This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB97.71 199.33 199.47 199.16 799.16 4199.11 1499.39 1299.16 1199.26 299.22 599.51 1899.75 498.54 1599.71 199.47 399.52 1299.46 1
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
SixPastTwentyTwo99.25 299.20 399.32 199.53 1499.32 899.64 299.19 1098.05 1099.19 699.74 498.96 4999.03 299.69 299.58 199.32 2599.06 6
WR-MVS99.22 399.15 599.30 299.54 1099.62 199.63 499.45 197.75 1498.47 2299.71 599.05 3998.88 499.54 599.49 299.81 198.87 9
PS-CasMVS99.08 498.90 1199.28 399.65 399.56 499.59 699.39 396.36 3598.83 1499.46 2199.09 3298.62 1099.51 799.36 899.63 398.97 7
PEN-MVS99.08 498.95 899.23 599.65 399.59 299.64 299.34 696.68 2798.65 1799.43 2399.33 1698.47 1799.50 899.32 999.60 598.79 11
v7n99.03 699.03 799.02 999.09 5299.11 1499.57 998.82 1998.21 999.25 399.84 299.59 698.76 699.23 1998.83 3298.63 7198.40 33
DTE-MVSNet99.03 698.88 1299.21 699.66 299.59 299.62 599.34 696.92 2398.52 1999.36 2998.98 4598.57 1399.49 999.23 1299.56 998.55 25
TDRefinement99.00 899.13 698.86 1098.99 6299.05 1999.58 798.29 4998.96 497.96 3799.40 2698.67 7598.87 599.60 399.46 499.46 1898.74 14
WR-MVS_H98.97 998.82 1499.14 899.56 899.56 499.54 1199.42 296.07 4098.37 2499.34 3199.09 3298.43 1899.45 1099.41 599.53 1098.86 10
UniMVSNet_ETH3D98.93 1099.20 398.63 2299.54 1099.33 798.73 6399.37 498.87 597.86 3999.27 3599.78 296.59 8599.52 699.40 699.67 298.21 41
CP-MVSNet98.91 1198.61 1999.25 499.63 599.50 699.55 1099.36 595.53 6698.77 1699.11 4298.64 7898.57 1399.42 1199.28 1199.61 498.78 12
anonymousdsp98.85 1298.88 1298.83 1198.69 8298.20 7899.68 197.35 12297.09 2298.98 1099.86 199.43 1098.94 399.28 1499.19 1399.33 2399.08 5
pmmvs698.77 1399.35 298.09 4398.32 10198.92 2598.57 7099.03 1299.36 196.86 8399.77 399.86 196.20 10099.56 499.39 799.59 698.61 22
ACMH95.26 798.75 1498.93 998.54 2598.86 6799.01 2199.58 798.10 6898.67 697.30 6199.18 3999.42 1198.40 1999.19 2198.86 3098.99 4898.19 42
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
COLMAP_ROBcopyleft96.84 298.75 1498.82 1498.66 2099.14 4598.79 3999.30 1797.67 9598.33 897.82 4199.20 3899.18 3098.76 699.27 1798.96 2299.29 2798.03 46
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
UA-Net98.66 1698.60 2298.73 1599.83 199.28 998.56 7299.24 896.04 4197.12 7098.44 7898.95 5098.17 2899.15 2499.00 2199.48 1799.33 3
DeepC-MVS96.08 598.58 1798.49 2498.68 1899.37 2698.52 6499.01 3598.17 6397.17 2198.25 2799.56 1599.62 598.29 2298.40 6298.09 7098.97 5098.08 45
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TranMVSNet+NR-MVSNet98.45 1898.22 3198.72 1799.32 3199.06 1798.99 3698.89 1495.52 6797.53 5099.42 2598.83 6298.01 3498.55 5498.34 5799.57 897.80 57
CSCG98.45 1898.61 1998.26 3799.11 4999.06 1798.17 9297.49 10897.93 1297.37 5898.88 5599.29 1898.10 2998.40 6297.51 8799.32 2599.16 4
DVP-MVS++98.44 2098.92 1097.88 6399.17 3999.00 2298.89 4698.26 5197.54 1796.05 11799.35 3099.76 396.34 9598.79 3798.65 4198.56 7799.35 2
Gipumacopyleft98.43 2198.15 3498.76 1499.00 6198.29 7597.91 10798.06 7099.02 399.50 196.33 12898.67 7599.22 199.02 2798.02 7598.88 6297.66 65
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ACMH+94.90 898.40 2298.71 1798.04 5398.93 6498.84 3299.30 1797.86 8797.78 1394.19 17298.77 6599.39 1398.61 1199.33 1399.07 1499.33 2397.81 56
ACMMPR98.31 2398.07 3898.60 2399.58 698.83 3399.09 2798.48 3196.25 3797.03 7496.81 11699.09 3298.39 2098.55 5498.45 4999.01 4598.53 28
APDe-MVS98.29 2498.42 2698.14 4099.45 2198.90 2699.18 2398.30 4795.96 4795.13 14898.79 6299.25 2597.92 3898.80 3598.71 3698.85 6498.54 26
DVP-MVScopyleft98.27 2598.61 1997.87 6499.17 3999.03 2099.07 2998.17 6396.75 2694.35 16798.92 5199.58 797.86 4198.67 4698.70 3798.63 7198.63 20
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
TransMVSNet (Re)98.23 2698.72 1697.66 7798.22 11098.73 5098.66 6698.03 7598.60 796.40 10299.60 1298.24 9995.26 12299.19 2199.05 1799.36 2097.64 66
DU-MVS98.23 2697.74 5498.81 1299.23 3398.77 4198.76 5798.88 1594.10 11498.50 2098.87 5798.32 9697.99 3598.40 6298.08 7399.49 1697.64 66
UniMVSNet (Re)98.23 2697.85 4798.67 1999.15 4298.87 2898.74 6098.84 1794.27 11297.94 3899.01 4598.39 9297.82 4298.35 6798.29 6299.51 1597.78 58
MIMVSNet198.22 2998.51 2397.87 6499.40 2598.82 3799.31 1698.53 2897.39 1896.59 9399.31 3399.23 2794.76 13298.93 3298.67 3998.63 7197.25 90
HFP-MVS98.17 3098.02 3998.35 3599.36 2798.62 5698.79 5698.46 3496.24 3896.53 9597.13 11298.98 4598.02 3398.20 7098.42 5198.95 5498.54 26
Baseline_NR-MVSNet98.17 3097.90 4498.48 2999.23 3398.59 5798.83 5398.73 2493.97 11996.95 7799.66 798.23 10197.90 3998.40 6299.06 1699.25 2997.42 82
TSAR-MVS + MP.98.15 3298.23 3098.06 5198.47 9298.16 8499.23 2096.87 13895.58 6196.72 8698.41 7999.06 3698.05 3298.99 2998.90 2699.00 4698.51 29
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
pm-mvs198.14 3398.66 1897.53 8697.93 13298.49 6698.14 9498.19 5997.95 1196.17 11399.63 1098.85 5895.41 12098.91 3398.89 2799.34 2297.86 55
SMA-MVScopyleft98.13 3498.22 3198.02 5699.44 2398.73 5098.24 8997.87 8695.22 7496.76 8598.66 7199.35 1597.03 7098.53 5798.39 5398.80 6698.69 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP98.12 3598.08 3798.18 3999.34 2898.74 4998.97 3898.00 7795.13 7896.90 7897.54 10199.27 2297.18 6498.72 4298.45 4998.68 7098.69 16
UniMVSNet_NR-MVSNet98.12 3597.56 6298.78 1399.13 4798.89 2798.76 5798.78 2093.81 12298.50 2098.81 6197.64 12297.99 3598.18 7397.92 7799.53 1097.64 66
ACMM94.29 1198.12 3597.71 5598.59 2499.51 1698.58 5999.24 1998.25 5296.22 3996.90 7895.01 15298.89 5598.52 1698.66 4798.32 6099.13 3698.28 39
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SteuartSystems-ACMMP98.06 3897.78 5298.39 3399.54 1098.79 3998.94 4298.42 3693.98 11895.85 12496.66 12299.25 2598.61 1198.71 4498.38 5498.97 5098.67 19
Skip Steuart: Steuart Systems R&D Blog.
SED-MVS98.05 3998.46 2597.57 8299.01 5898.99 2398.82 5598.24 5395.76 5694.70 15998.96 4799.49 996.19 10198.74 3898.65 4198.46 8598.63 20
OPM-MVS98.01 4098.01 4098.00 5899.11 4998.12 8798.68 6497.72 9396.65 2996.68 9098.40 8099.28 2197.44 5598.20 7097.82 8398.40 9197.58 71
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Vis-MVSNetpermissive98.01 4098.42 2697.54 8596.89 17998.82 3799.14 2497.59 9896.30 3697.04 7399.26 3698.83 6296.01 10698.73 4098.21 6498.58 7698.75 13
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CS-MVS98.00 4297.38 6798.73 1598.72 7799.15 1199.12 2698.76 2191.58 15298.15 3196.70 12098.72 7498.20 2498.64 5098.92 2499.43 1997.97 49
NR-MVSNet98.00 4297.88 4598.13 4198.33 9998.77 4198.83 5398.88 1594.10 11497.46 5598.87 5798.58 8395.78 10999.13 2598.16 6899.52 1297.53 74
CP-MVS98.00 4297.57 6198.50 2699.47 2098.56 6198.91 4498.38 4294.71 9397.01 7595.20 14899.06 3698.20 2498.61 5198.46 4699.02 4398.40 33
DPE-MVScopyleft97.99 4598.12 3597.84 6798.65 8698.86 2998.86 5098.05 7394.18 11395.49 14198.90 5399.33 1697.11 6698.53 5798.65 4198.86 6398.39 35
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ACMMPcopyleft97.99 4597.60 6098.45 3199.53 1498.83 3399.13 2598.30 4794.57 9996.39 10695.32 14698.95 5098.37 2198.61 5198.47 4599.00 4698.45 30
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MP-MVScopyleft97.98 4797.53 6398.50 2699.56 898.58 5998.97 3898.39 4193.49 12597.14 6796.08 13599.23 2798.06 3198.50 5998.38 5498.90 5898.44 31
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EG-PatchMatch MVS97.98 4797.92 4298.04 5398.84 7098.04 9597.90 10896.83 14195.07 8098.79 1599.07 4399.37 1497.88 4098.74 3898.16 6898.01 11396.96 98
ACMP94.03 1297.97 4997.61 5998.39 3399.43 2498.51 6598.97 3898.06 7094.63 9796.10 11596.12 13499.20 2998.63 998.68 4598.20 6799.14 3397.93 52
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CS-MVS-test97.96 5097.38 6798.64 2198.57 8899.13 1299.36 1398.66 2591.67 15198.17 3096.91 11598.84 6097.99 3598.80 3598.88 2899.08 4197.43 81
LGP-MVS_train97.96 5097.53 6398.45 3199.45 2198.64 5599.09 2798.27 5092.99 13796.04 11896.57 12399.29 1898.66 898.73 4098.42 5199.19 3198.09 44
LS3D97.93 5297.80 4998.08 4799.20 3698.77 4198.89 4697.92 8296.59 3096.99 7696.71 11997.14 13496.39 9499.04 2698.96 2299.10 4097.39 83
SD-MVS97.84 5397.78 5297.90 6198.33 9998.06 9297.95 10497.80 9296.03 4596.72 8697.57 9999.18 3097.50 5397.88 7697.08 10099.11 3898.68 18
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
RPSCF97.83 5498.27 2897.31 9798.23 10898.06 9297.44 13395.79 17096.90 2495.81 12698.76 6698.61 8297.70 4798.90 3498.36 5698.90 5898.29 36
thisisatest051597.82 5597.67 5697.99 5998.49 9198.07 9198.48 7798.06 7095.35 7297.74 4398.83 6097.61 12396.74 7797.53 9398.30 6198.43 9098.01 48
PGM-MVS97.82 5597.25 7398.48 2999.54 1098.75 4899.02 3198.35 4592.41 14196.84 8495.39 14598.99 4498.24 2398.43 6198.34 5798.90 5898.41 32
PMVScopyleft90.51 1797.77 5797.98 4197.53 8698.68 8398.14 8697.67 11897.03 13396.43 3198.38 2398.72 6897.03 13694.44 13799.37 1299.30 1098.98 4996.86 105
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MSP-MVS97.67 5897.88 4597.43 9299.34 2898.99 2398.87 4998.12 6695.63 5894.16 17397.45 10299.50 896.44 9396.35 13198.70 3797.65 12998.57 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
tfpnnormal97.66 5997.79 5097.52 8898.32 10198.53 6398.45 8097.69 9497.59 1696.12 11497.79 9496.70 14095.69 11398.35 6798.34 5798.85 6497.22 93
FC-MVSNet-train97.65 6098.16 3397.05 10998.85 6898.85 3099.34 1498.08 6994.50 10494.41 16599.21 3798.80 6692.66 16298.98 3098.85 3198.96 5297.94 51
v1097.64 6197.26 7298.08 4798.07 12198.56 6198.86 5098.18 6194.48 10598.24 2899.56 1598.98 4597.72 4696.05 14196.26 12897.42 13796.93 99
DROMVSNet97.63 6296.88 9598.50 2698.74 7699.16 1099.33 1598.83 1888.77 18196.62 9296.48 12597.75 11598.19 2699.00 2898.76 3499.29 2798.27 40
X-MVS97.60 6397.00 9098.29 3699.50 1798.76 4498.90 4598.37 4394.67 9696.40 10291.47 19698.78 6897.60 5298.55 5498.50 4498.96 5298.29 36
3Dnovator+96.20 497.58 6497.14 8198.10 4298.98 6397.85 10798.60 6998.33 4696.41 3397.23 6594.66 16197.26 13196.91 7497.91 7597.87 7998.53 8098.03 46
DCV-MVSNet97.56 6597.63 5897.47 9098.41 9699.12 1398.63 6798.57 2695.71 5795.60 13893.79 17698.01 11094.25 13999.16 2398.88 2899.35 2198.74 14
HPM-MVS++copyleft97.56 6597.11 8598.09 4399.18 3897.95 10298.57 7098.20 5794.08 11697.25 6495.96 13998.81 6597.13 6597.51 9497.30 9798.21 10198.15 43
FC-MVSNet-test97.54 6798.26 2996.70 12698.87 6697.79 11498.49 7698.56 2796.04 4190.39 20299.65 898.67 7595.15 12499.23 1999.07 1498.73 6997.39 83
TSAR-MVS + ACMM97.54 6797.79 5097.26 9898.23 10898.10 9097.71 11697.88 8595.97 4695.57 14098.71 6998.57 8497.36 5897.74 8296.81 10996.83 16398.59 23
DeepC-MVS_fast95.38 697.53 6997.30 7197.79 7298.83 7197.64 11798.18 9097.14 12995.57 6297.83 4097.10 11398.80 6696.53 9097.41 9797.32 9598.24 10097.26 89
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v119297.52 7097.03 8998.09 4398.31 10498.01 9798.96 4197.25 12595.22 7498.89 1299.64 998.83 6297.68 4895.63 14895.91 13897.47 13395.97 133
v114497.51 7197.05 8898.04 5398.26 10697.98 9998.88 4897.42 11695.38 7198.56 1899.59 1499.01 4397.65 4995.77 14596.06 13597.47 13395.56 145
v897.51 7197.16 7997.91 6097.99 12898.48 6798.76 5798.17 6394.54 10397.69 4599.48 2098.76 7197.63 5196.10 14096.14 13097.20 14796.64 112
v192192097.50 7397.00 9098.07 4998.20 11297.94 10599.03 3097.06 13195.29 7399.01 999.62 1198.73 7397.74 4595.52 15195.78 14397.39 13996.12 129
Anonymous2023121197.49 7497.91 4397.00 11298.31 10498.72 5298.27 8797.84 8994.76 9294.77 15898.14 8798.38 9493.60 14998.96 3198.66 4099.22 3097.77 60
v14419297.49 7496.99 9298.07 4998.11 12097.95 10299.02 3197.21 12694.90 8898.88 1399.53 1798.89 5597.75 4495.59 14995.90 13997.43 13696.16 127
test111197.48 7697.20 7697.81 7198.78 7498.85 3098.68 6498.40 3796.68 2794.84 15699.13 4190.32 18797.01 7199.27 1799.05 1799.19 3197.10 95
GeoE97.48 7696.84 9998.22 3899.01 5898.39 7098.85 5298.76 2192.37 14297.53 5097.58 9898.23 10197.11 6697.57 9296.98 10398.10 10996.78 108
APD-MVScopyleft97.47 7897.16 7997.84 6799.32 3198.39 7098.47 7998.21 5692.08 14795.23 14596.68 12198.90 5396.99 7298.20 7098.21 6498.80 6697.67 64
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PVSNet_Blended_VisFu97.44 7997.14 8197.79 7299.15 4298.44 6898.32 8597.66 9693.74 12497.73 4498.79 6296.93 13995.64 11897.69 8496.91 10698.25 9997.50 77
PHI-MVS97.44 7997.17 7897.74 7598.14 11798.41 6998.03 10097.50 10692.07 14898.01 3697.33 10798.62 8196.02 10598.34 6998.21 6498.76 6897.24 92
v124097.43 8196.87 9898.09 4398.25 10797.92 10699.02 3197.06 13194.77 9199.09 899.68 698.51 8797.78 4395.25 15695.81 14197.32 14396.13 128
ECVR-MVScopyleft97.40 8297.11 8597.73 7698.66 8498.83 3398.50 7498.40 3796.04 4195.00 15498.95 4991.07 18496.70 7999.28 1499.04 1999.14 3396.58 114
FMVSNet197.40 8298.09 3696.60 13197.80 14698.76 4498.26 8898.50 3096.79 2593.13 19099.28 3498.64 7892.90 16097.67 8697.86 8099.02 4397.64 66
casdiffmvs_mvgpermissive97.34 8497.65 5796.97 11397.74 14998.33 7398.45 8097.18 12795.81 5293.92 17799.04 4499.05 3995.48 11997.00 11497.71 8699.07 4296.63 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v2v48297.33 8596.84 9997.90 6198.19 11397.83 10898.74 6097.44 11495.42 7098.23 2999.46 2198.84 6097.46 5495.51 15296.10 13397.36 14194.72 154
EPP-MVSNet97.29 8696.88 9597.76 7498.70 7999.10 1698.92 4398.36 4495.12 7993.36 18897.39 10491.00 18597.65 4998.72 4298.91 2599.58 797.92 53
MVS_111021_HR97.27 8797.11 8597.46 9198.46 9397.82 11197.50 12996.86 13994.97 8497.13 6996.99 11498.39 9296.82 7697.65 8997.38 9098.02 11296.56 117
SF-MVS97.26 8897.43 6597.05 10998.80 7397.83 10896.02 18197.44 11494.98 8395.74 13097.16 11098.45 9195.72 11197.85 7797.97 7698.60 7497.78 58
TSAR-MVS + GP.97.26 8897.33 7097.18 10398.21 11198.06 9296.38 17297.66 9693.92 12195.23 14598.48 7698.33 9597.41 5697.63 9097.35 9198.18 10397.57 72
OMC-MVS97.23 9097.21 7597.25 10197.85 13797.52 12697.92 10695.77 17195.83 5197.09 7297.86 9298.52 8696.62 8397.51 9496.65 11598.26 9796.57 115
3Dnovator96.31 397.22 9197.19 7797.25 10198.14 11797.95 10298.03 10096.77 14496.42 3297.14 6795.11 14997.59 12495.14 12697.79 8097.72 8498.26 9797.76 62
MVS_030497.18 9296.84 9997.58 8199.15 4298.19 7998.11 9597.81 9192.36 14398.06 3497.43 10399.06 3694.24 14096.80 11996.54 11998.12 10797.52 75
canonicalmvs97.11 9396.88 9597.38 9398.34 9898.72 5297.52 12897.94 8095.60 5995.01 15394.58 16294.50 16496.59 8597.84 7898.03 7498.90 5898.91 8
V4297.10 9496.97 9397.26 9897.64 15297.60 11998.45 8095.99 16094.44 10697.35 5999.40 2698.63 8097.34 6096.33 13496.38 12596.82 16596.00 131
CPTT-MVS97.08 9596.25 11398.05 5299.21 3598.30 7498.54 7397.98 7894.28 11095.89 12389.57 20598.54 8598.18 2797.82 7997.32 9598.54 7897.91 54
DeepPCF-MVS94.55 1097.05 9697.13 8496.95 11596.06 19397.12 14398.01 10295.44 17795.18 7697.50 5297.86 9298.08 10697.31 6297.23 10297.00 10297.36 14197.45 79
QAPM97.04 9797.14 8196.93 11797.78 14898.02 9697.36 13896.72 14594.68 9596.23 10897.21 10997.68 12095.70 11297.37 9897.24 9997.78 12297.77 60
CNVR-MVS97.03 9896.77 10497.34 9498.89 6597.67 11697.64 12197.17 12894.40 10895.70 13494.02 17198.76 7196.49 9297.78 8197.29 9898.12 10797.47 78
casdiffmvspermissive97.00 9997.36 6996.59 13297.65 15197.98 9998.06 9796.81 14295.78 5492.77 19699.40 2699.26 2495.65 11796.70 12396.39 12498.59 7595.99 132
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v14896.99 10096.70 10697.34 9497.89 13597.23 13598.33 8496.96 13495.57 6297.12 7098.99 4699.40 1297.23 6396.22 13795.45 14896.50 17094.02 166
DELS-MVS96.90 10197.24 7496.50 13797.85 13798.18 8097.88 11195.92 16393.48 12695.34 14398.86 5998.94 5294.03 14397.33 10097.04 10198.00 11496.85 106
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_LR96.86 10296.72 10597.03 11197.80 14697.06 14697.04 15295.51 17694.55 10097.47 5397.35 10697.68 12096.66 8197.11 10796.73 11197.69 12696.57 115
PM-MVS96.85 10396.62 10897.11 10597.13 17496.51 15998.29 8694.65 19494.84 8998.12 3298.59 7297.20 13297.41 5696.24 13696.41 12397.09 15296.56 117
pmmvs-eth3d96.84 10496.22 11597.56 8397.63 15496.38 16698.74 6096.91 13794.63 9798.26 2699.43 2398.28 9796.58 8794.52 16695.54 14697.24 14594.75 153
CANet96.81 10596.50 10997.17 10499.10 5197.96 10197.86 11297.51 10491.30 15597.75 4297.64 9697.89 11393.39 15396.98 11596.73 11197.40 13896.99 97
Fast-Effi-MVS+96.80 10695.92 12697.84 6798.57 8897.46 12998.06 9798.24 5389.64 17697.57 4996.45 12697.35 12996.73 7897.22 10396.64 11697.86 11996.65 111
MCST-MVS96.79 10796.08 11997.62 7998.78 7497.52 12698.01 10297.32 12393.20 12995.84 12593.97 17398.12 10497.34 6096.34 13295.88 14098.45 8697.51 76
UGNet96.79 10797.82 4895.58 15997.57 15798.39 7098.48 7797.84 8995.85 5094.68 16097.91 9199.07 3587.12 20197.71 8397.51 8797.80 12098.29 36
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TAPA-MVS93.96 1396.79 10796.70 10696.90 11997.64 15297.58 12097.54 12794.50 19695.14 7796.64 9196.76 11897.90 11296.63 8295.98 14296.14 13098.45 8697.39 83
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CLD-MVS96.73 11096.92 9496.51 13698.70 7997.57 12297.64 12192.07 20393.10 13596.31 10798.29 8299.02 4295.99 10797.20 10496.47 12198.37 9396.81 107
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
train_agg96.68 11195.93 12597.56 8399.08 5397.16 13998.44 8397.37 11991.12 15995.18 14795.43 14498.48 8997.36 5896.48 12895.52 14797.95 11797.34 87
CDPH-MVS96.68 11195.99 12297.48 8999.13 4797.64 11798.08 9697.46 11090.56 16595.13 14894.87 15798.27 9896.56 8897.09 10896.45 12298.54 7897.08 96
MSLP-MVS++96.66 11396.46 11296.89 12098.02 12397.71 11595.57 18896.96 13494.36 10996.19 11291.37 19798.24 9997.07 6897.69 8497.89 7897.52 13297.95 50
TinyColmap96.64 11496.07 12097.32 9697.84 14296.40 16397.63 12396.25 15595.86 4998.98 1097.94 9096.34 14796.17 10297.30 10195.38 15197.04 15493.24 173
IS_MVSNet96.62 11596.48 11196.78 12498.46 9398.68 5498.61 6898.24 5392.23 14489.63 20695.90 14094.40 16596.23 9798.65 4898.77 3399.52 1296.76 109
NCCC96.56 11695.68 12897.59 8099.04 5797.54 12597.67 11897.56 10294.84 8996.10 11587.91 20898.09 10596.98 7397.20 10496.80 11098.21 10197.38 86
ETV-MVS96.54 11795.27 13698.02 5699.07 5597.48 12898.16 9398.19 5987.33 19697.58 4892.67 18595.93 15396.22 9898.49 6098.46 4698.91 5796.50 120
Effi-MVS+96.46 11895.28 13597.85 6698.64 8797.16 13997.15 15098.75 2390.27 16998.03 3593.93 17496.21 14896.55 8996.34 13296.69 11497.97 11696.33 123
IterMVS-LS96.35 11995.85 12796.93 11797.53 15898.00 9897.37 13697.97 7995.49 6996.71 8998.94 5093.23 17294.82 13193.15 18595.05 15497.17 14997.12 94
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
USDC96.30 12095.64 13097.07 10797.62 15596.35 16897.17 14995.71 17295.52 6799.17 798.11 8897.46 12695.67 11495.44 15493.60 17497.09 15292.99 177
Vis-MVSNet (Re-imp)96.29 12196.50 10996.05 14597.96 13197.83 10897.30 14197.86 8793.14 13188.90 20996.80 11795.28 15795.15 12498.37 6698.25 6399.12 3795.84 135
MSDG96.27 12296.17 11896.38 14197.85 13796.27 16996.55 16994.41 19794.55 10095.62 13797.56 10097.80 11496.22 9897.17 10696.27 12797.67 12893.60 170
CNLPA96.24 12395.97 12396.57 13497.48 16397.10 14596.75 16294.95 18894.92 8796.20 11194.81 15896.61 14296.25 9696.94 11695.64 14497.79 12195.74 141
EIA-MVS96.23 12494.85 14897.84 6799.08 5398.21 7797.69 11798.03 7585.68 20698.09 3391.75 19597.07 13595.66 11697.58 9197.72 8498.47 8495.91 134
PLCcopyleft92.55 1596.10 12595.36 13296.96 11498.13 11996.88 15096.49 17096.67 14994.07 11795.71 13391.14 19896.09 15096.84 7596.70 12396.58 11897.92 11896.03 130
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test20.0396.08 12696.80 10295.25 16899.19 3797.58 12097.24 14697.56 10294.95 8691.91 19798.58 7398.03 10887.88 19797.43 9696.94 10597.69 12694.05 165
FA-MVS(training)96.07 12795.59 13196.63 12998.00 12797.44 13097.36 13898.53 2892.21 14595.97 12096.18 13294.22 16892.98 15796.79 12096.70 11396.95 15995.56 145
TSAR-MVS + COLMAP96.05 12895.94 12496.18 14497.46 16496.41 16297.26 14595.83 16794.69 9495.30 14498.31 8196.52 14394.71 13395.48 15394.87 15696.54 16995.33 148
EU-MVSNet96.03 12996.23 11495.80 15395.48 20694.18 18798.99 3691.51 20597.22 2097.66 4699.15 4098.51 8798.08 3095.92 14392.88 18193.09 19395.72 142
PCF-MVS92.69 1495.98 13095.05 14397.06 10898.43 9597.56 12397.76 11496.65 15089.95 17495.70 13496.18 13298.48 8995.74 11093.64 17793.35 17898.09 11196.18 126
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HQP-MVS95.97 13195.01 14597.08 10698.72 7797.19 13797.07 15196.69 14891.49 15395.77 12992.19 19197.93 11196.15 10394.66 16394.16 16598.10 10997.45 79
Effi-MVS+-dtu95.94 13295.08 14296.94 11698.54 9097.38 13196.66 16697.89 8488.68 18295.92 12192.90 18497.28 13094.18 14296.68 12596.13 13298.45 8696.51 119
diffmvspermissive95.86 13396.21 11695.44 16297.25 17296.85 15396.99 15495.23 18294.96 8592.82 19598.89 5498.85 5893.52 15194.21 17294.25 16496.84 16295.49 147
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
AdaColmapbinary95.85 13494.65 15197.26 9898.70 7997.20 13697.33 14097.30 12491.28 15795.90 12288.16 20796.17 14996.60 8497.34 9996.82 10897.71 12395.60 144
FMVSNet295.77 13596.20 11795.27 16696.77 18298.18 8097.28 14297.90 8393.12 13291.37 19998.25 8496.05 15190.04 18294.96 16195.94 13798.28 9496.90 100
OpenMVScopyleft94.63 995.75 13695.04 14496.58 13397.85 13797.55 12496.71 16496.07 15790.15 17296.47 9790.77 20395.95 15294.41 13897.01 11396.95 10498.00 11496.90 100
pmmvs595.70 13795.22 13796.26 14296.55 18897.24 13497.50 12994.99 18790.95 16196.87 8098.47 7797.40 12794.45 13692.86 18694.98 15597.23 14694.64 156
Anonymous2023120695.69 13895.68 12895.70 15598.32 10196.95 14897.37 13696.65 15093.33 12793.61 18298.70 7098.03 10891.04 17195.07 15994.59 16397.20 14793.09 176
MAR-MVS95.51 13994.49 15596.71 12597.92 13396.40 16396.72 16398.04 7486.74 20096.72 8692.52 18895.14 15994.02 14496.81 11896.54 11996.85 16097.25 90
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DI_MVS_plusplus_trai95.48 14094.51 15396.61 13097.13 17497.30 13398.05 9996.79 14393.75 12395.08 15196.38 12789.76 18994.95 12793.97 17694.82 16097.64 13095.63 143
MDA-MVSNet-bldmvs95.45 14195.20 13895.74 15494.24 21196.38 16697.93 10594.80 18995.56 6596.87 8098.29 8295.24 15896.50 9198.65 4890.38 19394.09 18791.93 181
PVSNet_BlendedMVS95.44 14295.09 14095.86 15197.31 16997.13 14196.31 17595.01 18588.55 18596.23 10894.55 16597.75 11592.56 16496.42 12995.44 14997.71 12395.81 136
PVSNet_Blended95.44 14295.09 14095.86 15197.31 16997.13 14196.31 17595.01 18588.55 18596.23 10894.55 16597.75 11592.56 16496.42 12995.44 14997.71 12395.81 136
pmmvs495.37 14494.25 15696.67 12897.01 17795.28 18197.60 12496.07 15793.11 13397.29 6298.09 8994.23 16795.21 12391.56 19793.91 17196.82 16593.59 171
MVS_Test95.34 14594.88 14795.89 15096.93 17896.84 15496.66 16697.08 13090.06 17394.02 17497.61 9796.64 14193.59 15092.73 18994.02 16997.03 15596.24 124
GBi-Net95.21 14695.35 13395.04 17196.77 18298.18 8097.28 14297.58 9988.43 18790.28 20396.01 13692.43 17590.04 18297.67 8697.86 8098.28 9496.90 100
test195.21 14695.35 13395.04 17196.77 18298.18 8097.28 14297.58 9988.43 18790.28 20396.01 13692.43 17590.04 18297.67 8697.86 8098.28 9496.90 100
IterMVS-SCA-FT95.16 14893.95 16096.56 13597.89 13596.69 15696.94 15696.05 15993.06 13697.35 5998.79 6291.45 18095.93 10892.78 18791.00 19195.22 18393.91 168
HyFIR lowres test95.05 14993.54 16596.81 12397.81 14596.88 15098.18 9097.46 11094.28 11094.98 15596.57 12392.89 17496.15 10390.90 20291.87 18796.28 17591.35 182
CHOSEN 1792x268894.98 15094.69 15095.31 16497.27 17195.58 17897.90 10895.56 17595.03 8193.77 18195.65 14299.29 1895.30 12191.51 19891.28 19092.05 20194.50 158
CANet_DTU94.96 15194.62 15295.35 16398.03 12296.11 17196.92 15895.60 17488.59 18497.27 6395.27 14796.50 14488.77 19395.53 15095.59 14595.54 18194.78 152
CDS-MVSNet94.91 15295.17 13994.60 17997.85 13796.21 17096.90 16096.39 15390.81 16293.40 18697.24 10894.54 16385.78 20796.25 13596.15 12997.26 14495.01 151
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
DPM-MVS94.86 15393.90 16295.99 14798.19 11396.52 15896.29 17795.95 16193.11 13394.61 16288.17 20696.44 14593.77 14893.33 18093.54 17697.11 15196.22 125
MS-PatchMatch94.84 15494.76 14994.94 17496.38 18994.69 18695.90 18394.03 19992.49 14093.81 17995.79 14196.38 14694.54 13494.70 16294.85 15794.97 18594.43 160
thisisatest053094.81 15593.06 17196.85 12298.01 12497.18 13896.93 15797.36 12089.73 17595.80 12794.98 15377.88 21094.89 12896.73 12297.35 9198.13 10697.54 73
tttt051794.81 15593.04 17296.88 12198.15 11697.37 13296.99 15497.36 12089.51 17795.74 13094.89 15577.53 21294.89 12896.94 11697.35 9198.17 10497.70 63
testgi94.81 15596.05 12193.35 19099.06 5696.87 15297.57 12696.70 14795.77 5588.60 21193.19 18298.87 5781.21 21597.03 11296.64 11696.97 15893.99 167
PatchMatch-RL94.79 15893.75 16496.00 14696.80 18195.00 18395.47 19395.25 18190.68 16495.80 12792.97 18393.64 17095.67 11496.13 13995.81 14196.99 15792.01 180
FPMVS94.70 15994.99 14694.37 18195.84 19993.20 19296.00 18291.93 20495.03 8194.64 16194.68 15993.29 17190.95 17298.07 7497.34 9496.85 16093.29 172
new-patchmatchnet94.48 16094.02 15895.02 17397.51 16295.00 18395.68 18794.26 19897.32 1995.73 13299.60 1298.22 10391.30 16794.13 17384.41 20395.65 18089.45 193
IterMVS94.48 16093.46 16795.66 15697.52 15996.43 16097.20 14794.73 19292.91 13996.44 9898.75 6791.10 18294.53 13592.10 19390.10 19593.51 19092.84 179
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MDTV_nov1_ep13_2view94.39 16293.34 16895.63 15797.23 17395.33 18097.76 11496.84 14094.55 10097.47 5398.96 4797.70 11893.88 14592.27 19186.81 20190.56 20387.73 201
Fast-Effi-MVS+-dtu94.34 16393.26 17095.62 15897.82 14395.97 17495.86 18499.01 1386.88 19893.39 18790.83 20195.46 15690.61 17694.46 16894.68 16197.01 15694.51 157
thres600view794.34 16392.31 18096.70 12698.19 11398.12 8797.85 11397.45 11291.49 15393.98 17684.27 21182.02 20194.24 14097.04 10998.76 3498.49 8294.47 159
EPNet94.33 16593.52 16695.27 16698.81 7294.71 18596.77 16198.20 5788.12 19096.53 9592.53 18791.19 18185.25 21195.22 15795.26 15296.09 17897.63 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test250694.29 16691.43 18897.64 7898.66 8498.83 3398.50 7498.40 3796.04 4194.45 16494.88 15655.05 22696.70 7999.28 1499.04 1999.14 3396.87 104
GA-MVS94.18 16792.98 17395.58 15997.36 16696.42 16196.21 17895.86 16490.29 16895.08 15196.19 13185.37 19392.82 16194.01 17594.14 16696.16 17794.41 161
gg-mvs-nofinetune94.13 16893.93 16194.37 18197.99 12895.86 17595.45 19699.22 997.61 1595.10 15099.50 1984.50 19481.73 21495.31 15594.12 16796.71 16890.59 186
baseline94.07 16994.50 15493.57 18896.34 19093.40 19195.56 19192.39 20292.07 14894.00 17598.24 8597.51 12589.19 18891.75 19592.72 18293.96 18995.79 138
FMVSNet394.06 17093.85 16394.31 18495.46 20797.80 11396.34 17397.58 9988.43 18790.28 20396.01 13692.43 17588.67 19491.82 19493.96 17097.53 13196.50 120
thres40094.04 17191.94 18396.50 13797.98 13097.82 11197.66 12096.96 13490.96 16094.20 17083.24 21282.82 19993.80 14696.50 12798.09 7098.38 9294.15 163
CVMVSNet94.01 17294.25 15693.73 18794.36 21092.44 19597.45 13288.56 20895.59 6093.06 19398.88 5590.03 18894.84 13094.08 17493.45 17794.09 18795.31 149
thres20093.98 17391.90 18496.40 14097.66 15098.12 8797.20 14797.45 11290.16 17193.82 17883.08 21383.74 19793.80 14697.04 10997.48 8998.49 8293.70 169
baseline193.89 17492.82 17595.14 17097.62 15596.97 14796.12 17996.36 15491.30 15591.53 19894.68 15980.72 20390.80 17495.71 14696.29 12698.44 8994.09 164
tfpn200view993.80 17591.75 18596.20 14397.52 15998.15 8597.48 13197.47 10987.65 19293.56 18483.03 21484.12 19592.62 16397.04 10998.09 7098.52 8194.17 162
MIMVSNet93.68 17693.96 15993.35 19097.82 14396.08 17296.34 17398.46 3491.28 15786.67 21694.95 15494.87 16184.39 21294.53 16494.65 16296.45 17291.34 183
pmnet_mix0293.59 17792.65 17694.69 17796.76 18594.16 18897.03 15393.00 20195.79 5396.03 11998.91 5297.69 11992.99 15690.03 20584.10 20592.35 19987.89 200
EPNet_dtu93.45 17892.51 17894.55 18098.39 9791.67 20495.46 19497.50 10686.56 20197.38 5793.52 17794.20 16985.82 20693.31 18292.53 18392.72 19595.76 140
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IB-MVS92.44 1693.33 17992.15 18294.70 17697.42 16596.39 16595.57 18894.67 19386.40 20493.59 18378.28 21895.76 15589.59 18795.88 14495.98 13697.39 13996.34 122
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ET-MVSNet_ETH3D93.18 18090.80 19195.95 14896.05 19496.07 17396.92 15896.51 15289.34 17895.63 13694.08 17072.31 22193.13 15494.33 17094.83 15897.44 13594.65 155
thres100view90092.93 18190.89 19095.31 16497.52 15996.82 15596.41 17195.08 18387.65 19293.56 18483.03 21484.12 19591.12 17094.53 16496.91 10698.17 10493.21 174
N_pmnet92.46 18292.38 17992.55 19697.91 13493.47 19097.42 13494.01 20096.40 3488.48 21298.50 7598.07 10788.14 19691.04 20184.30 20489.35 20884.85 207
TAMVS92.46 18293.34 16891.44 20497.03 17693.84 18994.68 20690.60 20690.44 16785.31 21797.14 11193.03 17385.78 20794.34 16993.67 17395.22 18390.93 185
CMPMVSbinary71.81 1992.34 18492.85 17491.75 20292.70 21590.43 20988.84 21888.56 20885.87 20594.35 16790.98 19995.89 15491.14 16996.14 13894.83 15894.93 18695.78 139
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
baseline292.06 18589.82 19494.68 17897.32 16795.72 17694.97 20395.08 18384.75 20994.34 16990.68 20477.75 21190.13 18193.38 17893.58 17596.25 17692.90 178
MVSTER91.97 18690.31 19293.91 18596.81 18096.91 14994.22 20795.64 17384.98 20792.98 19493.42 17872.56 21986.64 20595.11 15893.89 17297.16 15095.31 149
CR-MVSNet91.94 18788.50 19795.94 14996.14 19292.08 19995.23 19998.47 3284.30 21196.44 9894.58 16275.57 21392.92 15890.22 20392.22 18496.43 17390.56 187
gm-plane-assit91.85 18887.91 19996.44 13999.14 4598.25 7699.02 3197.38 11895.57 6298.31 2599.34 3151.00 22788.93 19193.16 18491.57 18895.85 17986.50 204
PMMVS91.67 18991.47 18791.91 20189.43 22088.61 21594.99 20285.67 21387.50 19493.80 18094.42 16894.88 16090.71 17592.26 19292.96 18096.83 16389.65 191
CHOSEN 280x42091.55 19090.27 19393.05 19394.61 20988.01 21696.56 16894.62 19588.04 19194.20 17092.66 18686.60 19190.82 17395.06 16091.89 18687.49 21389.61 192
PatchT91.40 19188.54 19694.74 17591.48 21992.18 19897.42 13497.51 10484.96 20896.44 9894.16 16975.47 21492.92 15890.22 20392.22 18492.66 19890.56 187
pmmvs391.20 19291.40 18990.96 20691.71 21891.08 20595.41 19781.34 21787.36 19594.57 16395.02 15194.30 16690.42 17794.28 17189.26 19792.30 20088.49 198
test0.0.03 191.17 19391.50 18690.80 20798.01 12495.46 17994.22 20795.80 16886.55 20281.75 21990.83 20187.93 19078.48 21694.51 16794.11 16896.50 17091.08 184
SCA91.15 19487.65 20195.23 16996.15 19195.68 17796.68 16598.18 6190.46 16697.21 6692.44 18980.17 20593.51 15286.04 21283.58 20889.68 20785.21 206
new_pmnet90.85 19592.26 18189.21 21093.68 21489.05 21493.20 21584.16 21692.99 13784.25 21897.72 9594.60 16286.80 20493.20 18391.30 18993.21 19186.94 203
RPMNet90.52 19686.27 21095.48 16195.95 19792.08 19995.55 19298.12 6684.30 21195.60 13887.49 20972.78 21891.24 16887.93 20789.34 19696.41 17489.98 190
MDTV_nov1_ep1390.30 19787.32 20593.78 18696.00 19692.97 19395.46 19495.39 17888.61 18395.41 14294.45 16780.39 20489.87 18586.58 21083.54 20990.56 20384.71 208
PatchmatchNetpermissive89.98 19886.23 21194.36 18396.56 18791.90 20396.07 18096.72 14590.18 17096.87 8093.36 18178.06 20991.46 16684.71 21681.40 21388.45 21083.97 212
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ADS-MVSNet89.89 19987.70 20092.43 19895.52 20490.91 20795.57 18895.33 17993.19 13091.21 20093.41 17982.12 20089.05 18986.21 21183.77 20787.92 21184.31 209
tpm89.84 20086.81 20793.36 18996.60 18691.92 20295.02 20197.39 11786.79 19996.54 9495.03 15069.70 22287.66 19888.79 20686.19 20286.95 21589.27 194
test-LLR89.77 20187.47 20392.45 19798.01 12489.77 21193.25 21395.80 16881.56 21689.19 20792.08 19279.59 20685.77 20991.47 19989.04 19992.69 19688.75 195
FMVSNet589.65 20287.60 20292.04 20095.63 20396.61 15794.82 20594.75 19080.11 22087.72 21477.73 21973.81 21783.81 21395.64 14796.08 13495.49 18293.21 174
EPMVS89.28 20386.28 20992.79 19596.01 19592.00 20195.83 18595.85 16690.78 16391.00 20194.58 16274.65 21588.93 19185.00 21482.88 21189.09 20984.09 211
test-mter89.16 20488.14 19890.37 20894.79 20891.05 20693.60 21285.26 21481.65 21588.32 21392.22 19079.35 20887.03 20292.28 19090.12 19493.19 19290.29 189
CostFormer89.06 20585.65 21293.03 19495.88 19892.40 19695.30 19895.86 16486.49 20393.12 19293.40 18074.18 21688.25 19582.99 21781.46 21289.77 20688.66 197
MVS-HIRNet88.72 20686.49 20891.33 20591.81 21785.66 21787.02 22096.25 15581.48 21894.82 15796.31 13092.14 17890.32 17987.60 20883.82 20687.74 21278.42 216
TESTMET0.1,188.60 20787.47 20389.93 20994.23 21289.77 21193.25 21384.47 21581.56 21689.19 20792.08 19279.59 20685.77 20991.47 19989.04 19992.69 19688.75 195
dps88.36 20884.32 21593.07 19293.86 21392.29 19794.89 20495.93 16283.50 21393.13 19091.87 19467.79 22490.32 17985.99 21383.22 21090.28 20585.56 205
tpmrst87.60 20984.13 21691.66 20395.65 20289.73 21393.77 21094.74 19188.85 18093.35 18995.60 14372.37 22087.40 19981.24 21878.19 21585.02 21882.90 215
tpm cat187.19 21082.78 21792.33 19995.66 20190.61 20894.19 20995.27 18086.97 19794.38 16690.91 20069.40 22387.21 20079.57 22077.82 21687.25 21484.18 210
E-PMN86.94 21185.10 21389.09 21295.77 20083.54 22089.89 21786.55 21092.18 14687.34 21594.02 17183.42 19889.63 18693.32 18177.11 21785.33 21672.09 217
EMVS86.63 21284.48 21489.15 21195.51 20583.66 21990.19 21686.14 21291.78 15088.68 21093.83 17581.97 20289.05 18992.76 18876.09 21885.31 21771.28 218
PMMVS286.47 21392.62 17779.29 21492.01 21685.63 21893.74 21186.37 21193.95 12054.18 22498.19 8697.39 12858.46 21796.57 12693.07 17990.99 20283.55 214
MVEpermissive72.99 1885.37 21489.43 19580.63 21374.43 22171.94 22288.25 21989.81 20793.27 12867.32 22296.32 12991.83 17990.40 17893.36 17990.79 19273.55 22188.49 198
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method61.30 21570.45 21850.62 21522.69 22330.92 22468.31 22325.76 21980.56 21968.71 22082.80 21691.08 18344.64 21880.50 21956.70 21973.64 22070.58 219
GG-mvs-BLEND61.03 21687.02 20630.71 2170.74 22690.01 21078.90 2220.74 22384.56 2109.46 22579.17 21790.69 1861.37 22291.74 19689.13 19893.04 19483.83 213
testmvs4.99 2176.88 2192.78 2191.73 2242.04 2263.10 2261.71 2217.27 2223.92 22712.18 2216.71 2283.31 2216.94 2215.51 2212.94 2237.51 220
test1234.41 2185.71 2202.88 2181.28 2252.21 2253.09 2271.65 2226.35 2234.98 2268.53 2223.88 2293.46 2205.79 2225.71 2202.85 2247.50 221
uanet_test0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
RE-MVS-def99.38 2
9.1496.98 138
SR-MVS99.33 3098.40 3798.90 53
Anonymous20240521197.39 6698.85 6898.59 5797.89 11097.93 8194.41 10797.37 10596.99 13793.09 15598.61 5198.46 4699.11 3897.27 88
our_test_397.32 16795.13 18297.59 125
ambc96.78 10399.01 5897.11 14495.73 18695.91 4899.25 398.56 7497.17 13397.04 6996.76 12195.22 15396.72 16796.73 110
MTAPA97.43 5699.27 22
MTMP97.63 4799.03 41
Patchmatch-RL test17.42 225
tmp_tt45.72 21660.00 22238.74 22345.50 22412.18 22079.58 22168.42 22167.62 22065.04 22522.12 21984.83 21578.72 21466.08 222
XVS99.48 1898.76 4499.22 2196.40 10298.78 6898.94 55
X-MVStestdata99.48 1898.76 4499.22 2196.40 10298.78 6898.94 55
mPP-MVS99.58 698.98 45
NP-MVS89.27 179
Patchmtry92.70 19495.23 19998.47 3296.44 98
DeepMVS_CXcopyleft72.99 22180.14 22137.34 21883.46 21460.13 22384.40 21085.48 19286.93 20387.22 20979.61 21987.32 202