This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB97.71 199.33 199.47 199.16 799.16 4199.11 1499.39 1299.16 1199.26 299.22 599.51 1899.75 498.54 1599.71 199.47 399.52 1299.46 1
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
SixPastTwentyTwo99.25 299.20 399.32 199.53 1499.32 899.64 299.19 1098.05 1199.19 699.74 498.96 5099.03 299.69 299.58 199.32 2599.06 6
WR-MVS99.22 399.15 599.30 299.54 1099.62 199.63 499.45 197.75 1598.47 2299.71 599.05 4098.88 499.54 599.49 299.81 198.87 11
PS-CasMVS99.08 498.90 1199.28 399.65 399.56 499.59 699.39 396.36 3698.83 1499.46 2199.09 3398.62 1099.51 799.36 899.63 398.97 7
PEN-MVS99.08 498.95 899.23 599.65 399.59 299.64 299.34 696.68 2898.65 1799.43 2399.33 1698.47 1799.50 899.32 999.60 598.79 13
v7n99.03 699.03 799.02 999.09 5299.11 1499.57 998.82 1998.21 999.25 399.84 299.59 698.76 699.23 1998.83 3298.63 7398.40 35
DTE-MVSNet99.03 698.88 1299.21 699.66 299.59 299.62 599.34 696.92 2498.52 1999.36 2998.98 4698.57 1399.49 999.23 1299.56 998.55 27
TDRefinement99.00 899.13 698.86 1098.99 6299.05 1999.58 798.29 4998.96 497.96 3799.40 2698.67 7698.87 599.60 399.46 499.46 1898.74 16
WR-MVS_H98.97 998.82 1499.14 899.56 899.56 499.54 1199.42 296.07 4198.37 2499.34 3199.09 3398.43 1899.45 1099.41 599.53 1098.86 12
UniMVSNet_ETH3D98.93 1099.20 398.63 2299.54 1099.33 798.73 6399.37 498.87 597.86 3999.27 3599.78 296.59 8599.52 699.40 699.67 298.21 43
CP-MVSNet98.91 1198.61 1999.25 499.63 599.50 699.55 1099.36 595.53 6998.77 1699.11 4298.64 7998.57 1399.42 1199.28 1199.61 498.78 14
anonymousdsp98.85 1298.88 1298.83 1198.69 8298.20 8199.68 197.35 12597.09 2398.98 1099.86 199.43 1098.94 399.28 1499.19 1399.33 2399.08 5
pmmvs698.77 1399.35 298.09 4398.32 10298.92 2598.57 7099.03 1299.36 196.86 8399.77 399.86 196.20 10199.56 499.39 799.59 698.61 24
ACMH95.26 798.75 1498.93 998.54 2598.86 6799.01 2199.58 798.10 6898.67 697.30 6199.18 3999.42 1198.40 1999.19 2198.86 3098.99 4898.19 44
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
COLMAP_ROBcopyleft96.84 298.75 1498.82 1498.66 2099.14 4598.79 3999.30 1797.67 9798.33 897.82 4199.20 3899.18 3198.76 699.27 1798.96 2299.29 2798.03 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
UA-Net98.66 1698.60 2298.73 1599.83 199.28 998.56 7299.24 896.04 4297.12 7098.44 7998.95 5198.17 2899.15 2499.00 2199.48 1799.33 3
DeepC-MVS96.08 598.58 1798.49 2498.68 1899.37 2698.52 6699.01 3598.17 6397.17 2298.25 2799.56 1599.62 598.29 2298.40 6398.09 7098.97 5098.08 47
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TranMVSNet+NR-MVSNet98.45 1898.22 3198.72 1799.32 3199.06 1798.99 3698.89 1495.52 7097.53 5099.42 2598.83 6398.01 3498.55 5598.34 5799.57 897.80 59
CSCG98.45 1898.61 1998.26 3799.11 4999.06 1798.17 9297.49 11097.93 1397.37 5898.88 5699.29 1998.10 2998.40 6397.51 9199.32 2599.16 4
DVP-MVS++98.44 2098.92 1097.88 6399.17 3999.00 2298.89 4698.26 5197.54 1896.05 11799.35 3099.76 396.34 9698.79 3798.65 4198.56 7999.35 2
Gipumacopyleft98.43 2198.15 3498.76 1499.00 6198.29 7897.91 10798.06 7099.02 399.50 196.33 12998.67 7699.22 199.02 2798.02 7698.88 6397.66 67
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ACMH+94.90 898.40 2298.71 1798.04 5398.93 6498.84 3299.30 1797.86 8997.78 1494.19 17598.77 6699.39 1398.61 1199.33 1399.07 1499.33 2397.81 58
ACMMPR98.31 2398.07 3998.60 2399.58 698.83 3399.09 2798.48 3196.25 3897.03 7496.81 11799.09 3398.39 2098.55 5598.45 4999.01 4598.53 30
APDe-MVScopyleft98.29 2498.42 2698.14 4099.45 2198.90 2699.18 2398.30 4795.96 4895.13 14898.79 6399.25 2697.92 3898.80 3598.71 3698.85 6698.54 28
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DVP-MVScopyleft98.27 2598.61 1997.87 6499.17 3999.03 2099.07 2998.17 6396.75 2794.35 17098.92 5299.58 797.86 4198.67 4698.70 3798.63 7398.63 22
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
TransMVSNet (Re)98.23 2698.72 1697.66 7798.22 11298.73 5098.66 6698.03 7598.60 796.40 10299.60 1298.24 10095.26 12399.19 2199.05 1799.36 2097.64 68
DU-MVS98.23 2697.74 5598.81 1299.23 3398.77 4198.76 5798.88 1594.10 11798.50 2098.87 5898.32 9797.99 3598.40 6398.08 7399.49 1697.64 68
UniMVSNet (Re)98.23 2697.85 4898.67 1999.15 4298.87 2898.74 6098.84 1794.27 11597.94 3899.01 4598.39 9397.82 4298.35 6898.29 6299.51 1597.78 60
MIMVSNet198.22 2998.51 2397.87 6499.40 2598.82 3799.31 1698.53 2897.39 1996.59 9399.31 3399.23 2894.76 13498.93 3298.67 3998.63 7397.25 92
HFP-MVS98.17 3098.02 4098.35 3599.36 2798.62 5898.79 5698.46 3496.24 3996.53 9597.13 11398.98 4698.02 3398.20 7198.42 5198.95 5498.54 28
Baseline_NR-MVSNet98.17 3097.90 4598.48 2999.23 3398.59 5998.83 5398.73 2493.97 12296.95 7799.66 798.23 10297.90 3998.40 6399.06 1699.25 2997.42 84
TSAR-MVS + MP.98.15 3298.23 3098.06 5198.47 9298.16 8799.23 2096.87 14195.58 6496.72 8698.41 8099.06 3798.05 3298.99 2998.90 2699.00 4698.51 31
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
pm-mvs198.14 3398.66 1897.53 8697.93 13498.49 6898.14 9498.19 5997.95 1296.17 11399.63 1098.85 5995.41 12198.91 3398.89 2799.34 2297.86 57
SMA-MVScopyleft98.13 3498.22 3198.02 5699.44 2398.73 5098.24 8997.87 8895.22 7796.76 8598.66 7299.35 1597.03 7098.53 5898.39 5398.80 6898.69 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP98.12 3598.08 3898.18 3999.34 2898.74 4998.97 3898.00 7795.13 8196.90 7897.54 10299.27 2397.18 6498.72 4298.45 4998.68 7298.69 18
UniMVSNet_NR-MVSNet98.12 3597.56 6398.78 1399.13 4798.89 2798.76 5798.78 2093.81 12598.50 2098.81 6297.64 12397.99 3598.18 7497.92 7999.53 1097.64 68
ACMM94.29 1198.12 3597.71 5698.59 2499.51 1698.58 6199.24 1998.25 5296.22 4096.90 7895.01 15398.89 5698.52 1698.66 4898.32 6099.13 3698.28 41
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SteuartSystems-ACMMP98.06 3897.78 5398.39 3399.54 1098.79 3998.94 4298.42 3693.98 12195.85 12496.66 12399.25 2698.61 1198.71 4498.38 5498.97 5098.67 21
Skip Steuart: Steuart Systems R&D Blog.
SED-MVS98.05 3998.46 2597.57 8299.01 5898.99 2398.82 5598.24 5395.76 5794.70 16098.96 4799.49 996.19 10298.74 3898.65 4198.46 8798.63 22
OPM-MVS98.01 4098.01 4198.00 5899.11 4998.12 9098.68 6497.72 9596.65 3096.68 9098.40 8199.28 2297.44 5598.20 7197.82 8698.40 9397.58 73
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Vis-MVSNetpermissive98.01 4098.42 2697.54 8596.89 18398.82 3799.14 2497.59 10096.30 3797.04 7399.26 3698.83 6396.01 10798.73 4098.21 6498.58 7898.75 15
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CS-MVS98.00 4297.38 6898.73 1598.72 7799.15 1199.12 2698.76 2191.58 15598.15 3196.70 12198.72 7598.20 2498.64 5198.92 2499.43 1997.97 51
NR-MVSNet98.00 4297.88 4698.13 4198.33 10098.77 4198.83 5398.88 1594.10 11797.46 5598.87 5898.58 8495.78 11099.13 2598.16 6899.52 1297.53 76
CP-MVS98.00 4297.57 6298.50 2699.47 2098.56 6398.91 4498.38 4294.71 9697.01 7595.20 14999.06 3798.20 2498.61 5298.46 4699.02 4398.40 35
DPE-MVScopyleft97.99 4598.12 3597.84 6798.65 8698.86 2998.86 5098.05 7394.18 11695.49 14198.90 5499.33 1697.11 6698.53 5898.65 4198.86 6598.39 37
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ACMMPcopyleft97.99 4597.60 6198.45 3199.53 1498.83 3399.13 2598.30 4794.57 10296.39 10695.32 14798.95 5198.37 2198.61 5298.47 4599.00 4698.45 32
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MP-MVScopyleft97.98 4797.53 6498.50 2699.56 898.58 6198.97 3898.39 4193.49 12897.14 6796.08 13699.23 2898.06 3198.50 6098.38 5498.90 5898.44 33
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EG-PatchMatch MVS97.98 4797.92 4398.04 5398.84 7098.04 9897.90 10896.83 14495.07 8398.79 1599.07 4399.37 1497.88 4098.74 3898.16 6898.01 11596.96 100
ACMP94.03 1297.97 4997.61 6098.39 3399.43 2498.51 6798.97 3898.06 7094.63 10096.10 11596.12 13599.20 3098.63 998.68 4598.20 6799.14 3397.93 54
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CS-MVS-test97.96 5097.38 6898.64 2198.57 8899.13 1299.36 1398.66 2591.67 15498.17 3096.91 11698.84 6197.99 3598.80 3598.88 2899.08 4197.43 83
LGP-MVS_train97.96 5097.53 6498.45 3199.45 2198.64 5699.09 2798.27 5092.99 14096.04 11896.57 12499.29 1998.66 898.73 4098.42 5199.19 3198.09 46
LS3D97.93 5297.80 5098.08 4799.20 3698.77 4198.89 4697.92 8396.59 3196.99 7696.71 12097.14 13596.39 9599.04 2698.96 2299.10 4097.39 85
SD-MVS97.84 5397.78 5397.90 6198.33 10098.06 9597.95 10497.80 9496.03 4696.72 8697.57 10099.18 3197.50 5397.88 7797.08 10499.11 3898.68 20
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
RPSCF97.83 5498.27 2897.31 9898.23 11098.06 9597.44 13495.79 17496.90 2595.81 12698.76 6798.61 8397.70 4798.90 3498.36 5698.90 5898.29 38
thisisatest051597.82 5597.67 5797.99 5998.49 9198.07 9498.48 7798.06 7095.35 7597.74 4398.83 6197.61 12496.74 7797.53 9798.30 6198.43 9298.01 50
PGM-MVS97.82 5597.25 7498.48 2999.54 1098.75 4899.02 3198.35 4592.41 14496.84 8495.39 14698.99 4598.24 2398.43 6298.34 5798.90 5898.41 34
PMVScopyleft90.51 1797.77 5797.98 4297.53 8698.68 8398.14 8997.67 11897.03 13696.43 3298.38 2398.72 6997.03 13794.44 13999.37 1299.30 1098.98 4996.86 107
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MSP-MVS97.67 5897.88 4697.43 9299.34 2898.99 2398.87 4998.12 6695.63 6094.16 17697.45 10399.50 896.44 9496.35 13598.70 3797.65 13198.57 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
tfpnnormal97.66 5997.79 5197.52 8898.32 10298.53 6598.45 8097.69 9697.59 1796.12 11497.79 9596.70 14295.69 11498.35 6898.34 5798.85 6697.22 95
FC-MVSNet-train97.65 6098.16 3397.05 11098.85 6898.85 3099.34 1498.08 6994.50 10794.41 16799.21 3798.80 6792.66 16698.98 3098.85 3198.96 5297.94 53
v1097.64 6197.26 7398.08 4798.07 12398.56 6398.86 5098.18 6194.48 10898.24 2899.56 1598.98 4697.72 4696.05 14596.26 13297.42 14096.93 101
EC-MVSNet97.63 6296.88 9798.50 2698.74 7699.16 1099.33 1598.83 1888.77 18496.62 9296.48 12697.75 11698.19 2699.00 2898.76 3499.29 2798.27 42
X-MVS97.60 6397.00 9198.29 3699.50 1798.76 4498.90 4598.37 4394.67 9996.40 10291.47 20098.78 6997.60 5298.55 5598.50 4498.96 5298.29 38
3Dnovator+96.20 497.58 6497.14 8298.10 4298.98 6397.85 11098.60 6998.33 4696.41 3497.23 6594.66 16297.26 13296.91 7497.91 7697.87 8298.53 8298.03 48
DCV-MVSNet97.56 6597.63 5997.47 9098.41 9699.12 1398.63 6798.57 2695.71 5995.60 13893.79 17998.01 11194.25 14199.16 2398.88 2899.35 2198.74 16
HPM-MVS++copyleft97.56 6597.11 8698.09 4399.18 3897.95 10598.57 7098.20 5794.08 11997.25 6495.96 14098.81 6697.13 6597.51 9897.30 10198.21 10398.15 45
FC-MVSNet-test97.54 6798.26 2996.70 12798.87 6697.79 11798.49 7698.56 2796.04 4290.39 20699.65 898.67 7695.15 12599.23 1999.07 1498.73 7197.39 85
TSAR-MVS + ACMM97.54 6797.79 5197.26 9998.23 11098.10 9397.71 11697.88 8795.97 4795.57 14098.71 7098.57 8597.36 5897.74 8696.81 11396.83 16698.59 25
DeepC-MVS_fast95.38 697.53 6997.30 7297.79 7298.83 7197.64 12098.18 9097.14 13295.57 6597.83 4097.10 11498.80 6796.53 9197.41 10197.32 9998.24 10297.26 91
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v119297.52 7097.03 9098.09 4398.31 10598.01 10098.96 4197.25 12895.22 7798.89 1299.64 998.83 6397.68 4895.63 15295.91 14297.47 13695.97 137
v114497.51 7197.05 8998.04 5398.26 10897.98 10298.88 4897.42 11895.38 7498.56 1899.59 1499.01 4497.65 4995.77 14996.06 13997.47 13695.56 149
v897.51 7197.16 8097.91 6097.99 13098.48 6998.76 5798.17 6394.54 10697.69 4599.48 2098.76 7297.63 5196.10 14496.14 13497.20 15096.64 115
v192192097.50 7397.00 9198.07 4998.20 11497.94 10899.03 3097.06 13495.29 7699.01 999.62 1198.73 7497.74 4595.52 15595.78 14797.39 14296.12 133
Anonymous2023121197.49 7497.91 4497.00 11398.31 10598.72 5298.27 8797.84 9194.76 9594.77 15998.14 8898.38 9593.60 15198.96 3198.66 4099.22 3097.77 62
v14419297.49 7496.99 9398.07 4998.11 12297.95 10599.02 3197.21 12994.90 9198.88 1399.53 1798.89 5697.75 4495.59 15395.90 14397.43 13996.16 131
test111197.48 7697.20 7797.81 7198.78 7498.85 3098.68 6498.40 3796.68 2894.84 15799.13 4190.32 19297.01 7199.27 1799.05 1799.19 3197.10 97
GeoE97.48 7696.84 10298.22 3899.01 5898.39 7298.85 5298.76 2192.37 14597.53 5097.58 9998.23 10297.11 6697.57 9696.98 10798.10 11196.78 110
APD-MVScopyleft97.47 7897.16 8097.84 6799.32 3198.39 7298.47 7998.21 5692.08 15095.23 14596.68 12298.90 5496.99 7298.20 7198.21 6498.80 6897.67 66
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PVSNet_Blended_VisFu97.44 7997.14 8297.79 7299.15 4298.44 7098.32 8597.66 9893.74 12797.73 4498.79 6396.93 14095.64 11997.69 8896.91 11098.25 10197.50 79
PHI-MVS97.44 7997.17 7997.74 7598.14 11998.41 7198.03 10097.50 10892.07 15198.01 3697.33 10898.62 8296.02 10698.34 7098.21 6498.76 7097.24 94
v124097.43 8196.87 10198.09 4398.25 10997.92 10999.02 3197.06 13494.77 9499.09 899.68 698.51 8897.78 4395.25 16095.81 14597.32 14696.13 132
ECVR-MVScopyleft97.40 8297.11 8697.73 7698.66 8498.83 3398.50 7498.40 3796.04 4295.00 15598.95 4991.07 18996.70 7999.28 1499.04 1999.14 3396.58 117
FMVSNet197.40 8298.09 3696.60 13297.80 14898.76 4498.26 8898.50 3096.79 2693.13 19399.28 3498.64 7992.90 16397.67 9097.86 8399.02 4397.64 68
casdiffmvs_mvgpermissive97.34 8497.65 5896.97 11497.74 15198.33 7698.45 8097.18 13095.81 5393.92 18099.04 4499.05 4095.48 12097.00 11897.71 8999.07 4296.63 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v2v48297.33 8596.84 10297.90 6198.19 11597.83 11198.74 6097.44 11695.42 7398.23 2999.46 2198.84 6197.46 5495.51 15696.10 13797.36 14494.72 159
EPP-MVSNet97.29 8696.88 9797.76 7498.70 7999.10 1698.92 4398.36 4495.12 8293.36 19197.39 10591.00 19097.65 4998.72 4298.91 2599.58 797.92 55
MVS_111021_HR97.27 8797.11 8697.46 9198.46 9397.82 11497.50 13096.86 14294.97 8797.13 6996.99 11598.39 9396.82 7697.65 9397.38 9498.02 11496.56 120
SF-MVS97.26 8897.43 6697.05 11098.80 7397.83 11196.02 18497.44 11694.98 8695.74 13097.16 11198.45 9295.72 11297.85 7897.97 7898.60 7697.78 60
TSAR-MVS + GP.97.26 8897.33 7197.18 10498.21 11398.06 9596.38 17597.66 9893.92 12495.23 14598.48 7798.33 9697.41 5697.63 9497.35 9598.18 10597.57 74
OMC-MVS97.23 9097.21 7697.25 10297.85 13997.52 12997.92 10695.77 17595.83 5297.09 7297.86 9398.52 8796.62 8397.51 9896.65 11998.26 9996.57 118
3Dnovator96.31 397.22 9197.19 7897.25 10298.14 11997.95 10598.03 10096.77 14796.42 3397.14 6795.11 15097.59 12595.14 12797.79 8397.72 8798.26 9997.76 64
MVS_030497.18 9296.84 10297.58 8199.15 4298.19 8298.11 9597.81 9392.36 14698.06 3497.43 10499.06 3794.24 14296.80 12396.54 12398.12 10997.52 77
sasdasda97.11 9396.88 9797.38 9398.34 9898.72 5297.52 12897.94 8095.60 6195.01 15394.58 16494.50 16796.59 8597.84 7998.03 7498.90 5898.91 9
canonicalmvs97.11 9396.88 9797.38 9398.34 9898.72 5297.52 12897.94 8095.60 6195.01 15394.58 16494.50 16796.59 8597.84 7998.03 7498.90 5898.91 9
V4297.10 9596.97 9497.26 9997.64 15597.60 12298.45 8095.99 16394.44 10997.35 5999.40 2698.63 8197.34 6096.33 13896.38 12996.82 16896.00 135
CPTT-MVS97.08 9696.25 11698.05 5299.21 3598.30 7798.54 7397.98 7894.28 11395.89 12389.57 20998.54 8698.18 2797.82 8297.32 9998.54 8097.91 56
DeepPCF-MVS94.55 1097.05 9797.13 8596.95 11696.06 19897.12 14698.01 10295.44 18195.18 7997.50 5297.86 9398.08 10797.31 6297.23 10697.00 10697.36 14497.45 81
QAPM97.04 9897.14 8296.93 11897.78 15098.02 9997.36 14096.72 14894.68 9896.23 10897.21 11097.68 12195.70 11397.37 10297.24 10397.78 12497.77 62
CNVR-MVS97.03 9996.77 10797.34 9598.89 6597.67 11997.64 12197.17 13194.40 11195.70 13494.02 17498.76 7296.49 9397.78 8497.29 10298.12 10997.47 80
casdiffmvspermissive97.00 10097.36 7096.59 13397.65 15497.98 10298.06 9796.81 14595.78 5592.77 19999.40 2699.26 2595.65 11896.70 12796.39 12898.59 7795.99 136
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v14896.99 10196.70 10997.34 9597.89 13797.23 13898.33 8496.96 13795.57 6597.12 7098.99 4699.40 1297.23 6396.22 14195.45 15296.50 17494.02 171
DELS-MVS96.90 10297.24 7596.50 13897.85 13998.18 8397.88 11195.92 16793.48 12995.34 14398.86 6098.94 5394.03 14597.33 10497.04 10598.00 11696.85 108
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_LR96.86 10396.72 10897.03 11297.80 14897.06 14997.04 15495.51 18094.55 10397.47 5397.35 10797.68 12196.66 8197.11 11196.73 11597.69 12896.57 118
PM-MVS96.85 10496.62 11197.11 10697.13 17896.51 16298.29 8694.65 19894.84 9298.12 3298.59 7397.20 13397.41 5696.24 14096.41 12797.09 15596.56 120
pmmvs-eth3d96.84 10596.22 11897.56 8397.63 15796.38 16998.74 6096.91 14094.63 10098.26 2699.43 2398.28 9896.58 8894.52 17095.54 15097.24 14894.75 158
CANet96.81 10696.50 11297.17 10599.10 5197.96 10497.86 11297.51 10691.30 15897.75 4297.64 9797.89 11493.39 15596.98 11996.73 11597.40 14196.99 99
Fast-Effi-MVS+96.80 10795.92 12997.84 6798.57 8897.46 13298.06 9798.24 5389.64 17997.57 4996.45 12797.35 13096.73 7897.22 10796.64 12097.86 12196.65 114
MCST-MVS96.79 10896.08 12297.62 7998.78 7497.52 12998.01 10297.32 12693.20 13295.84 12593.97 17698.12 10597.34 6096.34 13695.88 14498.45 8897.51 78
UGNet96.79 10897.82 4995.58 16297.57 16098.39 7298.48 7797.84 9195.85 5194.68 16197.91 9299.07 3687.12 20697.71 8797.51 9197.80 12298.29 38
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TAPA-MVS93.96 1396.79 10896.70 10996.90 12097.64 15597.58 12397.54 12794.50 20095.14 8096.64 9196.76 11997.90 11396.63 8295.98 14696.14 13498.45 8897.39 85
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CLD-MVS96.73 11196.92 9596.51 13798.70 7997.57 12597.64 12192.07 20793.10 13896.31 10798.29 8399.02 4395.99 10897.20 10896.47 12598.37 9596.81 109
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MGCFI-Net96.69 11296.89 9696.44 14098.30 10798.63 5797.39 13797.90 8495.72 5891.16 20494.65 16394.55 16595.04 12897.78 8498.00 7798.87 6498.93 8
train_agg96.68 11395.93 12897.56 8399.08 5397.16 14298.44 8397.37 12291.12 16295.18 14795.43 14598.48 9097.36 5896.48 13295.52 15197.95 11997.34 89
CDPH-MVS96.68 11395.99 12597.48 8999.13 4797.64 12098.08 9697.46 11290.56 16895.13 14894.87 15898.27 9996.56 8997.09 11296.45 12698.54 8097.08 98
MSLP-MVS++96.66 11596.46 11596.89 12198.02 12597.71 11895.57 19196.96 13794.36 11296.19 11291.37 20198.24 10097.07 6897.69 8897.89 8097.52 13497.95 52
TinyColmap96.64 11696.07 12397.32 9797.84 14496.40 16697.63 12396.25 15895.86 5098.98 1097.94 9196.34 14996.17 10397.30 10595.38 15597.04 15793.24 178
IS_MVSNet96.62 11796.48 11496.78 12598.46 9398.68 5598.61 6898.24 5392.23 14789.63 21195.90 14194.40 16996.23 9898.65 4998.77 3399.52 1296.76 111
NCCC96.56 11895.68 13197.59 8099.04 5797.54 12897.67 11897.56 10494.84 9296.10 11587.91 21298.09 10696.98 7397.20 10896.80 11498.21 10397.38 88
WB-MVS96.54 11998.09 3694.73 17996.68 19098.34 7594.77 21097.39 11998.12 1089.72 21098.95 4999.32 1893.33 15698.67 4697.88 8196.47 17695.38 152
ETV-MVS96.54 11995.27 13998.02 5699.07 5597.48 13198.16 9398.19 5987.33 19997.58 4892.67 18895.93 15596.22 9998.49 6198.46 4698.91 5796.50 123
Effi-MVS+96.46 12195.28 13897.85 6698.64 8797.16 14297.15 15298.75 2390.27 17298.03 3593.93 17796.21 15096.55 9096.34 13696.69 11897.97 11896.33 126
IterMVS-LS96.35 12295.85 13096.93 11897.53 16198.00 10197.37 13897.97 7995.49 7296.71 8998.94 5193.23 17694.82 13393.15 18995.05 15897.17 15297.12 96
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
USDC96.30 12395.64 13397.07 10897.62 15896.35 17197.17 15195.71 17695.52 7099.17 798.11 8997.46 12795.67 11595.44 15893.60 17897.09 15592.99 182
Vis-MVSNet (Re-imp)96.29 12496.50 11296.05 14797.96 13397.83 11197.30 14397.86 8993.14 13488.90 21496.80 11895.28 15995.15 12598.37 6798.25 6399.12 3795.84 139
MSDG96.27 12596.17 12196.38 14397.85 13996.27 17396.55 17294.41 20194.55 10395.62 13797.56 10197.80 11596.22 9997.17 11096.27 13197.67 13093.60 175
CNLPA96.24 12695.97 12696.57 13597.48 16797.10 14896.75 16594.95 19294.92 9096.20 11194.81 15996.61 14496.25 9796.94 12095.64 14897.79 12395.74 145
EIA-MVS96.23 12794.85 15197.84 6799.08 5398.21 8097.69 11798.03 7585.68 20998.09 3391.75 19997.07 13695.66 11797.58 9597.72 8798.47 8695.91 138
PLCcopyleft92.55 1596.10 12895.36 13596.96 11598.13 12196.88 15396.49 17396.67 15294.07 12095.71 13391.14 20296.09 15296.84 7596.70 12796.58 12297.92 12096.03 134
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test20.0396.08 12996.80 10595.25 17199.19 3797.58 12397.24 14897.56 10494.95 8991.91 20098.58 7498.03 10987.88 20297.43 10096.94 10997.69 12894.05 170
FA-MVS(training)96.07 13095.59 13496.63 13098.00 12997.44 13397.36 14098.53 2892.21 14895.97 12096.18 13394.22 17292.98 16096.79 12496.70 11796.95 16295.56 149
TSAR-MVS + COLMAP96.05 13195.94 12796.18 14697.46 16896.41 16597.26 14795.83 17194.69 9795.30 14498.31 8296.52 14594.71 13595.48 15794.87 16096.54 17395.33 153
EU-MVSNet96.03 13296.23 11795.80 15695.48 21194.18 19298.99 3691.51 20997.22 2197.66 4699.15 4098.51 8898.08 3095.92 14792.88 18593.09 19895.72 146
PCF-MVS92.69 1495.98 13395.05 14697.06 10998.43 9597.56 12697.76 11496.65 15389.95 17795.70 13496.18 13398.48 9095.74 11193.64 18193.35 18298.09 11396.18 130
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HQP-MVS95.97 13495.01 14897.08 10798.72 7797.19 14097.07 15396.69 15191.49 15695.77 12992.19 19497.93 11296.15 10494.66 16794.16 16998.10 11197.45 81
Effi-MVS+-dtu95.94 13595.08 14596.94 11798.54 9097.38 13496.66 16997.89 8688.68 18595.92 12192.90 18797.28 13194.18 14496.68 12996.13 13698.45 8896.51 122
diffmvspermissive95.86 13696.21 11995.44 16597.25 17696.85 15696.99 15795.23 18694.96 8892.82 19898.89 5598.85 5993.52 15394.21 17694.25 16896.84 16595.49 151
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
AdaColmapbinary95.85 13794.65 15497.26 9998.70 7997.20 13997.33 14297.30 12791.28 16095.90 12288.16 21196.17 15196.60 8497.34 10396.82 11297.71 12595.60 148
FMVSNet295.77 13896.20 12095.27 16996.77 18698.18 8397.28 14497.90 8493.12 13591.37 20298.25 8596.05 15390.04 18694.96 16595.94 14198.28 9696.90 102
OpenMVScopyleft94.63 995.75 13995.04 14796.58 13497.85 13997.55 12796.71 16796.07 16090.15 17596.47 9790.77 20795.95 15494.41 14097.01 11796.95 10898.00 11696.90 102
pmmvs595.70 14095.22 14096.26 14496.55 19397.24 13797.50 13094.99 19190.95 16496.87 8098.47 7897.40 12894.45 13892.86 19094.98 15997.23 14994.64 161
Anonymous2023120695.69 14195.68 13195.70 15898.32 10296.95 15197.37 13896.65 15393.33 13093.61 18598.70 7198.03 10991.04 17595.07 16394.59 16797.20 15093.09 181
MAR-MVS95.51 14294.49 15896.71 12697.92 13596.40 16696.72 16698.04 7486.74 20396.72 8692.52 19195.14 16194.02 14696.81 12296.54 12396.85 16397.25 92
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DI_MVS_plusplus_trai95.48 14394.51 15696.61 13197.13 17897.30 13698.05 9996.79 14693.75 12695.08 15196.38 12889.76 19494.95 12993.97 18094.82 16497.64 13295.63 147
MDA-MVSNet-bldmvs95.45 14495.20 14195.74 15794.24 21696.38 16997.93 10594.80 19395.56 6896.87 8098.29 8395.24 16096.50 9298.65 4990.38 19794.09 19291.93 186
PVSNet_BlendedMVS95.44 14595.09 14395.86 15497.31 17397.13 14496.31 17895.01 18988.55 18896.23 10894.55 16897.75 11692.56 16896.42 13395.44 15397.71 12595.81 140
PVSNet_Blended95.44 14595.09 14395.86 15497.31 17397.13 14496.31 17895.01 18988.55 18896.23 10894.55 16897.75 11692.56 16896.42 13395.44 15397.71 12595.81 140
pmmvs495.37 14794.25 15996.67 12997.01 18195.28 18697.60 12496.07 16093.11 13697.29 6298.09 9094.23 17195.21 12491.56 20193.91 17596.82 16893.59 176
MVS_Test95.34 14894.88 15095.89 15396.93 18296.84 15796.66 16997.08 13390.06 17694.02 17797.61 9896.64 14393.59 15292.73 19394.02 17397.03 15896.24 127
GBi-Net95.21 14995.35 13695.04 17496.77 18698.18 8397.28 14497.58 10188.43 19090.28 20796.01 13792.43 18090.04 18697.67 9097.86 8398.28 9696.90 102
test195.21 14995.35 13695.04 17496.77 18698.18 8397.28 14497.58 10188.43 19090.28 20796.01 13792.43 18090.04 18697.67 9097.86 8398.28 9696.90 102
IterMVS-SCA-FT95.16 15193.95 16396.56 13697.89 13796.69 15996.94 15996.05 16293.06 13997.35 5998.79 6391.45 18595.93 10992.78 19191.00 19595.22 18893.91 173
HyFIR lowres test95.05 15293.54 16896.81 12497.81 14796.88 15398.18 9097.46 11294.28 11394.98 15696.57 12492.89 17996.15 10490.90 20691.87 19196.28 18091.35 187
CHOSEN 1792x268894.98 15394.69 15395.31 16797.27 17595.58 18297.90 10895.56 17995.03 8493.77 18495.65 14399.29 1995.30 12291.51 20291.28 19492.05 20694.50 163
CANet_DTU94.96 15494.62 15595.35 16698.03 12496.11 17596.92 16195.60 17888.59 18797.27 6395.27 14896.50 14688.77 19895.53 15495.59 14995.54 18694.78 157
CDS-MVSNet94.91 15595.17 14294.60 18397.85 13996.21 17496.90 16396.39 15690.81 16593.40 18997.24 10994.54 16685.78 21296.25 13996.15 13397.26 14795.01 156
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
DPM-MVS94.86 15693.90 16595.99 14998.19 11596.52 16196.29 18095.95 16493.11 13694.61 16388.17 21096.44 14793.77 15093.33 18493.54 18097.11 15496.22 128
MS-PatchMatch94.84 15794.76 15294.94 17796.38 19494.69 19195.90 18694.03 20392.49 14393.81 18295.79 14296.38 14894.54 13694.70 16694.85 16194.97 19094.43 165
thisisatest053094.81 15893.06 17496.85 12398.01 12697.18 14196.93 16097.36 12389.73 17895.80 12794.98 15477.88 21594.89 13096.73 12697.35 9598.13 10897.54 75
tttt051794.81 15893.04 17596.88 12298.15 11897.37 13596.99 15797.36 12389.51 18095.74 13094.89 15677.53 21794.89 13096.94 12097.35 9598.17 10697.70 65
testgi94.81 15896.05 12493.35 19499.06 5696.87 15597.57 12696.70 15095.77 5688.60 21693.19 18598.87 5881.21 22097.03 11696.64 12096.97 16193.99 172
PatchMatch-RL94.79 16193.75 16796.00 14896.80 18595.00 18895.47 19695.25 18590.68 16795.80 12792.97 18693.64 17495.67 11596.13 14395.81 14596.99 16092.01 185
FPMVS94.70 16294.99 14994.37 18595.84 20493.20 19796.00 18591.93 20895.03 8494.64 16294.68 16093.29 17590.95 17698.07 7597.34 9896.85 16393.29 177
new-patchmatchnet94.48 16394.02 16195.02 17697.51 16595.00 18895.68 19094.26 20297.32 2095.73 13299.60 1298.22 10491.30 17194.13 17784.41 20795.65 18589.45 198
IterMVS94.48 16393.46 17095.66 15997.52 16296.43 16397.20 14994.73 19692.91 14296.44 9898.75 6891.10 18794.53 13792.10 19790.10 19993.51 19592.84 184
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MDTV_nov1_ep13_2view94.39 16593.34 17195.63 16097.23 17795.33 18597.76 11496.84 14394.55 10397.47 5398.96 4797.70 11993.88 14792.27 19586.81 20590.56 20887.73 206
Fast-Effi-MVS+-dtu94.34 16693.26 17395.62 16197.82 14595.97 17895.86 18799.01 1386.88 20193.39 19090.83 20595.46 15890.61 18094.46 17294.68 16597.01 15994.51 162
thres600view794.34 16692.31 18496.70 12798.19 11598.12 9097.85 11397.45 11491.49 15693.98 17984.27 21582.02 20694.24 14297.04 11398.76 3498.49 8494.47 164
EPNet94.33 16893.52 16995.27 16998.81 7294.71 19096.77 16498.20 5788.12 19396.53 9592.53 19091.19 18685.25 21695.22 16195.26 15696.09 18397.63 72
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test250694.29 16991.43 19297.64 7898.66 8498.83 3398.50 7498.40 3796.04 4294.45 16694.88 15755.05 23196.70 7999.28 1499.04 1999.14 3396.87 106
GA-MVS94.18 17092.98 17695.58 16297.36 17096.42 16496.21 18195.86 16890.29 17195.08 15196.19 13285.37 19892.82 16494.01 17994.14 17096.16 18294.41 166
gg-mvs-nofinetune94.13 17193.93 16494.37 18597.99 13095.86 17995.45 19999.22 997.61 1695.10 15099.50 1984.50 19981.73 21995.31 15994.12 17196.71 17190.59 191
baseline94.07 17294.50 15793.57 19296.34 19593.40 19695.56 19492.39 20692.07 15194.00 17898.24 8697.51 12689.19 19291.75 19992.72 18693.96 19495.79 142
FMVSNet394.06 17393.85 16694.31 18895.46 21297.80 11696.34 17697.58 10188.43 19090.28 20796.01 13792.43 18088.67 19991.82 19893.96 17497.53 13396.50 123
thres40094.04 17491.94 18796.50 13897.98 13297.82 11497.66 12096.96 13790.96 16394.20 17383.24 21782.82 20493.80 14896.50 13198.09 7098.38 9494.15 168
dmvs_re94.02 17592.39 18295.91 15297.71 15295.43 18497.00 15695.94 16582.49 21894.61 16383.69 21693.01 17892.71 16597.83 8197.56 9097.50 13596.73 112
CVMVSNet94.01 17694.25 15993.73 19194.36 21592.44 20097.45 13388.56 21295.59 6393.06 19698.88 5690.03 19394.84 13294.08 17893.45 18194.09 19295.31 154
thres20093.98 17791.90 18896.40 14297.66 15398.12 9097.20 14997.45 11490.16 17493.82 18183.08 21883.74 20293.80 14897.04 11397.48 9398.49 8493.70 174
baseline193.89 17892.82 17895.14 17397.62 15896.97 15096.12 18296.36 15791.30 15891.53 20194.68 16080.72 20890.80 17895.71 15096.29 13098.44 9194.09 169
tfpn200view993.80 17991.75 18996.20 14597.52 16298.15 8897.48 13297.47 11187.65 19593.56 18783.03 21984.12 20092.62 16797.04 11398.09 7098.52 8394.17 167
MIMVSNet93.68 18093.96 16293.35 19497.82 14596.08 17696.34 17698.46 3491.28 16086.67 22194.95 15594.87 16384.39 21794.53 16894.65 16696.45 17791.34 188
pmnet_mix0293.59 18192.65 17994.69 18196.76 18994.16 19397.03 15593.00 20595.79 5496.03 11998.91 5397.69 12092.99 15990.03 20984.10 20992.35 20487.89 205
EPNet_dtu93.45 18292.51 18194.55 18498.39 9791.67 20995.46 19797.50 10886.56 20497.38 5793.52 18094.20 17385.82 21193.31 18692.53 18792.72 20095.76 144
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IB-MVS92.44 1693.33 18392.15 18694.70 18097.42 16996.39 16895.57 19194.67 19786.40 20793.59 18678.28 22395.76 15789.59 19195.88 14895.98 14097.39 14296.34 125
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ET-MVSNet_ETH3D93.18 18490.80 19595.95 15096.05 19996.07 17796.92 16196.51 15589.34 18195.63 13694.08 17372.31 22693.13 15794.33 17494.83 16297.44 13894.65 160
thres100view90092.93 18590.89 19495.31 16797.52 16296.82 15896.41 17495.08 18787.65 19593.56 18783.03 21984.12 20091.12 17494.53 16896.91 11098.17 10693.21 179
N_pmnet92.46 18692.38 18392.55 20097.91 13693.47 19597.42 13594.01 20496.40 3588.48 21798.50 7698.07 10888.14 20191.04 20584.30 20889.35 21384.85 212
TAMVS92.46 18693.34 17191.44 20897.03 18093.84 19494.68 21190.60 21090.44 17085.31 22297.14 11293.03 17785.78 21294.34 17393.67 17795.22 18890.93 190
CMPMVSbinary71.81 1992.34 18892.85 17791.75 20692.70 22090.43 21488.84 22388.56 21285.87 20894.35 17090.98 20395.89 15691.14 17396.14 14294.83 16294.93 19195.78 143
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
baseline292.06 18989.82 19894.68 18297.32 17195.72 18094.97 20795.08 18784.75 21294.34 17290.68 20877.75 21690.13 18593.38 18293.58 17996.25 18192.90 183
MVSTER91.97 19090.31 19693.91 18996.81 18496.91 15294.22 21295.64 17784.98 21092.98 19793.42 18172.56 22486.64 21095.11 16293.89 17697.16 15395.31 154
CR-MVSNet91.94 19188.50 20195.94 15196.14 19792.08 20495.23 20298.47 3284.30 21496.44 9894.58 16475.57 21892.92 16190.22 20792.22 18896.43 17890.56 192
gm-plane-assit91.85 19287.91 20396.44 14099.14 4598.25 7999.02 3197.38 12195.57 6598.31 2599.34 3151.00 23288.93 19593.16 18891.57 19295.85 18486.50 209
PMMVS91.67 19391.47 19191.91 20589.43 22588.61 22094.99 20685.67 21787.50 19793.80 18394.42 17194.88 16290.71 17992.26 19692.96 18496.83 16689.65 196
CHOSEN 280x42091.55 19490.27 19793.05 19794.61 21488.01 22196.56 17194.62 19988.04 19494.20 17392.66 18986.60 19690.82 17795.06 16491.89 19087.49 21889.61 197
PatchT91.40 19588.54 20094.74 17891.48 22492.18 20397.42 13597.51 10684.96 21196.44 9894.16 17275.47 21992.92 16190.22 20792.22 18892.66 20390.56 192
pmmvs391.20 19691.40 19390.96 21091.71 22391.08 21095.41 20081.34 22187.36 19894.57 16595.02 15294.30 17090.42 18194.28 17589.26 20192.30 20588.49 203
test0.0.03 191.17 19791.50 19090.80 21198.01 12695.46 18394.22 21295.80 17286.55 20581.75 22490.83 20587.93 19578.48 22194.51 17194.11 17296.50 17491.08 189
SCA91.15 19887.65 20595.23 17296.15 19695.68 18196.68 16898.18 6190.46 16997.21 6692.44 19280.17 21093.51 15486.04 21683.58 21289.68 21285.21 211
new_pmnet90.85 19992.26 18589.21 21493.68 21989.05 21993.20 22084.16 22092.99 14084.25 22397.72 9694.60 16486.80 20993.20 18791.30 19393.21 19686.94 208
RPMNet90.52 20086.27 21495.48 16495.95 20292.08 20495.55 19598.12 6684.30 21495.60 13887.49 21372.78 22391.24 17287.93 21189.34 20096.41 17989.98 195
MDTV_nov1_ep1390.30 20187.32 20993.78 19096.00 20192.97 19895.46 19795.39 18288.61 18695.41 14294.45 17080.39 20989.87 18986.58 21483.54 21390.56 20884.71 213
PatchmatchNetpermissive89.98 20286.23 21594.36 18796.56 19291.90 20896.07 18396.72 14890.18 17396.87 8093.36 18478.06 21491.46 17084.71 22081.40 21788.45 21583.97 217
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ADS-MVSNet89.89 20387.70 20492.43 20295.52 20990.91 21295.57 19195.33 18393.19 13391.21 20393.41 18282.12 20589.05 19386.21 21583.77 21187.92 21684.31 214
tpm89.84 20486.81 21193.36 19396.60 19191.92 20795.02 20597.39 11986.79 20296.54 9495.03 15169.70 22787.66 20388.79 21086.19 20686.95 22089.27 199
test-LLR89.77 20587.47 20792.45 20198.01 12689.77 21693.25 21895.80 17281.56 22089.19 21292.08 19579.59 21185.77 21491.47 20389.04 20392.69 20188.75 200
FMVSNet589.65 20687.60 20692.04 20495.63 20896.61 16094.82 20994.75 19480.11 22487.72 21977.73 22473.81 22283.81 21895.64 15196.08 13895.49 18793.21 179
EPMVS89.28 20786.28 21392.79 19996.01 20092.00 20695.83 18895.85 17090.78 16691.00 20594.58 16474.65 22088.93 19585.00 21882.88 21589.09 21484.09 216
test-mter89.16 20888.14 20290.37 21294.79 21391.05 21193.60 21785.26 21881.65 21988.32 21892.22 19379.35 21387.03 20792.28 19490.12 19893.19 19790.29 194
CostFormer89.06 20985.65 21693.03 19895.88 20392.40 20195.30 20195.86 16886.49 20693.12 19593.40 18374.18 22188.25 20082.99 22181.46 21689.77 21188.66 202
MVS-HIRNet88.72 21086.49 21291.33 20991.81 22285.66 22287.02 22596.25 15881.48 22294.82 15896.31 13192.14 18390.32 18387.60 21283.82 21087.74 21778.42 221
TESTMET0.1,188.60 21187.47 20789.93 21394.23 21789.77 21693.25 21884.47 21981.56 22089.19 21292.08 19579.59 21185.77 21491.47 20389.04 20392.69 20188.75 200
dps88.36 21284.32 21993.07 19693.86 21892.29 20294.89 20895.93 16683.50 21693.13 19391.87 19767.79 22990.32 18385.99 21783.22 21490.28 21085.56 210
tpmrst87.60 21384.13 22091.66 20795.65 20789.73 21893.77 21594.74 19588.85 18393.35 19295.60 14472.37 22587.40 20481.24 22278.19 21985.02 22382.90 220
tpm cat187.19 21482.78 22192.33 20395.66 20690.61 21394.19 21495.27 18486.97 20094.38 16890.91 20469.40 22887.21 20579.57 22477.82 22087.25 21984.18 215
E-PMN86.94 21585.10 21789.09 21695.77 20583.54 22589.89 22286.55 21492.18 14987.34 22094.02 17483.42 20389.63 19093.32 18577.11 22185.33 22172.09 222
EMVS86.63 21684.48 21889.15 21595.51 21083.66 22490.19 22186.14 21691.78 15388.68 21593.83 17881.97 20789.05 19392.76 19276.09 22285.31 22271.28 223
PMMVS286.47 21792.62 18079.29 21892.01 22185.63 22393.74 21686.37 21593.95 12354.18 22998.19 8797.39 12958.46 22296.57 13093.07 18390.99 20783.55 219
MVEpermissive72.99 1885.37 21889.43 19980.63 21774.43 22671.94 22788.25 22489.81 21193.27 13167.32 22796.32 13091.83 18490.40 18293.36 18390.79 19673.55 22688.49 203
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method61.30 21970.45 22250.62 21922.69 22830.92 22968.31 22825.76 22380.56 22368.71 22582.80 22191.08 18844.64 22380.50 22356.70 22373.64 22570.58 224
GG-mvs-BLEND61.03 22087.02 21030.71 2210.74 23190.01 21578.90 2270.74 22784.56 2139.46 23079.17 22290.69 1911.37 22791.74 20089.13 20293.04 19983.83 218
testmvs4.99 2216.88 2232.78 2231.73 2292.04 2313.10 2311.71 2257.27 2263.92 23212.18 2266.71 2333.31 2266.94 2255.51 2252.94 2287.51 225
test1234.41 2225.71 2242.88 2221.28 2302.21 2303.09 2321.65 2266.35 2274.98 2318.53 2273.88 2343.46 2255.79 2265.71 2242.85 2297.50 226
uanet_test0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet-low-res0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
TPM-MVS97.49 16696.32 17295.05 20494.36 16991.82 19896.92 14188.89 19796.67 17296.22 128
Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025
RE-MVS-def99.38 2
9.1496.98 139
SR-MVS99.33 3098.40 3798.90 54
Anonymous20240521197.39 6798.85 6898.59 5997.89 11097.93 8294.41 11097.37 10696.99 13893.09 15898.61 5298.46 4699.11 3897.27 90
our_test_397.32 17195.13 18797.59 125
ambc96.78 10699.01 5897.11 14795.73 18995.91 4999.25 398.56 7597.17 13497.04 6996.76 12595.22 15796.72 17096.73 112
MTAPA97.43 5699.27 23
MTMP97.63 4799.03 42
Patchmatch-RL test17.42 230
tmp_tt45.72 22060.00 22738.74 22845.50 22912.18 22479.58 22568.42 22667.62 22565.04 23022.12 22484.83 21978.72 21866.08 227
XVS99.48 1898.76 4499.22 2196.40 10298.78 6998.94 55
X-MVStestdata99.48 1898.76 4499.22 2196.40 10298.78 6998.94 55
mPP-MVS99.58 698.98 46
NP-MVS89.27 182
Patchmtry92.70 19995.23 20298.47 3296.44 98
DeepMVS_CXcopyleft72.99 22680.14 22637.34 22283.46 21760.13 22884.40 21485.48 19786.93 20887.22 21379.61 22487.32 207