| TDRefinement | | | 93.16 1 | 95.57 1 | 90.36 1 | 88.79 52 | 93.57 1 | 97.27 1 | 78.23 21 | 95.55 1 | 93.00 1 | 93.98 18 | 96.01 38 | 87.53 1 | 97.69 1 | 96.81 1 | 97.33 1 | 95.34 4 |
|
| COLMAP_ROB |  | 85.66 2 | 91.85 2 | 95.01 2 | 88.16 11 | 88.98 51 | 92.86 2 | 95.51 19 | 72.17 62 | 94.95 4 | 91.27 3 | 94.11 17 | 97.77 11 | 84.22 8 | 96.49 4 | 95.27 5 | 96.79 2 | 93.60 12 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| LTVRE_ROB | | 86.82 1 | 91.55 3 | 94.43 3 | 88.19 10 | 83.19 112 | 86.35 65 | 93.60 37 | 78.79 18 | 95.48 3 | 91.79 2 | 93.08 27 | 97.21 20 | 86.34 3 | 97.06 2 | 96.27 3 | 95.46 23 | 95.56 3 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| ACMMPR | | | 91.30 4 | 92.88 11 | 89.46 4 | 91.92 11 | 91.61 5 | 96.60 5 | 79.46 14 | 90.08 31 | 88.53 13 | 89.54 66 | 95.57 48 | 84.25 7 | 95.24 20 | 94.27 12 | 95.97 11 | 93.85 8 |
|
| CP-MVS | | | 91.09 5 | 92.33 25 | 89.65 2 | 92.16 10 | 90.41 27 | 96.46 10 | 80.38 8 | 88.26 45 | 89.17 10 | 87.00 98 | 96.34 30 | 83.95 10 | 95.77 11 | 94.72 7 | 95.81 17 | 93.78 10 |
|
| MP-MVS |  | | 90.84 6 | 91.95 34 | 89.55 3 | 92.92 4 | 90.90 19 | 96.56 6 | 79.60 11 | 86.83 59 | 88.75 12 | 89.00 74 | 94.38 78 | 84.01 9 | 94.94 24 | 94.34 10 | 95.45 24 | 93.24 23 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| ACMM | | 80.67 7 | 90.67 7 | 92.46 19 | 88.57 7 | 91.35 22 | 89.93 32 | 96.34 11 | 77.36 30 | 90.17 29 | 86.88 29 | 87.32 93 | 96.63 23 | 83.32 13 | 95.79 10 | 94.49 9 | 96.19 9 | 92.91 26 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| ACMMP |  | | 90.63 8 | 92.40 20 | 88.56 8 | 91.24 28 | 91.60 6 | 96.49 9 | 77.53 26 | 87.89 48 | 86.87 30 | 87.24 95 | 96.46 25 | 82.87 16 | 95.59 15 | 94.50 8 | 96.35 6 | 93.51 18 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| LGP-MVS_train | | | 90.56 9 | 92.38 21 | 88.43 9 | 90.88 32 | 91.15 11 | 95.35 21 | 77.65 25 | 86.26 64 | 87.23 23 | 90.45 56 | 97.35 17 | 83.20 14 | 95.44 16 | 93.41 20 | 96.28 8 | 92.63 27 |
|
| DVP-MVS++ | | | 90.50 10 | 94.18 4 | 86.21 27 | 92.52 7 | 90.29 28 | 95.29 22 | 76.02 41 | 94.24 5 | 82.82 55 | 95.84 5 | 97.56 15 | 76.82 55 | 93.13 38 | 91.20 44 | 93.78 45 | 97.01 1 |
|
| PGM-MVS | | | 90.42 11 | 91.58 37 | 89.05 5 | 91.77 14 | 91.06 13 | 96.51 7 | 78.94 16 | 85.41 71 | 87.67 18 | 87.02 97 | 95.26 57 | 83.62 12 | 95.01 23 | 93.94 15 | 95.79 19 | 93.40 20 |
|
| DeepC-MVS | | 83.59 4 | 90.37 12 | 92.56 18 | 87.82 14 | 91.26 27 | 92.33 3 | 94.72 30 | 80.04 9 | 90.01 32 | 84.61 42 | 93.33 23 | 94.22 79 | 80.59 27 | 92.90 43 | 92.52 28 | 95.69 21 | 92.57 28 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| HFP-MVS | | | 90.32 13 | 92.37 22 | 87.94 13 | 91.46 21 | 90.91 18 | 95.69 17 | 79.49 12 | 89.94 34 | 83.50 50 | 89.06 73 | 94.44 76 | 81.68 22 | 94.17 30 | 94.19 13 | 95.81 17 | 93.87 7 |
|
| PMVS |  | 79.51 9 | 90.23 14 | 92.67 14 | 87.39 20 | 90.16 39 | 88.75 42 | 93.64 36 | 75.78 44 | 90.00 33 | 83.70 47 | 92.97 29 | 92.22 104 | 86.13 4 | 97.01 3 | 96.79 2 | 94.94 28 | 90.96 45 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| SMA-MVS |  | | 90.13 15 | 92.26 27 | 87.64 17 | 91.68 16 | 90.44 26 | 95.22 24 | 77.34 32 | 90.79 23 | 87.80 16 | 90.42 57 | 92.05 109 | 79.05 35 | 93.89 32 | 93.59 18 | 94.77 32 | 94.62 5 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| ACMP | | 80.00 8 | 90.12 16 | 92.30 26 | 87.58 18 | 90.83 34 | 91.10 12 | 94.96 28 | 76.06 40 | 87.47 52 | 85.33 39 | 88.91 77 | 97.65 14 | 82.13 19 | 95.31 17 | 93.44 19 | 96.14 10 | 92.22 33 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| SteuartSystems-ACMMP | | | 90.00 17 | 91.73 35 | 87.97 12 | 91.21 29 | 90.29 28 | 96.51 7 | 78.00 23 | 86.33 62 | 85.32 40 | 88.23 83 | 94.67 70 | 82.08 20 | 95.13 22 | 93.88 16 | 94.72 35 | 93.59 13 |
| Skip Steuart: Steuart Systems R&D Blog. |
| SD-MVS | | | 89.91 18 | 92.23 30 | 87.19 21 | 91.31 24 | 89.79 35 | 94.31 32 | 75.34 47 | 89.26 37 | 81.79 67 | 92.68 32 | 95.08 63 | 83.88 11 | 93.10 39 | 92.69 25 | 96.54 4 | 93.02 24 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| ACMMP_NAP | | | 89.86 19 | 91.96 33 | 87.42 19 | 91.00 30 | 90.08 30 | 96.00 15 | 76.61 36 | 89.28 35 | 87.73 17 | 90.04 59 | 91.80 113 | 78.71 38 | 94.36 28 | 93.82 17 | 94.48 37 | 94.32 6 |
|
| APDe-MVS |  | | 89.85 20 | 92.91 10 | 86.29 26 | 90.47 38 | 91.34 7 | 96.04 14 | 76.41 39 | 91.11 17 | 78.50 89 | 93.44 22 | 95.82 42 | 81.55 23 | 93.16 37 | 91.90 38 | 94.77 32 | 93.58 15 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| OPM-MVS | | | 89.82 21 | 92.24 29 | 86.99 22 | 90.86 33 | 89.35 38 | 95.07 27 | 75.91 43 | 91.16 16 | 86.87 30 | 91.07 52 | 97.29 18 | 79.13 34 | 93.32 35 | 91.99 37 | 94.12 40 | 91.49 40 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| DPE-MVS |  | | 89.81 22 | 92.34 24 | 86.86 23 | 89.69 44 | 91.00 16 | 95.53 18 | 76.91 33 | 88.18 46 | 83.43 53 | 93.48 21 | 95.19 58 | 81.07 26 | 92.75 45 | 92.07 36 | 94.55 36 | 93.74 11 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| WR-MVS | | | 89.79 23 | 93.66 5 | 85.27 37 | 91.32 23 | 88.27 46 | 93.49 38 | 79.86 10 | 92.75 9 | 75.37 102 | 96.86 1 | 98.38 5 | 75.10 71 | 95.93 8 | 94.07 14 | 96.46 5 | 89.39 56 |
|
| TSAR-MVS + MP. | | | 89.67 24 | 92.25 28 | 86.65 25 | 91.53 18 | 90.98 17 | 96.15 13 | 73.30 56 | 87.88 49 | 81.83 66 | 92.92 30 | 95.15 61 | 82.23 18 | 93.58 34 | 92.25 33 | 94.87 29 | 93.01 25 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| CPTT-MVS | | | 89.63 25 | 90.52 47 | 88.59 6 | 90.95 31 | 90.74 21 | 95.71 16 | 79.13 15 | 87.70 50 | 85.68 38 | 80.05 142 | 95.74 46 | 84.77 6 | 94.28 29 | 92.68 26 | 95.28 26 | 92.45 31 |
|
| ACMH+ | | 79.05 11 | 89.62 26 | 93.08 8 | 85.58 32 | 88.58 55 | 89.26 39 | 92.18 45 | 74.23 52 | 93.55 8 | 82.66 58 | 92.32 37 | 98.35 7 | 80.29 29 | 95.28 18 | 92.34 31 | 95.52 22 | 90.43 48 |
|
| DVP-MVS |  | | 89.40 27 | 92.69 13 | 85.56 34 | 89.01 50 | 89.85 33 | 93.72 35 | 75.42 45 | 92.28 11 | 80.49 72 | 94.36 13 | 94.87 66 | 81.46 24 | 92.49 49 | 91.42 41 | 93.27 53 | 93.54 17 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| X-MVS | | | 89.36 28 | 90.73 45 | 87.77 16 | 91.50 20 | 91.23 8 | 96.76 4 | 78.88 17 | 87.29 54 | 87.14 25 | 78.98 147 | 94.53 72 | 76.47 57 | 95.25 19 | 94.28 11 | 95.85 14 | 93.55 16 |
|
| TSAR-MVS + ACMM | | | 89.14 29 | 92.11 32 | 85.67 31 | 89.27 47 | 90.61 24 | 90.98 52 | 79.48 13 | 88.86 40 | 79.80 79 | 93.01 28 | 93.53 88 | 83.17 15 | 92.75 45 | 92.45 29 | 91.32 82 | 93.59 13 |
|
| SixPastTwentyTwo | | | 89.14 29 | 92.19 31 | 85.58 32 | 84.62 89 | 82.56 91 | 90.53 63 | 71.93 64 | 91.95 12 | 85.89 35 | 94.22 14 | 97.25 19 | 85.42 5 | 95.73 12 | 91.71 40 | 95.08 27 | 91.89 36 |
|
| APD-MVS |  | | 89.14 29 | 91.25 42 | 86.67 24 | 91.73 15 | 91.02 15 | 95.50 20 | 77.74 24 | 84.04 83 | 79.47 82 | 91.48 46 | 94.85 67 | 81.14 25 | 92.94 41 | 92.20 35 | 94.47 38 | 92.24 32 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| PS-CasMVS | | | 89.07 32 | 93.23 7 | 84.21 50 | 92.44 8 | 88.23 48 | 90.54 62 | 82.95 3 | 90.50 26 | 75.31 103 | 95.80 6 | 98.37 6 | 71.16 100 | 96.30 5 | 93.32 21 | 92.88 61 | 90.11 50 |
|
| UA-Net | | | 89.02 33 | 91.44 39 | 86.20 28 | 94.88 1 | 89.84 34 | 94.76 29 | 77.45 28 | 85.41 71 | 74.79 106 | 88.83 78 | 88.90 137 | 78.67 40 | 96.06 7 | 95.45 4 | 96.66 3 | 95.58 2 |
|
| LS3D | | | 89.02 33 | 91.69 36 | 85.91 30 | 89.72 43 | 90.81 20 | 92.56 44 | 71.69 66 | 90.83 22 | 87.24 22 | 89.71 64 | 92.07 107 | 78.37 42 | 94.43 27 | 92.59 27 | 95.86 13 | 91.35 41 |
|
| DTE-MVSNet | | | 88.99 35 | 92.77 12 | 84.59 43 | 93.31 2 | 88.10 49 | 90.96 53 | 83.09 2 | 91.38 14 | 76.21 96 | 96.03 2 | 98.04 8 | 70.78 106 | 95.65 14 | 92.32 32 | 93.18 56 | 87.84 71 |
|
| WR-MVS_H | | | 88.99 35 | 93.28 6 | 83.99 53 | 91.92 11 | 89.13 40 | 91.95 46 | 83.23 1 | 90.14 30 | 71.92 125 | 95.85 4 | 98.01 10 | 71.83 97 | 95.82 9 | 93.19 22 | 93.07 59 | 90.83 47 |
|
| SED-MVS | | | 88.96 37 | 92.37 22 | 84.99 40 | 88.64 54 | 89.65 37 | 95.11 25 | 75.98 42 | 90.73 24 | 80.15 77 | 94.21 15 | 94.51 75 | 76.59 56 | 92.94 41 | 91.17 45 | 93.46 50 | 93.37 22 |
|
| ACMH | | 78.40 12 | 88.94 38 | 92.62 16 | 84.65 42 | 86.45 74 | 87.16 59 | 91.47 49 | 68.79 87 | 95.49 2 | 89.74 6 | 93.55 20 | 98.50 2 | 77.96 46 | 94.14 31 | 89.57 61 | 93.49 47 | 89.94 52 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| PEN-MVS | | | 88.86 39 | 92.92 9 | 84.11 52 | 92.92 4 | 88.05 51 | 90.83 55 | 82.67 5 | 91.04 18 | 74.83 105 | 95.97 3 | 98.47 3 | 70.38 107 | 95.70 13 | 92.43 30 | 93.05 60 | 88.78 62 |
|
| HPM-MVS++ |  | | 88.74 40 | 89.54 52 | 87.80 15 | 92.58 6 | 85.69 69 | 95.10 26 | 78.01 22 | 87.08 56 | 87.66 19 | 87.89 86 | 92.07 107 | 80.28 30 | 90.97 69 | 91.41 43 | 93.17 57 | 91.69 37 |
|
| CP-MVSNet | | | 88.71 41 | 92.63 15 | 84.13 51 | 92.39 9 | 88.09 50 | 90.47 66 | 82.86 4 | 88.79 42 | 75.16 104 | 94.87 9 | 97.68 13 | 71.05 102 | 96.16 6 | 93.18 23 | 92.85 62 | 89.64 54 |
|
| MSP-MVS | | | 88.51 42 | 91.36 40 | 85.19 39 | 90.63 36 | 92.01 4 | 95.29 22 | 77.52 27 | 90.48 27 | 80.21 76 | 90.21 58 | 96.08 34 | 76.38 59 | 88.30 96 | 91.42 41 | 91.12 87 | 91.01 44 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| OMC-MVS | | | 88.16 43 | 91.34 41 | 84.46 46 | 86.85 70 | 90.63 23 | 93.01 41 | 67.00 103 | 90.35 28 | 87.40 21 | 86.86 100 | 96.35 29 | 77.66 49 | 92.63 47 | 90.84 46 | 94.84 30 | 91.68 38 |
|
| 3Dnovator+ | | 83.71 3 | 88.13 44 | 90.00 50 | 85.94 29 | 86.82 71 | 91.06 13 | 94.26 33 | 75.39 46 | 88.85 41 | 85.76 37 | 85.74 110 | 86.92 146 | 78.02 45 | 93.03 40 | 92.21 34 | 95.39 25 | 92.21 34 |
|
| CSCG | | | 88.12 45 | 91.45 38 | 84.23 48 | 88.12 61 | 90.59 25 | 90.57 60 | 68.60 89 | 91.37 15 | 83.45 52 | 89.94 60 | 95.14 62 | 78.71 38 | 91.45 58 | 88.21 72 | 95.96 12 | 93.44 19 |
|
| RPSCF | | | 88.05 46 | 92.61 17 | 82.73 65 | 84.24 96 | 88.40 44 | 90.04 72 | 66.29 107 | 91.46 13 | 82.29 60 | 88.93 76 | 96.01 38 | 79.38 32 | 95.15 21 | 94.90 6 | 94.15 39 | 93.40 20 |
|
| DeepPCF-MVS | | 81.61 6 | 87.95 47 | 90.29 49 | 85.22 38 | 87.48 65 | 90.01 31 | 93.79 34 | 73.54 54 | 88.93 39 | 83.89 45 | 89.40 68 | 90.84 122 | 80.26 31 | 90.62 72 | 90.19 53 | 92.36 70 | 92.03 35 |
|
| SF-MVS | | | 87.85 48 | 90.95 44 | 84.22 49 | 88.17 60 | 87.90 53 | 90.80 56 | 71.80 65 | 89.28 35 | 82.70 57 | 89.90 61 | 95.37 55 | 77.91 47 | 91.69 54 | 90.04 54 | 93.95 44 | 92.47 29 |
|
| DeepC-MVS_fast | | 81.78 5 | 87.38 49 | 89.64 51 | 84.75 41 | 89.89 42 | 90.70 22 | 92.74 43 | 74.45 50 | 86.02 65 | 82.16 64 | 86.05 107 | 91.99 111 | 75.84 65 | 91.16 63 | 90.44 49 | 93.41 51 | 91.09 43 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| v7n | | | 87.11 50 | 90.46 48 | 83.19 56 | 85.22 85 | 83.69 80 | 90.03 73 | 68.20 95 | 91.01 19 | 86.71 33 | 94.80 10 | 98.46 4 | 77.69 48 | 91.10 65 | 85.98 92 | 91.30 83 | 88.19 66 |
|
| CNVR-MVS | | | 86.93 51 | 88.98 56 | 84.54 44 | 90.11 40 | 87.41 57 | 93.23 40 | 73.47 55 | 86.31 63 | 82.25 61 | 82.96 130 | 92.15 105 | 76.04 62 | 91.69 54 | 90.69 47 | 92.17 73 | 91.64 39 |
|
| NCCC | | | 86.74 52 | 87.97 68 | 85.31 36 | 90.64 35 | 87.25 58 | 93.27 39 | 74.59 49 | 86.50 60 | 83.72 46 | 75.92 173 | 92.39 101 | 77.08 53 | 91.72 53 | 90.68 48 | 92.57 67 | 91.30 42 |
|
| train_agg | | | 86.67 53 | 87.73 69 | 85.43 35 | 91.51 19 | 82.72 88 | 94.47 31 | 74.22 53 | 81.71 101 | 81.54 70 | 89.20 72 | 92.87 95 | 78.33 43 | 90.12 79 | 88.47 68 | 92.51 69 | 89.04 59 |
|
| CDPH-MVS | | | 86.66 54 | 88.52 59 | 84.48 45 | 89.61 45 | 88.27 46 | 92.86 42 | 72.69 61 | 80.55 119 | 82.71 56 | 86.92 99 | 93.32 90 | 75.55 67 | 91.00 68 | 89.85 56 | 93.47 49 | 89.71 53 |
|
| Gipuma |  | | 86.47 55 | 89.25 54 | 83.23 55 | 83.88 103 | 78.78 124 | 85.35 116 | 68.42 91 | 92.69 10 | 89.03 11 | 91.94 39 | 96.32 32 | 81.80 21 | 94.45 26 | 86.86 82 | 90.91 88 | 83.69 100 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| PHI-MVS | | | 86.37 56 | 88.14 65 | 84.30 47 | 86.65 73 | 87.56 55 | 90.76 57 | 70.16 73 | 82.55 93 | 89.65 7 | 84.89 118 | 92.40 100 | 75.97 63 | 90.88 70 | 89.70 58 | 92.58 65 | 89.03 60 |
|
| MSLP-MVS++ | | | 86.29 57 | 89.10 55 | 83.01 58 | 85.71 82 | 89.79 35 | 87.04 104 | 74.39 51 | 85.17 73 | 78.92 86 | 77.59 156 | 93.57 86 | 82.60 17 | 93.23 36 | 91.88 39 | 89.42 107 | 92.46 30 |
|
| TAPA-MVS | | 78.00 13 | 85.88 58 | 88.37 61 | 82.96 60 | 84.69 87 | 88.62 43 | 90.62 58 | 64.22 129 | 89.15 38 | 88.05 14 | 78.83 149 | 93.71 83 | 76.20 61 | 90.11 80 | 88.22 71 | 94.00 41 | 89.97 51 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| anonymousdsp | | | 85.62 59 | 90.53 46 | 79.88 92 | 64.64 210 | 76.35 143 | 96.28 12 | 53.53 194 | 85.63 68 | 81.59 69 | 92.81 31 | 97.71 12 | 86.88 2 | 94.56 25 | 92.83 24 | 96.35 6 | 93.84 9 |
|
| TSAR-MVS + COLMAP | | | 85.51 60 | 88.36 62 | 82.19 67 | 86.05 79 | 87.69 54 | 90.50 65 | 70.60 72 | 86.40 61 | 82.33 59 | 89.69 65 | 92.52 99 | 74.01 81 | 87.53 100 | 86.84 83 | 89.63 102 | 87.80 72 |
|
| CNLPA | | | 85.50 61 | 88.58 57 | 81.91 71 | 84.55 91 | 87.52 56 | 90.89 54 | 63.56 139 | 88.18 46 | 84.06 44 | 83.85 127 | 91.34 119 | 76.46 58 | 91.27 60 | 89.00 66 | 91.96 74 | 88.88 61 |
|
| UniMVSNet_ETH3D | | | 85.39 62 | 91.12 43 | 78.71 99 | 90.48 37 | 83.72 79 | 81.76 140 | 82.41 6 | 93.84 6 | 64.43 159 | 95.41 7 | 98.76 1 | 63.72 141 | 93.63 33 | 89.74 57 | 89.47 106 | 82.74 112 |
|
| PLC |  | 76.06 15 | 85.38 63 | 87.46 71 | 82.95 61 | 85.79 81 | 88.84 41 | 88.86 83 | 68.70 88 | 87.06 57 | 83.60 48 | 79.02 145 | 90.05 128 | 77.37 52 | 90.88 70 | 89.66 59 | 93.37 52 | 86.74 77 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| TSAR-MVS + GP. | | | 85.32 64 | 87.41 73 | 82.89 62 | 90.07 41 | 85.69 69 | 89.07 81 | 72.99 60 | 82.45 94 | 74.52 109 | 85.09 115 | 87.67 143 | 79.24 33 | 91.11 64 | 90.41 50 | 91.45 79 | 89.45 55 |
|
| TranMVSNet+NR-MVSNet | | | 85.23 65 | 89.38 53 | 80.39 90 | 88.78 53 | 83.77 78 | 87.40 96 | 76.75 34 | 85.47 69 | 68.99 141 | 95.18 8 | 97.55 16 | 67.13 124 | 91.61 56 | 89.13 65 | 93.26 54 | 82.95 109 |
|
| HQP-MVS | | | 85.02 66 | 86.41 79 | 83.40 54 | 89.19 48 | 86.59 63 | 91.28 50 | 71.60 67 | 82.79 90 | 83.48 51 | 78.65 151 | 93.54 87 | 72.55 89 | 86.49 111 | 85.89 95 | 92.28 72 | 90.95 46 |
|
| UniMVSNet (Re) | | | 84.95 67 | 88.53 58 | 80.78 81 | 87.82 63 | 84.21 75 | 88.03 88 | 76.50 37 | 81.18 112 | 69.29 139 | 92.63 35 | 96.83 22 | 69.07 114 | 91.23 62 | 89.60 60 | 93.97 43 | 84.00 98 |
|
| DU-MVS | | | 84.88 68 | 88.27 64 | 80.92 79 | 88.30 57 | 83.59 81 | 87.06 102 | 78.35 19 | 80.64 117 | 70.49 133 | 92.67 33 | 96.91 21 | 68.13 117 | 91.79 51 | 89.29 64 | 93.20 55 | 83.02 106 |
|
| MCST-MVS | | | 84.79 69 | 86.48 77 | 82.83 63 | 87.30 67 | 87.03 61 | 90.46 67 | 69.33 81 | 83.14 87 | 82.21 63 | 81.69 138 | 92.14 106 | 75.09 72 | 87.27 103 | 84.78 106 | 92.58 65 | 89.30 57 |
|
| MVS_0304 | | | 84.73 70 | 86.19 81 | 83.02 57 | 88.32 56 | 86.71 62 | 91.55 48 | 70.87 70 | 73.79 148 | 82.88 54 | 85.13 114 | 93.35 89 | 72.55 89 | 88.62 91 | 87.69 74 | 91.93 75 | 88.05 70 |
|
| UniMVSNet_NR-MVSNet | | | 84.62 71 | 88.00 67 | 80.68 85 | 88.18 59 | 83.83 77 | 87.06 102 | 76.47 38 | 81.46 108 | 70.49 133 | 93.24 24 | 95.56 49 | 68.13 117 | 90.43 73 | 88.47 68 | 93.78 45 | 83.02 106 |
|
| EG-PatchMatch MVS | | | 84.35 72 | 87.55 70 | 80.62 86 | 86.38 75 | 82.24 93 | 86.75 105 | 64.02 134 | 84.24 79 | 78.17 92 | 89.38 69 | 95.03 65 | 78.78 37 | 89.95 81 | 86.33 89 | 89.59 103 | 85.65 85 |
|
| AdaColmap |  | | 84.15 73 | 85.14 95 | 83.00 59 | 89.08 49 | 87.14 60 | 90.56 61 | 70.90 69 | 82.40 95 | 80.41 73 | 73.82 184 | 84.69 157 | 75.19 70 | 91.58 57 | 89.90 55 | 91.87 76 | 86.48 78 |
|
| PCF-MVS | | 76.59 14 | 84.11 74 | 85.27 92 | 82.76 64 | 86.12 78 | 88.30 45 | 91.24 51 | 69.10 82 | 82.36 96 | 84.45 43 | 77.56 157 | 90.40 127 | 72.91 88 | 85.88 116 | 83.88 113 | 92.72 64 | 88.53 63 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| MVS_111021_HR | | | 83.95 75 | 86.10 83 | 81.44 76 | 84.62 89 | 80.29 111 | 90.51 64 | 68.05 96 | 84.07 82 | 80.38 74 | 84.74 121 | 91.37 118 | 74.23 77 | 90.37 75 | 87.25 78 | 90.86 89 | 84.59 90 |
|
| TinyColmap | | | 83.79 76 | 86.12 82 | 81.07 78 | 83.42 109 | 81.44 99 | 85.42 114 | 68.55 90 | 88.71 43 | 89.46 8 | 87.60 88 | 92.72 96 | 70.34 108 | 89.29 86 | 81.94 131 | 89.20 108 | 81.12 125 |
|
| EC-MVSNet | | | 83.70 77 | 84.77 104 | 82.46 66 | 87.47 66 | 82.79 87 | 85.50 112 | 72.00 63 | 69.81 166 | 77.66 93 | 85.02 117 | 89.63 129 | 78.14 44 | 90.40 74 | 87.56 75 | 94.00 41 | 88.16 67 |
|
| v1192 | | | 83.61 78 | 85.23 93 | 81.72 73 | 84.05 98 | 82.15 94 | 89.54 76 | 66.20 108 | 81.38 110 | 86.76 32 | 91.79 43 | 96.03 36 | 74.88 74 | 81.81 153 | 80.92 139 | 88.91 114 | 82.50 114 |
|
| CS-MVS-test | | | 83.59 79 | 84.86 101 | 82.10 69 | 83.04 114 | 81.05 105 | 91.58 47 | 67.48 102 | 72.52 155 | 78.42 90 | 84.75 120 | 91.82 112 | 78.62 41 | 91.98 50 | 87.54 76 | 93.48 48 | 84.35 93 |
|
| CS-MVS | | | 83.57 80 | 84.79 103 | 82.14 68 | 83.83 104 | 81.48 98 | 87.29 97 | 66.54 105 | 72.73 154 | 80.05 78 | 84.04 125 | 93.12 94 | 80.35 28 | 89.50 83 | 86.34 88 | 94.76 34 | 86.32 81 |
|
| v1240 | | | 83.57 80 | 84.94 99 | 81.97 70 | 84.05 98 | 81.27 101 | 89.46 78 | 66.06 110 | 81.31 111 | 87.50 20 | 91.88 42 | 95.46 52 | 76.25 60 | 81.16 158 | 80.51 143 | 88.52 124 | 82.98 108 |
|
| v1921920 | | | 83.49 82 | 84.94 99 | 81.80 72 | 83.78 105 | 81.20 103 | 89.50 77 | 65.91 113 | 81.64 103 | 87.18 24 | 91.70 44 | 95.39 54 | 75.85 64 | 81.56 156 | 80.27 145 | 88.60 119 | 82.80 110 |
|
| v144192 | | | 83.43 83 | 84.97 98 | 81.63 75 | 83.43 108 | 81.23 102 | 89.42 79 | 66.04 112 | 81.45 109 | 86.40 34 | 91.46 47 | 95.70 47 | 75.76 66 | 82.14 149 | 80.23 146 | 88.74 116 | 82.57 113 |
|
| Vis-MVSNet |  | | 83.32 84 | 88.12 66 | 77.71 106 | 77.91 158 | 83.44 83 | 90.58 59 | 69.49 78 | 81.11 113 | 67.10 153 | 89.85 62 | 91.48 117 | 71.71 98 | 91.34 59 | 89.37 62 | 89.48 105 | 90.26 49 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| v1144 | | | 83.22 85 | 85.01 96 | 81.14 77 | 83.76 106 | 81.60 97 | 88.95 82 | 65.58 118 | 81.89 100 | 85.80 36 | 91.68 45 | 95.84 41 | 74.04 80 | 82.12 150 | 80.56 142 | 88.70 118 | 81.41 123 |
|
| MVS_111021_LR | | | 83.20 86 | 85.33 91 | 80.73 84 | 82.88 117 | 78.23 128 | 89.61 75 | 65.23 120 | 82.08 98 | 81.19 71 | 85.31 112 | 92.04 110 | 75.22 69 | 89.50 83 | 85.90 94 | 90.24 92 | 84.23 94 |
|
| v10 | | | 83.17 87 | 85.22 94 | 80.78 81 | 83.26 111 | 82.99 86 | 88.66 85 | 66.49 106 | 79.24 128 | 83.60 48 | 91.46 47 | 95.47 51 | 74.12 78 | 82.60 147 | 80.66 140 | 88.53 123 | 84.11 97 |
|
| PVSNet_Blended_VisFu | | | 83.00 88 | 84.16 115 | 81.65 74 | 82.17 124 | 86.01 66 | 88.03 88 | 71.23 68 | 76.05 141 | 79.54 81 | 83.88 126 | 83.44 159 | 77.49 51 | 87.38 101 | 84.93 104 | 91.41 80 | 87.40 75 |
|
| NR-MVSNet | | | 82.89 89 | 87.43 72 | 77.59 108 | 83.91 102 | 83.59 81 | 87.10 101 | 78.35 19 | 80.64 117 | 68.85 142 | 92.67 33 | 96.50 24 | 54.19 180 | 87.19 106 | 88.68 67 | 93.16 58 | 82.75 111 |
|
| CANet | | | 82.84 90 | 84.60 106 | 80.78 81 | 87.30 67 | 85.20 72 | 90.23 69 | 69.00 83 | 72.16 158 | 78.73 88 | 84.49 123 | 90.70 125 | 69.54 112 | 87.65 99 | 86.17 90 | 89.87 99 | 85.84 83 |
|
| Baseline_NR-MVSNet | | | 82.79 91 | 86.51 76 | 78.44 103 | 88.30 57 | 75.62 151 | 87.81 90 | 74.97 48 | 81.53 105 | 66.84 154 | 94.71 12 | 96.46 25 | 66.90 125 | 91.79 51 | 83.37 122 | 85.83 153 | 82.09 117 |
|
| EPP-MVSNet | | | 82.76 92 | 86.47 78 | 78.45 102 | 86.00 80 | 84.47 74 | 85.39 115 | 68.42 91 | 84.17 80 | 62.97 163 | 89.26 71 | 76.84 185 | 72.13 94 | 92.56 48 | 90.40 51 | 95.76 20 | 87.56 74 |
|
| CLD-MVS | | | 82.75 93 | 87.22 74 | 77.54 109 | 88.01 62 | 85.76 68 | 90.23 69 | 54.52 188 | 82.28 97 | 82.11 65 | 88.48 81 | 95.27 56 | 63.95 139 | 89.41 85 | 88.29 70 | 86.45 144 | 81.01 126 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| Effi-MVS+ | | | 82.33 94 | 83.87 118 | 80.52 88 | 84.51 94 | 81.32 100 | 87.53 94 | 68.05 96 | 74.94 146 | 79.67 80 | 82.37 135 | 92.31 102 | 72.21 91 | 85.06 124 | 86.91 81 | 91.18 85 | 84.20 95 |
|
| 3Dnovator | | 79.41 10 | 82.21 95 | 86.07 84 | 77.71 106 | 79.31 143 | 84.61 73 | 87.18 99 | 61.02 161 | 85.65 67 | 76.11 97 | 85.07 116 | 85.38 155 | 70.96 104 | 87.22 104 | 86.47 85 | 91.66 77 | 88.12 69 |
|
| v8 | | | 82.20 96 | 84.56 107 | 79.45 95 | 82.42 121 | 81.65 96 | 87.26 98 | 64.27 128 | 79.36 127 | 81.70 68 | 91.04 53 | 95.75 45 | 73.30 87 | 82.82 143 | 79.18 153 | 87.74 131 | 82.09 117 |
|
| v2v482 | | | 82.20 96 | 84.26 111 | 79.81 93 | 82.67 120 | 80.18 112 | 87.67 92 | 63.96 136 | 81.69 102 | 84.73 41 | 91.27 50 | 96.33 31 | 72.05 95 | 81.94 152 | 79.56 150 | 87.79 130 | 78.84 143 |
|
| Effi-MVS+-dtu | | | 82.04 98 | 83.39 125 | 80.48 89 | 85.48 83 | 86.57 64 | 88.40 86 | 68.28 93 | 69.04 173 | 73.13 118 | 76.26 168 | 91.11 121 | 74.74 75 | 88.40 94 | 87.76 73 | 92.84 63 | 84.57 91 |
|
| MAR-MVS | | | 81.98 99 | 82.92 128 | 80.88 80 | 85.18 86 | 85.85 67 | 89.13 80 | 69.52 76 | 71.21 162 | 82.25 61 | 71.28 194 | 88.89 138 | 69.69 109 | 88.71 89 | 86.96 79 | 89.52 104 | 87.57 73 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| GeoE | | | 81.92 100 | 83.87 118 | 79.66 94 | 84.64 88 | 79.87 113 | 89.75 74 | 65.90 114 | 76.12 140 | 75.87 99 | 84.62 122 | 92.23 103 | 71.96 96 | 86.83 108 | 83.60 116 | 89.83 100 | 83.81 99 |
|
| IS_MVSNet | | | 81.72 101 | 85.01 96 | 77.90 105 | 86.19 76 | 82.64 90 | 85.56 111 | 70.02 74 | 80.11 122 | 63.52 161 | 87.28 94 | 81.18 169 | 67.26 122 | 91.08 67 | 89.33 63 | 94.82 31 | 83.42 103 |
|
| FPMVS | | | 81.56 102 | 84.04 117 | 78.66 100 | 82.92 115 | 75.96 147 | 86.48 108 | 65.66 117 | 84.67 77 | 71.47 128 | 77.78 154 | 83.22 162 | 77.57 50 | 91.24 61 | 90.21 52 | 87.84 129 | 85.21 87 |
|
| casdiffmvs_mvg |  | | 81.50 103 | 85.70 88 | 76.60 115 | 82.68 119 | 80.54 108 | 83.50 127 | 64.49 127 | 83.40 84 | 72.53 119 | 92.15 38 | 95.40 53 | 65.84 132 | 84.69 131 | 81.89 132 | 90.59 90 | 81.86 121 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| DPM-MVS | | | 81.42 104 | 82.11 132 | 80.62 86 | 87.54 64 | 85.30 71 | 90.18 71 | 68.96 84 | 81.00 115 | 79.15 84 | 70.45 200 | 83.29 161 | 67.67 121 | 82.81 144 | 83.46 117 | 90.19 93 | 88.48 64 |
|
| Fast-Effi-MVS+ | | | 81.42 104 | 83.82 120 | 78.62 101 | 82.24 123 | 80.62 107 | 87.72 91 | 63.51 140 | 73.01 150 | 74.75 107 | 83.80 128 | 92.70 97 | 73.44 86 | 88.15 98 | 85.26 100 | 90.05 94 | 83.17 104 |
|
| USDC | | | 81.39 106 | 83.07 126 | 79.43 96 | 81.48 128 | 78.95 123 | 82.62 135 | 66.17 109 | 87.45 53 | 90.73 4 | 82.40 134 | 93.65 85 | 66.57 127 | 83.63 139 | 77.97 156 | 89.00 112 | 77.45 151 |
|
| MSDG | | | 81.39 106 | 84.23 113 | 78.09 104 | 82.40 122 | 82.47 92 | 85.31 118 | 60.91 162 | 79.73 125 | 80.26 75 | 86.30 103 | 88.27 141 | 69.67 110 | 87.20 105 | 84.98 103 | 89.97 96 | 80.67 128 |
|
| canonicalmvs | | | 81.22 108 | 86.04 85 | 75.60 119 | 83.17 113 | 83.18 85 | 80.29 150 | 65.82 116 | 85.97 66 | 67.98 149 | 77.74 155 | 91.51 116 | 65.17 135 | 88.62 91 | 86.15 91 | 91.17 86 | 89.09 58 |
|
| thisisatest0515 | | | 81.18 109 | 84.32 110 | 77.52 110 | 76.73 170 | 74.84 158 | 85.06 119 | 61.37 158 | 81.05 114 | 73.95 111 | 88.79 79 | 89.25 134 | 75.49 68 | 85.98 115 | 84.78 106 | 92.53 68 | 85.56 86 |
|
| pmmvs6 | | | 80.46 110 | 88.34 63 | 71.26 146 | 81.96 125 | 77.51 132 | 77.54 167 | 68.83 86 | 93.72 7 | 55.92 180 | 93.94 19 | 98.03 9 | 55.94 170 | 89.21 87 | 85.61 96 | 87.36 135 | 80.38 130 |
|
| QAPM | | | 80.43 111 | 84.34 109 | 75.86 117 | 79.40 142 | 82.06 95 | 79.86 155 | 61.94 154 | 83.28 86 | 74.73 108 | 81.74 137 | 85.44 154 | 70.97 103 | 84.99 129 | 84.71 108 | 88.29 125 | 88.14 68 |
|
| PM-MVS | | | 80.42 112 | 83.63 122 | 76.67 113 | 78.04 155 | 72.37 169 | 87.14 100 | 60.18 167 | 80.13 121 | 71.75 126 | 86.12 106 | 93.92 82 | 77.08 53 | 86.56 110 | 85.12 102 | 85.83 153 | 81.18 124 |
|
| DCV-MVSNet | | | 80.04 113 | 85.67 90 | 73.48 137 | 82.91 116 | 81.11 104 | 80.44 149 | 66.06 110 | 85.01 74 | 62.53 166 | 78.84 148 | 94.43 77 | 58.51 161 | 88.66 90 | 85.91 93 | 90.41 91 | 85.73 84 |
|
| casdiffmvs |  | | 79.93 114 | 84.11 116 | 75.05 124 | 81.41 130 | 78.99 122 | 82.95 132 | 62.90 147 | 81.53 105 | 68.60 146 | 91.94 39 | 96.03 36 | 65.84 132 | 82.89 142 | 77.07 164 | 88.59 120 | 80.34 134 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| IterMVS-LS | | | 79.79 115 | 82.56 130 | 76.56 116 | 81.83 126 | 77.85 130 | 79.90 154 | 69.42 80 | 78.93 130 | 71.21 129 | 90.47 55 | 85.20 156 | 70.86 105 | 80.54 163 | 80.57 141 | 86.15 146 | 84.36 92 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| DELS-MVS | | | 79.71 116 | 83.74 121 | 75.01 126 | 79.31 143 | 82.68 89 | 84.79 121 | 60.06 168 | 75.43 144 | 69.09 140 | 86.13 105 | 89.38 132 | 67.16 123 | 85.12 123 | 83.87 114 | 89.65 101 | 83.57 101 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| test1111 | | | 79.67 117 | 84.40 108 | 74.16 132 | 85.29 84 | 79.56 118 | 81.16 144 | 73.13 59 | 84.65 78 | 56.08 178 | 88.38 82 | 86.14 150 | 60.49 152 | 89.78 82 | 85.59 97 | 88.79 115 | 76.68 152 |
|
| pmmvs-eth3d | | | 79.64 118 | 82.06 133 | 76.83 112 | 80.05 136 | 72.64 167 | 87.47 95 | 66.59 104 | 80.83 116 | 73.50 114 | 89.32 70 | 93.20 91 | 67.78 119 | 80.78 161 | 81.64 135 | 85.58 156 | 76.01 154 |
|
| UGNet | | | 79.62 119 | 85.91 86 | 72.28 143 | 73.52 180 | 83.91 76 | 86.64 106 | 69.51 77 | 79.85 124 | 62.57 165 | 85.82 109 | 89.63 129 | 53.18 184 | 88.39 95 | 87.35 77 | 88.28 126 | 86.43 79 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| V42 | | | 79.59 120 | 83.59 123 | 74.93 129 | 69.61 193 | 77.05 139 | 86.59 107 | 55.84 183 | 78.42 132 | 77.29 94 | 89.84 63 | 95.08 63 | 74.12 78 | 83.05 140 | 80.11 148 | 86.12 147 | 81.59 122 |
|
| Anonymous20231211 | | | 79.37 121 | 85.78 87 | 71.89 144 | 82.87 118 | 79.66 117 | 78.77 164 | 63.93 137 | 83.36 85 | 59.39 170 | 90.54 54 | 94.66 71 | 56.46 168 | 87.38 101 | 84.12 111 | 89.92 97 | 80.74 127 |
|
| EPNet | | | 79.36 122 | 79.44 142 | 79.27 98 | 89.51 46 | 77.20 137 | 88.35 87 | 77.35 31 | 68.27 175 | 74.29 110 | 76.31 166 | 79.22 175 | 59.63 155 | 85.02 128 | 85.45 99 | 86.49 143 | 84.61 89 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| v148 | | | 79.33 123 | 82.32 131 | 75.84 118 | 80.14 135 | 75.74 148 | 81.98 139 | 57.06 180 | 81.51 107 | 79.36 83 | 89.42 67 | 96.42 27 | 71.32 99 | 81.54 157 | 75.29 175 | 85.20 158 | 76.32 153 |
|
| ECVR-MVS |  | | 79.31 124 | 84.20 114 | 73.60 134 | 84.55 91 | 80.37 109 | 79.63 158 | 73.23 57 | 82.64 91 | 55.98 179 | 87.50 89 | 86.85 147 | 59.61 156 | 90.35 76 | 86.46 86 | 88.58 121 | 75.26 162 |
|
| FC-MVSNet-train | | | 79.20 125 | 86.29 80 | 70.94 150 | 84.06 97 | 77.67 131 | 85.68 110 | 64.11 131 | 82.90 89 | 52.22 195 | 92.57 36 | 93.69 84 | 49.52 197 | 88.30 96 | 86.93 80 | 90.03 95 | 81.95 119 |
|
| TransMVSNet (Re) | | | 79.05 126 | 86.66 75 | 70.18 156 | 83.32 110 | 75.99 146 | 77.54 167 | 63.98 135 | 90.68 25 | 55.84 181 | 94.80 10 | 96.06 35 | 53.73 183 | 86.27 113 | 83.22 123 | 86.65 139 | 79.61 140 |
|
| ETV-MVS | | | 79.01 127 | 77.98 149 | 80.22 91 | 86.69 72 | 79.73 116 | 88.80 84 | 68.27 94 | 63.22 196 | 71.56 127 | 70.25 202 | 73.63 195 | 73.66 84 | 90.30 78 | 86.77 84 | 92.33 71 | 81.95 119 |
|
| FA-MVS(training) | | | 78.93 128 | 80.63 138 | 76.93 111 | 79.79 139 | 75.57 152 | 85.44 113 | 61.95 153 | 77.19 136 | 78.97 85 | 84.82 119 | 82.47 164 | 66.43 130 | 84.09 136 | 80.13 147 | 89.02 111 | 80.15 137 |
|
| EIA-MVS | | | 78.57 129 | 77.90 150 | 79.35 97 | 87.24 69 | 80.71 106 | 86.16 109 | 64.03 133 | 62.63 201 | 73.49 115 | 73.60 185 | 76.12 189 | 73.83 82 | 88.49 93 | 84.93 104 | 91.36 81 | 78.78 144 |
|
| OpenMVS |  | 75.38 16 | 78.44 130 | 81.39 136 | 74.99 127 | 80.46 133 | 79.85 114 | 79.99 152 | 58.31 177 | 77.34 135 | 73.85 112 | 77.19 160 | 82.33 167 | 68.60 116 | 84.67 132 | 81.95 130 | 88.72 117 | 86.40 80 |
|
| pm-mvs1 | | | 78.21 131 | 85.68 89 | 69.50 161 | 80.38 134 | 75.73 149 | 76.25 176 | 65.04 121 | 87.59 51 | 54.47 186 | 93.16 26 | 95.99 40 | 54.20 179 | 86.37 112 | 82.98 126 | 86.64 140 | 77.96 149 |
|
| FMVSNet1 | | | 78.20 132 | 84.83 102 | 70.46 154 | 78.62 150 | 79.03 121 | 77.90 166 | 67.53 101 | 83.02 88 | 55.10 184 | 87.19 96 | 93.18 92 | 55.65 173 | 85.57 117 | 83.39 119 | 87.98 128 | 82.40 115 |
|
| DI_MVS_plusplus_trai | | | 77.64 133 | 79.64 141 | 75.31 122 | 79.87 138 | 76.89 140 | 81.55 143 | 63.64 138 | 76.21 139 | 72.03 124 | 85.59 111 | 82.97 163 | 66.63 126 | 79.27 169 | 77.78 158 | 88.14 127 | 78.76 145 |
|
| IterMVS-SCA-FT | | | 77.23 134 | 79.18 144 | 74.96 128 | 76.67 171 | 79.85 114 | 75.58 185 | 61.34 159 | 73.10 149 | 73.79 113 | 86.23 104 | 79.61 174 | 79.00 36 | 80.28 165 | 75.50 174 | 83.41 170 | 79.70 139 |
|
| tfpnnormal | | | 77.16 135 | 84.26 111 | 68.88 164 | 81.02 131 | 75.02 155 | 76.52 175 | 63.30 142 | 87.29 54 | 52.40 193 | 91.24 51 | 93.97 80 | 54.85 177 | 85.46 120 | 81.08 137 | 85.18 159 | 75.76 158 |
|
| Fast-Effi-MVS+-dtu | | | 76.92 136 | 77.18 155 | 76.62 114 | 79.55 140 | 79.17 120 | 84.80 120 | 77.40 29 | 64.46 191 | 68.75 144 | 70.81 198 | 86.57 148 | 63.36 146 | 81.74 154 | 81.76 133 | 85.86 152 | 75.78 157 |
|
| diffmvs |  | | 76.74 137 | 81.61 135 | 71.06 148 | 75.64 175 | 74.45 161 | 80.68 148 | 57.57 179 | 77.48 133 | 67.62 152 | 88.95 75 | 93.94 81 | 61.98 149 | 79.74 166 | 76.18 169 | 82.85 171 | 80.50 129 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MVS_Test | | | 76.72 138 | 79.40 143 | 73.60 134 | 78.85 149 | 74.99 156 | 79.91 153 | 61.56 156 | 69.67 167 | 72.44 120 | 85.98 108 | 90.78 123 | 63.50 144 | 78.30 171 | 75.74 172 | 85.33 157 | 80.31 135 |
|
| MDA-MVSNet-bldmvs | | | 76.51 139 | 82.87 129 | 69.09 163 | 50.71 221 | 74.72 160 | 84.05 125 | 60.27 166 | 81.62 104 | 71.16 130 | 88.21 84 | 91.58 114 | 69.62 111 | 92.78 44 | 77.48 161 | 78.75 182 | 73.69 168 |
|
| EU-MVSNet | | | 76.48 140 | 80.53 139 | 71.75 145 | 67.62 200 | 70.30 174 | 81.74 141 | 54.06 191 | 75.47 143 | 71.01 131 | 80.10 140 | 93.17 93 | 73.67 83 | 83.73 138 | 77.85 157 | 82.40 172 | 83.07 105 |
|
| PVSNet_BlendedMVS | | | 76.45 141 | 78.12 147 | 74.49 130 | 76.76 164 | 78.46 125 | 79.65 156 | 63.26 143 | 65.42 187 | 73.15 116 | 75.05 178 | 88.96 135 | 66.51 128 | 82.73 145 | 77.66 159 | 87.61 132 | 78.60 146 |
|
| PVSNet_Blended | | | 76.45 141 | 78.12 147 | 74.49 130 | 76.76 164 | 78.46 125 | 79.65 156 | 63.26 143 | 65.42 187 | 73.15 116 | 75.05 178 | 88.96 135 | 66.51 128 | 82.73 145 | 77.66 159 | 87.61 132 | 78.60 146 |
|
| Vis-MVSNet (Re-imp) | | | 76.15 143 | 80.84 137 | 70.68 151 | 83.66 107 | 74.80 159 | 81.66 142 | 69.59 75 | 80.48 120 | 46.94 205 | 87.44 91 | 80.63 171 | 53.14 185 | 86.87 107 | 84.56 109 | 89.12 109 | 71.12 173 |
|
| PatchMatch-RL | | | 76.05 144 | 76.64 160 | 75.36 121 | 77.84 160 | 69.87 177 | 81.09 146 | 63.43 141 | 71.66 160 | 68.34 148 | 71.70 190 | 81.76 168 | 74.98 73 | 84.83 130 | 83.44 118 | 86.45 144 | 73.22 170 |
|
| pmmvs4 | | | 75.92 145 | 77.48 154 | 74.10 133 | 78.21 154 | 70.94 171 | 84.06 124 | 64.78 123 | 75.13 145 | 68.47 147 | 84.12 124 | 83.32 160 | 64.74 138 | 75.93 183 | 79.14 154 | 84.31 163 | 73.77 167 |
|
| FC-MVSNet-test | | | 75.91 146 | 83.59 123 | 66.95 175 | 76.63 172 | 69.07 179 | 85.33 117 | 64.97 122 | 84.87 76 | 41.95 211 | 93.17 25 | 87.04 145 | 47.78 200 | 91.09 66 | 85.56 98 | 85.06 160 | 74.34 163 |
|
| tttt0517 | | | 75.86 147 | 76.23 164 | 75.42 120 | 75.55 176 | 74.06 162 | 82.73 133 | 60.31 164 | 69.24 169 | 70.24 135 | 79.18 144 | 58.79 213 | 72.17 92 | 84.49 133 | 83.08 124 | 91.54 78 | 84.80 88 |
|
| CVMVSNet | | | 75.65 148 | 77.62 153 | 73.35 140 | 71.95 186 | 69.89 176 | 83.04 131 | 60.84 163 | 69.12 171 | 68.76 143 | 79.92 143 | 78.93 177 | 73.64 85 | 81.02 159 | 81.01 138 | 81.86 175 | 83.43 102 |
|
| thisisatest0530 | | | 75.54 149 | 75.95 168 | 75.05 124 | 75.08 177 | 73.56 164 | 82.15 138 | 60.31 164 | 69.17 170 | 69.32 138 | 79.02 145 | 58.78 214 | 72.17 92 | 83.88 137 | 83.08 124 | 91.30 83 | 84.20 95 |
|
| test2506 | | | 75.32 150 | 76.87 159 | 73.50 136 | 84.55 91 | 80.37 109 | 79.63 158 | 73.23 57 | 82.64 91 | 55.41 182 | 76.87 163 | 45.42 227 | 59.61 156 | 90.35 76 | 86.46 86 | 88.58 121 | 75.98 155 |
|
| IB-MVS | | 71.28 17 | 75.21 151 | 77.00 157 | 73.12 141 | 76.76 164 | 77.45 133 | 83.05 130 | 58.92 174 | 63.01 197 | 64.31 160 | 59.99 216 | 87.57 144 | 68.64 115 | 86.26 114 | 82.34 129 | 87.05 138 | 82.36 116 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| CANet_DTU | | | 75.04 152 | 78.45 145 | 71.07 147 | 77.27 161 | 77.96 129 | 83.88 126 | 58.00 178 | 64.11 192 | 68.67 145 | 75.65 175 | 88.37 140 | 53.92 182 | 82.05 151 | 81.11 136 | 84.67 161 | 79.88 138 |
|
| GA-MVS | | | 75.01 153 | 76.39 162 | 73.39 138 | 78.37 151 | 75.66 150 | 80.03 151 | 58.40 176 | 70.51 164 | 75.85 100 | 83.24 129 | 76.14 188 | 63.75 140 | 77.28 175 | 76.62 168 | 83.97 165 | 75.30 161 |
|
| ET-MVSNet_ETH3D | | | 74.71 154 | 74.19 175 | 75.31 122 | 79.22 145 | 75.29 153 | 82.70 134 | 64.05 132 | 65.45 186 | 70.96 132 | 77.15 161 | 57.70 215 | 65.89 131 | 84.40 134 | 81.65 134 | 89.03 110 | 77.67 150 |
|
| FMVSNet2 | | | 74.43 155 | 79.70 140 | 68.27 167 | 76.76 164 | 77.36 134 | 75.77 180 | 65.36 119 | 72.28 156 | 52.97 190 | 81.92 136 | 85.61 153 | 52.73 189 | 80.66 162 | 79.73 149 | 86.04 148 | 80.37 131 |
|
| thres600view7 | | | 74.34 156 | 78.43 146 | 69.56 160 | 80.47 132 | 76.28 144 | 78.65 165 | 62.56 149 | 77.39 134 | 52.53 191 | 74.03 182 | 76.78 186 | 55.90 172 | 85.06 124 | 85.19 101 | 87.25 136 | 74.29 164 |
|
| IterMVS | | | 73.62 157 | 76.53 161 | 70.23 155 | 71.83 187 | 77.18 138 | 80.69 147 | 53.22 195 | 72.23 157 | 66.62 155 | 85.21 113 | 78.96 176 | 69.54 112 | 76.28 182 | 71.63 185 | 79.45 179 | 74.25 165 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| MIMVSNet1 | | | 73.40 158 | 81.85 134 | 63.55 188 | 72.90 183 | 64.37 193 | 84.58 122 | 53.60 193 | 90.84 21 | 53.92 187 | 87.75 87 | 96.10 33 | 45.31 203 | 85.37 122 | 79.32 152 | 70.98 197 | 69.18 182 |
|
| HyFIR lowres test | | | 73.29 159 | 74.14 176 | 72.30 142 | 73.08 182 | 78.33 127 | 83.12 129 | 62.41 151 | 63.81 193 | 62.13 167 | 76.67 165 | 78.50 178 | 71.09 101 | 74.13 187 | 77.47 162 | 81.98 174 | 70.10 177 |
|
| GBi-Net | | | 73.17 160 | 77.64 151 | 67.95 170 | 76.76 164 | 77.36 134 | 75.77 180 | 64.57 124 | 62.99 198 | 51.83 196 | 76.05 169 | 77.76 181 | 52.73 189 | 85.57 117 | 83.39 119 | 86.04 148 | 80.37 131 |
|
| test1 | | | 73.17 160 | 77.64 151 | 67.95 170 | 76.76 164 | 77.36 134 | 75.77 180 | 64.57 124 | 62.99 198 | 51.83 196 | 76.05 169 | 77.76 181 | 52.73 189 | 85.57 117 | 83.39 119 | 86.04 148 | 80.37 131 |
|
| thres400 | | | 73.13 162 | 76.99 158 | 68.62 165 | 79.46 141 | 74.93 157 | 77.23 169 | 61.23 160 | 75.54 142 | 52.31 194 | 72.20 189 | 77.10 184 | 54.89 175 | 82.92 141 | 82.62 128 | 86.57 142 | 73.66 169 |
|
| CDS-MVSNet | | | 73.07 163 | 77.02 156 | 68.46 166 | 81.62 127 | 72.89 166 | 79.56 160 | 70.78 71 | 69.56 168 | 52.52 192 | 77.37 159 | 81.12 170 | 42.60 205 | 84.20 135 | 83.93 112 | 83.65 166 | 70.07 178 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| MDTV_nov1_ep13_2view | | | 72.96 164 | 75.59 169 | 69.88 157 | 71.15 190 | 64.86 192 | 82.31 137 | 54.45 189 | 76.30 138 | 78.32 91 | 86.52 101 | 91.58 114 | 61.35 150 | 76.80 176 | 66.83 196 | 71.70 190 | 66.26 186 |
|
| WB-MVS | | | 72.91 165 | 82.95 127 | 61.21 193 | 68.59 196 | 73.96 163 | 73.65 190 | 61.48 157 | 90.88 20 | 42.55 209 | 94.18 16 | 95.80 43 | 53.02 186 | 85.42 121 | 75.73 173 | 67.97 204 | 64.65 189 |
|
| gg-mvs-nofinetune | | | 72.68 166 | 75.21 172 | 69.73 158 | 81.48 128 | 69.04 180 | 70.48 198 | 76.67 35 | 86.92 58 | 67.80 151 | 88.06 85 | 64.67 203 | 42.12 207 | 77.60 173 | 73.65 178 | 79.81 177 | 66.57 185 |
|
| thres200 | | | 72.41 167 | 76.00 167 | 68.21 168 | 78.28 152 | 76.28 144 | 74.94 186 | 62.56 149 | 72.14 159 | 51.35 199 | 69.59 205 | 76.51 187 | 54.89 175 | 85.06 124 | 80.51 143 | 87.25 136 | 71.92 172 |
|
| tfpn200view9 | | | 72.01 168 | 75.40 170 | 68.06 169 | 77.97 156 | 76.44 142 | 77.04 171 | 62.67 148 | 66.81 178 | 50.82 200 | 67.30 207 | 75.67 191 | 52.46 192 | 85.06 124 | 82.64 127 | 87.41 134 | 73.86 166 |
|
| EPNet_dtu | | | 71.90 169 | 73.03 181 | 70.59 152 | 78.28 152 | 61.64 199 | 82.44 136 | 64.12 130 | 63.26 195 | 69.74 136 | 71.47 192 | 82.41 165 | 51.89 193 | 78.83 170 | 78.01 155 | 77.07 183 | 75.60 159 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| gm-plane-assit | | | 71.56 170 | 69.99 186 | 73.39 138 | 84.43 95 | 73.21 165 | 90.42 68 | 51.36 201 | 84.08 81 | 76.00 98 | 91.30 49 | 37.09 228 | 59.01 159 | 73.65 190 | 70.24 189 | 79.09 181 | 60.37 203 |
|
| CMPMVS |  | 55.74 18 | 71.56 170 | 76.26 163 | 66.08 180 | 68.11 198 | 63.91 195 | 63.17 212 | 50.52 203 | 68.79 174 | 75.49 101 | 70.78 199 | 85.67 152 | 63.54 143 | 81.58 155 | 77.20 163 | 75.63 184 | 85.86 82 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| FMVSNet3 | | | 71.40 172 | 75.20 173 | 66.97 174 | 75.00 178 | 76.59 141 | 74.29 187 | 64.57 124 | 62.99 198 | 51.83 196 | 76.05 169 | 77.76 181 | 51.49 194 | 76.58 179 | 77.03 165 | 84.62 162 | 79.43 141 |
|
| MS-PatchMatch | | | 71.18 173 | 73.99 177 | 67.89 172 | 77.16 162 | 71.76 170 | 77.18 170 | 56.38 182 | 67.35 176 | 55.04 185 | 74.63 180 | 75.70 190 | 62.38 147 | 76.62 178 | 75.97 171 | 79.22 180 | 75.90 156 |
|
| test20.03 | | | 69.91 174 | 76.20 165 | 62.58 189 | 84.01 100 | 67.34 185 | 75.67 184 | 65.88 115 | 79.98 123 | 40.28 215 | 82.65 131 | 89.31 133 | 39.63 210 | 77.41 174 | 73.28 179 | 69.98 198 | 63.40 194 |
|
| thres100view900 | | | 69.86 175 | 72.97 182 | 66.24 177 | 77.97 156 | 72.49 168 | 73.29 191 | 59.12 172 | 66.81 178 | 50.82 200 | 67.30 207 | 75.67 191 | 50.54 195 | 78.24 172 | 79.40 151 | 85.71 155 | 70.88 174 |
|
| baseline1 | | | 69.62 176 | 73.55 179 | 65.02 187 | 78.95 148 | 70.39 173 | 71.38 197 | 62.03 152 | 70.97 163 | 47.95 203 | 78.47 152 | 68.19 201 | 47.77 201 | 79.65 168 | 76.94 167 | 82.05 173 | 70.27 176 |
|
| CR-MVSNet | | | 69.56 177 | 68.34 191 | 70.99 149 | 72.78 185 | 67.63 183 | 64.47 210 | 67.74 99 | 59.93 207 | 72.30 121 | 80.10 140 | 56.77 217 | 65.04 136 | 71.64 195 | 72.91 181 | 83.61 168 | 69.40 180 |
|
| baseline | | | 69.33 178 | 75.37 171 | 62.28 191 | 66.54 206 | 66.67 188 | 73.95 189 | 48.07 204 | 66.10 181 | 59.26 171 | 82.45 132 | 86.30 149 | 54.44 178 | 74.42 186 | 73.25 180 | 71.42 193 | 78.43 148 |
|
| pmmvs5 | | | 68.91 179 | 74.35 174 | 62.56 190 | 67.45 202 | 66.78 187 | 71.70 194 | 51.47 200 | 67.17 177 | 56.25 177 | 82.41 133 | 88.59 139 | 47.21 202 | 73.21 193 | 74.23 176 | 81.30 176 | 68.03 184 |
|
| CHOSEN 1792x2688 | | | 68.80 180 | 71.09 183 | 66.13 179 | 69.11 195 | 68.89 181 | 78.98 163 | 54.68 186 | 61.63 203 | 56.69 175 | 71.56 191 | 78.39 179 | 67.69 120 | 72.13 194 | 72.01 184 | 69.63 200 | 73.02 171 |
|
| baseline2 | | | 68.71 181 | 68.34 191 | 69.14 162 | 75.69 174 | 69.70 178 | 76.60 174 | 55.53 185 | 60.13 206 | 62.07 168 | 66.76 209 | 60.35 208 | 60.77 151 | 76.53 181 | 74.03 177 | 84.19 164 | 70.88 174 |
|
| SCA | | | 68.54 182 | 67.52 193 | 69.73 158 | 67.79 199 | 75.04 154 | 76.96 172 | 68.94 85 | 66.41 180 | 67.86 150 | 74.03 182 | 60.96 206 | 65.55 134 | 68.99 203 | 65.67 197 | 71.30 195 | 61.54 202 |
|
| testgi | | | 68.20 183 | 76.05 166 | 59.04 196 | 79.99 137 | 67.32 186 | 81.16 144 | 51.78 199 | 84.91 75 | 39.36 216 | 73.42 186 | 95.19 58 | 32.79 216 | 76.54 180 | 70.40 188 | 69.14 201 | 64.55 190 |
|
| dmvs_re | | | 68.11 184 | 70.60 185 | 65.21 185 | 77.91 158 | 63.73 196 | 76.72 173 | 59.65 170 | 55.93 213 | 47.79 204 | 59.79 217 | 79.91 173 | 49.72 196 | 82.48 148 | 76.98 166 | 79.48 178 | 75.41 160 |
|
| MVSTER | | | 68.08 185 | 69.73 187 | 66.16 178 | 66.33 208 | 70.06 175 | 75.71 183 | 52.36 197 | 55.18 216 | 58.64 172 | 70.23 203 | 56.72 218 | 57.34 165 | 79.68 167 | 76.03 170 | 86.61 141 | 80.20 136 |
|
| Anonymous20231206 | | | 67.28 186 | 73.41 180 | 60.12 195 | 76.45 173 | 63.61 197 | 74.21 188 | 56.52 181 | 76.35 137 | 42.23 210 | 75.81 174 | 90.47 126 | 41.51 208 | 74.52 184 | 69.97 190 | 69.83 199 | 63.17 195 |
|
| RPMNet | | | 67.02 187 | 63.99 202 | 70.56 153 | 71.55 188 | 67.63 183 | 75.81 178 | 69.44 79 | 59.93 207 | 63.24 162 | 64.32 211 | 47.51 226 | 59.68 154 | 70.37 200 | 69.64 191 | 83.64 167 | 68.49 183 |
|
| CostFormer | | | 66.81 188 | 66.94 194 | 66.67 176 | 72.79 184 | 68.25 182 | 79.55 161 | 55.57 184 | 65.52 185 | 62.77 164 | 76.98 162 | 60.09 209 | 56.73 167 | 65.69 211 | 62.35 200 | 72.59 189 | 69.71 179 |
|
| PatchT | | | 66.25 189 | 66.76 195 | 65.67 183 | 55.87 216 | 60.75 200 | 70.17 199 | 59.00 173 | 59.80 209 | 72.30 121 | 78.68 150 | 54.12 222 | 65.04 136 | 71.64 195 | 72.91 181 | 71.63 192 | 69.40 180 |
|
| dps | | | 65.14 190 | 64.50 200 | 65.89 182 | 71.41 189 | 65.81 191 | 71.44 196 | 61.59 155 | 58.56 210 | 61.43 169 | 75.45 176 | 52.70 224 | 58.06 163 | 69.57 202 | 64.65 198 | 71.39 194 | 64.77 188 |
|
| MDTV_nov1_ep13 | | | 64.96 191 | 64.77 199 | 65.18 186 | 67.08 203 | 62.46 198 | 75.80 179 | 51.10 202 | 62.27 202 | 69.74 136 | 74.12 181 | 62.65 204 | 55.64 174 | 68.19 205 | 62.16 204 | 71.70 190 | 61.57 201 |
|
| PatchmatchNet |  | | 64.81 192 | 63.74 203 | 66.06 181 | 69.21 194 | 58.62 203 | 73.16 192 | 60.01 169 | 65.92 182 | 66.19 157 | 76.27 167 | 59.09 210 | 60.45 153 | 66.58 208 | 61.47 206 | 67.33 205 | 58.24 208 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| tpm cat1 | | | 64.79 193 | 62.74 207 | 67.17 173 | 74.61 179 | 65.91 190 | 76.18 177 | 59.32 171 | 64.88 190 | 66.41 156 | 71.21 195 | 53.56 223 | 59.17 158 | 61.53 215 | 58.16 209 | 67.33 205 | 63.95 191 |
|
| MIMVSNet | | | 63.02 194 | 69.02 189 | 56.01 201 | 68.20 197 | 59.26 202 | 70.01 201 | 53.79 192 | 71.56 161 | 41.26 214 | 71.38 193 | 82.38 166 | 36.38 212 | 71.43 197 | 67.32 195 | 66.45 207 | 59.83 205 |
|
| TAMVS | | | 63.02 194 | 69.30 188 | 55.70 203 | 70.12 191 | 56.89 205 | 69.63 202 | 45.13 207 | 70.23 165 | 38.00 217 | 77.79 153 | 75.15 193 | 42.60 205 | 74.48 185 | 72.81 183 | 68.70 202 | 57.75 210 |
|
| tpm | | | 62.79 196 | 63.25 204 | 62.26 192 | 70.09 192 | 53.78 208 | 71.65 195 | 47.31 205 | 65.72 184 | 76.70 95 | 80.62 139 | 56.40 220 | 48.11 199 | 64.20 213 | 58.54 207 | 59.70 211 | 63.47 193 |
|
| pmmvs3 | | | 62.72 197 | 68.71 190 | 55.74 202 | 50.74 220 | 57.10 204 | 70.05 200 | 28.82 217 | 61.57 205 | 57.39 174 | 71.19 196 | 85.73 151 | 53.96 181 | 73.36 192 | 69.43 192 | 73.47 188 | 62.55 197 |
|
| pmnet_mix02 | | | 62.60 198 | 70.81 184 | 53.02 208 | 66.56 205 | 50.44 215 | 62.81 213 | 46.84 206 | 79.13 129 | 43.76 208 | 87.45 90 | 90.75 124 | 39.85 209 | 70.48 199 | 57.09 210 | 58.27 213 | 60.32 204 |
|
| new-patchmatchnet | | | 62.59 199 | 73.79 178 | 49.53 212 | 76.98 163 | 53.57 209 | 53.46 221 | 54.64 187 | 85.43 70 | 28.81 220 | 91.94 39 | 96.41 28 | 25.28 218 | 76.80 176 | 53.66 216 | 57.99 214 | 58.69 207 |
|
| test-LLR | | | 62.15 200 | 59.46 216 | 65.29 184 | 79.07 146 | 52.66 211 | 69.46 204 | 62.93 145 | 50.76 219 | 53.81 188 | 63.11 213 | 58.91 211 | 52.87 187 | 66.54 209 | 62.34 201 | 73.59 186 | 61.87 199 |
|
| PMMVS | | | 61.98 201 | 65.61 197 | 57.74 198 | 45.03 222 | 51.76 213 | 69.54 203 | 35.05 214 | 55.49 215 | 55.32 183 | 68.23 206 | 78.39 179 | 58.09 162 | 70.21 201 | 71.56 186 | 83.42 169 | 63.66 192 |
|
| test0.0.03 1 | | | 61.79 202 | 65.33 198 | 57.65 199 | 79.07 146 | 64.09 194 | 68.51 207 | 62.93 145 | 61.59 204 | 33.71 219 | 61.58 215 | 71.58 199 | 33.43 215 | 70.95 198 | 68.68 193 | 68.26 203 | 58.82 206 |
|
| MVS-HIRNet | | | 59.74 203 | 58.74 219 | 60.92 194 | 57.74 215 | 45.81 219 | 56.02 219 | 58.69 175 | 55.69 214 | 65.17 158 | 70.86 197 | 71.66 197 | 56.75 166 | 61.11 216 | 53.74 215 | 71.17 196 | 52.28 214 |
|
| tpmrst | | | 59.42 204 | 60.02 214 | 58.71 197 | 67.56 201 | 53.10 210 | 66.99 208 | 51.88 198 | 63.80 194 | 57.68 173 | 76.73 164 | 56.49 219 | 48.73 198 | 56.47 219 | 55.55 212 | 59.43 212 | 58.02 209 |
|
| test-mter | | | 59.39 205 | 61.59 209 | 56.82 200 | 53.21 217 | 54.82 207 | 73.12 193 | 26.57 219 | 53.19 217 | 56.31 176 | 64.71 210 | 60.47 207 | 56.36 169 | 68.69 204 | 64.27 199 | 75.38 185 | 65.00 187 |
|
| E-PMN | | | 59.07 206 | 62.79 206 | 54.72 204 | 67.01 204 | 47.81 218 | 60.44 216 | 43.40 208 | 72.95 151 | 44.63 207 | 70.42 201 | 73.17 196 | 58.73 160 | 80.97 160 | 51.98 217 | 54.14 217 | 42.26 219 |
|
| EMVS | | | 58.97 207 | 62.63 208 | 54.70 205 | 66.26 209 | 48.71 216 | 61.74 214 | 42.71 209 | 72.80 153 | 46.00 206 | 73.01 188 | 71.66 197 | 57.91 164 | 80.41 164 | 50.68 219 | 53.55 218 | 41.11 220 |
|
| TESTMET0.1,1 | | | 57.21 208 | 59.46 216 | 54.60 206 | 50.95 219 | 52.66 211 | 69.46 204 | 26.91 218 | 50.76 219 | 53.81 188 | 63.11 213 | 58.91 211 | 52.87 187 | 66.54 209 | 62.34 201 | 73.59 186 | 61.87 199 |
|
| ADS-MVSNet | | | 56.89 209 | 61.09 210 | 52.00 210 | 59.48 213 | 48.10 217 | 58.02 217 | 54.37 190 | 72.82 152 | 49.19 202 | 75.32 177 | 65.97 202 | 37.96 211 | 59.34 218 | 54.66 214 | 52.99 219 | 51.42 215 |
|
| EPMVS | | | 56.62 210 | 59.77 215 | 52.94 209 | 62.41 211 | 50.55 214 | 60.66 215 | 52.83 196 | 65.15 189 | 41.80 212 | 77.46 158 | 57.28 216 | 42.68 204 | 59.81 217 | 54.82 213 | 57.23 215 | 53.35 213 |
|
| FMVSNet5 | | | 56.37 211 | 60.14 213 | 51.98 211 | 60.83 212 | 59.58 201 | 66.85 209 | 42.37 210 | 52.68 218 | 41.33 213 | 47.09 220 | 54.68 221 | 35.28 213 | 73.88 188 | 70.77 187 | 65.24 208 | 62.26 198 |
|
| CHOSEN 280x420 | | | 56.32 212 | 58.85 218 | 53.36 207 | 51.63 218 | 39.91 222 | 69.12 206 | 38.61 213 | 56.29 212 | 36.79 218 | 48.84 219 | 62.59 205 | 63.39 145 | 73.61 191 | 67.66 194 | 60.61 209 | 63.07 196 |
|
| N_pmnet | | | 54.95 213 | 65.90 196 | 42.18 213 | 66.37 207 | 43.86 221 | 57.92 218 | 39.79 212 | 79.54 126 | 17.24 225 | 86.31 102 | 87.91 142 | 25.44 217 | 64.68 212 | 51.76 218 | 46.33 220 | 47.23 217 |
|
| new_pmnet | | | 52.29 214 | 63.16 205 | 39.61 215 | 58.89 214 | 44.70 220 | 48.78 223 | 34.73 215 | 65.88 183 | 17.85 224 | 73.42 186 | 80.00 172 | 23.06 219 | 67.00 207 | 62.28 203 | 54.36 216 | 48.81 216 |
|
| MVE |  | 41.12 19 | 51.80 215 | 60.92 211 | 41.16 214 | 35.21 224 | 34.14 224 | 48.45 224 | 41.39 211 | 69.11 172 | 19.53 223 | 63.33 212 | 73.80 194 | 63.56 142 | 67.19 206 | 61.51 205 | 38.85 221 | 57.38 211 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| PMMVS2 | | | 48.13 216 | 64.06 201 | 29.55 216 | 44.06 223 | 36.69 223 | 51.95 222 | 29.97 216 | 74.75 147 | 8.90 227 | 76.02 172 | 91.24 120 | 7.53 221 | 73.78 189 | 55.91 211 | 34.87 222 | 40.01 221 |
|
| GG-mvs-BLEND | | | 41.63 217 | 60.36 212 | 19.78 217 | 0.14 229 | 66.04 189 | 55.66 220 | 0.17 225 | 57.64 211 | 2.42 228 | 51.82 218 | 69.42 200 | 0.28 225 | 64.11 214 | 58.29 208 | 60.02 210 | 55.18 212 |
|
| test_method | | | 22.69 218 | 26.99 220 | 17.67 218 | 2.13 226 | 4.31 227 | 27.50 225 | 4.53 221 | 37.94 221 | 24.52 222 | 36.20 222 | 51.40 225 | 15.26 220 | 29.86 221 | 17.09 221 | 32.07 223 | 12.16 222 |
|
| test123 | | | 1.06 219 | 1.41 221 | 0.64 220 | 0.39 227 | 0.48 228 | 0.52 230 | 0.25 224 | 1.11 225 | 1.37 229 | 2.01 225 | 1.98 231 | 0.87 223 | 1.43 223 | 1.27 222 | 0.46 227 | 1.62 224 |
|
| testmvs | | | 0.93 220 | 1.37 222 | 0.41 221 | 0.36 228 | 0.36 229 | 0.62 229 | 0.39 223 | 1.48 224 | 0.18 230 | 2.41 224 | 1.31 232 | 0.41 224 | 1.25 224 | 1.08 223 | 0.48 226 | 1.68 223 |
|
| uanet_test | | | 0.00 221 | 0.00 223 | 0.00 222 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 226 | 0.00 226 | 0.00 231 | 0.00 226 | 0.00 233 | 0.00 226 | 0.00 225 | 0.00 224 | 0.00 228 | 0.00 225 |
|
| sosnet-low-res | | | 0.00 221 | 0.00 223 | 0.00 222 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 226 | 0.00 226 | 0.00 231 | 0.00 226 | 0.00 233 | 0.00 226 | 0.00 225 | 0.00 224 | 0.00 228 | 0.00 225 |
|
| sosnet | | | 0.00 221 | 0.00 223 | 0.00 222 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 226 | 0.00 226 | 0.00 231 | 0.00 226 | 0.00 233 | 0.00 226 | 0.00 225 | 0.00 224 | 0.00 228 | 0.00 225 |
|
| TPM-MVS | | | | | | 86.18 77 | 83.43 84 | 87.57 93 | | | 78.77 87 | 69.75 204 | 84.63 158 | 62.24 148 | | | 89.88 98 | 88.48 64 |
| Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025 |
| RE-MVS-def | | | | | | | | | | | 87.10 28 | | | | | | | |
|
| 9.14 | | | | | | | | | | | | | 89.43 131 | | | | | |
|
| SR-MVS | | | | | | 91.82 13 | | | 80.80 7 | | | | 95.53 50 | | | | | |
|
| Anonymous202405211 | | | | 84.68 105 | | 83.92 101 | 79.45 119 | 79.03 162 | 67.79 98 | 82.01 99 | | 88.77 80 | 92.58 98 | 55.93 171 | 86.68 109 | 84.26 110 | 88.92 113 | 78.98 142 |
|
| our_test_3 | | | | | | 73.27 181 | 70.91 172 | 83.26 128 | | | | | | | | | | |
|
| ambc | | | | 88.38 60 | | 91.62 17 | 87.97 52 | 84.48 123 | | 88.64 44 | 87.93 15 | 87.38 92 | 94.82 69 | 74.53 76 | 89.14 88 | 83.86 115 | 85.94 151 | 86.84 76 |
|
| MTAPA | | | | | | | | | | | 89.37 9 | | 94.85 67 | | | | | |
|
| MTMP | | | | | | | | | | | 90.54 5 | | 95.16 60 | | | | | |
|
| Patchmatch-RL test | | | | | | | | 4.13 228 | | | | | | | | | | |
|
| tmp_tt | | | | | 13.54 219 | 16.73 225 | 6.42 226 | 8.49 227 | 2.36 222 | 28.69 223 | 27.44 221 | 18.40 223 | 13.51 230 | 3.70 222 | 33.23 220 | 36.26 220 | 22.54 225 | |
|
| XVS | | | | | | 91.28 25 | 91.23 8 | 96.89 2 | | | 87.14 25 | | 94.53 72 | | | | 95.84 15 | |
|
| X-MVStestdata | | | | | | 91.28 25 | 91.23 8 | 96.89 2 | | | 87.14 25 | | 94.53 72 | | | | 95.84 15 | |
|
| mPP-MVS | | | | | | 93.05 3 | | | | | | | 95.77 44 | | | | | |
|
| NP-MVS | | | | | | | | | | 78.65 131 | | | | | | | | |
|
| Patchmtry | | | | | | | 56.88 206 | 64.47 210 | 67.74 99 | | 72.30 121 | | | | | | | |
|
| DeepMVS_CX |  | | | | | | 17.78 225 | 20.40 226 | 6.69 220 | 31.41 222 | 9.80 226 | 38.61 221 | 34.88 229 | 33.78 214 | 28.41 222 | | 23.59 224 | 45.77 218 |
|