This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB95.06 197.73 198.39 196.95 196.33 5196.94 3598.30 2094.90 1598.61 197.73 397.97 2498.57 2295.74 499.24 198.70 498.72 798.70 2
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement97.59 298.32 296.73 495.90 6698.10 299.08 293.92 3198.24 396.44 1398.12 1997.86 5296.06 299.24 198.93 199.00 297.77 5
WR-MVS97.53 398.20 396.76 396.93 2998.17 198.60 1096.67 796.39 1494.46 3299.14 198.92 1094.57 1599.06 398.80 299.32 196.92 26
SixPastTwentyTwo97.36 497.73 1096.92 297.36 1396.15 5598.29 2194.43 2396.50 1296.96 798.74 598.74 1796.04 399.03 597.74 1698.44 2397.22 14
PS-CasMVS97.22 597.84 796.50 597.08 2597.92 698.17 3097.02 294.71 2695.32 2198.52 1298.97 992.91 4299.04 498.47 598.49 1997.24 13
PEN-MVS97.16 697.87 696.33 1197.20 2197.97 498.25 2596.86 695.09 2494.93 2698.66 799.16 592.27 5298.98 698.39 798.49 1996.83 30
DTE-MVSNet97.16 697.75 996.47 697.40 1297.95 598.20 2896.89 595.30 1995.15 2498.66 798.80 1592.77 4698.97 798.27 998.44 2396.28 40
COLMAP_ROBcopyleft93.74 297.09 897.98 496.05 1795.97 6397.78 998.56 1191.72 8697.53 796.01 1598.14 1898.76 1695.28 598.76 1198.23 1098.77 596.67 34
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
WR-MVS_H97.06 997.78 896.23 1396.74 3798.04 398.25 2597.32 194.40 3293.71 5298.55 1098.89 1192.97 3998.91 998.45 698.38 2897.19 15
CP-MVSNet96.97 1097.42 1496.44 797.06 2697.82 898.12 3396.98 393.50 4695.21 2397.98 2398.44 2592.83 4598.93 898.37 898.46 2296.91 27
DVP-MVS++96.63 1197.92 595.12 4097.77 697.52 1598.29 2193.83 3496.72 992.52 7598.10 2099.07 890.87 7897.83 3197.44 2897.44 5998.76 1
ACMH90.17 896.61 1297.69 1295.35 3095.29 8196.94 3598.43 1492.05 7498.04 495.38 1998.07 2199.25 493.23 3398.35 1697.16 3997.72 5196.00 45
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UA-Net96.56 1396.73 2496.36 998.99 197.90 797.79 4395.64 1092.78 5992.54 7496.23 7195.02 12894.31 1898.43 1598.12 1198.89 398.58 3
ACMMPR96.54 1496.71 2596.35 1097.55 997.63 1198.62 994.54 1994.45 2994.19 3995.04 9597.35 6694.92 1097.85 2897.50 2598.26 2997.17 16
v7n96.49 1597.20 1895.65 2295.57 7696.04 5797.93 3892.49 5896.40 1397.13 698.99 299.41 393.79 2597.84 3096.15 6597.00 8195.60 53
DeepC-MVS92.47 496.44 1696.75 2396.08 1697.57 797.19 3197.96 3794.28 2495.29 2094.92 2798.31 1796.92 7793.69 2796.81 6796.50 5698.06 4096.27 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMM90.06 996.31 1796.42 3296.19 1497.21 2097.16 3398.71 593.79 3794.35 3393.81 4692.80 13098.23 3395.11 698.07 2097.45 2798.51 1896.86 29
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+89.90 1096.27 1897.52 1394.81 4795.19 8497.18 3297.97 3692.52 5696.72 990.50 12297.31 4599.11 694.10 1998.67 1297.90 1498.56 1595.79 49
APDe-MVS96.23 1997.22 1795.08 4196.66 4197.56 1498.63 893.69 4194.62 2789.80 13097.73 3298.13 3793.84 2497.79 3397.63 1897.87 4797.08 21
CP-MVS96.21 2096.16 4396.27 1297.56 897.13 3498.43 1494.70 1892.62 6294.13 4192.71 13198.03 4394.54 1698.00 2497.60 2098.23 3197.05 22
HFP-MVS96.18 2196.53 2995.77 2097.34 1697.26 2898.16 3194.54 1994.45 2992.52 7595.05 9396.95 7693.89 2297.28 4997.46 2698.19 3397.25 11
UniMVSNet_ETH3D96.15 2297.71 1194.33 5597.31 1796.71 4095.06 10796.91 497.86 590.42 12398.55 1099.60 188.01 11798.51 1397.81 1598.26 2994.95 65
MP-MVScopyleft96.13 2395.93 4796.37 898.19 397.31 2798.49 1394.53 2291.39 9494.38 3594.32 10896.43 9094.59 1497.75 3597.44 2898.04 4196.88 28
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMMPcopyleft96.12 2496.27 3995.93 1897.20 2197.60 1298.64 793.74 3892.47 6693.13 6693.23 12398.06 4094.51 1797.99 2597.57 2298.39 2796.99 23
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVScopyleft96.10 2597.23 1694.79 4996.28 5497.49 1697.90 3993.60 4395.47 1789.57 13697.32 4497.72 5593.89 2297.74 3697.53 2397.51 5697.34 9
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
LGP-MVS_train96.10 2596.29 3695.87 1996.72 3897.35 2698.43 1493.83 3490.81 10892.67 7395.05 9398.86 1395.01 798.11 1897.37 3598.52 1796.50 36
CSCG96.07 2797.15 1994.81 4796.06 6197.58 1396.52 7390.98 9796.51 1193.60 5497.13 5298.55 2393.01 3797.17 5395.36 8098.68 997.78 4
DPE-MVScopyleft96.00 2896.80 2295.06 4295.87 6997.47 2198.25 2593.73 3992.38 6891.57 10397.55 3997.97 4592.98 3897.49 4797.61 1997.96 4597.16 17
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SMA-MVScopyleft95.99 2996.48 3095.41 2997.43 1197.36 2497.55 4893.70 4094.05 4093.79 4797.02 5594.53 13392.28 5197.53 4597.19 3797.73 5097.67 7
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.95.99 2996.57 2895.31 3296.87 3096.50 4798.71 591.58 8793.25 5192.71 7096.86 5796.57 8893.92 2098.09 1997.91 1398.08 3896.81 31
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OPM-MVS95.96 3196.59 2795.23 3596.67 4096.52 4697.86 4193.28 4795.27 2293.46 5696.26 6898.85 1492.89 4397.09 5496.37 6097.22 7395.78 50
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
SteuartSystems-ACMMP95.96 3196.13 4495.76 2197.06 2697.36 2498.40 1894.24 2691.49 8891.91 9394.50 10496.89 7894.99 898.01 2397.44 2897.97 4497.25 11
Skip Steuart: Steuart Systems R&D Blog.
ACMP89.62 1195.96 3196.28 3795.59 2396.58 4397.23 3098.26 2493.22 4892.33 7192.31 8394.29 10998.73 1894.68 1298.04 2197.14 4098.47 2196.17 43
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PGM-MVS95.90 3495.72 5196.10 1597.53 1097.45 2298.55 1294.12 2890.25 11193.71 5293.20 12497.18 7094.63 1397.68 3997.34 3698.08 3896.97 24
PMVScopyleft87.16 1695.88 3596.47 3195.19 3797.00 2896.02 5896.70 6491.57 8894.43 3195.33 2097.16 5195.37 11692.39 4898.89 1098.72 398.17 3594.71 71
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ACMMP_NAP95.86 3696.18 4095.47 2897.11 2497.26 2898.37 1993.48 4593.49 4793.99 4495.61 7994.11 13792.49 4797.87 2797.44 2897.40 6297.52 8
Gipumacopyleft95.86 3696.17 4195.50 2795.92 6594.59 10494.77 11692.50 5797.82 697.90 295.56 8297.88 5094.71 1198.02 2294.81 9497.23 7294.48 78
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LS3D95.83 3896.35 3495.22 3696.47 4797.49 1697.99 3492.35 6194.92 2594.58 3094.88 9995.11 12691.52 6398.48 1498.05 1298.42 2595.49 54
SD-MVS95.77 3996.17 4195.30 3396.72 3896.19 5497.01 5693.04 4994.03 4192.71 7096.45 6696.78 8593.91 2196.79 6895.89 7198.42 2597.09 20
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SED-MVS95.73 4096.98 2094.28 5696.08 5997.39 2398.18 2993.80 3694.20 3589.61 13597.29 4697.49 6390.69 8297.74 3697.41 3297.32 6797.34 9
TranMVSNet+NR-MVSNet95.72 4196.42 3294.91 4696.21 5596.77 3996.90 6194.99 1392.62 6291.92 9298.51 1398.63 2090.82 7997.27 5096.83 4598.63 1294.31 79
DU-MVS95.51 4295.68 5295.33 3196.45 4896.44 4996.61 7095.32 1189.97 11693.78 4897.46 4198.07 3991.19 7097.03 5796.53 5398.61 1394.22 80
UniMVSNet (Re)95.46 4395.86 4995.00 4596.09 5796.60 4196.68 6894.99 1390.36 11092.13 8697.64 3698.13 3791.38 6496.90 6296.74 4798.73 694.63 74
RPSCF95.46 4396.95 2193.73 7995.72 7395.94 6295.58 9888.08 14395.31 1891.34 10696.26 6898.04 4293.63 2898.28 1797.67 1798.01 4297.13 18
anonymousdsp95.45 4596.70 2693.99 6788.43 20092.05 14999.18 185.42 17794.29 3496.10 1498.63 999.08 796.11 197.77 3497.41 3298.70 897.69 6
APD-MVScopyleft95.38 4695.68 5295.03 4397.30 1896.90 3797.83 4293.92 3189.40 12390.35 12495.41 8697.69 5792.97 3997.24 5297.17 3897.83 4895.96 46
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
UniMVSNet_NR-MVSNet95.34 4795.51 5695.14 3995.80 7196.55 4296.61 7094.79 1690.04 11593.78 4897.51 4097.25 6791.19 7096.68 7096.31 6298.65 1194.22 80
X-MVS95.33 4895.13 6495.57 2597.35 1497.48 1898.43 1494.28 2492.30 7293.28 5986.89 18696.82 8191.87 5797.85 2897.59 2198.19 3396.95 25
MSP-MVS95.32 4996.28 3794.19 5996.87 3097.77 1098.27 2393.88 3394.15 3989.63 13495.36 8798.37 2890.73 8094.37 11497.53 2395.77 12096.40 37
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
3Dnovator+92.82 395.22 5095.16 6295.29 3496.17 5696.55 4297.64 4594.02 3094.16 3894.29 3792.09 13793.71 14291.90 5596.68 7096.51 5497.70 5396.40 37
HPM-MVS++copyleft95.21 5194.89 6795.59 2397.79 595.39 8097.68 4494.05 2991.91 8094.35 3693.38 12195.07 12792.94 4196.01 8295.88 7296.73 8496.61 35
TSAR-MVS + ACMM95.17 5295.95 4594.26 5796.07 6096.46 4895.67 9694.21 2793.84 4390.99 11497.18 4995.24 12493.55 2996.60 7395.61 7895.06 13896.69 33
CPTT-MVS95.00 5394.52 7695.57 2596.84 3496.78 3897.88 4093.67 4292.20 7392.35 8285.87 19397.56 6294.98 996.96 6096.07 6897.70 5396.18 42
SF-MVS94.88 5495.87 4893.73 7995.30 7995.93 6394.80 11591.76 8493.11 5591.93 9195.83 7697.07 7391.11 7396.62 7296.44 5897.46 5796.13 44
Baseline_NR-MVSNet94.85 5595.35 6094.26 5796.45 4893.86 12096.70 6494.54 1990.07 11490.17 12898.77 497.89 4790.64 8597.03 5796.16 6497.04 8093.67 92
EG-PatchMatch MVS94.81 5695.53 5593.97 6895.89 6894.62 10295.55 10088.18 14192.77 6094.88 2897.04 5498.61 2193.31 3096.89 6395.19 8495.99 11393.56 95
CS-MVS94.76 5794.41 8095.18 3894.95 9095.99 6097.28 4991.99 7685.51 15694.55 3193.07 12697.69 5793.77 2697.08 5596.79 4698.53 1694.72 69
OMC-MVS94.74 5895.46 5893.91 7194.62 10296.26 5296.64 6989.36 13094.20 3594.15 4094.02 11497.73 5491.34 6696.15 8095.04 8897.37 6494.80 67
DeepC-MVS_fast91.38 694.73 5994.98 6594.44 5196.83 3696.12 5696.69 6692.17 6792.98 5793.72 5094.14 11095.45 11490.49 9195.73 8895.30 8196.71 8595.13 63
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PHI-MVS94.65 6094.84 6994.44 5194.95 9096.55 4296.46 7691.10 9588.96 12696.00 1694.55 10395.32 11990.67 8396.97 5996.69 5197.44 5994.84 66
CS-MVS-test94.63 6194.30 8595.02 4494.63 10095.71 7098.15 3292.13 6985.62 15594.22 3893.63 11997.63 6193.08 3697.50 4696.51 5497.88 4693.50 96
pmmvs694.58 6297.30 1591.40 12294.84 9494.61 10393.40 14792.43 6098.51 285.61 16298.73 699.53 284.40 14297.88 2697.03 4197.72 5194.79 68
DeepPCF-MVS90.68 794.56 6394.92 6694.15 6094.11 11495.71 7097.03 5590.65 10293.39 5094.08 4295.29 9094.15 13693.21 3495.22 9994.92 9295.82 11995.75 51
NR-MVSNet94.55 6495.66 5493.25 9194.26 11096.44 4996.69 6695.32 1189.97 11691.79 9897.46 4198.39 2782.85 15296.87 6596.48 5798.57 1493.98 86
Vis-MVSNetpermissive94.39 6595.85 5092.68 9990.91 18395.88 6597.62 4791.41 8991.95 7989.20 13897.29 4696.26 9390.60 9096.95 6195.91 6996.32 10096.71 32
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TSAR-MVS + GP.94.25 6694.81 7193.60 8196.52 4695.80 6894.37 12592.47 5990.89 10488.92 14095.34 8894.38 13492.85 4496.36 7895.62 7796.47 9295.28 60
CNVR-MVS94.24 6794.47 7793.96 6996.56 4495.67 7296.43 7791.95 7892.08 7691.28 10890.51 14795.35 11791.20 6996.34 7995.50 7996.34 9895.88 48
DROMVSNet94.23 6893.81 9994.71 5094.85 9396.23 5397.14 5193.40 4681.79 17991.58 10293.29 12295.21 12593.13 3597.73 3896.95 4298.20 3295.45 55
v119293.98 6993.94 9394.01 6593.91 12294.63 10197.00 5789.75 12091.01 10296.50 1097.93 2598.26 3291.74 5992.06 14692.05 13695.18 13391.66 134
v1093.96 7094.12 9093.77 7893.37 13595.45 7696.83 6391.13 9489.70 12095.02 2597.88 2898.23 3391.27 6792.39 14192.18 13394.99 14093.00 105
CDPH-MVS93.96 7093.86 9594.08 6296.31 5295.84 6696.92 5991.85 8187.21 14291.25 11092.83 12896.06 10191.05 7595.57 9094.81 9497.12 7594.72 69
MVS_030493.92 7293.81 9994.05 6496.06 6196.00 5996.43 7792.76 5485.99 15394.43 3494.04 11397.08 7288.12 11694.65 11094.20 10896.47 9294.71 71
MSLP-MVS++93.91 7394.30 8593.45 8395.51 7795.83 6793.12 15391.93 8091.45 9191.40 10587.42 18196.12 10093.27 3196.57 7496.40 5995.49 12396.29 39
v192192093.90 7493.82 9794.00 6693.74 12794.31 10897.12 5289.33 13191.13 9996.77 997.90 2698.06 4091.95 5491.93 15091.54 14595.10 13691.85 128
train_agg93.89 7593.46 11094.40 5397.35 1493.78 12297.63 4692.19 6688.12 13390.52 12193.57 12095.78 10792.31 5094.78 10793.46 11996.36 9694.70 73
v14419293.89 7593.85 9693.94 7093.50 13294.33 10797.12 5289.49 12590.89 10496.49 1197.78 3098.27 3191.89 5692.17 14591.70 14295.19 13291.78 131
v124093.89 7593.72 10194.09 6193.98 11994.31 10897.12 5289.37 12990.74 10996.92 898.05 2297.89 4792.15 5391.53 15691.60 14394.99 14091.93 126
NCCC93.87 7893.42 11194.40 5396.84 3495.42 7796.47 7592.62 5592.36 7092.05 8883.83 20095.55 11091.84 5895.89 8495.23 8396.56 8995.63 52
v114493.83 7993.87 9493.78 7793.72 12894.57 10596.85 6289.98 11491.31 9695.90 1797.89 2798.40 2691.13 7292.01 14992.01 13795.10 13690.94 139
MVS_111021_HR93.82 8094.26 8893.31 8695.01 8893.97 11895.73 9389.75 12092.06 7792.49 7794.01 11596.05 10290.61 8995.95 8394.78 9796.28 10193.04 104
thisisatest051593.79 8194.41 8093.06 9694.14 11192.50 14195.56 9988.55 13891.61 8492.45 7896.84 5895.71 10890.62 8794.58 11195.07 8697.05 7894.58 75
TAPA-MVS88.94 1393.78 8294.31 8493.18 9394.14 11195.99 6095.74 9286.98 16093.43 4993.88 4590.16 15496.88 7991.05 7594.33 11593.95 11097.28 7095.40 56
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
GeoE93.72 8393.62 10593.84 7294.75 9794.90 9597.24 5091.81 8386.97 14692.74 6993.83 11797.24 6990.46 9295.10 10394.09 10996.08 11093.18 102
EPP-MVSNet93.63 8493.95 9293.26 8995.15 8596.54 4596.18 8591.97 7791.74 8185.76 16094.95 9784.27 18691.60 6297.61 4397.38 3498.87 495.18 62
v893.60 8593.82 9793.34 8493.13 14295.06 8896.39 7990.75 10089.90 11894.03 4397.70 3498.21 3591.08 7492.36 14291.47 14694.63 14892.07 122
MCST-MVS93.60 8593.40 11393.83 7395.30 7995.40 7996.49 7490.87 9890.08 11391.72 9990.28 15295.99 10391.69 6093.94 12492.99 12496.93 8295.13 63
PVSNet_Blended_VisFu93.60 8593.41 11293.83 7396.31 5295.65 7395.71 9490.58 10488.08 13593.17 6495.29 9092.20 15190.72 8194.69 10993.41 12196.51 9194.54 76
TransMVSNet (Re)93.55 8896.32 3590.32 13894.38 10794.05 11393.30 15089.53 12497.15 885.12 16598.83 397.89 4782.21 15896.75 6996.14 6697.35 6593.46 97
DCV-MVSNet93.49 8995.15 6391.55 11694.05 11595.92 6495.15 10591.21 9192.76 6187.01 15689.71 15897.16 7183.90 14797.65 4096.87 4497.99 4395.95 47
v2v48293.42 9093.49 10993.32 8593.44 13494.05 11396.36 8289.76 11991.41 9395.24 2297.63 3798.34 2990.44 9391.65 15491.76 14194.69 14589.62 151
canonicalmvs93.38 9194.36 8292.24 10593.94 12196.41 5194.18 13490.47 10593.07 5688.47 14688.66 16893.78 14188.80 10695.74 8795.75 7597.57 5597.13 18
3Dnovator91.81 593.36 9294.27 8792.29 10492.99 14695.03 8995.76 9187.79 14693.82 4492.38 8192.19 13693.37 14688.14 11595.26 9894.85 9396.69 8695.40 56
pm-mvs193.27 9395.94 4690.16 13994.13 11393.66 12392.61 16389.91 11695.73 1684.28 17498.51 1398.29 3082.80 15396.44 7695.76 7497.25 7193.21 101
casdiffmvs_mvgpermissive93.27 9394.83 7091.45 12093.59 13094.47 10694.91 11189.83 11892.04 7887.14 15497.57 3898.47 2486.03 13294.07 12294.44 10497.21 7492.76 111
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test111193.25 9594.43 7891.88 11095.09 8794.97 9394.58 12192.81 5193.60 4583.79 17797.17 5089.25 17187.59 11997.54 4496.57 5297.42 6191.89 127
Anonymous2023121193.19 9695.50 5790.49 13593.77 12695.29 8294.36 12990.04 11391.44 9284.59 16996.72 6197.65 5982.45 15797.25 5196.32 6197.74 4993.79 89
TinyColmap93.17 9793.33 11493.00 9793.84 12492.76 13694.75 11888.90 13493.97 4297.48 495.28 9295.29 12088.37 11195.31 9791.58 14494.65 14789.10 155
MVS_111021_LR93.15 9893.65 10392.56 10093.89 12392.28 14495.09 10686.92 16291.26 9892.99 6894.46 10696.22 9690.64 8595.11 10293.45 12095.85 11792.74 112
CNLPA93.14 9993.67 10292.53 10194.62 10294.73 9895.00 11086.57 16792.85 5892.43 7990.94 14294.67 13090.35 9495.41 9293.70 11696.23 10493.37 99
PLCcopyleft87.27 1593.08 10092.92 11893.26 8994.67 9895.03 8994.38 12490.10 10891.69 8292.14 8587.24 18293.91 13991.61 6195.05 10494.73 10096.67 8792.80 108
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CANet93.07 10193.05 11793.10 9495.90 6695.41 7895.88 8891.94 7984.77 16293.36 5794.05 11295.25 12386.25 13094.33 11593.94 11195.30 12693.58 94
TSAR-MVS + COLMAP93.06 10293.65 10392.36 10294.62 10294.28 11095.36 10489.46 12792.18 7491.64 10095.55 8395.27 12288.60 10993.24 13092.50 12994.46 15092.55 118
ECVR-MVScopyleft93.05 10394.25 8991.65 11394.76 9595.23 8394.26 13292.80 5292.49 6483.90 17596.75 6089.99 16386.84 12497.62 4196.72 4897.32 6790.92 140
Effi-MVS+92.93 10492.16 12993.83 7394.29 10893.53 13095.04 10892.98 5085.27 15994.46 3290.24 15395.34 11889.99 9793.72 12594.23 10796.22 10592.79 109
Fast-Effi-MVS+92.93 10492.64 12293.27 8893.81 12593.88 11995.90 8790.61 10383.98 16892.71 7092.81 12996.22 9690.67 8394.90 10693.92 11295.92 11592.77 110
HQP-MVS92.87 10692.49 12393.31 8695.75 7295.01 9295.64 9791.06 9688.54 13091.62 10188.16 17396.25 9489.47 10192.26 14491.81 13996.34 9895.40 56
FMVSNet192.86 10795.26 6190.06 14192.40 16095.16 8594.37 12592.22 6393.18 5482.16 18796.76 5997.48 6481.85 16295.32 9494.98 8997.34 6693.93 87
CLD-MVS92.81 10894.32 8391.05 12695.39 7895.31 8195.82 9081.44 20089.40 12391.94 9095.86 7497.36 6585.83 13395.35 9394.59 10295.85 11792.34 119
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
IS_MVSNet92.76 10993.25 11592.19 10694.91 9295.56 7495.86 8992.12 7088.10 13482.71 18293.15 12588.30 17488.86 10597.29 4896.95 4298.66 1093.38 98
FC-MVSNet-train92.75 11095.40 5989.66 14995.21 8394.82 9697.00 5789.40 12891.13 9981.71 18897.72 3396.43 9077.57 18596.89 6396.72 4897.05 7894.09 83
V4292.67 11193.50 10891.71 11291.41 17492.96 13495.71 9485.00 17889.67 12193.22 6297.67 3598.01 4491.02 7792.65 13792.12 13493.86 15891.42 135
PM-MVS92.65 11293.20 11692.00 10892.11 16890.16 17095.99 8684.81 18291.31 9692.41 8095.87 7396.64 8792.35 4993.65 12792.91 12594.34 15391.85 128
QAPM92.57 11393.51 10791.47 11992.91 14894.82 9693.01 15587.51 15091.49 8891.21 11192.24 13491.70 15488.74 10794.54 11294.39 10695.41 12495.37 59
MIMVSNet192.52 11494.88 6889.77 14596.09 5791.99 15096.92 5989.68 12295.92 1584.55 17096.64 6398.21 3578.44 17996.08 8195.10 8592.91 17290.22 148
tfpnnormal92.45 11594.77 7289.74 14693.95 12093.44 13293.25 15188.49 14095.27 2283.20 18096.51 6496.23 9583.17 15195.47 9194.52 10396.38 9591.97 125
PCF-MVS87.46 1492.44 11691.80 13193.19 9294.66 9995.80 6896.37 8090.19 10787.57 13992.23 8489.26 16393.97 13889.24 10291.32 15890.82 15496.46 9493.86 88
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
casdiffmvspermissive92.42 11793.99 9190.60 13393.25 13893.82 12194.28 13188.73 13691.53 8684.53 17297.74 3198.64 1986.60 12793.21 13291.20 14996.21 10691.76 133
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
AdaColmapbinary92.41 11891.49 13593.48 8295.96 6495.02 9195.37 10391.73 8587.97 13791.28 10882.82 20491.04 15890.62 8795.82 8695.07 8695.95 11492.67 113
v14892.38 11992.78 12091.91 10992.86 14992.13 14794.84 11387.03 15991.47 9093.07 6796.92 5698.89 1190.10 9692.05 14789.69 16293.56 16188.27 164
pmmvs-eth3d92.34 12092.33 12492.34 10392.67 15390.67 16496.37 8089.06 13290.98 10393.60 5497.13 5297.02 7588.29 11290.20 16591.42 14794.07 15688.89 159
DELS-MVS92.33 12193.61 10690.83 12992.84 15095.13 8794.76 11787.22 15887.78 13888.42 14895.78 7795.28 12185.71 13694.44 11393.91 11396.01 11292.97 106
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+-dtu92.32 12291.66 13393.09 9595.13 8694.73 9894.57 12292.14 6881.74 18090.33 12588.13 17495.91 10489.24 10294.23 12093.65 11897.12 7593.23 100
UGNet92.31 12394.70 7389.53 15190.99 18295.53 7596.19 8492.10 7291.35 9585.76 16095.31 8995.48 11376.84 19095.22 9994.79 9695.32 12595.19 61
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
USDC92.17 12492.17 12892.18 10792.93 14792.22 14593.66 14187.41 15393.49 4797.99 194.10 11196.68 8686.46 12892.04 14889.18 16894.61 14987.47 167
ETV-MVS92.12 12590.44 14394.08 6296.36 5093.63 12596.27 8392.00 7578.90 19992.13 8685.29 19589.85 16590.26 9597.07 5696.29 6397.46 5792.04 123
IterMVS-LS92.10 12692.33 12491.82 11193.18 13993.66 12392.80 16192.27 6290.82 10690.59 12097.19 4890.97 15987.76 11889.60 17290.94 15394.34 15393.16 103
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG92.09 12792.84 11991.22 12592.55 15592.97 13393.42 14685.43 17690.24 11291.83 9594.70 10094.59 13188.48 11094.91 10593.31 12395.59 12289.15 154
EIA-MVS91.95 12890.36 14593.81 7696.54 4594.65 10095.38 10290.40 10678.01 20493.72 5086.70 18991.95 15389.93 9895.67 8994.72 10196.89 8390.79 142
MAR-MVS91.86 12991.14 13992.71 9894.29 10894.24 11194.91 11191.82 8281.66 18193.32 5884.51 19893.42 14586.86 12395.16 10194.44 10495.05 13994.53 77
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EU-MVSNet91.63 13092.73 12190.35 13788.36 20187.89 18196.53 7281.51 19992.45 6791.82 9696.44 6797.05 7493.26 3294.10 12188.94 17390.61 17992.24 120
FC-MVSNet-test91.49 13194.43 7888.07 16794.97 8990.53 16795.42 10191.18 9393.24 5272.94 20998.37 1593.86 14078.78 17397.82 3296.13 6795.13 13491.05 137
FA-MVS(training)91.38 13291.18 13891.62 11593.49 13392.38 14295.03 10990.81 9987.20 14391.46 10493.00 12789.47 16884.19 14493.20 13492.08 13594.74 14490.90 141
OpenMVScopyleft89.22 1291.09 13391.42 13690.71 13192.79 15293.61 12792.74 16285.47 17586.10 15290.73 11585.71 19493.07 14986.69 12694.07 12293.34 12295.86 11694.02 85
FPMVS90.81 13491.60 13489.88 14492.52 15688.18 17793.31 14983.62 18891.59 8588.45 14788.96 16689.73 16786.96 12196.42 7795.69 7694.43 15190.65 143
DI_MVS_plusplus_trai90.68 13590.40 14491.00 12792.43 15992.61 14094.17 13588.98 13388.32 13288.76 14493.67 11887.58 17686.44 12989.74 17090.33 15795.24 12990.56 146
Vis-MVSNet (Re-imp)90.68 13592.18 12788.92 15694.63 10092.75 13792.91 15791.20 9289.21 12575.01 20693.96 11689.07 17282.72 15595.88 8595.30 8197.08 7789.08 156
DPM-MVS90.67 13789.86 14991.63 11495.29 8194.16 11294.52 12389.63 12389.59 12289.67 13381.95 20688.64 17385.75 13590.46 16390.43 15694.91 14293.77 90
diffmvspermissive90.44 13892.23 12688.35 16391.36 17691.38 15692.45 16784.84 18189.88 11985.09 16696.69 6297.71 5683.33 15090.01 16988.96 17293.03 17091.00 138
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FMVSNet290.28 13992.04 13088.23 16591.22 17894.05 11392.88 15890.69 10186.53 14979.89 19594.38 10792.73 15078.54 17691.64 15592.26 13296.17 10792.67 113
IterMVS-SCA-FT90.24 14089.37 15591.26 12492.50 15792.11 14891.69 17787.48 15187.05 14591.82 9695.76 7887.25 17791.36 6589.02 17785.53 18892.68 17388.90 158
MVS_Test90.19 14190.58 14089.74 14692.12 16791.74 15292.51 16488.54 13982.80 17487.50 15294.62 10195.02 12883.97 14588.69 18089.32 16693.79 15991.85 128
EPNet90.17 14289.07 15791.45 12097.25 1990.62 16694.84 11393.54 4480.96 18391.85 9486.98 18585.88 18277.79 18292.30 14392.58 12893.41 16394.20 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_BlendedMVS90.09 14390.12 14790.05 14292.40 16092.74 13891.74 17385.89 17180.54 18690.30 12688.54 16995.51 11184.69 14092.64 13890.25 15895.28 12790.61 144
PVSNet_Blended90.09 14390.12 14790.05 14292.40 16092.74 13891.74 17385.89 17180.54 18690.30 12688.54 16995.51 11184.69 14092.64 13890.25 15895.28 12790.61 144
pmmvs489.95 14589.32 15690.69 13291.60 17389.17 17494.37 12587.63 14788.07 13691.02 11394.50 10490.50 16286.13 13186.33 19489.40 16593.39 16487.29 170
MDA-MVSNet-bldmvs89.75 14691.67 13287.50 17274.25 21990.88 16194.68 11985.89 17191.64 8391.03 11295.86 7494.35 13589.10 10496.87 6586.37 18490.04 18085.72 175
tttt051789.64 14788.05 16891.49 11893.52 13191.65 15393.67 14087.53 14882.77 17589.39 13790.37 15170.05 21188.21 11393.71 12693.79 11496.63 8894.04 84
PatchMatch-RL89.59 14888.80 16190.51 13492.20 16688.00 18091.72 17586.64 16484.75 16388.25 14987.10 18490.66 16189.85 10093.23 13192.28 13194.41 15285.60 176
Fast-Effi-MVS+-dtu89.57 14988.42 16590.92 12893.35 13691.57 15493.01 15595.71 978.94 19887.65 15184.68 19793.14 14882.00 16090.84 16191.01 15293.78 16088.77 160
thisisatest053089.54 15087.99 17091.35 12393.17 14091.31 15793.45 14587.53 14882.96 17389.17 13990.45 14870.32 21088.21 11393.37 12993.79 11496.54 9093.71 91
test250689.51 15187.77 17391.55 11694.76 9595.23 8394.26 13292.80 5292.49 6483.31 17989.97 15650.93 22586.84 12497.62 4196.72 4897.32 6791.42 135
GBi-Net89.35 15290.58 14087.91 16891.22 17894.05 11392.88 15890.05 11079.40 19078.60 19790.58 14487.05 17878.54 17695.32 9494.98 8996.17 10792.67 113
test189.35 15290.58 14087.91 16891.22 17894.05 11392.88 15890.05 11079.40 19078.60 19790.58 14487.05 17878.54 17695.32 9494.98 8996.17 10792.67 113
thres600view789.14 15488.83 15989.51 15293.71 12993.55 12893.93 13888.02 14487.30 14182.40 18381.18 20780.63 19782.69 15694.27 11795.90 7096.27 10288.94 157
CVMVSNet88.97 15589.73 15188.10 16687.33 20785.22 19094.68 11978.68 20188.94 12786.98 15795.55 8385.71 18389.87 9991.19 15989.69 16291.05 17791.78 131
CANet_DTU88.95 15689.51 15488.29 16493.12 14391.22 15993.61 14283.47 19180.07 18990.71 11989.19 16493.68 14376.27 19491.44 15791.17 15192.59 17489.83 150
GA-MVS88.76 15788.04 16989.59 15092.32 16391.46 15592.28 16986.62 16583.82 17089.84 12992.51 13381.94 19183.53 14989.41 17489.27 16792.95 17187.90 165
pmmvs588.63 15889.70 15287.39 17389.24 19490.64 16591.87 17282.13 19583.34 17187.86 15094.58 10296.15 9979.87 17087.33 18989.07 17193.39 16486.76 171
thres40088.54 15988.15 16788.98 15493.17 14092.84 13593.56 14386.93 16186.45 15082.37 18479.96 20981.46 19481.83 16393.21 13294.76 9896.04 11188.39 162
CDS-MVSNet88.41 16089.79 15086.79 17794.55 10590.82 16292.50 16589.85 11783.26 17280.52 19291.05 14089.93 16469.11 20593.17 13592.71 12794.21 15587.63 166
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
gg-mvs-nofinetune88.32 16188.81 16087.75 17093.07 14489.37 17389.06 19695.94 895.29 2087.15 15397.38 4376.38 20068.05 20891.04 16089.10 17093.24 16683.10 184
IterMVS88.32 16188.25 16688.41 16290.83 18491.24 15893.07 15481.69 19786.77 14788.55 14595.61 7986.91 18187.01 12087.38 18883.77 19089.29 18286.06 174
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
thres20088.29 16387.88 17188.76 15892.50 15793.55 12892.47 16688.02 14484.80 16181.44 18979.28 21182.20 19081.83 16394.27 11793.67 11796.27 10287.40 168
IB-MVS86.01 1788.24 16487.63 17488.94 15592.03 16991.77 15192.40 16885.58 17478.24 20184.85 16771.99 21593.45 14483.96 14693.48 12892.33 13094.84 14392.15 121
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MDTV_nov1_ep13_2view88.22 16587.85 17288.65 16091.40 17586.75 18594.07 13684.97 17988.86 12993.20 6396.11 7296.21 9883.70 14887.29 19080.29 19784.56 20079.46 197
test20.0388.20 16691.26 13784.63 18996.64 4289.39 17290.73 18489.97 11591.07 10172.02 21194.98 9695.45 11469.35 20492.70 13691.19 15089.06 18484.02 178
HyFIR lowres test88.19 16786.56 18190.09 14091.24 17792.17 14694.30 13088.79 13584.06 16585.45 16389.52 16185.64 18488.64 10885.40 19787.28 17892.14 17681.87 187
ET-MVSNet_ETH3D88.06 16885.75 18590.74 13092.82 15190.68 16393.77 13988.59 13781.22 18289.78 13189.15 16566.79 21884.29 14391.72 15391.34 14895.22 13089.36 153
tfpn200view987.94 16987.51 17688.44 16192.28 16493.63 12593.35 14888.11 14280.90 18480.89 19078.25 21282.25 18879.65 17294.27 11794.76 9896.36 9688.48 161
FMVSNet387.90 17088.63 16387.04 17489.78 19293.46 13191.62 17890.05 11079.40 19078.60 19790.58 14487.05 17877.07 18988.03 18589.86 16195.12 13592.04 123
MS-PatchMatch87.72 17188.62 16486.66 17890.81 18588.18 17790.92 18182.25 19485.86 15480.40 19390.14 15589.29 17084.93 13789.39 17589.12 16990.67 17888.34 163
Anonymous2023120687.45 17289.66 15384.87 18694.00 11687.73 18391.36 17986.41 16988.89 12875.03 20592.59 13296.82 8172.48 20289.72 17188.06 17589.93 18183.81 180
EPNet_dtu87.40 17386.27 18288.72 15995.68 7483.37 19692.09 17190.08 10978.11 20391.29 10786.33 19089.74 16675.39 19789.07 17687.89 17687.81 18989.38 152
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline186.96 17487.58 17586.24 18093.07 14490.44 16889.24 19586.85 16385.14 16077.26 20390.45 14876.09 20275.79 19591.80 15291.81 13995.20 13187.35 169
baseline86.71 17588.89 15884.16 19187.85 20385.23 18989.82 18977.69 20484.03 16784.75 16894.91 9894.59 13177.19 18886.57 19386.51 18387.66 19290.36 147
CHOSEN 1792x268886.64 17686.62 17986.65 17990.33 18887.86 18293.19 15283.30 19283.95 16982.32 18587.93 17689.34 16986.92 12285.64 19684.95 18983.85 20486.68 172
testgi86.49 17790.31 14682.03 19595.63 7588.18 17793.47 14484.89 18093.23 5369.54 21587.16 18397.96 4660.66 21291.90 15189.90 16087.99 18783.84 179
thres100view90086.46 17886.00 18486.99 17592.28 16491.03 16091.09 18084.49 18480.90 18480.89 19078.25 21282.25 18877.57 18590.17 16692.84 12695.63 12186.57 173
gm-plane-assit86.15 17982.51 19390.40 13695.81 7092.29 14397.99 3484.66 18392.15 7593.15 6597.84 2944.65 22678.60 17588.02 18685.95 18592.20 17576.69 205
CMPMVSbinary66.55 1885.55 18087.46 17783.32 19284.99 20981.97 20179.19 21675.93 20679.32 19388.82 14285.09 19691.07 15782.12 15992.56 14089.63 16488.84 18592.56 117
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CR-MVSNet85.32 18181.58 19589.69 14890.36 18784.79 19286.72 20792.22 6375.38 20990.73 11590.41 15067.88 21584.86 13883.76 20085.74 18693.24 16683.14 182
baseline284.95 18282.68 19287.59 17192.64 15488.41 17690.09 18684.25 18575.88 20785.23 16482.49 20571.15 20880.14 16988.21 18487.21 18193.21 16985.39 177
pmnet_mix0284.85 18386.58 18082.83 19390.19 18981.10 20488.52 19978.58 20291.50 8780.32 19496.48 6595.86 10575.42 19685.17 19876.44 20683.91 20379.51 196
MVSTER84.79 18483.79 18885.96 18289.14 19589.80 17189.39 19382.99 19374.16 21382.78 18185.97 19266.81 21776.84 19090.77 16288.83 17494.66 14690.19 149
MIMVSNet84.76 18586.75 17882.44 19491.71 17285.95 18789.74 19189.49 12585.28 15869.69 21487.93 17690.88 16064.85 21088.26 18387.74 17789.18 18381.24 188
SCA84.69 18681.10 19688.87 15789.02 19690.31 16992.21 17092.09 7382.72 17689.68 13286.83 18773.08 20485.80 13480.50 20877.51 20384.45 20276.80 204
new-patchmatchnet84.45 18788.75 16279.43 20193.28 13781.87 20281.68 21383.48 19094.47 2871.53 21298.33 1697.88 5058.61 21590.35 16477.33 20487.99 18781.05 190
PatchT83.44 18881.10 19686.18 18177.92 21782.58 20089.87 18887.39 15475.88 20790.73 11589.86 15766.71 21984.86 13883.76 20085.74 18686.33 19783.14 182
RPMNet83.42 18978.40 20589.28 15389.79 19184.79 19290.64 18592.11 7175.38 20987.10 15579.80 21061.99 22482.79 15481.88 20682.07 19493.23 16882.87 185
TAMVS82.96 19086.15 18379.24 20490.57 18683.12 19987.29 20375.12 20884.06 16565.81 21692.22 13588.27 17569.11 20588.72 17887.26 18087.56 19379.38 198
PatchmatchNetpermissive82.44 19178.69 20486.83 17689.81 19081.55 20390.78 18387.27 15782.39 17888.85 14188.31 17270.96 20981.90 16178.58 21274.33 21282.35 20874.69 208
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep1382.33 19279.66 19985.45 18488.83 19883.88 19490.09 18681.98 19679.07 19788.82 14288.70 16773.77 20378.41 18080.29 21076.08 20784.56 20075.83 206
CostFormer82.15 19379.54 20085.20 18588.92 19785.70 18890.87 18286.26 17079.19 19683.87 17687.89 17869.20 21376.62 19277.50 21575.28 20984.69 19982.02 186
PMMVS81.93 19483.48 19080.12 20072.35 22075.05 21388.54 19864.01 21377.02 20682.22 18687.51 18091.12 15679.70 17186.59 19186.64 18293.88 15780.41 191
pmmvs381.69 19583.83 18779.19 20578.33 21678.57 20789.53 19258.71 21678.88 20084.34 17388.36 17191.96 15277.69 18487.48 18782.42 19386.54 19679.18 199
tpm81.58 19678.84 20284.79 18891.11 18179.50 20589.79 19083.75 18679.30 19492.05 8890.98 14164.78 22174.54 19880.50 20876.67 20577.49 21380.15 194
test0.0.03 181.51 19783.30 19179.42 20293.99 11786.50 18685.93 21187.32 15578.16 20261.62 21780.78 20881.78 19259.87 21388.40 18287.27 17987.78 19180.19 193
dps81.42 19877.88 21085.56 18387.67 20585.17 19188.37 20187.46 15274.37 21284.55 17086.80 18862.18 22380.20 16881.13 20777.52 20285.10 19877.98 202
test-LLR80.62 19977.20 21384.62 19093.99 11775.11 21187.04 20487.32 15570.11 21678.59 20083.17 20271.60 20673.88 20082.32 20479.20 19986.91 19478.87 200
tpm cat180.03 20075.93 21684.81 18789.31 19383.26 19888.86 19786.55 16879.24 19586.10 15984.22 19963.62 22277.37 18773.43 21670.88 21580.67 20976.87 203
N_pmnet79.33 20184.22 18673.62 21191.72 17173.72 21486.11 20976.36 20592.38 6853.38 21895.54 8595.62 10959.14 21484.23 19974.84 21175.03 21673.25 212
EPMVS79.26 20278.20 20880.49 19887.04 20878.86 20686.08 21083.51 18982.63 17773.94 20889.59 15968.67 21472.03 20378.17 21375.08 21080.37 21074.37 209
CHOSEN 280x42079.24 20378.26 20780.38 19979.60 21568.80 21989.32 19475.38 20777.25 20578.02 20275.57 21476.17 20181.19 16688.61 18181.39 19578.79 21180.03 195
ADS-MVSNet79.11 20479.38 20178.80 20781.90 21375.59 21084.36 21283.69 18787.31 14076.76 20487.58 17976.90 19968.55 20778.70 21175.56 20877.53 21274.07 210
FMVSNet579.08 20578.83 20379.38 20387.52 20686.78 18487.64 20278.15 20369.54 21870.64 21365.97 21865.44 22063.87 21190.17 16690.46 15588.48 18683.45 181
tpmrst78.81 20676.18 21581.87 19688.56 19977.45 20886.74 20681.52 19880.08 18883.48 17890.84 14366.88 21674.54 19873.04 21771.02 21476.38 21473.95 211
test-mter78.71 20778.35 20679.12 20684.03 21076.58 20988.51 20059.06 21571.06 21478.87 19683.73 20171.83 20576.44 19383.41 20380.61 19687.79 19081.24 188
MVS-HIRNet78.28 20875.28 21781.79 19780.33 21469.38 21876.83 21786.59 16670.76 21586.66 15889.57 16081.04 19577.74 18377.81 21471.65 21382.62 20666.73 216
E-PMN77.81 20977.88 21077.73 21088.26 20270.48 21780.19 21571.20 21086.66 14872.89 21088.09 17581.74 19378.75 17490.02 16868.30 21675.10 21559.85 217
EMVS77.65 21077.49 21277.83 20887.75 20471.02 21681.13 21470.54 21186.38 15174.52 20789.38 16280.19 19878.22 18189.48 17367.13 21774.83 21758.84 218
TESTMET0.1,177.47 21177.20 21377.78 20981.94 21275.11 21187.04 20458.33 21770.11 21678.59 20083.17 20271.60 20673.88 20082.32 20479.20 19986.91 19478.87 200
new_pmnet76.65 21283.52 18968.63 21282.60 21172.08 21576.76 21864.17 21284.41 16449.73 22091.77 13891.53 15556.16 21686.59 19183.26 19282.37 20775.02 207
MVEpermissive60.41 1973.21 21380.84 19864.30 21356.34 22157.24 22175.28 22072.76 20987.14 14441.39 22286.31 19185.30 18580.66 16786.17 19583.36 19159.35 21980.38 192
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS269.86 21482.14 19455.52 21475.19 21863.08 22075.52 21960.97 21488.50 13125.11 22491.77 13896.44 8925.43 21888.70 17979.34 19870.93 21867.17 215
GG-mvs-BLEND54.28 21577.89 20926.72 2170.37 22683.31 19770.04 2210.39 22374.71 2115.36 22568.78 21683.06 1870.62 22283.73 20278.99 20183.55 20572.68 214
test_method43.16 21651.13 21833.85 2157.35 22312.38 22451.70 22311.91 21962.51 22047.64 22162.49 21980.78 19628.84 21759.55 22034.48 21955.68 22045.72 219
testmvs2.38 2173.35 2191.26 2190.83 2240.96 2261.53 2260.83 2213.59 2221.63 2276.03 2212.93 2281.55 2213.49 2212.51 2211.21 2243.92 221
test1232.16 2182.82 2201.41 2180.62 2251.18 2251.53 2260.82 2222.78 2232.27 2264.18 2221.98 2291.64 2202.58 2223.01 2201.56 2234.00 220
uanet_test0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
RE-MVS-def97.21 5
9.1493.19 147
SR-MVS97.13 2394.77 1797.77 53
Anonymous20240521194.63 7494.51 10694.96 9493.94 13791.35 9090.82 10695.60 8195.85 10681.74 16596.47 7595.84 7397.39 6392.85 107
our_test_391.78 17088.87 17594.37 125
ambc94.61 7598.09 495.14 8691.71 17694.18 3796.46 1296.26 6896.30 9291.26 6894.70 10892.00 13893.45 16293.67 92
MTAPA94.88 2896.88 79
MTMP95.43 1897.25 67
Patchmatch-RL test8.96 225
tmp_tt28.44 21636.05 22215.86 22321.29 2246.40 22054.52 22151.96 21950.37 22038.68 2279.55 21961.75 21959.66 21845.36 222
XVS96.86 3297.48 1898.73 393.28 5996.82 8198.17 35
X-MVStestdata96.86 3297.48 1898.73 393.28 5996.82 8198.17 35
mPP-MVS98.24 297.65 59
NP-MVS85.48 157
Patchmtry83.74 19586.72 20792.22 6390.73 115
DeepMVS_CXcopyleft47.68 22253.20 22219.21 21863.24 21926.96 22366.50 21769.82 21266.91 20964.27 21854.91 22172.72 213