DVP-MVS++ | | | 98.07 1 | 98.46 1 | 97.62 1 | 99.08 3 | 99.29 2 | 98.84 3 | 96.63 4 | 97.89 1 | 95.35 3 | 97.83 4 | 99.48 3 | 96.98 9 | 97.99 2 | 97.14 11 | 98.82 11 | 99.60 1 |
|
SED-MVS | | | 97.98 2 | 98.36 2 | 97.54 4 | 98.94 16 | 99.29 2 | 98.81 4 | 96.64 3 | 97.14 3 | 95.16 4 | 97.96 2 | 99.61 2 | 96.92 12 | 98.00 1 | 97.24 8 | 98.75 17 | 99.25 3 |
|
DVP-MVS |  | | 97.93 3 | 98.23 3 | 97.58 3 | 99.05 6 | 99.31 1 | 98.64 6 | 96.62 5 | 97.56 2 | 95.08 5 | 96.61 13 | 99.64 1 | 97.32 1 | 97.91 4 | 97.31 6 | 98.77 15 | 99.26 2 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
DPE-MVS |  | | 97.83 4 | 98.13 4 | 97.48 5 | 98.83 22 | 99.19 4 | 98.99 1 | 96.70 1 | 96.05 18 | 94.39 9 | 98.30 1 | 99.47 4 | 97.02 6 | 97.75 7 | 97.02 14 | 98.98 3 | 99.10 9 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
APDe-MVS | | | 97.79 5 | 97.96 6 | 97.60 2 | 99.20 2 | 99.10 6 | 98.88 2 | 96.68 2 | 96.81 7 | 94.64 6 | 97.84 3 | 98.02 11 | 97.24 3 | 97.74 8 | 97.02 14 | 98.97 5 | 99.16 6 |
|
MSP-MVS | | | 97.70 6 | 98.09 5 | 97.24 6 | 99.00 11 | 99.17 5 | 98.76 5 | 96.41 9 | 96.91 5 | 93.88 14 | 97.72 5 | 99.04 7 | 96.93 11 | 97.29 17 | 97.31 6 | 98.45 37 | 99.23 4 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
SMA-MVS |  | | 97.53 7 | 97.93 7 | 97.07 10 | 99.21 1 | 99.02 8 | 98.08 19 | 96.25 11 | 96.36 12 | 93.57 15 | 96.56 14 | 99.27 5 | 96.78 16 | 97.91 4 | 97.43 3 | 98.51 26 | 98.94 12 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
SD-MVS | | | 97.35 8 | 97.73 8 | 96.90 14 | 97.35 43 | 98.66 14 | 97.85 25 | 96.25 11 | 96.86 6 | 94.54 8 | 96.75 11 | 99.13 6 | 96.99 7 | 96.94 26 | 96.58 23 | 98.39 44 | 99.20 5 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
TSAR-MVS + MP. | | | 97.31 9 | 97.64 9 | 96.92 13 | 97.28 45 | 98.56 23 | 98.61 7 | 95.48 28 | 96.72 8 | 94.03 13 | 96.73 12 | 98.29 9 | 97.15 4 | 97.61 12 | 96.42 26 | 98.96 6 | 99.13 7 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
CNVR-MVS | | | 97.30 10 | 97.41 11 | 97.18 8 | 99.02 10 | 98.60 21 | 98.15 16 | 96.24 13 | 96.12 17 | 94.10 11 | 95.54 25 | 97.99 12 | 96.99 7 | 97.97 3 | 97.17 9 | 98.57 24 | 98.50 29 |
|
HPM-MVS++ |  | | 97.22 11 | 97.40 12 | 97.01 11 | 99.08 3 | 98.55 24 | 98.19 14 | 96.48 7 | 96.02 19 | 93.28 20 | 96.26 17 | 98.71 8 | 96.76 17 | 97.30 16 | 96.25 37 | 98.30 54 | 98.68 15 |
|
SF-MVS | | | 97.20 12 | 97.29 14 | 97.10 9 | 98.95 15 | 98.51 29 | 97.51 29 | 96.48 7 | 96.17 16 | 94.64 6 | 97.32 6 | 97.57 19 | 96.23 26 | 96.78 29 | 96.15 41 | 98.79 14 | 98.55 27 |
|
APD-MVS |  | | 97.12 13 | 97.05 18 | 97.19 7 | 99.04 7 | 98.63 19 | 98.45 8 | 96.54 6 | 94.81 36 | 93.50 16 | 96.10 19 | 97.40 22 | 96.81 13 | 97.05 22 | 96.82 19 | 98.80 12 | 98.56 22 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
HFP-MVS | | | 97.11 14 | 97.19 16 | 97.00 12 | 98.97 13 | 98.73 12 | 98.37 11 | 95.69 21 | 96.60 9 | 93.28 20 | 96.87 8 | 96.64 28 | 97.27 2 | 96.64 35 | 96.33 35 | 98.44 38 | 98.56 22 |
|
SteuartSystems-ACMMP | | | 97.10 15 | 97.49 10 | 96.65 18 | 98.97 13 | 98.95 9 | 98.43 9 | 95.96 17 | 95.12 28 | 91.46 28 | 96.85 9 | 97.60 18 | 96.37 24 | 97.76 6 | 97.16 10 | 98.68 18 | 98.97 11 |
Skip Steuart: Steuart Systems R&D Blog. |
ACMMP_NAP | | | 96.93 16 | 97.27 15 | 96.53 23 | 99.06 5 | 98.95 9 | 98.24 13 | 96.06 15 | 95.66 21 | 90.96 32 | 95.63 24 | 97.71 16 | 96.53 20 | 97.66 10 | 96.68 20 | 98.30 54 | 98.61 20 |
|
ACMMPR | | | 96.92 17 | 96.96 19 | 96.87 15 | 98.99 12 | 98.78 11 | 98.38 10 | 95.52 24 | 96.57 10 | 92.81 24 | 96.06 20 | 95.90 35 | 97.07 5 | 96.60 37 | 96.34 34 | 98.46 34 | 98.42 33 |
|
MCST-MVS | | | 96.83 18 | 97.06 17 | 96.57 19 | 98.88 20 | 98.47 32 | 98.02 21 | 96.16 14 | 95.58 23 | 90.96 32 | 95.78 23 | 97.84 14 | 96.46 22 | 97.00 25 | 96.17 39 | 98.94 7 | 98.55 27 |
|
NCCC | | | 96.75 19 | 96.67 24 | 96.85 16 | 99.03 9 | 98.44 34 | 98.15 16 | 96.28 10 | 96.32 13 | 92.39 25 | 92.16 34 | 97.55 20 | 96.68 19 | 97.32 14 | 96.65 22 | 98.55 25 | 98.26 38 |
|
CP-MVS | | | 96.68 20 | 96.59 26 | 96.77 17 | 98.85 21 | 98.58 22 | 98.18 15 | 95.51 26 | 95.34 25 | 92.94 23 | 95.21 28 | 96.25 30 | 96.79 15 | 96.44 42 | 95.77 49 | 98.35 46 | 98.56 22 |
|
MP-MVS |  | | 96.56 21 | 96.72 23 | 96.37 24 | 98.93 18 | 98.48 30 | 98.04 20 | 95.55 23 | 94.32 40 | 90.95 34 | 95.88 22 | 97.02 25 | 96.29 25 | 96.77 30 | 96.01 47 | 98.47 32 | 98.56 22 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
DeepC-MVS_fast | | 93.32 1 | 96.48 22 | 96.42 27 | 96.56 20 | 98.70 25 | 98.31 38 | 97.97 22 | 95.76 20 | 96.31 14 | 92.01 27 | 91.43 39 | 95.42 39 | 96.46 22 | 97.65 11 | 97.69 1 | 98.49 31 | 98.12 47 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TSAR-MVS + ACMM | | | 96.19 23 | 97.39 13 | 94.78 37 | 97.70 39 | 98.41 35 | 97.72 27 | 95.49 27 | 96.47 11 | 86.66 67 | 96.35 15 | 97.85 13 | 93.99 50 | 97.19 20 | 96.37 30 | 97.12 130 | 99.13 7 |
|
PGM-MVS | | | 96.16 24 | 96.33 28 | 95.95 26 | 99.04 7 | 98.63 19 | 98.32 12 | 92.76 42 | 93.42 47 | 90.49 37 | 96.30 16 | 95.31 40 | 96.71 18 | 96.46 40 | 96.02 46 | 98.38 45 | 98.19 42 |
|
train_agg | | | 96.15 25 | 96.64 25 | 95.58 33 | 98.44 27 | 98.03 48 | 98.14 18 | 95.40 31 | 93.90 45 | 87.72 58 | 96.26 17 | 98.10 10 | 95.75 31 | 96.25 47 | 95.45 55 | 98.01 83 | 98.47 31 |
|
X-MVS | | | 96.07 26 | 96.33 28 | 95.77 29 | 98.94 16 | 98.66 14 | 97.94 23 | 95.41 30 | 95.12 28 | 88.03 53 | 93.00 32 | 96.06 31 | 95.85 29 | 96.65 34 | 96.35 31 | 98.47 32 | 98.48 30 |
|
MSLP-MVS++ | | | 96.05 27 | 95.63 31 | 96.55 21 | 98.33 29 | 98.17 44 | 96.94 36 | 94.61 34 | 94.70 38 | 94.37 10 | 89.20 51 | 95.96 34 | 96.81 13 | 95.57 58 | 97.33 5 | 98.24 62 | 98.47 31 |
|
TSAR-MVS + GP. | | | 95.86 28 | 96.95 21 | 94.60 41 | 94.07 85 | 98.11 46 | 96.30 43 | 91.76 49 | 95.67 20 | 91.07 30 | 96.82 10 | 97.69 17 | 95.71 32 | 95.96 52 | 95.75 50 | 98.68 18 | 98.63 17 |
|
PHI-MVS | | | 95.86 28 | 96.93 22 | 94.61 40 | 97.60 41 | 98.65 18 | 96.49 40 | 93.13 40 | 94.07 43 | 87.91 57 | 97.12 7 | 97.17 24 | 93.90 53 | 96.46 40 | 96.93 17 | 98.64 20 | 98.10 49 |
|
CSCG | | | 95.68 30 | 95.46 35 | 95.93 27 | 98.71 24 | 99.07 7 | 97.13 35 | 93.55 37 | 95.48 24 | 93.35 19 | 90.61 44 | 93.82 45 | 95.16 37 | 94.60 82 | 95.57 53 | 97.70 104 | 99.08 10 |
|
CPTT-MVS | | | 95.54 31 | 95.07 37 | 96.10 25 | 97.88 35 | 97.98 50 | 97.92 24 | 94.86 32 | 94.56 39 | 92.16 26 | 91.01 40 | 95.71 36 | 96.97 10 | 94.56 83 | 93.50 90 | 96.81 153 | 98.14 45 |
|
ACMMP |  | | 95.54 31 | 95.49 34 | 95.61 32 | 98.27 30 | 98.53 26 | 97.16 34 | 94.86 32 | 94.88 34 | 89.34 42 | 95.36 27 | 91.74 54 | 95.50 35 | 95.51 59 | 94.16 74 | 98.50 29 | 98.22 40 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
DeepPCF-MVS | | 92.65 2 | 95.50 33 | 96.96 19 | 93.79 51 | 96.44 56 | 98.21 42 | 93.51 95 | 94.08 36 | 96.94 4 | 89.29 43 | 93.08 31 | 96.77 27 | 93.82 54 | 97.68 9 | 97.40 4 | 95.59 176 | 98.65 16 |
|
DeepC-MVS | | 92.10 3 | 95.22 34 | 94.77 41 | 95.75 30 | 97.77 37 | 98.54 25 | 97.63 28 | 95.96 17 | 95.07 31 | 88.85 47 | 85.35 73 | 91.85 53 | 95.82 30 | 96.88 28 | 97.10 12 | 98.44 38 | 98.63 17 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DPM-MVS | | | 95.07 35 | 94.84 40 | 95.34 34 | 97.44 42 | 97.49 65 | 97.76 26 | 95.52 24 | 94.88 34 | 88.92 46 | 87.25 58 | 96.44 29 | 94.41 43 | 95.78 55 | 96.11 43 | 97.99 85 | 95.95 123 |
|
3Dnovator+ | | 90.56 5 | 95.06 36 | 94.56 45 | 95.65 31 | 98.11 31 | 98.15 45 | 97.19 33 | 91.59 51 | 95.11 30 | 93.23 22 | 81.99 100 | 94.71 42 | 95.43 36 | 96.48 39 | 96.88 18 | 98.35 46 | 98.63 17 |
|
AdaColmap |  | | 95.02 37 | 93.71 50 | 96.54 22 | 98.51 26 | 97.76 56 | 96.69 39 | 95.94 19 | 93.72 46 | 93.50 16 | 89.01 52 | 90.53 65 | 96.49 21 | 94.51 85 | 93.76 83 | 98.07 77 | 96.69 96 |
|
CANet | | | 94.85 38 | 94.92 39 | 94.78 37 | 97.25 46 | 98.52 28 | 97.20 32 | 91.81 48 | 93.25 49 | 91.06 31 | 86.29 65 | 94.46 43 | 92.99 64 | 97.02 24 | 96.68 20 | 98.34 48 | 98.20 41 |
|
MVS_111021_LR | | | 94.84 39 | 95.57 32 | 94.00 44 | 97.11 48 | 97.72 60 | 94.88 63 | 91.16 55 | 95.24 27 | 88.74 48 | 96.03 21 | 91.52 58 | 94.33 47 | 95.96 52 | 95.01 62 | 97.79 95 | 97.49 72 |
|
MVS_111021_HR | | | 94.84 39 | 95.91 30 | 93.60 52 | 97.35 43 | 98.46 33 | 95.08 59 | 91.19 54 | 94.18 42 | 85.97 72 | 95.38 26 | 92.56 51 | 93.61 57 | 96.61 36 | 96.25 37 | 98.40 42 | 97.92 56 |
|
CDPH-MVS | | | 94.80 41 | 95.50 33 | 93.98 46 | 98.34 28 | 98.06 47 | 97.41 30 | 93.23 39 | 92.81 52 | 82.98 97 | 92.51 33 | 94.82 41 | 93.53 58 | 96.08 50 | 96.30 36 | 98.42 40 | 97.94 54 |
|
3Dnovator | | 90.28 7 | 94.70 42 | 94.34 48 | 95.11 35 | 98.06 32 | 98.21 42 | 96.89 37 | 91.03 57 | 94.72 37 | 91.45 29 | 82.87 91 | 93.10 49 | 94.61 41 | 96.24 48 | 97.08 13 | 98.63 21 | 98.16 43 |
|
CS-MVS-test | | | 94.63 43 | 95.28 36 | 93.88 49 | 96.56 55 | 98.67 13 | 93.41 97 | 89.31 79 | 94.27 41 | 89.64 41 | 90.84 42 | 91.64 56 | 95.58 33 | 97.04 23 | 96.17 39 | 98.77 15 | 98.32 36 |
|
CS-MVS | | | 94.53 44 | 94.73 42 | 94.31 42 | 96.30 59 | 98.53 26 | 94.98 60 | 89.24 81 | 93.37 48 | 90.24 39 | 88.96 53 | 89.76 70 | 96.09 28 | 97.48 13 | 96.42 26 | 98.99 2 | 98.59 21 |
|
OMC-MVS | | | 94.49 45 | 94.36 47 | 94.64 39 | 97.17 47 | 97.73 58 | 95.49 54 | 92.25 44 | 96.18 15 | 90.34 38 | 88.51 54 | 92.88 50 | 94.90 40 | 94.92 70 | 94.17 73 | 97.69 106 | 96.15 116 |
|
PLC |  | 90.69 4 | 94.32 46 | 92.99 57 | 95.87 28 | 97.91 33 | 96.49 91 | 95.95 50 | 94.12 35 | 94.94 32 | 94.09 12 | 85.90 69 | 90.77 62 | 95.58 33 | 94.52 84 | 93.32 97 | 97.55 113 | 95.00 144 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
MVS_0304 | | | 94.30 47 | 94.68 43 | 93.86 50 | 96.33 58 | 98.48 30 | 97.41 30 | 91.20 53 | 92.75 53 | 86.96 64 | 86.03 68 | 93.81 46 | 92.64 69 | 96.89 27 | 96.54 25 | 98.61 22 | 98.24 39 |
|
DROMVSNet | | | 94.19 48 | 95.05 38 | 93.18 58 | 93.56 101 | 97.65 61 | 95.34 57 | 86.37 115 | 92.05 59 | 88.71 49 | 89.91 47 | 93.32 47 | 96.14 27 | 97.29 17 | 96.42 26 | 98.98 3 | 98.70 14 |
|
QAPM | | | 94.13 49 | 94.33 49 | 93.90 47 | 97.82 36 | 98.37 37 | 96.47 41 | 90.89 58 | 92.73 55 | 85.63 80 | 85.35 73 | 93.87 44 | 94.17 48 | 95.71 57 | 95.90 48 | 98.40 42 | 98.42 33 |
|
EPNet | | | 93.92 50 | 94.40 46 | 93.36 54 | 97.89 34 | 96.55 89 | 96.08 46 | 92.14 45 | 91.65 64 | 89.16 44 | 94.07 30 | 90.17 69 | 87.78 123 | 95.24 64 | 94.97 63 | 97.09 132 | 98.15 44 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
ETV-MVS | | | 93.80 51 | 94.57 44 | 92.91 65 | 93.98 87 | 97.50 64 | 93.62 92 | 88.70 86 | 91.95 60 | 87.57 59 | 90.21 46 | 90.79 61 | 94.56 42 | 97.20 19 | 96.35 31 | 99.02 1 | 97.98 51 |
|
DELS-MVS | | | 93.71 52 | 93.47 52 | 94.00 44 | 96.82 52 | 98.39 36 | 96.80 38 | 91.07 56 | 89.51 98 | 89.94 40 | 83.80 83 | 89.29 71 | 90.95 87 | 97.32 14 | 97.65 2 | 98.42 40 | 98.32 36 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
CNLPA | | | 93.69 53 | 92.50 63 | 95.06 36 | 97.11 48 | 97.36 67 | 93.88 85 | 93.30 38 | 95.64 22 | 93.44 18 | 80.32 109 | 90.73 63 | 94.99 39 | 93.58 101 | 93.33 95 | 97.67 108 | 96.57 101 |
|
TAPA-MVS | | 90.35 6 | 93.69 53 | 93.52 51 | 93.90 47 | 96.89 51 | 97.62 62 | 96.15 44 | 91.67 50 | 94.94 32 | 85.97 72 | 87.72 57 | 91.96 52 | 94.40 44 | 93.76 99 | 93.06 106 | 98.30 54 | 95.58 132 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
canonicalmvs | | | 93.08 55 | 93.09 55 | 93.07 62 | 94.24 81 | 97.86 52 | 95.45 56 | 87.86 102 | 94.00 44 | 87.47 60 | 88.32 55 | 82.37 104 | 95.13 38 | 93.96 98 | 96.41 29 | 98.27 58 | 98.73 13 |
|
PCF-MVS | | 90.19 8 | 92.98 56 | 92.07 71 | 94.04 43 | 96.39 57 | 97.87 51 | 96.03 47 | 95.47 29 | 87.16 116 | 85.09 90 | 84.81 77 | 93.21 48 | 93.46 60 | 91.98 132 | 91.98 128 | 97.78 96 | 97.51 71 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
PVSNet_BlendedMVS | | | 92.80 57 | 92.44 65 | 93.23 55 | 96.02 61 | 97.83 54 | 93.74 89 | 90.58 59 | 91.86 61 | 90.69 35 | 85.87 71 | 82.04 107 | 90.01 97 | 96.39 43 | 95.26 58 | 98.34 48 | 97.81 61 |
|
PVSNet_Blended | | | 92.80 57 | 92.44 65 | 93.23 55 | 96.02 61 | 97.83 54 | 93.74 89 | 90.58 59 | 91.86 61 | 90.69 35 | 85.87 71 | 82.04 107 | 90.01 97 | 96.39 43 | 95.26 58 | 98.34 48 | 97.81 61 |
|
EIA-MVS | | | 92.72 59 | 92.96 58 | 92.44 70 | 93.86 94 | 97.76 56 | 93.13 101 | 88.65 88 | 89.78 94 | 86.68 66 | 86.69 62 | 87.57 72 | 93.74 55 | 96.07 51 | 95.32 56 | 98.58 23 | 97.53 70 |
|
MAR-MVS | | | 92.71 60 | 92.63 61 | 92.79 66 | 97.70 39 | 97.15 75 | 93.75 88 | 87.98 96 | 90.71 70 | 85.76 78 | 86.28 66 | 86.38 78 | 94.35 46 | 94.95 68 | 95.49 54 | 97.22 123 | 97.44 73 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
OpenMVS |  | 88.18 11 | 92.51 61 | 91.61 78 | 93.55 53 | 97.74 38 | 98.02 49 | 95.66 52 | 90.46 61 | 89.14 101 | 86.50 68 | 75.80 134 | 90.38 68 | 92.69 68 | 94.99 67 | 95.30 57 | 98.27 58 | 97.63 65 |
|
CLD-MVS | | | 92.50 62 | 91.96 73 | 93.13 59 | 93.93 91 | 96.24 97 | 95.69 51 | 88.77 85 | 92.92 50 | 89.01 45 | 88.19 56 | 81.74 110 | 93.13 63 | 93.63 100 | 93.08 104 | 98.23 63 | 97.91 58 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
TSAR-MVS + COLMAP | | | 92.39 63 | 92.31 68 | 92.47 69 | 95.35 73 | 96.46 93 | 96.13 45 | 92.04 47 | 95.33 26 | 80.11 113 | 94.95 29 | 77.35 136 | 94.05 49 | 94.49 86 | 93.08 104 | 97.15 127 | 94.53 148 |
|
HQP-MVS | | | 92.39 63 | 92.49 64 | 92.29 73 | 95.65 65 | 95.94 103 | 95.64 53 | 92.12 46 | 92.46 57 | 79.65 115 | 91.97 36 | 82.68 100 | 92.92 67 | 93.47 106 | 92.77 111 | 97.74 100 | 98.12 47 |
|
EPP-MVSNet | | | 92.13 65 | 93.06 56 | 91.05 90 | 93.66 100 | 97.30 68 | 92.18 114 | 87.90 98 | 90.24 81 | 83.63 94 | 86.14 67 | 90.52 67 | 90.76 89 | 94.82 75 | 94.38 70 | 98.18 68 | 97.98 51 |
|
ACMP | | 89.13 9 | 92.03 66 | 91.70 77 | 92.41 71 | 94.92 76 | 96.44 95 | 93.95 81 | 89.96 67 | 91.81 63 | 85.48 85 | 90.97 41 | 79.12 121 | 92.42 71 | 93.28 112 | 92.55 115 | 97.76 98 | 97.74 64 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
LS3D | | | 91.97 67 | 90.98 87 | 93.12 60 | 97.03 50 | 97.09 78 | 95.33 58 | 95.59 22 | 92.47 56 | 79.26 117 | 81.60 103 | 82.77 99 | 94.39 45 | 94.28 87 | 94.23 72 | 97.14 129 | 94.45 150 |
|
casdiffmvs_mvg |  | | 91.94 68 | 91.25 83 | 92.75 67 | 93.41 103 | 97.19 74 | 95.48 55 | 89.77 70 | 89.86 92 | 86.41 69 | 81.02 107 | 82.23 106 | 92.93 65 | 95.44 61 | 95.61 52 | 98.51 26 | 97.40 75 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
PVSNet_Blended_VisFu | | | 91.92 69 | 92.39 67 | 91.36 88 | 95.45 71 | 97.85 53 | 92.25 113 | 89.54 76 | 88.53 108 | 87.47 60 | 79.82 111 | 90.53 65 | 85.47 148 | 96.31 46 | 95.16 61 | 97.99 85 | 98.56 22 |
|
IS_MVSNet | | | 91.87 70 | 93.35 54 | 90.14 101 | 94.09 84 | 97.73 58 | 93.09 102 | 88.12 94 | 88.71 105 | 79.98 114 | 84.49 78 | 90.63 64 | 87.49 127 | 97.07 21 | 96.96 16 | 98.07 77 | 97.88 60 |
|
LGP-MVS_train | | | 91.83 71 | 92.04 72 | 91.58 80 | 95.46 69 | 96.18 99 | 95.97 49 | 89.85 68 | 90.45 77 | 77.76 120 | 91.92 37 | 80.07 118 | 92.34 73 | 94.27 88 | 93.47 91 | 98.11 74 | 97.90 59 |
|
MVS_Test | | | 91.81 72 | 92.19 69 | 91.37 87 | 93.24 104 | 96.95 82 | 94.43 67 | 86.25 116 | 91.45 67 | 83.45 95 | 86.31 64 | 85.15 86 | 92.93 65 | 93.99 94 | 94.71 67 | 97.92 89 | 96.77 94 |
|
MVSTER | | | 91.73 73 | 91.61 78 | 91.86 77 | 93.18 105 | 94.56 112 | 94.37 69 | 87.90 98 | 90.16 85 | 88.69 50 | 89.23 50 | 81.28 112 | 88.92 116 | 95.75 56 | 93.95 80 | 98.12 72 | 96.37 107 |
|
casdiffmvs |  | | 91.72 74 | 91.16 85 | 92.38 72 | 93.16 106 | 97.15 75 | 93.95 81 | 89.49 77 | 91.58 66 | 86.03 71 | 80.75 108 | 80.95 113 | 93.16 62 | 95.25 63 | 95.22 60 | 98.50 29 | 97.23 81 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
ACMM | | 88.76 10 | 91.70 75 | 90.43 90 | 93.19 57 | 95.56 66 | 95.14 109 | 93.35 99 | 91.48 52 | 92.26 58 | 87.12 62 | 84.02 81 | 79.34 120 | 93.99 50 | 94.07 93 | 92.68 112 | 97.62 112 | 95.50 133 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
UGNet | | | 91.52 76 | 93.41 53 | 89.32 107 | 94.13 82 | 97.15 75 | 91.83 123 | 89.01 82 | 90.62 73 | 85.86 76 | 86.83 59 | 91.73 55 | 77.40 188 | 94.68 79 | 94.43 69 | 97.71 102 | 98.40 35 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
diffmvs |  | | 91.37 77 | 91.09 86 | 91.70 79 | 92.71 117 | 96.47 92 | 94.03 79 | 88.78 84 | 92.74 54 | 85.43 87 | 83.63 85 | 80.37 115 | 91.76 78 | 93.39 108 | 93.78 82 | 97.50 115 | 97.23 81 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
DCV-MVSNet | | | 91.24 78 | 91.26 82 | 91.22 89 | 92.84 113 | 93.44 139 | 93.82 86 | 86.75 112 | 91.33 68 | 85.61 81 | 84.00 82 | 85.46 85 | 91.27 81 | 92.91 114 | 93.62 85 | 97.02 136 | 98.05 50 |
|
baseline | | | 91.19 79 | 91.89 74 | 90.38 92 | 92.76 114 | 95.04 110 | 93.55 94 | 84.54 133 | 92.92 50 | 85.71 79 | 86.68 63 | 86.96 75 | 89.28 107 | 92.00 131 | 92.62 114 | 96.46 158 | 96.99 88 |
|
OPM-MVS | | | 91.08 80 | 89.34 100 | 93.11 61 | 96.18 60 | 96.13 100 | 96.39 42 | 92.39 43 | 82.97 155 | 81.74 100 | 82.55 97 | 80.20 117 | 93.97 52 | 94.62 80 | 93.23 98 | 98.00 84 | 95.73 128 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
DI_MVS_plusplus_trai | | | 91.05 81 | 90.15 94 | 92.11 74 | 92.67 118 | 96.61 87 | 96.03 47 | 88.44 90 | 90.25 80 | 85.92 74 | 73.73 142 | 84.89 88 | 91.92 75 | 94.17 91 | 94.07 78 | 97.68 107 | 97.31 79 |
|
thisisatest0530 | | | 91.04 82 | 91.74 75 | 90.21 96 | 92.93 112 | 97.00 80 | 92.06 119 | 87.63 107 | 90.74 69 | 81.51 101 | 86.81 60 | 82.48 101 | 89.23 108 | 94.81 76 | 93.03 108 | 97.90 90 | 97.33 78 |
|
tttt0517 | | | 91.01 83 | 91.71 76 | 90.19 98 | 92.98 108 | 97.07 79 | 91.96 122 | 87.63 107 | 90.61 74 | 81.42 102 | 86.76 61 | 82.26 105 | 89.23 108 | 94.86 74 | 93.03 108 | 97.90 90 | 97.36 76 |
|
test2506 | | | 90.93 84 | 89.20 103 | 92.95 63 | 94.97 74 | 98.30 39 | 94.53 65 | 90.25 64 | 89.91 90 | 88.39 52 | 83.23 87 | 64.17 190 | 90.69 90 | 96.75 32 | 96.10 44 | 98.87 8 | 95.97 122 |
|
UA-Net | | | 90.81 85 | 92.58 62 | 88.74 113 | 94.87 78 | 97.44 66 | 92.61 107 | 88.22 92 | 82.35 158 | 78.93 118 | 85.20 75 | 95.61 37 | 79.56 183 | 96.52 38 | 96.57 24 | 98.23 63 | 94.37 151 |
|
baseline1 | | | 90.81 85 | 90.29 91 | 91.42 84 | 93.67 99 | 95.86 104 | 93.94 83 | 89.69 74 | 89.29 100 | 82.85 98 | 82.91 90 | 80.30 116 | 89.60 100 | 95.05 66 | 94.79 66 | 98.80 12 | 93.82 159 |
|
FA-MVS(training) | | | 90.79 87 | 91.33 81 | 90.17 99 | 93.76 97 | 97.22 72 | 92.74 106 | 77.79 187 | 90.60 75 | 88.03 53 | 78.80 115 | 87.41 73 | 91.00 86 | 95.40 62 | 93.43 93 | 97.70 104 | 96.46 103 |
|
ECVR-MVS |  | | 90.77 88 | 89.27 101 | 92.52 68 | 94.97 74 | 98.30 39 | 94.53 65 | 90.25 64 | 89.91 90 | 85.80 77 | 73.64 143 | 74.31 145 | 90.69 90 | 96.75 32 | 96.10 44 | 98.87 8 | 95.91 125 |
|
CHOSEN 280x420 | | | 90.77 88 | 92.14 70 | 89.17 109 | 93.86 94 | 92.81 161 | 93.16 100 | 80.22 177 | 90.21 82 | 84.67 92 | 89.89 48 | 91.38 59 | 90.57 94 | 94.94 69 | 92.11 123 | 92.52 197 | 93.65 161 |
|
CANet_DTU | | | 90.74 90 | 92.93 59 | 88.19 118 | 94.36 80 | 96.61 87 | 94.34 71 | 84.66 130 | 90.66 71 | 68.75 167 | 90.41 45 | 86.89 76 | 89.78 99 | 95.46 60 | 94.87 64 | 97.25 122 | 95.62 130 |
|
FC-MVSNet-train | | | 90.55 91 | 90.19 93 | 90.97 91 | 93.78 96 | 95.16 108 | 92.11 118 | 88.85 83 | 87.64 113 | 83.38 96 | 84.36 80 | 78.41 127 | 89.53 101 | 94.69 78 | 93.15 103 | 98.15 69 | 97.92 56 |
|
Vis-MVSNet (Re-imp) | | | 90.54 92 | 92.76 60 | 87.94 122 | 93.73 98 | 96.94 83 | 92.17 116 | 87.91 97 | 88.77 104 | 76.12 128 | 83.68 84 | 90.80 60 | 79.49 184 | 96.34 45 | 96.35 31 | 98.21 65 | 96.46 103 |
|
test1111 | | | 90.47 93 | 89.10 105 | 92.07 75 | 94.92 76 | 98.30 39 | 94.17 78 | 90.30 63 | 89.56 97 | 83.92 93 | 73.25 150 | 73.66 146 | 90.26 96 | 96.77 30 | 96.14 42 | 98.87 8 | 96.04 120 |
|
MSDG | | | 90.42 94 | 88.25 114 | 92.94 64 | 96.67 54 | 94.41 118 | 93.96 80 | 92.91 41 | 89.59 96 | 86.26 70 | 76.74 127 | 80.92 114 | 90.43 95 | 92.60 120 | 92.08 125 | 97.44 118 | 91.41 176 |
|
PatchMatch-RL | | | 90.30 95 | 88.93 107 | 91.89 76 | 95.41 72 | 95.68 105 | 90.94 126 | 88.67 87 | 89.80 93 | 86.95 65 | 85.90 69 | 72.51 148 | 92.46 70 | 93.56 103 | 92.18 121 | 96.93 145 | 92.89 169 |
|
GBi-Net | | | 90.21 96 | 90.11 95 | 90.32 94 | 88.66 158 | 93.65 135 | 94.25 74 | 85.78 120 | 90.03 86 | 85.56 82 | 77.38 120 | 86.13 79 | 89.38 104 | 93.97 95 | 94.16 74 | 98.31 51 | 95.47 134 |
|
test1 | | | 90.21 96 | 90.11 95 | 90.32 94 | 88.66 158 | 93.65 135 | 94.25 74 | 85.78 120 | 90.03 86 | 85.56 82 | 77.38 120 | 86.13 79 | 89.38 104 | 93.97 95 | 94.16 74 | 98.31 51 | 95.47 134 |
|
FMVSNet3 | | | 90.19 98 | 90.06 97 | 90.34 93 | 88.69 157 | 93.85 127 | 94.58 64 | 85.78 120 | 90.03 86 | 85.56 82 | 77.38 120 | 86.13 79 | 89.22 110 | 93.29 111 | 94.36 71 | 98.20 66 | 95.40 138 |
|
ET-MVSNet_ETH3D | | | 89.93 99 | 90.84 88 | 88.87 111 | 79.60 210 | 96.19 98 | 94.43 67 | 86.56 113 | 90.63 72 | 80.75 110 | 90.71 43 | 77.78 132 | 93.73 56 | 91.36 140 | 93.45 92 | 98.15 69 | 95.77 127 |
|
PMMVS | | | 89.88 100 | 91.19 84 | 88.35 116 | 89.73 148 | 91.97 181 | 90.62 129 | 81.92 164 | 90.57 76 | 80.58 112 | 92.16 34 | 86.85 77 | 91.17 83 | 92.31 124 | 91.35 139 | 96.11 164 | 93.11 168 |
|
Anonymous20231211 | | | 89.82 101 | 88.18 115 | 91.74 78 | 92.52 119 | 96.09 101 | 93.38 98 | 89.30 80 | 88.95 103 | 85.90 75 | 64.55 191 | 84.39 89 | 92.41 72 | 92.24 127 | 93.06 106 | 96.93 145 | 97.95 53 |
|
Effi-MVS+ | | | 89.79 102 | 89.83 98 | 89.74 103 | 92.98 108 | 96.45 94 | 93.48 96 | 84.24 135 | 87.62 114 | 76.45 126 | 81.76 101 | 77.56 135 | 93.48 59 | 94.61 81 | 93.59 86 | 97.82 94 | 97.22 83 |
|
RPSCF | | | 89.68 103 | 89.24 102 | 90.20 97 | 92.97 110 | 92.93 157 | 92.30 111 | 87.69 104 | 90.44 78 | 85.12 89 | 91.68 38 | 85.84 84 | 90.69 90 | 87.34 187 | 86.07 189 | 92.46 198 | 90.37 186 |
|
FMVSNet2 | | | 89.61 104 | 89.14 104 | 90.16 100 | 88.66 158 | 93.65 135 | 94.25 74 | 85.44 124 | 88.57 107 | 84.96 91 | 73.53 145 | 83.82 91 | 89.38 104 | 94.23 89 | 94.68 68 | 98.31 51 | 95.47 134 |
|
tfpn200view9 | | | 89.55 105 | 87.86 120 | 91.53 82 | 93.90 92 | 97.26 69 | 94.31 73 | 89.74 71 | 85.87 128 | 81.15 105 | 76.46 129 | 70.38 157 | 91.76 78 | 94.92 70 | 93.51 87 | 98.28 57 | 96.61 98 |
|
thres200 | | | 89.49 106 | 87.72 122 | 91.55 81 | 93.95 89 | 97.25 70 | 94.34 71 | 89.74 71 | 85.66 131 | 81.18 104 | 76.12 133 | 70.19 160 | 91.80 76 | 94.92 70 | 93.51 87 | 98.27 58 | 96.40 106 |
|
thres400 | | | 89.40 107 | 87.58 127 | 91.53 82 | 94.06 86 | 97.21 73 | 94.19 77 | 89.83 69 | 85.69 130 | 81.08 107 | 75.50 136 | 69.76 161 | 91.80 76 | 94.79 77 | 93.51 87 | 98.20 66 | 96.60 99 |
|
thres100view900 | | | 89.36 108 | 87.61 125 | 91.39 85 | 93.90 92 | 96.86 85 | 94.35 70 | 89.66 75 | 85.87 128 | 81.15 105 | 76.46 129 | 70.38 157 | 91.17 83 | 94.09 92 | 93.43 93 | 98.13 71 | 96.16 115 |
|
Vis-MVSNet |  | | 89.36 108 | 91.49 80 | 86.88 133 | 92.10 122 | 97.60 63 | 92.16 117 | 85.89 118 | 84.21 144 | 75.20 130 | 82.58 95 | 87.13 74 | 77.40 188 | 95.90 54 | 95.63 51 | 98.51 26 | 97.36 76 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
GeoE | | | 89.29 110 | 88.68 109 | 89.99 102 | 92.75 116 | 96.03 102 | 93.07 104 | 83.79 142 | 86.98 118 | 81.34 103 | 74.72 139 | 78.92 122 | 91.22 82 | 93.31 110 | 93.21 100 | 97.78 96 | 97.60 69 |
|
thres600view7 | | | 89.28 111 | 87.47 130 | 91.39 85 | 94.12 83 | 97.25 70 | 93.94 83 | 89.74 71 | 85.62 133 | 80.63 111 | 75.24 138 | 69.33 162 | 91.66 80 | 94.92 70 | 93.23 98 | 98.27 58 | 96.72 95 |
|
baseline2 | | | 88.97 112 | 89.50 99 | 88.36 115 | 91.14 134 | 95.30 106 | 90.13 140 | 85.17 127 | 87.24 115 | 80.80 109 | 84.46 79 | 78.44 126 | 85.60 145 | 93.54 104 | 91.87 129 | 97.31 120 | 95.66 129 |
|
IterMVS-LS | | | 88.60 113 | 88.45 110 | 88.78 112 | 92.02 123 | 92.44 171 | 92.00 121 | 83.57 146 | 86.52 124 | 78.90 119 | 78.61 117 | 81.34 111 | 89.12 111 | 90.68 153 | 93.18 101 | 97.10 131 | 96.35 108 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CHOSEN 1792x2688 | | | 88.57 114 | 87.82 121 | 89.44 106 | 95.46 69 | 96.89 84 | 93.74 89 | 85.87 119 | 89.63 95 | 77.42 123 | 61.38 197 | 83.31 94 | 88.80 118 | 93.44 107 | 93.16 102 | 95.37 181 | 96.95 90 |
|
Fast-Effi-MVS+ | | | 88.56 115 | 87.99 118 | 89.22 108 | 91.56 129 | 95.21 107 | 92.29 112 | 82.69 153 | 86.82 119 | 77.73 121 | 76.24 132 | 73.39 147 | 93.36 61 | 94.22 90 | 93.64 84 | 97.65 109 | 96.43 105 |
|
CDS-MVSNet | | | 88.34 116 | 88.71 108 | 87.90 123 | 90.70 142 | 94.54 113 | 92.38 109 | 86.02 117 | 80.37 167 | 79.42 116 | 79.30 112 | 83.43 93 | 82.04 171 | 93.39 108 | 94.01 79 | 96.86 151 | 95.93 124 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
EPNet_dtu | | | 88.32 117 | 90.61 89 | 85.64 145 | 96.79 53 | 92.27 173 | 92.03 120 | 90.31 62 | 89.05 102 | 65.44 188 | 89.43 49 | 85.90 83 | 74.22 197 | 92.76 115 | 92.09 124 | 95.02 186 | 92.76 170 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
IB-MVS | | 85.10 14 | 87.98 118 | 87.97 119 | 87.99 121 | 94.55 79 | 96.86 85 | 84.52 192 | 88.21 93 | 86.48 126 | 88.54 51 | 74.41 141 | 77.74 133 | 74.10 199 | 89.65 170 | 92.85 110 | 98.06 79 | 97.80 63 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
HyFIR lowres test | | | 87.87 119 | 86.42 136 | 89.57 104 | 95.56 66 | 96.99 81 | 92.37 110 | 84.15 137 | 86.64 121 | 77.17 124 | 57.65 203 | 83.97 90 | 91.08 85 | 92.09 130 | 92.44 116 | 97.09 132 | 95.16 141 |
|
MS-PatchMatch | | | 87.63 120 | 87.61 125 | 87.65 126 | 93.95 89 | 94.09 123 | 92.60 108 | 81.52 169 | 86.64 121 | 76.41 127 | 73.46 147 | 85.94 82 | 85.01 152 | 92.23 128 | 90.00 168 | 96.43 160 | 90.93 182 |
|
COLMAP_ROB |  | 84.39 15 | 87.61 121 | 86.03 140 | 89.46 105 | 95.54 68 | 94.48 115 | 91.77 124 | 90.14 66 | 87.16 116 | 75.50 129 | 73.41 148 | 76.86 139 | 87.33 129 | 90.05 164 | 89.76 174 | 96.48 157 | 90.46 185 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
Effi-MVS+-dtu | | | 87.51 122 | 88.13 116 | 86.77 135 | 91.10 135 | 94.90 111 | 90.91 127 | 82.67 154 | 83.47 151 | 71.55 146 | 81.11 106 | 77.04 137 | 89.41 103 | 92.65 119 | 91.68 135 | 95.00 187 | 96.09 118 |
|
FMVSNet1 | | | 87.33 123 | 86.00 142 | 88.89 110 | 87.13 184 | 92.83 160 | 93.08 103 | 84.46 134 | 81.35 163 | 82.20 99 | 66.33 178 | 77.96 130 | 88.96 113 | 93.97 95 | 94.16 74 | 97.54 114 | 95.38 139 |
|
ACMH | | 85.51 13 | 87.31 124 | 86.59 134 | 88.14 119 | 93.96 88 | 94.51 114 | 89.00 162 | 87.99 95 | 81.58 161 | 70.15 157 | 78.41 118 | 71.78 153 | 90.60 93 | 91.30 141 | 91.99 127 | 97.17 126 | 96.58 100 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMH+ | | 85.75 12 | 87.19 125 | 86.02 141 | 88.56 114 | 93.42 102 | 94.41 118 | 89.91 146 | 87.66 106 | 83.45 152 | 72.25 144 | 76.42 131 | 71.99 152 | 90.78 88 | 89.86 165 | 90.94 142 | 97.32 119 | 95.11 143 |
|
test-LLR | | | 86.88 126 | 88.28 112 | 85.24 149 | 91.22 132 | 92.07 177 | 87.41 175 | 83.62 144 | 84.58 137 | 69.33 163 | 83.00 88 | 82.79 97 | 84.24 156 | 92.26 125 | 89.81 171 | 95.64 174 | 93.44 162 |
|
UniMVSNet_NR-MVSNet | | | 86.80 127 | 85.86 145 | 87.89 124 | 88.17 164 | 94.07 124 | 90.15 138 | 88.51 89 | 84.20 145 | 73.45 137 | 72.38 154 | 70.30 159 | 88.95 114 | 90.25 158 | 92.21 120 | 98.12 72 | 97.62 67 |
|
CostFormer | | | 86.78 128 | 86.05 139 | 87.62 128 | 92.15 121 | 93.20 148 | 91.55 125 | 75.83 192 | 88.11 111 | 85.29 88 | 81.76 101 | 76.22 141 | 87.80 122 | 84.45 199 | 85.21 195 | 93.12 192 | 93.42 164 |
|
USDC | | | 86.73 129 | 85.96 143 | 87.63 127 | 91.64 126 | 93.97 125 | 92.76 105 | 84.58 132 | 88.19 109 | 70.67 154 | 80.10 110 | 67.86 169 | 89.43 102 | 91.81 133 | 89.77 173 | 96.69 155 | 90.05 189 |
|
MDTV_nov1_ep13 | | | 86.64 130 | 87.50 129 | 85.65 144 | 90.73 140 | 93.69 133 | 89.96 144 | 78.03 186 | 89.48 99 | 76.85 125 | 84.92 76 | 82.42 103 | 86.14 142 | 86.85 191 | 86.15 188 | 92.17 199 | 88.97 194 |
|
Fast-Effi-MVS+-dtu | | | 86.25 131 | 87.70 123 | 84.56 158 | 90.37 145 | 93.70 132 | 90.54 130 | 78.14 184 | 83.50 150 | 65.37 189 | 81.59 104 | 75.83 143 | 86.09 144 | 91.70 135 | 91.70 133 | 96.88 149 | 95.84 126 |
|
SCA | | | 86.25 131 | 87.52 128 | 84.77 154 | 91.59 127 | 93.90 126 | 89.11 159 | 73.25 204 | 90.38 79 | 72.84 140 | 83.26 86 | 83.79 92 | 88.49 120 | 86.07 194 | 85.56 192 | 93.33 190 | 89.67 191 |
|
UniMVSNet (Re) | | | 86.22 133 | 85.46 150 | 87.11 130 | 88.34 162 | 94.42 117 | 89.65 152 | 87.10 111 | 84.39 141 | 74.61 131 | 70.41 162 | 68.10 167 | 85.10 151 | 91.17 144 | 91.79 131 | 97.84 93 | 97.94 54 |
|
FC-MVSNet-test | | | 86.15 134 | 89.10 105 | 82.71 183 | 89.83 146 | 93.18 149 | 87.88 172 | 84.69 129 | 86.54 123 | 62.18 198 | 82.39 98 | 83.31 94 | 74.18 198 | 92.52 122 | 91.86 130 | 97.50 115 | 93.88 158 |
|
DU-MVS | | | 86.12 135 | 84.81 153 | 87.66 125 | 87.77 171 | 93.78 129 | 90.15 138 | 87.87 100 | 84.40 139 | 73.45 137 | 70.59 159 | 64.82 187 | 88.95 114 | 90.14 159 | 92.33 117 | 97.76 98 | 97.62 67 |
|
TESTMET0.1,1 | | | 86.11 136 | 88.28 112 | 83.59 170 | 87.80 169 | 92.07 177 | 87.41 175 | 77.12 189 | 84.58 137 | 69.33 163 | 83.00 88 | 82.79 97 | 84.24 156 | 92.26 125 | 89.81 171 | 95.64 174 | 93.44 162 |
|
test-mter | | | 86.09 137 | 88.38 111 | 83.43 173 | 87.89 168 | 92.61 165 | 86.89 180 | 77.11 190 | 84.30 142 | 68.62 169 | 82.57 96 | 82.45 102 | 84.34 155 | 92.40 123 | 90.11 165 | 95.74 169 | 94.21 154 |
|
pmmvs4 | | | 86.00 138 | 84.28 157 | 88.00 120 | 87.80 169 | 92.01 180 | 89.94 145 | 84.91 128 | 86.79 120 | 80.98 108 | 73.41 148 | 66.34 178 | 88.12 121 | 89.31 173 | 88.90 182 | 96.24 163 | 93.20 167 |
|
EPMVS | | | 85.77 139 | 86.24 138 | 85.23 150 | 92.76 114 | 93.78 129 | 89.91 146 | 73.60 200 | 90.19 83 | 74.22 132 | 82.18 99 | 78.06 129 | 87.55 126 | 85.61 196 | 85.38 194 | 93.32 191 | 88.48 198 |
|
thisisatest0515 | | | 85.70 140 | 87.00 131 | 84.19 163 | 88.16 165 | 93.67 134 | 84.20 194 | 84.14 138 | 83.39 153 | 72.91 139 | 76.79 126 | 74.75 144 | 78.82 186 | 92.57 121 | 91.26 140 | 96.94 142 | 96.56 102 |
|
PatchmatchNet |  | | 85.70 140 | 86.65 133 | 84.60 157 | 91.79 124 | 93.40 140 | 89.27 155 | 73.62 199 | 90.19 83 | 72.63 142 | 82.74 94 | 81.93 109 | 87.64 124 | 84.99 197 | 84.29 199 | 92.64 196 | 89.00 193 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
test0.0.03 1 | | | 85.58 142 | 87.69 124 | 83.11 176 | 91.22 132 | 92.54 168 | 85.60 191 | 83.62 144 | 85.66 131 | 67.84 174 | 82.79 93 | 79.70 119 | 73.51 201 | 91.15 145 | 90.79 144 | 96.88 149 | 91.23 179 |
|
TranMVSNet+NR-MVSNet | | | 85.57 143 | 84.41 156 | 86.92 132 | 87.67 174 | 93.34 142 | 90.31 134 | 88.43 91 | 83.07 154 | 70.11 158 | 69.99 165 | 65.28 182 | 86.96 132 | 89.73 167 | 92.27 118 | 98.06 79 | 97.17 85 |
|
CR-MVSNet | | | 85.48 144 | 86.29 137 | 84.53 159 | 91.08 137 | 92.10 175 | 89.18 157 | 73.30 202 | 84.75 135 | 71.08 151 | 73.12 152 | 77.91 131 | 86.27 140 | 91.48 137 | 90.75 147 | 96.27 162 | 93.94 156 |
|
NR-MVSNet | | | 85.46 145 | 84.54 155 | 86.52 138 | 88.33 163 | 93.78 129 | 90.45 131 | 87.87 100 | 84.40 139 | 71.61 145 | 70.59 159 | 62.09 197 | 82.79 167 | 91.75 134 | 91.75 132 | 98.10 75 | 97.44 73 |
|
IterMVS-SCA-FT | | | 85.44 146 | 86.71 132 | 83.97 167 | 90.59 143 | 90.84 194 | 89.73 150 | 78.34 183 | 84.07 148 | 66.40 183 | 77.27 125 | 78.66 124 | 83.06 164 | 91.20 142 | 90.10 166 | 95.72 171 | 94.78 145 |
|
Baseline_NR-MVSNet | | | 85.28 147 | 83.42 165 | 87.46 129 | 87.77 171 | 90.80 196 | 89.90 148 | 87.69 104 | 83.93 149 | 74.16 133 | 64.72 189 | 66.43 177 | 87.48 128 | 90.14 159 | 90.83 143 | 97.73 101 | 97.11 86 |
|
IterMVS | | | 85.25 148 | 86.49 135 | 83.80 168 | 90.42 144 | 90.77 197 | 90.02 142 | 78.04 185 | 84.10 146 | 66.27 184 | 77.28 124 | 78.41 127 | 83.01 165 | 90.88 147 | 89.72 175 | 95.04 185 | 94.24 152 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
GA-MVS | | | 85.08 149 | 85.65 147 | 84.42 160 | 89.77 147 | 94.25 121 | 89.26 156 | 84.62 131 | 81.19 164 | 62.25 197 | 75.72 135 | 68.44 166 | 84.14 159 | 93.57 102 | 91.68 135 | 96.49 156 | 94.71 147 |
|
dps | | | 85.00 150 | 83.21 170 | 87.08 131 | 90.73 140 | 92.55 167 | 89.34 154 | 75.29 194 | 84.94 134 | 87.01 63 | 79.27 113 | 67.69 170 | 87.27 130 | 84.22 200 | 83.56 200 | 92.83 195 | 90.25 187 |
|
TDRefinement | | | 84.97 151 | 83.39 166 | 86.81 134 | 92.97 110 | 94.12 122 | 92.18 114 | 87.77 103 | 82.78 156 | 71.31 149 | 68.43 168 | 68.07 168 | 81.10 179 | 89.70 169 | 89.03 181 | 95.55 178 | 91.62 174 |
|
TAMVS | | | 84.94 152 | 84.95 151 | 84.93 153 | 88.82 154 | 93.18 149 | 88.44 168 | 81.28 171 | 77.16 186 | 73.76 136 | 75.43 137 | 76.57 140 | 82.04 171 | 90.59 154 | 90.79 144 | 95.22 183 | 90.94 181 |
|
RPMNet | | | 84.82 153 | 85.90 144 | 83.56 171 | 91.10 135 | 92.10 175 | 88.73 166 | 71.11 207 | 84.75 135 | 68.79 166 | 73.56 144 | 77.62 134 | 85.33 149 | 90.08 163 | 89.43 177 | 96.32 161 | 93.77 160 |
|
UniMVSNet_ETH3D | | | 84.57 154 | 81.40 188 | 88.28 117 | 89.34 152 | 94.38 120 | 90.33 132 | 86.50 114 | 74.74 199 | 77.52 122 | 59.90 201 | 62.04 198 | 88.78 119 | 88.82 180 | 92.65 113 | 97.22 123 | 97.24 80 |
|
pm-mvs1 | | | 84.55 155 | 83.46 162 | 85.82 141 | 88.16 165 | 93.39 141 | 89.05 161 | 85.36 126 | 74.03 200 | 72.43 143 | 65.08 186 | 71.11 154 | 82.30 170 | 93.48 105 | 91.70 133 | 97.64 110 | 95.43 137 |
|
anonymousdsp | | | 84.51 156 | 85.85 146 | 82.95 180 | 86.30 195 | 93.51 138 | 85.77 189 | 80.38 176 | 78.25 181 | 63.42 195 | 73.51 146 | 72.20 150 | 84.64 154 | 93.21 113 | 92.16 122 | 97.19 125 | 98.14 45 |
|
v2v482 | | | 84.51 156 | 83.05 172 | 86.20 140 | 87.25 180 | 93.28 145 | 90.22 136 | 85.40 125 | 79.94 173 | 69.78 160 | 67.74 170 | 65.15 184 | 87.57 125 | 89.12 176 | 90.55 153 | 96.97 138 | 95.60 131 |
|
V42 | | | 84.48 158 | 83.36 168 | 85.79 143 | 87.14 183 | 93.28 145 | 90.03 141 | 83.98 140 | 80.30 168 | 71.20 150 | 66.90 175 | 67.17 171 | 85.55 146 | 89.35 171 | 90.27 158 | 96.82 152 | 96.27 113 |
|
FMVSNet5 | | | 84.47 159 | 84.72 154 | 84.18 164 | 83.30 205 | 88.43 202 | 88.09 170 | 79.42 180 | 84.25 143 | 74.14 134 | 73.15 151 | 78.74 123 | 83.65 162 | 91.19 143 | 91.19 141 | 96.46 158 | 86.07 203 |
|
v8 | | | 84.45 160 | 83.30 169 | 85.80 142 | 87.53 176 | 92.95 155 | 90.31 134 | 82.46 158 | 80.46 166 | 71.43 147 | 66.99 173 | 67.16 172 | 86.14 142 | 89.26 174 | 90.22 160 | 96.94 142 | 96.06 119 |
|
v10 | | | 84.18 161 | 83.17 171 | 85.37 146 | 87.34 178 | 92.68 163 | 90.32 133 | 81.33 170 | 79.93 174 | 69.23 165 | 66.33 178 | 65.74 180 | 87.03 131 | 90.84 148 | 90.38 155 | 96.97 138 | 96.29 112 |
|
tpm cat1 | | | 84.13 162 | 81.99 182 | 86.63 137 | 91.74 125 | 91.50 188 | 90.68 128 | 75.69 193 | 86.12 127 | 85.44 86 | 72.39 153 | 70.72 155 | 85.16 150 | 80.89 208 | 81.56 204 | 91.07 205 | 90.71 183 |
|
ADS-MVSNet | | | 84.08 163 | 84.95 151 | 83.05 179 | 91.53 131 | 91.75 184 | 88.16 169 | 70.70 208 | 89.96 89 | 69.51 162 | 78.83 114 | 76.97 138 | 86.29 139 | 84.08 201 | 84.60 197 | 92.13 201 | 88.48 198 |
|
TinyColmap | | | 84.04 164 | 82.01 181 | 86.42 139 | 90.87 138 | 91.84 182 | 88.89 164 | 84.07 139 | 82.11 160 | 69.89 159 | 71.08 157 | 60.81 203 | 89.04 112 | 90.52 155 | 89.19 179 | 95.76 168 | 88.50 197 |
|
v1144 | | | 84.03 165 | 82.88 173 | 85.37 146 | 87.17 182 | 93.15 152 | 90.18 137 | 83.31 149 | 78.83 177 | 67.85 173 | 65.99 180 | 64.99 185 | 86.79 134 | 90.75 150 | 90.33 157 | 96.90 147 | 96.15 116 |
|
PatchT | | | 83.86 166 | 85.51 149 | 81.94 189 | 88.41 161 | 91.56 187 | 78.79 206 | 71.57 206 | 84.08 147 | 71.08 151 | 70.62 158 | 76.13 142 | 86.27 140 | 91.48 137 | 90.75 147 | 95.52 179 | 93.94 156 |
|
CVMVSNet | | | 83.83 167 | 85.53 148 | 81.85 190 | 89.60 149 | 90.92 192 | 87.81 173 | 83.21 150 | 80.11 170 | 60.16 202 | 76.47 128 | 78.57 125 | 76.79 190 | 89.76 166 | 90.13 161 | 93.51 189 | 92.75 171 |
|
tfpnnormal | | | 83.80 168 | 81.26 190 | 86.77 135 | 89.60 149 | 93.26 147 | 89.72 151 | 87.60 109 | 72.78 201 | 70.44 155 | 60.53 200 | 61.15 202 | 85.55 146 | 92.72 116 | 91.44 137 | 97.71 102 | 96.92 91 |
|
tpmrst | | | 83.72 169 | 83.45 163 | 84.03 166 | 92.21 120 | 91.66 185 | 88.74 165 | 73.58 201 | 88.14 110 | 72.67 141 | 77.37 123 | 72.11 151 | 86.34 138 | 82.94 204 | 82.05 203 | 90.63 207 | 89.86 190 |
|
v148 | | | 83.61 170 | 82.10 179 | 85.37 146 | 87.34 178 | 92.94 156 | 87.48 174 | 85.72 123 | 78.92 176 | 73.87 135 | 65.71 183 | 64.69 188 | 81.78 175 | 87.82 183 | 89.35 178 | 96.01 165 | 95.26 140 |
|
v1192 | | | 83.56 171 | 82.35 176 | 84.98 151 | 86.84 189 | 92.84 158 | 90.01 143 | 82.70 152 | 78.54 178 | 66.48 181 | 64.88 188 | 62.91 192 | 86.91 133 | 90.72 151 | 90.25 159 | 96.94 142 | 96.32 110 |
|
v144192 | | | 83.48 172 | 82.23 177 | 84.94 152 | 86.65 190 | 92.84 158 | 89.63 153 | 82.48 157 | 77.87 182 | 67.36 177 | 65.33 185 | 63.50 191 | 86.51 136 | 89.72 168 | 89.99 169 | 97.03 135 | 96.35 108 |
|
pmmvs5 | | | 83.37 173 | 82.68 174 | 84.18 164 | 87.13 184 | 93.18 149 | 86.74 181 | 82.08 163 | 76.48 190 | 67.28 178 | 71.26 156 | 62.70 194 | 84.71 153 | 90.77 149 | 90.12 164 | 97.15 127 | 94.24 152 |
|
v1921920 | | | 83.30 174 | 82.09 180 | 84.70 155 | 86.59 193 | 92.67 164 | 89.82 149 | 82.23 161 | 78.32 179 | 65.76 186 | 64.64 190 | 62.35 195 | 86.78 135 | 90.34 157 | 90.02 167 | 97.02 136 | 96.31 111 |
|
tpm | | | 83.16 175 | 83.64 160 | 82.60 185 | 90.75 139 | 91.05 191 | 88.49 167 | 73.99 197 | 82.36 157 | 67.08 180 | 78.10 119 | 68.79 163 | 84.17 158 | 85.95 195 | 85.96 190 | 91.09 204 | 93.23 166 |
|
WR-MVS | | | 83.14 176 | 83.38 167 | 82.87 181 | 87.55 175 | 93.29 144 | 86.36 185 | 84.21 136 | 80.05 171 | 66.41 182 | 66.91 174 | 66.92 174 | 75.66 195 | 88.96 178 | 90.56 152 | 97.05 134 | 96.96 89 |
|
SixPastTwentyTwo | | | 83.12 177 | 83.44 164 | 82.74 182 | 87.71 173 | 93.11 153 | 82.30 199 | 82.33 159 | 79.24 175 | 64.33 192 | 78.77 116 | 62.75 193 | 84.11 160 | 88.11 182 | 87.89 184 | 95.70 172 | 94.21 154 |
|
CP-MVSNet | | | 83.11 178 | 82.15 178 | 84.23 162 | 87.20 181 | 92.70 162 | 86.42 184 | 83.53 147 | 77.83 183 | 67.67 175 | 66.89 176 | 60.53 205 | 82.47 168 | 89.23 175 | 90.65 151 | 98.08 76 | 97.20 84 |
|
MIMVSNet | | | 82.97 179 | 84.00 159 | 81.77 191 | 82.23 206 | 92.25 174 | 87.40 177 | 72.73 205 | 81.48 162 | 69.55 161 | 68.79 167 | 72.42 149 | 81.82 174 | 92.23 128 | 92.25 119 | 96.89 148 | 88.61 196 |
|
v1240 | | | 82.88 180 | 81.66 184 | 84.29 161 | 86.46 194 | 92.52 170 | 89.06 160 | 81.82 166 | 77.16 186 | 65.09 190 | 64.17 192 | 61.50 200 | 86.36 137 | 90.12 161 | 90.13 161 | 96.95 141 | 96.04 120 |
|
WR-MVS_H | | | 82.86 181 | 82.66 175 | 83.10 177 | 87.44 177 | 93.33 143 | 85.71 190 | 83.20 151 | 77.36 185 | 68.20 172 | 66.37 177 | 65.23 183 | 76.05 194 | 89.35 171 | 90.13 161 | 97.99 85 | 96.89 92 |
|
TransMVSNet (Re) | | | 82.67 182 | 80.93 193 | 84.69 156 | 88.71 156 | 91.50 188 | 87.90 171 | 87.15 110 | 71.54 206 | 68.24 171 | 63.69 193 | 64.67 189 | 78.51 187 | 91.65 136 | 90.73 149 | 97.64 110 | 92.73 172 |
|
PS-CasMVS | | | 82.53 183 | 81.54 186 | 83.68 169 | 87.08 186 | 92.54 168 | 86.20 186 | 83.46 148 | 76.46 191 | 65.73 187 | 65.71 183 | 59.41 210 | 81.61 176 | 89.06 177 | 90.55 153 | 98.03 81 | 97.07 87 |
|
PEN-MVS | | | 82.49 184 | 81.58 185 | 83.56 171 | 86.93 187 | 92.05 179 | 86.71 182 | 83.84 141 | 76.94 188 | 64.68 191 | 67.24 171 | 60.11 206 | 81.17 178 | 87.78 184 | 90.70 150 | 98.02 82 | 96.21 114 |
|
LTVRE_ROB | | 81.71 16 | 82.44 185 | 81.84 183 | 83.13 175 | 89.01 153 | 92.99 154 | 88.90 163 | 82.32 160 | 66.26 212 | 54.02 212 | 74.68 140 | 59.62 209 | 88.87 117 | 90.71 152 | 92.02 126 | 95.68 173 | 96.62 97 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
v7n | | | 82.25 186 | 81.54 186 | 83.07 178 | 85.55 199 | 92.58 166 | 86.68 183 | 81.10 174 | 76.54 189 | 65.97 185 | 62.91 194 | 60.56 204 | 82.36 169 | 91.07 146 | 90.35 156 | 96.77 154 | 96.80 93 |
|
testgi | | | 81.94 187 | 84.09 158 | 79.43 196 | 89.53 151 | 90.83 195 | 82.49 198 | 81.75 167 | 80.59 165 | 59.46 204 | 82.82 92 | 65.75 179 | 67.97 203 | 90.10 162 | 89.52 176 | 95.39 180 | 89.03 192 |
|
gg-mvs-nofinetune | | | 81.83 188 | 83.58 161 | 79.80 195 | 91.57 128 | 96.54 90 | 93.79 87 | 68.80 211 | 62.71 215 | 43.01 220 | 55.28 206 | 85.06 87 | 83.65 162 | 96.13 49 | 94.86 65 | 97.98 88 | 94.46 149 |
|
DTE-MVSNet | | | 81.76 189 | 81.04 191 | 82.60 185 | 86.63 191 | 91.48 190 | 85.97 188 | 83.70 143 | 76.45 192 | 62.44 196 | 67.16 172 | 59.98 207 | 78.98 185 | 87.15 188 | 89.93 170 | 97.88 92 | 95.12 142 |
|
EG-PatchMatch MVS | | | 81.70 190 | 81.31 189 | 82.15 188 | 88.75 155 | 93.81 128 | 87.14 178 | 78.89 182 | 71.57 204 | 64.12 194 | 61.20 199 | 68.46 165 | 76.73 192 | 91.48 137 | 90.77 146 | 97.28 121 | 91.90 173 |
|
pmmvs6 | | | 80.90 191 | 78.77 197 | 83.38 174 | 85.84 196 | 91.61 186 | 86.01 187 | 82.54 156 | 64.17 213 | 70.43 156 | 54.14 210 | 67.06 173 | 80.73 180 | 90.50 156 | 89.17 180 | 94.74 188 | 94.75 146 |
|
MDTV_nov1_ep13_2view | | | 80.43 192 | 80.94 192 | 79.84 194 | 84.82 202 | 90.87 193 | 84.23 193 | 73.80 198 | 80.28 169 | 64.33 192 | 70.05 164 | 68.77 164 | 79.67 181 | 84.83 198 | 83.50 201 | 92.17 199 | 88.25 200 |
|
PM-MVS | | | 80.29 193 | 79.30 196 | 81.45 192 | 81.91 207 | 88.23 203 | 82.61 197 | 79.01 181 | 79.99 172 | 67.15 179 | 69.07 166 | 51.39 215 | 82.92 166 | 87.55 186 | 85.59 191 | 95.08 184 | 93.28 165 |
|
pmnet_mix02 | | | 80.14 194 | 80.21 195 | 80.06 193 | 86.61 192 | 89.66 199 | 80.40 203 | 82.20 162 | 82.29 159 | 61.35 199 | 71.52 155 | 66.67 176 | 76.75 191 | 82.55 205 | 80.18 208 | 93.05 193 | 88.62 195 |
|
CMPMVS |  | 61.19 17 | 79.86 195 | 77.46 203 | 82.66 184 | 91.54 130 | 91.82 183 | 83.25 195 | 81.57 168 | 70.51 208 | 68.64 168 | 59.89 202 | 66.77 175 | 79.63 182 | 84.00 202 | 84.30 198 | 91.34 203 | 84.89 206 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
pmmvs-eth3d | | | 79.78 196 | 77.58 201 | 82.34 187 | 81.57 208 | 87.46 206 | 82.92 196 | 81.28 171 | 75.33 198 | 71.34 148 | 61.88 195 | 52.41 214 | 81.59 177 | 87.56 185 | 86.90 187 | 95.36 182 | 91.48 175 |
|
EU-MVSNet | | | 78.43 197 | 80.25 194 | 76.30 201 | 83.81 204 | 87.27 208 | 80.99 201 | 79.52 179 | 76.01 193 | 54.12 211 | 70.44 161 | 64.87 186 | 67.40 205 | 86.23 193 | 85.54 193 | 91.95 202 | 91.41 176 |
|
MVS-HIRNet | | | 78.16 198 | 77.57 202 | 78.83 197 | 85.83 197 | 87.76 204 | 76.67 207 | 70.22 209 | 75.82 196 | 67.39 176 | 55.61 205 | 70.52 156 | 81.96 173 | 86.67 192 | 85.06 196 | 90.93 206 | 81.58 209 |
|
Anonymous20231206 | | | 78.09 199 | 78.11 200 | 78.07 199 | 85.19 201 | 89.17 200 | 80.99 201 | 81.24 173 | 75.46 197 | 58.25 206 | 54.78 209 | 59.90 208 | 66.73 206 | 88.94 179 | 88.26 183 | 96.01 165 | 90.25 187 |
|
gm-plane-assit | | | 77.65 200 | 78.50 198 | 76.66 200 | 87.96 167 | 85.43 210 | 64.70 216 | 74.50 195 | 64.15 214 | 51.26 215 | 61.32 198 | 58.17 211 | 84.11 160 | 95.16 65 | 93.83 81 | 97.45 117 | 91.41 176 |
|
N_pmnet | | | 77.55 201 | 76.68 204 | 78.56 198 | 85.43 200 | 87.30 207 | 78.84 205 | 81.88 165 | 78.30 180 | 60.61 200 | 61.46 196 | 62.15 196 | 74.03 200 | 82.04 206 | 80.69 207 | 90.59 208 | 84.81 207 |
|
test20.03 | | | 76.41 202 | 78.49 199 | 73.98 203 | 85.64 198 | 87.50 205 | 75.89 208 | 80.71 175 | 70.84 207 | 51.07 216 | 68.06 169 | 61.40 201 | 54.99 212 | 88.28 181 | 87.20 186 | 95.58 177 | 86.15 202 |
|
MDA-MVSNet-bldmvs | | | 73.81 203 | 72.56 207 | 75.28 202 | 72.52 215 | 88.87 201 | 74.95 210 | 82.67 154 | 71.57 204 | 55.02 209 | 65.96 181 | 42.84 221 | 76.11 193 | 70.61 214 | 81.47 205 | 90.38 209 | 86.59 201 |
|
MIMVSNet1 | | | 73.19 204 | 73.70 205 | 72.60 206 | 65.42 218 | 86.69 209 | 75.56 209 | 79.65 178 | 67.87 211 | 55.30 208 | 45.24 214 | 56.41 212 | 63.79 208 | 86.98 189 | 87.66 185 | 95.85 167 | 85.04 205 |
|
new-patchmatchnet | | | 72.32 205 | 71.09 208 | 73.74 204 | 81.17 209 | 84.86 211 | 72.21 213 | 77.48 188 | 68.32 210 | 54.89 210 | 55.10 207 | 49.31 218 | 63.68 209 | 79.30 210 | 76.46 211 | 93.03 194 | 84.32 208 |
|
new_pmnet | | | 72.29 206 | 73.25 206 | 71.16 208 | 75.35 212 | 81.38 212 | 73.72 212 | 69.27 210 | 75.97 194 | 49.84 217 | 56.27 204 | 56.12 213 | 69.08 202 | 81.73 207 | 80.86 206 | 89.72 211 | 80.44 211 |
|
pmmvs3 | | | 71.13 207 | 71.06 209 | 71.21 207 | 73.54 214 | 80.19 213 | 71.69 214 | 64.86 213 | 62.04 216 | 52.10 213 | 54.92 208 | 48.00 219 | 75.03 196 | 83.75 203 | 83.24 202 | 90.04 210 | 85.27 204 |
|
FPMVS | | | 69.87 208 | 67.10 211 | 73.10 205 | 84.09 203 | 78.35 215 | 79.40 204 | 76.41 191 | 71.92 202 | 57.71 207 | 54.06 211 | 50.04 216 | 56.72 210 | 71.19 213 | 68.70 213 | 84.25 213 | 75.43 213 |
|
GG-mvs-BLEND | | | 62.84 209 | 90.21 92 | 30.91 217 | 0.57 225 | 94.45 116 | 86.99 179 | 0.34 223 | 88.71 105 | 0.98 225 | 81.55 105 | 91.58 57 | 0.86 222 | 92.66 118 | 91.43 138 | 95.73 170 | 91.11 180 |
|
PMVS |  | 56.77 18 | 61.27 210 | 58.64 213 | 64.35 209 | 75.66 211 | 54.60 219 | 53.62 219 | 74.23 196 | 53.69 217 | 58.37 205 | 44.27 215 | 49.38 217 | 44.16 216 | 69.51 215 | 65.35 215 | 80.07 215 | 73.66 214 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
Gipuma |  | | 58.52 211 | 56.17 214 | 61.27 210 | 67.14 217 | 58.06 218 | 52.16 220 | 68.40 212 | 69.00 209 | 45.02 219 | 22.79 217 | 20.57 224 | 55.11 211 | 76.27 211 | 79.33 210 | 79.80 216 | 67.16 216 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
test_method | | | 58.10 212 | 64.61 212 | 50.51 212 | 28.26 223 | 41.71 222 | 61.28 217 | 32.07 219 | 75.92 195 | 52.04 214 | 47.94 212 | 61.83 199 | 51.80 213 | 79.83 209 | 63.95 217 | 77.60 217 | 81.05 210 |
|
PMMVS2 | | | 53.68 213 | 55.72 215 | 51.30 211 | 58.84 219 | 67.02 217 | 54.23 218 | 60.97 216 | 47.50 218 | 19.42 222 | 34.81 216 | 31.97 222 | 30.88 218 | 65.84 216 | 69.99 212 | 83.47 214 | 72.92 215 |
|
E-PMN | | | 40.00 214 | 35.74 217 | 44.98 214 | 57.69 221 | 39.15 224 | 28.05 222 | 62.70 214 | 35.52 220 | 17.78 223 | 20.90 218 | 14.36 226 | 44.47 215 | 35.89 219 | 47.86 218 | 59.15 220 | 56.47 218 |
|
MVE |  | 39.81 19 | 39.52 215 | 41.58 216 | 37.11 216 | 33.93 222 | 49.06 220 | 26.45 224 | 54.22 217 | 29.46 221 | 24.15 221 | 20.77 219 | 10.60 227 | 34.42 217 | 51.12 218 | 65.27 216 | 49.49 222 | 64.81 217 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
EMVS | | | 39.04 216 | 34.32 218 | 44.54 215 | 58.25 220 | 39.35 223 | 27.61 223 | 62.55 215 | 35.99 219 | 16.40 224 | 20.04 220 | 14.77 225 | 44.80 214 | 33.12 220 | 44.10 219 | 57.61 221 | 52.89 219 |
|
testmvs | | | 4.35 217 | 6.54 219 | 1.79 218 | 0.60 224 | 1.82 225 | 3.06 226 | 0.95 221 | 7.22 222 | 0.88 226 | 12.38 221 | 1.25 228 | 3.87 221 | 6.09 221 | 5.58 220 | 1.40 223 | 11.42 221 |
|
test123 | | | 3.48 218 | 5.31 220 | 1.34 219 | 0.20 226 | 1.52 226 | 2.17 227 | 0.58 222 | 6.13 223 | 0.31 227 | 9.85 222 | 0.31 229 | 3.90 220 | 2.65 222 | 5.28 221 | 0.87 224 | 11.46 220 |
|
uanet_test | | | 0.00 219 | 0.00 221 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 224 | 0.00 228 | 0.00 223 | 0.00 230 | 0.00 223 | 0.00 223 | 0.00 222 | 0.00 225 | 0.00 222 |
|
sosnet-low-res | | | 0.00 219 | 0.00 221 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 224 | 0.00 228 | 0.00 223 | 0.00 230 | 0.00 223 | 0.00 223 | 0.00 222 | 0.00 225 | 0.00 222 |
|
sosnet | | | 0.00 219 | 0.00 221 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 224 | 0.00 228 | 0.00 223 | 0.00 230 | 0.00 223 | 0.00 223 | 0.00 222 | 0.00 225 | 0.00 222 |
|
RE-MVS-def | | | | | | | | | | | 60.19 201 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 97.28 23 | | | | | |
|
SR-MVS | | | | | | 98.93 18 | | | 96.00 16 | | | | 97.75 15 | | | | | |
|
Anonymous202405211 | | | | 88.00 117 | | 93.16 106 | 96.38 96 | 93.58 93 | 89.34 78 | 87.92 112 | | 65.04 187 | 83.03 96 | 92.07 74 | 92.67 117 | 93.33 95 | 96.96 140 | 97.63 65 |
|
our_test_3 | | | | | | 86.93 187 | 89.77 198 | 81.61 200 | | | | | | | | | | |
|
ambc | | | | 67.96 210 | | 73.69 213 | 79.79 214 | 73.82 211 | | 71.61 203 | 59.80 203 | 46.00 213 | 20.79 223 | 66.15 207 | 86.92 190 | 80.11 209 | 89.13 212 | 90.50 184 |
|
MTAPA | | | | | | | | | | | 95.36 2 | | 97.46 21 | | | | | |
|
MTMP | | | | | | | | | | | 95.70 1 | | 96.90 26 | | | | | |
|
Patchmatch-RL test | | | | | | | | 18.47 225 | | | | | | | | | | |
|
tmp_tt | | | | | 50.24 213 | 68.55 216 | 46.86 221 | 48.90 221 | 18.28 220 | 86.51 125 | 68.32 170 | 70.19 163 | 65.33 181 | 26.69 219 | 74.37 212 | 66.80 214 | 70.72 219 | |
|
XVS | | | | | | 95.68 63 | 98.66 14 | 94.96 61 | | | 88.03 53 | | 96.06 31 | | | | 98.46 34 | |
|
X-MVStestdata | | | | | | 95.68 63 | 98.66 14 | 94.96 61 | | | 88.03 53 | | 96.06 31 | | | | 98.46 34 | |
|
mPP-MVS | | | | | | 98.76 23 | | | | | | | 95.49 38 | | | | | |
|
NP-MVS | | | | | | | | | | 91.63 65 | | | | | | | | |
|
Patchmtry | | | | | | | 92.39 172 | 89.18 157 | 73.30 202 | | 71.08 151 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 71.82 216 | 68.37 215 | 48.05 218 | 77.38 184 | 46.88 218 | 65.77 182 | 47.03 220 | 67.48 204 | 64.27 217 | | 76.89 218 | 76.72 212 |
|