SED-MVS | | | 95.53 1 | 95.79 1 | 95.23 1 | 97.60 9 | 98.92 1 | 95.99 4 | 92.05 7 | 97.14 1 | 94.19 1 | 94.71 6 | 93.25 1 | 95.08 1 | 94.32 11 | 92.59 15 | 96.49 17 | 99.58 3 |
|
DPE-MVS |  | | 95.10 2 | 95.53 2 | 94.60 5 | 97.77 7 | 98.64 4 | 96.60 3 | 92.45 5 | 96.34 6 | 91.41 6 | 96.70 2 | 92.26 5 | 93.56 5 | 93.68 18 | 91.73 30 | 95.79 37 | 99.37 7 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
DVP-MVS |  | | 95.06 3 | 95.37 4 | 94.70 3 | 97.59 10 | 98.89 2 | 95.37 11 | 92.04 8 | 96.85 3 | 94.00 2 | 92.81 14 | 93.02 2 | 92.93 6 | 94.22 14 | 92.15 21 | 96.30 24 | 99.61 2 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
DVP-MVS++ | | | 95.03 4 | 95.03 5 | 95.03 2 | 97.91 5 | 98.84 3 | 95.80 5 | 91.88 10 | 96.65 5 | 93.15 3 | 93.79 8 | 90.11 11 | 95.03 2 | 94.20 16 | 92.39 16 | 96.44 21 | 99.22 10 |
|
MSP-MVS | | | 95.00 5 | 95.47 3 | 94.45 6 | 96.78 18 | 98.11 9 | 95.72 7 | 90.91 14 | 96.68 4 | 91.57 5 | 96.98 1 | 89.47 13 | 94.76 3 | 95.24 3 | 92.15 21 | 96.98 7 | 99.64 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
CNVR-MVS | | | 94.53 6 | 94.85 7 | 94.15 8 | 98.03 3 | 98.59 5 | 95.56 8 | 92.91 2 | 94.86 13 | 88.46 14 | 91.32 21 | 90.83 9 | 94.03 4 | 95.20 4 | 94.16 5 | 95.89 32 | 99.01 16 |
|
SF-MVS | | | 94.40 7 | 94.15 12 | 94.70 3 | 98.25 2 | 98.24 7 | 96.86 2 | 93.46 1 | 94.87 12 | 90.26 9 | 95.96 3 | 88.42 16 | 92.76 9 | 92.29 31 | 90.84 41 | 96.62 13 | 98.44 26 |
|
APDe-MVS | | | 94.31 8 | 94.30 10 | 94.33 7 | 97.57 11 | 98.06 11 | 95.79 6 | 91.98 9 | 95.50 9 | 92.19 4 | 95.25 4 | 87.97 19 | 92.93 6 | 93.01 24 | 91.02 39 | 95.52 39 | 99.29 8 |
|
MCST-MVS | | | 94.10 9 | 94.77 8 | 93.31 10 | 98.31 1 | 98.34 6 | 95.43 9 | 92.54 4 | 94.41 16 | 83.05 30 | 91.38 19 | 90.97 8 | 92.24 13 | 95.05 6 | 94.02 6 | 98.31 1 | 99.20 11 |
|
HPM-MVS++ |  | | 94.04 10 | 94.96 6 | 92.96 12 | 97.93 4 | 97.71 17 | 94.65 14 | 91.01 13 | 95.91 7 | 87.43 16 | 93.52 11 | 92.63 4 | 92.29 12 | 94.22 14 | 92.34 18 | 94.47 61 | 98.37 27 |
|
NCCC | | | 93.59 11 | 94.00 14 | 93.10 11 | 97.90 6 | 97.93 13 | 95.40 10 | 92.39 6 | 94.47 15 | 84.94 21 | 91.21 22 | 89.32 14 | 92.53 10 | 93.90 17 | 92.98 12 | 95.44 41 | 98.22 30 |
|
SMA-MVS |  | | 93.47 12 | 94.29 11 | 92.52 14 | 97.72 8 | 97.77 16 | 94.46 17 | 90.19 17 | 94.96 11 | 87.15 17 | 90.15 25 | 90.99 7 | 91.49 16 | 94.31 12 | 93.33 10 | 94.10 67 | 98.53 24 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
APD-MVS |  | | 93.47 12 | 93.44 17 | 93.50 9 | 97.06 14 | 97.09 26 | 95.27 12 | 91.47 11 | 95.71 8 | 89.57 11 | 93.66 9 | 86.28 25 | 92.81 8 | 92.06 34 | 90.70 42 | 94.83 58 | 98.60 21 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
SD-MVS | | | 93.36 14 | 94.33 9 | 92.22 16 | 94.68 42 | 97.89 15 | 94.56 15 | 90.89 15 | 94.80 14 | 90.04 10 | 93.53 10 | 90.14 10 | 89.78 22 | 92.74 27 | 92.17 19 | 93.35 107 | 99.07 14 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
TSAR-MVS + MP. | | | 93.07 15 | 93.53 16 | 92.53 13 | 94.23 45 | 97.54 20 | 94.75 13 | 89.87 18 | 95.26 10 | 89.20 13 | 93.16 12 | 88.19 18 | 92.15 14 | 91.79 39 | 89.65 58 | 94.99 54 | 99.16 12 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
DPM-MVS | | | 92.86 16 | 93.19 19 | 92.47 15 | 95.78 34 | 97.40 21 | 97.39 1 | 92.56 3 | 92.88 24 | 81.84 37 | 81.31 38 | 92.95 3 | 91.21 17 | 96.54 1 | 97.33 1 | 96.01 30 | 93.94 110 |
|
SteuartSystems-ACMMP | | | 92.31 17 | 93.31 18 | 91.15 22 | 96.88 16 | 97.36 22 | 93.95 21 | 89.44 20 | 92.62 25 | 83.20 27 | 94.34 7 | 85.55 27 | 88.95 29 | 93.07 23 | 91.90 26 | 94.51 60 | 98.30 28 |
Skip Steuart: Steuart Systems R&D Blog. |
ACMMP_NAP | | | 92.16 18 | 92.91 22 | 91.28 21 | 96.95 15 | 97.36 22 | 93.66 22 | 89.23 22 | 93.33 19 | 83.71 25 | 90.53 23 | 86.84 22 | 90.39 19 | 93.30 22 | 91.56 32 | 93.74 79 | 97.43 46 |
|
HFP-MVS | | | 92.02 19 | 92.13 24 | 91.89 19 | 97.16 13 | 96.46 38 | 93.57 23 | 87.60 25 | 93.79 18 | 88.17 15 | 93.15 13 | 83.94 37 | 91.19 18 | 90.81 49 | 89.83 53 | 93.66 83 | 96.94 61 |
|
train_agg | | | 91.99 20 | 93.71 15 | 89.98 27 | 96.42 26 | 97.03 28 | 94.31 19 | 89.05 23 | 93.33 19 | 77.75 45 | 95.06 5 | 88.27 17 | 88.38 36 | 92.02 36 | 91.41 34 | 94.00 71 | 98.84 19 |
|
DeepC-MVS_fast | | 86.59 2 | 91.69 21 | 91.39 27 | 92.05 18 | 97.43 12 | 96.92 31 | 94.05 20 | 90.23 16 | 93.31 22 | 83.19 28 | 77.91 44 | 84.23 33 | 92.42 11 | 94.62 9 | 94.83 3 | 95.00 53 | 97.88 36 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TSAR-MVS + GP. | | | 91.29 22 | 93.11 21 | 89.18 32 | 87.81 88 | 96.21 44 | 92.51 32 | 83.83 44 | 94.24 17 | 83.77 24 | 91.87 18 | 89.62 12 | 90.07 20 | 90.40 54 | 90.31 46 | 97.09 6 | 99.10 13 |
|
ACMMPR | | | 91.15 23 | 91.44 26 | 90.81 23 | 96.61 20 | 96.25 42 | 93.09 24 | 87.08 28 | 93.32 21 | 84.78 22 | 92.08 17 | 82.10 43 | 89.71 23 | 90.24 55 | 89.82 54 | 93.61 88 | 96.30 74 |
|
DeepPCF-MVS | | 86.71 1 | 91.00 24 | 94.05 13 | 87.43 43 | 95.58 37 | 98.17 8 | 86.22 73 | 88.59 24 | 97.01 2 | 76.77 53 | 85.11 34 | 88.90 15 | 87.29 43 | 95.02 7 | 94.69 4 | 90.15 178 | 99.48 6 |
|
TSAR-MVS + ACMM | | | 90.98 25 | 93.18 20 | 88.42 37 | 95.69 35 | 96.73 33 | 94.52 16 | 86.97 31 | 92.99 23 | 76.32 54 | 92.31 16 | 86.64 23 | 84.40 69 | 92.97 25 | 92.02 23 | 92.62 130 | 98.59 22 |
|
MP-MVS |  | | 90.81 26 | 91.45 25 | 90.06 26 | 96.59 21 | 96.33 41 | 92.46 33 | 87.19 27 | 90.27 39 | 82.54 33 | 91.38 19 | 84.88 30 | 88.27 37 | 90.58 52 | 89.30 63 | 93.30 109 | 97.44 44 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
CP-MVS | | | 90.57 27 | 90.68 29 | 90.44 24 | 96.13 28 | 95.90 50 | 92.77 29 | 86.86 32 | 92.12 29 | 84.19 23 | 89.18 28 | 82.37 41 | 89.43 26 | 89.65 67 | 88.43 74 | 93.27 110 | 97.13 54 |
|
MSLP-MVS++ | | | 90.33 28 | 88.82 39 | 92.10 17 | 96.52 24 | 95.93 46 | 94.35 18 | 86.26 33 | 88.37 54 | 89.24 12 | 75.94 50 | 82.60 40 | 89.71 23 | 89.45 70 | 92.17 19 | 96.51 16 | 97.24 51 |
|
CANet | | | 89.98 29 | 90.42 33 | 89.47 31 | 94.13 46 | 98.05 12 | 91.76 38 | 83.27 47 | 90.87 36 | 81.90 36 | 72.32 58 | 84.82 31 | 88.42 34 | 94.52 10 | 93.78 8 | 97.34 4 | 98.58 23 |
|
PGM-MVS | | | 89.97 30 | 90.64 31 | 89.18 32 | 96.53 23 | 95.90 50 | 93.06 25 | 82.48 55 | 90.04 41 | 80.37 39 | 92.75 15 | 80.96 48 | 88.93 30 | 89.88 63 | 89.08 67 | 93.69 82 | 95.86 78 |
|
PHI-MVS | | | 89.88 31 | 92.75 23 | 86.52 53 | 94.97 39 | 97.57 19 | 89.99 49 | 84.56 40 | 92.52 27 | 69.72 87 | 90.35 24 | 87.11 21 | 84.89 61 | 91.82 38 | 92.37 17 | 95.02 52 | 97.51 42 |
|
CSCG | | | 89.81 32 | 89.69 34 | 89.96 28 | 96.55 22 | 97.90 14 | 92.89 27 | 87.06 29 | 88.74 51 | 86.17 18 | 78.24 43 | 86.53 24 | 84.75 64 | 87.82 91 | 90.59 43 | 92.32 135 | 98.01 33 |
|
X-MVS | | | 89.73 33 | 90.65 30 | 88.66 35 | 96.44 25 | 95.93 46 | 92.26 35 | 86.98 30 | 90.73 37 | 76.32 54 | 89.56 27 | 82.05 44 | 86.51 49 | 89.98 61 | 89.60 59 | 93.43 102 | 96.72 69 |
|
EPNet | | | 89.30 34 | 90.89 28 | 87.44 42 | 95.67 36 | 96.81 32 | 91.13 41 | 83.12 49 | 91.14 33 | 76.31 58 | 87.60 30 | 80.40 52 | 84.45 67 | 92.13 33 | 91.12 38 | 93.96 72 | 97.01 58 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DeepC-MVS | | 84.14 3 | 88.80 35 | 88.03 45 | 89.71 30 | 94.83 40 | 96.56 34 | 92.57 31 | 89.38 21 | 89.25 47 | 79.59 41 | 70.02 67 | 77.05 64 | 88.24 38 | 92.44 29 | 92.79 13 | 93.65 86 | 98.10 32 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CDPH-MVS | | | 88.76 36 | 90.43 32 | 86.81 49 | 96.04 30 | 96.53 37 | 92.95 26 | 85.95 35 | 90.36 38 | 67.93 93 | 85.80 33 | 80.69 49 | 83.82 72 | 90.81 49 | 91.85 29 | 94.18 65 | 96.99 59 |
|
3Dnovator+ | | 81.14 5 | 88.59 37 | 87.49 48 | 89.88 29 | 95.83 33 | 96.45 40 | 91.94 37 | 82.41 56 | 87.09 59 | 85.94 20 | 62.80 97 | 85.37 28 | 89.46 25 | 91.51 41 | 91.89 28 | 93.72 80 | 97.30 49 |
|
ACMMP |  | | 88.48 38 | 88.71 40 | 88.22 39 | 94.61 43 | 95.53 56 | 90.64 45 | 85.60 37 | 90.97 34 | 78.62 43 | 89.88 26 | 74.20 78 | 86.29 50 | 88.16 88 | 86.37 94 | 93.57 89 | 95.86 78 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
AdaColmap |  | | 88.46 39 | 85.75 62 | 91.62 20 | 96.25 27 | 95.35 60 | 90.71 43 | 91.08 12 | 90.22 40 | 86.17 18 | 74.33 54 | 73.67 81 | 92.00 15 | 86.31 107 | 85.82 102 | 93.52 92 | 94.53 97 |
|
MVS_0304 | | | 88.43 40 | 89.46 36 | 87.21 44 | 91.85 58 | 97.60 18 | 92.62 30 | 81.10 62 | 87.16 58 | 73.80 65 | 72.19 60 | 83.36 39 | 87.03 44 | 94.64 8 | 93.67 9 | 96.88 9 | 97.64 41 |
|
3Dnovator | | 80.58 8 | 88.20 41 | 86.53 54 | 90.15 25 | 96.86 17 | 96.46 38 | 91.97 36 | 83.06 50 | 85.16 64 | 83.66 26 | 62.28 100 | 82.15 42 | 88.98 28 | 90.99 46 | 92.65 14 | 96.38 23 | 96.03 75 |
|
CPTT-MVS | | | 88.17 42 | 87.84 46 | 88.55 36 | 93.33 48 | 93.75 81 | 92.33 34 | 84.75 39 | 89.87 43 | 81.72 38 | 83.93 35 | 81.12 47 | 88.45 33 | 85.42 116 | 84.07 121 | 90.72 170 | 96.72 69 |
|
MVS_111021_HR | | | 87.82 43 | 88.84 38 | 86.62 51 | 94.42 44 | 97.36 22 | 88.21 58 | 83.26 48 | 83.42 67 | 72.52 75 | 82.63 36 | 76.93 65 | 84.95 60 | 91.93 37 | 91.15 37 | 96.39 22 | 98.49 25 |
|
DELS-MVS | | | 87.75 44 | 86.92 52 | 88.71 34 | 94.69 41 | 97.34 25 | 92.78 28 | 84.50 41 | 77.87 91 | 81.94 35 | 67.17 75 | 75.49 73 | 82.84 78 | 95.38 2 | 95.93 2 | 95.55 38 | 99.27 9 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MVSTER | | | 87.68 45 | 89.12 37 | 86.01 55 | 88.11 86 | 90.05 118 | 89.28 52 | 77.05 86 | 91.37 30 | 79.97 40 | 76.70 48 | 85.25 29 | 84.89 61 | 93.53 19 | 91.41 34 | 96.73 11 | 95.55 85 |
|
MVS_111021_LR | | | 87.58 46 | 88.67 41 | 86.31 54 | 92.58 52 | 95.89 52 | 86.20 74 | 82.49 54 | 89.08 49 | 77.47 49 | 86.20 32 | 74.22 77 | 85.49 55 | 90.03 60 | 88.52 72 | 93.66 83 | 96.74 67 |
|
QAPM | | | 87.06 47 | 86.46 55 | 87.75 40 | 96.63 19 | 97.09 26 | 91.71 39 | 82.62 53 | 80.58 80 | 71.28 80 | 66.04 82 | 84.24 32 | 87.01 45 | 89.93 62 | 89.91 52 | 97.26 5 | 97.44 44 |
|
PVSNet_BlendedMVS | | | 86.98 48 | 87.05 50 | 86.90 46 | 93.03 49 | 96.98 29 | 86.57 70 | 81.82 58 | 89.78 44 | 82.78 31 | 71.54 61 | 66.07 112 | 80.73 90 | 93.46 20 | 91.97 24 | 96.45 19 | 99.53 4 |
|
PVSNet_Blended | | | 86.98 48 | 87.05 50 | 86.90 46 | 93.03 49 | 96.98 29 | 86.57 70 | 81.82 58 | 89.78 44 | 82.78 31 | 71.54 61 | 66.07 112 | 80.73 90 | 93.46 20 | 91.97 24 | 96.45 19 | 99.53 4 |
|
ETV-MVS | | | 86.94 50 | 89.49 35 | 83.95 69 | 87.28 95 | 95.61 55 | 83.58 101 | 76.37 93 | 92.59 26 | 73.20 67 | 80.35 39 | 76.42 68 | 87.38 42 | 92.20 32 | 90.45 45 | 95.90 31 | 98.83 20 |
|
CS-MVS-test | | | 86.72 51 | 88.35 42 | 84.83 63 | 91.78 59 | 96.03 45 | 81.71 112 | 76.71 87 | 91.19 32 | 77.12 52 | 77.64 46 | 75.63 72 | 87.59 41 | 90.82 48 | 89.11 65 | 94.06 69 | 97.99 35 |
|
CS-MVS | | | 86.70 52 | 87.61 47 | 85.65 56 | 91.33 63 | 95.64 54 | 84.73 90 | 76.64 89 | 88.68 52 | 77.78 44 | 74.87 51 | 72.86 85 | 89.09 27 | 92.89 26 | 90.18 49 | 94.31 64 | 98.16 31 |
|
DROMVSNet | | | 86.42 53 | 88.31 43 | 84.20 67 | 86.61 102 | 94.08 75 | 86.20 74 | 72.18 124 | 89.06 50 | 76.02 59 | 74.48 53 | 80.47 51 | 88.90 31 | 92.03 35 | 90.07 50 | 95.30 42 | 98.00 34 |
|
OMC-MVS | | | 86.38 54 | 86.21 59 | 86.57 52 | 92.30 54 | 94.35 74 | 87.60 62 | 83.51 46 | 92.32 28 | 77.37 50 | 72.27 59 | 77.83 57 | 86.59 48 | 87.62 93 | 85.95 99 | 92.08 139 | 93.11 123 |
|
HQP-MVS | | | 86.17 55 | 87.35 49 | 84.80 64 | 91.41 62 | 92.37 98 | 91.05 42 | 84.35 43 | 88.52 53 | 64.21 100 | 87.05 31 | 68.91 101 | 84.80 63 | 89.12 73 | 88.16 78 | 92.96 121 | 97.31 48 |
|
canonicalmvs | | | 85.93 56 | 86.26 58 | 85.54 57 | 88.94 76 | 95.44 57 | 89.56 50 | 76.01 95 | 87.83 55 | 77.70 46 | 76.43 49 | 68.66 103 | 87.80 40 | 87.02 96 | 91.51 33 | 93.25 111 | 96.95 60 |
|
MAR-MVS | | | 85.65 57 | 86.30 57 | 84.88 62 | 95.51 38 | 95.89 52 | 86.50 72 | 76.71 87 | 89.23 48 | 68.59 90 | 70.93 65 | 74.49 75 | 88.55 32 | 89.40 71 | 90.30 47 | 93.42 103 | 93.88 114 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PCF-MVS | | 82.38 4 | 85.52 58 | 84.41 67 | 86.81 49 | 91.51 61 | 96.23 43 | 90.27 46 | 89.81 19 | 77.87 91 | 70.67 83 | 69.20 69 | 77.86 55 | 85.55 54 | 85.92 112 | 86.38 93 | 93.03 118 | 97.43 46 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
CLD-MVS | | | 85.43 59 | 84.24 70 | 86.83 48 | 87.69 91 | 93.16 89 | 90.01 48 | 82.72 52 | 87.17 57 | 79.28 42 | 71.43 64 | 65.81 115 | 86.02 51 | 87.33 95 | 86.96 87 | 95.25 48 | 97.83 38 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
OpenMVS |  | 77.91 11 | 85.09 60 | 83.42 74 | 87.03 45 | 96.12 29 | 96.55 36 | 89.36 51 | 81.59 60 | 79.19 87 | 75.20 61 | 55.84 127 | 79.04 54 | 84.45 67 | 88.47 82 | 89.35 62 | 95.48 40 | 95.48 86 |
|
TSAR-MVS + COLMAP | | | 84.93 61 | 85.79 61 | 83.92 70 | 90.90 65 | 93.57 85 | 89.25 53 | 82.00 57 | 91.29 31 | 61.66 109 | 88.25 29 | 59.46 135 | 86.71 47 | 89.79 64 | 87.09 84 | 93.01 119 | 91.09 144 |
|
TAPA-MVS | | 80.99 7 | 84.83 62 | 84.42 66 | 85.31 59 | 91.89 57 | 93.73 83 | 88.53 57 | 82.80 51 | 89.99 42 | 69.78 86 | 71.53 63 | 75.03 74 | 85.47 56 | 86.26 108 | 84.54 116 | 93.39 105 | 89.90 154 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
PLC |  | 81.02 6 | 84.81 63 | 81.81 93 | 88.31 38 | 93.77 47 | 90.35 113 | 88.80 55 | 84.47 42 | 86.76 60 | 82.17 34 | 66.56 78 | 71.01 93 | 88.41 35 | 85.48 114 | 84.28 119 | 92.26 137 | 88.21 167 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
EIA-MVS | | | 84.75 64 | 86.43 56 | 82.79 75 | 86.88 98 | 95.36 59 | 82.84 108 | 76.39 92 | 87.61 56 | 71.03 81 | 74.33 54 | 71.12 92 | 85.16 57 | 89.69 66 | 88.70 71 | 94.40 62 | 98.23 29 |
|
CNLPA | | | 84.72 65 | 82.14 87 | 87.73 41 | 92.85 51 | 93.83 80 | 84.70 91 | 85.07 38 | 90.90 35 | 83.16 29 | 56.28 123 | 71.53 89 | 88.14 39 | 84.19 121 | 84.00 125 | 92.48 132 | 94.26 104 |
|
MVS_Test | | | 84.60 66 | 85.13 65 | 83.99 68 | 88.17 84 | 95.27 64 | 88.21 58 | 73.15 115 | 84.31 66 | 70.55 84 | 68.67 73 | 68.78 102 | 86.99 46 | 91.71 40 | 91.90 26 | 96.84 10 | 95.27 91 |
|
casdiffmvs_mvg |  | | 83.97 67 | 82.62 83 | 85.54 57 | 87.71 89 | 94.38 73 | 88.93 54 | 80.11 65 | 77.34 95 | 77.57 48 | 63.01 96 | 65.95 114 | 84.96 59 | 90.69 51 | 90.23 48 | 93.95 73 | 96.74 67 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
casdiffmvs |  | | 83.84 68 | 82.65 82 | 85.22 60 | 87.25 96 | 94.62 70 | 86.01 78 | 79.62 66 | 79.48 84 | 77.59 47 | 61.92 103 | 64.34 119 | 85.57 53 | 90.55 53 | 90.51 44 | 95.26 46 | 97.14 53 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
baseline | | | 83.83 69 | 84.38 68 | 83.18 74 | 86.65 100 | 94.59 71 | 85.79 81 | 73.78 112 | 85.83 62 | 72.94 68 | 69.28 68 | 70.80 95 | 83.45 75 | 86.80 99 | 87.59 80 | 96.47 18 | 95.77 82 |
|
diffmvs |  | | 83.69 70 | 83.17 78 | 84.31 65 | 85.45 114 | 93.92 76 | 86.89 65 | 78.62 69 | 82.71 73 | 75.95 60 | 66.78 77 | 63.90 122 | 83.84 71 | 87.90 90 | 89.16 64 | 95.10 51 | 97.82 39 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
CANet_DTU | | | 83.33 71 | 86.59 53 | 79.53 99 | 88.88 77 | 94.87 67 | 86.63 69 | 68.85 147 | 85.45 63 | 50.54 154 | 77.86 45 | 69.94 98 | 85.62 52 | 92.63 28 | 90.88 40 | 96.63 12 | 94.46 98 |
|
DI_MVS_plusplus_trai | | | 83.32 72 | 82.53 85 | 84.25 66 | 86.26 108 | 93.66 84 | 90.23 47 | 77.16 85 | 77.05 99 | 74.06 64 | 53.74 136 | 74.33 76 | 83.61 74 | 91.40 43 | 89.82 54 | 94.17 66 | 97.73 40 |
|
baseline1 | | | 82.63 73 | 82.02 88 | 83.34 73 | 88.30 83 | 91.89 102 | 88.03 61 | 80.86 63 | 75.05 106 | 65.96 95 | 64.27 89 | 72.20 87 | 80.01 94 | 91.32 44 | 89.56 60 | 96.90 8 | 89.85 155 |
|
PVSNet_Blended_VisFu | | | 82.55 74 | 83.70 73 | 81.21 86 | 89.66 69 | 95.15 66 | 82.41 109 | 77.36 84 | 72.53 124 | 73.64 66 | 61.15 106 | 77.19 63 | 70.35 151 | 91.31 45 | 89.72 57 | 93.84 75 | 98.85 18 |
|
ET-MVSNet_ETH3D | | | 82.37 75 | 85.68 63 | 78.51 108 | 62.90 210 | 94.66 68 | 87.06 64 | 73.57 113 | 83.13 69 | 61.52 111 | 78.37 42 | 76.01 70 | 89.99 21 | 84.14 122 | 89.03 68 | 96.03 29 | 94.42 99 |
|
PMMVS | | | 82.26 76 | 85.48 64 | 78.51 108 | 85.92 111 | 91.92 101 | 78.30 140 | 70.77 132 | 86.30 61 | 61.11 113 | 82.46 37 | 70.88 94 | 84.70 65 | 88.05 89 | 84.78 112 | 90.24 177 | 93.98 108 |
|
ACMP | | 79.58 9 | 82.23 77 | 81.82 92 | 82.71 76 | 88.15 85 | 90.95 110 | 85.23 86 | 78.52 71 | 81.70 75 | 72.52 75 | 78.41 41 | 60.63 130 | 80.48 92 | 82.88 132 | 83.44 129 | 91.37 156 | 94.70 95 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
CHOSEN 280x420 | | | 82.15 78 | 85.87 60 | 77.80 113 | 86.54 104 | 93.42 87 | 81.74 111 | 59.96 189 | 78.99 89 | 63.99 101 | 74.50 52 | 83.95 36 | 80.99 85 | 89.53 69 | 85.01 107 | 93.56 91 | 95.71 84 |
|
LGP-MVS_train | | | 82.12 79 | 82.57 84 | 81.59 82 | 89.26 73 | 90.23 116 | 88.76 56 | 78.05 72 | 81.26 77 | 61.64 110 | 79.52 40 | 62.11 125 | 79.59 96 | 85.20 117 | 84.68 114 | 92.27 136 | 95.02 93 |
|
FMVSNet3 | | | 81.93 80 | 81.98 89 | 81.88 81 | 79.49 150 | 87.02 133 | 88.15 60 | 72.57 118 | 83.02 70 | 72.63 72 | 56.55 119 | 73.48 82 | 82.34 81 | 91.49 42 | 91.20 36 | 96.07 25 | 91.13 143 |
|
test2506 | | | 81.91 81 | 81.78 95 | 82.06 80 | 89.09 74 | 95.32 61 | 84.61 93 | 77.54 80 | 74.61 110 | 68.77 89 | 63.80 93 | 67.53 106 | 77.09 105 | 90.19 57 | 89.01 69 | 95.27 43 | 92.00 136 |
|
thisisatest0530 | | | 81.67 82 | 84.27 69 | 78.63 104 | 85.53 112 | 93.88 79 | 81.77 110 | 73.84 109 | 81.35 76 | 63.85 103 | 68.79 71 | 77.64 59 | 73.02 132 | 88.73 80 | 85.73 103 | 93.76 78 | 93.80 118 |
|
tttt0517 | | | 81.51 83 | 84.12 72 | 78.47 110 | 85.33 116 | 93.74 82 | 81.42 115 | 73.84 109 | 81.21 78 | 63.59 104 | 68.73 72 | 77.46 62 | 73.02 132 | 88.47 82 | 85.73 103 | 93.63 87 | 93.49 122 |
|
FA-MVS(training) | | | 81.41 84 | 81.98 89 | 80.76 92 | 87.58 92 | 94.59 71 | 83.09 103 | 61.18 186 | 79.80 83 | 74.74 62 | 58.46 112 | 69.76 99 | 82.12 82 | 88.90 76 | 87.00 85 | 95.83 35 | 95.33 88 |
|
OPM-MVS | | | 81.34 85 | 78.18 111 | 85.02 61 | 91.27 64 | 91.78 103 | 90.66 44 | 83.62 45 | 62.39 153 | 65.91 96 | 63.35 94 | 64.33 120 | 85.03 58 | 87.77 92 | 85.88 101 | 93.66 83 | 91.75 140 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
baseline2 | | | 81.21 86 | 83.36 77 | 78.70 102 | 83.22 129 | 92.71 91 | 80.32 121 | 74.25 108 | 80.39 81 | 63.94 102 | 68.89 70 | 68.44 104 | 74.67 118 | 89.61 68 | 86.68 91 | 95.83 35 | 96.81 66 |
|
IS_MVSNet | | | 80.92 87 | 84.14 71 | 77.16 116 | 87.43 93 | 93.90 78 | 80.44 117 | 74.64 102 | 75.05 106 | 61.10 114 | 65.59 84 | 76.89 66 | 67.39 159 | 90.88 47 | 90.05 51 | 91.95 143 | 96.62 72 |
|
ACMM | | 78.09 10 | 80.91 88 | 78.39 108 | 83.86 71 | 89.61 72 | 87.71 130 | 85.16 87 | 80.67 64 | 79.04 88 | 74.18 63 | 63.82 92 | 60.84 129 | 82.59 79 | 84.33 119 | 83.59 128 | 90.96 164 | 89.39 160 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
EPP-MVSNet | | | 80.82 89 | 82.79 80 | 78.52 106 | 86.31 107 | 92.37 98 | 79.83 124 | 74.51 103 | 73.79 117 | 64.46 99 | 67.01 76 | 80.63 50 | 74.33 121 | 85.63 113 | 84.35 118 | 91.68 149 | 95.79 81 |
|
CostFormer | | | 80.72 90 | 81.81 93 | 79.44 101 | 86.50 105 | 91.65 104 | 84.31 95 | 59.84 190 | 80.86 79 | 72.69 70 | 62.46 99 | 73.74 79 | 79.93 95 | 82.58 136 | 84.50 117 | 93.37 106 | 96.90 64 |
|
GBi-Net | | | 80.72 90 | 80.49 97 | 81.00 89 | 78.18 154 | 86.19 147 | 86.73 66 | 72.57 118 | 83.02 70 | 72.63 72 | 56.55 119 | 73.48 82 | 80.99 85 | 86.57 101 | 86.83 88 | 94.89 55 | 90.77 147 |
|
test1 | | | 80.72 90 | 80.49 97 | 81.00 89 | 78.18 154 | 86.19 147 | 86.73 66 | 72.57 118 | 83.02 70 | 72.63 72 | 56.55 119 | 73.48 82 | 80.99 85 | 86.57 101 | 86.83 88 | 94.89 55 | 90.77 147 |
|
UGNet | | | 80.71 93 | 83.09 79 | 77.93 112 | 87.02 97 | 92.71 91 | 80.28 122 | 76.53 90 | 73.83 116 | 71.35 79 | 70.07 66 | 73.71 80 | 58.93 179 | 87.39 94 | 86.97 86 | 93.48 99 | 96.94 61 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
CHOSEN 1792x2688 | | | 80.23 94 | 79.16 105 | 81.48 84 | 91.97 55 | 96.56 34 | 86.18 76 | 75.40 99 | 76.17 102 | 61.32 112 | 37.43 197 | 61.08 128 | 76.52 111 | 92.35 30 | 91.64 31 | 97.46 3 | 98.86 17 |
|
thres100view900 | | | 79.83 95 | 77.79 115 | 82.21 77 | 88.42 80 | 93.54 86 | 87.07 63 | 81.11 61 | 70.15 131 | 61.01 115 | 56.65 117 | 51.22 152 | 81.78 83 | 89.77 65 | 85.95 99 | 93.84 75 | 97.26 50 |
|
Effi-MVS+ | | | 79.80 96 | 80.04 99 | 79.52 100 | 85.53 112 | 93.31 88 | 85.28 84 | 70.68 134 | 74.15 112 | 58.79 124 | 62.03 102 | 60.51 131 | 83.37 76 | 88.41 84 | 86.09 98 | 93.49 98 | 95.80 80 |
|
ECVR-MVS |  | | 79.76 97 | 78.27 109 | 81.50 83 | 89.09 74 | 95.32 61 | 84.61 93 | 77.54 80 | 74.61 110 | 65.38 97 | 50.22 148 | 56.31 146 | 77.09 105 | 90.19 57 | 89.01 69 | 95.27 43 | 92.25 131 |
|
DCV-MVSNet | | | 79.76 97 | 79.17 104 | 80.44 95 | 84.65 120 | 84.51 171 | 84.20 96 | 72.36 123 | 75.17 105 | 70.81 82 | 66.21 81 | 66.56 109 | 80.99 85 | 82.89 131 | 84.56 115 | 89.65 183 | 94.30 103 |
|
FC-MVSNet-train | | | 79.54 99 | 78.20 110 | 81.09 88 | 86.55 103 | 88.63 126 | 79.96 123 | 78.53 70 | 70.90 129 | 68.24 91 | 65.87 83 | 56.45 145 | 80.29 93 | 86.20 110 | 84.08 120 | 92.97 120 | 95.31 90 |
|
test-LLR | | | 79.52 100 | 83.42 74 | 74.97 125 | 81.79 134 | 91.26 105 | 76.17 161 | 70.57 135 | 77.71 93 | 52.14 141 | 66.26 79 | 77.47 60 | 73.10 128 | 87.02 96 | 87.16 82 | 96.05 27 | 97.02 56 |
|
FMVSNet2 | | | 79.24 101 | 78.14 112 | 80.53 94 | 78.18 154 | 86.19 147 | 86.73 66 | 71.91 125 | 72.97 119 | 70.48 85 | 50.63 146 | 66.56 109 | 80.99 85 | 90.10 59 | 89.77 56 | 94.89 55 | 90.77 147 |
|
TESTMET0.1,1 | | | 79.15 102 | 83.42 74 | 74.18 131 | 79.81 148 | 91.26 105 | 76.17 161 | 67.83 160 | 77.71 93 | 52.14 141 | 66.26 79 | 77.47 60 | 73.10 128 | 87.02 96 | 87.16 82 | 96.05 27 | 97.02 56 |
|
tfpn200view9 | | | 79.05 103 | 77.21 119 | 81.18 87 | 88.42 80 | 92.55 96 | 85.12 88 | 77.94 74 | 70.15 131 | 61.01 115 | 56.65 117 | 51.22 152 | 81.11 84 | 88.23 85 | 84.80 111 | 93.50 97 | 96.90 64 |
|
test1111 | | | 78.99 104 | 77.77 116 | 80.42 96 | 88.64 78 | 95.31 63 | 83.39 102 | 77.67 78 | 72.76 122 | 61.91 107 | 49.58 151 | 55.59 148 | 75.67 116 | 90.23 56 | 89.09 66 | 95.23 49 | 91.83 139 |
|
PatchMatch-RL | | | 78.75 105 | 76.47 126 | 81.41 85 | 88.53 79 | 91.10 107 | 78.09 141 | 77.51 83 | 77.33 96 | 71.98 77 | 64.38 88 | 48.10 164 | 82.55 80 | 84.06 123 | 82.35 138 | 89.78 180 | 87.97 169 |
|
LS3D | | | 78.72 106 | 75.79 130 | 82.15 78 | 91.91 56 | 89.39 123 | 83.66 99 | 85.88 36 | 76.81 100 | 59.22 123 | 57.67 114 | 58.53 139 | 83.72 73 | 82.07 141 | 81.63 149 | 88.50 191 | 84.39 180 |
|
thres200 | | | 78.69 107 | 76.71 122 | 80.99 91 | 88.35 82 | 92.56 94 | 86.03 77 | 77.94 74 | 66.27 138 | 60.66 117 | 56.08 124 | 51.11 154 | 79.45 97 | 88.23 85 | 85.54 106 | 93.52 92 | 97.20 52 |
|
Anonymous20231211 | | | 78.61 108 | 75.57 133 | 82.15 78 | 84.43 124 | 90.26 114 | 84.08 97 | 77.68 77 | 71.09 127 | 72.90 69 | 39.24 191 | 66.21 111 | 84.23 70 | 82.15 139 | 84.04 122 | 89.61 184 | 96.03 75 |
|
IB-MVS | | 74.10 12 | 78.52 109 | 78.51 107 | 78.52 106 | 90.15 67 | 95.39 58 | 71.95 181 | 77.53 82 | 74.95 108 | 77.25 51 | 58.93 110 | 55.92 147 | 58.37 181 | 79.01 166 | 87.89 79 | 95.88 33 | 97.47 43 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
EPNet_dtu | | | 78.49 110 | 81.96 91 | 74.45 130 | 92.57 53 | 88.74 125 | 82.98 104 | 78.83 68 | 83.28 68 | 44.64 185 | 77.40 47 | 67.73 105 | 53.98 190 | 85.44 115 | 84.91 108 | 93.71 81 | 86.22 175 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
thres400 | | | 78.39 111 | 76.39 127 | 80.73 93 | 88.02 87 | 92.94 90 | 84.77 89 | 78.88 67 | 65.20 146 | 59.70 121 | 55.20 130 | 50.85 155 | 79.45 97 | 88.81 77 | 84.81 110 | 93.57 89 | 96.91 63 |
|
UA-Net | | | 78.30 112 | 80.92 96 | 75.25 124 | 87.42 94 | 92.48 97 | 79.54 127 | 75.49 98 | 60.47 157 | 60.52 118 | 68.44 74 | 84.08 35 | 57.54 183 | 88.54 81 | 88.45 73 | 90.96 164 | 83.97 182 |
|
Vis-MVSNet (Re-imp) | | | 78.28 113 | 82.68 81 | 73.16 142 | 86.64 101 | 92.68 93 | 78.07 142 | 74.48 104 | 74.05 113 | 53.47 134 | 64.22 90 | 76.52 67 | 54.28 186 | 88.96 75 | 88.29 76 | 92.03 141 | 94.00 107 |
|
MSDG | | | 78.11 114 | 73.17 146 | 83.86 71 | 91.78 59 | 86.83 135 | 85.25 85 | 86.02 34 | 72.84 121 | 69.69 88 | 51.43 143 | 54.00 150 | 77.61 101 | 81.95 144 | 82.27 140 | 92.83 126 | 82.91 187 |
|
HyFIR lowres test | | | 78.08 115 | 76.81 120 | 79.56 98 | 90.77 66 | 94.64 69 | 82.97 105 | 69.85 140 | 69.81 133 | 59.53 122 | 33.52 202 | 64.66 116 | 78.97 99 | 88.77 79 | 88.38 75 | 95.27 43 | 97.86 37 |
|
GeoE | | | 78.04 116 | 77.52 118 | 78.65 103 | 84.51 122 | 90.84 111 | 80.94 116 | 69.24 145 | 72.86 120 | 66.06 94 | 53.45 137 | 60.46 132 | 77.37 102 | 84.20 120 | 84.85 109 | 93.78 77 | 96.00 77 |
|
test-mter | | | 77.90 117 | 82.44 86 | 72.60 147 | 78.52 152 | 90.24 115 | 73.85 174 | 65.31 174 | 76.37 101 | 51.29 145 | 65.58 85 | 75.94 71 | 71.36 142 | 85.98 111 | 86.26 95 | 95.26 46 | 96.71 71 |
|
thres600view7 | | | 77.66 118 | 75.67 131 | 79.98 97 | 87.71 89 | 92.56 94 | 83.79 98 | 77.94 74 | 64.41 148 | 58.69 125 | 54.32 135 | 50.54 156 | 78.23 100 | 88.23 85 | 83.06 132 | 93.52 92 | 96.55 73 |
|
MS-PatchMatch | | | 77.47 119 | 76.48 125 | 78.63 104 | 89.89 68 | 90.42 112 | 85.42 83 | 69.53 142 | 70.79 130 | 60.43 119 | 50.05 149 | 70.62 97 | 70.66 148 | 86.71 100 | 82.54 135 | 95.86 34 | 84.23 181 |
|
Fast-Effi-MVS+ | | | 77.37 120 | 76.68 123 | 78.17 111 | 82.84 131 | 89.94 119 | 81.47 114 | 68.01 156 | 72.99 118 | 60.26 120 | 55.07 131 | 53.20 151 | 82.99 77 | 86.47 106 | 86.12 97 | 93.46 100 | 92.98 126 |
|
Vis-MVSNet |  | | 77.24 121 | 79.99 102 | 74.02 132 | 84.62 121 | 93.92 76 | 80.33 120 | 72.55 121 | 62.58 152 | 55.25 132 | 64.45 87 | 69.49 100 | 57.00 184 | 88.78 78 | 88.21 77 | 94.36 63 | 92.54 128 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
MDTV_nov1_ep13 | | | 77.20 122 | 80.04 99 | 73.90 134 | 82.22 132 | 90.14 117 | 79.25 131 | 61.52 184 | 78.63 90 | 56.98 126 | 65.52 86 | 72.80 86 | 73.05 130 | 80.93 152 | 83.20 130 | 90.36 174 | 89.05 163 |
|
EPMVS | | | 77.16 123 | 79.08 106 | 74.92 126 | 86.73 99 | 91.98 100 | 78.62 136 | 55.44 198 | 79.43 85 | 56.59 128 | 61.24 105 | 70.73 96 | 76.97 108 | 80.59 155 | 81.43 155 | 95.15 50 | 88.17 168 |
|
tpm cat1 | | | 76.93 124 | 76.19 129 | 77.79 114 | 85.08 119 | 88.58 127 | 82.96 106 | 59.33 191 | 75.72 104 | 72.64 71 | 51.25 144 | 64.41 118 | 75.74 115 | 77.90 174 | 80.10 171 | 90.97 163 | 95.35 87 |
|
PatchmatchNet |  | | 76.85 125 | 80.03 101 | 73.15 143 | 84.08 126 | 91.04 109 | 77.76 146 | 55.85 197 | 79.43 85 | 52.74 139 | 62.08 101 | 76.02 69 | 74.56 119 | 79.92 160 | 81.41 156 | 93.92 74 | 90.29 152 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
IterMVS-LS | | | 76.80 126 | 76.33 128 | 77.35 115 | 84.07 127 | 84.11 172 | 81.54 113 | 68.52 149 | 66.17 139 | 61.74 108 | 57.84 113 | 64.31 121 | 74.88 117 | 83.48 128 | 86.21 96 | 93.34 108 | 92.16 133 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CDS-MVSNet | | | 76.57 127 | 76.78 121 | 76.32 119 | 80.94 141 | 89.75 120 | 82.94 107 | 72.64 117 | 59.01 163 | 62.95 106 | 58.60 111 | 62.67 124 | 66.91 161 | 86.26 108 | 87.20 81 | 91.57 151 | 93.97 109 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
SCA | | | 76.41 128 | 79.90 103 | 72.35 151 | 84.26 125 | 85.24 162 | 75.57 168 | 54.56 200 | 79.95 82 | 52.72 140 | 64.22 90 | 77.84 56 | 73.73 125 | 80.48 156 | 81.37 157 | 93.25 111 | 90.20 153 |
|
tpmrst | | | 76.27 129 | 77.65 117 | 74.66 128 | 86.13 110 | 89.53 122 | 79.31 130 | 54.91 199 | 77.19 98 | 56.27 129 | 55.87 126 | 64.58 117 | 77.25 103 | 80.85 153 | 80.21 168 | 94.07 68 | 95.32 89 |
|
dps | | | 75.76 130 | 75.02 135 | 76.63 118 | 84.51 122 | 88.12 128 | 77.51 147 | 58.33 193 | 75.91 103 | 71.98 77 | 57.37 115 | 57.85 140 | 76.81 110 | 77.89 175 | 78.40 180 | 90.63 171 | 89.63 157 |
|
CR-MVSNet | | | 74.84 131 | 77.91 113 | 71.26 164 | 81.77 136 | 85.52 158 | 78.32 138 | 54.14 202 | 74.05 113 | 51.09 148 | 50.00 150 | 71.38 91 | 70.77 146 | 86.48 104 | 84.03 123 | 91.46 155 | 93.92 111 |
|
Effi-MVS+-dtu | | | 74.57 132 | 74.60 139 | 74.53 129 | 81.38 138 | 86.74 137 | 80.39 119 | 67.70 161 | 67.36 137 | 53.06 135 | 59.86 108 | 57.50 141 | 75.84 114 | 80.19 158 | 78.62 178 | 88.79 190 | 91.95 138 |
|
RPSCF | | | 74.27 133 | 73.24 145 | 75.48 123 | 81.01 140 | 80.18 194 | 76.24 160 | 72.37 122 | 74.84 109 | 68.24 91 | 72.47 57 | 67.39 107 | 73.89 122 | 71.05 199 | 69.38 206 | 81.14 210 | 77.37 199 |
|
FMVSNet1 | | | 74.26 134 | 71.95 151 | 76.95 117 | 74.28 186 | 83.94 174 | 83.61 100 | 69.99 138 | 57.08 169 | 65.08 98 | 42.39 180 | 57.41 142 | 76.98 107 | 86.57 101 | 86.83 88 | 91.77 148 | 89.42 158 |
|
GA-MVS | | | 73.62 135 | 74.52 140 | 72.58 148 | 79.93 146 | 89.29 124 | 78.02 143 | 71.67 128 | 60.79 156 | 42.68 189 | 54.41 134 | 49.07 160 | 70.07 152 | 89.39 72 | 86.55 92 | 93.13 116 | 92.12 134 |
|
Fast-Effi-MVS+-dtu | | | 73.56 136 | 75.32 134 | 71.50 160 | 80.35 143 | 86.83 135 | 79.72 125 | 58.07 194 | 67.64 136 | 44.83 182 | 60.28 107 | 54.07 149 | 73.59 127 | 81.90 146 | 82.30 139 | 92.46 133 | 94.18 105 |
|
tpm | | | 73.50 137 | 74.85 136 | 71.93 154 | 83.19 130 | 86.84 134 | 78.61 137 | 55.91 196 | 65.64 141 | 48.90 161 | 56.30 122 | 61.09 127 | 72.31 134 | 79.10 165 | 80.61 167 | 92.68 128 | 94.35 102 |
|
RPMNet | | | 73.46 138 | 77.85 114 | 68.34 174 | 81.71 137 | 85.52 158 | 73.83 175 | 50.54 209 | 74.05 113 | 46.10 176 | 53.03 140 | 71.91 88 | 66.31 163 | 83.55 126 | 82.18 142 | 91.55 153 | 94.71 94 |
|
USDC | | | 73.43 139 | 72.31 149 | 74.73 127 | 80.86 142 | 86.21 145 | 80.42 118 | 71.83 127 | 71.69 126 | 46.94 169 | 59.60 109 | 42.58 185 | 76.47 112 | 82.66 135 | 81.22 160 | 91.88 145 | 82.24 193 |
|
pmmvs4 | | | 73.38 140 | 71.53 154 | 75.55 122 | 75.95 172 | 85.24 162 | 77.25 151 | 71.59 129 | 71.03 128 | 63.10 105 | 49.09 156 | 44.22 175 | 73.73 125 | 82.04 142 | 80.18 169 | 91.68 149 | 88.89 165 |
|
UniMVSNet_NR-MVSNet | | | 73.11 141 | 72.59 147 | 73.71 137 | 76.90 163 | 86.58 141 | 77.01 152 | 75.82 96 | 65.59 142 | 48.82 162 | 50.97 145 | 48.42 162 | 71.61 138 | 79.19 164 | 83.03 133 | 92.11 138 | 94.37 100 |
|
FMVSNet5 | | | 72.83 142 | 73.89 143 | 71.59 158 | 67.42 204 | 76.28 202 | 75.88 165 | 63.74 178 | 77.27 97 | 54.59 133 | 53.32 138 | 71.48 90 | 73.85 123 | 81.95 144 | 81.69 147 | 94.06 69 | 75.20 203 |
|
PatchT | | | 72.66 143 | 76.58 124 | 68.09 176 | 79.02 151 | 86.09 151 | 59.81 203 | 51.78 207 | 72.00 125 | 51.09 148 | 46.84 160 | 66.70 108 | 70.77 146 | 86.48 104 | 84.03 123 | 96.07 25 | 93.92 111 |
|
ACMH | | 71.22 14 | 72.65 144 | 70.13 159 | 75.59 121 | 86.19 109 | 86.14 150 | 75.76 166 | 77.63 79 | 54.79 177 | 46.16 175 | 53.28 139 | 47.28 166 | 77.24 104 | 78.91 167 | 81.18 161 | 90.57 172 | 89.33 161 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
IterMVS | | | 72.43 145 | 74.05 141 | 70.55 168 | 80.34 144 | 81.17 188 | 77.44 148 | 61.00 188 | 63.57 151 | 46.82 171 | 55.88 125 | 59.09 138 | 65.03 165 | 83.15 129 | 83.83 126 | 92.67 129 | 91.65 141 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
ACMH+ | | 72.14 13 | 72.38 146 | 69.34 166 | 75.93 120 | 85.21 117 | 84.89 166 | 76.96 155 | 76.04 94 | 59.76 158 | 51.63 144 | 50.37 147 | 48.69 161 | 76.90 109 | 76.06 183 | 78.69 176 | 88.85 189 | 86.90 173 |
|
DU-MVS | | | 72.19 147 | 71.35 155 | 73.17 141 | 75.95 172 | 86.02 152 | 77.01 152 | 74.42 105 | 65.39 144 | 48.82 162 | 49.10 154 | 42.81 183 | 71.61 138 | 78.67 168 | 83.10 131 | 91.22 159 | 94.37 100 |
|
IterMVS-SCA-FT | | | 72.18 148 | 73.96 142 | 70.11 170 | 80.15 145 | 81.11 189 | 77.42 149 | 61.09 187 | 63.67 150 | 46.73 172 | 55.77 128 | 59.15 137 | 63.95 168 | 82.83 133 | 83.70 127 | 91.31 157 | 91.49 142 |
|
UniMVSNet (Re) | | | 72.12 149 | 72.28 150 | 71.93 154 | 76.77 164 | 87.38 132 | 75.73 167 | 73.51 114 | 65.76 140 | 50.24 156 | 48.65 157 | 46.49 167 | 63.85 169 | 80.10 159 | 82.47 136 | 91.49 154 | 95.13 92 |
|
ADS-MVSNet | | | 72.11 150 | 73.72 144 | 70.24 169 | 81.24 139 | 86.59 140 | 74.75 171 | 50.56 208 | 72.58 123 | 49.17 159 | 55.40 129 | 61.46 126 | 73.80 124 | 76.01 184 | 78.14 181 | 91.93 144 | 85.86 176 |
|
gg-mvs-nofinetune | | | 72.10 151 | 74.79 137 | 68.97 173 | 83.31 128 | 95.22 65 | 85.66 82 | 48.77 210 | 35.68 213 | 22.17 219 | 30.49 205 | 77.73 58 | 76.37 113 | 94.30 13 | 93.03 11 | 97.55 2 | 97.05 55 |
|
TAMVS | | | 72.06 152 | 71.76 153 | 72.41 150 | 76.68 165 | 88.12 128 | 74.82 170 | 68.09 154 | 53.52 182 | 56.91 127 | 52.94 141 | 56.93 144 | 66.91 161 | 81.37 149 | 82.44 137 | 91.07 161 | 86.99 172 |
|
v2v482 | | | 71.73 153 | 69.80 161 | 73.99 133 | 75.88 176 | 86.66 139 | 79.58 126 | 71.90 126 | 57.58 167 | 50.41 155 | 45.35 164 | 43.24 181 | 73.05 130 | 79.69 161 | 82.18 142 | 93.08 117 | 93.87 115 |
|
test0.0.03 1 | | | 71.70 154 | 74.68 138 | 68.23 175 | 81.79 134 | 83.81 175 | 68.64 185 | 70.57 135 | 68.81 135 | 43.47 186 | 62.77 98 | 60.09 134 | 51.77 197 | 82.48 137 | 81.67 148 | 93.16 114 | 83.13 185 |
|
V42 | | | 71.58 155 | 70.11 160 | 73.30 140 | 75.66 179 | 86.68 138 | 79.17 133 | 69.92 139 | 59.29 162 | 52.80 138 | 44.36 168 | 45.66 169 | 68.83 153 | 79.48 163 | 81.49 152 | 93.44 101 | 93.82 117 |
|
NR-MVSNet | | | 71.47 156 | 71.11 156 | 71.90 156 | 77.73 159 | 86.02 152 | 76.88 156 | 74.42 105 | 65.39 144 | 46.09 177 | 49.10 154 | 39.87 198 | 64.27 167 | 81.40 148 | 82.24 141 | 91.99 142 | 93.75 119 |
|
v8 | | | 71.42 157 | 69.69 162 | 73.43 139 | 76.45 168 | 85.12 165 | 79.53 128 | 67.47 164 | 59.34 161 | 52.90 137 | 44.60 166 | 45.82 168 | 71.05 144 | 79.56 162 | 81.45 154 | 93.17 113 | 91.96 137 |
|
TranMVSNet+NR-MVSNet | | | 71.12 158 | 70.24 158 | 72.15 152 | 76.01 171 | 84.80 168 | 76.55 158 | 75.65 97 | 61.99 154 | 45.29 180 | 48.42 158 | 43.07 182 | 67.55 157 | 78.28 171 | 82.83 134 | 91.85 146 | 92.29 129 |
|
v10 | | | 70.97 159 | 69.44 163 | 72.75 144 | 75.90 175 | 84.58 170 | 79.43 129 | 66.45 169 | 58.07 165 | 49.93 157 | 43.87 174 | 43.68 176 | 71.91 136 | 82.04 142 | 81.70 146 | 92.89 124 | 92.11 135 |
|
v1144 | | | 70.93 160 | 69.42 165 | 72.70 145 | 75.48 180 | 86.26 143 | 79.22 132 | 69.39 144 | 55.61 174 | 48.05 167 | 43.47 175 | 42.55 186 | 71.51 140 | 82.11 140 | 81.74 145 | 92.56 131 | 94.17 106 |
|
thisisatest0515 | | | 70.62 161 | 71.94 152 | 69.07 172 | 76.48 167 | 85.59 157 | 68.03 186 | 68.02 155 | 59.70 159 | 52.94 136 | 52.19 142 | 50.36 157 | 58.10 182 | 83.15 129 | 81.63 149 | 90.87 167 | 90.99 145 |
|
Baseline_NR-MVSNet | | | 70.61 162 | 68.87 169 | 72.65 146 | 75.95 172 | 80.49 192 | 75.92 164 | 74.75 101 | 65.10 147 | 48.78 164 | 41.28 186 | 44.28 174 | 68.45 154 | 78.67 168 | 79.64 172 | 92.04 140 | 92.62 127 |
|
v148 | | | 70.34 163 | 68.46 172 | 72.54 149 | 76.04 170 | 86.38 142 | 74.83 169 | 72.73 116 | 55.88 173 | 55.26 131 | 43.32 177 | 43.49 177 | 64.52 166 | 76.93 181 | 80.11 170 | 91.85 146 | 93.11 123 |
|
v1192 | | | 70.32 164 | 68.77 170 | 72.12 153 | 74.76 182 | 85.62 156 | 78.73 134 | 68.53 148 | 55.08 176 | 46.34 174 | 42.39 180 | 40.67 193 | 71.90 137 | 82.27 138 | 81.53 151 | 92.43 134 | 93.86 116 |
|
v144192 | | | 70.10 165 | 68.55 171 | 71.90 156 | 74.55 183 | 85.67 155 | 77.81 144 | 68.22 153 | 54.65 178 | 46.91 170 | 42.76 178 | 41.27 190 | 70.95 145 | 80.48 156 | 81.11 165 | 92.96 121 | 93.90 113 |
|
pmmvs5 | | | 70.01 166 | 69.31 167 | 70.82 167 | 75.80 178 | 86.26 143 | 72.94 176 | 67.91 157 | 53.84 181 | 47.22 168 | 47.31 159 | 41.47 189 | 67.61 156 | 83.93 125 | 81.93 144 | 93.42 103 | 90.42 151 |
|
COLMAP_ROB |  | 66.31 15 | 69.91 167 | 66.61 177 | 73.76 135 | 86.44 106 | 82.76 179 | 76.59 157 | 76.46 91 | 63.82 149 | 50.92 152 | 45.60 163 | 49.13 159 | 65.87 164 | 74.96 189 | 74.45 196 | 86.30 200 | 75.57 202 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
v1921920 | | | 69.85 168 | 68.38 173 | 71.58 159 | 74.35 184 | 85.39 160 | 77.78 145 | 67.88 159 | 54.64 179 | 45.39 179 | 42.11 183 | 39.97 197 | 71.10 143 | 81.68 147 | 81.17 163 | 92.96 121 | 93.69 121 |
|
pm-mvs1 | | | 69.62 169 | 68.07 175 | 71.44 161 | 77.21 161 | 85.32 161 | 76.11 163 | 71.05 130 | 46.55 202 | 51.17 147 | 41.83 184 | 48.20 163 | 61.81 175 | 84.00 124 | 81.14 164 | 91.28 158 | 89.42 158 |
|
UniMVSNet_ETH3D | | | 69.49 170 | 65.86 179 | 73.72 136 | 76.51 166 | 85.88 154 | 78.65 135 | 70.52 137 | 48.08 199 | 55.71 130 | 37.64 194 | 40.56 194 | 71.38 141 | 75.05 188 | 81.49 152 | 89.57 186 | 92.29 129 |
|
tfpnnormal | | | 69.29 171 | 65.58 180 | 73.62 138 | 79.87 147 | 84.82 167 | 76.97 154 | 75.12 100 | 45.29 203 | 49.03 160 | 35.57 200 | 37.20 206 | 68.02 155 | 82.70 134 | 81.24 159 | 92.69 127 | 92.20 132 |
|
v1240 | | | 69.28 172 | 67.82 176 | 71.00 166 | 74.09 188 | 85.13 164 | 76.54 159 | 67.28 166 | 53.17 183 | 44.70 183 | 41.55 185 | 39.38 199 | 70.51 150 | 81.29 150 | 81.18 161 | 92.88 125 | 93.02 125 |
|
CVMVSNet | | | 68.95 173 | 70.79 157 | 66.79 182 | 79.69 149 | 83.75 176 | 72.05 180 | 70.90 131 | 56.20 171 | 36.30 201 | 54.94 133 | 59.22 136 | 54.03 189 | 78.33 170 | 78.65 177 | 87.77 196 | 84.44 179 |
|
MIMVSNet | | | 68.66 174 | 69.43 164 | 67.76 177 | 64.92 207 | 84.68 169 | 74.16 172 | 54.10 204 | 60.85 155 | 51.27 146 | 39.47 190 | 49.48 158 | 67.48 158 | 84.86 118 | 85.57 105 | 94.63 59 | 81.10 194 |
|
TDRefinement | | | 67.82 175 | 64.91 186 | 71.22 165 | 82.08 133 | 81.45 184 | 77.42 149 | 73.79 111 | 59.62 160 | 48.35 166 | 42.35 182 | 42.40 187 | 60.87 177 | 74.69 190 | 74.64 195 | 84.83 204 | 79.20 197 |
|
anonymousdsp | | | 67.61 176 | 68.94 168 | 66.04 183 | 71.44 200 | 83.97 173 | 66.45 190 | 63.53 180 | 50.54 192 | 42.42 190 | 49.39 152 | 45.63 170 | 62.84 172 | 77.99 173 | 81.34 158 | 89.59 185 | 93.75 119 |
|
TinyColmap | | | 67.16 177 | 63.51 193 | 71.42 162 | 77.94 157 | 79.54 198 | 72.80 177 | 69.78 141 | 56.58 170 | 45.52 178 | 44.53 167 | 33.53 211 | 74.45 120 | 76.91 182 | 77.06 187 | 88.03 195 | 76.41 200 |
|
FC-MVSNet-test | | | 67.04 178 | 72.47 148 | 60.70 200 | 76.92 162 | 81.41 185 | 61.52 200 | 69.45 143 | 65.58 143 | 26.74 215 | 61.79 104 | 60.40 133 | 41.17 206 | 77.60 177 | 77.78 183 | 88.41 192 | 82.70 189 |
|
TransMVSNet (Re) | | | 66.87 179 | 64.30 188 | 69.88 171 | 78.32 153 | 81.35 187 | 73.88 173 | 74.34 107 | 43.19 207 | 45.20 181 | 40.12 188 | 42.37 188 | 55.97 185 | 80.85 153 | 79.15 173 | 91.56 152 | 83.06 186 |
|
CMPMVS |  | 50.59 17 | 66.74 180 | 62.72 197 | 71.42 162 | 85.40 115 | 89.72 121 | 72.69 178 | 70.72 133 | 51.24 188 | 51.75 143 | 38.91 192 | 44.40 172 | 63.74 170 | 70.84 200 | 71.52 200 | 84.19 205 | 72.45 207 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
v7n | | | 66.43 181 | 65.51 181 | 67.51 178 | 71.63 199 | 83.10 177 | 70.89 184 | 65.02 175 | 50.13 195 | 44.68 184 | 39.59 189 | 38.77 200 | 62.57 173 | 77.59 178 | 78.91 174 | 90.29 176 | 90.44 150 |
|
EG-PatchMatch MVS | | | 66.23 182 | 65.20 183 | 67.43 179 | 77.74 158 | 86.20 146 | 72.51 179 | 63.68 179 | 43.95 205 | 43.44 187 | 36.22 199 | 45.43 171 | 54.04 188 | 81.00 151 | 80.95 166 | 93.15 115 | 82.67 190 |
|
WR-MVS | | | 64.98 183 | 66.59 178 | 63.09 193 | 74.34 185 | 82.68 180 | 64.98 196 | 69.17 146 | 54.42 180 | 36.18 202 | 44.32 169 | 44.35 173 | 44.65 200 | 73.60 191 | 77.83 182 | 89.21 188 | 88.96 164 |
|
gm-plane-assit | | | 64.86 184 | 68.15 174 | 61.02 199 | 76.44 169 | 68.29 211 | 41.60 216 | 53.37 205 | 34.68 215 | 26.19 217 | 33.22 203 | 57.09 143 | 71.97 135 | 95.12 5 | 93.97 7 | 96.54 15 | 94.66 96 |
|
CP-MVSNet | | | 64.84 185 | 64.97 184 | 64.69 188 | 72.09 195 | 81.04 190 | 66.66 189 | 67.53 163 | 52.45 185 | 37.40 197 | 44.00 173 | 38.37 202 | 53.54 192 | 72.26 195 | 76.93 188 | 90.94 166 | 89.75 156 |
|
MDTV_nov1_ep13_2view | | | 64.72 186 | 64.94 185 | 64.46 189 | 71.14 201 | 81.94 183 | 67.53 187 | 54.54 201 | 55.92 172 | 43.29 188 | 44.02 172 | 43.27 180 | 59.87 178 | 71.85 197 | 74.77 194 | 90.36 174 | 82.82 188 |
|
MVS-HIRNet | | | 64.63 187 | 64.03 192 | 65.33 185 | 75.01 181 | 82.84 178 | 58.54 207 | 52.10 206 | 55.42 175 | 49.29 158 | 29.83 208 | 43.48 178 | 66.97 160 | 78.28 171 | 78.81 175 | 90.07 179 | 79.52 196 |
|
pmnet_mix02 | | | 64.58 188 | 64.11 191 | 65.12 186 | 74.16 187 | 80.17 195 | 63.24 198 | 67.91 157 | 57.87 166 | 41.69 191 | 45.86 162 | 40.99 192 | 53.97 191 | 69.92 203 | 71.67 199 | 89.77 181 | 82.29 192 |
|
LTVRE_ROB | | 63.07 16 | 64.49 189 | 63.16 196 | 66.04 183 | 77.47 160 | 82.64 181 | 70.98 183 | 65.02 175 | 34.01 216 | 29.61 211 | 49.12 153 | 35.58 210 | 70.57 149 | 75.10 187 | 78.45 179 | 82.60 208 | 87.24 171 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
PEN-MVS | | | 64.35 190 | 64.29 189 | 64.42 190 | 72.67 191 | 79.83 196 | 66.97 188 | 68.24 152 | 51.21 189 | 35.29 204 | 44.09 170 | 38.51 201 | 52.36 195 | 71.06 198 | 77.65 184 | 90.99 162 | 87.68 170 |
|
pmmvs6 | | | 64.24 191 | 61.77 201 | 67.12 180 | 72.39 194 | 81.39 186 | 71.33 182 | 65.95 173 | 36.05 212 | 48.48 165 | 30.55 204 | 43.45 179 | 58.75 180 | 77.88 176 | 76.36 191 | 85.83 201 | 86.70 174 |
|
pmmvs-eth3d | | | 64.24 191 | 61.96 199 | 66.90 181 | 66.35 205 | 76.04 204 | 66.09 192 | 66.31 170 | 52.59 184 | 50.94 151 | 37.61 195 | 32.79 213 | 62.43 174 | 75.78 185 | 75.48 193 | 89.27 187 | 83.39 184 |
|
PS-CasMVS | | | 64.22 193 | 64.19 190 | 64.25 191 | 71.86 197 | 80.67 191 | 66.42 191 | 67.43 165 | 50.64 191 | 36.48 199 | 42.60 179 | 37.46 205 | 52.56 194 | 71.98 196 | 76.69 190 | 90.76 168 | 89.29 162 |
|
WR-MVS_H | | | 64.14 194 | 65.36 182 | 62.71 195 | 72.47 193 | 82.33 182 | 65.13 193 | 66.99 167 | 51.81 187 | 36.47 200 | 43.33 176 | 42.77 184 | 43.99 202 | 72.41 194 | 75.99 192 | 91.20 160 | 88.86 166 |
|
SixPastTwentyTwo | | | 63.75 195 | 63.42 194 | 64.13 192 | 72.91 190 | 80.34 193 | 61.29 201 | 63.90 177 | 49.58 196 | 40.42 193 | 54.99 132 | 37.13 207 | 60.90 176 | 68.46 204 | 70.80 201 | 85.37 203 | 82.65 191 |
|
PM-MVS | | | 63.52 196 | 62.51 198 | 64.70 187 | 64.79 209 | 76.08 203 | 65.07 194 | 62.08 182 | 58.13 164 | 46.56 173 | 44.98 165 | 31.31 214 | 62.89 171 | 72.58 193 | 69.93 205 | 86.81 198 | 84.55 178 |
|
DTE-MVSNet | | | 63.26 197 | 63.41 195 | 63.08 194 | 72.59 192 | 78.56 199 | 65.03 195 | 68.28 151 | 50.53 193 | 32.38 208 | 44.03 171 | 37.79 204 | 49.48 198 | 70.83 201 | 76.73 189 | 90.73 169 | 85.42 177 |
|
testgi | | | 63.11 198 | 64.88 187 | 61.05 198 | 75.83 177 | 78.51 200 | 60.42 202 | 66.20 171 | 48.77 197 | 34.56 205 | 56.96 116 | 40.35 195 | 40.95 207 | 77.46 179 | 77.22 186 | 88.37 194 | 74.86 205 |
|
GG-mvs-BLEND | | | 62.08 199 | 88.31 43 | 31.46 213 | 0.16 224 | 98.10 10 | 91.57 40 | 0.09 221 | 85.07 65 | 0.21 225 | 73.90 56 | 83.74 38 | 0.19 222 | 88.98 74 | 89.39 61 | 96.58 14 | 99.02 15 |
|
Anonymous20231206 | | | 62.05 200 | 61.83 200 | 62.30 197 | 72.09 195 | 77.84 201 | 63.10 199 | 67.62 162 | 50.20 194 | 36.68 198 | 29.59 209 | 37.05 208 | 43.90 203 | 77.33 180 | 77.31 185 | 90.41 173 | 83.49 183 |
|
N_pmnet | | | 60.52 201 | 58.83 204 | 62.50 196 | 68.97 203 | 75.61 205 | 59.72 205 | 66.47 168 | 51.90 186 | 41.26 192 | 35.42 201 | 35.63 209 | 52.25 196 | 67.07 207 | 70.08 204 | 86.35 199 | 76.10 201 |
|
EU-MVSNet | | | 58.73 202 | 60.92 202 | 56.17 203 | 66.17 206 | 72.39 208 | 58.85 206 | 61.24 185 | 48.47 198 | 27.91 213 | 46.70 161 | 40.06 196 | 39.07 208 | 68.27 205 | 70.34 203 | 83.77 206 | 80.23 195 |
|
test20.03 | | | 57.93 203 | 59.22 203 | 56.44 202 | 71.84 198 | 73.78 207 | 53.55 210 | 65.96 172 | 43.02 208 | 28.46 212 | 37.50 196 | 38.17 203 | 30.41 212 | 75.25 186 | 74.42 197 | 88.41 192 | 72.37 208 |
|
MDA-MVSNet-bldmvs | | | 54.99 204 | 52.66 208 | 57.71 201 | 52.74 215 | 74.87 206 | 55.61 208 | 68.41 150 | 43.65 206 | 32.54 206 | 37.93 193 | 22.11 220 | 54.11 187 | 48.85 214 | 67.34 207 | 82.85 207 | 73.88 206 |
|
new-patchmatchnet | | | 53.91 205 | 52.69 207 | 55.33 205 | 64.83 208 | 70.90 209 | 52.24 211 | 61.75 183 | 41.09 209 | 30.82 209 | 29.90 207 | 28.22 216 | 36.69 209 | 61.52 209 | 65.08 208 | 85.64 202 | 72.14 209 |
|
MIMVSNet1 | | | 52.76 206 | 53.95 206 | 51.38 207 | 41.96 218 | 70.79 210 | 53.56 209 | 63.03 181 | 39.36 210 | 27.83 214 | 22.73 214 | 33.07 212 | 34.47 211 | 70.49 202 | 72.69 198 | 87.41 197 | 68.51 210 |
|
pmmvs3 | | | 52.59 207 | 52.43 209 | 52.78 206 | 54.53 214 | 64.49 213 | 50.07 212 | 46.89 213 | 35.31 214 | 30.19 210 | 27.27 211 | 26.96 218 | 53.02 193 | 67.28 206 | 70.54 202 | 81.96 209 | 75.20 203 |
|
new_pmnet | | | 50.32 208 | 51.36 210 | 49.11 208 | 49.19 216 | 64.89 212 | 48.66 214 | 47.99 212 | 47.55 200 | 26.27 216 | 29.51 210 | 28.66 215 | 44.89 199 | 61.12 210 | 62.74 210 | 77.66 211 | 65.03 211 |
|
FPMVS | | | 50.25 209 | 45.67 212 | 55.58 204 | 70.48 202 | 60.12 214 | 59.78 204 | 59.33 191 | 46.66 201 | 37.94 195 | 30.22 206 | 27.51 217 | 35.94 210 | 50.98 213 | 47.90 213 | 70.02 213 | 56.31 212 |
|
test_method | | | 47.92 210 | 55.39 205 | 39.21 211 | 19.90 222 | 49.24 216 | 39.29 217 | 34.65 218 | 57.37 168 | 32.54 206 | 25.11 212 | 41.02 191 | 44.31 201 | 66.58 208 | 57.57 212 | 64.59 216 | 90.82 146 |
|
PMVS |  | 36.83 18 | 40.62 211 | 36.39 213 | 45.56 209 | 58.40 211 | 33.20 219 | 32.62 219 | 56.02 195 | 28.25 217 | 37.92 196 | 22.29 215 | 26.15 219 | 25.29 214 | 48.49 215 | 43.82 216 | 63.13 217 | 52.53 215 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
Gipuma |  | | 35.20 212 | 33.96 214 | 36.65 212 | 43.30 217 | 32.51 220 | 26.96 221 | 48.31 211 | 38.87 211 | 20.08 220 | 8.08 217 | 7.41 224 | 26.44 213 | 53.60 211 | 58.43 211 | 54.81 218 | 38.79 217 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMMVS2 | | | 32.52 213 | 33.92 215 | 30.88 214 | 34.15 221 | 44.70 218 | 27.79 220 | 39.69 217 | 22.21 218 | 4.31 224 | 15.73 216 | 14.13 222 | 12.45 219 | 40.11 216 | 47.00 214 | 66.88 214 | 53.54 213 |
|
E-PMN | | | 21.42 214 | 17.56 217 | 25.94 215 | 36.25 220 | 19.02 223 | 11.56 222 | 43.72 215 | 15.25 220 | 6.99 222 | 8.04 218 | 4.53 226 | 21.77 216 | 16.13 219 | 26.16 218 | 35.34 220 | 33.77 218 |
|
MVE |  | 25.07 19 | 21.25 215 | 23.51 216 | 18.62 217 | 15.07 223 | 29.77 222 | 10.67 224 | 34.60 219 | 12.51 221 | 9.46 221 | 7.84 219 | 3.82 227 | 14.38 218 | 27.45 218 | 42.42 217 | 27.56 222 | 40.74 216 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
EMVS | | | 20.61 216 | 16.32 218 | 25.62 216 | 36.41 219 | 18.93 224 | 11.51 223 | 43.75 214 | 15.65 219 | 6.53 223 | 7.56 220 | 4.68 225 | 22.03 215 | 14.56 220 | 23.10 219 | 33.51 221 | 29.77 219 |
|
testmvs | | | 0.76 217 | 1.23 219 | 0.21 218 | 0.05 225 | 0.21 225 | 0.38 226 | 0.09 221 | 0.94 222 | 0.05 226 | 2.13 222 | 0.08 228 | 0.60 221 | 0.82 221 | 0.77 220 | 0.11 223 | 3.62 221 |
|
test123 | | | 0.67 218 | 1.11 220 | 0.16 219 | 0.01 226 | 0.14 226 | 0.20 227 | 0.04 223 | 0.77 223 | 0.02 227 | 2.15 221 | 0.02 229 | 0.61 220 | 0.23 222 | 0.72 221 | 0.07 224 | 3.76 220 |
|
uanet_test | | | 0.00 219 | 0.00 221 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 224 | 0.00 228 | 0.00 223 | 0.00 230 | 0.00 223 | 0.00 223 | 0.00 222 | 0.00 225 | 0.00 222 |
|
sosnet-low-res | | | 0.00 219 | 0.00 221 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 224 | 0.00 228 | 0.00 223 | 0.00 230 | 0.00 223 | 0.00 223 | 0.00 222 | 0.00 225 | 0.00 222 |
|
sosnet | | | 0.00 219 | 0.00 221 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 224 | 0.00 228 | 0.00 223 | 0.00 230 | 0.00 223 | 0.00 223 | 0.00 222 | 0.00 225 | 0.00 222 |
|
RE-MVS-def | | | | | | | | | | | 39.41 194 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 91.16 6 | | | | | |
|
SR-MVS | | | | | | 96.04 30 | | | 87.51 26 | | | | 87.60 20 | | | | | |
|
Anonymous202405211 | | | | 75.59 132 | | 85.13 118 | 91.06 108 | 84.62 92 | 77.96 73 | 69.47 134 | | 40.79 187 | 63.84 123 | 84.57 66 | 83.55 126 | 84.69 113 | 89.69 182 | 95.75 83 |
|
our_test_3 | | | | | | 73.80 189 | 79.57 197 | 64.47 197 | | | | | | | | | | |
|
ambc | | | | 50.35 211 | | 55.61 213 | 59.93 215 | 48.73 213 | | 44.08 204 | 35.81 203 | 24.01 213 | 10.64 223 | 41.57 205 | 72.83 192 | 63.35 209 | 74.99 212 | 77.61 198 |
|
MTAPA | | | | | | | | | | | 91.14 7 | | 85.84 26 | | | | | |
|
MTMP | | | | | | | | | | | 90.95 8 | | 84.13 34 | | | | | |
|
Patchmatch-RL test | | | | | | | | 8.17 225 | | | | | | | | | | |
|
tmp_tt | | | | | 39.78 210 | 56.31 212 | 31.71 221 | 35.84 218 | 15.08 220 | 82.57 74 | 50.83 153 | 63.07 95 | 47.51 165 | 15.28 217 | 52.23 212 | 44.24 215 | 65.35 215 | |
|
XVS | | | | | | 89.65 70 | 95.93 46 | 85.97 79 | | | 76.32 54 | | 82.05 44 | | | | 93.51 95 | |
|
X-MVStestdata | | | | | | 89.65 70 | 95.93 46 | 85.97 79 | | | 76.32 54 | | 82.05 44 | | | | 93.51 95 | |
|
mPP-MVS | | | | | | 95.90 32 | | | | | | | 80.22 53 | | | | | |
|
NP-MVS | | | | | | | | | | 89.55 46 | | | | | | | | |
|
Patchmtry | | | | | | | 87.41 131 | 78.32 138 | 54.14 202 | | 51.09 148 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 48.96 217 | 43.77 215 | 40.58 216 | 50.93 190 | 24.67 218 | 36.95 198 | 20.18 221 | 41.60 204 | 38.92 217 | | 52.37 219 | 53.31 214 |
|