| LTVRE_ROB | | 97.71 1 | 99.33 1 | 99.47 1 | 99.16 7 | 99.16 41 | 99.11 14 | 99.39 12 | 99.16 11 | 99.26 2 | 99.22 5 | 99.51 18 | 99.75 4 | 98.54 15 | 99.71 1 | 99.47 3 | 99.52 12 | 99.46 1 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| SixPastTwentyTwo | | | 99.25 2 | 99.20 3 | 99.32 1 | 99.53 14 | 99.32 8 | 99.64 2 | 99.19 10 | 98.05 11 | 99.19 6 | 99.74 4 | 98.96 50 | 99.03 2 | 99.69 2 | 99.58 1 | 99.32 25 | 99.06 6 |
|
| WR-MVS | | | 99.22 3 | 99.15 5 | 99.30 2 | 99.54 10 | 99.62 1 | 99.63 4 | 99.45 1 | 97.75 15 | 98.47 22 | 99.71 5 | 99.05 40 | 98.88 4 | 99.54 5 | 99.49 2 | 99.81 1 | 98.87 9 |
|
| PS-CasMVS | | | 99.08 4 | 98.90 11 | 99.28 3 | 99.65 3 | 99.56 4 | 99.59 6 | 99.39 3 | 96.36 36 | 98.83 14 | 99.46 21 | 99.09 33 | 98.62 10 | 99.51 7 | 99.36 8 | 99.63 3 | 98.97 7 |
|
| PEN-MVS | | | 99.08 4 | 98.95 8 | 99.23 5 | 99.65 3 | 99.59 2 | 99.64 2 | 99.34 6 | 96.68 28 | 98.65 17 | 99.43 23 | 99.33 16 | 98.47 17 | 99.50 8 | 99.32 9 | 99.60 5 | 98.79 11 |
|
| v7n | | | 99.03 6 | 99.03 7 | 99.02 9 | 99.09 52 | 99.11 14 | 99.57 9 | 98.82 19 | 98.21 9 | 99.25 3 | 99.84 2 | 99.59 6 | 98.76 6 | 99.23 19 | 98.83 32 | 98.63 71 | 98.40 33 |
|
| DTE-MVSNet | | | 99.03 6 | 98.88 12 | 99.21 6 | 99.66 2 | 99.59 2 | 99.62 5 | 99.34 6 | 96.92 24 | 98.52 19 | 99.36 29 | 98.98 46 | 98.57 13 | 99.49 9 | 99.23 12 | 99.56 9 | 98.55 25 |
|
| TDRefinement | | | 99.00 8 | 99.13 6 | 98.86 10 | 98.99 62 | 99.05 19 | 99.58 7 | 98.29 49 | 98.96 4 | 97.96 37 | 99.40 26 | 98.67 76 | 98.87 5 | 99.60 3 | 99.46 4 | 99.46 18 | 98.74 14 |
|
| WR-MVS_H | | | 98.97 9 | 98.82 14 | 99.14 8 | 99.56 8 | 99.56 4 | 99.54 11 | 99.42 2 | 96.07 41 | 98.37 24 | 99.34 31 | 99.09 33 | 98.43 18 | 99.45 10 | 99.41 5 | 99.53 10 | 98.86 10 |
|
| UniMVSNet_ETH3D | | | 98.93 10 | 99.20 3 | 98.63 22 | 99.54 10 | 99.33 7 | 98.73 63 | 99.37 4 | 98.87 5 | 97.86 39 | 99.27 35 | 99.78 2 | 96.59 85 | 99.52 6 | 99.40 6 | 99.67 2 | 98.21 41 |
|
| CP-MVSNet | | | 98.91 11 | 98.61 19 | 99.25 4 | 99.63 5 | 99.50 6 | 99.55 10 | 99.36 5 | 95.53 67 | 98.77 16 | 99.11 42 | 98.64 79 | 98.57 13 | 99.42 11 | 99.28 11 | 99.61 4 | 98.78 12 |
|
| anonymousdsp | | | 98.85 12 | 98.88 12 | 98.83 11 | 98.69 82 | 98.20 79 | 99.68 1 | 97.35 123 | 97.09 23 | 98.98 10 | 99.86 1 | 99.43 10 | 98.94 3 | 99.28 14 | 99.19 13 | 99.33 23 | 99.08 5 |
|
| pmmvs6 | | | 98.77 13 | 99.35 2 | 98.09 43 | 98.32 101 | 98.92 25 | 98.57 70 | 99.03 12 | 99.36 1 | 96.86 83 | 99.77 3 | 99.86 1 | 96.20 100 | 99.56 4 | 99.39 7 | 99.59 6 | 98.61 22 |
|
| ACMH | | 95.26 7 | 98.75 14 | 98.93 9 | 98.54 25 | 98.86 67 | 99.01 21 | 99.58 7 | 98.10 68 | 98.67 6 | 97.30 61 | 99.18 39 | 99.42 11 | 98.40 19 | 99.19 21 | 98.86 30 | 98.99 48 | 98.19 42 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| COLMAP_ROB |  | 96.84 2 | 98.75 14 | 98.82 14 | 98.66 20 | 99.14 45 | 98.79 39 | 99.30 17 | 97.67 95 | 98.33 8 | 97.82 41 | 99.20 38 | 99.18 31 | 98.76 6 | 99.27 17 | 98.96 22 | 99.29 27 | 98.03 46 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| UA-Net | | | 98.66 16 | 98.60 22 | 98.73 15 | 99.83 1 | 99.28 9 | 98.56 72 | 99.24 8 | 96.04 42 | 97.12 70 | 98.44 79 | 98.95 51 | 98.17 28 | 99.15 24 | 99.00 21 | 99.48 17 | 99.33 3 |
|
| DeepC-MVS | | 96.08 5 | 98.58 17 | 98.49 24 | 98.68 18 | 99.37 26 | 98.52 64 | 99.01 35 | 98.17 63 | 97.17 22 | 98.25 27 | 99.56 15 | 99.62 5 | 98.29 22 | 98.40 63 | 98.09 70 | 98.97 50 | 98.08 45 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| TranMVSNet+NR-MVSNet | | | 98.45 18 | 98.22 31 | 98.72 17 | 99.32 31 | 99.06 17 | 98.99 36 | 98.89 14 | 95.52 68 | 97.53 50 | 99.42 25 | 98.83 63 | 98.01 34 | 98.55 55 | 98.34 57 | 99.57 8 | 97.80 57 |
|
| CSCG | | | 98.45 18 | 98.61 19 | 98.26 37 | 99.11 49 | 99.06 17 | 98.17 92 | 97.49 108 | 97.93 13 | 97.37 58 | 98.88 56 | 99.29 19 | 98.10 29 | 98.40 63 | 97.51 89 | 99.32 25 | 99.16 4 |
|
| DVP-MVS++ | | | 98.44 20 | 98.92 10 | 97.88 63 | 99.17 39 | 99.00 22 | 98.89 46 | 98.26 51 | 97.54 18 | 96.05 117 | 99.35 30 | 99.76 3 | 96.34 95 | 98.79 37 | 98.65 41 | 98.56 77 | 99.35 2 |
|
| Gipuma |  | | 98.43 21 | 98.15 34 | 98.76 14 | 99.00 61 | 98.29 76 | 97.91 107 | 98.06 70 | 99.02 3 | 99.50 1 | 96.33 129 | 98.67 76 | 99.22 1 | 99.02 27 | 98.02 75 | 98.88 62 | 97.66 65 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| ACMH+ | | 94.90 8 | 98.40 22 | 98.71 17 | 98.04 53 | 98.93 64 | 98.84 32 | 99.30 17 | 97.86 87 | 97.78 14 | 94.19 174 | 98.77 66 | 99.39 13 | 98.61 11 | 99.33 13 | 99.07 14 | 99.33 23 | 97.81 56 |
|
| ACMMPR | | | 98.31 23 | 98.07 39 | 98.60 23 | 99.58 6 | 98.83 33 | 99.09 27 | 98.48 31 | 96.25 38 | 97.03 74 | 96.81 117 | 99.09 33 | 98.39 20 | 98.55 55 | 98.45 49 | 99.01 45 | 98.53 28 |
|
| APDe-MVS |  | | 98.29 24 | 98.42 26 | 98.14 40 | 99.45 21 | 98.90 26 | 99.18 23 | 98.30 47 | 95.96 48 | 95.13 148 | 98.79 63 | 99.25 26 | 97.92 38 | 98.80 35 | 98.71 36 | 98.85 64 | 98.54 26 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| DVP-MVS |  | | 98.27 25 | 98.61 19 | 97.87 64 | 99.17 39 | 99.03 20 | 99.07 29 | 98.17 63 | 96.75 27 | 94.35 169 | 98.92 52 | 99.58 7 | 97.86 41 | 98.67 46 | 98.70 37 | 98.63 71 | 98.63 20 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| TransMVSNet (Re) | | | 98.23 26 | 98.72 16 | 97.66 77 | 98.22 110 | 98.73 50 | 98.66 66 | 98.03 75 | 98.60 7 | 96.40 102 | 99.60 12 | 98.24 100 | 95.26 122 | 99.19 21 | 99.05 17 | 99.36 20 | 97.64 66 |
|
| DU-MVS | | | 98.23 26 | 97.74 55 | 98.81 12 | 99.23 33 | 98.77 41 | 98.76 57 | 98.88 15 | 94.10 115 | 98.50 20 | 98.87 58 | 98.32 97 | 97.99 35 | 98.40 63 | 98.08 73 | 99.49 16 | 97.64 66 |
|
| UniMVSNet (Re) | | | 98.23 26 | 97.85 48 | 98.67 19 | 99.15 42 | 98.87 28 | 98.74 60 | 98.84 17 | 94.27 113 | 97.94 38 | 99.01 45 | 98.39 93 | 97.82 42 | 98.35 68 | 98.29 62 | 99.51 15 | 97.78 58 |
|
| MIMVSNet1 | | | 98.22 29 | 98.51 23 | 97.87 64 | 99.40 25 | 98.82 37 | 99.31 16 | 98.53 28 | 97.39 19 | 96.59 93 | 99.31 33 | 99.23 28 | 94.76 132 | 98.93 32 | 98.67 39 | 98.63 71 | 97.25 90 |
|
| HFP-MVS | | | 98.17 30 | 98.02 40 | 98.35 35 | 99.36 27 | 98.62 56 | 98.79 56 | 98.46 34 | 96.24 39 | 96.53 95 | 97.13 113 | 98.98 46 | 98.02 33 | 98.20 71 | 98.42 51 | 98.95 54 | 98.54 26 |
|
| Baseline_NR-MVSNet | | | 98.17 30 | 97.90 45 | 98.48 29 | 99.23 33 | 98.59 57 | 98.83 53 | 98.73 24 | 93.97 120 | 96.95 77 | 99.66 7 | 98.23 102 | 97.90 39 | 98.40 63 | 99.06 16 | 99.25 29 | 97.42 82 |
|
| TSAR-MVS + MP. | | | 98.15 32 | 98.23 30 | 98.06 51 | 98.47 92 | 98.16 85 | 99.23 20 | 96.87 139 | 95.58 62 | 96.72 86 | 98.41 80 | 99.06 37 | 98.05 32 | 98.99 29 | 98.90 26 | 99.00 46 | 98.51 29 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| pm-mvs1 | | | 98.14 33 | 98.66 18 | 97.53 86 | 97.93 132 | 98.49 66 | 98.14 94 | 98.19 59 | 97.95 12 | 96.17 113 | 99.63 10 | 98.85 59 | 95.41 120 | 98.91 33 | 98.89 27 | 99.34 22 | 97.86 55 |
|
| SMA-MVS |  | | 98.13 34 | 98.22 31 | 98.02 56 | 99.44 23 | 98.73 50 | 98.24 89 | 97.87 86 | 95.22 75 | 96.76 85 | 98.66 72 | 99.35 15 | 97.03 70 | 98.53 58 | 98.39 53 | 98.80 66 | 98.69 16 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| ACMMP_NAP | | | 98.12 35 | 98.08 38 | 98.18 39 | 99.34 28 | 98.74 49 | 98.97 38 | 98.00 77 | 95.13 79 | 96.90 78 | 97.54 102 | 99.27 23 | 97.18 64 | 98.72 42 | 98.45 49 | 98.68 70 | 98.69 16 |
|
| UniMVSNet_NR-MVSNet | | | 98.12 35 | 97.56 63 | 98.78 13 | 99.13 47 | 98.89 27 | 98.76 57 | 98.78 20 | 93.81 123 | 98.50 20 | 98.81 62 | 97.64 123 | 97.99 35 | 98.18 74 | 97.92 77 | 99.53 10 | 97.64 66 |
|
| ACMM | | 94.29 11 | 98.12 35 | 97.71 56 | 98.59 24 | 99.51 16 | 98.58 59 | 99.24 19 | 98.25 52 | 96.22 40 | 96.90 78 | 95.01 153 | 98.89 56 | 98.52 16 | 98.66 48 | 98.32 60 | 99.13 36 | 98.28 39 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| SteuartSystems-ACMMP | | | 98.06 38 | 97.78 53 | 98.39 33 | 99.54 10 | 98.79 39 | 98.94 42 | 98.42 36 | 93.98 119 | 95.85 124 | 96.66 123 | 99.25 26 | 98.61 11 | 98.71 44 | 98.38 54 | 98.97 50 | 98.67 19 |
| Skip Steuart: Steuart Systems R&D Blog. |
| SED-MVS | | | 98.05 39 | 98.46 25 | 97.57 82 | 99.01 58 | 98.99 23 | 98.82 55 | 98.24 53 | 95.76 57 | 94.70 159 | 98.96 47 | 99.49 9 | 96.19 101 | 98.74 38 | 98.65 41 | 98.46 85 | 98.63 20 |
|
| OPM-MVS | | | 98.01 40 | 98.01 41 | 98.00 58 | 99.11 49 | 98.12 88 | 98.68 64 | 97.72 93 | 96.65 30 | 96.68 90 | 98.40 81 | 99.28 22 | 97.44 55 | 98.20 71 | 97.82 84 | 98.40 91 | 97.58 71 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| Vis-MVSNet |  | | 98.01 40 | 98.42 26 | 97.54 85 | 96.89 181 | 98.82 37 | 99.14 24 | 97.59 98 | 96.30 37 | 97.04 73 | 99.26 36 | 98.83 63 | 96.01 106 | 98.73 40 | 98.21 64 | 98.58 76 | 98.75 13 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| CS-MVS | | | 98.00 42 | 97.38 68 | 98.73 15 | 98.72 77 | 99.15 11 | 99.12 26 | 98.76 21 | 91.58 153 | 98.15 31 | 96.70 121 | 98.72 75 | 98.20 24 | 98.64 51 | 98.92 24 | 99.43 19 | 97.97 49 |
|
| NR-MVSNet | | | 98.00 42 | 97.88 46 | 98.13 41 | 98.33 99 | 98.77 41 | 98.83 53 | 98.88 15 | 94.10 115 | 97.46 55 | 98.87 58 | 98.58 84 | 95.78 109 | 99.13 25 | 98.16 68 | 99.52 12 | 97.53 74 |
|
| CP-MVS | | | 98.00 42 | 97.57 62 | 98.50 26 | 99.47 20 | 98.56 61 | 98.91 44 | 98.38 42 | 94.71 94 | 97.01 75 | 95.20 149 | 99.06 37 | 98.20 24 | 98.61 52 | 98.46 46 | 99.02 43 | 98.40 33 |
|
| DPE-MVS |  | | 97.99 45 | 98.12 35 | 97.84 67 | 98.65 86 | 98.86 29 | 98.86 50 | 98.05 73 | 94.18 114 | 95.49 141 | 98.90 54 | 99.33 16 | 97.11 66 | 98.53 58 | 98.65 41 | 98.86 63 | 98.39 35 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| ACMMP |  | | 97.99 45 | 97.60 61 | 98.45 31 | 99.53 14 | 98.83 33 | 99.13 25 | 98.30 47 | 94.57 100 | 96.39 106 | 95.32 147 | 98.95 51 | 98.37 21 | 98.61 52 | 98.47 45 | 99.00 46 | 98.45 30 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| MP-MVS |  | | 97.98 47 | 97.53 64 | 98.50 26 | 99.56 8 | 98.58 59 | 98.97 38 | 98.39 41 | 93.49 126 | 97.14 67 | 96.08 136 | 99.23 28 | 98.06 31 | 98.50 60 | 98.38 54 | 98.90 58 | 98.44 31 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| EG-PatchMatch MVS | | | 97.98 47 | 97.92 43 | 98.04 53 | 98.84 70 | 98.04 96 | 97.90 108 | 96.83 142 | 95.07 81 | 98.79 15 | 99.07 43 | 99.37 14 | 97.88 40 | 98.74 38 | 98.16 68 | 98.01 113 | 96.96 98 |
|
| ACMP | | 94.03 12 | 97.97 49 | 97.61 60 | 98.39 33 | 99.43 24 | 98.51 65 | 98.97 38 | 98.06 70 | 94.63 98 | 96.10 115 | 96.12 135 | 99.20 30 | 98.63 9 | 98.68 45 | 98.20 67 | 99.14 33 | 97.93 52 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| CS-MVS-test | | | 97.96 50 | 97.38 68 | 98.64 21 | 98.57 88 | 99.13 12 | 99.36 13 | 98.66 25 | 91.67 152 | 98.17 30 | 96.91 116 | 98.84 61 | 97.99 35 | 98.80 35 | 98.88 28 | 99.08 41 | 97.43 81 |
|
| LGP-MVS_train | | | 97.96 50 | 97.53 64 | 98.45 31 | 99.45 21 | 98.64 55 | 99.09 27 | 98.27 50 | 92.99 138 | 96.04 118 | 96.57 124 | 99.29 19 | 98.66 8 | 98.73 40 | 98.42 51 | 99.19 31 | 98.09 44 |
|
| LS3D | | | 97.93 52 | 97.80 50 | 98.08 47 | 99.20 36 | 98.77 41 | 98.89 46 | 97.92 82 | 96.59 31 | 96.99 76 | 96.71 120 | 97.14 135 | 96.39 94 | 99.04 26 | 98.96 22 | 99.10 40 | 97.39 83 |
|
| SD-MVS | | | 97.84 53 | 97.78 53 | 97.90 61 | 98.33 99 | 98.06 93 | 97.95 104 | 97.80 92 | 96.03 46 | 96.72 86 | 97.57 100 | 99.18 31 | 97.50 53 | 97.88 77 | 97.08 102 | 99.11 38 | 98.68 18 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| RPSCF | | | 97.83 54 | 98.27 28 | 97.31 97 | 98.23 108 | 98.06 93 | 97.44 133 | 95.79 172 | 96.90 25 | 95.81 126 | 98.76 67 | 98.61 83 | 97.70 47 | 98.90 34 | 98.36 56 | 98.90 58 | 98.29 36 |
|
| thisisatest0515 | | | 97.82 55 | 97.67 57 | 97.99 59 | 98.49 91 | 98.07 92 | 98.48 77 | 98.06 70 | 95.35 73 | 97.74 43 | 98.83 61 | 97.61 124 | 96.74 77 | 97.53 95 | 98.30 61 | 98.43 90 | 98.01 48 |
|
| PGM-MVS | | | 97.82 55 | 97.25 74 | 98.48 29 | 99.54 10 | 98.75 48 | 99.02 31 | 98.35 45 | 92.41 142 | 96.84 84 | 95.39 146 | 98.99 45 | 98.24 23 | 98.43 62 | 98.34 57 | 98.90 58 | 98.41 32 |
|
| PMVS |  | 90.51 17 | 97.77 57 | 97.98 42 | 97.53 86 | 98.68 83 | 98.14 87 | 97.67 118 | 97.03 134 | 96.43 32 | 98.38 23 | 98.72 69 | 97.03 137 | 94.44 137 | 99.37 12 | 99.30 10 | 98.98 49 | 96.86 105 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| MSP-MVS | | | 97.67 58 | 97.88 46 | 97.43 92 | 99.34 28 | 98.99 23 | 98.87 49 | 98.12 66 | 95.63 59 | 94.16 175 | 97.45 103 | 99.50 8 | 96.44 93 | 96.35 133 | 98.70 37 | 97.65 129 | 98.57 24 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| tfpnnormal | | | 97.66 59 | 97.79 51 | 97.52 88 | 98.32 101 | 98.53 63 | 98.45 80 | 97.69 94 | 97.59 17 | 96.12 114 | 97.79 95 | 96.70 142 | 95.69 113 | 98.35 68 | 98.34 57 | 98.85 64 | 97.22 93 |
|
| FC-MVSNet-train | | | 97.65 60 | 98.16 33 | 97.05 109 | 98.85 68 | 98.85 30 | 99.34 14 | 98.08 69 | 94.50 105 | 94.41 166 | 99.21 37 | 98.80 67 | 92.66 164 | 98.98 30 | 98.85 31 | 98.96 52 | 97.94 51 |
|
| v10 | | | 97.64 61 | 97.26 73 | 98.08 47 | 98.07 121 | 98.56 61 | 98.86 50 | 98.18 61 | 94.48 106 | 98.24 28 | 99.56 15 | 98.98 46 | 97.72 46 | 96.05 143 | 96.26 130 | 97.42 138 | 96.93 99 |
|
| EC-MVSNet | | | 97.63 62 | 96.88 96 | 98.50 26 | 98.74 76 | 99.16 10 | 99.33 15 | 98.83 18 | 88.77 182 | 96.62 92 | 96.48 126 | 97.75 116 | 98.19 26 | 99.00 28 | 98.76 34 | 99.29 27 | 98.27 40 |
|
| X-MVS | | | 97.60 63 | 97.00 91 | 98.29 36 | 99.50 17 | 98.76 44 | 98.90 45 | 98.37 43 | 94.67 97 | 96.40 102 | 91.47 198 | 98.78 69 | 97.60 52 | 98.55 55 | 98.50 44 | 98.96 52 | 98.29 36 |
|
| 3Dnovator+ | | 96.20 4 | 97.58 64 | 97.14 82 | 98.10 42 | 98.98 63 | 97.85 108 | 98.60 69 | 98.33 46 | 96.41 34 | 97.23 65 | 94.66 162 | 97.26 132 | 96.91 74 | 97.91 76 | 97.87 80 | 98.53 80 | 98.03 46 |
|
| DCV-MVSNet | | | 97.56 65 | 97.63 59 | 97.47 90 | 98.41 96 | 99.12 13 | 98.63 67 | 98.57 26 | 95.71 58 | 95.60 138 | 93.79 177 | 98.01 111 | 94.25 139 | 99.16 23 | 98.88 28 | 99.35 21 | 98.74 14 |
|
| HPM-MVS++ |  | | 97.56 65 | 97.11 86 | 98.09 43 | 99.18 38 | 97.95 103 | 98.57 70 | 98.20 57 | 94.08 117 | 97.25 64 | 95.96 140 | 98.81 66 | 97.13 65 | 97.51 96 | 97.30 99 | 98.21 101 | 98.15 43 |
|
| FC-MVSNet-test | | | 97.54 67 | 98.26 29 | 96.70 126 | 98.87 66 | 97.79 115 | 98.49 76 | 98.56 27 | 96.04 42 | 90.39 204 | 99.65 8 | 98.67 76 | 95.15 124 | 99.23 19 | 99.07 14 | 98.73 69 | 97.39 83 |
|
| TSAR-MVS + ACMM | | | 97.54 67 | 97.79 51 | 97.26 98 | 98.23 108 | 98.10 91 | 97.71 116 | 97.88 85 | 95.97 47 | 95.57 140 | 98.71 70 | 98.57 85 | 97.36 58 | 97.74 84 | 96.81 111 | 96.83 164 | 98.59 23 |
|
| DeepC-MVS_fast | | 95.38 6 | 97.53 69 | 97.30 72 | 97.79 72 | 98.83 71 | 97.64 118 | 98.18 90 | 97.14 130 | 95.57 63 | 97.83 40 | 97.10 114 | 98.80 67 | 96.53 90 | 97.41 99 | 97.32 97 | 98.24 100 | 97.26 89 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| v1192 | | | 97.52 70 | 97.03 90 | 98.09 43 | 98.31 104 | 98.01 98 | 98.96 41 | 97.25 126 | 95.22 75 | 98.89 12 | 99.64 9 | 98.83 63 | 97.68 48 | 95.63 150 | 95.91 140 | 97.47 134 | 95.97 135 |
|
| v1144 | | | 97.51 71 | 97.05 89 | 98.04 53 | 98.26 106 | 97.98 100 | 98.88 48 | 97.42 116 | 95.38 72 | 98.56 18 | 99.59 14 | 99.01 44 | 97.65 49 | 95.77 147 | 96.06 137 | 97.47 134 | 95.56 147 |
|
| v8 | | | 97.51 71 | 97.16 80 | 97.91 60 | 97.99 128 | 98.48 67 | 98.76 57 | 98.17 63 | 94.54 104 | 97.69 45 | 99.48 20 | 98.76 72 | 97.63 51 | 96.10 142 | 96.14 132 | 97.20 148 | 96.64 113 |
|
| v1921920 | | | 97.50 73 | 97.00 91 | 98.07 49 | 98.20 112 | 97.94 106 | 99.03 30 | 97.06 132 | 95.29 74 | 99.01 9 | 99.62 11 | 98.73 74 | 97.74 45 | 95.52 153 | 95.78 145 | 97.39 140 | 96.12 131 |
|
| Anonymous20231211 | | | 97.49 74 | 97.91 44 | 97.00 112 | 98.31 104 | 98.72 52 | 98.27 87 | 97.84 89 | 94.76 93 | 94.77 158 | 98.14 88 | 98.38 95 | 93.60 149 | 98.96 31 | 98.66 40 | 99.22 30 | 97.77 60 |
|
| v144192 | | | 97.49 74 | 96.99 93 | 98.07 49 | 98.11 120 | 97.95 103 | 99.02 31 | 97.21 127 | 94.90 89 | 98.88 13 | 99.53 17 | 98.89 56 | 97.75 44 | 95.59 151 | 95.90 141 | 97.43 137 | 96.16 129 |
|
| test1111 | | | 97.48 76 | 97.20 77 | 97.81 71 | 98.78 74 | 98.85 30 | 98.68 64 | 98.40 37 | 96.68 28 | 94.84 156 | 99.13 41 | 90.32 190 | 97.01 71 | 99.27 17 | 99.05 17 | 99.19 31 | 97.10 95 |
|
| GeoE | | | 97.48 76 | 96.84 100 | 98.22 38 | 99.01 58 | 98.39 70 | 98.85 52 | 98.76 21 | 92.37 143 | 97.53 50 | 97.58 99 | 98.23 102 | 97.11 66 | 97.57 94 | 96.98 105 | 98.10 109 | 96.78 108 |
|
| APD-MVS |  | | 97.47 78 | 97.16 80 | 97.84 67 | 99.32 31 | 98.39 70 | 98.47 79 | 98.21 56 | 92.08 148 | 95.23 145 | 96.68 122 | 98.90 54 | 96.99 72 | 98.20 71 | 98.21 64 | 98.80 66 | 97.67 64 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| PVSNet_Blended_VisFu | | | 97.44 79 | 97.14 82 | 97.79 72 | 99.15 42 | 98.44 68 | 98.32 85 | 97.66 96 | 93.74 125 | 97.73 44 | 98.79 63 | 96.93 140 | 95.64 118 | 97.69 86 | 96.91 108 | 98.25 99 | 97.50 77 |
|
| PHI-MVS | | | 97.44 79 | 97.17 79 | 97.74 75 | 98.14 117 | 98.41 69 | 98.03 100 | 97.50 106 | 92.07 149 | 98.01 36 | 97.33 108 | 98.62 82 | 96.02 105 | 98.34 70 | 98.21 64 | 98.76 68 | 97.24 92 |
|
| v1240 | | | 97.43 81 | 96.87 99 | 98.09 43 | 98.25 107 | 97.92 107 | 99.02 31 | 97.06 132 | 94.77 92 | 99.09 8 | 99.68 6 | 98.51 88 | 97.78 43 | 95.25 158 | 95.81 143 | 97.32 144 | 96.13 130 |
|
| ECVR-MVS |  | | 97.40 82 | 97.11 86 | 97.73 76 | 98.66 84 | 98.83 33 | 98.50 74 | 98.40 37 | 96.04 42 | 95.00 154 | 98.95 49 | 91.07 187 | 96.70 79 | 99.28 14 | 99.04 19 | 99.14 33 | 96.58 115 |
|
| FMVSNet1 | | | 97.40 82 | 98.09 36 | 96.60 131 | 97.80 146 | 98.76 44 | 98.26 88 | 98.50 30 | 96.79 26 | 93.13 192 | 99.28 34 | 98.64 79 | 92.90 161 | 97.67 88 | 97.86 81 | 99.02 43 | 97.64 66 |
|
| casdiffmvs_mvg |  | | 97.34 84 | 97.65 58 | 96.97 113 | 97.74 149 | 98.33 74 | 98.45 80 | 97.18 128 | 95.81 53 | 93.92 179 | 99.04 44 | 99.05 40 | 95.48 119 | 97.00 116 | 97.71 87 | 99.07 42 | 96.63 114 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| v2v482 | | | 97.33 85 | 96.84 100 | 97.90 61 | 98.19 113 | 97.83 109 | 98.74 60 | 97.44 114 | 95.42 71 | 98.23 29 | 99.46 21 | 98.84 61 | 97.46 54 | 95.51 154 | 96.10 135 | 97.36 142 | 94.72 157 |
|
| EPP-MVSNet | | | 97.29 86 | 96.88 96 | 97.76 74 | 98.70 79 | 99.10 16 | 98.92 43 | 98.36 44 | 95.12 80 | 93.36 190 | 97.39 105 | 91.00 188 | 97.65 49 | 98.72 42 | 98.91 25 | 99.58 7 | 97.92 53 |
|
| MVS_111021_HR | | | 97.27 87 | 97.11 86 | 97.46 91 | 98.46 93 | 97.82 112 | 97.50 129 | 96.86 140 | 94.97 85 | 97.13 69 | 96.99 115 | 98.39 93 | 96.82 76 | 97.65 91 | 97.38 92 | 98.02 112 | 96.56 118 |
|
| SF-MVS | | | 97.26 88 | 97.43 66 | 97.05 109 | 98.80 73 | 97.83 109 | 96.02 182 | 97.44 114 | 94.98 84 | 95.74 130 | 97.16 111 | 98.45 92 | 95.72 111 | 97.85 78 | 97.97 76 | 98.60 74 | 97.78 58 |
|
| TSAR-MVS + GP. | | | 97.26 88 | 97.33 71 | 97.18 103 | 98.21 111 | 98.06 93 | 96.38 173 | 97.66 96 | 93.92 122 | 95.23 145 | 98.48 77 | 98.33 96 | 97.41 56 | 97.63 92 | 97.35 93 | 98.18 103 | 97.57 72 |
|
| OMC-MVS | | | 97.23 90 | 97.21 76 | 97.25 101 | 97.85 137 | 97.52 127 | 97.92 106 | 95.77 173 | 95.83 52 | 97.09 72 | 97.86 93 | 98.52 87 | 96.62 83 | 97.51 96 | 96.65 117 | 98.26 97 | 96.57 116 |
|
| 3Dnovator | | 96.31 3 | 97.22 91 | 97.19 78 | 97.25 101 | 98.14 117 | 97.95 103 | 98.03 100 | 96.77 145 | 96.42 33 | 97.14 67 | 95.11 150 | 97.59 125 | 95.14 126 | 97.79 82 | 97.72 85 | 98.26 97 | 97.76 62 |
|
| MVS_0304 | | | 97.18 92 | 96.84 100 | 97.58 81 | 99.15 42 | 98.19 80 | 98.11 95 | 97.81 91 | 92.36 144 | 98.06 34 | 97.43 104 | 99.06 37 | 94.24 140 | 96.80 121 | 96.54 121 | 98.12 107 | 97.52 75 |
|
| canonicalmvs | | | 97.11 93 | 96.88 96 | 97.38 93 | 98.34 98 | 98.72 52 | 97.52 128 | 97.94 80 | 95.60 60 | 95.01 153 | 94.58 163 | 94.50 166 | 96.59 85 | 97.84 79 | 98.03 74 | 98.90 58 | 98.91 8 |
|
| V42 | | | 97.10 94 | 96.97 94 | 97.26 98 | 97.64 153 | 97.60 120 | 98.45 80 | 95.99 161 | 94.44 107 | 97.35 59 | 99.40 26 | 98.63 81 | 97.34 60 | 96.33 136 | 96.38 127 | 96.82 166 | 96.00 133 |
|
| CPTT-MVS | | | 97.08 95 | 96.25 114 | 98.05 52 | 99.21 35 | 98.30 75 | 98.54 73 | 97.98 78 | 94.28 111 | 95.89 123 | 89.57 207 | 98.54 86 | 98.18 27 | 97.82 81 | 97.32 97 | 98.54 78 | 97.91 54 |
|
| DeepPCF-MVS | | 94.55 10 | 97.05 96 | 97.13 85 | 96.95 115 | 96.06 196 | 97.12 144 | 98.01 102 | 95.44 179 | 95.18 77 | 97.50 52 | 97.86 93 | 98.08 107 | 97.31 62 | 97.23 104 | 97.00 104 | 97.36 142 | 97.45 79 |
|
| QAPM | | | 97.04 97 | 97.14 82 | 96.93 117 | 97.78 148 | 98.02 97 | 97.36 138 | 96.72 146 | 94.68 96 | 96.23 108 | 97.21 110 | 97.68 121 | 95.70 112 | 97.37 100 | 97.24 101 | 97.78 122 | 97.77 60 |
|
| CNVR-MVS | | | 97.03 98 | 96.77 105 | 97.34 94 | 98.89 65 | 97.67 117 | 97.64 121 | 97.17 129 | 94.40 109 | 95.70 134 | 94.02 172 | 98.76 72 | 96.49 92 | 97.78 83 | 97.29 100 | 98.12 107 | 97.47 78 |
|
| casdiffmvs |  | | 97.00 99 | 97.36 70 | 96.59 132 | 97.65 152 | 97.98 100 | 98.06 97 | 96.81 143 | 95.78 55 | 92.77 198 | 99.40 26 | 99.26 25 | 95.65 117 | 96.70 125 | 96.39 126 | 98.59 75 | 95.99 134 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| v148 | | | 96.99 100 | 96.70 107 | 97.34 94 | 97.89 135 | 97.23 136 | 98.33 84 | 96.96 135 | 95.57 63 | 97.12 70 | 98.99 46 | 99.40 12 | 97.23 63 | 96.22 139 | 95.45 150 | 96.50 172 | 94.02 169 |
|
| DELS-MVS | | | 96.90 101 | 97.24 75 | 96.50 137 | 97.85 137 | 98.18 81 | 97.88 111 | 95.92 165 | 93.48 127 | 95.34 143 | 98.86 60 | 98.94 53 | 94.03 143 | 97.33 102 | 97.04 103 | 98.00 114 | 96.85 106 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| MVS_111021_LR | | | 96.86 102 | 96.72 106 | 97.03 111 | 97.80 146 | 97.06 147 | 97.04 152 | 95.51 178 | 94.55 101 | 97.47 53 | 97.35 107 | 97.68 121 | 96.66 81 | 97.11 109 | 96.73 113 | 97.69 126 | 96.57 116 |
|
| PM-MVS | | | 96.85 103 | 96.62 109 | 97.11 105 | 97.13 176 | 96.51 160 | 98.29 86 | 94.65 196 | 94.84 90 | 98.12 32 | 98.59 73 | 97.20 133 | 97.41 56 | 96.24 138 | 96.41 125 | 97.09 153 | 96.56 118 |
|
| pmmvs-eth3d | | | 96.84 104 | 96.22 116 | 97.56 83 | 97.63 155 | 96.38 167 | 98.74 60 | 96.91 138 | 94.63 98 | 98.26 26 | 99.43 23 | 98.28 98 | 96.58 87 | 94.52 168 | 95.54 148 | 97.24 146 | 94.75 156 |
|
| CANet | | | 96.81 105 | 96.50 110 | 97.17 104 | 99.10 51 | 97.96 102 | 97.86 112 | 97.51 104 | 91.30 156 | 97.75 42 | 97.64 97 | 97.89 114 | 93.39 153 | 96.98 117 | 96.73 113 | 97.40 139 | 96.99 97 |
|
| Fast-Effi-MVS+ | | | 96.80 106 | 95.92 127 | 97.84 67 | 98.57 88 | 97.46 130 | 98.06 97 | 98.24 53 | 89.64 177 | 97.57 49 | 96.45 127 | 97.35 130 | 96.73 78 | 97.22 105 | 96.64 118 | 97.86 119 | 96.65 112 |
|
| MCST-MVS | | | 96.79 107 | 96.08 120 | 97.62 79 | 98.78 74 | 97.52 127 | 98.01 102 | 97.32 124 | 93.20 130 | 95.84 125 | 93.97 174 | 98.12 105 | 97.34 60 | 96.34 134 | 95.88 142 | 98.45 86 | 97.51 76 |
|
| UGNet | | | 96.79 107 | 97.82 49 | 95.58 160 | 97.57 158 | 98.39 70 | 98.48 77 | 97.84 89 | 95.85 51 | 94.68 160 | 97.91 92 | 99.07 36 | 87.12 204 | 97.71 85 | 97.51 89 | 97.80 120 | 98.29 36 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| TAPA-MVS | | 93.96 13 | 96.79 107 | 96.70 107 | 96.90 119 | 97.64 153 | 97.58 121 | 97.54 127 | 94.50 198 | 95.14 78 | 96.64 91 | 96.76 119 | 97.90 113 | 96.63 82 | 95.98 144 | 96.14 132 | 98.45 86 | 97.39 83 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| CLD-MVS | | | 96.73 110 | 96.92 95 | 96.51 136 | 98.70 79 | 97.57 123 | 97.64 121 | 92.07 205 | 93.10 136 | 96.31 107 | 98.29 83 | 99.02 43 | 95.99 107 | 97.20 106 | 96.47 123 | 98.37 93 | 96.81 107 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| train_agg | | | 96.68 111 | 95.93 126 | 97.56 83 | 99.08 53 | 97.16 140 | 98.44 83 | 97.37 120 | 91.12 160 | 95.18 147 | 95.43 145 | 98.48 90 | 97.36 58 | 96.48 130 | 95.52 149 | 97.95 117 | 97.34 87 |
|
| CDPH-MVS | | | 96.68 111 | 95.99 123 | 97.48 89 | 99.13 47 | 97.64 118 | 98.08 96 | 97.46 110 | 90.56 166 | 95.13 148 | 94.87 158 | 98.27 99 | 96.56 88 | 97.09 110 | 96.45 124 | 98.54 78 | 97.08 96 |
|
| MSLP-MVS++ | | | 96.66 113 | 96.46 113 | 96.89 120 | 98.02 123 | 97.71 116 | 95.57 189 | 96.96 135 | 94.36 110 | 96.19 112 | 91.37 199 | 98.24 100 | 97.07 68 | 97.69 86 | 97.89 78 | 97.52 132 | 97.95 50 |
|
| TinyColmap | | | 96.64 114 | 96.07 121 | 97.32 96 | 97.84 142 | 96.40 164 | 97.63 123 | 96.25 156 | 95.86 50 | 98.98 10 | 97.94 91 | 96.34 149 | 96.17 102 | 97.30 103 | 95.38 153 | 97.04 155 | 93.24 176 |
|
| IS_MVSNet | | | 96.62 115 | 96.48 112 | 96.78 124 | 98.46 93 | 98.68 54 | 98.61 68 | 98.24 53 | 92.23 145 | 89.63 209 | 95.90 141 | 94.40 167 | 96.23 97 | 98.65 49 | 98.77 33 | 99.52 12 | 96.76 109 |
|
| NCCC | | | 96.56 116 | 95.68 129 | 97.59 80 | 99.04 57 | 97.54 126 | 97.67 118 | 97.56 102 | 94.84 90 | 96.10 115 | 87.91 210 | 98.09 106 | 96.98 73 | 97.20 106 | 96.80 112 | 98.21 101 | 97.38 86 |
|
| WB-MVS | | | 96.54 117 | 98.09 36 | 94.73 177 | 96.68 188 | 98.34 73 | 94.77 208 | 97.39 117 | 98.12 10 | 89.72 208 | 98.95 49 | 99.32 18 | 93.33 154 | 98.67 46 | 97.88 79 | 96.47 174 | 95.38 150 |
|
| ETV-MVS | | | 96.54 117 | 95.27 137 | 98.02 56 | 99.07 55 | 97.48 129 | 98.16 93 | 98.19 59 | 87.33 197 | 97.58 48 | 92.67 186 | 95.93 155 | 96.22 98 | 98.49 61 | 98.46 46 | 98.91 57 | 96.50 121 |
|
| Effi-MVS+ | | | 96.46 119 | 95.28 136 | 97.85 66 | 98.64 87 | 97.16 140 | 97.15 150 | 98.75 23 | 90.27 170 | 98.03 35 | 93.93 175 | 96.21 150 | 96.55 89 | 96.34 134 | 96.69 116 | 97.97 116 | 96.33 124 |
|
| IterMVS-LS | | | 96.35 120 | 95.85 128 | 96.93 117 | 97.53 159 | 98.00 99 | 97.37 136 | 97.97 79 | 95.49 70 | 96.71 89 | 98.94 51 | 93.23 174 | 94.82 131 | 93.15 187 | 95.05 156 | 97.17 150 | 97.12 94 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| USDC | | | 96.30 121 | 95.64 131 | 97.07 107 | 97.62 156 | 96.35 169 | 97.17 149 | 95.71 174 | 95.52 68 | 99.17 7 | 98.11 89 | 97.46 127 | 95.67 114 | 95.44 156 | 93.60 176 | 97.09 153 | 92.99 180 |
|
| Vis-MVSNet (Re-imp) | | | 96.29 122 | 96.50 110 | 96.05 145 | 97.96 131 | 97.83 109 | 97.30 141 | 97.86 87 | 93.14 132 | 88.90 212 | 96.80 118 | 95.28 159 | 95.15 124 | 98.37 67 | 98.25 63 | 99.12 37 | 95.84 137 |
|
| MSDG | | | 96.27 123 | 96.17 119 | 96.38 141 | 97.85 137 | 96.27 171 | 96.55 170 | 94.41 199 | 94.55 101 | 95.62 137 | 97.56 101 | 97.80 115 | 96.22 98 | 97.17 108 | 96.27 129 | 97.67 128 | 93.60 173 |
|
| CNLPA | | | 96.24 124 | 95.97 124 | 96.57 134 | 97.48 165 | 97.10 146 | 96.75 163 | 94.95 190 | 94.92 88 | 96.20 111 | 94.81 159 | 96.61 144 | 96.25 96 | 96.94 118 | 95.64 146 | 97.79 121 | 95.74 143 |
|
| EIA-MVS | | | 96.23 125 | 94.85 149 | 97.84 67 | 99.08 53 | 98.21 78 | 97.69 117 | 98.03 75 | 85.68 207 | 98.09 33 | 91.75 197 | 97.07 136 | 95.66 116 | 97.58 93 | 97.72 85 | 98.47 84 | 95.91 136 |
|
| PLC |  | 92.55 15 | 96.10 126 | 95.36 133 | 96.96 114 | 98.13 119 | 96.88 151 | 96.49 171 | 96.67 150 | 94.07 118 | 95.71 133 | 91.14 200 | 96.09 152 | 96.84 75 | 96.70 125 | 96.58 120 | 97.92 118 | 96.03 132 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| test20.03 | | | 96.08 127 | 96.80 103 | 95.25 169 | 99.19 37 | 97.58 121 | 97.24 146 | 97.56 102 | 94.95 87 | 91.91 199 | 98.58 74 | 98.03 109 | 87.88 200 | 97.43 98 | 96.94 107 | 97.69 126 | 94.05 168 |
|
| FA-MVS(training) | | | 96.07 128 | 95.59 132 | 96.63 129 | 98.00 127 | 97.44 131 | 97.36 138 | 98.53 28 | 92.21 146 | 95.97 120 | 96.18 133 | 94.22 170 | 92.98 158 | 96.79 122 | 96.70 115 | 96.95 160 | 95.56 147 |
|
| TSAR-MVS + COLMAP | | | 96.05 129 | 95.94 125 | 96.18 144 | 97.46 166 | 96.41 163 | 97.26 145 | 95.83 169 | 94.69 95 | 95.30 144 | 98.31 82 | 96.52 145 | 94.71 133 | 95.48 155 | 94.87 158 | 96.54 171 | 95.33 151 |
|
| EU-MVSNet | | | 96.03 130 | 96.23 115 | 95.80 154 | 95.48 209 | 94.18 190 | 98.99 36 | 91.51 207 | 97.22 21 | 97.66 46 | 99.15 40 | 98.51 88 | 98.08 30 | 95.92 145 | 92.88 183 | 93.09 196 | 95.72 144 |
|
| PCF-MVS | | 92.69 14 | 95.98 131 | 95.05 144 | 97.06 108 | 98.43 95 | 97.56 124 | 97.76 114 | 96.65 151 | 89.95 175 | 95.70 134 | 96.18 133 | 98.48 90 | 95.74 110 | 93.64 179 | 93.35 180 | 98.09 111 | 96.18 128 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| HQP-MVS | | | 95.97 132 | 95.01 146 | 97.08 106 | 98.72 77 | 97.19 138 | 97.07 151 | 96.69 149 | 91.49 154 | 95.77 129 | 92.19 192 | 97.93 112 | 96.15 103 | 94.66 165 | 94.16 167 | 98.10 109 | 97.45 79 |
|
| Effi-MVS+-dtu | | | 95.94 133 | 95.08 143 | 96.94 116 | 98.54 90 | 97.38 132 | 96.66 167 | 97.89 84 | 88.68 183 | 95.92 121 | 92.90 185 | 97.28 131 | 94.18 142 | 96.68 127 | 96.13 134 | 98.45 86 | 96.51 120 |
|
| diffmvs |  | | 95.86 134 | 96.21 117 | 95.44 163 | 97.25 174 | 96.85 154 | 96.99 155 | 95.23 184 | 94.96 86 | 92.82 197 | 98.89 55 | 98.85 59 | 93.52 151 | 94.21 174 | 94.25 166 | 96.84 163 | 95.49 149 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| AdaColmap |  | | 95.85 135 | 94.65 152 | 97.26 98 | 98.70 79 | 97.20 137 | 97.33 140 | 97.30 125 | 91.28 158 | 95.90 122 | 88.16 209 | 96.17 151 | 96.60 84 | 97.34 101 | 96.82 110 | 97.71 123 | 95.60 146 |
|
| FMVSNet2 | | | 95.77 136 | 96.20 118 | 95.27 167 | 96.77 184 | 98.18 81 | 97.28 142 | 97.90 83 | 93.12 133 | 91.37 201 | 98.25 85 | 96.05 153 | 90.04 184 | 94.96 163 | 95.94 139 | 98.28 94 | 96.90 100 |
|
| OpenMVS |  | 94.63 9 | 95.75 137 | 95.04 145 | 96.58 133 | 97.85 137 | 97.55 125 | 96.71 165 | 96.07 158 | 90.15 173 | 96.47 97 | 90.77 205 | 95.95 154 | 94.41 138 | 97.01 115 | 96.95 106 | 98.00 114 | 96.90 100 |
|
| pmmvs5 | | | 95.70 138 | 95.22 138 | 96.26 142 | 96.55 191 | 97.24 135 | 97.50 129 | 94.99 189 | 90.95 162 | 96.87 80 | 98.47 78 | 97.40 128 | 94.45 136 | 92.86 188 | 94.98 157 | 97.23 147 | 94.64 159 |
|
| Anonymous20231206 | | | 95.69 139 | 95.68 129 | 95.70 156 | 98.32 101 | 96.95 149 | 97.37 136 | 96.65 151 | 93.33 128 | 93.61 184 | 98.70 71 | 98.03 109 | 91.04 173 | 95.07 161 | 94.59 165 | 97.20 148 | 93.09 179 |
|
| MAR-MVS | | | 95.51 140 | 94.49 156 | 96.71 125 | 97.92 133 | 96.40 164 | 96.72 164 | 98.04 74 | 86.74 201 | 96.72 86 | 92.52 189 | 95.14 161 | 94.02 144 | 96.81 120 | 96.54 121 | 96.85 161 | 97.25 90 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| DI_MVS_plusplus_trai | | | 95.48 141 | 94.51 154 | 96.61 130 | 97.13 176 | 97.30 134 | 98.05 99 | 96.79 144 | 93.75 124 | 95.08 151 | 96.38 128 | 89.76 192 | 94.95 127 | 93.97 178 | 94.82 162 | 97.64 130 | 95.63 145 |
|
| MDA-MVSNet-bldmvs | | | 95.45 142 | 95.20 139 | 95.74 155 | 94.24 214 | 96.38 167 | 97.93 105 | 94.80 191 | 95.56 66 | 96.87 80 | 98.29 83 | 95.24 160 | 96.50 91 | 98.65 49 | 90.38 195 | 94.09 190 | 91.93 184 |
|
| PVSNet_BlendedMVS | | | 95.44 143 | 95.09 141 | 95.86 152 | 97.31 171 | 97.13 142 | 96.31 176 | 95.01 187 | 88.55 186 | 96.23 108 | 94.55 166 | 97.75 116 | 92.56 166 | 96.42 131 | 95.44 151 | 97.71 123 | 95.81 138 |
|
| PVSNet_Blended | | | 95.44 143 | 95.09 141 | 95.86 152 | 97.31 171 | 97.13 142 | 96.31 176 | 95.01 187 | 88.55 186 | 96.23 108 | 94.55 166 | 97.75 116 | 92.56 166 | 96.42 131 | 95.44 151 | 97.71 123 | 95.81 138 |
|
| pmmvs4 | | | 95.37 145 | 94.25 157 | 96.67 128 | 97.01 179 | 95.28 184 | 97.60 124 | 96.07 158 | 93.11 134 | 97.29 62 | 98.09 90 | 94.23 169 | 95.21 123 | 91.56 199 | 93.91 173 | 96.82 166 | 93.59 174 |
|
| MVS_Test | | | 95.34 146 | 94.88 148 | 95.89 151 | 96.93 180 | 96.84 155 | 96.66 167 | 97.08 131 | 90.06 174 | 94.02 176 | 97.61 98 | 96.64 143 | 93.59 150 | 92.73 191 | 94.02 171 | 97.03 156 | 96.24 125 |
|
| GBi-Net | | | 95.21 147 | 95.35 134 | 95.04 172 | 96.77 184 | 98.18 81 | 97.28 142 | 97.58 99 | 88.43 188 | 90.28 205 | 96.01 137 | 92.43 178 | 90.04 184 | 97.67 88 | 97.86 81 | 98.28 94 | 96.90 100 |
|
| test1 | | | 95.21 147 | 95.35 134 | 95.04 172 | 96.77 184 | 98.18 81 | 97.28 142 | 97.58 99 | 88.43 188 | 90.28 205 | 96.01 137 | 92.43 178 | 90.04 184 | 97.67 88 | 97.86 81 | 98.28 94 | 96.90 100 |
|
| IterMVS-SCA-FT | | | 95.16 149 | 93.95 161 | 96.56 135 | 97.89 135 | 96.69 157 | 96.94 157 | 96.05 160 | 93.06 137 | 97.35 59 | 98.79 63 | 91.45 183 | 95.93 108 | 92.78 189 | 91.00 193 | 95.22 186 | 93.91 171 |
|
| HyFIR lowres test | | | 95.05 150 | 93.54 166 | 96.81 123 | 97.81 145 | 96.88 151 | 98.18 90 | 97.46 110 | 94.28 111 | 94.98 155 | 96.57 124 | 92.89 177 | 96.15 103 | 90.90 204 | 91.87 189 | 96.28 178 | 91.35 185 |
|
| CHOSEN 1792x2688 | | | 94.98 151 | 94.69 151 | 95.31 165 | 97.27 173 | 95.58 180 | 97.90 108 | 95.56 177 | 95.03 82 | 93.77 183 | 95.65 143 | 99.29 19 | 95.30 121 | 91.51 200 | 91.28 192 | 92.05 204 | 94.50 161 |
|
| CANet_DTU | | | 94.96 152 | 94.62 153 | 95.35 164 | 98.03 122 | 96.11 173 | 96.92 159 | 95.60 176 | 88.59 185 | 97.27 63 | 95.27 148 | 96.50 146 | 88.77 196 | 95.53 152 | 95.59 147 | 95.54 184 | 94.78 155 |
|
| CDS-MVSNet | | | 94.91 153 | 95.17 140 | 94.60 181 | 97.85 137 | 96.21 172 | 96.90 161 | 96.39 154 | 90.81 163 | 93.40 188 | 97.24 109 | 94.54 165 | 85.78 210 | 96.25 137 | 96.15 131 | 97.26 145 | 95.01 154 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| DPM-MVS | | | 94.86 154 | 93.90 163 | 95.99 147 | 98.19 113 | 96.52 159 | 96.29 178 | 95.95 162 | 93.11 134 | 94.61 162 | 88.17 208 | 96.44 147 | 93.77 148 | 93.33 182 | 93.54 178 | 97.11 152 | 96.22 126 |
|
| MS-PatchMatch | | | 94.84 155 | 94.76 150 | 94.94 175 | 96.38 192 | 94.69 189 | 95.90 184 | 94.03 201 | 92.49 141 | 93.81 181 | 95.79 142 | 96.38 148 | 94.54 134 | 94.70 164 | 94.85 159 | 94.97 188 | 94.43 163 |
|
| thisisatest0530 | | | 94.81 156 | 93.06 172 | 96.85 122 | 98.01 124 | 97.18 139 | 96.93 158 | 97.36 121 | 89.73 176 | 95.80 127 | 94.98 154 | 77.88 213 | 94.89 128 | 96.73 124 | 97.35 93 | 98.13 106 | 97.54 73 |
|
| tttt0517 | | | 94.81 156 | 93.04 173 | 96.88 121 | 98.15 116 | 97.37 133 | 96.99 155 | 97.36 121 | 89.51 178 | 95.74 130 | 94.89 156 | 77.53 215 | 94.89 128 | 96.94 118 | 97.35 93 | 98.17 104 | 97.70 63 |
|
| testgi | | | 94.81 156 | 96.05 122 | 93.35 192 | 99.06 56 | 96.87 153 | 97.57 126 | 96.70 148 | 95.77 56 | 88.60 214 | 93.19 183 | 98.87 58 | 81.21 218 | 97.03 114 | 96.64 118 | 96.97 159 | 93.99 170 |
|
| PatchMatch-RL | | | 94.79 159 | 93.75 165 | 96.00 146 | 96.80 183 | 95.00 186 | 95.47 194 | 95.25 183 | 90.68 165 | 95.80 127 | 92.97 184 | 93.64 172 | 95.67 114 | 96.13 141 | 95.81 143 | 96.99 158 | 92.01 183 |
|
| FPMVS | | | 94.70 160 | 94.99 147 | 94.37 183 | 95.84 202 | 93.20 195 | 96.00 183 | 91.93 206 | 95.03 82 | 94.64 161 | 94.68 160 | 93.29 173 | 90.95 174 | 98.07 75 | 97.34 96 | 96.85 161 | 93.29 175 |
|
| new-patchmatchnet | | | 94.48 161 | 94.02 159 | 95.02 174 | 97.51 163 | 95.00 186 | 95.68 188 | 94.26 200 | 97.32 20 | 95.73 132 | 99.60 12 | 98.22 104 | 91.30 169 | 94.13 175 | 84.41 205 | 95.65 183 | 89.45 196 |
|
| IterMVS | | | 94.48 161 | 93.46 168 | 95.66 157 | 97.52 160 | 96.43 161 | 97.20 147 | 94.73 194 | 92.91 140 | 96.44 98 | 98.75 68 | 91.10 185 | 94.53 135 | 92.10 195 | 90.10 197 | 93.51 193 | 92.84 182 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| MDTV_nov1_ep13_2view | | | 94.39 163 | 93.34 169 | 95.63 158 | 97.23 175 | 95.33 183 | 97.76 114 | 96.84 141 | 94.55 101 | 97.47 53 | 98.96 47 | 97.70 119 | 93.88 145 | 92.27 193 | 86.81 203 | 90.56 206 | 87.73 204 |
|
| Fast-Effi-MVS+-dtu | | | 94.34 164 | 93.26 171 | 95.62 159 | 97.82 143 | 95.97 176 | 95.86 185 | 99.01 13 | 86.88 199 | 93.39 189 | 90.83 203 | 95.46 158 | 90.61 178 | 94.46 170 | 94.68 163 | 97.01 157 | 94.51 160 |
|
| thres600view7 | | | 94.34 164 | 92.31 182 | 96.70 126 | 98.19 113 | 98.12 88 | 97.85 113 | 97.45 112 | 91.49 154 | 93.98 178 | 84.27 213 | 82.02 204 | 94.24 140 | 97.04 111 | 98.76 34 | 98.49 82 | 94.47 162 |
|
| EPNet | | | 94.33 166 | 93.52 167 | 95.27 167 | 98.81 72 | 94.71 188 | 96.77 162 | 98.20 57 | 88.12 191 | 96.53 95 | 92.53 188 | 91.19 184 | 85.25 214 | 95.22 159 | 95.26 154 | 96.09 181 | 97.63 70 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| test2506 | | | 94.29 167 | 91.43 190 | 97.64 78 | 98.66 84 | 98.83 33 | 98.50 74 | 98.40 37 | 96.04 42 | 94.45 165 | 94.88 157 | 55.05 229 | 96.70 79 | 99.28 14 | 99.04 19 | 99.14 33 | 96.87 104 |
|
| GA-MVS | | | 94.18 168 | 92.98 174 | 95.58 160 | 97.36 168 | 96.42 162 | 96.21 179 | 95.86 166 | 90.29 169 | 95.08 151 | 96.19 132 | 85.37 196 | 92.82 162 | 94.01 177 | 94.14 168 | 96.16 180 | 94.41 164 |
|
| gg-mvs-nofinetune | | | 94.13 169 | 93.93 162 | 94.37 183 | 97.99 128 | 95.86 177 | 95.45 197 | 99.22 9 | 97.61 16 | 95.10 150 | 99.50 19 | 84.50 197 | 81.73 217 | 95.31 157 | 94.12 169 | 96.71 169 | 90.59 189 |
|
| baseline | | | 94.07 170 | 94.50 155 | 93.57 190 | 96.34 193 | 93.40 194 | 95.56 192 | 92.39 204 | 92.07 149 | 94.00 177 | 98.24 86 | 97.51 126 | 89.19 190 | 91.75 197 | 92.72 184 | 93.96 192 | 95.79 140 |
|
| FMVSNet3 | | | 94.06 171 | 93.85 164 | 94.31 186 | 95.46 210 | 97.80 114 | 96.34 174 | 97.58 99 | 88.43 188 | 90.28 205 | 96.01 137 | 92.43 178 | 88.67 197 | 91.82 196 | 93.96 172 | 97.53 131 | 96.50 121 |
|
| thres400 | | | 94.04 172 | 91.94 185 | 96.50 137 | 97.98 130 | 97.82 112 | 97.66 120 | 96.96 135 | 90.96 161 | 94.20 172 | 83.24 215 | 82.82 202 | 93.80 146 | 96.50 129 | 98.09 70 | 98.38 92 | 94.15 166 |
|
| dmvs_re | | | 94.02 173 | 92.39 180 | 95.91 150 | 97.71 150 | 95.43 182 | 97.00 154 | 95.94 163 | 82.49 216 | 94.61 162 | 83.69 214 | 93.01 176 | 92.71 163 | 97.83 80 | 97.56 88 | 97.50 133 | 96.73 110 |
|
| CVMVSNet | | | 94.01 174 | 94.25 157 | 93.73 189 | 94.36 213 | 92.44 198 | 97.45 132 | 88.56 210 | 95.59 61 | 93.06 195 | 98.88 56 | 90.03 191 | 94.84 130 | 94.08 176 | 93.45 179 | 94.09 190 | 95.31 152 |
|
| thres200 | | | 93.98 175 | 91.90 186 | 96.40 140 | 97.66 151 | 98.12 88 | 97.20 147 | 97.45 112 | 90.16 172 | 93.82 180 | 83.08 216 | 83.74 200 | 93.80 146 | 97.04 111 | 97.48 91 | 98.49 82 | 93.70 172 |
|
| baseline1 | | | 93.89 176 | 92.82 176 | 95.14 171 | 97.62 156 | 96.97 148 | 96.12 180 | 96.36 155 | 91.30 156 | 91.53 200 | 94.68 160 | 80.72 206 | 90.80 176 | 95.71 148 | 96.29 128 | 98.44 89 | 94.09 167 |
|
| tfpn200view9 | | | 93.80 177 | 91.75 187 | 96.20 143 | 97.52 160 | 98.15 86 | 97.48 131 | 97.47 109 | 87.65 193 | 93.56 186 | 83.03 217 | 84.12 198 | 92.62 165 | 97.04 111 | 98.09 70 | 98.52 81 | 94.17 165 |
|
| MIMVSNet | | | 93.68 178 | 93.96 160 | 93.35 192 | 97.82 143 | 96.08 174 | 96.34 174 | 98.46 34 | 91.28 158 | 86.67 219 | 94.95 155 | 94.87 163 | 84.39 215 | 94.53 166 | 94.65 164 | 96.45 175 | 91.34 186 |
|
| pmnet_mix02 | | | 93.59 179 | 92.65 177 | 94.69 179 | 96.76 187 | 94.16 191 | 97.03 153 | 93.00 203 | 95.79 54 | 96.03 119 | 98.91 53 | 97.69 120 | 92.99 157 | 90.03 207 | 84.10 207 | 92.35 202 | 87.89 203 |
|
| EPNet_dtu | | | 93.45 180 | 92.51 179 | 94.55 182 | 98.39 97 | 91.67 207 | 95.46 195 | 97.50 106 | 86.56 202 | 97.38 57 | 93.52 178 | 94.20 171 | 85.82 209 | 93.31 184 | 92.53 185 | 92.72 198 | 95.76 142 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| IB-MVS | | 92.44 16 | 93.33 181 | 92.15 184 | 94.70 178 | 97.42 167 | 96.39 166 | 95.57 189 | 94.67 195 | 86.40 205 | 93.59 185 | 78.28 221 | 95.76 157 | 89.59 189 | 95.88 146 | 95.98 138 | 97.39 140 | 96.34 123 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| ET-MVSNet_ETH3D | | | 93.18 182 | 90.80 193 | 95.95 148 | 96.05 197 | 96.07 175 | 96.92 159 | 96.51 153 | 89.34 179 | 95.63 136 | 94.08 171 | 72.31 224 | 93.13 155 | 94.33 172 | 94.83 160 | 97.44 136 | 94.65 158 |
|
| thres100view900 | | | 92.93 183 | 90.89 192 | 95.31 165 | 97.52 160 | 96.82 156 | 96.41 172 | 95.08 185 | 87.65 193 | 93.56 186 | 83.03 217 | 84.12 198 | 91.12 172 | 94.53 166 | 96.91 108 | 98.17 104 | 93.21 177 |
|
| N_pmnet | | | 92.46 184 | 92.38 181 | 92.55 198 | 97.91 134 | 93.47 193 | 97.42 134 | 94.01 202 | 96.40 35 | 88.48 215 | 98.50 76 | 98.07 108 | 88.14 199 | 91.04 203 | 84.30 206 | 89.35 211 | 84.85 210 |
|
| TAMVS | | | 92.46 184 | 93.34 169 | 91.44 206 | 97.03 178 | 93.84 192 | 94.68 209 | 90.60 208 | 90.44 168 | 85.31 220 | 97.14 112 | 93.03 175 | 85.78 210 | 94.34 171 | 93.67 175 | 95.22 186 | 90.93 188 |
|
| CMPMVS |  | 71.81 19 | 92.34 186 | 92.85 175 | 91.75 204 | 92.70 218 | 90.43 212 | 88.84 221 | 88.56 210 | 85.87 206 | 94.35 169 | 90.98 201 | 95.89 156 | 91.14 171 | 96.14 140 | 94.83 160 | 94.93 189 | 95.78 141 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| baseline2 | | | 92.06 187 | 89.82 196 | 94.68 180 | 97.32 169 | 95.72 178 | 94.97 205 | 95.08 185 | 84.75 210 | 94.34 171 | 90.68 206 | 77.75 214 | 90.13 183 | 93.38 180 | 93.58 177 | 96.25 179 | 92.90 181 |
|
| MVSTER | | | 91.97 188 | 90.31 194 | 93.91 187 | 96.81 182 | 96.91 150 | 94.22 210 | 95.64 175 | 84.98 208 | 92.98 196 | 93.42 179 | 72.56 222 | 86.64 208 | 95.11 160 | 93.89 174 | 97.16 151 | 95.31 152 |
|
| CR-MVSNet | | | 91.94 189 | 88.50 199 | 95.94 149 | 96.14 195 | 92.08 202 | 95.23 200 | 98.47 32 | 84.30 212 | 96.44 98 | 94.58 163 | 75.57 216 | 92.92 159 | 90.22 205 | 92.22 186 | 96.43 176 | 90.56 190 |
|
| gm-plane-assit | | | 91.85 190 | 87.91 201 | 96.44 139 | 99.14 45 | 98.25 77 | 99.02 31 | 97.38 119 | 95.57 63 | 98.31 25 | 99.34 31 | 51.00 230 | 88.93 193 | 93.16 186 | 91.57 190 | 95.85 182 | 86.50 207 |
|
| PMMVS | | | 91.67 191 | 91.47 189 | 91.91 203 | 89.43 223 | 88.61 218 | 94.99 204 | 85.67 215 | 87.50 195 | 93.80 182 | 94.42 169 | 94.88 162 | 90.71 177 | 92.26 194 | 92.96 182 | 96.83 164 | 89.65 194 |
|
| CHOSEN 280x420 | | | 91.55 192 | 90.27 195 | 93.05 195 | 94.61 212 | 88.01 219 | 96.56 169 | 94.62 197 | 88.04 192 | 94.20 172 | 92.66 187 | 86.60 194 | 90.82 175 | 95.06 162 | 91.89 188 | 87.49 216 | 89.61 195 |
|
| PatchT | | | 91.40 193 | 88.54 198 | 94.74 176 | 91.48 222 | 92.18 201 | 97.42 134 | 97.51 104 | 84.96 209 | 96.44 98 | 94.16 170 | 75.47 217 | 92.92 159 | 90.22 205 | 92.22 186 | 92.66 201 | 90.56 190 |
|
| pmmvs3 | | | 91.20 194 | 91.40 191 | 90.96 208 | 91.71 221 | 91.08 208 | 95.41 198 | 81.34 219 | 87.36 196 | 94.57 164 | 95.02 152 | 94.30 168 | 90.42 179 | 94.28 173 | 89.26 199 | 92.30 203 | 88.49 201 |
|
| test0.0.03 1 | | | 91.17 195 | 91.50 188 | 90.80 209 | 98.01 124 | 95.46 181 | 94.22 210 | 95.80 170 | 86.55 203 | 81.75 222 | 90.83 203 | 87.93 193 | 78.48 219 | 94.51 169 | 94.11 170 | 96.50 172 | 91.08 187 |
|
| SCA | | | 91.15 196 | 87.65 203 | 95.23 170 | 96.15 194 | 95.68 179 | 96.68 166 | 98.18 61 | 90.46 167 | 97.21 66 | 92.44 190 | 80.17 208 | 93.51 152 | 86.04 214 | 83.58 210 | 89.68 210 | 85.21 209 |
|
| new_pmnet | | | 90.85 197 | 92.26 183 | 89.21 212 | 93.68 217 | 89.05 217 | 93.20 218 | 84.16 218 | 92.99 138 | 84.25 221 | 97.72 96 | 94.60 164 | 86.80 207 | 93.20 185 | 91.30 191 | 93.21 194 | 86.94 206 |
|
| RPMNet | | | 90.52 198 | 86.27 212 | 95.48 162 | 95.95 200 | 92.08 202 | 95.55 193 | 98.12 66 | 84.30 212 | 95.60 138 | 87.49 211 | 72.78 221 | 91.24 170 | 87.93 209 | 89.34 198 | 96.41 177 | 89.98 193 |
|
| MDTV_nov1_ep13 | | | 90.30 199 | 87.32 207 | 93.78 188 | 96.00 199 | 92.97 196 | 95.46 195 | 95.39 180 | 88.61 184 | 95.41 142 | 94.45 168 | 80.39 207 | 89.87 187 | 86.58 212 | 83.54 211 | 90.56 206 | 84.71 211 |
|
| PatchmatchNet |  | | 89.98 200 | 86.23 213 | 94.36 185 | 96.56 190 | 91.90 206 | 96.07 181 | 96.72 146 | 90.18 171 | 96.87 80 | 93.36 182 | 78.06 212 | 91.46 168 | 84.71 218 | 81.40 215 | 88.45 213 | 83.97 215 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| ADS-MVSNet | | | 89.89 201 | 87.70 202 | 92.43 200 | 95.52 207 | 90.91 210 | 95.57 189 | 95.33 181 | 93.19 131 | 91.21 202 | 93.41 180 | 82.12 203 | 89.05 191 | 86.21 213 | 83.77 209 | 87.92 214 | 84.31 212 |
|
| tpm | | | 89.84 202 | 86.81 209 | 93.36 191 | 96.60 189 | 91.92 205 | 95.02 203 | 97.39 117 | 86.79 200 | 96.54 94 | 95.03 151 | 69.70 225 | 87.66 201 | 88.79 208 | 86.19 204 | 86.95 218 | 89.27 197 |
|
| test-LLR | | | 89.77 203 | 87.47 205 | 92.45 199 | 98.01 124 | 89.77 214 | 93.25 216 | 95.80 170 | 81.56 218 | 89.19 210 | 92.08 193 | 79.59 209 | 85.77 212 | 91.47 201 | 89.04 201 | 92.69 199 | 88.75 198 |
|
| FMVSNet5 | | | 89.65 204 | 87.60 204 | 92.04 202 | 95.63 206 | 96.61 158 | 94.82 207 | 94.75 192 | 80.11 222 | 87.72 217 | 77.73 222 | 73.81 220 | 83.81 216 | 95.64 149 | 96.08 136 | 95.49 185 | 93.21 177 |
|
| EPMVS | | | 89.28 205 | 86.28 211 | 92.79 197 | 96.01 198 | 92.00 204 | 95.83 186 | 95.85 168 | 90.78 164 | 91.00 203 | 94.58 163 | 74.65 218 | 88.93 193 | 85.00 216 | 82.88 213 | 89.09 212 | 84.09 214 |
|
| test-mter | | | 89.16 206 | 88.14 200 | 90.37 210 | 94.79 211 | 91.05 209 | 93.60 215 | 85.26 216 | 81.65 217 | 88.32 216 | 92.22 191 | 79.35 211 | 87.03 205 | 92.28 192 | 90.12 196 | 93.19 195 | 90.29 192 |
|
| CostFormer | | | 89.06 207 | 85.65 214 | 93.03 196 | 95.88 201 | 92.40 199 | 95.30 199 | 95.86 166 | 86.49 204 | 93.12 194 | 93.40 181 | 74.18 219 | 88.25 198 | 82.99 219 | 81.46 214 | 89.77 209 | 88.66 200 |
|
| MVS-HIRNet | | | 88.72 208 | 86.49 210 | 91.33 207 | 91.81 220 | 85.66 220 | 87.02 223 | 96.25 156 | 81.48 220 | 94.82 157 | 96.31 131 | 92.14 181 | 90.32 181 | 87.60 210 | 83.82 208 | 87.74 215 | 78.42 219 |
|
| TESTMET0.1,1 | | | 88.60 209 | 87.47 205 | 89.93 211 | 94.23 215 | 89.77 214 | 93.25 216 | 84.47 217 | 81.56 218 | 89.19 210 | 92.08 193 | 79.59 209 | 85.77 212 | 91.47 201 | 89.04 201 | 92.69 199 | 88.75 198 |
|
| dps | | | 88.36 210 | 84.32 217 | 93.07 194 | 93.86 216 | 92.29 200 | 94.89 206 | 95.93 164 | 83.50 214 | 93.13 192 | 91.87 195 | 67.79 227 | 90.32 181 | 85.99 215 | 83.22 212 | 90.28 208 | 85.56 208 |
|
| tpmrst | | | 87.60 211 | 84.13 218 | 91.66 205 | 95.65 205 | 89.73 216 | 93.77 213 | 94.74 193 | 88.85 181 | 93.35 191 | 95.60 144 | 72.37 223 | 87.40 202 | 81.24 220 | 78.19 217 | 85.02 221 | 82.90 218 |
|
| tpm cat1 | | | 87.19 212 | 82.78 219 | 92.33 201 | 95.66 204 | 90.61 211 | 94.19 212 | 95.27 182 | 86.97 198 | 94.38 167 | 90.91 202 | 69.40 226 | 87.21 203 | 79.57 222 | 77.82 218 | 87.25 217 | 84.18 213 |
|
| E-PMN | | | 86.94 213 | 85.10 215 | 89.09 214 | 95.77 203 | 83.54 223 | 89.89 220 | 86.55 212 | 92.18 147 | 87.34 218 | 94.02 172 | 83.42 201 | 89.63 188 | 93.32 183 | 77.11 219 | 85.33 219 | 72.09 220 |
|
| EMVS | | | 86.63 214 | 84.48 216 | 89.15 213 | 95.51 208 | 83.66 222 | 90.19 219 | 86.14 214 | 91.78 151 | 88.68 213 | 93.83 176 | 81.97 205 | 89.05 191 | 92.76 190 | 76.09 220 | 85.31 220 | 71.28 221 |
|
| PMMVS2 | | | 86.47 215 | 92.62 178 | 79.29 216 | 92.01 219 | 85.63 221 | 93.74 214 | 86.37 213 | 93.95 121 | 54.18 227 | 98.19 87 | 97.39 129 | 58.46 220 | 96.57 128 | 93.07 181 | 90.99 205 | 83.55 217 |
|
| MVE |  | 72.99 18 | 85.37 216 | 89.43 197 | 80.63 215 | 74.43 224 | 71.94 225 | 88.25 222 | 89.81 209 | 93.27 129 | 67.32 225 | 96.32 130 | 91.83 182 | 90.40 180 | 93.36 181 | 90.79 194 | 73.55 224 | 88.49 201 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| test_method | | | 61.30 217 | 70.45 220 | 50.62 217 | 22.69 226 | 30.92 227 | 68.31 226 | 25.76 221 | 80.56 221 | 68.71 223 | 82.80 219 | 91.08 186 | 44.64 221 | 80.50 221 | 56.70 221 | 73.64 223 | 70.58 222 |
|
| GG-mvs-BLEND | | | 61.03 218 | 87.02 208 | 30.71 219 | 0.74 229 | 90.01 213 | 78.90 225 | 0.74 225 | 84.56 211 | 9.46 228 | 79.17 220 | 90.69 189 | 1.37 225 | 91.74 198 | 89.13 200 | 93.04 197 | 83.83 216 |
|
| testmvs | | | 4.99 219 | 6.88 221 | 2.78 221 | 1.73 227 | 2.04 229 | 3.10 229 | 1.71 223 | 7.27 224 | 3.92 230 | 12.18 224 | 6.71 231 | 3.31 224 | 6.94 223 | 5.51 223 | 2.94 226 | 7.51 223 |
|
| test123 | | | 4.41 220 | 5.71 222 | 2.88 220 | 1.28 228 | 2.21 228 | 3.09 230 | 1.65 224 | 6.35 225 | 4.98 229 | 8.53 225 | 3.88 232 | 3.46 223 | 5.79 224 | 5.71 222 | 2.85 227 | 7.50 224 |
|
| uanet_test | | | 0.00 221 | 0.00 223 | 0.00 222 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 226 | 0.00 226 | 0.00 231 | 0.00 226 | 0.00 233 | 0.00 226 | 0.00 225 | 0.00 224 | 0.00 228 | 0.00 225 |
|
| sosnet-low-res | | | 0.00 221 | 0.00 223 | 0.00 222 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 226 | 0.00 226 | 0.00 231 | 0.00 226 | 0.00 233 | 0.00 226 | 0.00 225 | 0.00 224 | 0.00 228 | 0.00 225 |
|
| sosnet | | | 0.00 221 | 0.00 223 | 0.00 222 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 226 | 0.00 226 | 0.00 231 | 0.00 226 | 0.00 233 | 0.00 226 | 0.00 225 | 0.00 224 | 0.00 228 | 0.00 225 |
|
| TPM-MVS | | | | | | 97.49 164 | 96.32 170 | 95.05 202 | | | 94.36 168 | 91.82 196 | 96.92 141 | 88.89 195 | | | 96.67 170 | 96.22 126 |
| Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025 |
| RE-MVS-def | | | | | | | | | | | 99.38 2 | | | | | | | |
|
| 9.14 | | | | | | | | | | | | | 96.98 139 | | | | | |
|
| SR-MVS | | | | | | 99.33 30 | | | 98.40 37 | | | | 98.90 54 | | | | | |
|
| Anonymous202405211 | | | | 97.39 67 | | 98.85 68 | 98.59 57 | 97.89 110 | 97.93 81 | 94.41 108 | | 97.37 106 | 96.99 138 | 93.09 156 | 98.61 52 | 98.46 46 | 99.11 38 | 97.27 88 |
|
| our_test_3 | | | | | | 97.32 169 | 95.13 185 | 97.59 125 | | | | | | | | | | |
|
| ambc | | | | 96.78 104 | | 99.01 58 | 97.11 145 | 95.73 187 | | 95.91 49 | 99.25 3 | 98.56 75 | 97.17 134 | 97.04 69 | 96.76 123 | 95.22 155 | 96.72 168 | 96.73 110 |
|
| MTAPA | | | | | | | | | | | 97.43 56 | | 99.27 23 | | | | | |
|
| MTMP | | | | | | | | | | | 97.63 47 | | 99.03 42 | | | | | |
|
| Patchmatch-RL test | | | | | | | | 17.42 228 | | | | | | | | | | |
|
| tmp_tt | | | | | 45.72 218 | 60.00 225 | 38.74 226 | 45.50 227 | 12.18 222 | 79.58 223 | 68.42 224 | 67.62 223 | 65.04 228 | 22.12 222 | 84.83 217 | 78.72 216 | 66.08 225 | |
|
| XVS | | | | | | 99.48 18 | 98.76 44 | 99.22 21 | | | 96.40 102 | | 98.78 69 | | | | 98.94 55 | |
|
| X-MVStestdata | | | | | | 99.48 18 | 98.76 44 | 99.22 21 | | | 96.40 102 | | 98.78 69 | | | | 98.94 55 | |
|
| mPP-MVS | | | | | | 99.58 6 | | | | | | | 98.98 46 | | | | | |
|
| NP-MVS | | | | | | | | | | 89.27 180 | | | | | | | | |
|
| Patchmtry | | | | | | | 92.70 197 | 95.23 200 | 98.47 32 | | 96.44 98 | | | | | | | |
|
| DeepMVS_CX |  | | | | | | 72.99 224 | 80.14 224 | 37.34 220 | 83.46 215 | 60.13 226 | 84.40 212 | 85.48 195 | 86.93 206 | 87.22 211 | | 79.61 222 | 87.32 205 |
|