| LTVRE_ROB | | 95.06 1 | 97.73 1 | 98.39 1 | 96.95 1 | 96.33 51 | 96.94 35 | 98.30 20 | 94.90 15 | 98.61 1 | 97.73 3 | 97.97 25 | 98.57 23 | 95.74 4 | 99.24 1 | 98.70 4 | 98.72 7 | 98.70 2 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| TDRefinement | | | 97.59 2 | 98.32 2 | 96.73 4 | 95.90 66 | 98.10 2 | 99.08 2 | 93.92 31 | 98.24 3 | 96.44 13 | 98.12 20 | 97.86 53 | 96.06 2 | 99.24 1 | 98.93 1 | 99.00 2 | 97.77 5 |
|
| WR-MVS | | | 97.53 3 | 98.20 3 | 96.76 3 | 96.93 29 | 98.17 1 | 98.60 10 | 96.67 7 | 96.39 15 | 94.46 32 | 99.14 1 | 98.92 10 | 94.57 15 | 99.06 3 | 98.80 2 | 99.32 1 | 96.92 26 |
|
| SixPastTwentyTwo | | | 97.36 4 | 97.73 10 | 96.92 2 | 97.36 13 | 96.15 55 | 98.29 21 | 94.43 23 | 96.50 13 | 96.96 7 | 98.74 5 | 98.74 18 | 96.04 3 | 99.03 5 | 97.74 16 | 98.44 23 | 97.22 14 |
|
| PS-CasMVS | | | 97.22 5 | 97.84 7 | 96.50 5 | 97.08 25 | 97.92 6 | 98.17 30 | 97.02 2 | 94.71 27 | 95.32 21 | 98.52 12 | 98.97 9 | 92.91 42 | 99.04 4 | 98.47 5 | 98.49 19 | 97.24 13 |
|
| PEN-MVS | | | 97.16 6 | 97.87 6 | 96.33 11 | 97.20 21 | 97.97 4 | 98.25 25 | 96.86 6 | 95.09 25 | 94.93 26 | 98.66 7 | 99.16 5 | 92.27 52 | 98.98 6 | 98.39 7 | 98.49 19 | 96.83 30 |
|
| DTE-MVSNet | | | 97.16 6 | 97.75 9 | 96.47 6 | 97.40 12 | 97.95 5 | 98.20 28 | 96.89 5 | 95.30 20 | 95.15 24 | 98.66 7 | 98.80 15 | 92.77 46 | 98.97 7 | 98.27 9 | 98.44 23 | 96.28 40 |
|
| COLMAP_ROB |  | 93.74 2 | 97.09 8 | 97.98 4 | 96.05 17 | 95.97 63 | 97.78 9 | 98.56 11 | 91.72 86 | 97.53 7 | 96.01 15 | 98.14 19 | 98.76 17 | 95.28 5 | 98.76 11 | 98.23 10 | 98.77 5 | 96.67 34 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| WR-MVS_H | | | 97.06 9 | 97.78 8 | 96.23 13 | 96.74 37 | 98.04 3 | 98.25 25 | 97.32 1 | 94.40 33 | 93.71 52 | 98.55 10 | 98.89 11 | 92.97 39 | 98.91 9 | 98.45 6 | 98.38 28 | 97.19 15 |
|
| CP-MVSNet | | | 96.97 10 | 97.42 14 | 96.44 7 | 97.06 26 | 97.82 8 | 98.12 33 | 96.98 3 | 93.50 47 | 95.21 23 | 97.98 24 | 98.44 26 | 92.83 45 | 98.93 8 | 98.37 8 | 98.46 22 | 96.91 27 |
|
| DVP-MVS++ | | | 96.63 11 | 97.92 5 | 95.12 40 | 97.77 6 | 97.52 15 | 98.29 21 | 93.83 34 | 96.72 9 | 92.52 75 | 98.10 21 | 99.07 8 | 90.87 78 | 97.83 31 | 97.44 28 | 97.44 59 | 98.76 1 |
|
| ACMH | | 90.17 8 | 96.61 12 | 97.69 12 | 95.35 30 | 95.29 81 | 96.94 35 | 98.43 14 | 92.05 74 | 98.04 4 | 95.38 19 | 98.07 22 | 99.25 4 | 93.23 33 | 98.35 16 | 97.16 39 | 97.72 51 | 96.00 45 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| UA-Net | | | 96.56 13 | 96.73 24 | 96.36 9 | 98.99 1 | 97.90 7 | 97.79 43 | 95.64 10 | 92.78 60 | 92.54 74 | 96.23 72 | 95.02 129 | 94.31 18 | 98.43 15 | 98.12 11 | 98.89 3 | 98.58 3 |
|
| ACMMPR | | | 96.54 14 | 96.71 25 | 96.35 10 | 97.55 9 | 97.63 11 | 98.62 9 | 94.54 19 | 94.45 30 | 94.19 39 | 95.04 96 | 97.35 67 | 94.92 10 | 97.85 28 | 97.50 25 | 98.26 29 | 97.17 16 |
|
| v7n | | | 96.49 15 | 97.20 18 | 95.65 22 | 95.57 76 | 96.04 57 | 97.93 38 | 92.49 58 | 96.40 14 | 97.13 6 | 98.99 2 | 99.41 3 | 93.79 25 | 97.84 30 | 96.15 65 | 97.00 81 | 95.60 53 |
|
| DeepC-MVS | | 92.47 4 | 96.44 16 | 96.75 23 | 96.08 16 | 97.57 7 | 97.19 31 | 97.96 37 | 94.28 24 | 95.29 21 | 94.92 27 | 98.31 17 | 96.92 78 | 93.69 27 | 96.81 67 | 96.50 56 | 98.06 40 | 96.27 41 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| ACMM | | 90.06 9 | 96.31 17 | 96.42 32 | 96.19 14 | 97.21 20 | 97.16 33 | 98.71 5 | 93.79 37 | 94.35 34 | 93.81 46 | 92.80 131 | 98.23 34 | 95.11 6 | 98.07 20 | 97.45 27 | 98.51 18 | 96.86 29 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| ACMH+ | | 89.90 10 | 96.27 18 | 97.52 13 | 94.81 47 | 95.19 84 | 97.18 32 | 97.97 36 | 92.52 56 | 96.72 9 | 90.50 122 | 97.31 46 | 99.11 6 | 94.10 19 | 98.67 12 | 97.90 14 | 98.56 15 | 95.79 49 |
|
| APDe-MVS |  | | 96.23 19 | 97.22 17 | 95.08 41 | 96.66 41 | 97.56 14 | 98.63 8 | 93.69 41 | 94.62 28 | 89.80 130 | 97.73 33 | 98.13 38 | 93.84 24 | 97.79 33 | 97.63 18 | 97.87 47 | 97.08 21 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| CP-MVS | | | 96.21 20 | 96.16 43 | 96.27 12 | 97.56 8 | 97.13 34 | 98.43 14 | 94.70 18 | 92.62 63 | 94.13 41 | 92.71 132 | 98.03 44 | 94.54 16 | 98.00 24 | 97.60 20 | 98.23 31 | 97.05 22 |
|
| HFP-MVS | | | 96.18 21 | 96.53 29 | 95.77 20 | 97.34 16 | 97.26 28 | 98.16 31 | 94.54 19 | 94.45 30 | 92.52 75 | 95.05 94 | 96.95 77 | 93.89 22 | 97.28 49 | 97.46 26 | 98.19 33 | 97.25 11 |
|
| UniMVSNet_ETH3D | | | 96.15 22 | 97.71 11 | 94.33 55 | 97.31 17 | 96.71 40 | 95.06 107 | 96.91 4 | 97.86 5 | 90.42 123 | 98.55 10 | 99.60 1 | 88.01 117 | 98.51 13 | 97.81 15 | 98.26 29 | 94.95 65 |
|
| MP-MVS |  | | 96.13 23 | 95.93 47 | 96.37 8 | 98.19 3 | 97.31 27 | 98.49 13 | 94.53 22 | 91.39 95 | 94.38 35 | 94.32 109 | 96.43 91 | 94.59 14 | 97.75 35 | 97.44 28 | 98.04 41 | 96.88 28 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| ACMMP |  | | 96.12 24 | 96.27 39 | 95.93 18 | 97.20 21 | 97.60 12 | 98.64 7 | 93.74 38 | 92.47 67 | 93.13 66 | 93.23 124 | 98.06 41 | 94.51 17 | 97.99 25 | 97.57 22 | 98.39 27 | 96.99 23 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| DVP-MVS |  | | 96.10 25 | 97.23 16 | 94.79 49 | 96.28 54 | 97.49 16 | 97.90 39 | 93.60 43 | 95.47 18 | 89.57 136 | 97.32 45 | 97.72 56 | 93.89 22 | 97.74 36 | 97.53 23 | 97.51 56 | 97.34 9 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| LGP-MVS_train | | | 96.10 25 | 96.29 36 | 95.87 19 | 96.72 38 | 97.35 26 | 98.43 14 | 93.83 34 | 90.81 109 | 92.67 73 | 95.05 94 | 98.86 13 | 95.01 7 | 98.11 18 | 97.37 35 | 98.52 17 | 96.50 36 |
|
| CSCG | | | 96.07 27 | 97.15 19 | 94.81 47 | 96.06 61 | 97.58 13 | 96.52 73 | 90.98 97 | 96.51 12 | 93.60 54 | 97.13 53 | 98.55 24 | 93.01 37 | 97.17 53 | 95.36 80 | 98.68 9 | 97.78 4 |
|
| DPE-MVS |  | | 96.00 28 | 96.80 22 | 95.06 42 | 95.87 69 | 97.47 21 | 98.25 25 | 93.73 39 | 92.38 69 | 91.57 103 | 97.55 40 | 97.97 46 | 92.98 38 | 97.49 47 | 97.61 19 | 97.96 45 | 97.16 17 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| SMA-MVS |  | | 95.99 29 | 96.48 30 | 95.41 29 | 97.43 11 | 97.36 24 | 97.55 48 | 93.70 40 | 94.05 41 | 93.79 47 | 97.02 56 | 94.53 134 | 92.28 51 | 97.53 45 | 97.19 37 | 97.73 50 | 97.67 7 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| TSAR-MVS + MP. | | | 95.99 29 | 96.57 28 | 95.31 32 | 96.87 30 | 96.50 47 | 98.71 5 | 91.58 87 | 93.25 52 | 92.71 70 | 96.86 58 | 96.57 89 | 93.92 20 | 98.09 19 | 97.91 13 | 98.08 38 | 96.81 31 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| OPM-MVS | | | 95.96 31 | 96.59 27 | 95.23 35 | 96.67 40 | 96.52 46 | 97.86 41 | 93.28 47 | 95.27 23 | 93.46 56 | 96.26 69 | 98.85 14 | 92.89 43 | 97.09 54 | 96.37 60 | 97.22 73 | 95.78 50 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| SteuartSystems-ACMMP | | | 95.96 31 | 96.13 44 | 95.76 21 | 97.06 26 | 97.36 24 | 98.40 18 | 94.24 26 | 91.49 89 | 91.91 93 | 94.50 105 | 96.89 79 | 94.99 8 | 98.01 23 | 97.44 28 | 97.97 44 | 97.25 11 |
| Skip Steuart: Steuart Systems R&D Blog. |
| ACMP | | 89.62 11 | 95.96 31 | 96.28 37 | 95.59 23 | 96.58 43 | 97.23 30 | 98.26 24 | 93.22 48 | 92.33 72 | 92.31 83 | 94.29 110 | 98.73 19 | 94.68 12 | 98.04 21 | 97.14 40 | 98.47 21 | 96.17 43 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| PGM-MVS | | | 95.90 34 | 95.72 51 | 96.10 15 | 97.53 10 | 97.45 22 | 98.55 12 | 94.12 28 | 90.25 112 | 93.71 52 | 93.20 125 | 97.18 71 | 94.63 13 | 97.68 39 | 97.34 36 | 98.08 38 | 96.97 24 |
|
| PMVS |  | 87.16 16 | 95.88 35 | 96.47 31 | 95.19 37 | 97.00 28 | 96.02 58 | 96.70 64 | 91.57 88 | 94.43 32 | 95.33 20 | 97.16 52 | 95.37 117 | 92.39 48 | 98.89 10 | 98.72 3 | 98.17 35 | 94.71 71 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| ACMMP_NAP | | | 95.86 36 | 96.18 40 | 95.47 28 | 97.11 24 | 97.26 28 | 98.37 19 | 93.48 45 | 93.49 48 | 93.99 44 | 95.61 80 | 94.11 138 | 92.49 47 | 97.87 27 | 97.44 28 | 97.40 62 | 97.52 8 |
|
| Gipuma |  | | 95.86 36 | 96.17 41 | 95.50 27 | 95.92 65 | 94.59 104 | 94.77 116 | 92.50 57 | 97.82 6 | 97.90 2 | 95.56 83 | 97.88 51 | 94.71 11 | 98.02 22 | 94.81 94 | 97.23 72 | 94.48 78 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| LS3D | | | 95.83 38 | 96.35 34 | 95.22 36 | 96.47 47 | 97.49 16 | 97.99 34 | 92.35 61 | 94.92 26 | 94.58 30 | 94.88 100 | 95.11 127 | 91.52 63 | 98.48 14 | 98.05 12 | 98.42 25 | 95.49 54 |
|
| SD-MVS | | | 95.77 39 | 96.17 41 | 95.30 33 | 96.72 38 | 96.19 54 | 97.01 56 | 93.04 49 | 94.03 42 | 92.71 70 | 96.45 67 | 96.78 86 | 93.91 21 | 96.79 68 | 95.89 71 | 98.42 25 | 97.09 20 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| SED-MVS | | | 95.73 40 | 96.98 20 | 94.28 56 | 96.08 59 | 97.39 23 | 98.18 29 | 93.80 36 | 94.20 36 | 89.61 135 | 97.29 47 | 97.49 64 | 90.69 82 | 97.74 36 | 97.41 32 | 97.32 67 | 97.34 9 |
|
| TranMVSNet+NR-MVSNet | | | 95.72 41 | 96.42 32 | 94.91 46 | 96.21 55 | 96.77 39 | 96.90 61 | 94.99 13 | 92.62 63 | 91.92 92 | 98.51 13 | 98.63 21 | 90.82 79 | 97.27 50 | 96.83 45 | 98.63 12 | 94.31 79 |
|
| DU-MVS | | | 95.51 42 | 95.68 52 | 95.33 31 | 96.45 48 | 96.44 49 | 96.61 70 | 95.32 11 | 89.97 117 | 93.78 48 | 97.46 42 | 98.07 40 | 91.19 70 | 97.03 57 | 96.53 53 | 98.61 13 | 94.22 80 |
|
| UniMVSNet (Re) | | | 95.46 43 | 95.86 49 | 95.00 45 | 96.09 57 | 96.60 41 | 96.68 68 | 94.99 13 | 90.36 111 | 92.13 86 | 97.64 37 | 98.13 38 | 91.38 64 | 96.90 62 | 96.74 47 | 98.73 6 | 94.63 74 |
|
| RPSCF | | | 95.46 43 | 96.95 21 | 93.73 79 | 95.72 73 | 95.94 62 | 95.58 98 | 88.08 144 | 95.31 19 | 91.34 106 | 96.26 69 | 98.04 43 | 93.63 28 | 98.28 17 | 97.67 17 | 98.01 42 | 97.13 18 |
|
| anonymousdsp | | | 95.45 45 | 96.70 26 | 93.99 67 | 88.43 202 | 92.05 151 | 99.18 1 | 85.42 179 | 94.29 35 | 96.10 14 | 98.63 9 | 99.08 7 | 96.11 1 | 97.77 34 | 97.41 32 | 98.70 8 | 97.69 6 |
|
| APD-MVS |  | | 95.38 46 | 95.68 52 | 95.03 43 | 97.30 18 | 96.90 37 | 97.83 42 | 93.92 31 | 89.40 124 | 90.35 124 | 95.41 87 | 97.69 58 | 92.97 39 | 97.24 52 | 97.17 38 | 97.83 48 | 95.96 46 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| UniMVSNet_NR-MVSNet | | | 95.34 47 | 95.51 56 | 95.14 39 | 95.80 71 | 96.55 42 | 96.61 70 | 94.79 16 | 90.04 116 | 93.78 48 | 97.51 41 | 97.25 68 | 91.19 70 | 96.68 70 | 96.31 62 | 98.65 11 | 94.22 80 |
|
| X-MVS | | | 95.33 48 | 95.13 64 | 95.57 25 | 97.35 14 | 97.48 18 | 98.43 14 | 94.28 24 | 92.30 73 | 93.28 59 | 86.89 187 | 96.82 82 | 91.87 57 | 97.85 28 | 97.59 21 | 98.19 33 | 96.95 25 |
|
| MSP-MVS | | | 95.32 49 | 96.28 37 | 94.19 59 | 96.87 30 | 97.77 10 | 98.27 23 | 93.88 33 | 94.15 40 | 89.63 134 | 95.36 88 | 98.37 29 | 90.73 80 | 94.37 116 | 97.53 23 | 95.77 120 | 96.40 37 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| 3Dnovator+ | | 92.82 3 | 95.22 50 | 95.16 62 | 95.29 34 | 96.17 56 | 96.55 42 | 97.64 45 | 94.02 30 | 94.16 39 | 94.29 37 | 92.09 138 | 93.71 143 | 91.90 55 | 96.68 70 | 96.51 54 | 97.70 53 | 96.40 37 |
|
| HPM-MVS++ |  | | 95.21 51 | 94.89 67 | 95.59 23 | 97.79 5 | 95.39 80 | 97.68 44 | 94.05 29 | 91.91 81 | 94.35 36 | 93.38 122 | 95.07 128 | 92.94 41 | 96.01 82 | 95.88 72 | 96.73 84 | 96.61 35 |
|
| TSAR-MVS + ACMM | | | 95.17 52 | 95.95 45 | 94.26 57 | 96.07 60 | 96.46 48 | 95.67 96 | 94.21 27 | 93.84 44 | 90.99 114 | 97.18 50 | 95.24 125 | 93.55 29 | 96.60 73 | 95.61 78 | 95.06 138 | 96.69 33 |
|
| CPTT-MVS | | | 95.00 53 | 94.52 76 | 95.57 25 | 96.84 34 | 96.78 38 | 97.88 40 | 93.67 42 | 92.20 74 | 92.35 82 | 85.87 194 | 97.56 63 | 94.98 9 | 96.96 60 | 96.07 68 | 97.70 53 | 96.18 42 |
|
| SF-MVS | | | 94.88 54 | 95.87 48 | 93.73 79 | 95.30 79 | 95.93 63 | 94.80 115 | 91.76 84 | 93.11 56 | 91.93 91 | 95.83 77 | 97.07 74 | 91.11 73 | 96.62 72 | 96.44 58 | 97.46 57 | 96.13 44 |
|
| Baseline_NR-MVSNet | | | 94.85 55 | 95.35 60 | 94.26 57 | 96.45 48 | 93.86 120 | 96.70 64 | 94.54 19 | 90.07 115 | 90.17 128 | 98.77 4 | 97.89 48 | 90.64 85 | 97.03 57 | 96.16 64 | 97.04 80 | 93.67 93 |
|
| EG-PatchMatch MVS | | | 94.81 56 | 95.53 55 | 93.97 68 | 95.89 68 | 94.62 102 | 95.55 100 | 88.18 142 | 92.77 61 | 94.88 28 | 97.04 55 | 98.61 22 | 93.31 30 | 96.89 63 | 95.19 84 | 95.99 113 | 93.56 96 |
|
| CS-MVS | | | 94.76 57 | 94.41 80 | 95.18 38 | 94.95 90 | 95.99 60 | 97.28 49 | 91.99 76 | 85.51 157 | 94.55 31 | 93.07 127 | 97.69 58 | 93.77 26 | 97.08 55 | 96.79 46 | 98.53 16 | 94.72 69 |
|
| OMC-MVS | | | 94.74 58 | 95.46 58 | 93.91 71 | 94.62 102 | 96.26 52 | 96.64 69 | 89.36 130 | 94.20 36 | 94.15 40 | 94.02 115 | 97.73 55 | 91.34 66 | 96.15 80 | 95.04 88 | 97.37 64 | 94.80 67 |
|
| DeepC-MVS_fast | | 91.38 6 | 94.73 59 | 94.98 65 | 94.44 51 | 96.83 36 | 96.12 56 | 96.69 66 | 92.17 67 | 92.98 58 | 93.72 50 | 94.14 111 | 95.45 115 | 90.49 91 | 95.73 88 | 95.30 81 | 96.71 85 | 95.13 63 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| PHI-MVS | | | 94.65 60 | 94.84 69 | 94.44 51 | 94.95 90 | 96.55 42 | 96.46 76 | 91.10 95 | 88.96 127 | 96.00 16 | 94.55 104 | 95.32 120 | 90.67 83 | 96.97 59 | 96.69 51 | 97.44 59 | 94.84 66 |
|
| CS-MVS-test | | | 94.63 61 | 94.30 85 | 95.02 44 | 94.63 100 | 95.71 70 | 98.15 32 | 92.13 69 | 85.62 156 | 94.22 38 | 93.63 120 | 97.63 62 | 93.08 36 | 97.50 46 | 96.51 54 | 97.88 46 | 93.50 97 |
|
| pmmvs6 | | | 94.58 62 | 97.30 15 | 91.40 122 | 94.84 94 | 94.61 103 | 93.40 147 | 92.43 60 | 98.51 2 | 85.61 163 | 98.73 6 | 99.53 2 | 84.40 142 | 97.88 26 | 97.03 41 | 97.72 51 | 94.79 68 |
|
| DeepPCF-MVS | | 90.68 7 | 94.56 63 | 94.92 66 | 94.15 60 | 94.11 115 | 95.71 70 | 97.03 55 | 90.65 102 | 93.39 51 | 94.08 42 | 95.29 91 | 94.15 137 | 93.21 34 | 95.22 100 | 94.92 92 | 95.82 119 | 95.75 51 |
|
| NR-MVSNet | | | 94.55 64 | 95.66 54 | 93.25 91 | 94.26 111 | 96.44 49 | 96.69 66 | 95.32 11 | 89.97 117 | 91.79 98 | 97.46 42 | 98.39 28 | 82.85 152 | 96.87 65 | 96.48 57 | 98.57 14 | 93.98 86 |
|
| Vis-MVSNet |  | | 94.39 65 | 95.85 50 | 92.68 99 | 90.91 185 | 95.88 65 | 97.62 47 | 91.41 89 | 91.95 80 | 89.20 139 | 97.29 47 | 96.26 94 | 90.60 90 | 96.95 61 | 95.91 69 | 96.32 100 | 96.71 32 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| TSAR-MVS + GP. | | | 94.25 66 | 94.81 71 | 93.60 81 | 96.52 46 | 95.80 68 | 94.37 125 | 92.47 59 | 90.89 105 | 88.92 141 | 95.34 89 | 94.38 135 | 92.85 44 | 96.36 78 | 95.62 77 | 96.47 92 | 95.28 60 |
|
| CNVR-MVS | | | 94.24 67 | 94.47 77 | 93.96 69 | 96.56 44 | 95.67 72 | 96.43 77 | 91.95 78 | 92.08 77 | 91.28 108 | 90.51 148 | 95.35 118 | 91.20 69 | 96.34 79 | 95.50 79 | 96.34 98 | 95.88 48 |
|
| EC-MVSNet | | | 94.23 68 | 93.81 100 | 94.71 50 | 94.85 93 | 96.23 53 | 97.14 51 | 93.40 46 | 81.79 180 | 91.58 102 | 93.29 123 | 95.21 126 | 93.13 35 | 97.73 38 | 96.95 42 | 98.20 32 | 95.45 55 |
|
| v1192 | | | 93.98 69 | 93.94 94 | 94.01 65 | 93.91 123 | 94.63 101 | 97.00 57 | 89.75 120 | 91.01 103 | 96.50 10 | 97.93 26 | 98.26 33 | 91.74 59 | 92.06 148 | 92.05 138 | 95.18 133 | 91.66 135 |
|
| v10 | | | 93.96 70 | 94.12 91 | 93.77 78 | 93.37 136 | 95.45 76 | 96.83 63 | 91.13 94 | 89.70 121 | 95.02 25 | 97.88 29 | 98.23 34 | 91.27 67 | 92.39 143 | 92.18 134 | 94.99 140 | 93.00 106 |
|
| CDPH-MVS | | | 93.96 70 | 93.86 96 | 94.08 62 | 96.31 52 | 95.84 66 | 96.92 59 | 91.85 81 | 87.21 143 | 91.25 110 | 92.83 129 | 96.06 102 | 91.05 75 | 95.57 91 | 94.81 94 | 97.12 75 | 94.72 69 |
|
| MVS_0304 | | | 93.92 72 | 93.81 100 | 94.05 64 | 96.06 61 | 96.00 59 | 96.43 77 | 92.76 54 | 85.99 154 | 94.43 34 | 94.04 114 | 97.08 73 | 88.12 116 | 94.65 111 | 94.20 108 | 96.47 92 | 94.71 71 |
|
| MSLP-MVS++ | | | 93.91 73 | 94.30 85 | 93.45 83 | 95.51 77 | 95.83 67 | 93.12 153 | 91.93 80 | 91.45 92 | 91.40 105 | 87.42 182 | 96.12 101 | 93.27 31 | 96.57 74 | 96.40 59 | 95.49 123 | 96.29 39 |
|
| v1921920 | | | 93.90 74 | 93.82 98 | 94.00 66 | 93.74 128 | 94.31 108 | 97.12 52 | 89.33 131 | 91.13 100 | 96.77 9 | 97.90 27 | 98.06 41 | 91.95 54 | 91.93 152 | 91.54 147 | 95.10 136 | 91.85 129 |
|
| train_agg | | | 93.89 75 | 93.46 111 | 94.40 53 | 97.35 14 | 93.78 122 | 97.63 46 | 92.19 66 | 88.12 134 | 90.52 121 | 93.57 121 | 95.78 108 | 92.31 50 | 94.78 108 | 93.46 119 | 96.36 96 | 94.70 73 |
|
| v144192 | | | 93.89 75 | 93.85 97 | 93.94 70 | 93.50 133 | 94.33 107 | 97.12 52 | 89.49 125 | 90.89 105 | 96.49 11 | 97.78 31 | 98.27 32 | 91.89 56 | 92.17 147 | 91.70 144 | 95.19 132 | 91.78 132 |
|
| v1240 | | | 93.89 75 | 93.72 102 | 94.09 61 | 93.98 120 | 94.31 108 | 97.12 52 | 89.37 129 | 90.74 110 | 96.92 8 | 98.05 23 | 97.89 48 | 92.15 53 | 91.53 158 | 91.60 145 | 94.99 140 | 91.93 127 |
|
| NCCC | | | 93.87 78 | 93.42 112 | 94.40 53 | 96.84 34 | 95.42 77 | 96.47 75 | 92.62 55 | 92.36 71 | 92.05 88 | 83.83 202 | 95.55 111 | 91.84 58 | 95.89 84 | 95.23 83 | 96.56 89 | 95.63 52 |
|
| v1144 | | | 93.83 79 | 93.87 95 | 93.78 77 | 93.72 129 | 94.57 105 | 96.85 62 | 89.98 114 | 91.31 97 | 95.90 17 | 97.89 28 | 98.40 27 | 91.13 72 | 92.01 151 | 92.01 139 | 95.10 136 | 90.94 141 |
|
| MVS_111021_HR | | | 93.82 80 | 94.26 88 | 93.31 86 | 95.01 88 | 93.97 118 | 95.73 93 | 89.75 120 | 92.06 78 | 92.49 77 | 94.01 116 | 96.05 103 | 90.61 89 | 95.95 83 | 94.78 97 | 96.28 101 | 93.04 105 |
|
| thisisatest0515 | | | 93.79 81 | 94.41 80 | 93.06 96 | 94.14 112 | 92.50 143 | 95.56 99 | 88.55 138 | 91.61 85 | 92.45 78 | 96.84 59 | 95.71 109 | 90.62 87 | 94.58 112 | 95.07 86 | 97.05 78 | 94.58 75 |
|
| TAPA-MVS | | 88.94 13 | 93.78 82 | 94.31 84 | 93.18 93 | 94.14 112 | 95.99 60 | 95.74 92 | 86.98 161 | 93.43 50 | 93.88 45 | 90.16 155 | 96.88 80 | 91.05 75 | 94.33 117 | 93.95 110 | 97.28 70 | 95.40 56 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| GeoE | | | 93.72 83 | 93.62 106 | 93.84 72 | 94.75 97 | 94.90 95 | 97.24 50 | 91.81 83 | 86.97 147 | 92.74 69 | 93.83 118 | 97.24 70 | 90.46 92 | 95.10 104 | 94.09 109 | 96.08 110 | 93.18 103 |
|
| EPP-MVSNet | | | 93.63 84 | 93.95 93 | 93.26 89 | 95.15 85 | 96.54 45 | 96.18 85 | 91.97 77 | 91.74 82 | 85.76 161 | 94.95 98 | 84.27 189 | 91.60 62 | 97.61 43 | 97.38 34 | 98.87 4 | 95.18 62 |
|
| v8 | | | 93.60 85 | 93.82 98 | 93.34 84 | 93.13 143 | 95.06 88 | 96.39 79 | 90.75 100 | 89.90 119 | 94.03 43 | 97.70 35 | 98.21 36 | 91.08 74 | 92.36 144 | 91.47 148 | 94.63 148 | 92.07 123 |
|
| MCST-MVS | | | 93.60 85 | 93.40 114 | 93.83 73 | 95.30 79 | 95.40 79 | 96.49 74 | 90.87 98 | 90.08 114 | 91.72 99 | 90.28 153 | 95.99 104 | 91.69 60 | 93.94 126 | 92.99 125 | 96.93 82 | 95.13 63 |
|
| PVSNet_Blended_VisFu | | | 93.60 85 | 93.41 113 | 93.83 73 | 96.31 52 | 95.65 73 | 95.71 94 | 90.58 104 | 88.08 136 | 93.17 64 | 95.29 91 | 92.20 152 | 90.72 81 | 94.69 110 | 93.41 121 | 96.51 91 | 94.54 76 |
|
| TransMVSNet (Re) | | | 93.55 88 | 96.32 35 | 90.32 138 | 94.38 107 | 94.05 113 | 93.30 150 | 89.53 124 | 97.15 8 | 85.12 166 | 98.83 3 | 97.89 48 | 82.21 158 | 96.75 69 | 96.14 66 | 97.35 65 | 93.46 98 |
|
| DCV-MVSNet | | | 93.49 89 | 95.15 63 | 91.55 116 | 94.05 116 | 95.92 64 | 95.15 105 | 91.21 91 | 92.76 62 | 87.01 157 | 89.71 159 | 97.16 72 | 83.90 147 | 97.65 40 | 96.87 44 | 97.99 43 | 95.95 47 |
|
| v2v482 | | | 93.42 90 | 93.49 110 | 93.32 85 | 93.44 135 | 94.05 113 | 96.36 82 | 89.76 119 | 91.41 94 | 95.24 22 | 97.63 38 | 98.34 30 | 90.44 93 | 91.65 156 | 91.76 143 | 94.69 145 | 89.62 153 |
|
| canonicalmvs | | | 93.38 91 | 94.36 82 | 92.24 105 | 93.94 122 | 96.41 51 | 94.18 134 | 90.47 105 | 93.07 57 | 88.47 147 | 88.66 169 | 93.78 142 | 88.80 106 | 95.74 87 | 95.75 75 | 97.57 55 | 97.13 18 |
|
| 3Dnovator | | 91.81 5 | 93.36 92 | 94.27 87 | 92.29 104 | 92.99 148 | 95.03 89 | 95.76 91 | 87.79 147 | 93.82 45 | 92.38 81 | 92.19 137 | 93.37 147 | 88.14 115 | 95.26 99 | 94.85 93 | 96.69 86 | 95.40 56 |
|
| pm-mvs1 | | | 93.27 93 | 95.94 46 | 90.16 139 | 94.13 114 | 93.66 123 | 92.61 164 | 89.91 116 | 95.73 17 | 84.28 175 | 98.51 13 | 98.29 31 | 82.80 153 | 96.44 76 | 95.76 74 | 97.25 71 | 93.21 102 |
|
| casdiffmvs_mvg |  | | 93.27 93 | 94.83 70 | 91.45 120 | 93.59 131 | 94.47 106 | 94.91 111 | 89.83 118 | 92.04 79 | 87.14 155 | 97.57 39 | 98.47 25 | 86.03 132 | 94.07 124 | 94.44 104 | 97.21 74 | 92.76 112 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| test1111 | | | 93.25 95 | 94.43 78 | 91.88 110 | 95.09 87 | 94.97 93 | 94.58 121 | 92.81 51 | 93.60 46 | 83.79 178 | 97.17 51 | 89.25 174 | 87.59 119 | 97.54 44 | 96.57 52 | 97.42 61 | 91.89 128 |
|
| Anonymous20231211 | | | 93.19 96 | 95.50 57 | 90.49 135 | 93.77 127 | 95.29 82 | 94.36 129 | 90.04 113 | 91.44 93 | 84.59 170 | 96.72 62 | 97.65 60 | 82.45 157 | 97.25 51 | 96.32 61 | 97.74 49 | 93.79 89 |
|
| TinyColmap | | | 93.17 97 | 93.33 115 | 93.00 97 | 93.84 125 | 92.76 137 | 94.75 118 | 88.90 134 | 93.97 43 | 97.48 4 | 95.28 93 | 95.29 121 | 88.37 111 | 95.31 98 | 91.58 146 | 94.65 147 | 89.10 157 |
|
| MVS_111021_LR | | | 93.15 98 | 93.65 104 | 92.56 100 | 93.89 124 | 92.28 146 | 95.09 106 | 86.92 163 | 91.26 99 | 92.99 68 | 94.46 107 | 96.22 97 | 90.64 85 | 95.11 103 | 93.45 120 | 95.85 117 | 92.74 113 |
|
| CNLPA | | | 93.14 99 | 93.67 103 | 92.53 101 | 94.62 102 | 94.73 98 | 95.00 110 | 86.57 168 | 92.85 59 | 92.43 79 | 90.94 143 | 94.67 131 | 90.35 94 | 95.41 93 | 93.70 116 | 96.23 104 | 93.37 100 |
|
| PLC |  | 87.27 15 | 93.08 100 | 92.92 119 | 93.26 89 | 94.67 98 | 95.03 89 | 94.38 124 | 90.10 108 | 91.69 83 | 92.14 85 | 87.24 183 | 93.91 140 | 91.61 61 | 95.05 105 | 94.73 100 | 96.67 87 | 92.80 109 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| CANet | | | 93.07 101 | 93.05 118 | 93.10 94 | 95.90 66 | 95.41 78 | 95.88 88 | 91.94 79 | 84.77 163 | 93.36 57 | 94.05 113 | 95.25 124 | 86.25 130 | 94.33 117 | 93.94 111 | 95.30 126 | 93.58 95 |
|
| TSAR-MVS + COLMAP | | | 93.06 102 | 93.65 104 | 92.36 102 | 94.62 102 | 94.28 110 | 95.36 104 | 89.46 127 | 92.18 75 | 91.64 100 | 95.55 84 | 95.27 123 | 88.60 109 | 93.24 132 | 92.50 130 | 94.46 151 | 92.55 119 |
|
| ECVR-MVS |  | | 93.05 103 | 94.25 89 | 91.65 113 | 94.76 95 | 95.23 83 | 94.26 132 | 92.80 52 | 92.49 65 | 83.90 176 | 96.75 61 | 89.99 165 | 86.84 124 | 97.62 41 | 96.72 48 | 97.32 67 | 90.92 142 |
|
| Effi-MVS+ | | | 92.93 104 | 92.16 130 | 93.83 73 | 94.29 109 | 93.53 130 | 95.04 108 | 92.98 50 | 85.27 160 | 94.46 32 | 90.24 154 | 95.34 119 | 89.99 97 | 93.72 127 | 94.23 107 | 96.22 105 | 92.79 110 |
|
| Fast-Effi-MVS+ | | | 92.93 104 | 92.64 123 | 93.27 88 | 93.81 126 | 93.88 119 | 95.90 87 | 90.61 103 | 83.98 169 | 92.71 70 | 92.81 130 | 96.22 97 | 90.67 83 | 94.90 107 | 93.92 112 | 95.92 115 | 92.77 111 |
|
| HQP-MVS | | | 92.87 106 | 92.49 124 | 93.31 86 | 95.75 72 | 95.01 92 | 95.64 97 | 91.06 96 | 88.54 131 | 91.62 101 | 88.16 174 | 96.25 95 | 89.47 101 | 92.26 146 | 91.81 141 | 96.34 98 | 95.40 56 |
|
| FMVSNet1 | | | 92.86 107 | 95.26 61 | 90.06 141 | 92.40 162 | 95.16 85 | 94.37 125 | 92.22 63 | 93.18 55 | 82.16 188 | 96.76 60 | 97.48 65 | 81.85 162 | 95.32 95 | 94.98 89 | 97.34 66 | 93.93 87 |
|
| CLD-MVS | | | 92.81 108 | 94.32 83 | 91.05 126 | 95.39 78 | 95.31 81 | 95.82 90 | 81.44 202 | 89.40 124 | 91.94 90 | 95.86 75 | 97.36 66 | 85.83 133 | 95.35 94 | 94.59 102 | 95.85 117 | 92.34 120 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| IS_MVSNet | | | 92.76 109 | 93.25 116 | 92.19 106 | 94.91 92 | 95.56 74 | 95.86 89 | 92.12 70 | 88.10 135 | 82.71 183 | 93.15 126 | 88.30 177 | 88.86 105 | 97.29 48 | 96.95 42 | 98.66 10 | 93.38 99 |
|
| FC-MVSNet-train | | | 92.75 110 | 95.40 59 | 89.66 149 | 95.21 83 | 94.82 96 | 97.00 57 | 89.40 128 | 91.13 100 | 81.71 189 | 97.72 34 | 96.43 91 | 77.57 188 | 96.89 63 | 96.72 48 | 97.05 78 | 94.09 83 |
|
| V42 | | | 92.67 111 | 93.50 109 | 91.71 112 | 91.41 176 | 92.96 135 | 95.71 94 | 85.00 180 | 89.67 122 | 93.22 62 | 97.67 36 | 98.01 45 | 91.02 77 | 92.65 139 | 92.12 136 | 93.86 159 | 91.42 136 |
|
| PM-MVS | | | 92.65 112 | 93.20 117 | 92.00 108 | 92.11 170 | 90.16 172 | 95.99 86 | 84.81 184 | 91.31 97 | 92.41 80 | 95.87 74 | 96.64 88 | 92.35 49 | 93.65 129 | 92.91 126 | 94.34 154 | 91.85 129 |
|
| QAPM | | | 92.57 113 | 93.51 108 | 91.47 119 | 92.91 150 | 94.82 96 | 93.01 155 | 87.51 151 | 91.49 89 | 91.21 111 | 92.24 135 | 91.70 155 | 88.74 107 | 94.54 114 | 94.39 106 | 95.41 124 | 95.37 59 |
|
| MIMVSNet1 | | | 92.52 114 | 94.88 68 | 89.77 145 | 96.09 57 | 91.99 152 | 96.92 59 | 89.68 122 | 95.92 16 | 84.55 171 | 96.64 64 | 98.21 36 | 78.44 181 | 96.08 81 | 95.10 85 | 92.91 174 | 90.22 150 |
|
| tfpnnormal | | | 92.45 115 | 94.77 72 | 89.74 146 | 93.95 121 | 93.44 133 | 93.25 151 | 88.49 140 | 95.27 23 | 83.20 181 | 96.51 65 | 96.23 96 | 83.17 151 | 95.47 92 | 94.52 103 | 96.38 95 | 91.97 126 |
|
| PCF-MVS | | 87.46 14 | 92.44 116 | 91.80 132 | 93.19 92 | 94.66 99 | 95.80 68 | 96.37 80 | 90.19 107 | 87.57 140 | 92.23 84 | 89.26 164 | 93.97 139 | 89.24 102 | 91.32 160 | 90.82 156 | 96.46 94 | 93.86 88 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| casdiffmvs |  | | 92.42 117 | 93.99 92 | 90.60 133 | 93.25 139 | 93.82 121 | 94.28 131 | 88.73 136 | 91.53 87 | 84.53 173 | 97.74 32 | 98.64 20 | 86.60 127 | 93.21 134 | 91.20 151 | 96.21 106 | 91.76 134 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| AdaColmap |  | | 92.41 118 | 91.49 136 | 93.48 82 | 95.96 64 | 95.02 91 | 95.37 103 | 91.73 85 | 87.97 138 | 91.28 108 | 82.82 206 | 91.04 159 | 90.62 87 | 95.82 86 | 95.07 86 | 95.95 114 | 92.67 114 |
|
| v148 | | | 92.38 119 | 92.78 121 | 91.91 109 | 92.86 151 | 92.13 149 | 94.84 113 | 87.03 160 | 91.47 91 | 93.07 67 | 96.92 57 | 98.89 11 | 90.10 96 | 92.05 149 | 89.69 164 | 93.56 162 | 88.27 166 |
|
| pmmvs-eth3d | | | 92.34 120 | 92.33 125 | 92.34 103 | 92.67 155 | 90.67 166 | 96.37 80 | 89.06 132 | 90.98 104 | 93.60 54 | 97.13 53 | 97.02 76 | 88.29 112 | 90.20 167 | 91.42 149 | 94.07 157 | 88.89 161 |
|
| DELS-MVS | | | 92.33 121 | 93.61 107 | 90.83 129 | 92.84 152 | 95.13 87 | 94.76 117 | 87.22 159 | 87.78 139 | 88.42 149 | 95.78 78 | 95.28 122 | 85.71 136 | 94.44 115 | 93.91 113 | 96.01 112 | 92.97 107 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| Effi-MVS+-dtu | | | 92.32 122 | 91.66 134 | 93.09 95 | 95.13 86 | 94.73 98 | 94.57 122 | 92.14 68 | 81.74 181 | 90.33 125 | 88.13 175 | 95.91 105 | 89.24 102 | 94.23 122 | 93.65 118 | 97.12 75 | 93.23 101 |
|
| UGNet | | | 92.31 123 | 94.70 73 | 89.53 151 | 90.99 184 | 95.53 75 | 96.19 84 | 92.10 72 | 91.35 96 | 85.76 161 | 95.31 90 | 95.48 114 | 76.84 193 | 95.22 100 | 94.79 96 | 95.32 125 | 95.19 61 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| USDC | | | 92.17 124 | 92.17 129 | 92.18 107 | 92.93 149 | 92.22 147 | 93.66 141 | 87.41 154 | 93.49 48 | 97.99 1 | 94.10 112 | 96.68 87 | 86.46 128 | 92.04 150 | 89.18 170 | 94.61 149 | 87.47 169 |
|
| ETV-MVS | | | 92.12 125 | 90.44 144 | 94.08 62 | 96.36 50 | 93.63 125 | 96.27 83 | 92.00 75 | 78.90 200 | 92.13 86 | 85.29 196 | 89.85 168 | 90.26 95 | 97.07 56 | 96.29 63 | 97.46 57 | 92.04 124 |
|
| IterMVS-LS | | | 92.10 126 | 92.33 125 | 91.82 111 | 93.18 140 | 93.66 123 | 92.80 162 | 92.27 62 | 90.82 107 | 90.59 120 | 97.19 49 | 90.97 160 | 87.76 118 | 89.60 174 | 90.94 155 | 94.34 154 | 93.16 104 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| MSDG | | | 92.09 127 | 92.84 120 | 91.22 125 | 92.55 157 | 92.97 134 | 93.42 146 | 85.43 178 | 90.24 113 | 91.83 95 | 94.70 101 | 94.59 132 | 88.48 110 | 94.91 106 | 93.31 123 | 95.59 122 | 89.15 156 |
|
| EIA-MVS | | | 91.95 128 | 90.36 146 | 93.81 76 | 96.54 45 | 94.65 100 | 95.38 102 | 90.40 106 | 78.01 205 | 93.72 50 | 86.70 190 | 91.95 154 | 89.93 98 | 95.67 90 | 94.72 101 | 96.89 83 | 90.79 144 |
|
| MAR-MVS | | | 91.86 129 | 91.14 140 | 92.71 98 | 94.29 109 | 94.24 111 | 94.91 111 | 91.82 82 | 81.66 182 | 93.32 58 | 84.51 199 | 93.42 146 | 86.86 123 | 95.16 102 | 94.44 104 | 95.05 139 | 94.53 77 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| EU-MVSNet | | | 91.63 130 | 92.73 122 | 90.35 137 | 88.36 203 | 87.89 183 | 96.53 72 | 81.51 201 | 92.45 68 | 91.82 96 | 96.44 68 | 97.05 75 | 93.26 32 | 94.10 123 | 88.94 175 | 90.61 181 | 92.24 121 |
|
| FC-MVSNet-test | | | 91.49 131 | 94.43 78 | 88.07 167 | 94.97 89 | 90.53 169 | 95.42 101 | 91.18 93 | 93.24 53 | 72.94 212 | 98.37 15 | 93.86 141 | 78.78 175 | 97.82 32 | 96.13 67 | 95.13 134 | 91.05 139 |
|
| FA-MVS(training) | | | 91.38 132 | 91.18 139 | 91.62 115 | 93.49 134 | 92.38 144 | 95.03 109 | 90.81 99 | 87.20 144 | 91.46 104 | 93.00 128 | 89.47 171 | 84.19 144 | 93.20 136 | 92.08 137 | 94.74 144 | 90.90 143 |
|
| OpenMVS |  | 89.22 12 | 91.09 133 | 91.42 137 | 90.71 131 | 92.79 154 | 93.61 127 | 92.74 163 | 85.47 177 | 86.10 153 | 90.73 115 | 85.71 195 | 93.07 150 | 86.69 126 | 94.07 124 | 93.34 122 | 95.86 116 | 94.02 85 |
|
| FPMVS | | | 90.81 134 | 91.60 135 | 89.88 144 | 92.52 158 | 88.18 179 | 93.31 149 | 83.62 190 | 91.59 86 | 88.45 148 | 88.96 167 | 89.73 170 | 86.96 121 | 96.42 77 | 95.69 76 | 94.43 152 | 90.65 145 |
|
| DI_MVS_plusplus_trai | | | 90.68 135 | 90.40 145 | 91.00 127 | 92.43 161 | 92.61 141 | 94.17 135 | 88.98 133 | 88.32 133 | 88.76 145 | 93.67 119 | 87.58 179 | 86.44 129 | 89.74 172 | 90.33 159 | 95.24 129 | 90.56 148 |
|
| Vis-MVSNet (Re-imp) | | | 90.68 135 | 92.18 128 | 88.92 156 | 94.63 100 | 92.75 138 | 92.91 158 | 91.20 92 | 89.21 126 | 75.01 208 | 93.96 117 | 89.07 175 | 82.72 155 | 95.88 85 | 95.30 81 | 97.08 77 | 89.08 158 |
|
| DPM-MVS | | | 90.67 137 | 89.86 150 | 91.63 114 | 95.29 81 | 94.16 112 | 94.52 123 | 89.63 123 | 89.59 123 | 89.67 133 | 81.95 208 | 88.64 176 | 85.75 135 | 90.46 165 | 90.43 158 | 94.91 142 | 93.77 90 |
|
| diffmvs |  | | 90.44 138 | 92.23 127 | 88.35 163 | 91.36 178 | 91.38 158 | 92.45 168 | 84.84 183 | 89.88 120 | 85.09 167 | 96.69 63 | 97.71 57 | 83.33 150 | 90.01 171 | 88.96 174 | 93.03 172 | 91.00 140 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| FMVSNet2 | | | 90.28 139 | 92.04 131 | 88.23 165 | 91.22 180 | 94.05 113 | 92.88 159 | 90.69 101 | 86.53 150 | 79.89 196 | 94.38 108 | 92.73 151 | 78.54 178 | 91.64 157 | 92.26 133 | 96.17 107 | 92.67 114 |
|
| IterMVS-SCA-FT | | | 90.24 140 | 89.37 156 | 91.26 124 | 92.50 159 | 92.11 150 | 91.69 179 | 87.48 152 | 87.05 146 | 91.82 96 | 95.76 79 | 87.25 180 | 91.36 65 | 89.02 179 | 85.53 190 | 92.68 175 | 88.90 160 |
|
| MVS_Test | | | 90.19 141 | 90.58 141 | 89.74 146 | 92.12 169 | 91.74 154 | 92.51 165 | 88.54 139 | 82.80 175 | 87.50 153 | 94.62 102 | 95.02 129 | 83.97 145 | 88.69 182 | 89.32 168 | 93.79 160 | 91.85 129 |
|
| EPNet | | | 90.17 142 | 89.07 158 | 91.45 120 | 97.25 19 | 90.62 168 | 94.84 113 | 93.54 44 | 80.96 184 | 91.85 94 | 86.98 186 | 85.88 185 | 77.79 185 | 92.30 145 | 92.58 129 | 93.41 164 | 94.20 82 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| PVSNet_BlendedMVS | | | 90.09 143 | 90.12 148 | 90.05 142 | 92.40 162 | 92.74 139 | 91.74 175 | 85.89 173 | 80.54 187 | 90.30 126 | 88.54 170 | 95.51 112 | 84.69 140 | 92.64 140 | 90.25 160 | 95.28 127 | 90.61 146 |
|
| PVSNet_Blended | | | 90.09 143 | 90.12 148 | 90.05 142 | 92.40 162 | 92.74 139 | 91.74 175 | 85.89 173 | 80.54 187 | 90.30 126 | 88.54 170 | 95.51 112 | 84.69 140 | 92.64 140 | 90.25 160 | 95.28 127 | 90.61 146 |
|
| pmmvs4 | | | 89.95 145 | 89.32 157 | 90.69 132 | 91.60 175 | 89.17 176 | 94.37 125 | 87.63 148 | 88.07 137 | 91.02 113 | 94.50 105 | 90.50 163 | 86.13 131 | 86.33 196 | 89.40 167 | 93.39 165 | 87.29 172 |
|
| MDA-MVSNet-bldmvs | | | 89.75 146 | 91.67 133 | 87.50 172 | 74.25 222 | 90.88 163 | 94.68 119 | 85.89 173 | 91.64 84 | 91.03 112 | 95.86 75 | 94.35 136 | 89.10 104 | 96.87 65 | 86.37 186 | 90.04 182 | 85.72 177 |
|
| WB-MVS | | | 89.70 147 | 94.13 90 | 84.54 192 | 88.16 205 | 92.57 142 | 88.90 199 | 88.32 141 | 96.67 11 | 73.61 211 | 98.29 18 | 98.80 15 | 80.60 168 | 95.73 88 | 92.18 134 | 87.66 194 | 84.64 180 |
|
| tttt0517 | | | 89.64 148 | 88.05 169 | 91.49 118 | 93.52 132 | 91.65 155 | 93.67 140 | 87.53 149 | 82.77 176 | 89.39 138 | 90.37 152 | 70.05 214 | 88.21 113 | 93.71 128 | 93.79 114 | 96.63 88 | 94.04 84 |
|
| PatchMatch-RL | | | 89.59 149 | 88.80 162 | 90.51 134 | 92.20 168 | 88.00 182 | 91.72 177 | 86.64 165 | 84.75 164 | 88.25 150 | 87.10 185 | 90.66 162 | 89.85 100 | 93.23 133 | 92.28 132 | 94.41 153 | 85.60 178 |
|
| Fast-Effi-MVS+-dtu | | | 89.57 150 | 88.42 166 | 90.92 128 | 93.35 137 | 91.57 156 | 93.01 155 | 95.71 9 | 78.94 199 | 87.65 152 | 84.68 198 | 93.14 149 | 82.00 160 | 90.84 163 | 91.01 154 | 93.78 161 | 88.77 162 |
|
| thisisatest0530 | | | 89.54 151 | 87.99 171 | 91.35 123 | 93.17 141 | 91.31 159 | 93.45 145 | 87.53 149 | 82.96 174 | 89.17 140 | 90.45 149 | 70.32 213 | 88.21 113 | 93.37 131 | 93.79 114 | 96.54 90 | 93.71 92 |
|
| test2506 | | | 89.51 152 | 87.77 174 | 91.55 116 | 94.76 95 | 95.23 83 | 94.26 132 | 92.80 52 | 92.49 65 | 83.31 180 | 89.97 157 | 50.93 228 | 86.84 124 | 97.62 41 | 96.72 48 | 97.32 67 | 91.42 136 |
|
| GBi-Net | | | 89.35 153 | 90.58 141 | 87.91 168 | 91.22 180 | 94.05 113 | 92.88 159 | 90.05 110 | 79.40 191 | 78.60 199 | 90.58 145 | 87.05 181 | 78.54 178 | 95.32 95 | 94.98 89 | 96.17 107 | 92.67 114 |
|
| test1 | | | 89.35 153 | 90.58 141 | 87.91 168 | 91.22 180 | 94.05 113 | 92.88 159 | 90.05 110 | 79.40 191 | 78.60 199 | 90.58 145 | 87.05 181 | 78.54 178 | 95.32 95 | 94.98 89 | 96.17 107 | 92.67 114 |
|
| thres600view7 | | | 89.14 155 | 88.83 160 | 89.51 152 | 93.71 130 | 93.55 128 | 93.93 138 | 88.02 145 | 87.30 142 | 82.40 184 | 81.18 209 | 80.63 200 | 82.69 156 | 94.27 119 | 95.90 70 | 96.27 102 | 88.94 159 |
|
| CVMVSNet | | | 88.97 156 | 89.73 152 | 88.10 166 | 87.33 210 | 85.22 193 | 94.68 119 | 78.68 203 | 88.94 128 | 86.98 158 | 95.55 84 | 85.71 186 | 89.87 99 | 91.19 161 | 89.69 164 | 91.05 179 | 91.78 132 |
|
| CANet_DTU | | | 88.95 157 | 89.51 155 | 88.29 164 | 93.12 144 | 91.22 161 | 93.61 142 | 83.47 193 | 80.07 190 | 90.71 119 | 89.19 165 | 93.68 144 | 76.27 197 | 91.44 159 | 91.17 153 | 92.59 176 | 89.83 152 |
|
| GA-MVS | | | 88.76 158 | 88.04 170 | 89.59 150 | 92.32 165 | 91.46 157 | 92.28 170 | 86.62 166 | 83.82 171 | 89.84 129 | 92.51 134 | 81.94 194 | 83.53 149 | 89.41 176 | 89.27 169 | 92.95 173 | 87.90 167 |
|
| pmmvs5 | | | 88.63 159 | 89.70 153 | 87.39 173 | 89.24 196 | 90.64 167 | 91.87 174 | 82.13 197 | 83.34 172 | 87.86 151 | 94.58 103 | 96.15 100 | 79.87 172 | 87.33 191 | 89.07 173 | 93.39 165 | 86.76 173 |
|
| thres400 | | | 88.54 160 | 88.15 168 | 88.98 154 | 93.17 141 | 92.84 136 | 93.56 143 | 86.93 162 | 86.45 151 | 82.37 185 | 79.96 211 | 81.46 197 | 81.83 163 | 93.21 134 | 94.76 98 | 96.04 111 | 88.39 164 |
|
| CDS-MVSNet | | | 88.41 161 | 89.79 151 | 86.79 178 | 94.55 105 | 90.82 164 | 92.50 166 | 89.85 117 | 83.26 173 | 80.52 193 | 91.05 141 | 89.93 167 | 69.11 208 | 93.17 137 | 92.71 128 | 94.21 156 | 87.63 168 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| gg-mvs-nofinetune | | | 88.32 162 | 88.81 161 | 87.75 170 | 93.07 145 | 89.37 175 | 89.06 198 | 95.94 8 | 95.29 21 | 87.15 154 | 97.38 44 | 76.38 203 | 68.05 211 | 91.04 162 | 89.10 172 | 93.24 168 | 83.10 187 |
|
| IterMVS | | | 88.32 162 | 88.25 167 | 88.41 162 | 90.83 186 | 91.24 160 | 93.07 154 | 81.69 199 | 86.77 148 | 88.55 146 | 95.61 80 | 86.91 184 | 87.01 120 | 87.38 190 | 83.77 192 | 89.29 184 | 86.06 176 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| thres200 | | | 88.29 164 | 87.88 172 | 88.76 158 | 92.50 159 | 93.55 128 | 92.47 167 | 88.02 145 | 84.80 162 | 81.44 190 | 79.28 213 | 82.20 193 | 81.83 163 | 94.27 119 | 93.67 117 | 96.27 102 | 87.40 170 |
|
| IB-MVS | | 86.01 17 | 88.24 165 | 87.63 175 | 88.94 155 | 92.03 171 | 91.77 153 | 92.40 169 | 85.58 176 | 78.24 202 | 84.85 168 | 71.99 218 | 93.45 145 | 83.96 146 | 93.48 130 | 92.33 131 | 94.84 143 | 92.15 122 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| MDTV_nov1_ep13_2view | | | 88.22 166 | 87.85 173 | 88.65 160 | 91.40 177 | 86.75 187 | 94.07 136 | 84.97 181 | 88.86 130 | 93.20 63 | 96.11 73 | 96.21 99 | 83.70 148 | 87.29 192 | 80.29 199 | 84.56 203 | 79.46 200 |
|
| test20.03 | | | 88.20 167 | 91.26 138 | 84.63 190 | 96.64 42 | 89.39 174 | 90.73 186 | 89.97 115 | 91.07 102 | 72.02 214 | 94.98 97 | 95.45 115 | 69.35 207 | 92.70 138 | 91.19 152 | 89.06 186 | 84.02 181 |
|
| HyFIR lowres test | | | 88.19 168 | 86.56 182 | 90.09 140 | 91.24 179 | 92.17 148 | 94.30 130 | 88.79 135 | 84.06 166 | 85.45 164 | 89.52 162 | 85.64 187 | 88.64 108 | 85.40 199 | 87.28 180 | 92.14 178 | 81.87 190 |
|
| ET-MVSNet_ETH3D | | | 88.06 169 | 85.75 187 | 90.74 130 | 92.82 153 | 90.68 165 | 93.77 139 | 88.59 137 | 81.22 183 | 89.78 131 | 89.15 166 | 66.79 221 | 84.29 143 | 91.72 155 | 91.34 150 | 95.22 130 | 89.36 155 |
|
| tfpn200view9 | | | 87.94 170 | 87.51 177 | 88.44 161 | 92.28 166 | 93.63 125 | 93.35 148 | 88.11 143 | 80.90 185 | 80.89 191 | 78.25 214 | 82.25 191 | 79.65 174 | 94.27 119 | 94.76 98 | 96.36 96 | 88.48 163 |
|
| FMVSNet3 | | | 87.90 171 | 88.63 164 | 87.04 174 | 89.78 194 | 93.46 132 | 91.62 180 | 90.05 110 | 79.40 191 | 78.60 199 | 90.58 145 | 87.05 181 | 77.07 192 | 88.03 187 | 89.86 163 | 95.12 135 | 92.04 124 |
|
| MS-PatchMatch | | | 87.72 172 | 88.62 165 | 86.66 179 | 90.81 187 | 88.18 179 | 90.92 183 | 82.25 196 | 85.86 155 | 80.40 194 | 90.14 156 | 89.29 173 | 84.93 137 | 89.39 177 | 89.12 171 | 90.67 180 | 88.34 165 |
|
| Anonymous20231206 | | | 87.45 173 | 89.66 154 | 84.87 187 | 94.00 117 | 87.73 185 | 91.36 181 | 86.41 170 | 88.89 129 | 75.03 207 | 92.59 133 | 96.82 82 | 72.48 205 | 89.72 173 | 88.06 177 | 89.93 183 | 83.81 183 |
|
| EPNet_dtu | | | 87.40 174 | 86.27 183 | 88.72 159 | 95.68 74 | 83.37 199 | 92.09 172 | 90.08 109 | 78.11 204 | 91.29 107 | 86.33 191 | 89.74 169 | 75.39 200 | 89.07 178 | 87.89 178 | 87.81 191 | 89.38 154 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| baseline1 | | | 86.96 175 | 87.58 176 | 86.24 181 | 93.07 145 | 90.44 170 | 89.24 197 | 86.85 164 | 85.14 161 | 77.26 205 | 90.45 149 | 76.09 205 | 75.79 198 | 91.80 154 | 91.81 141 | 95.20 131 | 87.35 171 |
|
| baseline | | | 86.71 176 | 88.89 159 | 84.16 193 | 87.85 206 | 85.23 192 | 89.82 191 | 77.69 206 | 84.03 168 | 84.75 169 | 94.91 99 | 94.59 132 | 77.19 191 | 86.57 195 | 86.51 185 | 87.66 194 | 90.36 149 |
|
| CHOSEN 1792x2688 | | | 86.64 177 | 86.62 180 | 86.65 180 | 90.33 190 | 87.86 184 | 93.19 152 | 83.30 194 | 83.95 170 | 82.32 186 | 87.93 177 | 89.34 172 | 86.92 122 | 85.64 198 | 84.95 191 | 83.85 207 | 86.68 174 |
|
| dmvs_re | | | 86.51 178 | 86.14 185 | 86.95 176 | 93.07 145 | 86.11 189 | 92.01 173 | 86.04 172 | 72.70 215 | 79.10 197 | 75.37 217 | 89.99 165 | 78.10 184 | 94.56 113 | 93.01 124 | 93.35 167 | 91.26 138 |
|
| testgi | | | 86.49 179 | 90.31 147 | 82.03 197 | 95.63 75 | 88.18 179 | 93.47 144 | 84.89 182 | 93.23 54 | 69.54 218 | 87.16 184 | 97.96 47 | 60.66 215 | 91.90 153 | 89.90 162 | 87.99 189 | 83.84 182 |
|
| thres100view900 | | | 86.46 180 | 86.00 186 | 86.99 175 | 92.28 166 | 91.03 162 | 91.09 182 | 84.49 186 | 80.90 185 | 80.89 191 | 78.25 214 | 82.25 191 | 77.57 188 | 90.17 168 | 92.84 127 | 95.63 121 | 86.57 175 |
|
| gm-plane-assit | | | 86.15 181 | 82.51 195 | 90.40 136 | 95.81 70 | 92.29 145 | 97.99 34 | 84.66 185 | 92.15 76 | 93.15 65 | 97.84 30 | 44.65 229 | 78.60 177 | 88.02 188 | 85.95 187 | 92.20 177 | 76.69 208 |
|
| CMPMVS |  | 66.55 18 | 85.55 182 | 87.46 178 | 83.32 194 | 84.99 212 | 81.97 204 | 79.19 219 | 75.93 208 | 79.32 194 | 88.82 143 | 85.09 197 | 91.07 158 | 82.12 159 | 92.56 142 | 89.63 166 | 88.84 187 | 92.56 118 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| CR-MVSNet | | | 85.32 183 | 81.58 197 | 89.69 148 | 90.36 189 | 84.79 195 | 86.72 210 | 92.22 63 | 75.38 210 | 90.73 115 | 90.41 151 | 67.88 218 | 84.86 138 | 83.76 202 | 85.74 188 | 93.24 168 | 83.14 185 |
|
| baseline2 | | | 84.95 184 | 82.68 194 | 87.59 171 | 92.64 156 | 88.41 178 | 90.09 188 | 84.25 187 | 75.88 208 | 85.23 165 | 82.49 207 | 71.15 211 | 80.14 171 | 88.21 186 | 87.21 183 | 93.21 171 | 85.39 179 |
|
| pmnet_mix02 | | | 84.85 185 | 86.58 181 | 82.83 195 | 90.19 191 | 81.10 207 | 88.52 202 | 78.58 204 | 91.50 88 | 80.32 195 | 96.48 66 | 95.86 106 | 75.42 199 | 85.17 200 | 76.44 208 | 83.91 206 | 79.51 199 |
|
| MVSTER | | | 84.79 186 | 83.79 190 | 85.96 183 | 89.14 197 | 89.80 173 | 89.39 195 | 82.99 195 | 74.16 214 | 82.78 182 | 85.97 193 | 66.81 220 | 76.84 193 | 90.77 164 | 88.83 176 | 94.66 146 | 90.19 151 |
|
| MIMVSNet | | | 84.76 187 | 86.75 179 | 82.44 196 | 91.71 174 | 85.95 190 | 89.74 193 | 89.49 125 | 85.28 159 | 69.69 217 | 87.93 177 | 90.88 161 | 64.85 213 | 88.26 185 | 87.74 179 | 89.18 185 | 81.24 191 |
|
| SCA | | | 84.69 188 | 81.10 198 | 88.87 157 | 89.02 198 | 90.31 171 | 92.21 171 | 92.09 73 | 82.72 177 | 89.68 132 | 86.83 188 | 73.08 207 | 85.80 134 | 80.50 210 | 77.51 205 | 84.45 205 | 76.80 207 |
|
| new-patchmatchnet | | | 84.45 189 | 88.75 163 | 79.43 203 | 93.28 138 | 81.87 205 | 81.68 216 | 83.48 192 | 94.47 29 | 71.53 215 | 98.33 16 | 97.88 51 | 58.61 218 | 90.35 166 | 77.33 206 | 87.99 189 | 81.05 193 |
|
| PatchT | | | 83.44 190 | 81.10 198 | 86.18 182 | 77.92 220 | 82.58 203 | 89.87 190 | 87.39 155 | 75.88 208 | 90.73 115 | 89.86 158 | 66.71 222 | 84.86 138 | 83.76 202 | 85.74 188 | 86.33 200 | 83.14 185 |
|
| RPMNet | | | 83.42 191 | 78.40 207 | 89.28 153 | 89.79 193 | 84.79 195 | 90.64 187 | 92.11 71 | 75.38 210 | 87.10 156 | 79.80 212 | 61.99 227 | 82.79 154 | 81.88 208 | 82.07 196 | 93.23 170 | 82.87 188 |
|
| TAMVS | | | 82.96 192 | 86.15 184 | 79.24 206 | 90.57 188 | 83.12 202 | 87.29 206 | 75.12 210 | 84.06 166 | 65.81 219 | 92.22 136 | 88.27 178 | 69.11 208 | 88.72 180 | 87.26 182 | 87.56 196 | 79.38 201 |
|
| PatchmatchNet |  | | 82.44 193 | 78.69 206 | 86.83 177 | 89.81 192 | 81.55 206 | 90.78 185 | 87.27 158 | 82.39 179 | 88.85 142 | 88.31 173 | 70.96 212 | 81.90 161 | 78.58 214 | 74.33 214 | 82.35 211 | 74.69 211 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| MDTV_nov1_ep13 | | | 82.33 194 | 79.66 201 | 85.45 185 | 88.83 200 | 83.88 197 | 90.09 188 | 81.98 198 | 79.07 198 | 88.82 143 | 88.70 168 | 73.77 206 | 78.41 182 | 80.29 212 | 76.08 209 | 84.56 203 | 75.83 209 |
|
| CostFormer | | | 82.15 195 | 79.54 202 | 85.20 186 | 88.92 199 | 85.70 191 | 90.87 184 | 86.26 171 | 79.19 197 | 83.87 177 | 87.89 179 | 69.20 216 | 76.62 195 | 77.50 217 | 75.28 211 | 84.69 202 | 82.02 189 |
|
| PMMVS | | | 81.93 196 | 83.48 192 | 80.12 202 | 72.35 223 | 75.05 216 | 88.54 201 | 64.01 215 | 77.02 207 | 82.22 187 | 87.51 181 | 91.12 157 | 79.70 173 | 86.59 193 | 86.64 184 | 93.88 158 | 80.41 194 |
|
| pmmvs3 | | | 81.69 197 | 83.83 189 | 79.19 207 | 78.33 219 | 78.57 210 | 89.53 194 | 58.71 218 | 78.88 201 | 84.34 174 | 88.36 172 | 91.96 153 | 77.69 187 | 87.48 189 | 82.42 195 | 86.54 199 | 79.18 202 |
|
| tpm | | | 81.58 198 | 78.84 204 | 84.79 189 | 91.11 183 | 79.50 208 | 89.79 192 | 83.75 188 | 79.30 195 | 92.05 88 | 90.98 142 | 64.78 224 | 74.54 201 | 80.50 210 | 76.67 207 | 77.49 216 | 80.15 197 |
|
| test0.0.03 1 | | | 81.51 199 | 83.30 193 | 79.42 204 | 93.99 118 | 86.50 188 | 85.93 214 | 87.32 156 | 78.16 203 | 61.62 220 | 80.78 210 | 81.78 195 | 59.87 216 | 88.40 184 | 87.27 181 | 87.78 193 | 80.19 196 |
|
| dps | | | 81.42 200 | 77.88 212 | 85.56 184 | 87.67 208 | 85.17 194 | 88.37 204 | 87.46 153 | 74.37 213 | 84.55 171 | 86.80 189 | 62.18 226 | 80.20 170 | 81.13 209 | 77.52 204 | 85.10 201 | 77.98 205 |
|
| test-LLR | | | 80.62 201 | 77.20 215 | 84.62 191 | 93.99 118 | 75.11 214 | 87.04 207 | 87.32 156 | 70.11 218 | 78.59 202 | 83.17 204 | 71.60 209 | 73.88 203 | 82.32 206 | 79.20 201 | 86.91 197 | 78.87 203 |
|
| tpm cat1 | | | 80.03 202 | 75.93 218 | 84.81 188 | 89.31 195 | 83.26 201 | 88.86 200 | 86.55 169 | 79.24 196 | 86.10 160 | 84.22 200 | 63.62 225 | 77.37 190 | 73.43 218 | 70.88 217 | 80.67 212 | 76.87 206 |
|
| N_pmnet | | | 79.33 203 | 84.22 188 | 73.62 213 | 91.72 173 | 73.72 217 | 86.11 212 | 76.36 207 | 92.38 69 | 53.38 221 | 95.54 86 | 95.62 110 | 59.14 217 | 84.23 201 | 74.84 213 | 75.03 219 | 73.25 215 |
|
| EPMVS | | | 79.26 204 | 78.20 210 | 80.49 200 | 87.04 211 | 78.86 209 | 86.08 213 | 83.51 191 | 82.63 178 | 73.94 210 | 89.59 160 | 68.67 217 | 72.03 206 | 78.17 215 | 75.08 212 | 80.37 213 | 74.37 212 |
|
| CHOSEN 280x420 | | | 79.24 205 | 78.26 209 | 80.38 201 | 79.60 218 | 68.80 222 | 89.32 196 | 75.38 209 | 77.25 206 | 78.02 204 | 75.57 216 | 76.17 204 | 81.19 166 | 88.61 183 | 81.39 197 | 78.79 214 | 80.03 198 |
|
| ADS-MVSNet | | | 79.11 206 | 79.38 203 | 78.80 209 | 81.90 216 | 75.59 213 | 84.36 215 | 83.69 189 | 87.31 141 | 76.76 206 | 87.58 180 | 76.90 202 | 68.55 210 | 78.70 213 | 75.56 210 | 77.53 215 | 74.07 213 |
|
| FMVSNet5 | | | 79.08 207 | 78.83 205 | 79.38 205 | 87.52 209 | 86.78 186 | 87.64 205 | 78.15 205 | 69.54 220 | 70.64 216 | 65.97 221 | 65.44 223 | 63.87 214 | 90.17 168 | 90.46 157 | 88.48 188 | 83.45 184 |
|
| tpmrst | | | 78.81 208 | 76.18 217 | 81.87 198 | 88.56 201 | 77.45 211 | 86.74 209 | 81.52 200 | 80.08 189 | 83.48 179 | 90.84 144 | 66.88 219 | 74.54 201 | 73.04 219 | 71.02 216 | 76.38 217 | 73.95 214 |
|
| test-mter | | | 78.71 209 | 78.35 208 | 79.12 208 | 84.03 213 | 76.58 212 | 88.51 203 | 59.06 217 | 71.06 216 | 78.87 198 | 83.73 203 | 71.83 208 | 76.44 196 | 83.41 205 | 80.61 198 | 87.79 192 | 81.24 191 |
|
| MVS-HIRNet | | | 78.28 210 | 75.28 219 | 81.79 199 | 80.33 217 | 69.38 221 | 76.83 220 | 86.59 167 | 70.76 217 | 86.66 159 | 89.57 161 | 81.04 198 | 77.74 186 | 77.81 216 | 71.65 215 | 82.62 209 | 66.73 219 |
|
| E-PMN | | | 77.81 211 | 77.88 212 | 77.73 212 | 88.26 204 | 70.48 220 | 80.19 218 | 71.20 212 | 86.66 149 | 72.89 213 | 88.09 176 | 81.74 196 | 78.75 176 | 90.02 170 | 68.30 218 | 75.10 218 | 59.85 220 |
|
| EMVS | | | 77.65 212 | 77.49 214 | 77.83 210 | 87.75 207 | 71.02 219 | 81.13 217 | 70.54 213 | 86.38 152 | 74.52 209 | 89.38 163 | 80.19 201 | 78.22 183 | 89.48 175 | 67.13 219 | 74.83 220 | 58.84 221 |
|
| TESTMET0.1,1 | | | 77.47 213 | 77.20 215 | 77.78 211 | 81.94 215 | 75.11 214 | 87.04 207 | 58.33 219 | 70.11 218 | 78.59 202 | 83.17 204 | 71.60 209 | 73.88 203 | 82.32 206 | 79.20 201 | 86.91 197 | 78.87 203 |
|
| new_pmnet | | | 76.65 214 | 83.52 191 | 68.63 214 | 82.60 214 | 72.08 218 | 76.76 221 | 64.17 214 | 84.41 165 | 49.73 223 | 91.77 139 | 91.53 156 | 56.16 219 | 86.59 193 | 83.26 194 | 82.37 210 | 75.02 210 |
|
| MVE |  | 60.41 19 | 73.21 215 | 80.84 200 | 64.30 215 | 56.34 224 | 57.24 224 | 75.28 223 | 72.76 211 | 87.14 145 | 41.39 225 | 86.31 192 | 85.30 188 | 80.66 167 | 86.17 197 | 83.36 193 | 59.35 222 | 80.38 195 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| PMMVS2 | | | 69.86 216 | 82.14 196 | 55.52 216 | 75.19 221 | 63.08 223 | 75.52 222 | 60.97 216 | 88.50 132 | 25.11 227 | 91.77 139 | 96.44 90 | 25.43 221 | 88.70 181 | 79.34 200 | 70.93 221 | 67.17 218 |
|
| GG-mvs-BLEND | | | 54.28 217 | 77.89 211 | 26.72 219 | 0.37 229 | 83.31 200 | 70.04 224 | 0.39 225 | 74.71 212 | 5.36 228 | 68.78 219 | 83.06 190 | 0.62 225 | 83.73 204 | 78.99 203 | 83.55 208 | 72.68 217 |
|
| test_method | | | 43.16 218 | 51.13 220 | 33.85 217 | 7.35 226 | 12.38 227 | 51.70 226 | 11.91 221 | 62.51 222 | 47.64 224 | 62.49 222 | 80.78 199 | 28.84 220 | 59.55 222 | 34.48 221 | 55.68 223 | 45.72 222 |
|
| testmvs | | | 2.38 219 | 3.35 221 | 1.26 221 | 0.83 227 | 0.96 229 | 1.53 229 | 0.83 223 | 3.59 224 | 1.63 230 | 6.03 224 | 2.93 231 | 1.55 224 | 3.49 223 | 2.51 223 | 1.21 227 | 3.92 224 |
|
| test123 | | | 2.16 220 | 2.82 222 | 1.41 220 | 0.62 228 | 1.18 228 | 1.53 229 | 0.82 224 | 2.78 225 | 2.27 229 | 4.18 225 | 1.98 232 | 1.64 223 | 2.58 224 | 3.01 222 | 1.56 226 | 4.00 223 |
|
| uanet_test | | | 0.00 221 | 0.00 223 | 0.00 222 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 226 | 0.00 226 | 0.00 231 | 0.00 226 | 0.00 233 | 0.00 226 | 0.00 225 | 0.00 224 | 0.00 228 | 0.00 225 |
|
| sosnet-low-res | | | 0.00 221 | 0.00 223 | 0.00 222 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 226 | 0.00 226 | 0.00 231 | 0.00 226 | 0.00 233 | 0.00 226 | 0.00 225 | 0.00 224 | 0.00 228 | 0.00 225 |
|
| sosnet | | | 0.00 221 | 0.00 223 | 0.00 222 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 226 | 0.00 226 | 0.00 231 | 0.00 226 | 0.00 233 | 0.00 226 | 0.00 225 | 0.00 224 | 0.00 228 | 0.00 225 |
|
| TPM-MVS | | | | | | 94.35 108 | 93.52 131 | 92.94 157 | | | 89.43 137 | 84.20 201 | 90.07 164 | 80.21 169 | | | 94.56 150 | 93.77 90 |
| Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025 |
| RE-MVS-def | | | | | | | | | | | 97.21 5 | | | | | | | |
|
| 9.14 | | | | | | | | | | | | | 93.19 148 | | | | | |
|
| SR-MVS | | | | | | 97.13 23 | | | 94.77 17 | | | | 97.77 54 | | | | | |
|
| Anonymous202405211 | | | | 94.63 74 | | 94.51 106 | 94.96 94 | 93.94 137 | 91.35 90 | 90.82 107 | | 95.60 82 | 95.85 107 | 81.74 165 | 96.47 75 | 95.84 73 | 97.39 63 | 92.85 108 |
|
| our_test_3 | | | | | | 91.78 172 | 88.87 177 | 94.37 125 | | | | | | | | | | |
|
| ambc | | | | 94.61 75 | | 98.09 4 | 95.14 86 | 91.71 178 | | 94.18 38 | 96.46 12 | 96.26 69 | 96.30 93 | 91.26 68 | 94.70 109 | 92.00 140 | 93.45 163 | 93.67 93 |
|
| MTAPA | | | | | | | | | | | 94.88 28 | | 96.88 80 | | | | | |
|
| MTMP | | | | | | | | | | | 95.43 18 | | 97.25 68 | | | | | |
|
| Patchmatch-RL test | | | | | | | | 8.96 228 | | | | | | | | | | |
|
| tmp_tt | | | | | 28.44 218 | 36.05 225 | 15.86 226 | 21.29 227 | 6.40 222 | 54.52 223 | 51.96 222 | 50.37 223 | 38.68 230 | 9.55 222 | 61.75 221 | 59.66 220 | 45.36 225 | |
|
| XVS | | | | | | 96.86 32 | 97.48 18 | 98.73 3 | | | 93.28 59 | | 96.82 82 | | | | 98.17 35 | |
|
| X-MVStestdata | | | | | | 96.86 32 | 97.48 18 | 98.73 3 | | | 93.28 59 | | 96.82 82 | | | | 98.17 35 | |
|
| mPP-MVS | | | | | | 98.24 2 | | | | | | | 97.65 60 | | | | | |
|
| NP-MVS | | | | | | | | | | 85.48 158 | | | | | | | | |
|
| Patchmtry | | | | | | | 83.74 198 | 86.72 210 | 92.22 63 | | 90.73 115 | | | | | | | |
|
| DeepMVS_CX |  | | | | | | 47.68 225 | 53.20 225 | 19.21 220 | 63.24 221 | 26.96 226 | 66.50 220 | 69.82 215 | 66.91 212 | 64.27 220 | | 54.91 224 | 72.72 216 |
|