| LTVRE_ROB | | 97.71 1 | 99.33 1 | 99.47 1 | 99.16 7 | 99.16 41 | 99.11 14 | 99.39 12 | 99.16 11 | 99.26 2 | 99.22 5 | 99.51 18 | 99.75 4 | 98.54 15 | 99.71 1 | 99.47 3 | 99.52 12 | 99.46 1 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| SixPastTwentyTwo | | | 99.25 2 | 99.20 3 | 99.32 1 | 99.53 14 | 99.32 8 | 99.64 2 | 99.19 10 | 98.05 11 | 99.19 6 | 99.74 4 | 98.96 50 | 99.03 2 | 99.69 2 | 99.58 1 | 99.32 25 | 99.06 6 |
|
| WR-MVS | | | 99.22 3 | 99.15 5 | 99.30 2 | 99.54 10 | 99.62 1 | 99.63 4 | 99.45 1 | 97.75 15 | 98.47 22 | 99.71 5 | 99.05 40 | 98.88 4 | 99.54 5 | 99.49 2 | 99.81 1 | 98.87 11 |
|
| PS-CasMVS | | | 99.08 4 | 98.90 11 | 99.28 3 | 99.65 3 | 99.56 4 | 99.59 6 | 99.39 3 | 96.36 36 | 98.83 14 | 99.46 21 | 99.09 33 | 98.62 10 | 99.51 7 | 99.36 8 | 99.63 3 | 98.97 7 |
|
| PEN-MVS | | | 99.08 4 | 98.95 8 | 99.23 5 | 99.65 3 | 99.59 2 | 99.64 2 | 99.34 6 | 96.68 28 | 98.65 17 | 99.43 23 | 99.33 16 | 98.47 17 | 99.50 8 | 99.32 9 | 99.60 5 | 98.79 13 |
|
| v7n | | | 99.03 6 | 99.03 7 | 99.02 9 | 99.09 52 | 99.11 14 | 99.57 9 | 98.82 19 | 98.21 9 | 99.25 3 | 99.84 2 | 99.59 6 | 98.76 6 | 99.23 19 | 98.83 32 | 98.63 73 | 98.40 35 |
|
| DTE-MVSNet | | | 99.03 6 | 98.88 12 | 99.21 6 | 99.66 2 | 99.59 2 | 99.62 5 | 99.34 6 | 96.92 24 | 98.52 19 | 99.36 29 | 98.98 46 | 98.57 13 | 99.49 9 | 99.23 12 | 99.56 9 | 98.55 27 |
|
| TDRefinement | | | 99.00 8 | 99.13 6 | 98.86 10 | 98.99 62 | 99.05 19 | 99.58 7 | 98.29 49 | 98.96 4 | 97.96 37 | 99.40 26 | 98.67 76 | 98.87 5 | 99.60 3 | 99.46 4 | 99.46 18 | 98.74 16 |
|
| WR-MVS_H | | | 98.97 9 | 98.82 14 | 99.14 8 | 99.56 8 | 99.56 4 | 99.54 11 | 99.42 2 | 96.07 41 | 98.37 24 | 99.34 31 | 99.09 33 | 98.43 18 | 99.45 10 | 99.41 5 | 99.53 10 | 98.86 12 |
|
| UniMVSNet_ETH3D | | | 98.93 10 | 99.20 3 | 98.63 22 | 99.54 10 | 99.33 7 | 98.73 63 | 99.37 4 | 98.87 5 | 97.86 39 | 99.27 35 | 99.78 2 | 96.59 85 | 99.52 6 | 99.40 6 | 99.67 2 | 98.21 43 |
|
| CP-MVSNet | | | 98.91 11 | 98.61 19 | 99.25 4 | 99.63 5 | 99.50 6 | 99.55 10 | 99.36 5 | 95.53 69 | 98.77 16 | 99.11 42 | 98.64 79 | 98.57 13 | 99.42 11 | 99.28 11 | 99.61 4 | 98.78 14 |
|
| anonymousdsp | | | 98.85 12 | 98.88 12 | 98.83 11 | 98.69 82 | 98.20 81 | 99.68 1 | 97.35 125 | 97.09 23 | 98.98 10 | 99.86 1 | 99.43 10 | 98.94 3 | 99.28 14 | 99.19 13 | 99.33 23 | 99.08 5 |
|
| pmmvs6 | | | 98.77 13 | 99.35 2 | 98.09 43 | 98.32 102 | 98.92 25 | 98.57 70 | 99.03 12 | 99.36 1 | 96.86 83 | 99.77 3 | 99.86 1 | 96.20 101 | 99.56 4 | 99.39 7 | 99.59 6 | 98.61 24 |
|
| ACMH | | 95.26 7 | 98.75 14 | 98.93 9 | 98.54 25 | 98.86 67 | 99.01 21 | 99.58 7 | 98.10 68 | 98.67 6 | 97.30 61 | 99.18 39 | 99.42 11 | 98.40 19 | 99.19 21 | 98.86 30 | 98.99 48 | 98.19 44 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| COLMAP_ROB |  | 96.84 2 | 98.75 14 | 98.82 14 | 98.66 20 | 99.14 45 | 98.79 39 | 99.30 17 | 97.67 97 | 98.33 8 | 97.82 41 | 99.20 38 | 99.18 31 | 98.76 6 | 99.27 17 | 98.96 22 | 99.29 27 | 98.03 48 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| UA-Net | | | 98.66 16 | 98.60 22 | 98.73 15 | 99.83 1 | 99.28 9 | 98.56 72 | 99.24 8 | 96.04 42 | 97.12 70 | 98.44 79 | 98.95 51 | 98.17 28 | 99.15 24 | 99.00 21 | 99.48 17 | 99.33 3 |
|
| DeepC-MVS | | 96.08 5 | 98.58 17 | 98.49 24 | 98.68 18 | 99.37 26 | 98.52 66 | 99.01 35 | 98.17 63 | 97.17 22 | 98.25 27 | 99.56 15 | 99.62 5 | 98.29 22 | 98.40 63 | 98.09 70 | 98.97 50 | 98.08 47 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| TranMVSNet+NR-MVSNet | | | 98.45 18 | 98.22 31 | 98.72 17 | 99.32 31 | 99.06 17 | 98.99 36 | 98.89 14 | 95.52 70 | 97.53 50 | 99.42 25 | 98.83 63 | 98.01 34 | 98.55 55 | 98.34 57 | 99.57 8 | 97.80 59 |
|
| CSCG | | | 98.45 18 | 98.61 19 | 98.26 37 | 99.11 49 | 99.06 17 | 98.17 92 | 97.49 110 | 97.93 13 | 97.37 58 | 98.88 56 | 99.29 19 | 98.10 29 | 98.40 63 | 97.51 91 | 99.32 25 | 99.16 4 |
|
| DVP-MVS++ | | | 98.44 20 | 98.92 10 | 97.88 63 | 99.17 39 | 99.00 22 | 98.89 46 | 98.26 51 | 97.54 18 | 96.05 117 | 99.35 30 | 99.76 3 | 96.34 96 | 98.79 37 | 98.65 41 | 98.56 79 | 99.35 2 |
|
| Gipuma |  | | 98.43 21 | 98.15 34 | 98.76 14 | 99.00 61 | 98.29 78 | 97.91 107 | 98.06 70 | 99.02 3 | 99.50 1 | 96.33 129 | 98.67 76 | 99.22 1 | 99.02 27 | 98.02 76 | 98.88 63 | 97.66 67 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| ACMH+ | | 94.90 8 | 98.40 22 | 98.71 17 | 98.04 53 | 98.93 64 | 98.84 32 | 99.30 17 | 97.86 89 | 97.78 14 | 94.19 175 | 98.77 66 | 99.39 13 | 98.61 11 | 99.33 13 | 99.07 14 | 99.33 23 | 97.81 58 |
|
| ACMMPR | | | 98.31 23 | 98.07 39 | 98.60 23 | 99.58 6 | 98.83 33 | 99.09 27 | 98.48 31 | 96.25 38 | 97.03 74 | 96.81 117 | 99.09 33 | 98.39 20 | 98.55 55 | 98.45 49 | 99.01 45 | 98.53 30 |
|
| APDe-MVS |  | | 98.29 24 | 98.42 26 | 98.14 40 | 99.45 21 | 98.90 26 | 99.18 23 | 98.30 47 | 95.96 48 | 95.13 148 | 98.79 63 | 99.25 26 | 97.92 38 | 98.80 35 | 98.71 36 | 98.85 66 | 98.54 28 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| DVP-MVS |  | | 98.27 25 | 98.61 19 | 97.87 64 | 99.17 39 | 99.03 20 | 99.07 29 | 98.17 63 | 96.75 27 | 94.35 170 | 98.92 52 | 99.58 7 | 97.86 41 | 98.67 46 | 98.70 37 | 98.63 73 | 98.63 22 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| TransMVSNet (Re) | | | 98.23 26 | 98.72 16 | 97.66 77 | 98.22 112 | 98.73 50 | 98.66 66 | 98.03 75 | 98.60 7 | 96.40 102 | 99.60 12 | 98.24 100 | 95.26 123 | 99.19 21 | 99.05 17 | 99.36 20 | 97.64 68 |
|
| DU-MVS | | | 98.23 26 | 97.74 55 | 98.81 12 | 99.23 33 | 98.77 41 | 98.76 57 | 98.88 15 | 94.10 117 | 98.50 20 | 98.87 58 | 98.32 97 | 97.99 35 | 98.40 63 | 98.08 73 | 99.49 16 | 97.64 68 |
|
| UniMVSNet (Re) | | | 98.23 26 | 97.85 48 | 98.67 19 | 99.15 42 | 98.87 28 | 98.74 60 | 98.84 17 | 94.27 115 | 97.94 38 | 99.01 45 | 98.39 93 | 97.82 42 | 98.35 68 | 98.29 62 | 99.51 15 | 97.78 60 |
|
| MIMVSNet1 | | | 98.22 29 | 98.51 23 | 97.87 64 | 99.40 25 | 98.82 37 | 99.31 16 | 98.53 28 | 97.39 19 | 96.59 93 | 99.31 33 | 99.23 28 | 94.76 134 | 98.93 32 | 98.67 39 | 98.63 73 | 97.25 92 |
|
| HFP-MVS | | | 98.17 30 | 98.02 40 | 98.35 35 | 99.36 27 | 98.62 58 | 98.79 56 | 98.46 34 | 96.24 39 | 96.53 95 | 97.13 113 | 98.98 46 | 98.02 33 | 98.20 71 | 98.42 51 | 98.95 54 | 98.54 28 |
|
| Baseline_NR-MVSNet | | | 98.17 30 | 97.90 45 | 98.48 29 | 99.23 33 | 98.59 59 | 98.83 53 | 98.73 24 | 93.97 122 | 96.95 77 | 99.66 7 | 98.23 102 | 97.90 39 | 98.40 63 | 99.06 16 | 99.25 29 | 97.42 84 |
|
| TSAR-MVS + MP. | | | 98.15 32 | 98.23 30 | 98.06 51 | 98.47 92 | 98.16 87 | 99.23 20 | 96.87 141 | 95.58 64 | 96.72 86 | 98.41 80 | 99.06 37 | 98.05 32 | 98.99 29 | 98.90 26 | 99.00 46 | 98.51 31 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| pm-mvs1 | | | 98.14 33 | 98.66 18 | 97.53 86 | 97.93 134 | 98.49 68 | 98.14 94 | 98.19 59 | 97.95 12 | 96.17 113 | 99.63 10 | 98.85 59 | 95.41 121 | 98.91 33 | 98.89 27 | 99.34 22 | 97.86 57 |
|
| SMA-MVS |  | | 98.13 34 | 98.22 31 | 98.02 56 | 99.44 23 | 98.73 50 | 98.24 89 | 97.87 88 | 95.22 77 | 96.76 85 | 98.66 72 | 99.35 15 | 97.03 70 | 98.53 58 | 98.39 53 | 98.80 68 | 98.69 18 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| ACMMP_NAP | | | 98.12 35 | 98.08 38 | 98.18 39 | 99.34 28 | 98.74 49 | 98.97 38 | 98.00 77 | 95.13 81 | 96.90 78 | 97.54 102 | 99.27 23 | 97.18 64 | 98.72 42 | 98.45 49 | 98.68 72 | 98.69 18 |
|
| UniMVSNet_NR-MVSNet | | | 98.12 35 | 97.56 63 | 98.78 13 | 99.13 47 | 98.89 27 | 98.76 57 | 98.78 20 | 93.81 125 | 98.50 20 | 98.81 62 | 97.64 123 | 97.99 35 | 98.18 74 | 97.92 79 | 99.53 10 | 97.64 68 |
|
| ACMM | | 94.29 11 | 98.12 35 | 97.71 56 | 98.59 24 | 99.51 16 | 98.58 61 | 99.24 19 | 98.25 52 | 96.22 40 | 96.90 78 | 95.01 153 | 98.89 56 | 98.52 16 | 98.66 48 | 98.32 60 | 99.13 36 | 98.28 41 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| SteuartSystems-ACMMP | | | 98.06 38 | 97.78 53 | 98.39 33 | 99.54 10 | 98.79 39 | 98.94 42 | 98.42 36 | 93.98 121 | 95.85 124 | 96.66 123 | 99.25 26 | 98.61 11 | 98.71 44 | 98.38 54 | 98.97 50 | 98.67 21 |
| Skip Steuart: Steuart Systems R&D Blog. |
| SED-MVS | | | 98.05 39 | 98.46 25 | 97.57 82 | 99.01 58 | 98.99 23 | 98.82 55 | 98.24 53 | 95.76 57 | 94.70 160 | 98.96 47 | 99.49 9 | 96.19 102 | 98.74 38 | 98.65 41 | 98.46 87 | 98.63 22 |
|
| OPM-MVS | | | 98.01 40 | 98.01 41 | 98.00 58 | 99.11 49 | 98.12 90 | 98.68 64 | 97.72 95 | 96.65 30 | 96.68 90 | 98.40 81 | 99.28 22 | 97.44 55 | 98.20 71 | 97.82 86 | 98.40 93 | 97.58 73 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| Vis-MVSNet |  | | 98.01 40 | 98.42 26 | 97.54 85 | 96.89 183 | 98.82 37 | 99.14 24 | 97.59 100 | 96.30 37 | 97.04 73 | 99.26 36 | 98.83 63 | 96.01 107 | 98.73 40 | 98.21 64 | 98.58 78 | 98.75 15 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| CS-MVS | | | 98.00 42 | 97.38 68 | 98.73 15 | 98.72 77 | 99.15 11 | 99.12 26 | 98.76 21 | 91.58 155 | 98.15 31 | 96.70 121 | 98.72 75 | 98.20 24 | 98.64 51 | 98.92 24 | 99.43 19 | 97.97 51 |
|
| NR-MVSNet | | | 98.00 42 | 97.88 46 | 98.13 41 | 98.33 100 | 98.77 41 | 98.83 53 | 98.88 15 | 94.10 117 | 97.46 55 | 98.87 58 | 98.58 84 | 95.78 110 | 99.13 25 | 98.16 68 | 99.52 12 | 97.53 76 |
|
| CP-MVS | | | 98.00 42 | 97.57 62 | 98.50 26 | 99.47 20 | 98.56 63 | 98.91 44 | 98.38 42 | 94.71 96 | 97.01 75 | 95.20 149 | 99.06 37 | 98.20 24 | 98.61 52 | 98.46 46 | 99.02 43 | 98.40 35 |
|
| DPE-MVS |  | | 97.99 45 | 98.12 35 | 97.84 67 | 98.65 86 | 98.86 29 | 98.86 50 | 98.05 73 | 94.18 116 | 95.49 141 | 98.90 54 | 99.33 16 | 97.11 66 | 98.53 58 | 98.65 41 | 98.86 65 | 98.39 37 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| ACMMP |  | | 97.99 45 | 97.60 61 | 98.45 31 | 99.53 14 | 98.83 33 | 99.13 25 | 98.30 47 | 94.57 102 | 96.39 106 | 95.32 147 | 98.95 51 | 98.37 21 | 98.61 52 | 98.47 45 | 99.00 46 | 98.45 32 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| MP-MVS |  | | 97.98 47 | 97.53 64 | 98.50 26 | 99.56 8 | 98.58 61 | 98.97 38 | 98.39 41 | 93.49 128 | 97.14 67 | 96.08 136 | 99.23 28 | 98.06 31 | 98.50 60 | 98.38 54 | 98.90 58 | 98.44 33 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| EG-PatchMatch MVS | | | 97.98 47 | 97.92 43 | 98.04 53 | 98.84 70 | 98.04 98 | 97.90 108 | 96.83 144 | 95.07 83 | 98.79 15 | 99.07 43 | 99.37 14 | 97.88 40 | 98.74 38 | 98.16 68 | 98.01 115 | 96.96 100 |
|
| ACMP | | 94.03 12 | 97.97 49 | 97.61 60 | 98.39 33 | 99.43 24 | 98.51 67 | 98.97 38 | 98.06 70 | 94.63 100 | 96.10 115 | 96.12 135 | 99.20 30 | 98.63 9 | 98.68 45 | 98.20 67 | 99.14 33 | 97.93 54 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| CS-MVS-test | | | 97.96 50 | 97.38 68 | 98.64 21 | 98.57 88 | 99.13 12 | 99.36 13 | 98.66 25 | 91.67 154 | 98.17 30 | 96.91 116 | 98.84 61 | 97.99 35 | 98.80 35 | 98.88 28 | 99.08 41 | 97.43 83 |
|
| LGP-MVS_train | | | 97.96 50 | 97.53 64 | 98.45 31 | 99.45 21 | 98.64 56 | 99.09 27 | 98.27 50 | 92.99 140 | 96.04 118 | 96.57 124 | 99.29 19 | 98.66 8 | 98.73 40 | 98.42 51 | 99.19 31 | 98.09 46 |
|
| LS3D | | | 97.93 52 | 97.80 50 | 98.08 47 | 99.20 36 | 98.77 41 | 98.89 46 | 97.92 83 | 96.59 31 | 96.99 76 | 96.71 120 | 97.14 135 | 96.39 95 | 99.04 26 | 98.96 22 | 99.10 40 | 97.39 85 |
|
| SD-MVS | | | 97.84 53 | 97.78 53 | 97.90 61 | 98.33 100 | 98.06 95 | 97.95 104 | 97.80 94 | 96.03 46 | 96.72 86 | 97.57 100 | 99.18 31 | 97.50 53 | 97.88 77 | 97.08 104 | 99.11 38 | 98.68 20 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| RPSCF | | | 97.83 54 | 98.27 28 | 97.31 98 | 98.23 110 | 98.06 95 | 97.44 134 | 95.79 174 | 96.90 25 | 95.81 126 | 98.76 67 | 98.61 83 | 97.70 47 | 98.90 34 | 98.36 56 | 98.90 58 | 98.29 38 |
|
| thisisatest0515 | | | 97.82 55 | 97.67 57 | 97.99 59 | 98.49 91 | 98.07 94 | 98.48 77 | 98.06 70 | 95.35 75 | 97.74 43 | 98.83 61 | 97.61 124 | 96.74 77 | 97.53 97 | 98.30 61 | 98.43 92 | 98.01 50 |
|
| PGM-MVS | | | 97.82 55 | 97.25 74 | 98.48 29 | 99.54 10 | 98.75 48 | 99.02 31 | 98.35 45 | 92.41 144 | 96.84 84 | 95.39 146 | 98.99 45 | 98.24 23 | 98.43 62 | 98.34 57 | 98.90 58 | 98.41 34 |
|
| PMVS |  | 90.51 17 | 97.77 57 | 97.98 42 | 97.53 86 | 98.68 83 | 98.14 89 | 97.67 118 | 97.03 136 | 96.43 32 | 98.38 23 | 98.72 69 | 97.03 137 | 94.44 139 | 99.37 12 | 99.30 10 | 98.98 49 | 96.86 107 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| MSP-MVS | | | 97.67 58 | 97.88 46 | 97.43 92 | 99.34 28 | 98.99 23 | 98.87 49 | 98.12 66 | 95.63 60 | 94.16 176 | 97.45 103 | 99.50 8 | 96.44 94 | 96.35 135 | 98.70 37 | 97.65 131 | 98.57 26 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| tfpnnormal | | | 97.66 59 | 97.79 51 | 97.52 88 | 98.32 102 | 98.53 65 | 98.45 80 | 97.69 96 | 97.59 17 | 96.12 114 | 97.79 95 | 96.70 142 | 95.69 114 | 98.35 68 | 98.34 57 | 98.85 66 | 97.22 95 |
|
| FC-MVSNet-train | | | 97.65 60 | 98.16 33 | 97.05 110 | 98.85 68 | 98.85 30 | 99.34 14 | 98.08 69 | 94.50 107 | 94.41 167 | 99.21 37 | 98.80 67 | 92.66 166 | 98.98 30 | 98.85 31 | 98.96 52 | 97.94 53 |
|
| v10 | | | 97.64 61 | 97.26 73 | 98.08 47 | 98.07 123 | 98.56 63 | 98.86 50 | 98.18 61 | 94.48 108 | 98.24 28 | 99.56 15 | 98.98 46 | 97.72 46 | 96.05 145 | 96.26 132 | 97.42 140 | 96.93 101 |
|
| EC-MVSNet | | | 97.63 62 | 96.88 97 | 98.50 26 | 98.74 76 | 99.16 10 | 99.33 15 | 98.83 18 | 88.77 184 | 96.62 92 | 96.48 126 | 97.75 116 | 98.19 26 | 99.00 28 | 98.76 34 | 99.29 27 | 98.27 42 |
|
| X-MVS | | | 97.60 63 | 97.00 91 | 98.29 36 | 99.50 17 | 98.76 44 | 98.90 45 | 98.37 43 | 94.67 99 | 96.40 102 | 91.47 200 | 98.78 69 | 97.60 52 | 98.55 55 | 98.50 44 | 98.96 52 | 98.29 38 |
|
| 3Dnovator+ | | 96.20 4 | 97.58 64 | 97.14 82 | 98.10 42 | 98.98 63 | 97.85 110 | 98.60 69 | 98.33 46 | 96.41 34 | 97.23 65 | 94.66 162 | 97.26 132 | 96.91 74 | 97.91 76 | 97.87 82 | 98.53 82 | 98.03 48 |
|
| DCV-MVSNet | | | 97.56 65 | 97.63 59 | 97.47 90 | 98.41 96 | 99.12 13 | 98.63 67 | 98.57 26 | 95.71 59 | 95.60 138 | 93.79 179 | 98.01 111 | 94.25 141 | 99.16 23 | 98.88 28 | 99.35 21 | 98.74 16 |
|
| HPM-MVS++ |  | | 97.56 65 | 97.11 86 | 98.09 43 | 99.18 38 | 97.95 105 | 98.57 70 | 98.20 57 | 94.08 119 | 97.25 64 | 95.96 140 | 98.81 66 | 97.13 65 | 97.51 98 | 97.30 101 | 98.21 103 | 98.15 45 |
|
| FC-MVSNet-test | | | 97.54 67 | 98.26 29 | 96.70 127 | 98.87 66 | 97.79 117 | 98.49 76 | 98.56 27 | 96.04 42 | 90.39 206 | 99.65 8 | 98.67 76 | 95.15 125 | 99.23 19 | 99.07 14 | 98.73 71 | 97.39 85 |
|
| TSAR-MVS + ACMM | | | 97.54 67 | 97.79 51 | 97.26 99 | 98.23 110 | 98.10 93 | 97.71 116 | 97.88 87 | 95.97 47 | 95.57 140 | 98.71 70 | 98.57 85 | 97.36 58 | 97.74 86 | 96.81 113 | 96.83 166 | 98.59 25 |
|
| DeepC-MVS_fast | | 95.38 6 | 97.53 69 | 97.30 72 | 97.79 72 | 98.83 71 | 97.64 120 | 98.18 90 | 97.14 132 | 95.57 65 | 97.83 40 | 97.10 114 | 98.80 67 | 96.53 91 | 97.41 101 | 97.32 99 | 98.24 102 | 97.26 91 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| v1192 | | | 97.52 70 | 97.03 90 | 98.09 43 | 98.31 105 | 98.01 100 | 98.96 41 | 97.25 128 | 95.22 77 | 98.89 12 | 99.64 9 | 98.83 63 | 97.68 48 | 95.63 152 | 95.91 142 | 97.47 136 | 95.97 137 |
|
| v1144 | | | 97.51 71 | 97.05 89 | 98.04 53 | 98.26 108 | 97.98 102 | 98.88 48 | 97.42 118 | 95.38 74 | 98.56 18 | 99.59 14 | 99.01 44 | 97.65 49 | 95.77 149 | 96.06 139 | 97.47 136 | 95.56 149 |
|
| v8 | | | 97.51 71 | 97.16 80 | 97.91 60 | 97.99 130 | 98.48 69 | 98.76 57 | 98.17 63 | 94.54 106 | 97.69 45 | 99.48 20 | 98.76 72 | 97.63 51 | 96.10 144 | 96.14 134 | 97.20 150 | 96.64 115 |
|
| v1921920 | | | 97.50 73 | 97.00 91 | 98.07 49 | 98.20 114 | 97.94 108 | 99.03 30 | 97.06 134 | 95.29 76 | 99.01 9 | 99.62 11 | 98.73 74 | 97.74 45 | 95.52 155 | 95.78 147 | 97.39 142 | 96.12 133 |
|
| Anonymous20231211 | | | 97.49 74 | 97.91 44 | 97.00 113 | 98.31 105 | 98.72 52 | 98.27 87 | 97.84 91 | 94.76 95 | 94.77 159 | 98.14 88 | 98.38 95 | 93.60 151 | 98.96 31 | 98.66 40 | 99.22 30 | 97.77 62 |
|
| v144192 | | | 97.49 74 | 96.99 93 | 98.07 49 | 98.11 122 | 97.95 105 | 99.02 31 | 97.21 129 | 94.90 91 | 98.88 13 | 99.53 17 | 98.89 56 | 97.75 44 | 95.59 153 | 95.90 143 | 97.43 139 | 96.16 131 |
|
| test1111 | | | 97.48 76 | 97.20 77 | 97.81 71 | 98.78 74 | 98.85 30 | 98.68 64 | 98.40 37 | 96.68 28 | 94.84 157 | 99.13 41 | 90.32 192 | 97.01 71 | 99.27 17 | 99.05 17 | 99.19 31 | 97.10 97 |
|
| GeoE | | | 97.48 76 | 96.84 102 | 98.22 38 | 99.01 58 | 98.39 72 | 98.85 52 | 98.76 21 | 92.37 145 | 97.53 50 | 97.58 99 | 98.23 102 | 97.11 66 | 97.57 96 | 96.98 107 | 98.10 111 | 96.78 110 |
|
| APD-MVS |  | | 97.47 78 | 97.16 80 | 97.84 67 | 99.32 31 | 98.39 72 | 98.47 79 | 98.21 56 | 92.08 150 | 95.23 145 | 96.68 122 | 98.90 54 | 96.99 72 | 98.20 71 | 98.21 64 | 98.80 68 | 97.67 66 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| PVSNet_Blended_VisFu | | | 97.44 79 | 97.14 82 | 97.79 72 | 99.15 42 | 98.44 70 | 98.32 85 | 97.66 98 | 93.74 127 | 97.73 44 | 98.79 63 | 96.93 140 | 95.64 119 | 97.69 88 | 96.91 110 | 98.25 101 | 97.50 79 |
|
| PHI-MVS | | | 97.44 79 | 97.17 79 | 97.74 75 | 98.14 119 | 98.41 71 | 98.03 100 | 97.50 108 | 92.07 151 | 98.01 36 | 97.33 108 | 98.62 82 | 96.02 106 | 98.34 70 | 98.21 64 | 98.76 70 | 97.24 94 |
|
| v1240 | | | 97.43 81 | 96.87 101 | 98.09 43 | 98.25 109 | 97.92 109 | 99.02 31 | 97.06 134 | 94.77 94 | 99.09 8 | 99.68 6 | 98.51 88 | 97.78 43 | 95.25 160 | 95.81 145 | 97.32 146 | 96.13 132 |
|
| ECVR-MVS |  | | 97.40 82 | 97.11 86 | 97.73 76 | 98.66 84 | 98.83 33 | 98.50 74 | 98.40 37 | 96.04 42 | 95.00 155 | 98.95 49 | 91.07 189 | 96.70 79 | 99.28 14 | 99.04 19 | 99.14 33 | 96.58 117 |
|
| FMVSNet1 | | | 97.40 82 | 98.09 36 | 96.60 132 | 97.80 148 | 98.76 44 | 98.26 88 | 98.50 30 | 96.79 26 | 93.13 193 | 99.28 34 | 98.64 79 | 92.90 163 | 97.67 90 | 97.86 83 | 99.02 43 | 97.64 68 |
|
| casdiffmvs_mvg |  | | 97.34 84 | 97.65 58 | 96.97 114 | 97.74 151 | 98.33 76 | 98.45 80 | 97.18 130 | 95.81 53 | 93.92 180 | 99.04 44 | 99.05 40 | 95.48 120 | 97.00 118 | 97.71 89 | 99.07 42 | 96.63 116 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| v2v482 | | | 97.33 85 | 96.84 102 | 97.90 61 | 98.19 115 | 97.83 111 | 98.74 60 | 97.44 116 | 95.42 73 | 98.23 29 | 99.46 21 | 98.84 61 | 97.46 54 | 95.51 156 | 96.10 137 | 97.36 144 | 94.72 159 |
|
| EPP-MVSNet | | | 97.29 86 | 96.88 97 | 97.76 74 | 98.70 79 | 99.10 16 | 98.92 43 | 98.36 44 | 95.12 82 | 93.36 191 | 97.39 105 | 91.00 190 | 97.65 49 | 98.72 42 | 98.91 25 | 99.58 7 | 97.92 55 |
|
| MVS_111021_HR | | | 97.27 87 | 97.11 86 | 97.46 91 | 98.46 93 | 97.82 114 | 97.50 130 | 96.86 142 | 94.97 87 | 97.13 69 | 96.99 115 | 98.39 93 | 96.82 76 | 97.65 93 | 97.38 94 | 98.02 114 | 96.56 120 |
|
| SF-MVS | | | 97.26 88 | 97.43 66 | 97.05 110 | 98.80 73 | 97.83 111 | 96.02 184 | 97.44 116 | 94.98 86 | 95.74 130 | 97.16 111 | 98.45 92 | 95.72 112 | 97.85 78 | 97.97 78 | 98.60 76 | 97.78 60 |
|
| TSAR-MVS + GP. | | | 97.26 88 | 97.33 71 | 97.18 104 | 98.21 113 | 98.06 95 | 96.38 175 | 97.66 98 | 93.92 124 | 95.23 145 | 98.48 77 | 98.33 96 | 97.41 56 | 97.63 94 | 97.35 95 | 98.18 105 | 97.57 74 |
|
| OMC-MVS | | | 97.23 90 | 97.21 76 | 97.25 102 | 97.85 139 | 97.52 129 | 97.92 106 | 95.77 175 | 95.83 52 | 97.09 72 | 97.86 93 | 98.52 87 | 96.62 83 | 97.51 98 | 96.65 119 | 98.26 99 | 96.57 118 |
|
| 3Dnovator | | 96.31 3 | 97.22 91 | 97.19 78 | 97.25 102 | 98.14 119 | 97.95 105 | 98.03 100 | 96.77 147 | 96.42 33 | 97.14 67 | 95.11 150 | 97.59 125 | 95.14 127 | 97.79 83 | 97.72 87 | 98.26 99 | 97.76 64 |
|
| MVS_0304 | | | 97.18 92 | 96.84 102 | 97.58 81 | 99.15 42 | 98.19 82 | 98.11 95 | 97.81 93 | 92.36 146 | 98.06 34 | 97.43 104 | 99.06 37 | 94.24 142 | 96.80 123 | 96.54 123 | 98.12 109 | 97.52 77 |
|
| sasdasda | | | 97.11 93 | 96.88 97 | 97.38 93 | 98.34 98 | 98.72 52 | 97.52 128 | 97.94 80 | 95.60 61 | 95.01 153 | 94.58 164 | 94.50 167 | 96.59 85 | 97.84 79 | 98.03 74 | 98.90 58 | 98.91 9 |
|
| canonicalmvs | | | 97.11 93 | 96.88 97 | 97.38 93 | 98.34 98 | 98.72 52 | 97.52 128 | 97.94 80 | 95.60 61 | 95.01 153 | 94.58 164 | 94.50 167 | 96.59 85 | 97.84 79 | 98.03 74 | 98.90 58 | 98.91 9 |
|
| V42 | | | 97.10 95 | 96.97 94 | 97.26 99 | 97.64 155 | 97.60 122 | 98.45 80 | 95.99 163 | 94.44 109 | 97.35 59 | 99.40 26 | 98.63 81 | 97.34 60 | 96.33 138 | 96.38 129 | 96.82 168 | 96.00 135 |
|
| CPTT-MVS | | | 97.08 96 | 96.25 116 | 98.05 52 | 99.21 35 | 98.30 77 | 98.54 73 | 97.98 78 | 94.28 113 | 95.89 123 | 89.57 209 | 98.54 86 | 98.18 27 | 97.82 82 | 97.32 99 | 98.54 80 | 97.91 56 |
|
| DeepPCF-MVS | | 94.55 10 | 97.05 97 | 97.13 85 | 96.95 116 | 96.06 198 | 97.12 146 | 98.01 102 | 95.44 181 | 95.18 79 | 97.50 52 | 97.86 93 | 98.08 107 | 97.31 62 | 97.23 106 | 97.00 106 | 97.36 144 | 97.45 81 |
|
| QAPM | | | 97.04 98 | 97.14 82 | 96.93 118 | 97.78 150 | 98.02 99 | 97.36 140 | 96.72 148 | 94.68 98 | 96.23 108 | 97.21 110 | 97.68 121 | 95.70 113 | 97.37 102 | 97.24 103 | 97.78 124 | 97.77 62 |
|
| CNVR-MVS | | | 97.03 99 | 96.77 107 | 97.34 95 | 98.89 65 | 97.67 119 | 97.64 121 | 97.17 131 | 94.40 111 | 95.70 134 | 94.02 174 | 98.76 72 | 96.49 93 | 97.78 84 | 97.29 102 | 98.12 109 | 97.47 80 |
|
| casdiffmvs |  | | 97.00 100 | 97.36 70 | 96.59 133 | 97.65 154 | 97.98 102 | 98.06 97 | 96.81 145 | 95.78 55 | 92.77 199 | 99.40 26 | 99.26 25 | 95.65 118 | 96.70 127 | 96.39 128 | 98.59 77 | 95.99 136 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| v148 | | | 96.99 101 | 96.70 109 | 97.34 95 | 97.89 137 | 97.23 138 | 98.33 84 | 96.96 137 | 95.57 65 | 97.12 70 | 98.99 46 | 99.40 12 | 97.23 63 | 96.22 141 | 95.45 152 | 96.50 174 | 94.02 171 |
|
| DELS-MVS | | | 96.90 102 | 97.24 75 | 96.50 138 | 97.85 139 | 98.18 83 | 97.88 111 | 95.92 167 | 93.48 129 | 95.34 143 | 98.86 60 | 98.94 53 | 94.03 145 | 97.33 104 | 97.04 105 | 98.00 116 | 96.85 108 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| MVS_111021_LR | | | 96.86 103 | 96.72 108 | 97.03 112 | 97.80 148 | 97.06 149 | 97.04 154 | 95.51 180 | 94.55 103 | 97.47 53 | 97.35 107 | 97.68 121 | 96.66 81 | 97.11 111 | 96.73 115 | 97.69 128 | 96.57 118 |
|
| PM-MVS | | | 96.85 104 | 96.62 111 | 97.11 106 | 97.13 178 | 96.51 162 | 98.29 86 | 94.65 198 | 94.84 92 | 98.12 32 | 98.59 73 | 97.20 133 | 97.41 56 | 96.24 140 | 96.41 127 | 97.09 155 | 96.56 120 |
|
| pmmvs-eth3d | | | 96.84 105 | 96.22 118 | 97.56 83 | 97.63 157 | 96.38 169 | 98.74 60 | 96.91 140 | 94.63 100 | 98.26 26 | 99.43 23 | 98.28 98 | 96.58 88 | 94.52 170 | 95.54 150 | 97.24 148 | 94.75 158 |
|
| CANet | | | 96.81 106 | 96.50 112 | 97.17 105 | 99.10 51 | 97.96 104 | 97.86 112 | 97.51 106 | 91.30 158 | 97.75 42 | 97.64 97 | 97.89 114 | 93.39 155 | 96.98 119 | 96.73 115 | 97.40 141 | 96.99 99 |
|
| Fast-Effi-MVS+ | | | 96.80 107 | 95.92 129 | 97.84 67 | 98.57 88 | 97.46 132 | 98.06 97 | 98.24 53 | 89.64 179 | 97.57 49 | 96.45 127 | 97.35 130 | 96.73 78 | 97.22 107 | 96.64 120 | 97.86 121 | 96.65 114 |
|
| MCST-MVS | | | 96.79 108 | 96.08 122 | 97.62 79 | 98.78 74 | 97.52 129 | 98.01 102 | 97.32 126 | 93.20 132 | 95.84 125 | 93.97 176 | 98.12 105 | 97.34 60 | 96.34 136 | 95.88 144 | 98.45 88 | 97.51 78 |
|
| UGNet | | | 96.79 108 | 97.82 49 | 95.58 162 | 97.57 160 | 98.39 72 | 98.48 77 | 97.84 91 | 95.85 51 | 94.68 161 | 97.91 92 | 99.07 36 | 87.12 206 | 97.71 87 | 97.51 91 | 97.80 122 | 98.29 38 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| TAPA-MVS | | 93.96 13 | 96.79 108 | 96.70 109 | 96.90 120 | 97.64 155 | 97.58 123 | 97.54 127 | 94.50 200 | 95.14 80 | 96.64 91 | 96.76 119 | 97.90 113 | 96.63 82 | 95.98 146 | 96.14 134 | 98.45 88 | 97.39 85 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| CLD-MVS | | | 96.73 111 | 96.92 95 | 96.51 137 | 98.70 79 | 97.57 125 | 97.64 121 | 92.07 207 | 93.10 138 | 96.31 107 | 98.29 83 | 99.02 43 | 95.99 108 | 97.20 108 | 96.47 125 | 98.37 95 | 96.81 109 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| MGCFI-Net | | | 96.69 112 | 96.89 96 | 96.44 140 | 98.30 107 | 98.63 57 | 97.39 137 | 97.90 84 | 95.72 58 | 91.16 204 | 94.65 163 | 94.55 165 | 95.04 128 | 97.78 84 | 98.00 77 | 98.87 64 | 98.93 8 |
|
| train_agg | | | 96.68 113 | 95.93 128 | 97.56 83 | 99.08 53 | 97.16 142 | 98.44 83 | 97.37 122 | 91.12 162 | 95.18 147 | 95.43 145 | 98.48 90 | 97.36 58 | 96.48 132 | 95.52 151 | 97.95 119 | 97.34 89 |
|
| CDPH-MVS | | | 96.68 113 | 95.99 125 | 97.48 89 | 99.13 47 | 97.64 120 | 98.08 96 | 97.46 112 | 90.56 168 | 95.13 148 | 94.87 158 | 98.27 99 | 96.56 89 | 97.09 112 | 96.45 126 | 98.54 80 | 97.08 98 |
|
| MSLP-MVS++ | | | 96.66 115 | 96.46 115 | 96.89 121 | 98.02 125 | 97.71 118 | 95.57 191 | 96.96 137 | 94.36 112 | 96.19 112 | 91.37 201 | 98.24 100 | 97.07 68 | 97.69 88 | 97.89 80 | 97.52 134 | 97.95 52 |
|
| TinyColmap | | | 96.64 116 | 96.07 123 | 97.32 97 | 97.84 144 | 96.40 166 | 97.63 123 | 96.25 158 | 95.86 50 | 98.98 10 | 97.94 91 | 96.34 149 | 96.17 103 | 97.30 105 | 95.38 155 | 97.04 157 | 93.24 178 |
|
| IS_MVSNet | | | 96.62 117 | 96.48 114 | 96.78 125 | 98.46 93 | 98.68 55 | 98.61 68 | 98.24 53 | 92.23 147 | 89.63 211 | 95.90 141 | 94.40 169 | 96.23 98 | 98.65 49 | 98.77 33 | 99.52 12 | 96.76 111 |
|
| NCCC | | | 96.56 118 | 95.68 131 | 97.59 80 | 99.04 57 | 97.54 128 | 97.67 118 | 97.56 104 | 94.84 92 | 96.10 115 | 87.91 212 | 98.09 106 | 96.98 73 | 97.20 108 | 96.80 114 | 98.21 103 | 97.38 88 |
|
| WB-MVS | | | 96.54 119 | 98.09 36 | 94.73 179 | 96.68 190 | 98.34 75 | 94.77 210 | 97.39 119 | 98.12 10 | 89.72 210 | 98.95 49 | 99.32 18 | 93.33 156 | 98.67 46 | 97.88 81 | 96.47 176 | 95.38 152 |
|
| ETV-MVS | | | 96.54 119 | 95.27 139 | 98.02 56 | 99.07 55 | 97.48 131 | 98.16 93 | 98.19 59 | 87.33 199 | 97.58 48 | 92.67 188 | 95.93 155 | 96.22 99 | 98.49 61 | 98.46 46 | 98.91 57 | 96.50 123 |
|
| Effi-MVS+ | | | 96.46 121 | 95.28 138 | 97.85 66 | 98.64 87 | 97.16 142 | 97.15 152 | 98.75 23 | 90.27 172 | 98.03 35 | 93.93 177 | 96.21 150 | 96.55 90 | 96.34 136 | 96.69 118 | 97.97 118 | 96.33 126 |
|
| IterMVS-LS | | | 96.35 122 | 95.85 130 | 96.93 118 | 97.53 161 | 98.00 101 | 97.37 138 | 97.97 79 | 95.49 72 | 96.71 89 | 98.94 51 | 93.23 176 | 94.82 133 | 93.15 189 | 95.05 158 | 97.17 152 | 97.12 96 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| USDC | | | 96.30 123 | 95.64 133 | 97.07 108 | 97.62 158 | 96.35 171 | 97.17 151 | 95.71 176 | 95.52 70 | 99.17 7 | 98.11 89 | 97.46 127 | 95.67 115 | 95.44 158 | 93.60 178 | 97.09 155 | 92.99 182 |
|
| Vis-MVSNet (Re-imp) | | | 96.29 124 | 96.50 112 | 96.05 147 | 97.96 133 | 97.83 111 | 97.30 143 | 97.86 89 | 93.14 134 | 88.90 214 | 96.80 118 | 95.28 159 | 95.15 125 | 98.37 67 | 98.25 63 | 99.12 37 | 95.84 139 |
|
| MSDG | | | 96.27 125 | 96.17 121 | 96.38 143 | 97.85 139 | 96.27 173 | 96.55 172 | 94.41 201 | 94.55 103 | 95.62 137 | 97.56 101 | 97.80 115 | 96.22 99 | 97.17 110 | 96.27 131 | 97.67 130 | 93.60 175 |
|
| CNLPA | | | 96.24 126 | 95.97 126 | 96.57 135 | 97.48 167 | 97.10 148 | 96.75 165 | 94.95 192 | 94.92 90 | 96.20 111 | 94.81 159 | 96.61 144 | 96.25 97 | 96.94 120 | 95.64 148 | 97.79 123 | 95.74 145 |
|
| EIA-MVS | | | 96.23 127 | 94.85 151 | 97.84 67 | 99.08 53 | 98.21 80 | 97.69 117 | 98.03 75 | 85.68 209 | 98.09 33 | 91.75 199 | 97.07 136 | 95.66 117 | 97.58 95 | 97.72 87 | 98.47 86 | 95.91 138 |
|
| PLC |  | 92.55 15 | 96.10 128 | 95.36 135 | 96.96 115 | 98.13 121 | 96.88 153 | 96.49 173 | 96.67 152 | 94.07 120 | 95.71 133 | 91.14 202 | 96.09 152 | 96.84 75 | 96.70 127 | 96.58 122 | 97.92 120 | 96.03 134 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| test20.03 | | | 96.08 129 | 96.80 105 | 95.25 171 | 99.19 37 | 97.58 123 | 97.24 148 | 97.56 104 | 94.95 89 | 91.91 200 | 98.58 74 | 98.03 109 | 87.88 202 | 97.43 100 | 96.94 109 | 97.69 128 | 94.05 170 |
|
| FA-MVS(training) | | | 96.07 130 | 95.59 134 | 96.63 130 | 98.00 129 | 97.44 133 | 97.36 140 | 98.53 28 | 92.21 148 | 95.97 120 | 96.18 133 | 94.22 172 | 92.98 160 | 96.79 124 | 96.70 117 | 96.95 162 | 95.56 149 |
|
| TSAR-MVS + COLMAP | | | 96.05 131 | 95.94 127 | 96.18 146 | 97.46 168 | 96.41 165 | 97.26 147 | 95.83 171 | 94.69 97 | 95.30 144 | 98.31 82 | 96.52 145 | 94.71 135 | 95.48 157 | 94.87 160 | 96.54 173 | 95.33 153 |
|
| EU-MVSNet | | | 96.03 132 | 96.23 117 | 95.80 156 | 95.48 211 | 94.18 192 | 98.99 36 | 91.51 209 | 97.22 21 | 97.66 46 | 99.15 40 | 98.51 88 | 98.08 30 | 95.92 147 | 92.88 185 | 93.09 198 | 95.72 146 |
|
| PCF-MVS | | 92.69 14 | 95.98 133 | 95.05 146 | 97.06 109 | 98.43 95 | 97.56 126 | 97.76 114 | 96.65 153 | 89.95 177 | 95.70 134 | 96.18 133 | 98.48 90 | 95.74 111 | 93.64 181 | 93.35 182 | 98.09 113 | 96.18 130 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| HQP-MVS | | | 95.97 134 | 95.01 148 | 97.08 107 | 98.72 77 | 97.19 140 | 97.07 153 | 96.69 151 | 91.49 156 | 95.77 129 | 92.19 194 | 97.93 112 | 96.15 104 | 94.66 167 | 94.16 169 | 98.10 111 | 97.45 81 |
|
| Effi-MVS+-dtu | | | 95.94 135 | 95.08 145 | 96.94 117 | 98.54 90 | 97.38 134 | 96.66 169 | 97.89 86 | 88.68 185 | 95.92 121 | 92.90 187 | 97.28 131 | 94.18 144 | 96.68 129 | 96.13 136 | 98.45 88 | 96.51 122 |
|
| diffmvs |  | | 95.86 136 | 96.21 119 | 95.44 165 | 97.25 176 | 96.85 156 | 96.99 157 | 95.23 186 | 94.96 88 | 92.82 198 | 98.89 55 | 98.85 59 | 93.52 153 | 94.21 176 | 94.25 168 | 96.84 165 | 95.49 151 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| AdaColmap |  | | 95.85 137 | 94.65 154 | 97.26 99 | 98.70 79 | 97.20 139 | 97.33 142 | 97.30 127 | 91.28 160 | 95.90 122 | 88.16 211 | 96.17 151 | 96.60 84 | 97.34 103 | 96.82 112 | 97.71 125 | 95.60 148 |
|
| FMVSNet2 | | | 95.77 138 | 96.20 120 | 95.27 169 | 96.77 186 | 98.18 83 | 97.28 144 | 97.90 84 | 93.12 135 | 91.37 202 | 98.25 85 | 96.05 153 | 90.04 186 | 94.96 165 | 95.94 141 | 98.28 96 | 96.90 102 |
|
| OpenMVS |  | 94.63 9 | 95.75 139 | 95.04 147 | 96.58 134 | 97.85 139 | 97.55 127 | 96.71 167 | 96.07 160 | 90.15 175 | 96.47 97 | 90.77 207 | 95.95 154 | 94.41 140 | 97.01 117 | 96.95 108 | 98.00 116 | 96.90 102 |
|
| pmmvs5 | | | 95.70 140 | 95.22 140 | 96.26 144 | 96.55 193 | 97.24 137 | 97.50 130 | 94.99 191 | 90.95 164 | 96.87 80 | 98.47 78 | 97.40 128 | 94.45 138 | 92.86 190 | 94.98 159 | 97.23 149 | 94.64 161 |
|
| Anonymous20231206 | | | 95.69 141 | 95.68 131 | 95.70 158 | 98.32 102 | 96.95 151 | 97.37 138 | 96.65 153 | 93.33 130 | 93.61 185 | 98.70 71 | 98.03 109 | 91.04 175 | 95.07 163 | 94.59 167 | 97.20 150 | 93.09 181 |
|
| MAR-MVS | | | 95.51 142 | 94.49 158 | 96.71 126 | 97.92 135 | 96.40 166 | 96.72 166 | 98.04 74 | 86.74 203 | 96.72 86 | 92.52 191 | 95.14 161 | 94.02 146 | 96.81 122 | 96.54 123 | 96.85 163 | 97.25 92 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| DI_MVS_plusplus_trai | | | 95.48 143 | 94.51 156 | 96.61 131 | 97.13 178 | 97.30 136 | 98.05 99 | 96.79 146 | 93.75 126 | 95.08 151 | 96.38 128 | 89.76 194 | 94.95 129 | 93.97 180 | 94.82 164 | 97.64 132 | 95.63 147 |
|
| MDA-MVSNet-bldmvs | | | 95.45 144 | 95.20 141 | 95.74 157 | 94.24 216 | 96.38 169 | 97.93 105 | 94.80 193 | 95.56 68 | 96.87 80 | 98.29 83 | 95.24 160 | 96.50 92 | 98.65 49 | 90.38 197 | 94.09 192 | 91.93 186 |
|
| PVSNet_BlendedMVS | | | 95.44 145 | 95.09 143 | 95.86 154 | 97.31 173 | 97.13 144 | 96.31 178 | 95.01 189 | 88.55 188 | 96.23 108 | 94.55 168 | 97.75 116 | 92.56 168 | 96.42 133 | 95.44 153 | 97.71 125 | 95.81 140 |
|
| PVSNet_Blended | | | 95.44 145 | 95.09 143 | 95.86 154 | 97.31 173 | 97.13 144 | 96.31 178 | 95.01 189 | 88.55 188 | 96.23 108 | 94.55 168 | 97.75 116 | 92.56 168 | 96.42 133 | 95.44 153 | 97.71 125 | 95.81 140 |
|
| pmmvs4 | | | 95.37 147 | 94.25 159 | 96.67 129 | 97.01 181 | 95.28 186 | 97.60 124 | 96.07 160 | 93.11 136 | 97.29 62 | 98.09 90 | 94.23 171 | 95.21 124 | 91.56 201 | 93.91 175 | 96.82 168 | 93.59 176 |
|
| MVS_Test | | | 95.34 148 | 94.88 150 | 95.89 153 | 96.93 182 | 96.84 157 | 96.66 169 | 97.08 133 | 90.06 176 | 94.02 177 | 97.61 98 | 96.64 143 | 93.59 152 | 92.73 193 | 94.02 173 | 97.03 158 | 96.24 127 |
|
| GBi-Net | | | 95.21 149 | 95.35 136 | 95.04 174 | 96.77 186 | 98.18 83 | 97.28 144 | 97.58 101 | 88.43 190 | 90.28 207 | 96.01 137 | 92.43 180 | 90.04 186 | 97.67 90 | 97.86 83 | 98.28 96 | 96.90 102 |
|
| test1 | | | 95.21 149 | 95.35 136 | 95.04 174 | 96.77 186 | 98.18 83 | 97.28 144 | 97.58 101 | 88.43 190 | 90.28 207 | 96.01 137 | 92.43 180 | 90.04 186 | 97.67 90 | 97.86 83 | 98.28 96 | 96.90 102 |
|
| IterMVS-SCA-FT | | | 95.16 151 | 93.95 163 | 96.56 136 | 97.89 137 | 96.69 159 | 96.94 159 | 96.05 162 | 93.06 139 | 97.35 59 | 98.79 63 | 91.45 185 | 95.93 109 | 92.78 191 | 91.00 195 | 95.22 188 | 93.91 173 |
|
| HyFIR lowres test | | | 95.05 152 | 93.54 168 | 96.81 124 | 97.81 147 | 96.88 153 | 98.18 90 | 97.46 112 | 94.28 113 | 94.98 156 | 96.57 124 | 92.89 179 | 96.15 104 | 90.90 206 | 91.87 191 | 96.28 180 | 91.35 187 |
|
| CHOSEN 1792x2688 | | | 94.98 153 | 94.69 153 | 95.31 167 | 97.27 175 | 95.58 182 | 97.90 108 | 95.56 179 | 95.03 84 | 93.77 184 | 95.65 143 | 99.29 19 | 95.30 122 | 91.51 202 | 91.28 194 | 92.05 206 | 94.50 163 |
|
| CANet_DTU | | | 94.96 154 | 94.62 155 | 95.35 166 | 98.03 124 | 96.11 175 | 96.92 161 | 95.60 178 | 88.59 187 | 97.27 63 | 95.27 148 | 96.50 146 | 88.77 198 | 95.53 154 | 95.59 149 | 95.54 186 | 94.78 157 |
|
| CDS-MVSNet | | | 94.91 155 | 95.17 142 | 94.60 183 | 97.85 139 | 96.21 174 | 96.90 163 | 96.39 156 | 90.81 165 | 93.40 189 | 97.24 109 | 94.54 166 | 85.78 212 | 96.25 139 | 96.15 133 | 97.26 147 | 95.01 156 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| DPM-MVS | | | 94.86 156 | 93.90 165 | 95.99 149 | 98.19 115 | 96.52 161 | 96.29 180 | 95.95 164 | 93.11 136 | 94.61 163 | 88.17 210 | 96.44 147 | 93.77 150 | 93.33 184 | 93.54 180 | 97.11 154 | 96.22 128 |
|
| MS-PatchMatch | | | 94.84 157 | 94.76 152 | 94.94 177 | 96.38 194 | 94.69 191 | 95.90 186 | 94.03 203 | 92.49 143 | 93.81 182 | 95.79 142 | 96.38 148 | 94.54 136 | 94.70 166 | 94.85 161 | 94.97 190 | 94.43 165 |
|
| thisisatest0530 | | | 94.81 158 | 93.06 174 | 96.85 123 | 98.01 126 | 97.18 141 | 96.93 160 | 97.36 123 | 89.73 178 | 95.80 127 | 94.98 154 | 77.88 215 | 94.89 130 | 96.73 126 | 97.35 95 | 98.13 108 | 97.54 75 |
|
| tttt0517 | | | 94.81 158 | 93.04 175 | 96.88 122 | 98.15 118 | 97.37 135 | 96.99 157 | 97.36 123 | 89.51 180 | 95.74 130 | 94.89 156 | 77.53 217 | 94.89 130 | 96.94 120 | 97.35 95 | 98.17 106 | 97.70 65 |
|
| testgi | | | 94.81 158 | 96.05 124 | 93.35 194 | 99.06 56 | 96.87 155 | 97.57 126 | 96.70 150 | 95.77 56 | 88.60 216 | 93.19 185 | 98.87 58 | 81.21 220 | 97.03 116 | 96.64 120 | 96.97 161 | 93.99 172 |
|
| PatchMatch-RL | | | 94.79 161 | 93.75 167 | 96.00 148 | 96.80 185 | 95.00 188 | 95.47 196 | 95.25 185 | 90.68 167 | 95.80 127 | 92.97 186 | 93.64 174 | 95.67 115 | 96.13 143 | 95.81 145 | 96.99 160 | 92.01 185 |
|
| FPMVS | | | 94.70 162 | 94.99 149 | 94.37 185 | 95.84 204 | 93.20 197 | 96.00 185 | 91.93 208 | 95.03 84 | 94.64 162 | 94.68 160 | 93.29 175 | 90.95 176 | 98.07 75 | 97.34 98 | 96.85 163 | 93.29 177 |
|
| new-patchmatchnet | | | 94.48 163 | 94.02 161 | 95.02 176 | 97.51 165 | 95.00 188 | 95.68 190 | 94.26 202 | 97.32 20 | 95.73 132 | 99.60 12 | 98.22 104 | 91.30 171 | 94.13 177 | 84.41 207 | 95.65 185 | 89.45 198 |
|
| IterMVS | | | 94.48 163 | 93.46 170 | 95.66 159 | 97.52 162 | 96.43 163 | 97.20 149 | 94.73 196 | 92.91 142 | 96.44 98 | 98.75 68 | 91.10 187 | 94.53 137 | 92.10 197 | 90.10 199 | 93.51 195 | 92.84 184 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| MDTV_nov1_ep13_2view | | | 94.39 165 | 93.34 171 | 95.63 160 | 97.23 177 | 95.33 185 | 97.76 114 | 96.84 143 | 94.55 103 | 97.47 53 | 98.96 47 | 97.70 119 | 93.88 147 | 92.27 195 | 86.81 205 | 90.56 208 | 87.73 206 |
|
| Fast-Effi-MVS+-dtu | | | 94.34 166 | 93.26 173 | 95.62 161 | 97.82 145 | 95.97 178 | 95.86 187 | 99.01 13 | 86.88 201 | 93.39 190 | 90.83 205 | 95.46 158 | 90.61 180 | 94.46 172 | 94.68 165 | 97.01 159 | 94.51 162 |
|
| thres600view7 | | | 94.34 166 | 92.31 184 | 96.70 127 | 98.19 115 | 98.12 90 | 97.85 113 | 97.45 114 | 91.49 156 | 93.98 179 | 84.27 215 | 82.02 206 | 94.24 142 | 97.04 113 | 98.76 34 | 98.49 84 | 94.47 164 |
|
| EPNet | | | 94.33 168 | 93.52 169 | 95.27 169 | 98.81 72 | 94.71 190 | 96.77 164 | 98.20 57 | 88.12 193 | 96.53 95 | 92.53 190 | 91.19 186 | 85.25 216 | 95.22 161 | 95.26 156 | 96.09 183 | 97.63 72 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| test2506 | | | 94.29 169 | 91.43 192 | 97.64 78 | 98.66 84 | 98.83 33 | 98.50 74 | 98.40 37 | 96.04 42 | 94.45 166 | 94.88 157 | 55.05 231 | 96.70 79 | 99.28 14 | 99.04 19 | 99.14 33 | 96.87 106 |
|
| GA-MVS | | | 94.18 170 | 92.98 176 | 95.58 162 | 97.36 170 | 96.42 164 | 96.21 181 | 95.86 168 | 90.29 171 | 95.08 151 | 96.19 132 | 85.37 198 | 92.82 164 | 94.01 179 | 94.14 170 | 96.16 182 | 94.41 166 |
|
| gg-mvs-nofinetune | | | 94.13 171 | 93.93 164 | 94.37 185 | 97.99 130 | 95.86 179 | 95.45 199 | 99.22 9 | 97.61 16 | 95.10 150 | 99.50 19 | 84.50 199 | 81.73 219 | 95.31 159 | 94.12 171 | 96.71 171 | 90.59 191 |
|
| baseline | | | 94.07 172 | 94.50 157 | 93.57 192 | 96.34 195 | 93.40 196 | 95.56 194 | 92.39 206 | 92.07 151 | 94.00 178 | 98.24 86 | 97.51 126 | 89.19 192 | 91.75 199 | 92.72 186 | 93.96 194 | 95.79 142 |
|
| FMVSNet3 | | | 94.06 173 | 93.85 166 | 94.31 188 | 95.46 212 | 97.80 116 | 96.34 176 | 97.58 101 | 88.43 190 | 90.28 207 | 96.01 137 | 92.43 180 | 88.67 199 | 91.82 198 | 93.96 174 | 97.53 133 | 96.50 123 |
|
| thres400 | | | 94.04 174 | 91.94 187 | 96.50 138 | 97.98 132 | 97.82 114 | 97.66 120 | 96.96 137 | 90.96 163 | 94.20 173 | 83.24 217 | 82.82 204 | 93.80 148 | 96.50 131 | 98.09 70 | 98.38 94 | 94.15 168 |
|
| dmvs_re | | | 94.02 175 | 92.39 182 | 95.91 152 | 97.71 152 | 95.43 184 | 97.00 156 | 95.94 165 | 82.49 218 | 94.61 163 | 83.69 216 | 93.01 178 | 92.71 165 | 97.83 81 | 97.56 90 | 97.50 135 | 96.73 112 |
|
| CVMVSNet | | | 94.01 176 | 94.25 159 | 93.73 191 | 94.36 215 | 92.44 200 | 97.45 133 | 88.56 212 | 95.59 63 | 93.06 196 | 98.88 56 | 90.03 193 | 94.84 132 | 94.08 178 | 93.45 181 | 94.09 192 | 95.31 154 |
|
| thres200 | | | 93.98 177 | 91.90 188 | 96.40 142 | 97.66 153 | 98.12 90 | 97.20 149 | 97.45 114 | 90.16 174 | 93.82 181 | 83.08 218 | 83.74 202 | 93.80 148 | 97.04 113 | 97.48 93 | 98.49 84 | 93.70 174 |
|
| baseline1 | | | 93.89 178 | 92.82 178 | 95.14 173 | 97.62 158 | 96.97 150 | 96.12 182 | 96.36 157 | 91.30 158 | 91.53 201 | 94.68 160 | 80.72 208 | 90.80 178 | 95.71 150 | 96.29 130 | 98.44 91 | 94.09 169 |
|
| tfpn200view9 | | | 93.80 179 | 91.75 189 | 96.20 145 | 97.52 162 | 98.15 88 | 97.48 132 | 97.47 111 | 87.65 195 | 93.56 187 | 83.03 219 | 84.12 200 | 92.62 167 | 97.04 113 | 98.09 70 | 98.52 83 | 94.17 167 |
|
| MIMVSNet | | | 93.68 180 | 93.96 162 | 93.35 194 | 97.82 145 | 96.08 176 | 96.34 176 | 98.46 34 | 91.28 160 | 86.67 221 | 94.95 155 | 94.87 163 | 84.39 217 | 94.53 168 | 94.65 166 | 96.45 177 | 91.34 188 |
|
| pmnet_mix02 | | | 93.59 181 | 92.65 179 | 94.69 181 | 96.76 189 | 94.16 193 | 97.03 155 | 93.00 205 | 95.79 54 | 96.03 119 | 98.91 53 | 97.69 120 | 92.99 159 | 90.03 209 | 84.10 209 | 92.35 204 | 87.89 205 |
|
| EPNet_dtu | | | 93.45 182 | 92.51 181 | 94.55 184 | 98.39 97 | 91.67 209 | 95.46 197 | 97.50 108 | 86.56 204 | 97.38 57 | 93.52 180 | 94.20 173 | 85.82 211 | 93.31 186 | 92.53 187 | 92.72 200 | 95.76 144 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| IB-MVS | | 92.44 16 | 93.33 183 | 92.15 186 | 94.70 180 | 97.42 169 | 96.39 168 | 95.57 191 | 94.67 197 | 86.40 207 | 93.59 186 | 78.28 223 | 95.76 157 | 89.59 191 | 95.88 148 | 95.98 140 | 97.39 142 | 96.34 125 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| ET-MVSNet_ETH3D | | | 93.18 184 | 90.80 195 | 95.95 150 | 96.05 199 | 96.07 177 | 96.92 161 | 96.51 155 | 89.34 181 | 95.63 136 | 94.08 173 | 72.31 226 | 93.13 157 | 94.33 174 | 94.83 162 | 97.44 138 | 94.65 160 |
|
| thres100view900 | | | 92.93 185 | 90.89 194 | 95.31 167 | 97.52 162 | 96.82 158 | 96.41 174 | 95.08 187 | 87.65 195 | 93.56 187 | 83.03 219 | 84.12 200 | 91.12 174 | 94.53 168 | 96.91 110 | 98.17 106 | 93.21 179 |
|
| N_pmnet | | | 92.46 186 | 92.38 183 | 92.55 200 | 97.91 136 | 93.47 195 | 97.42 135 | 94.01 204 | 96.40 35 | 88.48 217 | 98.50 76 | 98.07 108 | 88.14 201 | 91.04 205 | 84.30 208 | 89.35 213 | 84.85 212 |
|
| TAMVS | | | 92.46 186 | 93.34 171 | 91.44 208 | 97.03 180 | 93.84 194 | 94.68 211 | 90.60 210 | 90.44 170 | 85.31 222 | 97.14 112 | 93.03 177 | 85.78 212 | 94.34 173 | 93.67 177 | 95.22 188 | 90.93 190 |
|
| CMPMVS |  | 71.81 19 | 92.34 188 | 92.85 177 | 91.75 206 | 92.70 220 | 90.43 214 | 88.84 223 | 88.56 212 | 85.87 208 | 94.35 170 | 90.98 203 | 95.89 156 | 91.14 173 | 96.14 142 | 94.83 162 | 94.93 191 | 95.78 143 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| baseline2 | | | 92.06 189 | 89.82 198 | 94.68 182 | 97.32 171 | 95.72 180 | 94.97 207 | 95.08 187 | 84.75 212 | 94.34 172 | 90.68 208 | 77.75 216 | 90.13 185 | 93.38 182 | 93.58 179 | 96.25 181 | 92.90 183 |
|
| MVSTER | | | 91.97 190 | 90.31 196 | 93.91 189 | 96.81 184 | 96.91 152 | 94.22 212 | 95.64 177 | 84.98 210 | 92.98 197 | 93.42 181 | 72.56 224 | 86.64 210 | 95.11 162 | 93.89 176 | 97.16 153 | 95.31 154 |
|
| CR-MVSNet | | | 91.94 191 | 88.50 201 | 95.94 151 | 96.14 197 | 92.08 204 | 95.23 202 | 98.47 32 | 84.30 214 | 96.44 98 | 94.58 164 | 75.57 218 | 92.92 161 | 90.22 207 | 92.22 188 | 96.43 178 | 90.56 192 |
|
| gm-plane-assit | | | 91.85 192 | 87.91 203 | 96.44 140 | 99.14 45 | 98.25 79 | 99.02 31 | 97.38 121 | 95.57 65 | 98.31 25 | 99.34 31 | 51.00 232 | 88.93 195 | 93.16 188 | 91.57 192 | 95.85 184 | 86.50 209 |
|
| PMMVS | | | 91.67 193 | 91.47 191 | 91.91 205 | 89.43 225 | 88.61 220 | 94.99 206 | 85.67 217 | 87.50 197 | 93.80 183 | 94.42 171 | 94.88 162 | 90.71 179 | 92.26 196 | 92.96 184 | 96.83 166 | 89.65 196 |
|
| CHOSEN 280x420 | | | 91.55 194 | 90.27 197 | 93.05 197 | 94.61 214 | 88.01 221 | 96.56 171 | 94.62 199 | 88.04 194 | 94.20 173 | 92.66 189 | 86.60 196 | 90.82 177 | 95.06 164 | 91.89 190 | 87.49 218 | 89.61 197 |
|
| PatchT | | | 91.40 195 | 88.54 200 | 94.74 178 | 91.48 224 | 92.18 203 | 97.42 135 | 97.51 106 | 84.96 211 | 96.44 98 | 94.16 172 | 75.47 219 | 92.92 161 | 90.22 207 | 92.22 188 | 92.66 203 | 90.56 192 |
|
| pmmvs3 | | | 91.20 196 | 91.40 193 | 90.96 210 | 91.71 223 | 91.08 210 | 95.41 200 | 81.34 221 | 87.36 198 | 94.57 165 | 95.02 152 | 94.30 170 | 90.42 181 | 94.28 175 | 89.26 201 | 92.30 205 | 88.49 203 |
|
| test0.0.03 1 | | | 91.17 197 | 91.50 190 | 90.80 211 | 98.01 126 | 95.46 183 | 94.22 212 | 95.80 172 | 86.55 205 | 81.75 224 | 90.83 205 | 87.93 195 | 78.48 221 | 94.51 171 | 94.11 172 | 96.50 174 | 91.08 189 |
|
| SCA | | | 91.15 198 | 87.65 205 | 95.23 172 | 96.15 196 | 95.68 181 | 96.68 168 | 98.18 61 | 90.46 169 | 97.21 66 | 92.44 192 | 80.17 210 | 93.51 154 | 86.04 216 | 83.58 212 | 89.68 212 | 85.21 211 |
|
| new_pmnet | | | 90.85 199 | 92.26 185 | 89.21 214 | 93.68 219 | 89.05 219 | 93.20 220 | 84.16 220 | 92.99 140 | 84.25 223 | 97.72 96 | 94.60 164 | 86.80 209 | 93.20 187 | 91.30 193 | 93.21 196 | 86.94 208 |
|
| RPMNet | | | 90.52 200 | 86.27 214 | 95.48 164 | 95.95 202 | 92.08 204 | 95.55 195 | 98.12 66 | 84.30 214 | 95.60 138 | 87.49 213 | 72.78 223 | 91.24 172 | 87.93 211 | 89.34 200 | 96.41 179 | 89.98 195 |
|
| MDTV_nov1_ep13 | | | 90.30 201 | 87.32 209 | 93.78 190 | 96.00 201 | 92.97 198 | 95.46 197 | 95.39 182 | 88.61 186 | 95.41 142 | 94.45 170 | 80.39 209 | 89.87 189 | 86.58 214 | 83.54 213 | 90.56 208 | 84.71 213 |
|
| PatchmatchNet |  | | 89.98 202 | 86.23 215 | 94.36 187 | 96.56 192 | 91.90 208 | 96.07 183 | 96.72 148 | 90.18 173 | 96.87 80 | 93.36 184 | 78.06 214 | 91.46 170 | 84.71 220 | 81.40 217 | 88.45 215 | 83.97 217 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| ADS-MVSNet | | | 89.89 203 | 87.70 204 | 92.43 202 | 95.52 209 | 90.91 212 | 95.57 191 | 95.33 183 | 93.19 133 | 91.21 203 | 93.41 182 | 82.12 205 | 89.05 193 | 86.21 215 | 83.77 211 | 87.92 216 | 84.31 214 |
|
| tpm | | | 89.84 204 | 86.81 211 | 93.36 193 | 96.60 191 | 91.92 207 | 95.02 205 | 97.39 119 | 86.79 202 | 96.54 94 | 95.03 151 | 69.70 227 | 87.66 203 | 88.79 210 | 86.19 206 | 86.95 220 | 89.27 199 |
|
| test-LLR | | | 89.77 205 | 87.47 207 | 92.45 201 | 98.01 126 | 89.77 216 | 93.25 218 | 95.80 172 | 81.56 220 | 89.19 212 | 92.08 195 | 79.59 211 | 85.77 214 | 91.47 203 | 89.04 203 | 92.69 201 | 88.75 200 |
|
| FMVSNet5 | | | 89.65 206 | 87.60 206 | 92.04 204 | 95.63 208 | 96.61 160 | 94.82 209 | 94.75 194 | 80.11 224 | 87.72 219 | 77.73 224 | 73.81 222 | 83.81 218 | 95.64 151 | 96.08 138 | 95.49 187 | 93.21 179 |
|
| EPMVS | | | 89.28 207 | 86.28 213 | 92.79 199 | 96.01 200 | 92.00 206 | 95.83 188 | 95.85 170 | 90.78 166 | 91.00 205 | 94.58 164 | 74.65 220 | 88.93 195 | 85.00 218 | 82.88 215 | 89.09 214 | 84.09 216 |
|
| test-mter | | | 89.16 208 | 88.14 202 | 90.37 212 | 94.79 213 | 91.05 211 | 93.60 217 | 85.26 218 | 81.65 219 | 88.32 218 | 92.22 193 | 79.35 213 | 87.03 207 | 92.28 194 | 90.12 198 | 93.19 197 | 90.29 194 |
|
| CostFormer | | | 89.06 209 | 85.65 216 | 93.03 198 | 95.88 203 | 92.40 201 | 95.30 201 | 95.86 168 | 86.49 206 | 93.12 195 | 93.40 183 | 74.18 221 | 88.25 200 | 82.99 221 | 81.46 216 | 89.77 211 | 88.66 202 |
|
| MVS-HIRNet | | | 88.72 210 | 86.49 212 | 91.33 209 | 91.81 222 | 85.66 222 | 87.02 225 | 96.25 158 | 81.48 222 | 94.82 158 | 96.31 131 | 92.14 183 | 90.32 183 | 87.60 212 | 83.82 210 | 87.74 217 | 78.42 221 |
|
| TESTMET0.1,1 | | | 88.60 211 | 87.47 207 | 89.93 213 | 94.23 217 | 89.77 216 | 93.25 218 | 84.47 219 | 81.56 220 | 89.19 212 | 92.08 195 | 79.59 211 | 85.77 214 | 91.47 203 | 89.04 203 | 92.69 201 | 88.75 200 |
|
| dps | | | 88.36 212 | 84.32 219 | 93.07 196 | 93.86 218 | 92.29 202 | 94.89 208 | 95.93 166 | 83.50 216 | 93.13 193 | 91.87 197 | 67.79 229 | 90.32 183 | 85.99 217 | 83.22 214 | 90.28 210 | 85.56 210 |
|
| tpmrst | | | 87.60 213 | 84.13 220 | 91.66 207 | 95.65 207 | 89.73 218 | 93.77 215 | 94.74 195 | 88.85 183 | 93.35 192 | 95.60 144 | 72.37 225 | 87.40 204 | 81.24 222 | 78.19 219 | 85.02 223 | 82.90 220 |
|
| tpm cat1 | | | 87.19 214 | 82.78 221 | 92.33 203 | 95.66 206 | 90.61 213 | 94.19 214 | 95.27 184 | 86.97 200 | 94.38 168 | 90.91 204 | 69.40 228 | 87.21 205 | 79.57 224 | 77.82 220 | 87.25 219 | 84.18 215 |
|
| E-PMN | | | 86.94 215 | 85.10 217 | 89.09 216 | 95.77 205 | 83.54 225 | 89.89 222 | 86.55 214 | 92.18 149 | 87.34 220 | 94.02 174 | 83.42 203 | 89.63 190 | 93.32 185 | 77.11 221 | 85.33 221 | 72.09 222 |
|
| EMVS | | | 86.63 216 | 84.48 218 | 89.15 215 | 95.51 210 | 83.66 224 | 90.19 221 | 86.14 216 | 91.78 153 | 88.68 215 | 93.83 178 | 81.97 207 | 89.05 193 | 92.76 192 | 76.09 222 | 85.31 222 | 71.28 223 |
|
| PMMVS2 | | | 86.47 217 | 92.62 180 | 79.29 218 | 92.01 221 | 85.63 223 | 93.74 216 | 86.37 215 | 93.95 123 | 54.18 229 | 98.19 87 | 97.39 129 | 58.46 222 | 96.57 130 | 93.07 183 | 90.99 207 | 83.55 219 |
|
| MVE |  | 72.99 18 | 85.37 218 | 89.43 199 | 80.63 217 | 74.43 226 | 71.94 227 | 88.25 224 | 89.81 211 | 93.27 131 | 67.32 227 | 96.32 130 | 91.83 184 | 90.40 182 | 93.36 183 | 90.79 196 | 73.55 226 | 88.49 203 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| test_method | | | 61.30 219 | 70.45 222 | 50.62 219 | 22.69 228 | 30.92 229 | 68.31 228 | 25.76 223 | 80.56 223 | 68.71 225 | 82.80 221 | 91.08 188 | 44.64 223 | 80.50 223 | 56.70 223 | 73.64 225 | 70.58 224 |
|
| GG-mvs-BLEND | | | 61.03 220 | 87.02 210 | 30.71 221 | 0.74 231 | 90.01 215 | 78.90 227 | 0.74 227 | 84.56 213 | 9.46 230 | 79.17 222 | 90.69 191 | 1.37 227 | 91.74 200 | 89.13 202 | 93.04 199 | 83.83 218 |
|
| testmvs | | | 4.99 221 | 6.88 223 | 2.78 223 | 1.73 229 | 2.04 231 | 3.10 231 | 1.71 225 | 7.27 226 | 3.92 232 | 12.18 226 | 6.71 233 | 3.31 226 | 6.94 225 | 5.51 225 | 2.94 228 | 7.51 225 |
|
| test123 | | | 4.41 222 | 5.71 224 | 2.88 222 | 1.28 230 | 2.21 230 | 3.09 232 | 1.65 226 | 6.35 227 | 4.98 231 | 8.53 227 | 3.88 234 | 3.46 225 | 5.79 226 | 5.71 224 | 2.85 229 | 7.50 226 |
|
| uanet_test | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 232 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 235 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| sosnet-low-res | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 232 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 235 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| sosnet | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 232 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 235 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| TPM-MVS | | | | | | 97.49 166 | 96.32 172 | 95.05 204 | | | 94.36 169 | 91.82 198 | 96.92 141 | 88.89 197 | | | 96.67 172 | 96.22 128 |
| Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025 |
| RE-MVS-def | | | | | | | | | | | 99.38 2 | | | | | | | |
|
| 9.14 | | | | | | | | | | | | | 96.98 139 | | | | | |
|
| SR-MVS | | | | | | 99.33 30 | | | 98.40 37 | | | | 98.90 54 | | | | | |
|
| Anonymous202405211 | | | | 97.39 67 | | 98.85 68 | 98.59 59 | 97.89 110 | 97.93 82 | 94.41 110 | | 97.37 106 | 96.99 138 | 93.09 158 | 98.61 52 | 98.46 46 | 99.11 38 | 97.27 90 |
|
| our_test_3 | | | | | | 97.32 171 | 95.13 187 | 97.59 125 | | | | | | | | | | |
|
| ambc | | | | 96.78 106 | | 99.01 58 | 97.11 147 | 95.73 189 | | 95.91 49 | 99.25 3 | 98.56 75 | 97.17 134 | 97.04 69 | 96.76 125 | 95.22 157 | 96.72 170 | 96.73 112 |
|
| MTAPA | | | | | | | | | | | 97.43 56 | | 99.27 23 | | | | | |
|
| MTMP | | | | | | | | | | | 97.63 47 | | 99.03 42 | | | | | |
|
| Patchmatch-RL test | | | | | | | | 17.42 230 | | | | | | | | | | |
|
| tmp_tt | | | | | 45.72 220 | 60.00 227 | 38.74 228 | 45.50 229 | 12.18 224 | 79.58 225 | 68.42 226 | 67.62 225 | 65.04 230 | 22.12 224 | 84.83 219 | 78.72 218 | 66.08 227 | |
|
| XVS | | | | | | 99.48 18 | 98.76 44 | 99.22 21 | | | 96.40 102 | | 98.78 69 | | | | 98.94 55 | |
|
| X-MVStestdata | | | | | | 99.48 18 | 98.76 44 | 99.22 21 | | | 96.40 102 | | 98.78 69 | | | | 98.94 55 | |
|
| mPP-MVS | | | | | | 99.58 6 | | | | | | | 98.98 46 | | | | | |
|
| NP-MVS | | | | | | | | | | 89.27 182 | | | | | | | | |
|
| Patchmtry | | | | | | | 92.70 199 | 95.23 202 | 98.47 32 | | 96.44 98 | | | | | | | |
|
| DeepMVS_CX |  | | | | | | 72.99 226 | 80.14 226 | 37.34 222 | 83.46 217 | 60.13 228 | 84.40 214 | 85.48 197 | 86.93 208 | 87.22 213 | | 79.61 224 | 87.32 207 |
|