59 15768.03 18668.02 15559.70 15952.94 13652.19 14250.36 15758.10 18283.15 12981.63 14990.87 16790.99 145
Baseline_NR-MVSNet70.61 16268.87 16972.65 14675.95 17280.49 19275.92 16474.75 10165.10 14748.78 16441.28 18644.28 17468.45 15478.67 16879.64 17292.04 14092.62 127
v14870.34 16368.46 17272.54 14976.04 17086.38 14274.83 16972.73 11655.88 17355.26 13143.32 17743.49 17764.52 16676.93 18180.11 17091.85 14693.11 123
v119270.32 16468.77 17072.12 15374.76 18285.62 15678.73 13468.53 14855.08 17646.34 17442.39 18040.67 19371.90 13782.27 13881.53 15192.43 13493.86 116
v14419270.10 16568.55 17171.90 15674.55 18385.67 15577.81 14468.22 15354.65 17846.91 17042.76 17841.27 19070.95 14580.48 15681.11 16592.96 12193.90 113
pmmvs570.01 16669.31 16770.82 16775.80 17886.26 14372.94 17667.91 15753.84 18147.22 16847.31 15941.47 18967.61 15683.93 12581.93 14493.42 10390.42 151
COLMAP_ROBcopyleft66.31 1569.91 16766.61 17773.76 13586.44 10682.76 17976.59 15776.46 9163.82 14950.92 15245.60 16349.13 15965.87 16474.96 18974.45 19686.30 20075.57 202
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v192192069.85 16868.38 17371.58 15974.35 18485.39 16077.78 14567.88 15954.64 17945.39 17942.11 18339.97 19771.10 14381.68 14781.17 16392.96 12193.69 121
pm-mvs169.62 16968.07 17571.44 16177.21 16185.32 16176.11 16371.05 13046.55 20251.17 14741.83 18448.20 16361.81 17584.00 12481.14 16491.28 15889.42 158
UniMVSNet_ETH3D69.49 17065.86 17973.72 13676.51 16685.88 15478.65 13570.52 13748.08 19955.71 13037.64 19440.56 19471.38 14175.05 18881.49 15289.57 18692.29 129
tfpnnormal69.29 17165.58 18073.62 13879.87 14784.82 16776.97 15475.12 10045.29 20349.03 16035.57 20037.20 20668.02 15582.70 13481.24 15992.69 12792.20 132
v124069.28 17267.82 17671.00 16674.09 18885.13 16476.54 15967.28 16653.17 18344.70 18341.55 18539.38 19970.51 15081.29 15081.18 16192.88 12593.02 125
CVMVSNet68.95 17370.79 15766.79 18279.69 14983.75 17672.05 18070.90 13156.20 17136.30 20154.94 13359.22 13654.03 18978.33 17078.65 17787.77 19684.44 179
MIMVSNet68.66 17469.43 16467.76 17764.92 20784.68 16974.16 17254.10 20460.85 15551.27 14639.47 19049.48 15867.48 15884.86 11885.57 10594.63 5981.10 194
TDRefinement67.82 17564.91 18671.22 16582.08 13381.45 18477.42 14973.79 11159.62 16048.35 16642.35 18242.40 18760.87 17774.69 19074.64 19584.83 20479.20 197
anonymousdsp67.61 17668.94 16866.04 18371.44 20083.97 17366.45 19063.53 18050.54 19242.42 19049.39 15245.63 17062.84 17277.99 17381.34 15889.59 18593.75 119
TinyColmap67.16 17763.51 19371.42 16277.94 15779.54 19872.80 17769.78 14156.58 17045.52 17844.53 16733.53 21174.45 12076.91 18277.06 18788.03 19576.41 200
FC-MVSNet-test67.04 17872.47 14860.70 20076.92 16281.41 18561.52 20069.45 14365.58 14326.74 21561.79 10460.40 13341.17 20677.60 17777.78 18388.41 19282.70 189
TransMVSNet (Re)66.87 17964.30 18869.88 17178.32 15381.35 18773.88 17374.34 10743.19 20745.20 18140.12 18842.37 18855.97 18580.85 15379.15 17391.56 15283.06 186
CMPMVSbinary50.59 1766.74 18062.72 19771.42 16285.40 11589.72 12172.69 17870.72 13351.24 18851.75 14338.91 19244.40 17263.74 17070.84 20071.52 20084.19 20572.45 207
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
v7n66.43 18165.51 18167.51 17871.63 19983.10 17770.89 18465.02 17550.13 19544.68 18439.59 18938.77 20062.57 17377.59 17878.91 17490.29 17690.44 150
EG-PatchMatch MVS66.23 18265.20 18367.43 17977.74 15886.20 14672.51 17963.68 17943.95 20543.44 18736.22 19945.43 17154.04 18881.00 15180.95 16693.15 11582.67 190
WR-MVS64.98 18366.59 17863.09 19374.34 18582.68 18064.98 19669.17 14654.42 18036.18 20244.32 16944.35 17344.65 20073.60 19177.83 18289.21 18888.96 164
gm-plane-assit64.86 18468.15 17461.02 19976.44 16968.29 21141.60 21653.37 20534.68 21526.19 21733.22 20357.09 14371.97 13595.12 593.97 796.54 1594.66 96
CP-MVSNet64.84 18564.97 18464.69 18872.09 19581.04 19066.66 18967.53 16352.45 18537.40 19744.00 17338.37 20253.54 19272.26 19576.93 18890.94 16689.75 156
MDTV_nov1_ep13_2view64.72 18664.94 18564.46 18971.14 20181.94 18367.53 18754.54 20155.92 17243.29 18844.02 17243.27 18059.87 17871.85 19774.77 19490.36 17482.82 188
MVS-HIRNet64.63 18764.03 19265.33 18575.01 18182.84 17858.54 20752.10 20655.42 17549.29 15829.83 20843.48 17866.97 16078.28 17178.81 17590.07 17979.52 196
pmnet_mix0264.58 18864.11 19165.12 18674.16 18780.17 19563.24 19867.91 15757.87 16641.69 19145.86 16240.99 19253.97 19169.92 20371.67 19989.77 18182.29 192
LTVRE_ROB63.07 1664.49 18963.16 19666.04 18377.47 16082.64 18170.98 18365.02 17534.01 21629.61 21149.12 15335.58 21070.57 14975.10 18778.45 17982.60 20887.24 171
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PEN-MVS64.35 19064.29 18964.42 19072.67 19179.83 19666.97 18868.24 15251.21 18935.29 20444.09 17038.51 20152.36 19571.06 19877.65 18490.99 16287.68 170
pmmvs664.24 19161.77 20167.12 18072.39 19481.39 18671.33 18265.95 17336.05 21248.48 16530.55 20443.45 17958.75 18077.88 17676.36 19185.83 20186.70 174
pmmvs-eth3d64.24 19161.96 19966.90 18166.35 20576.04 20466.09 19266.31 17052.59 18450.94 15137.61 19532.79 21362.43 17475.78 18575.48 19389.27 18783.39 184
PS-CasMVS64.22 19364.19 19064.25 19171.86 19780.67 19166.42 19167.43 16550.64 19136.48 19942.60 17937.46 20552.56 19471.98 19676.69 19090.76 16889.29 162
WR-MVS_H64.14 19465.36 18262.71 19572.47 19382.33 18265.13 19366.99 16751.81 18736.47 20043.33 17642.77 18443.99 20272.41 19475.99 19291.20 16088.86 166
SixPastTwentyTwo63.75 19563.42 19464.13 19272.91 19080.34 19361.29 20163.90 17749.58 19640.42 19354.99 13237.13 20760.90 17668.46 20470.80 20185.37 20382.65 191
PM-MVS63.52 19662.51 19864.70 18764.79 20976.08 20365.07 19462.08 18258.13 16446.56 17344.98 16531.31 21462.89 17172.58 19369.93 20586.81 19884.55 178
DTE-MVSNet63.26 19763.41 19563.08 19472.59 19278.56 19965.03 19568.28 15150.53 19332.38 20844.03 17137.79 20449.48 19870.83 20176.73 18990.73 16985.42 177
testgi63.11 19864.88 18761.05 19875.83 17778.51 20060.42 20266.20 17148.77 19734.56 20556.96 11640.35 19540.95 20777.46 17977.22 18688.37 19474.86 205
GG-mvs-BLEND62.08 19988.31 4331.46 2130.16 22498.10 1091.57 400.09 22185.07 650.21 22573.90 5683.74 380.19 22288.98 7489.39 6196.58 1499.02 15
Anonymous2023120662.05 20061.83 20062.30 19772.09 19577.84 20163.10 19967.62 16250.20 19436.68 19829.59 20937.05 20843.90 20377.33 18077.31 18590.41 17383.49 183
N_pmnet60.52 20158.83 20462.50 19668.97 20375.61 20559.72 20566.47 16851.90 18641.26 19235.42 20135.63 20952.25 19667.07 20770.08 20486.35 19976.10 201
EU-MVSNet58.73 20260.92 20256.17 20366.17 20672.39 20858.85 20661.24 18548.47 19827.91 21346.70 16140.06 19639.07 20868.27 20570.34 20383.77 20680.23 195
test20.0357.93 20359.22 20356.44 20271.84 19873.78 20753.55 21065.96 17243.02 20828.46 21237.50 19638.17 20330.41 21275.25 18674.42 19788.41 19272.37 208
MDA-MVSNet-bldmvs54.99 20452.66 20857.71 20152.74 21574.87 20655.61 20868.41 15043.65 20632.54 20637.93 19322.11 22054.11 18748.85 21467.34 20782.85 20773.88 206
new-patchmatchnet53.91 20552.69 20755.33 20564.83 20870.90 20952.24 21161.75 18341.09 20930.82 20929.90 20728.22 21636.69 20961.52 20965.08 20885.64 20272.14 209
MIMVSNet152.76 20653.95 20651.38 20741.96 21870.79 21053.56 20963.03 18139.36 21027.83 21422.73 21433.07 21234.47 21170.49 20272.69 19887.41 19768.51 210
pmmvs352.59 20752.43 20952.78 20654.53 21464.49 21350.07 21246.89 21335.31 21430.19 21027.27 21126.96 21853.02 19367.28 20670.54 20281.96 20975.20 203
new_pmnet50.32 20851.36 21049.11 20849.19 21664.89 21248.66 21447.99 21247.55 20026.27 21629.51 21028.66 21544.89 19961.12 21062.74 21077.66 21165.03 211
FPMVS50.25 20945.67 21255.58 20470.48 20260.12 21459.78 20459.33 19146.66 20137.94 19530.22 20627.51 21735.94 21050.98 21347.90 21370.02 21356.31 212
test_method47.92 21055.39 20539.21 21119.90 22249.24 21639.29 21734.65 21857.37 16832.54 20625.11 21241.02 19144.31 20166.58 20857.57 21264.59 21690.82 146
PMVScopyleft36.83 1840.62 21136.39 21345.56 20958.40 21133.20 21932.62 21956.02 19528.25 21737.92 19622.29 21526.15 21925.29 21448.49 21543.82 21663.13 21752.53 215
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft35.20 21233.96 21436.65 21243.30 21732.51 22026.96 22148.31 21138.87 21120.08 2208.08 2177.41 22426.44 21353.60 21158.43 21154.81 21838.79 217
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS232.52 21333.92 21530.88 21434.15 22144.70 21827.79 22039.69 21722.21 2184.31 22415.73 21614.13 22212.45 21940.11 21647.00 21466.88 21453.54 213
E-PMN21.42 21417.56 21725.94 21536.25 22019.02 22311.56 22243.72 21515.25 2206.99 2228.04 2184.53 22621.77 21616.13 21926.16 21835.34 22033.77 218
MVEpermissive25.07 1921.25 21523.51 21618.62 21715.07 22329.77 22210.67 22434.60 21912.51 2219.46 2217.84 2193.82 22714.38 21827.45 21842.42 21727.56 22240.74 216
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS20.61 21616.32 21825.62 21636.41 21918.93 22411.51 22343.75 21415.65 2196.53 2237.56 2204.68 22522.03 21514.56 22023.10 21933.51 22129.77 219
testmvs0.76 2171.23 2190.21 2180.05 2250.21 2250.38 2260.09 2210.94 2220.05 2262.13 2220.08 2280.60 2210.82 2210.77 2200.11 2233.62 221
test1230.67 2181.11 2200.16 2190.01 2260.14 2260.20 2270.04 2230.77 2230.02 2272.15 2210.02 2290.61 2200.23 2220.72 2210.07 2243.76 220
uanet_test0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
RE-MVS-def39.41 194
9.1491.16 6
SR-MVS96.04 3087.51 2687.60 20
Anonymous20240521175.59 13285.13 11891.06 10884.62 9277.96 7369.47 13440.79 18763.84 12384.57 6683.55 12684.69 11389.69 18295.75 83
our_test_373.80 18979.57 19764.47 197
ambc50.35 21155.61 21359.93 21548.73 21344.08 20435.81 20324.01 21310.64 22341.57 20572.83 19263.35 20974.99 21277.61 198
MTAPA91.14 785.84 26
MTMP90.95 884.13 34
Patchmatch-RL test8.17 225
tmp_tt39.78 21056.31 21231.71 22135.84 21815.08 22082.57 7450.83 15363.07 9547.51 16515.28 21752.23 21244.24 21565.35 215
XVS89.65 7095.93 4685.97 7976.32 5482.05 4493.51 95
X-MVStestdata89.65 7095.93 4685.97 7976.32 5482.05 4493.51 95
mPP-MVS95.90 3280.22 53
NP-MVS89.55 46
Patchmtry87.41 13178.32 13854.14 20251.09 148
DeepMVS_CXcopyleft48.96 21743.77 21540.58 21650.93 19024.67 21836.95 19820.18 22141.60 20438.92 21752.37 21953.31 214