| LTVRE_ROB | | 95.06 1 | 97.73 1 | 98.39 1 | 96.95 1 | 96.33 51 | 96.94 35 | 98.30 20 | 94.90 15 | 98.61 1 | 97.73 3 | 97.97 25 | 98.57 23 | 95.74 4 | 99.24 1 | 98.70 4 | 98.72 7 | 98.70 2 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| TDRefinement | | | 97.59 2 | 98.32 2 | 96.73 4 | 95.90 66 | 98.10 2 | 99.08 2 | 93.92 31 | 98.24 3 | 96.44 13 | 98.12 20 | 97.86 53 | 96.06 2 | 99.24 1 | 98.93 1 | 99.00 2 | 97.77 5 |
|
| WR-MVS | | | 97.53 3 | 98.20 3 | 96.76 3 | 96.93 29 | 98.17 1 | 98.60 10 | 96.67 7 | 96.39 15 | 94.46 32 | 99.14 1 | 98.92 10 | 94.57 15 | 99.06 3 | 98.80 2 | 99.32 1 | 96.92 28 |
|
| SixPastTwentyTwo | | | 97.36 4 | 97.73 10 | 96.92 2 | 97.36 13 | 96.15 56 | 98.29 21 | 94.43 23 | 96.50 13 | 96.96 7 | 98.74 5 | 98.74 18 | 96.04 3 | 99.03 5 | 97.74 16 | 98.44 23 | 97.22 14 |
|
| PS-CasMVS | | | 97.22 5 | 97.84 7 | 96.50 5 | 97.08 25 | 97.92 6 | 98.17 30 | 97.02 2 | 94.71 27 | 95.32 21 | 98.52 12 | 98.97 9 | 92.91 42 | 99.04 4 | 98.47 5 | 98.49 19 | 97.24 13 |
|
| PEN-MVS | | | 97.16 6 | 97.87 6 | 96.33 11 | 97.20 21 | 97.97 4 | 98.25 25 | 96.86 6 | 95.09 25 | 94.93 26 | 98.66 7 | 99.16 5 | 92.27 52 | 98.98 6 | 98.39 7 | 98.49 19 | 96.83 32 |
|
| DTE-MVSNet | | | 97.16 6 | 97.75 9 | 96.47 6 | 97.40 12 | 97.95 5 | 98.20 28 | 96.89 5 | 95.30 20 | 95.15 24 | 98.66 7 | 98.80 15 | 92.77 46 | 98.97 7 | 98.27 9 | 98.44 23 | 96.28 42 |
|
| COLMAP_ROB |  | 93.74 2 | 97.09 8 | 97.98 4 | 96.05 17 | 95.97 63 | 97.78 9 | 98.56 11 | 91.72 86 | 97.53 7 | 96.01 15 | 98.14 19 | 98.76 17 | 95.28 5 | 98.76 11 | 98.23 10 | 98.77 5 | 96.67 36 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| WR-MVS_H | | | 97.06 9 | 97.78 8 | 96.23 13 | 96.74 37 | 98.04 3 | 98.25 25 | 97.32 1 | 94.40 33 | 93.71 52 | 98.55 10 | 98.89 11 | 92.97 39 | 98.91 9 | 98.45 6 | 98.38 28 | 97.19 15 |
|
| CP-MVSNet | | | 96.97 10 | 97.42 14 | 96.44 7 | 97.06 26 | 97.82 8 | 98.12 33 | 96.98 3 | 93.50 47 | 95.21 23 | 97.98 24 | 98.44 26 | 92.83 45 | 98.93 8 | 98.37 8 | 98.46 22 | 96.91 29 |
|
| DVP-MVS++ | | | 96.63 11 | 97.92 5 | 95.12 40 | 97.77 6 | 97.52 15 | 98.29 21 | 93.83 34 | 96.72 9 | 92.52 75 | 98.10 21 | 99.07 8 | 90.87 78 | 97.83 31 | 97.44 28 | 97.44 61 | 98.76 1 |
|
| ACMH | | 90.17 8 | 96.61 12 | 97.69 12 | 95.35 30 | 95.29 81 | 96.94 35 | 98.43 14 | 92.05 74 | 98.04 4 | 95.38 19 | 98.07 22 | 99.25 4 | 93.23 33 | 98.35 16 | 97.16 39 | 97.72 51 | 96.00 47 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| UA-Net | | | 96.56 13 | 96.73 24 | 96.36 9 | 98.99 1 | 97.90 7 | 97.79 43 | 95.64 10 | 92.78 62 | 92.54 74 | 96.23 72 | 95.02 129 | 94.31 18 | 98.43 15 | 98.12 11 | 98.89 3 | 98.58 3 |
|
| ACMMPR | | | 96.54 14 | 96.71 25 | 96.35 10 | 97.55 9 | 97.63 11 | 98.62 9 | 94.54 19 | 94.45 30 | 94.19 39 | 95.04 96 | 97.35 67 | 94.92 10 | 97.85 28 | 97.50 25 | 98.26 29 | 97.17 16 |
|
| v7n | | | 96.49 15 | 97.20 18 | 95.65 22 | 95.57 76 | 96.04 58 | 97.93 38 | 92.49 58 | 96.40 14 | 97.13 6 | 98.99 2 | 99.41 3 | 93.79 25 | 97.84 30 | 96.15 65 | 97.00 83 | 95.60 55 |
|
| DeepC-MVS | | 92.47 4 | 96.44 16 | 96.75 23 | 96.08 16 | 97.57 7 | 97.19 31 | 97.96 37 | 94.28 24 | 95.29 21 | 94.92 27 | 98.31 17 | 96.92 78 | 93.69 27 | 96.81 67 | 96.50 56 | 98.06 40 | 96.27 43 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| ACMM | | 90.06 9 | 96.31 17 | 96.42 32 | 96.19 14 | 97.21 20 | 97.16 33 | 98.71 5 | 93.79 37 | 94.35 34 | 93.81 46 | 92.80 131 | 98.23 34 | 95.11 6 | 98.07 20 | 97.45 27 | 98.51 18 | 96.86 31 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| ACMH+ | | 89.90 10 | 96.27 18 | 97.52 13 | 94.81 47 | 95.19 84 | 97.18 32 | 97.97 36 | 92.52 56 | 96.72 9 | 90.50 122 | 97.31 46 | 99.11 6 | 94.10 19 | 98.67 12 | 97.90 14 | 98.56 15 | 95.79 51 |
|
| APDe-MVS |  | | 96.23 19 | 97.22 17 | 95.08 41 | 96.66 41 | 97.56 14 | 98.63 8 | 93.69 41 | 94.62 28 | 89.80 130 | 97.73 33 | 98.13 38 | 93.84 24 | 97.79 33 | 97.63 18 | 97.87 47 | 97.08 23 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| CP-MVS | | | 96.21 20 | 96.16 43 | 96.27 12 | 97.56 8 | 97.13 34 | 98.43 14 | 94.70 18 | 92.62 65 | 94.13 41 | 92.71 132 | 98.03 44 | 94.54 16 | 98.00 24 | 97.60 20 | 98.23 31 | 97.05 24 |
|
| HFP-MVS | | | 96.18 21 | 96.53 29 | 95.77 20 | 97.34 16 | 97.26 28 | 98.16 31 | 94.54 19 | 94.45 30 | 92.52 75 | 95.05 94 | 96.95 77 | 93.89 22 | 97.28 49 | 97.46 26 | 98.19 33 | 97.25 11 |
|
| UniMVSNet_ETH3D | | | 96.15 22 | 97.71 11 | 94.33 55 | 97.31 17 | 96.71 40 | 95.06 107 | 96.91 4 | 97.86 5 | 90.42 123 | 98.55 10 | 99.60 1 | 88.01 118 | 98.51 13 | 97.81 15 | 98.26 29 | 94.95 67 |
|
| MP-MVS |  | | 96.13 23 | 95.93 47 | 96.37 8 | 98.19 3 | 97.31 27 | 98.49 13 | 94.53 22 | 91.39 97 | 94.38 35 | 94.32 109 | 96.43 91 | 94.59 14 | 97.75 35 | 97.44 28 | 98.04 41 | 96.88 30 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| ACMMP |  | | 96.12 24 | 96.27 39 | 95.93 18 | 97.20 21 | 97.60 12 | 98.64 7 | 93.74 38 | 92.47 69 | 93.13 66 | 93.23 124 | 98.06 41 | 94.51 17 | 97.99 25 | 97.57 22 | 98.39 27 | 96.99 25 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| DVP-MVS |  | | 96.10 25 | 97.23 16 | 94.79 49 | 96.28 54 | 97.49 16 | 97.90 39 | 93.60 43 | 95.47 18 | 89.57 136 | 97.32 45 | 97.72 56 | 93.89 22 | 97.74 36 | 97.53 23 | 97.51 57 | 97.34 9 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| LGP-MVS_train | | | 96.10 25 | 96.29 36 | 95.87 19 | 96.72 38 | 97.35 26 | 98.43 14 | 93.83 34 | 90.81 111 | 92.67 73 | 95.05 94 | 98.86 13 | 95.01 7 | 98.11 18 | 97.37 35 | 98.52 17 | 96.50 38 |
|
| CSCG | | | 96.07 27 | 97.15 19 | 94.81 47 | 96.06 61 | 97.58 13 | 96.52 73 | 90.98 97 | 96.51 12 | 93.60 54 | 97.13 53 | 98.55 24 | 93.01 37 | 97.17 53 | 95.36 81 | 98.68 9 | 97.78 4 |
|
| DPE-MVS |  | | 96.00 28 | 96.80 22 | 95.06 42 | 95.87 69 | 97.47 21 | 98.25 25 | 93.73 39 | 92.38 71 | 91.57 103 | 97.55 40 | 97.97 46 | 92.98 38 | 97.49 47 | 97.61 19 | 97.96 45 | 97.16 17 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| SMA-MVS |  | | 95.99 29 | 96.48 30 | 95.41 29 | 97.43 11 | 97.36 24 | 97.55 48 | 93.70 40 | 94.05 41 | 93.79 47 | 97.02 56 | 94.53 134 | 92.28 51 | 97.53 45 | 97.19 37 | 97.73 50 | 97.67 7 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| TSAR-MVS + MP. | | | 95.99 29 | 96.57 28 | 95.31 32 | 96.87 30 | 96.50 47 | 98.71 5 | 91.58 87 | 93.25 53 | 92.71 70 | 96.86 58 | 96.57 89 | 93.92 20 | 98.09 19 | 97.91 13 | 98.08 38 | 96.81 33 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| OPM-MVS | | | 95.96 31 | 96.59 27 | 95.23 35 | 96.67 40 | 96.52 46 | 97.86 41 | 93.28 47 | 95.27 23 | 93.46 56 | 96.26 69 | 98.85 14 | 92.89 43 | 97.09 54 | 96.37 60 | 97.22 75 | 95.78 52 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| SteuartSystems-ACMMP | | | 95.96 31 | 96.13 44 | 95.76 21 | 97.06 26 | 97.36 24 | 98.40 18 | 94.24 26 | 91.49 91 | 91.91 93 | 94.50 105 | 96.89 79 | 94.99 8 | 98.01 23 | 97.44 28 | 97.97 44 | 97.25 11 |
| Skip Steuart: Steuart Systems R&D Blog. |
| ACMP | | 89.62 11 | 95.96 31 | 96.28 37 | 95.59 23 | 96.58 43 | 97.23 30 | 98.26 24 | 93.22 48 | 92.33 74 | 92.31 83 | 94.29 110 | 98.73 19 | 94.68 12 | 98.04 21 | 97.14 40 | 98.47 21 | 96.17 45 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| PGM-MVS | | | 95.90 34 | 95.72 51 | 96.10 15 | 97.53 10 | 97.45 22 | 98.55 12 | 94.12 28 | 90.25 114 | 93.71 52 | 93.20 125 | 97.18 71 | 94.63 13 | 97.68 39 | 97.34 36 | 98.08 38 | 96.97 26 |
|
| PMVS |  | 87.16 16 | 95.88 35 | 96.47 31 | 95.19 37 | 97.00 28 | 96.02 59 | 96.70 64 | 91.57 88 | 94.43 32 | 95.33 20 | 97.16 52 | 95.37 117 | 92.39 48 | 98.89 10 | 98.72 3 | 98.17 35 | 94.71 73 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| ACMMP_NAP | | | 95.86 36 | 96.18 40 | 95.47 28 | 97.11 24 | 97.26 28 | 98.37 19 | 93.48 45 | 93.49 48 | 93.99 44 | 95.61 80 | 94.11 138 | 92.49 47 | 97.87 27 | 97.44 28 | 97.40 64 | 97.52 8 |
|
| Gipuma |  | | 95.86 36 | 96.17 41 | 95.50 27 | 95.92 65 | 94.59 106 | 94.77 116 | 92.50 57 | 97.82 6 | 97.90 2 | 95.56 83 | 97.88 51 | 94.71 11 | 98.02 22 | 94.81 96 | 97.23 74 | 94.48 80 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| LS3D | | | 95.83 38 | 96.35 34 | 95.22 36 | 96.47 47 | 97.49 16 | 97.99 34 | 92.35 61 | 94.92 26 | 94.58 30 | 94.88 100 | 95.11 127 | 91.52 63 | 98.48 14 | 98.05 12 | 98.42 25 | 95.49 56 |
|
| SD-MVS | | | 95.77 39 | 96.17 41 | 95.30 33 | 96.72 38 | 96.19 55 | 97.01 56 | 93.04 49 | 94.03 42 | 92.71 70 | 96.45 67 | 96.78 86 | 93.91 21 | 96.79 68 | 95.89 71 | 98.42 25 | 97.09 22 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| SED-MVS | | | 95.73 40 | 96.98 20 | 94.28 56 | 96.08 59 | 97.39 23 | 98.18 29 | 93.80 36 | 94.20 36 | 89.61 135 | 97.29 47 | 97.49 64 | 90.69 82 | 97.74 36 | 97.41 32 | 97.32 69 | 97.34 9 |
|
| TranMVSNet+NR-MVSNet | | | 95.72 41 | 96.42 32 | 94.91 46 | 96.21 55 | 96.77 39 | 96.90 61 | 94.99 13 | 92.62 65 | 91.92 92 | 98.51 13 | 98.63 21 | 90.82 79 | 97.27 50 | 96.83 45 | 98.63 12 | 94.31 81 |
|
| DU-MVS | | | 95.51 42 | 95.68 52 | 95.33 31 | 96.45 48 | 96.44 49 | 96.61 70 | 95.32 11 | 89.97 119 | 93.78 48 | 97.46 42 | 98.07 40 | 91.19 70 | 97.03 57 | 96.53 53 | 98.61 13 | 94.22 82 |
|
| UniMVSNet (Re) | | | 95.46 43 | 95.86 49 | 95.00 45 | 96.09 57 | 96.60 41 | 96.68 68 | 94.99 13 | 90.36 113 | 92.13 86 | 97.64 37 | 98.13 38 | 91.38 64 | 96.90 62 | 96.74 47 | 98.73 6 | 94.63 76 |
|
| RPSCF | | | 95.46 43 | 96.95 21 | 93.73 79 | 95.72 73 | 95.94 64 | 95.58 98 | 88.08 146 | 95.31 19 | 91.34 106 | 96.26 69 | 98.04 43 | 93.63 28 | 98.28 17 | 97.67 17 | 98.01 42 | 97.13 18 |
|
| anonymousdsp | | | 95.45 45 | 96.70 26 | 93.99 67 | 88.43 204 | 92.05 153 | 99.18 1 | 85.42 181 | 94.29 35 | 96.10 14 | 98.63 9 | 99.08 7 | 96.11 1 | 97.77 34 | 97.41 32 | 98.70 8 | 97.69 6 |
|
| APD-MVS |  | | 95.38 46 | 95.68 52 | 95.03 43 | 97.30 18 | 96.90 37 | 97.83 42 | 93.92 31 | 89.40 126 | 90.35 124 | 95.41 87 | 97.69 58 | 92.97 39 | 97.24 52 | 97.17 38 | 97.83 48 | 95.96 48 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| UniMVSNet_NR-MVSNet | | | 95.34 47 | 95.51 56 | 95.14 39 | 95.80 71 | 96.55 42 | 96.61 70 | 94.79 16 | 90.04 118 | 93.78 48 | 97.51 41 | 97.25 68 | 91.19 70 | 96.68 70 | 96.31 62 | 98.65 11 | 94.22 82 |
|
| X-MVS | | | 95.33 48 | 95.13 64 | 95.57 25 | 97.35 14 | 97.48 18 | 98.43 14 | 94.28 24 | 92.30 75 | 93.28 59 | 86.89 189 | 96.82 82 | 91.87 57 | 97.85 28 | 97.59 21 | 98.19 33 | 96.95 27 |
|
| MSP-MVS | | | 95.32 49 | 96.28 37 | 94.19 59 | 96.87 30 | 97.77 10 | 98.27 23 | 93.88 33 | 94.15 40 | 89.63 134 | 95.36 88 | 98.37 29 | 90.73 80 | 94.37 118 | 97.53 23 | 95.77 122 | 96.40 39 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| 3Dnovator+ | | 92.82 3 | 95.22 50 | 95.16 62 | 95.29 34 | 96.17 56 | 96.55 42 | 97.64 45 | 94.02 30 | 94.16 39 | 94.29 37 | 92.09 138 | 93.71 145 | 91.90 55 | 96.68 70 | 96.51 54 | 97.70 53 | 96.40 39 |
|
| HPM-MVS++ |  | | 95.21 51 | 94.89 67 | 95.59 23 | 97.79 5 | 95.39 82 | 97.68 44 | 94.05 29 | 91.91 83 | 94.35 36 | 93.38 122 | 95.07 128 | 92.94 41 | 96.01 82 | 95.88 72 | 96.73 86 | 96.61 37 |
|
| TSAR-MVS + ACMM | | | 95.17 52 | 95.95 45 | 94.26 57 | 96.07 60 | 96.46 48 | 95.67 96 | 94.21 27 | 93.84 44 | 90.99 114 | 97.18 50 | 95.24 125 | 93.55 29 | 96.60 73 | 95.61 79 | 95.06 140 | 96.69 35 |
|
| CPTT-MVS | | | 95.00 53 | 94.52 76 | 95.57 25 | 96.84 34 | 96.78 38 | 97.88 40 | 93.67 42 | 92.20 76 | 92.35 82 | 85.87 196 | 97.56 63 | 94.98 9 | 96.96 60 | 96.07 68 | 97.70 53 | 96.18 44 |
|
| SF-MVS | | | 94.88 54 | 95.87 48 | 93.73 79 | 95.30 79 | 95.93 65 | 94.80 115 | 91.76 84 | 93.11 57 | 91.93 91 | 95.83 77 | 97.07 74 | 91.11 73 | 96.62 72 | 96.44 58 | 97.46 58 | 96.13 46 |
|
| Baseline_NR-MVSNet | | | 94.85 55 | 95.35 60 | 94.26 57 | 96.45 48 | 93.86 122 | 96.70 64 | 94.54 19 | 90.07 117 | 90.17 128 | 98.77 4 | 97.89 48 | 90.64 85 | 97.03 57 | 96.16 64 | 97.04 82 | 93.67 95 |
|
| EG-PatchMatch MVS | | | 94.81 56 | 95.53 55 | 93.97 68 | 95.89 68 | 94.62 104 | 95.55 100 | 88.18 144 | 92.77 63 | 94.88 28 | 97.04 55 | 98.61 22 | 93.31 30 | 96.89 63 | 95.19 86 | 95.99 115 | 93.56 98 |
|
| CS-MVS | | | 94.76 57 | 94.41 80 | 95.18 38 | 94.95 90 | 95.99 61 | 97.28 49 | 91.99 76 | 85.51 159 | 94.55 31 | 93.07 127 | 97.69 58 | 93.77 26 | 97.08 55 | 96.79 46 | 98.53 16 | 94.72 71 |
|
| OMC-MVS | | | 94.74 58 | 95.46 58 | 93.91 71 | 94.62 102 | 96.26 53 | 96.64 69 | 89.36 132 | 94.20 36 | 94.15 40 | 94.02 115 | 97.73 55 | 91.34 66 | 96.15 80 | 95.04 90 | 97.37 66 | 94.80 69 |
|
| DeepC-MVS_fast | | 91.38 6 | 94.73 59 | 94.98 65 | 94.44 51 | 96.83 36 | 96.12 57 | 96.69 66 | 92.17 67 | 92.98 60 | 93.72 50 | 94.14 111 | 95.45 115 | 90.49 91 | 95.73 89 | 95.30 83 | 96.71 87 | 95.13 65 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| PHI-MVS | | | 94.65 60 | 94.84 69 | 94.44 51 | 94.95 90 | 96.55 42 | 96.46 76 | 91.10 95 | 88.96 129 | 96.00 16 | 94.55 104 | 95.32 120 | 90.67 83 | 96.97 59 | 96.69 51 | 97.44 61 | 94.84 68 |
|
| CS-MVS-test | | | 94.63 61 | 94.30 86 | 95.02 44 | 94.63 100 | 95.71 72 | 98.15 32 | 92.13 69 | 85.62 158 | 94.22 38 | 93.63 120 | 97.63 62 | 93.08 36 | 97.50 46 | 96.51 54 | 97.88 46 | 93.50 99 |
|
| pmmvs6 | | | 94.58 62 | 97.30 15 | 91.40 123 | 94.84 94 | 94.61 105 | 93.40 148 | 92.43 60 | 98.51 2 | 85.61 164 | 98.73 6 | 99.53 2 | 84.40 144 | 97.88 26 | 97.03 41 | 97.72 51 | 94.79 70 |
|
| DeepPCF-MVS | | 90.68 7 | 94.56 63 | 94.92 66 | 94.15 60 | 94.11 115 | 95.71 72 | 97.03 55 | 90.65 102 | 93.39 51 | 94.08 42 | 95.29 91 | 94.15 137 | 93.21 34 | 95.22 102 | 94.92 94 | 95.82 121 | 95.75 53 |
|
| NR-MVSNet | | | 94.55 64 | 95.66 54 | 93.25 91 | 94.26 111 | 96.44 49 | 96.69 66 | 95.32 11 | 89.97 119 | 91.79 98 | 97.46 42 | 98.39 28 | 82.85 154 | 96.87 65 | 96.48 57 | 98.57 14 | 93.98 88 |
|
| Vis-MVSNet |  | | 94.39 65 | 95.85 50 | 92.68 99 | 90.91 187 | 95.88 67 | 97.62 47 | 91.41 89 | 91.95 82 | 89.20 139 | 97.29 47 | 96.26 94 | 90.60 90 | 96.95 61 | 95.91 69 | 96.32 102 | 96.71 34 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| TSAR-MVS + GP. | | | 94.25 66 | 94.81 71 | 93.60 81 | 96.52 46 | 95.80 70 | 94.37 125 | 92.47 59 | 90.89 107 | 88.92 141 | 95.34 89 | 94.38 135 | 92.85 44 | 96.36 78 | 95.62 78 | 96.47 94 | 95.28 62 |
|
| CNVR-MVS | | | 94.24 67 | 94.47 77 | 93.96 69 | 96.56 44 | 95.67 74 | 96.43 77 | 91.95 78 | 92.08 79 | 91.28 108 | 90.51 148 | 95.35 118 | 91.20 69 | 96.34 79 | 95.50 80 | 96.34 100 | 95.88 50 |
|
| EC-MVSNet | | | 94.23 68 | 93.81 102 | 94.71 50 | 94.85 93 | 96.23 54 | 97.14 51 | 93.40 46 | 81.79 182 | 91.58 102 | 93.29 123 | 95.21 126 | 93.13 35 | 97.73 38 | 96.95 42 | 98.20 32 | 95.45 57 |
|
| v1192 | | | 93.98 69 | 93.94 96 | 94.01 65 | 93.91 124 | 94.63 103 | 97.00 57 | 89.75 122 | 91.01 105 | 96.50 10 | 97.93 26 | 98.26 33 | 91.74 59 | 92.06 150 | 92.05 140 | 95.18 135 | 91.66 137 |
|
| v10 | | | 93.96 70 | 94.12 93 | 93.77 78 | 93.37 138 | 95.45 78 | 96.83 63 | 91.13 94 | 89.70 123 | 95.02 25 | 97.88 29 | 98.23 34 | 91.27 67 | 92.39 145 | 92.18 136 | 94.99 142 | 93.00 108 |
|
| CDPH-MVS | | | 93.96 70 | 93.86 98 | 94.08 62 | 96.31 52 | 95.84 68 | 96.92 59 | 91.85 81 | 87.21 145 | 91.25 110 | 92.83 129 | 96.06 102 | 91.05 75 | 95.57 92 | 94.81 96 | 97.12 77 | 94.72 71 |
|
| MVS_0304 | | | 93.92 72 | 93.81 102 | 94.05 64 | 96.06 61 | 96.00 60 | 96.43 77 | 92.76 54 | 85.99 156 | 94.43 34 | 94.04 114 | 97.08 73 | 88.12 117 | 94.65 113 | 94.20 110 | 96.47 94 | 94.71 73 |
|
| MSLP-MVS++ | | | 93.91 73 | 94.30 86 | 93.45 83 | 95.51 77 | 95.83 69 | 93.12 155 | 91.93 80 | 91.45 94 | 91.40 105 | 87.42 184 | 96.12 101 | 93.27 31 | 96.57 74 | 96.40 59 | 95.49 125 | 96.29 41 |
|
| v1921920 | | | 93.90 74 | 93.82 100 | 94.00 66 | 93.74 130 | 94.31 110 | 97.12 52 | 89.33 133 | 91.13 102 | 96.77 9 | 97.90 27 | 98.06 41 | 91.95 54 | 91.93 154 | 91.54 149 | 95.10 138 | 91.85 131 |
|
| train_agg | | | 93.89 75 | 93.46 113 | 94.40 53 | 97.35 14 | 93.78 124 | 97.63 46 | 92.19 66 | 88.12 136 | 90.52 121 | 93.57 121 | 95.78 108 | 92.31 50 | 94.78 110 | 93.46 121 | 96.36 98 | 94.70 75 |
|
| v144192 | | | 93.89 75 | 93.85 99 | 93.94 70 | 93.50 135 | 94.33 109 | 97.12 52 | 89.49 127 | 90.89 107 | 96.49 11 | 97.78 31 | 98.27 32 | 91.89 56 | 92.17 149 | 91.70 146 | 95.19 134 | 91.78 134 |
|
| v1240 | | | 93.89 75 | 93.72 104 | 94.09 61 | 93.98 120 | 94.31 110 | 97.12 52 | 89.37 131 | 90.74 112 | 96.92 8 | 98.05 23 | 97.89 48 | 92.15 53 | 91.53 160 | 91.60 147 | 94.99 142 | 91.93 129 |
|
| NCCC | | | 93.87 78 | 93.42 114 | 94.40 53 | 96.84 34 | 95.42 79 | 96.47 75 | 92.62 55 | 92.36 73 | 92.05 88 | 83.83 204 | 95.55 111 | 91.84 58 | 95.89 84 | 95.23 85 | 96.56 91 | 95.63 54 |
|
| v1144 | | | 93.83 79 | 93.87 97 | 93.78 77 | 93.72 131 | 94.57 107 | 96.85 62 | 89.98 116 | 91.31 99 | 95.90 17 | 97.89 28 | 98.40 27 | 91.13 72 | 92.01 153 | 92.01 141 | 95.10 138 | 90.94 143 |
|
| MVS_111021_HR | | | 93.82 80 | 94.26 89 | 93.31 86 | 95.01 88 | 93.97 120 | 95.73 93 | 89.75 122 | 92.06 80 | 92.49 77 | 94.01 116 | 96.05 103 | 90.61 89 | 95.95 83 | 94.78 99 | 96.28 103 | 93.04 107 |
|
| thisisatest0515 | | | 93.79 81 | 94.41 80 | 93.06 96 | 94.14 112 | 92.50 145 | 95.56 99 | 88.55 140 | 91.61 87 | 92.45 78 | 96.84 59 | 95.71 109 | 90.62 87 | 94.58 114 | 95.07 88 | 97.05 80 | 94.58 77 |
|
| TAPA-MVS | | 88.94 13 | 93.78 82 | 94.31 85 | 93.18 93 | 94.14 112 | 95.99 61 | 95.74 92 | 86.98 163 | 93.43 50 | 93.88 45 | 90.16 155 | 96.88 80 | 91.05 75 | 94.33 119 | 93.95 112 | 97.28 72 | 95.40 58 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| GeoE | | | 93.72 83 | 93.62 108 | 93.84 72 | 94.75 97 | 94.90 97 | 97.24 50 | 91.81 83 | 86.97 149 | 92.74 69 | 93.83 118 | 97.24 70 | 90.46 92 | 95.10 106 | 94.09 111 | 96.08 112 | 93.18 105 |
|
| EPP-MVSNet | | | 93.63 84 | 93.95 95 | 93.26 89 | 95.15 85 | 96.54 45 | 96.18 85 | 91.97 77 | 91.74 84 | 85.76 162 | 94.95 98 | 84.27 191 | 91.60 62 | 97.61 43 | 97.38 34 | 98.87 4 | 95.18 64 |
|
| v8 | | | 93.60 85 | 93.82 100 | 93.34 84 | 93.13 145 | 95.06 90 | 96.39 79 | 90.75 100 | 89.90 121 | 94.03 43 | 97.70 35 | 98.21 36 | 91.08 74 | 92.36 146 | 91.47 150 | 94.63 150 | 92.07 125 |
|
| MCST-MVS | | | 93.60 85 | 93.40 116 | 93.83 73 | 95.30 79 | 95.40 81 | 96.49 74 | 90.87 98 | 90.08 116 | 91.72 99 | 90.28 153 | 95.99 104 | 91.69 60 | 93.94 128 | 92.99 127 | 96.93 84 | 95.13 65 |
|
| PVSNet_Blended_VisFu | | | 93.60 85 | 93.41 115 | 93.83 73 | 96.31 52 | 95.65 75 | 95.71 94 | 90.58 104 | 88.08 138 | 93.17 64 | 95.29 91 | 92.20 154 | 90.72 81 | 94.69 112 | 93.41 123 | 96.51 93 | 94.54 78 |
|
| TransMVSNet (Re) | | | 93.55 88 | 96.32 35 | 90.32 139 | 94.38 107 | 94.05 115 | 93.30 152 | 89.53 126 | 97.15 8 | 85.12 167 | 98.83 3 | 97.89 48 | 82.21 160 | 96.75 69 | 96.14 66 | 97.35 67 | 93.46 100 |
|
| DCV-MVSNet | | | 93.49 89 | 95.15 63 | 91.55 117 | 94.05 116 | 95.92 66 | 95.15 105 | 91.21 91 | 92.76 64 | 87.01 158 | 89.71 159 | 97.16 72 | 83.90 149 | 97.65 40 | 96.87 44 | 97.99 43 | 95.95 49 |
|
| v2v482 | | | 93.42 90 | 93.49 112 | 93.32 85 | 93.44 137 | 94.05 115 | 96.36 82 | 89.76 121 | 91.41 96 | 95.24 22 | 97.63 38 | 98.34 30 | 90.44 93 | 91.65 158 | 91.76 145 | 94.69 147 | 89.62 155 |
|
| sasdasda | | | 93.38 91 | 94.36 82 | 92.24 105 | 93.94 122 | 96.41 51 | 94.18 134 | 90.47 105 | 93.07 58 | 88.47 147 | 88.66 170 | 93.78 142 | 88.80 106 | 95.74 87 | 95.75 75 | 97.57 55 | 97.13 18 |
|
| canonicalmvs | | | 93.38 91 | 94.36 82 | 92.24 105 | 93.94 122 | 96.41 51 | 94.18 134 | 90.47 105 | 93.07 58 | 88.47 147 | 88.66 170 | 93.78 142 | 88.80 106 | 95.74 87 | 95.75 75 | 97.57 55 | 97.13 18 |
|
| 3Dnovator | | 91.81 5 | 93.36 93 | 94.27 88 | 92.29 104 | 92.99 150 | 95.03 91 | 95.76 91 | 87.79 149 | 93.82 45 | 92.38 81 | 92.19 137 | 93.37 149 | 88.14 116 | 95.26 101 | 94.85 95 | 96.69 88 | 95.40 58 |
|
| pm-mvs1 | | | 93.27 94 | 95.94 46 | 90.16 140 | 94.13 114 | 93.66 125 | 92.61 166 | 89.91 118 | 95.73 17 | 84.28 176 | 98.51 13 | 98.29 31 | 82.80 155 | 96.44 76 | 95.76 74 | 97.25 73 | 93.21 104 |
|
| casdiffmvs_mvg |  | | 93.27 94 | 94.83 70 | 91.45 121 | 93.59 133 | 94.47 108 | 94.91 111 | 89.83 120 | 92.04 81 | 87.14 156 | 97.57 39 | 98.47 25 | 86.03 133 | 94.07 126 | 94.44 106 | 97.21 76 | 92.76 114 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| test1111 | | | 93.25 96 | 94.43 78 | 91.88 111 | 95.09 87 | 94.97 95 | 94.58 121 | 92.81 51 | 93.60 46 | 83.79 179 | 97.17 51 | 89.25 176 | 87.59 120 | 97.54 44 | 96.57 52 | 97.42 63 | 91.89 130 |
|
| Anonymous20231211 | | | 93.19 97 | 95.50 57 | 90.49 136 | 93.77 128 | 95.29 84 | 94.36 129 | 90.04 115 | 91.44 95 | 84.59 171 | 96.72 62 | 97.65 60 | 82.45 159 | 97.25 51 | 96.32 61 | 97.74 49 | 93.79 91 |
|
| TinyColmap | | | 93.17 98 | 93.33 117 | 93.00 97 | 93.84 126 | 92.76 139 | 94.75 118 | 88.90 136 | 93.97 43 | 97.48 4 | 95.28 93 | 95.29 121 | 88.37 112 | 95.31 100 | 91.58 148 | 94.65 149 | 89.10 159 |
|
| MVS_111021_LR | | | 93.15 99 | 93.65 106 | 92.56 100 | 93.89 125 | 92.28 148 | 95.09 106 | 86.92 165 | 91.26 101 | 92.99 68 | 94.46 107 | 96.22 97 | 90.64 85 | 95.11 105 | 93.45 122 | 95.85 119 | 92.74 115 |
|
| CNLPA | | | 93.14 100 | 93.67 105 | 92.53 101 | 94.62 102 | 94.73 100 | 95.00 110 | 86.57 170 | 92.85 61 | 92.43 79 | 90.94 143 | 94.67 131 | 90.35 94 | 95.41 95 | 93.70 118 | 96.23 106 | 93.37 102 |
|
| PLC |  | 87.27 15 | 93.08 101 | 92.92 121 | 93.26 89 | 94.67 98 | 95.03 91 | 94.38 124 | 90.10 110 | 91.69 85 | 92.14 85 | 87.24 185 | 93.91 140 | 91.61 61 | 95.05 107 | 94.73 102 | 96.67 89 | 92.80 111 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| CANet | | | 93.07 102 | 93.05 120 | 93.10 94 | 95.90 66 | 95.41 80 | 95.88 88 | 91.94 79 | 84.77 165 | 93.36 57 | 94.05 113 | 95.25 124 | 86.25 131 | 94.33 119 | 93.94 113 | 95.30 128 | 93.58 97 |
|
| TSAR-MVS + COLMAP | | | 93.06 103 | 93.65 106 | 92.36 102 | 94.62 102 | 94.28 112 | 95.36 104 | 89.46 129 | 92.18 77 | 91.64 100 | 95.55 84 | 95.27 123 | 88.60 110 | 93.24 134 | 92.50 132 | 94.46 153 | 92.55 121 |
|
| ECVR-MVS |  | | 93.05 104 | 94.25 90 | 91.65 114 | 94.76 95 | 95.23 85 | 94.26 132 | 92.80 52 | 92.49 67 | 83.90 177 | 96.75 61 | 89.99 167 | 86.84 125 | 97.62 41 | 96.72 48 | 97.32 69 | 90.92 144 |
|
| Effi-MVS+ | | | 92.93 105 | 92.16 132 | 93.83 73 | 94.29 109 | 93.53 132 | 95.04 108 | 92.98 50 | 85.27 162 | 94.46 32 | 90.24 154 | 95.34 119 | 89.99 97 | 93.72 129 | 94.23 109 | 96.22 107 | 92.79 112 |
|
| Fast-Effi-MVS+ | | | 92.93 105 | 92.64 125 | 93.27 88 | 93.81 127 | 93.88 121 | 95.90 87 | 90.61 103 | 83.98 171 | 92.71 70 | 92.81 130 | 96.22 97 | 90.67 83 | 94.90 109 | 93.92 114 | 95.92 117 | 92.77 113 |
|
| HQP-MVS | | | 92.87 107 | 92.49 126 | 93.31 86 | 95.75 72 | 95.01 94 | 95.64 97 | 91.06 96 | 88.54 133 | 91.62 101 | 88.16 176 | 96.25 95 | 89.47 101 | 92.26 148 | 91.81 143 | 96.34 100 | 95.40 58 |
|
| FMVSNet1 | | | 92.86 108 | 95.26 61 | 90.06 142 | 92.40 164 | 95.16 87 | 94.37 125 | 92.22 63 | 93.18 56 | 82.16 189 | 96.76 60 | 97.48 65 | 81.85 164 | 95.32 97 | 94.98 91 | 97.34 68 | 93.93 89 |
|
| CLD-MVS | | | 92.81 109 | 94.32 84 | 91.05 127 | 95.39 78 | 95.31 83 | 95.82 90 | 81.44 204 | 89.40 126 | 91.94 90 | 95.86 75 | 97.36 66 | 85.83 134 | 95.35 96 | 94.59 104 | 95.85 119 | 92.34 122 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| IS_MVSNet | | | 92.76 110 | 93.25 118 | 92.19 107 | 94.91 92 | 95.56 76 | 95.86 89 | 92.12 70 | 88.10 137 | 82.71 184 | 93.15 126 | 88.30 179 | 88.86 105 | 97.29 48 | 96.95 42 | 98.66 10 | 93.38 101 |
|
| FC-MVSNet-train | | | 92.75 111 | 95.40 59 | 89.66 151 | 95.21 83 | 94.82 98 | 97.00 57 | 89.40 130 | 91.13 102 | 81.71 190 | 97.72 34 | 96.43 91 | 77.57 190 | 96.89 63 | 96.72 48 | 97.05 80 | 94.09 85 |
|
| V42 | | | 92.67 112 | 93.50 111 | 91.71 113 | 91.41 178 | 92.96 137 | 95.71 94 | 85.00 182 | 89.67 124 | 93.22 62 | 97.67 36 | 98.01 45 | 91.02 77 | 92.65 141 | 92.12 138 | 93.86 161 | 91.42 138 |
|
| PM-MVS | | | 92.65 113 | 93.20 119 | 92.00 109 | 92.11 172 | 90.16 174 | 95.99 86 | 84.81 186 | 91.31 99 | 92.41 80 | 95.87 74 | 96.64 88 | 92.35 49 | 93.65 131 | 92.91 128 | 94.34 156 | 91.85 131 |
|
| QAPM | | | 92.57 114 | 93.51 110 | 91.47 120 | 92.91 152 | 94.82 98 | 93.01 157 | 87.51 153 | 91.49 91 | 91.21 111 | 92.24 135 | 91.70 157 | 88.74 108 | 94.54 116 | 94.39 108 | 95.41 126 | 95.37 61 |
|
| MIMVSNet1 | | | 92.52 115 | 94.88 68 | 89.77 147 | 96.09 57 | 91.99 154 | 96.92 59 | 89.68 124 | 95.92 16 | 84.55 172 | 96.64 64 | 98.21 36 | 78.44 183 | 96.08 81 | 95.10 87 | 92.91 176 | 90.22 152 |
|
| tfpnnormal | | | 92.45 116 | 94.77 72 | 89.74 148 | 93.95 121 | 93.44 135 | 93.25 153 | 88.49 142 | 95.27 23 | 83.20 182 | 96.51 65 | 96.23 96 | 83.17 153 | 95.47 94 | 94.52 105 | 96.38 97 | 91.97 128 |
|
| PCF-MVS | | 87.46 14 | 92.44 117 | 91.80 134 | 93.19 92 | 94.66 99 | 95.80 70 | 96.37 80 | 90.19 109 | 87.57 142 | 92.23 84 | 89.26 164 | 93.97 139 | 89.24 102 | 91.32 162 | 90.82 158 | 96.46 96 | 93.86 90 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| casdiffmvs |  | | 92.42 118 | 93.99 94 | 90.60 134 | 93.25 141 | 93.82 123 | 94.28 131 | 88.73 138 | 91.53 89 | 84.53 174 | 97.74 32 | 98.64 20 | 86.60 128 | 93.21 136 | 91.20 153 | 96.21 108 | 91.76 136 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| AdaColmap |  | | 92.41 119 | 91.49 138 | 93.48 82 | 95.96 64 | 95.02 93 | 95.37 103 | 91.73 85 | 87.97 140 | 91.28 108 | 82.82 208 | 91.04 161 | 90.62 87 | 95.82 86 | 95.07 88 | 95.95 116 | 92.67 116 |
|
| v148 | | | 92.38 120 | 92.78 123 | 91.91 110 | 92.86 153 | 92.13 151 | 94.84 113 | 87.03 162 | 91.47 93 | 93.07 67 | 96.92 57 | 98.89 11 | 90.10 96 | 92.05 151 | 89.69 166 | 93.56 164 | 88.27 168 |
|
| pmmvs-eth3d | | | 92.34 121 | 92.33 127 | 92.34 103 | 92.67 157 | 90.67 168 | 96.37 80 | 89.06 134 | 90.98 106 | 93.60 54 | 97.13 53 | 97.02 76 | 88.29 113 | 90.20 169 | 91.42 151 | 94.07 159 | 88.89 163 |
|
| DELS-MVS | | | 92.33 122 | 93.61 109 | 90.83 130 | 92.84 154 | 95.13 89 | 94.76 117 | 87.22 161 | 87.78 141 | 88.42 150 | 95.78 78 | 95.28 122 | 85.71 137 | 94.44 117 | 93.91 115 | 96.01 114 | 92.97 109 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| Effi-MVS+-dtu | | | 92.32 123 | 91.66 136 | 93.09 95 | 95.13 86 | 94.73 100 | 94.57 122 | 92.14 68 | 81.74 183 | 90.33 125 | 88.13 177 | 95.91 105 | 89.24 102 | 94.23 124 | 93.65 120 | 97.12 77 | 93.23 103 |
|
| MGCFI-Net | | | 92.31 124 | 94.25 90 | 90.04 145 | 93.75 129 | 95.96 63 | 93.32 150 | 90.28 108 | 93.28 52 | 80.57 194 | 88.79 168 | 93.78 142 | 84.89 139 | 95.55 93 | 95.31 82 | 97.45 60 | 97.10 21 |
|
| UGNet | | | 92.31 124 | 94.70 73 | 89.53 153 | 90.99 186 | 95.53 77 | 96.19 84 | 92.10 72 | 91.35 98 | 85.76 162 | 95.31 90 | 95.48 114 | 76.84 195 | 95.22 102 | 94.79 98 | 95.32 127 | 95.19 63 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| USDC | | | 92.17 126 | 92.17 131 | 92.18 108 | 92.93 151 | 92.22 149 | 93.66 142 | 87.41 156 | 93.49 48 | 97.99 1 | 94.10 112 | 96.68 87 | 86.46 129 | 92.04 152 | 89.18 172 | 94.61 151 | 87.47 171 |
|
| ETV-MVS | | | 92.12 127 | 90.44 146 | 94.08 62 | 96.36 50 | 93.63 127 | 96.27 83 | 92.00 75 | 78.90 202 | 92.13 86 | 85.29 198 | 89.85 170 | 90.26 95 | 97.07 56 | 96.29 63 | 97.46 58 | 92.04 126 |
|
| IterMVS-LS | | | 92.10 128 | 92.33 127 | 91.82 112 | 93.18 142 | 93.66 125 | 92.80 164 | 92.27 62 | 90.82 109 | 90.59 120 | 97.19 49 | 90.97 162 | 87.76 119 | 89.60 176 | 90.94 157 | 94.34 156 | 93.16 106 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| MSDG | | | 92.09 129 | 92.84 122 | 91.22 126 | 92.55 159 | 92.97 136 | 93.42 147 | 85.43 180 | 90.24 115 | 91.83 95 | 94.70 101 | 94.59 132 | 88.48 111 | 94.91 108 | 93.31 125 | 95.59 124 | 89.15 158 |
|
| EIA-MVS | | | 91.95 130 | 90.36 148 | 93.81 76 | 96.54 45 | 94.65 102 | 95.38 102 | 90.40 107 | 78.01 207 | 93.72 50 | 86.70 192 | 91.95 156 | 89.93 98 | 95.67 91 | 94.72 103 | 96.89 85 | 90.79 146 |
|
| MAR-MVS | | | 91.86 131 | 91.14 142 | 92.71 98 | 94.29 109 | 94.24 113 | 94.91 111 | 91.82 82 | 81.66 184 | 93.32 58 | 84.51 201 | 93.42 148 | 86.86 124 | 95.16 104 | 94.44 106 | 95.05 141 | 94.53 79 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| EU-MVSNet | | | 91.63 132 | 92.73 124 | 90.35 138 | 88.36 205 | 87.89 185 | 96.53 72 | 81.51 203 | 92.45 70 | 91.82 96 | 96.44 68 | 97.05 75 | 93.26 32 | 94.10 125 | 88.94 177 | 90.61 183 | 92.24 123 |
|
| FC-MVSNet-test | | | 91.49 133 | 94.43 78 | 88.07 169 | 94.97 89 | 90.53 171 | 95.42 101 | 91.18 93 | 93.24 54 | 72.94 214 | 98.37 15 | 93.86 141 | 78.78 177 | 97.82 32 | 96.13 67 | 95.13 136 | 91.05 141 |
|
| FA-MVS(training) | | | 91.38 134 | 91.18 141 | 91.62 116 | 93.49 136 | 92.38 146 | 95.03 109 | 90.81 99 | 87.20 146 | 91.46 104 | 93.00 128 | 89.47 173 | 84.19 146 | 93.20 138 | 92.08 139 | 94.74 146 | 90.90 145 |
|
| OpenMVS |  | 89.22 12 | 91.09 135 | 91.42 139 | 90.71 132 | 92.79 156 | 93.61 129 | 92.74 165 | 85.47 179 | 86.10 155 | 90.73 115 | 85.71 197 | 93.07 152 | 86.69 127 | 94.07 126 | 93.34 124 | 95.86 118 | 94.02 87 |
|
| FPMVS | | | 90.81 136 | 91.60 137 | 89.88 146 | 92.52 160 | 88.18 181 | 93.31 151 | 83.62 192 | 91.59 88 | 88.45 149 | 88.96 167 | 89.73 172 | 86.96 122 | 96.42 77 | 95.69 77 | 94.43 154 | 90.65 147 |
|
| DI_MVS_plusplus_trai | | | 90.68 137 | 90.40 147 | 91.00 128 | 92.43 163 | 92.61 143 | 94.17 136 | 88.98 135 | 88.32 135 | 88.76 145 | 93.67 119 | 87.58 181 | 86.44 130 | 89.74 174 | 90.33 161 | 95.24 131 | 90.56 150 |
|
| Vis-MVSNet (Re-imp) | | | 90.68 137 | 92.18 130 | 88.92 158 | 94.63 100 | 92.75 140 | 92.91 160 | 91.20 92 | 89.21 128 | 75.01 210 | 93.96 117 | 89.07 177 | 82.72 157 | 95.88 85 | 95.30 83 | 97.08 79 | 89.08 160 |
|
| DPM-MVS | | | 90.67 139 | 89.86 152 | 91.63 115 | 95.29 81 | 94.16 114 | 94.52 123 | 89.63 125 | 89.59 125 | 89.67 133 | 81.95 210 | 88.64 178 | 85.75 136 | 90.46 167 | 90.43 160 | 94.91 144 | 93.77 92 |
|
| diffmvs |  | | 90.44 140 | 92.23 129 | 88.35 165 | 91.36 180 | 91.38 160 | 92.45 170 | 84.84 185 | 89.88 122 | 85.09 168 | 96.69 63 | 97.71 57 | 83.33 152 | 90.01 173 | 88.96 176 | 93.03 174 | 91.00 142 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| FMVSNet2 | | | 90.28 141 | 92.04 133 | 88.23 167 | 91.22 182 | 94.05 115 | 92.88 161 | 90.69 101 | 86.53 152 | 79.89 198 | 94.38 108 | 92.73 153 | 78.54 180 | 91.64 159 | 92.26 135 | 96.17 109 | 92.67 116 |
|
| IterMVS-SCA-FT | | | 90.24 142 | 89.37 158 | 91.26 125 | 92.50 161 | 92.11 152 | 91.69 181 | 87.48 154 | 87.05 148 | 91.82 96 | 95.76 79 | 87.25 182 | 91.36 65 | 89.02 181 | 85.53 192 | 92.68 177 | 88.90 162 |
|
| MVS_Test | | | 90.19 143 | 90.58 143 | 89.74 148 | 92.12 171 | 91.74 156 | 92.51 167 | 88.54 141 | 82.80 177 | 87.50 154 | 94.62 102 | 95.02 129 | 83.97 147 | 88.69 184 | 89.32 170 | 93.79 162 | 91.85 131 |
|
| EPNet | | | 90.17 144 | 89.07 160 | 91.45 121 | 97.25 19 | 90.62 170 | 94.84 113 | 93.54 44 | 80.96 186 | 91.85 94 | 86.98 188 | 85.88 187 | 77.79 187 | 92.30 147 | 92.58 131 | 93.41 166 | 94.20 84 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| PVSNet_BlendedMVS | | | 90.09 145 | 90.12 150 | 90.05 143 | 92.40 164 | 92.74 141 | 91.74 177 | 85.89 175 | 80.54 189 | 90.30 126 | 88.54 172 | 95.51 112 | 84.69 142 | 92.64 142 | 90.25 162 | 95.28 129 | 90.61 148 |
|
| PVSNet_Blended | | | 90.09 145 | 90.12 150 | 90.05 143 | 92.40 164 | 92.74 141 | 91.74 177 | 85.89 175 | 80.54 189 | 90.30 126 | 88.54 172 | 95.51 112 | 84.69 142 | 92.64 142 | 90.25 162 | 95.28 129 | 90.61 148 |
|
| pmmvs4 | | | 89.95 147 | 89.32 159 | 90.69 133 | 91.60 177 | 89.17 178 | 94.37 125 | 87.63 150 | 88.07 139 | 91.02 113 | 94.50 105 | 90.50 165 | 86.13 132 | 86.33 198 | 89.40 169 | 93.39 167 | 87.29 174 |
|
| MDA-MVSNet-bldmvs | | | 89.75 148 | 91.67 135 | 87.50 174 | 74.25 224 | 90.88 165 | 94.68 119 | 85.89 175 | 91.64 86 | 91.03 112 | 95.86 75 | 94.35 136 | 89.10 104 | 96.87 65 | 86.37 188 | 90.04 184 | 85.72 179 |
|
| WB-MVS | | | 89.70 149 | 94.13 92 | 84.54 194 | 88.16 207 | 92.57 144 | 88.90 201 | 88.32 143 | 96.67 11 | 73.61 213 | 98.29 18 | 98.80 15 | 80.60 170 | 95.73 89 | 92.18 136 | 87.66 196 | 84.64 182 |
|
| tttt0517 | | | 89.64 150 | 88.05 171 | 91.49 119 | 93.52 134 | 91.65 157 | 93.67 141 | 87.53 151 | 82.77 178 | 89.39 138 | 90.37 152 | 70.05 216 | 88.21 114 | 93.71 130 | 93.79 116 | 96.63 90 | 94.04 86 |
|
| PatchMatch-RL | | | 89.59 151 | 88.80 164 | 90.51 135 | 92.20 170 | 88.00 184 | 91.72 179 | 86.64 167 | 84.75 166 | 88.25 151 | 87.10 187 | 90.66 164 | 89.85 100 | 93.23 135 | 92.28 134 | 94.41 155 | 85.60 180 |
|
| Fast-Effi-MVS+-dtu | | | 89.57 152 | 88.42 168 | 90.92 129 | 93.35 139 | 91.57 158 | 93.01 157 | 95.71 9 | 78.94 201 | 87.65 153 | 84.68 200 | 93.14 151 | 82.00 162 | 90.84 165 | 91.01 156 | 93.78 163 | 88.77 164 |
|
| thisisatest0530 | | | 89.54 153 | 87.99 173 | 91.35 124 | 93.17 143 | 91.31 161 | 93.45 146 | 87.53 151 | 82.96 176 | 89.17 140 | 90.45 149 | 70.32 215 | 88.21 114 | 93.37 133 | 93.79 116 | 96.54 92 | 93.71 94 |
|
| test2506 | | | 89.51 154 | 87.77 176 | 91.55 117 | 94.76 95 | 95.23 85 | 94.26 132 | 92.80 52 | 92.49 67 | 83.31 181 | 89.97 157 | 50.93 230 | 86.84 125 | 97.62 41 | 96.72 48 | 97.32 69 | 91.42 138 |
|
| GBi-Net | | | 89.35 155 | 90.58 143 | 87.91 170 | 91.22 182 | 94.05 115 | 92.88 161 | 90.05 112 | 79.40 193 | 78.60 201 | 90.58 145 | 87.05 183 | 78.54 180 | 95.32 97 | 94.98 91 | 96.17 109 | 92.67 116 |
|
| test1 | | | 89.35 155 | 90.58 143 | 87.91 170 | 91.22 182 | 94.05 115 | 92.88 161 | 90.05 112 | 79.40 193 | 78.60 201 | 90.58 145 | 87.05 183 | 78.54 180 | 95.32 97 | 94.98 91 | 96.17 109 | 92.67 116 |
|
| thres600view7 | | | 89.14 157 | 88.83 162 | 89.51 154 | 93.71 132 | 93.55 130 | 93.93 139 | 88.02 147 | 87.30 144 | 82.40 185 | 81.18 211 | 80.63 202 | 82.69 158 | 94.27 121 | 95.90 70 | 96.27 104 | 88.94 161 |
|
| CVMVSNet | | | 88.97 158 | 89.73 154 | 88.10 168 | 87.33 212 | 85.22 195 | 94.68 119 | 78.68 205 | 88.94 130 | 86.98 159 | 95.55 84 | 85.71 188 | 89.87 99 | 91.19 163 | 89.69 166 | 91.05 181 | 91.78 134 |
|
| CANet_DTU | | | 88.95 159 | 89.51 157 | 88.29 166 | 93.12 146 | 91.22 163 | 93.61 143 | 83.47 195 | 80.07 192 | 90.71 119 | 89.19 165 | 93.68 146 | 76.27 199 | 91.44 161 | 91.17 155 | 92.59 178 | 89.83 154 |
|
| GA-MVS | | | 88.76 160 | 88.04 172 | 89.59 152 | 92.32 167 | 91.46 159 | 92.28 172 | 86.62 168 | 83.82 173 | 89.84 129 | 92.51 134 | 81.94 196 | 83.53 151 | 89.41 178 | 89.27 171 | 92.95 175 | 87.90 169 |
|
| pmmvs5 | | | 88.63 161 | 89.70 155 | 87.39 175 | 89.24 198 | 90.64 169 | 91.87 176 | 82.13 199 | 83.34 174 | 87.86 152 | 94.58 103 | 96.15 100 | 79.87 174 | 87.33 193 | 89.07 175 | 93.39 167 | 86.76 175 |
|
| thres400 | | | 88.54 162 | 88.15 170 | 88.98 156 | 93.17 143 | 92.84 138 | 93.56 144 | 86.93 164 | 86.45 153 | 82.37 186 | 79.96 213 | 81.46 199 | 81.83 165 | 93.21 136 | 94.76 100 | 96.04 113 | 88.39 166 |
|
| CDS-MVSNet | | | 88.41 163 | 89.79 153 | 86.79 180 | 94.55 105 | 90.82 166 | 92.50 168 | 89.85 119 | 83.26 175 | 80.52 195 | 91.05 141 | 89.93 169 | 69.11 210 | 93.17 139 | 92.71 130 | 94.21 158 | 87.63 170 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| gg-mvs-nofinetune | | | 88.32 164 | 88.81 163 | 87.75 172 | 93.07 147 | 89.37 177 | 89.06 200 | 95.94 8 | 95.29 21 | 87.15 155 | 97.38 44 | 76.38 205 | 68.05 213 | 91.04 164 | 89.10 174 | 93.24 170 | 83.10 189 |
|
| IterMVS | | | 88.32 164 | 88.25 169 | 88.41 164 | 90.83 188 | 91.24 162 | 93.07 156 | 81.69 201 | 86.77 150 | 88.55 146 | 95.61 80 | 86.91 186 | 87.01 121 | 87.38 192 | 83.77 194 | 89.29 186 | 86.06 178 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| thres200 | | | 88.29 166 | 87.88 174 | 88.76 160 | 92.50 161 | 93.55 130 | 92.47 169 | 88.02 147 | 84.80 164 | 81.44 191 | 79.28 215 | 82.20 195 | 81.83 165 | 94.27 121 | 93.67 119 | 96.27 104 | 87.40 172 |
|
| IB-MVS | | 86.01 17 | 88.24 167 | 87.63 177 | 88.94 157 | 92.03 173 | 91.77 155 | 92.40 171 | 85.58 178 | 78.24 204 | 84.85 169 | 71.99 220 | 93.45 147 | 83.96 148 | 93.48 132 | 92.33 133 | 94.84 145 | 92.15 124 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| MDTV_nov1_ep13_2view | | | 88.22 168 | 87.85 175 | 88.65 162 | 91.40 179 | 86.75 189 | 94.07 137 | 84.97 183 | 88.86 132 | 93.20 63 | 96.11 73 | 96.21 99 | 83.70 150 | 87.29 194 | 80.29 201 | 84.56 205 | 79.46 202 |
|
| test20.03 | | | 88.20 169 | 91.26 140 | 84.63 192 | 96.64 42 | 89.39 176 | 90.73 188 | 89.97 117 | 91.07 104 | 72.02 216 | 94.98 97 | 95.45 115 | 69.35 209 | 92.70 140 | 91.19 154 | 89.06 188 | 84.02 183 |
|
| HyFIR lowres test | | | 88.19 170 | 86.56 184 | 90.09 141 | 91.24 181 | 92.17 150 | 94.30 130 | 88.79 137 | 84.06 168 | 85.45 165 | 89.52 162 | 85.64 189 | 88.64 109 | 85.40 201 | 87.28 182 | 92.14 180 | 81.87 192 |
|
| ET-MVSNet_ETH3D | | | 88.06 171 | 85.75 189 | 90.74 131 | 92.82 155 | 90.68 167 | 93.77 140 | 88.59 139 | 81.22 185 | 89.78 131 | 89.15 166 | 66.79 223 | 84.29 145 | 91.72 157 | 91.34 152 | 95.22 132 | 89.36 157 |
|
| tfpn200view9 | | | 87.94 172 | 87.51 179 | 88.44 163 | 92.28 168 | 93.63 127 | 93.35 149 | 88.11 145 | 80.90 187 | 80.89 192 | 78.25 216 | 82.25 193 | 79.65 176 | 94.27 121 | 94.76 100 | 96.36 98 | 88.48 165 |
|
| FMVSNet3 | | | 87.90 173 | 88.63 166 | 87.04 176 | 89.78 196 | 93.46 134 | 91.62 182 | 90.05 112 | 79.40 193 | 78.60 201 | 90.58 145 | 87.05 183 | 77.07 194 | 88.03 189 | 89.86 165 | 95.12 137 | 92.04 126 |
|
| MS-PatchMatch | | | 87.72 174 | 88.62 167 | 86.66 181 | 90.81 189 | 88.18 181 | 90.92 185 | 82.25 198 | 85.86 157 | 80.40 196 | 90.14 156 | 89.29 175 | 84.93 138 | 89.39 179 | 89.12 173 | 90.67 182 | 88.34 167 |
|
| Anonymous20231206 | | | 87.45 175 | 89.66 156 | 84.87 189 | 94.00 117 | 87.73 187 | 91.36 183 | 86.41 172 | 88.89 131 | 75.03 209 | 92.59 133 | 96.82 82 | 72.48 207 | 89.72 175 | 88.06 179 | 89.93 185 | 83.81 185 |
|
| EPNet_dtu | | | 87.40 176 | 86.27 185 | 88.72 161 | 95.68 74 | 83.37 201 | 92.09 174 | 90.08 111 | 78.11 206 | 91.29 107 | 86.33 193 | 89.74 171 | 75.39 202 | 89.07 180 | 87.89 180 | 87.81 193 | 89.38 156 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| baseline1 | | | 86.96 177 | 87.58 178 | 86.24 183 | 93.07 147 | 90.44 172 | 89.24 199 | 86.85 166 | 85.14 163 | 77.26 207 | 90.45 149 | 76.09 207 | 75.79 200 | 91.80 156 | 91.81 143 | 95.20 133 | 87.35 173 |
|
| baseline | | | 86.71 178 | 88.89 161 | 84.16 195 | 87.85 208 | 85.23 194 | 89.82 193 | 77.69 208 | 84.03 170 | 84.75 170 | 94.91 99 | 94.59 132 | 77.19 193 | 86.57 197 | 86.51 187 | 87.66 196 | 90.36 151 |
|
| CHOSEN 1792x2688 | | | 86.64 179 | 86.62 182 | 86.65 182 | 90.33 192 | 87.86 186 | 93.19 154 | 83.30 196 | 83.95 172 | 82.32 187 | 87.93 179 | 89.34 174 | 86.92 123 | 85.64 200 | 84.95 193 | 83.85 209 | 86.68 176 |
|
| dmvs_re | | | 86.51 180 | 86.14 187 | 86.95 178 | 93.07 147 | 86.11 191 | 92.01 175 | 86.04 174 | 72.70 217 | 79.10 199 | 75.37 219 | 89.99 167 | 78.10 186 | 94.56 115 | 93.01 126 | 93.35 169 | 91.26 140 |
|
| testgi | | | 86.49 181 | 90.31 149 | 82.03 199 | 95.63 75 | 88.18 181 | 93.47 145 | 84.89 184 | 93.23 55 | 69.54 220 | 87.16 186 | 97.96 47 | 60.66 217 | 91.90 155 | 89.90 164 | 87.99 191 | 83.84 184 |
|
| thres100view900 | | | 86.46 182 | 86.00 188 | 86.99 177 | 92.28 168 | 91.03 164 | 91.09 184 | 84.49 188 | 80.90 187 | 80.89 192 | 78.25 216 | 82.25 193 | 77.57 190 | 90.17 170 | 92.84 129 | 95.63 123 | 86.57 177 |
|
| gm-plane-assit | | | 86.15 183 | 82.51 197 | 90.40 137 | 95.81 70 | 92.29 147 | 97.99 34 | 84.66 187 | 92.15 78 | 93.15 65 | 97.84 30 | 44.65 231 | 78.60 179 | 88.02 190 | 85.95 189 | 92.20 179 | 76.69 210 |
|
| CMPMVS |  | 66.55 18 | 85.55 184 | 87.46 180 | 83.32 196 | 84.99 214 | 81.97 206 | 79.19 221 | 75.93 210 | 79.32 196 | 88.82 143 | 85.09 199 | 91.07 160 | 82.12 161 | 92.56 144 | 89.63 168 | 88.84 189 | 92.56 120 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| CR-MVSNet | | | 85.32 185 | 81.58 199 | 89.69 150 | 90.36 191 | 84.79 197 | 86.72 212 | 92.22 63 | 75.38 212 | 90.73 115 | 90.41 151 | 67.88 220 | 84.86 140 | 83.76 204 | 85.74 190 | 93.24 170 | 83.14 187 |
|
| baseline2 | | | 84.95 186 | 82.68 196 | 87.59 173 | 92.64 158 | 88.41 180 | 90.09 190 | 84.25 189 | 75.88 210 | 85.23 166 | 82.49 209 | 71.15 213 | 80.14 173 | 88.21 188 | 87.21 185 | 93.21 173 | 85.39 181 |
|
| pmnet_mix02 | | | 84.85 187 | 86.58 183 | 82.83 197 | 90.19 193 | 81.10 209 | 88.52 204 | 78.58 206 | 91.50 90 | 80.32 197 | 96.48 66 | 95.86 106 | 75.42 201 | 85.17 202 | 76.44 210 | 83.91 208 | 79.51 201 |
|
| MVSTER | | | 84.79 188 | 83.79 192 | 85.96 185 | 89.14 199 | 89.80 175 | 89.39 197 | 82.99 197 | 74.16 216 | 82.78 183 | 85.97 195 | 66.81 222 | 76.84 195 | 90.77 166 | 88.83 178 | 94.66 148 | 90.19 153 |
|
| MIMVSNet | | | 84.76 189 | 86.75 181 | 82.44 198 | 91.71 176 | 85.95 192 | 89.74 195 | 89.49 127 | 85.28 161 | 69.69 219 | 87.93 179 | 90.88 163 | 64.85 215 | 88.26 187 | 87.74 181 | 89.18 187 | 81.24 193 |
|
| SCA | | | 84.69 190 | 81.10 200 | 88.87 159 | 89.02 200 | 90.31 173 | 92.21 173 | 92.09 73 | 82.72 179 | 89.68 132 | 86.83 190 | 73.08 209 | 85.80 135 | 80.50 212 | 77.51 207 | 84.45 207 | 76.80 209 |
|
| new-patchmatchnet | | | 84.45 191 | 88.75 165 | 79.43 205 | 93.28 140 | 81.87 207 | 81.68 218 | 83.48 194 | 94.47 29 | 71.53 217 | 98.33 16 | 97.88 51 | 58.61 220 | 90.35 168 | 77.33 208 | 87.99 191 | 81.05 195 |
|
| PatchT | | | 83.44 192 | 81.10 200 | 86.18 184 | 77.92 222 | 82.58 205 | 89.87 192 | 87.39 157 | 75.88 210 | 90.73 115 | 89.86 158 | 66.71 224 | 84.86 140 | 83.76 204 | 85.74 190 | 86.33 202 | 83.14 187 |
|
| RPMNet | | | 83.42 193 | 78.40 209 | 89.28 155 | 89.79 195 | 84.79 197 | 90.64 189 | 92.11 71 | 75.38 212 | 87.10 157 | 79.80 214 | 61.99 229 | 82.79 156 | 81.88 210 | 82.07 198 | 93.23 172 | 82.87 190 |
|
| TAMVS | | | 82.96 194 | 86.15 186 | 79.24 208 | 90.57 190 | 83.12 204 | 87.29 208 | 75.12 212 | 84.06 168 | 65.81 221 | 92.22 136 | 88.27 180 | 69.11 210 | 88.72 182 | 87.26 184 | 87.56 198 | 79.38 203 |
|
| PatchmatchNet |  | | 82.44 195 | 78.69 208 | 86.83 179 | 89.81 194 | 81.55 208 | 90.78 187 | 87.27 160 | 82.39 181 | 88.85 142 | 88.31 175 | 70.96 214 | 81.90 163 | 78.58 216 | 74.33 216 | 82.35 213 | 74.69 213 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| MDTV_nov1_ep13 | | | 82.33 196 | 79.66 203 | 85.45 187 | 88.83 202 | 83.88 199 | 90.09 190 | 81.98 200 | 79.07 200 | 88.82 143 | 88.70 169 | 73.77 208 | 78.41 184 | 80.29 214 | 76.08 211 | 84.56 205 | 75.83 211 |
|
| CostFormer | | | 82.15 197 | 79.54 204 | 85.20 188 | 88.92 201 | 85.70 193 | 90.87 186 | 86.26 173 | 79.19 199 | 83.87 178 | 87.89 181 | 69.20 218 | 76.62 197 | 77.50 219 | 75.28 213 | 84.69 204 | 82.02 191 |
|
| PMMVS | | | 81.93 198 | 83.48 194 | 80.12 204 | 72.35 225 | 75.05 218 | 88.54 203 | 64.01 217 | 77.02 209 | 82.22 188 | 87.51 183 | 91.12 159 | 79.70 175 | 86.59 195 | 86.64 186 | 93.88 160 | 80.41 196 |
|
| pmmvs3 | | | 81.69 199 | 83.83 191 | 79.19 209 | 78.33 221 | 78.57 212 | 89.53 196 | 58.71 220 | 78.88 203 | 84.34 175 | 88.36 174 | 91.96 155 | 77.69 189 | 87.48 191 | 82.42 197 | 86.54 201 | 79.18 204 |
|
| tpm | | | 81.58 200 | 78.84 206 | 84.79 191 | 91.11 185 | 79.50 210 | 89.79 194 | 83.75 190 | 79.30 197 | 92.05 88 | 90.98 142 | 64.78 226 | 74.54 203 | 80.50 212 | 76.67 209 | 77.49 218 | 80.15 199 |
|
| test0.0.03 1 | | | 81.51 201 | 83.30 195 | 79.42 206 | 93.99 118 | 86.50 190 | 85.93 216 | 87.32 158 | 78.16 205 | 61.62 222 | 80.78 212 | 81.78 197 | 59.87 218 | 88.40 186 | 87.27 183 | 87.78 195 | 80.19 198 |
|
| dps | | | 81.42 202 | 77.88 214 | 85.56 186 | 87.67 210 | 85.17 196 | 88.37 206 | 87.46 155 | 74.37 215 | 84.55 172 | 86.80 191 | 62.18 228 | 80.20 172 | 81.13 211 | 77.52 206 | 85.10 203 | 77.98 207 |
|
| test-LLR | | | 80.62 203 | 77.20 217 | 84.62 193 | 93.99 118 | 75.11 216 | 87.04 209 | 87.32 158 | 70.11 220 | 78.59 204 | 83.17 206 | 71.60 211 | 73.88 205 | 82.32 208 | 79.20 203 | 86.91 199 | 78.87 205 |
|
| tpm cat1 | | | 80.03 204 | 75.93 220 | 84.81 190 | 89.31 197 | 83.26 203 | 88.86 202 | 86.55 171 | 79.24 198 | 86.10 161 | 84.22 202 | 63.62 227 | 77.37 192 | 73.43 220 | 70.88 219 | 80.67 214 | 76.87 208 |
|
| N_pmnet | | | 79.33 205 | 84.22 190 | 73.62 215 | 91.72 175 | 73.72 219 | 86.11 214 | 76.36 209 | 92.38 71 | 53.38 223 | 95.54 86 | 95.62 110 | 59.14 219 | 84.23 203 | 74.84 215 | 75.03 221 | 73.25 217 |
|
| EPMVS | | | 79.26 206 | 78.20 212 | 80.49 202 | 87.04 213 | 78.86 211 | 86.08 215 | 83.51 193 | 82.63 180 | 73.94 212 | 89.59 160 | 68.67 219 | 72.03 208 | 78.17 217 | 75.08 214 | 80.37 215 | 74.37 214 |
|
| CHOSEN 280x420 | | | 79.24 207 | 78.26 211 | 80.38 203 | 79.60 220 | 68.80 224 | 89.32 198 | 75.38 211 | 77.25 208 | 78.02 206 | 75.57 218 | 76.17 206 | 81.19 168 | 88.61 185 | 81.39 199 | 78.79 216 | 80.03 200 |
|
| ADS-MVSNet | | | 79.11 208 | 79.38 205 | 78.80 211 | 81.90 218 | 75.59 215 | 84.36 217 | 83.69 191 | 87.31 143 | 76.76 208 | 87.58 182 | 76.90 204 | 68.55 212 | 78.70 215 | 75.56 212 | 77.53 217 | 74.07 215 |
|
| FMVSNet5 | | | 79.08 209 | 78.83 207 | 79.38 207 | 87.52 211 | 86.78 188 | 87.64 207 | 78.15 207 | 69.54 222 | 70.64 218 | 65.97 223 | 65.44 225 | 63.87 216 | 90.17 170 | 90.46 159 | 88.48 190 | 83.45 186 |
|
| tpmrst | | | 78.81 210 | 76.18 219 | 81.87 200 | 88.56 203 | 77.45 213 | 86.74 211 | 81.52 202 | 80.08 191 | 83.48 180 | 90.84 144 | 66.88 221 | 74.54 203 | 73.04 221 | 71.02 218 | 76.38 219 | 73.95 216 |
|
| test-mter | | | 78.71 211 | 78.35 210 | 79.12 210 | 84.03 215 | 76.58 214 | 88.51 205 | 59.06 219 | 71.06 218 | 78.87 200 | 83.73 205 | 71.83 210 | 76.44 198 | 83.41 207 | 80.61 200 | 87.79 194 | 81.24 193 |
|
| MVS-HIRNet | | | 78.28 212 | 75.28 221 | 81.79 201 | 80.33 219 | 69.38 223 | 76.83 222 | 86.59 169 | 70.76 219 | 86.66 160 | 89.57 161 | 81.04 200 | 77.74 188 | 77.81 218 | 71.65 217 | 82.62 211 | 66.73 221 |
|
| E-PMN | | | 77.81 213 | 77.88 214 | 77.73 214 | 88.26 206 | 70.48 222 | 80.19 220 | 71.20 214 | 86.66 151 | 72.89 215 | 88.09 178 | 81.74 198 | 78.75 178 | 90.02 172 | 68.30 220 | 75.10 220 | 59.85 222 |
|
| EMVS | | | 77.65 214 | 77.49 216 | 77.83 212 | 87.75 209 | 71.02 221 | 81.13 219 | 70.54 215 | 86.38 154 | 74.52 211 | 89.38 163 | 80.19 203 | 78.22 185 | 89.48 177 | 67.13 221 | 74.83 222 | 58.84 223 |
|
| TESTMET0.1,1 | | | 77.47 215 | 77.20 217 | 77.78 213 | 81.94 217 | 75.11 216 | 87.04 209 | 58.33 221 | 70.11 220 | 78.59 204 | 83.17 206 | 71.60 211 | 73.88 205 | 82.32 208 | 79.20 203 | 86.91 199 | 78.87 205 |
|
| new_pmnet | | | 76.65 216 | 83.52 193 | 68.63 216 | 82.60 216 | 72.08 220 | 76.76 223 | 64.17 216 | 84.41 167 | 49.73 225 | 91.77 139 | 91.53 158 | 56.16 221 | 86.59 195 | 83.26 196 | 82.37 212 | 75.02 212 |
|
| MVE |  | 60.41 19 | 73.21 217 | 80.84 202 | 64.30 217 | 56.34 226 | 57.24 226 | 75.28 225 | 72.76 213 | 87.14 147 | 41.39 227 | 86.31 194 | 85.30 190 | 80.66 169 | 86.17 199 | 83.36 195 | 59.35 224 | 80.38 197 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| PMMVS2 | | | 69.86 218 | 82.14 198 | 55.52 218 | 75.19 223 | 63.08 225 | 75.52 224 | 60.97 218 | 88.50 134 | 25.11 229 | 91.77 139 | 96.44 90 | 25.43 223 | 88.70 183 | 79.34 202 | 70.93 223 | 67.17 220 |
|
| GG-mvs-BLEND | | | 54.28 219 | 77.89 213 | 26.72 221 | 0.37 231 | 83.31 202 | 70.04 226 | 0.39 227 | 74.71 214 | 5.36 230 | 68.78 221 | 83.06 192 | 0.62 227 | 83.73 206 | 78.99 205 | 83.55 210 | 72.68 219 |
|
| test_method | | | 43.16 220 | 51.13 222 | 33.85 219 | 7.35 228 | 12.38 229 | 51.70 228 | 11.91 223 | 62.51 224 | 47.64 226 | 62.49 224 | 80.78 201 | 28.84 222 | 59.55 224 | 34.48 223 | 55.68 225 | 45.72 224 |
|
| testmvs | | | 2.38 221 | 3.35 223 | 1.26 223 | 0.83 229 | 0.96 231 | 1.53 231 | 0.83 225 | 3.59 226 | 1.63 232 | 6.03 226 | 2.93 233 | 1.55 226 | 3.49 225 | 2.51 225 | 1.21 229 | 3.92 226 |
|
| test123 | | | 2.16 222 | 2.82 224 | 1.41 222 | 0.62 230 | 1.18 230 | 1.53 231 | 0.82 226 | 2.78 227 | 2.27 231 | 4.18 227 | 1.98 234 | 1.64 225 | 2.58 226 | 3.01 224 | 1.56 228 | 4.00 225 |
|
| uanet_test | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 232 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 235 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| sosnet-low-res | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 232 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 235 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| sosnet | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 232 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 235 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| TPM-MVS | | | | | | 94.35 108 | 93.52 133 | 92.94 159 | | | 89.43 137 | 84.20 203 | 90.07 166 | 80.21 171 | | | 94.56 152 | 93.77 92 |
| Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025 |
| RE-MVS-def | | | | | | | | | | | 97.21 5 | | | | | | | |
|
| 9.14 | | | | | | | | | | | | | 93.19 150 | | | | | |
|
| SR-MVS | | | | | | 97.13 23 | | | 94.77 17 | | | | 97.77 54 | | | | | |
|
| Anonymous202405211 | | | | 94.63 74 | | 94.51 106 | 94.96 96 | 93.94 138 | 91.35 90 | 90.82 109 | | 95.60 82 | 95.85 107 | 81.74 167 | 96.47 75 | 95.84 73 | 97.39 65 | 92.85 110 |
|
| our_test_3 | | | | | | 91.78 174 | 88.87 179 | 94.37 125 | | | | | | | | | | |
|
| ambc | | | | 94.61 75 | | 98.09 4 | 95.14 88 | 91.71 180 | | 94.18 38 | 96.46 12 | 96.26 69 | 96.30 93 | 91.26 68 | 94.70 111 | 92.00 142 | 93.45 165 | 93.67 95 |
|
| MTAPA | | | | | | | | | | | 94.88 28 | | 96.88 80 | | | | | |
|
| MTMP | | | | | | | | | | | 95.43 18 | | 97.25 68 | | | | | |
|
| Patchmatch-RL test | | | | | | | | 8.96 230 | | | | | | | | | | |
|
| tmp_tt | | | | | 28.44 220 | 36.05 227 | 15.86 228 | 21.29 229 | 6.40 224 | 54.52 225 | 51.96 224 | 50.37 225 | 38.68 232 | 9.55 224 | 61.75 223 | 59.66 222 | 45.36 227 | |
|
| XVS | | | | | | 96.86 32 | 97.48 18 | 98.73 3 | | | 93.28 59 | | 96.82 82 | | | | 98.17 35 | |
|
| X-MVStestdata | | | | | | 96.86 32 | 97.48 18 | 98.73 3 | | | 93.28 59 | | 96.82 82 | | | | 98.17 35 | |
|
| mPP-MVS | | | | | | 98.24 2 | | | | | | | 97.65 60 | | | | | |
|
| NP-MVS | | | | | | | | | | 85.48 160 | | | | | | | | |
|
| Patchmtry | | | | | | | 83.74 200 | 86.72 212 | 92.22 63 | | 90.73 115 | | | | | | | |
|
| DeepMVS_CX |  | | | | | | 47.68 227 | 53.20 227 | 19.21 222 | 63.24 223 | 26.96 228 | 66.50 222 | 69.82 217 | 66.91 214 | 64.27 222 | | 54.91 226 | 72.72 218 |
|