This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB95.06 197.73 198.39 196.95 196.33 5196.94 3598.30 2094.90 1598.61 197.73 397.97 2598.57 2395.74 499.24 198.70 498.72 798.70 2
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement97.59 298.32 296.73 495.90 6698.10 299.08 293.92 3198.24 396.44 1398.12 2097.86 5396.06 299.24 198.93 199.00 297.77 5
WR-MVS97.53 398.20 396.76 396.93 2998.17 198.60 1096.67 796.39 1594.46 3299.14 198.92 1094.57 1599.06 398.80 299.32 196.92 28
SixPastTwentyTwo97.36 497.73 1096.92 297.36 1396.15 5698.29 2194.43 2396.50 1396.96 798.74 598.74 1896.04 399.03 597.74 1698.44 2397.22 14
PS-CasMVS97.22 597.84 796.50 597.08 2597.92 698.17 3097.02 294.71 2795.32 2198.52 1298.97 992.91 4299.04 498.47 598.49 1997.24 13
PEN-MVS97.16 697.87 696.33 1197.20 2197.97 498.25 2596.86 695.09 2594.93 2698.66 799.16 592.27 5298.98 698.39 798.49 1996.83 32
DTE-MVSNet97.16 697.75 996.47 697.40 1297.95 598.20 2896.89 595.30 2095.15 2498.66 798.80 1592.77 4698.97 798.27 998.44 2396.28 42
COLMAP_ROBcopyleft93.74 297.09 897.98 496.05 1795.97 6397.78 998.56 1191.72 8697.53 796.01 1598.14 1998.76 1795.28 598.76 1198.23 1098.77 596.67 36
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
WR-MVS_H97.06 997.78 896.23 1396.74 3798.04 398.25 2597.32 194.40 3393.71 5298.55 1098.89 1192.97 3998.91 998.45 698.38 2897.19 15
CP-MVSNet96.97 1097.42 1496.44 797.06 2697.82 898.12 3396.98 393.50 4795.21 2397.98 2498.44 2692.83 4598.93 898.37 898.46 2296.91 29
DVP-MVS++96.63 1197.92 595.12 4097.77 697.52 1598.29 2193.83 3496.72 992.52 7598.10 2199.07 890.87 7897.83 3197.44 2897.44 6198.76 1
ACMH90.17 896.61 1297.69 1295.35 3095.29 8196.94 3598.43 1492.05 7498.04 495.38 1998.07 2299.25 493.23 3398.35 1697.16 3997.72 5196.00 47
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UA-Net96.56 1396.73 2496.36 998.99 197.90 797.79 4395.64 1092.78 6292.54 7496.23 7295.02 12994.31 1898.43 1598.12 1198.89 398.58 3
ACMMPR96.54 1496.71 2596.35 1097.55 997.63 1198.62 994.54 1994.45 3094.19 3995.04 9697.35 6794.92 1097.85 2897.50 2598.26 2997.17 16
v7n96.49 1597.20 1895.65 2295.57 7696.04 5897.93 3892.49 5896.40 1497.13 698.99 299.41 393.79 2597.84 3096.15 6597.00 8395.60 55
DeepC-MVS92.47 496.44 1696.75 2396.08 1697.57 797.19 3197.96 3794.28 2495.29 2194.92 2798.31 1796.92 7893.69 2796.81 6796.50 5698.06 4096.27 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMM90.06 996.31 1796.42 3296.19 1497.21 2097.16 3398.71 593.79 3794.35 3493.81 4692.80 13198.23 3495.11 698.07 2097.45 2798.51 1896.86 31
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+89.90 1096.27 1897.52 1394.81 4795.19 8497.18 3297.97 3692.52 5696.72 990.50 12297.31 4699.11 694.10 1998.67 1297.90 1498.56 1595.79 51
APDe-MVScopyleft96.23 1997.22 1795.08 4196.66 4197.56 1498.63 893.69 4194.62 2889.80 13097.73 3398.13 3893.84 2497.79 3397.63 1897.87 4797.08 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CP-MVS96.21 2096.16 4396.27 1297.56 897.13 3498.43 1494.70 1892.62 6594.13 4192.71 13298.03 4494.54 1698.00 2497.60 2098.23 3197.05 24
HFP-MVS96.18 2196.53 2995.77 2097.34 1697.26 2898.16 3194.54 1994.45 3092.52 7595.05 9496.95 7793.89 2297.28 4997.46 2698.19 3397.25 11
UniMVSNet_ETH3D96.15 2297.71 1194.33 5597.31 1796.71 4095.06 10796.91 497.86 590.42 12398.55 1099.60 188.01 11898.51 1397.81 1598.26 2994.95 67
MP-MVScopyleft96.13 2395.93 4796.37 898.19 397.31 2798.49 1394.53 2291.39 9794.38 3594.32 10996.43 9194.59 1497.75 3597.44 2898.04 4196.88 30
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMMPcopyleft96.12 2496.27 3995.93 1897.20 2197.60 1298.64 793.74 3892.47 6993.13 6693.23 12498.06 4194.51 1797.99 2597.57 2298.39 2796.99 25
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVScopyleft96.10 2597.23 1694.79 4996.28 5497.49 1697.90 3993.60 4395.47 1889.57 13697.32 4597.72 5693.89 2297.74 3697.53 2397.51 5797.34 9
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
LGP-MVS_train96.10 2596.29 3695.87 1996.72 3897.35 2698.43 1493.83 3490.81 11192.67 7395.05 9498.86 1395.01 798.11 1897.37 3598.52 1796.50 38
CSCG96.07 2797.15 1994.81 4796.06 6197.58 1396.52 7390.98 9796.51 1293.60 5497.13 5398.55 2493.01 3797.17 5395.36 8198.68 997.78 4
DPE-MVScopyleft96.00 2896.80 2295.06 4295.87 6997.47 2198.25 2593.73 3992.38 7191.57 10397.55 4097.97 4692.98 3897.49 4797.61 1997.96 4597.16 17
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SMA-MVScopyleft95.99 2996.48 3095.41 2997.43 1197.36 2497.55 4893.70 4094.05 4193.79 4797.02 5694.53 13492.28 5197.53 4597.19 3797.73 5097.67 7
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.95.99 2996.57 2895.31 3296.87 3096.50 4798.71 591.58 8793.25 5392.71 7096.86 5896.57 8993.92 2098.09 1997.91 1398.08 3896.81 33
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OPM-MVS95.96 3196.59 2795.23 3596.67 4096.52 4697.86 4193.28 4795.27 2393.46 5696.26 6998.85 1492.89 4397.09 5496.37 6097.22 7595.78 52
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
SteuartSystems-ACMMP95.96 3196.13 4495.76 2197.06 2697.36 2498.40 1894.24 2691.49 9191.91 9394.50 10596.89 7994.99 898.01 2397.44 2897.97 4497.25 11
Skip Steuart: Steuart Systems R&D Blog.
ACMP89.62 1195.96 3196.28 3795.59 2396.58 4397.23 3098.26 2493.22 4892.33 7492.31 8394.29 11098.73 1994.68 1298.04 2197.14 4098.47 2196.17 45
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PGM-MVS95.90 3495.72 5196.10 1597.53 1097.45 2298.55 1294.12 2890.25 11493.71 5293.20 12597.18 7194.63 1397.68 3997.34 3698.08 3896.97 26
PMVScopyleft87.16 1695.88 3596.47 3195.19 3797.00 2896.02 5996.70 6491.57 8894.43 3295.33 2097.16 5295.37 11792.39 4898.89 1098.72 398.17 3594.71 73
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ACMMP_NAP95.86 3696.18 4095.47 2897.11 2497.26 2898.37 1993.48 4593.49 4893.99 4495.61 8094.11 13892.49 4797.87 2797.44 2897.40 6497.52 8
Gipumacopyleft95.86 3696.17 4195.50 2795.92 6594.59 10694.77 11692.50 5797.82 697.90 295.56 8397.88 5194.71 1198.02 2294.81 9697.23 7494.48 80
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LS3D95.83 3896.35 3495.22 3696.47 4797.49 1697.99 3492.35 6194.92 2694.58 3094.88 10095.11 12791.52 6398.48 1498.05 1298.42 2595.49 56
SD-MVS95.77 3996.17 4195.30 3396.72 3896.19 5597.01 5693.04 4994.03 4292.71 7096.45 6796.78 8693.91 2196.79 6895.89 7198.42 2597.09 22
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SED-MVS95.73 4096.98 2094.28 5696.08 5997.39 2398.18 2993.80 3694.20 3689.61 13597.29 4797.49 6490.69 8297.74 3697.41 3297.32 6997.34 9
TranMVSNet+NR-MVSNet95.72 4196.42 3294.91 4696.21 5596.77 3996.90 6194.99 1392.62 6591.92 9298.51 1398.63 2190.82 7997.27 5096.83 4598.63 1294.31 81
DU-MVS95.51 4295.68 5295.33 3196.45 4896.44 4996.61 7095.32 1189.97 11993.78 4897.46 4298.07 4091.19 7097.03 5796.53 5398.61 1394.22 82
UniMVSNet (Re)95.46 4395.86 4995.00 4596.09 5796.60 4196.68 6894.99 1390.36 11392.13 8697.64 3798.13 3891.38 6496.90 6296.74 4798.73 694.63 76
RPSCF95.46 4396.95 2193.73 7995.72 7395.94 6495.58 9888.08 14695.31 1991.34 10696.26 6998.04 4393.63 2898.28 1797.67 1798.01 4297.13 18
anonymousdsp95.45 4596.70 2693.99 6788.43 20492.05 15399.18 185.42 18194.29 3596.10 1498.63 999.08 796.11 197.77 3497.41 3298.70 897.69 6
APD-MVScopyleft95.38 4695.68 5295.03 4397.30 1896.90 3797.83 4293.92 3189.40 12690.35 12495.41 8797.69 5892.97 3997.24 5297.17 3897.83 4895.96 48
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
UniMVSNet_NR-MVSNet95.34 4795.51 5695.14 3995.80 7196.55 4296.61 7094.79 1690.04 11893.78 4897.51 4197.25 6891.19 7096.68 7096.31 6298.65 1194.22 82
X-MVS95.33 4895.13 6495.57 2597.35 1497.48 1898.43 1494.28 2492.30 7593.28 5986.89 18996.82 8291.87 5797.85 2897.59 2198.19 3396.95 27
MSP-MVS95.32 4996.28 3794.19 5996.87 3097.77 1098.27 2393.88 3394.15 4089.63 13495.36 8898.37 2990.73 8094.37 11897.53 2395.77 12296.40 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
3Dnovator+92.82 395.22 5095.16 6295.29 3496.17 5696.55 4297.64 4594.02 3094.16 3994.29 3792.09 13893.71 14591.90 5596.68 7096.51 5497.70 5396.40 39
HPM-MVS++copyleft95.21 5194.89 6795.59 2397.79 595.39 8297.68 4494.05 2991.91 8394.35 3693.38 12295.07 12892.94 4196.01 8295.88 7296.73 8696.61 37
TSAR-MVS + ACMM95.17 5295.95 4594.26 5796.07 6096.46 4895.67 9694.21 2793.84 4490.99 11497.18 5095.24 12593.55 2996.60 7395.61 7995.06 14096.69 35
CPTT-MVS95.00 5394.52 7695.57 2596.84 3496.78 3897.88 4093.67 4292.20 7692.35 8285.87 19697.56 6394.98 996.96 6096.07 6897.70 5396.18 44
SF-MVS94.88 5495.87 4893.73 7995.30 7995.93 6594.80 11591.76 8493.11 5791.93 9195.83 7797.07 7491.11 7396.62 7296.44 5897.46 5896.13 46
Baseline_NR-MVSNet94.85 5595.35 6094.26 5796.45 4893.86 12296.70 6494.54 1990.07 11790.17 12898.77 497.89 4890.64 8597.03 5796.16 6497.04 8293.67 95
EG-PatchMatch MVS94.81 5695.53 5593.97 6895.89 6894.62 10495.55 10088.18 14492.77 6394.88 2897.04 5598.61 2293.31 3096.89 6395.19 8695.99 11593.56 98
CS-MVS94.76 5794.41 8095.18 3894.95 9095.99 6197.28 4991.99 7685.51 15994.55 3193.07 12797.69 5893.77 2697.08 5596.79 4698.53 1694.72 71
OMC-MVS94.74 5895.46 5893.91 7194.62 10296.26 5396.64 6989.36 13294.20 3694.15 4094.02 11597.73 5591.34 6696.15 8095.04 9097.37 6694.80 69
DeepC-MVS_fast91.38 694.73 5994.98 6594.44 5196.83 3696.12 5796.69 6692.17 6792.98 6093.72 5094.14 11195.45 11590.49 9195.73 8995.30 8396.71 8795.13 65
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PHI-MVS94.65 6094.84 6994.44 5194.95 9096.55 4296.46 7691.10 9588.96 12996.00 1694.55 10495.32 12090.67 8396.97 5996.69 5197.44 6194.84 68
CS-MVS-test94.63 6194.30 8695.02 4494.63 10095.71 7298.15 3292.13 6985.62 15894.22 3893.63 12097.63 6293.08 3697.50 4696.51 5497.88 4693.50 99
pmmvs694.58 6297.30 1591.40 12394.84 9494.61 10593.40 14892.43 6098.51 285.61 16498.73 699.53 284.40 14497.88 2697.03 4197.72 5194.79 70
DeepPCF-MVS90.68 794.56 6394.92 6694.15 6094.11 11595.71 7297.03 5590.65 10293.39 5194.08 4295.29 9194.15 13793.21 3495.22 10294.92 9495.82 12195.75 53
NR-MVSNet94.55 6495.66 5493.25 9194.26 11196.44 4996.69 6695.32 1189.97 11991.79 9897.46 4298.39 2882.85 15496.87 6596.48 5798.57 1493.98 88
Vis-MVSNetpermissive94.39 6595.85 5092.68 9990.91 18795.88 6797.62 4791.41 8991.95 8289.20 13997.29 4796.26 9490.60 9096.95 6195.91 6996.32 10296.71 34
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TSAR-MVS + GP.94.25 6694.81 7193.60 8196.52 4695.80 7094.37 12592.47 5990.89 10788.92 14195.34 8994.38 13592.85 4496.36 7895.62 7896.47 9495.28 62
CNVR-MVS94.24 6794.47 7793.96 6996.56 4495.67 7496.43 7791.95 7892.08 7991.28 10890.51 14895.35 11891.20 6996.34 7995.50 8096.34 10095.88 50
EC-MVSNet94.23 6893.81 10294.71 5094.85 9396.23 5497.14 5193.40 4681.79 18291.58 10293.29 12395.21 12693.13 3597.73 3896.95 4298.20 3295.45 57
v119293.98 6993.94 9694.01 6593.91 12494.63 10397.00 5789.75 12291.01 10596.50 1097.93 2698.26 3391.74 5992.06 15092.05 14095.18 13591.66 137
v1093.96 7094.12 9393.77 7893.37 13895.45 7896.83 6391.13 9489.70 12395.02 2597.88 2998.23 3491.27 6792.39 14592.18 13694.99 14293.00 108
CDPH-MVS93.96 7093.86 9894.08 6296.31 5295.84 6896.92 5991.85 8187.21 14591.25 11092.83 12996.06 10291.05 7595.57 9294.81 9697.12 7794.72 71
MVS_030493.92 7293.81 10294.05 6496.06 6196.00 6096.43 7792.76 5485.99 15694.43 3494.04 11497.08 7388.12 11794.65 11394.20 11096.47 9494.71 73
MSLP-MVS++93.91 7394.30 8693.45 8395.51 7795.83 6993.12 15591.93 8091.45 9491.40 10587.42 18496.12 10193.27 3196.57 7496.40 5995.49 12596.29 41
v192192093.90 7493.82 10094.00 6693.74 13094.31 11097.12 5289.33 13391.13 10296.77 997.90 2798.06 4191.95 5491.93 15491.54 14995.10 13891.85 131
train_agg93.89 7593.46 11394.40 5397.35 1493.78 12497.63 4692.19 6688.12 13690.52 12193.57 12195.78 10892.31 5094.78 11093.46 12196.36 9894.70 75
v14419293.89 7593.85 9993.94 7093.50 13594.33 10997.12 5289.49 12790.89 10796.49 1197.78 3198.27 3291.89 5692.17 14991.70 14695.19 13491.78 134
v124093.89 7593.72 10494.09 6193.98 12094.31 11097.12 5289.37 13190.74 11296.92 898.05 2397.89 4892.15 5391.53 16091.60 14794.99 14291.93 129
NCCC93.87 7893.42 11494.40 5396.84 3495.42 7996.47 7592.62 5592.36 7392.05 8883.83 20495.55 11191.84 5895.89 8495.23 8596.56 9195.63 54
v114493.83 7993.87 9793.78 7793.72 13194.57 10796.85 6289.98 11691.31 9995.90 1797.89 2898.40 2791.13 7292.01 15392.01 14195.10 13890.94 143
MVS_111021_HR93.82 8094.26 8993.31 8695.01 8893.97 12095.73 9389.75 12292.06 8092.49 7794.01 11696.05 10390.61 8995.95 8394.78 9996.28 10393.04 107
thisisatest051593.79 8194.41 8093.06 9694.14 11292.50 14595.56 9988.55 14091.61 8792.45 7896.84 5995.71 10990.62 8794.58 11495.07 8897.05 8094.58 77
TAPA-MVS88.94 1393.78 8294.31 8593.18 9394.14 11295.99 6195.74 9286.98 16393.43 5093.88 4590.16 15596.88 8091.05 7594.33 11993.95 11297.28 7295.40 58
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
GeoE93.72 8393.62 10893.84 7294.75 9794.90 9797.24 5091.81 8386.97 14992.74 6993.83 11897.24 7090.46 9295.10 10694.09 11196.08 11293.18 105
EPP-MVSNet93.63 8493.95 9593.26 8995.15 8596.54 4596.18 8591.97 7791.74 8485.76 16294.95 9884.27 19191.60 6297.61 4397.38 3498.87 495.18 64
v893.60 8593.82 10093.34 8493.13 14595.06 9096.39 7990.75 10089.90 12194.03 4397.70 3598.21 3691.08 7492.36 14691.47 15094.63 15092.07 125
MCST-MVS93.60 8593.40 11693.83 7395.30 7995.40 8196.49 7490.87 9890.08 11691.72 9990.28 15395.99 10491.69 6093.94 12892.99 12796.93 8495.13 65
PVSNet_Blended_VisFu93.60 8593.41 11593.83 7396.31 5295.65 7595.71 9490.58 10488.08 13893.17 6495.29 9192.20 15490.72 8194.69 11293.41 12396.51 9394.54 78
TransMVSNet (Re)93.55 8896.32 3590.32 13994.38 10794.05 11593.30 15289.53 12697.15 885.12 16798.83 397.89 4882.21 16096.75 6996.14 6697.35 6793.46 100
DCV-MVSNet93.49 8995.15 6391.55 11794.05 11695.92 6695.15 10591.21 9192.76 6487.01 15889.71 15997.16 7283.90 14997.65 4096.87 4497.99 4395.95 49
v2v48293.42 9093.49 11293.32 8593.44 13794.05 11596.36 8289.76 12191.41 9695.24 2297.63 3898.34 3090.44 9391.65 15891.76 14594.69 14789.62 155
sasdasda93.38 9194.36 8292.24 10593.94 12296.41 5194.18 13490.47 10593.07 5888.47 14788.66 17093.78 14288.80 10695.74 8795.75 7597.57 5597.13 18
canonicalmvs93.38 9194.36 8292.24 10593.94 12296.41 5194.18 13490.47 10593.07 5888.47 14788.66 17093.78 14288.80 10695.74 8795.75 7597.57 5597.13 18
3Dnovator91.81 593.36 9394.27 8892.29 10492.99 15095.03 9195.76 9187.79 14993.82 4592.38 8192.19 13793.37 14988.14 11695.26 10194.85 9596.69 8895.40 58
pm-mvs193.27 9495.94 4690.16 14094.13 11493.66 12592.61 16689.91 11895.73 1784.28 17698.51 1398.29 3182.80 15596.44 7695.76 7497.25 7393.21 104
casdiffmvs_mvgpermissive93.27 9494.83 7091.45 12193.59 13394.47 10894.91 11189.83 12092.04 8187.14 15697.57 3998.47 2586.03 13394.07 12694.44 10697.21 7692.76 114
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test111193.25 9694.43 7891.88 11195.09 8794.97 9594.58 12192.81 5193.60 4683.79 17997.17 5189.25 17687.59 12097.54 4496.57 5297.42 6391.89 130
Anonymous2023121193.19 9795.50 5790.49 13693.77 12895.29 8494.36 12990.04 11591.44 9584.59 17196.72 6297.65 6082.45 15997.25 5196.32 6197.74 4993.79 91
TinyColmap93.17 9893.33 11793.00 9793.84 12692.76 13994.75 11888.90 13693.97 4397.48 495.28 9395.29 12188.37 11295.31 10091.58 14894.65 14989.10 159
MVS_111021_LR93.15 9993.65 10692.56 10093.89 12592.28 14895.09 10686.92 16591.26 10192.99 6894.46 10796.22 9790.64 8595.11 10593.45 12295.85 11992.74 115
CNLPA93.14 10093.67 10592.53 10194.62 10294.73 10095.00 11086.57 17092.85 6192.43 7990.94 14394.67 13190.35 9495.41 9593.70 11896.23 10693.37 102
PLCcopyleft87.27 1593.08 10192.92 12193.26 8994.67 9895.03 9194.38 12490.10 11091.69 8592.14 8587.24 18593.91 14091.61 6195.05 10794.73 10296.67 8992.80 111
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CANet93.07 10293.05 12093.10 9495.90 6695.41 8095.88 8891.94 7984.77 16593.36 5794.05 11395.25 12486.25 13194.33 11993.94 11395.30 12893.58 97
TSAR-MVS + COLMAP93.06 10393.65 10692.36 10294.62 10294.28 11295.36 10489.46 12992.18 7791.64 10095.55 8495.27 12388.60 11093.24 13492.50 13294.46 15392.55 121
ECVR-MVScopyleft93.05 10494.25 9091.65 11494.76 9595.23 8594.26 13292.80 5292.49 6783.90 17796.75 6189.99 16786.84 12597.62 4196.72 4897.32 6990.92 144
Effi-MVS+92.93 10592.16 13293.83 7394.29 10993.53 13295.04 10892.98 5085.27 16294.46 3290.24 15495.34 11989.99 9793.72 12994.23 10996.22 10792.79 112
Fast-Effi-MVS+92.93 10592.64 12593.27 8893.81 12793.88 12195.90 8790.61 10383.98 17192.71 7092.81 13096.22 9790.67 8394.90 10993.92 11495.92 11792.77 113
HQP-MVS92.87 10792.49 12693.31 8695.75 7295.01 9495.64 9791.06 9688.54 13391.62 10188.16 17696.25 9589.47 10192.26 14891.81 14396.34 10095.40 58
FMVSNet192.86 10895.26 6190.06 14292.40 16495.16 8794.37 12592.22 6393.18 5682.16 18996.76 6097.48 6581.85 16495.32 9794.98 9197.34 6893.93 89
CLD-MVS92.81 10994.32 8491.05 12795.39 7895.31 8395.82 9081.44 20489.40 12691.94 9095.86 7597.36 6685.83 13495.35 9694.59 10495.85 11992.34 122
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
IS_MVSNet92.76 11093.25 11892.19 10794.91 9295.56 7695.86 8992.12 7088.10 13782.71 18493.15 12688.30 17988.86 10597.29 4896.95 4298.66 1093.38 101
FC-MVSNet-train92.75 11195.40 5989.66 15195.21 8394.82 9897.00 5789.40 13091.13 10281.71 19097.72 3496.43 9177.57 19096.89 6396.72 4897.05 8094.09 85
V4292.67 11293.50 11191.71 11391.41 17892.96 13795.71 9485.00 18289.67 12493.22 6297.67 3698.01 4591.02 7792.65 14192.12 13893.86 16191.42 138
PM-MVS92.65 11393.20 11992.00 10992.11 17290.16 17495.99 8684.81 18691.31 9992.41 8095.87 7496.64 8892.35 4993.65 13192.91 12894.34 15691.85 131
QAPM92.57 11493.51 11091.47 12092.91 15294.82 9893.01 15787.51 15391.49 9191.21 11192.24 13591.70 15788.74 10894.54 11694.39 10895.41 12695.37 61
MIMVSNet192.52 11594.88 6889.77 14796.09 5791.99 15496.92 5989.68 12495.92 1684.55 17296.64 6498.21 3678.44 18396.08 8195.10 8792.91 17690.22 152
tfpnnormal92.45 11694.77 7289.74 14893.95 12193.44 13593.25 15388.49 14295.27 2383.20 18296.51 6596.23 9683.17 15395.47 9494.52 10596.38 9791.97 128
PCF-MVS87.46 1492.44 11791.80 13493.19 9294.66 9995.80 7096.37 8090.19 10987.57 14292.23 8489.26 16493.97 13989.24 10291.32 16290.82 15896.46 9693.86 90
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
casdiffmvspermissive92.42 11893.99 9490.60 13493.25 14193.82 12394.28 13188.73 13891.53 8984.53 17497.74 3298.64 2086.60 12893.21 13691.20 15396.21 10891.76 136
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
AdaColmapbinary92.41 11991.49 13893.48 8295.96 6495.02 9395.37 10391.73 8587.97 14091.28 10882.82 20891.04 16190.62 8795.82 8695.07 8895.95 11692.67 116
v14892.38 12092.78 12391.91 11092.86 15392.13 15194.84 11387.03 16291.47 9393.07 6796.92 5798.89 1190.10 9692.05 15189.69 16693.56 16488.27 168
pmmvs-eth3d92.34 12192.33 12792.34 10392.67 15790.67 16896.37 8089.06 13490.98 10693.60 5497.13 5397.02 7688.29 11390.20 16991.42 15194.07 15988.89 163
DELS-MVS92.33 12293.61 10990.83 13092.84 15495.13 8994.76 11787.22 16187.78 14188.42 15095.78 7895.28 12285.71 13794.44 11793.91 11596.01 11492.97 109
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+-dtu92.32 12391.66 13693.09 9595.13 8694.73 10094.57 12292.14 6881.74 18390.33 12588.13 17795.91 10589.24 10294.23 12493.65 12097.12 7793.23 103
MGCFI-Net92.31 12494.25 9090.04 14593.75 12995.96 6393.32 15090.28 10893.28 5280.57 19488.79 16893.78 14284.89 13995.55 9395.31 8297.45 6097.10 21
UGNet92.31 12494.70 7389.53 15390.99 18695.53 7796.19 8492.10 7291.35 9885.76 16295.31 9095.48 11476.84 19595.22 10294.79 9895.32 12795.19 63
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
USDC92.17 12692.17 13192.18 10892.93 15192.22 14993.66 14287.41 15693.49 4897.99 194.10 11296.68 8786.46 12992.04 15289.18 17294.61 15187.47 171
ETV-MVS92.12 12790.44 14694.08 6296.36 5093.63 12796.27 8392.00 7578.90 20292.13 8685.29 19889.85 17090.26 9597.07 5696.29 6397.46 5892.04 126
IterMVS-LS92.10 12892.33 12791.82 11293.18 14293.66 12592.80 16492.27 6290.82 10990.59 12097.19 4990.97 16287.76 11989.60 17690.94 15794.34 15693.16 106
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG92.09 12992.84 12291.22 12692.55 15992.97 13693.42 14785.43 18090.24 11591.83 9594.70 10194.59 13288.48 11194.91 10893.31 12595.59 12489.15 158
EIA-MVS91.95 13090.36 14893.81 7696.54 4594.65 10295.38 10290.40 10778.01 20793.72 5086.70 19291.95 15689.93 9895.67 9194.72 10396.89 8590.79 146
MAR-MVS91.86 13191.14 14292.71 9894.29 10994.24 11394.91 11191.82 8281.66 18493.32 5884.51 20193.42 14886.86 12495.16 10494.44 10695.05 14194.53 79
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EU-MVSNet91.63 13292.73 12490.35 13888.36 20587.89 18596.53 7281.51 20392.45 7091.82 9696.44 6897.05 7593.26 3294.10 12588.94 17790.61 18392.24 123
FC-MVSNet-test91.49 13394.43 7888.07 16994.97 8990.53 17195.42 10191.18 9393.24 5472.94 21498.37 1593.86 14178.78 17797.82 3296.13 6795.13 13691.05 141
FA-MVS(training)91.38 13491.18 14191.62 11693.49 13692.38 14695.03 10990.81 9987.20 14691.46 10493.00 12889.47 17384.19 14693.20 13892.08 13994.74 14690.90 145
OpenMVScopyleft89.22 1291.09 13591.42 13990.71 13292.79 15693.61 12992.74 16585.47 17986.10 15590.73 11585.71 19793.07 15286.69 12794.07 12693.34 12495.86 11894.02 87
FPMVS90.81 13691.60 13789.88 14692.52 16088.18 18193.31 15183.62 19291.59 8888.45 14988.96 16789.73 17286.96 12296.42 7795.69 7794.43 15490.65 147
DI_MVS_plusplus_trai90.68 13790.40 14791.00 12892.43 16392.61 14394.17 13688.98 13588.32 13588.76 14593.67 11987.58 18186.44 13089.74 17490.33 16195.24 13190.56 150
Vis-MVSNet (Re-imp)90.68 13792.18 13088.92 15894.63 10092.75 14092.91 16091.20 9289.21 12875.01 21093.96 11789.07 17782.72 15795.88 8595.30 8397.08 7989.08 160
DPM-MVS90.67 13989.86 15291.63 11595.29 8194.16 11494.52 12389.63 12589.59 12589.67 13381.95 21088.64 17885.75 13690.46 16790.43 16094.91 14493.77 92
diffmvspermissive90.44 14092.23 12988.35 16591.36 18091.38 16092.45 17084.84 18589.88 12285.09 16896.69 6397.71 5783.33 15290.01 17388.96 17693.03 17491.00 142
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FMVSNet290.28 14192.04 13388.23 16791.22 18294.05 11592.88 16190.69 10186.53 15279.89 19894.38 10892.73 15378.54 18091.64 15992.26 13596.17 10992.67 116
IterMVS-SCA-FT90.24 14289.37 15891.26 12592.50 16192.11 15291.69 18187.48 15487.05 14891.82 9695.76 7987.25 18291.36 6589.02 18185.53 19292.68 17788.90 162
MVS_Test90.19 14390.58 14389.74 14892.12 17191.74 15692.51 16788.54 14182.80 17787.50 15494.62 10295.02 12983.97 14788.69 18489.32 17093.79 16291.85 131
EPNet90.17 14489.07 16091.45 12197.25 1990.62 17094.84 11393.54 4480.96 18691.85 9486.98 18885.88 18777.79 18792.30 14792.58 13193.41 16694.20 84
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_BlendedMVS90.09 14590.12 15090.05 14392.40 16492.74 14191.74 17785.89 17580.54 18990.30 12688.54 17295.51 11284.69 14292.64 14290.25 16295.28 12990.61 148
PVSNet_Blended90.09 14590.12 15090.05 14392.40 16492.74 14191.74 17785.89 17580.54 18990.30 12688.54 17295.51 11284.69 14292.64 14290.25 16295.28 12990.61 148
pmmvs489.95 14789.32 15990.69 13391.60 17789.17 17894.37 12587.63 15088.07 13991.02 11394.50 10590.50 16586.13 13286.33 19889.40 16993.39 16787.29 174
MDA-MVSNet-bldmvs89.75 14891.67 13587.50 17474.25 22490.88 16594.68 11985.89 17591.64 8691.03 11295.86 7594.35 13689.10 10496.87 6586.37 18890.04 18485.72 179
WB-MVS89.70 14994.13 9284.54 19488.16 20792.57 14488.90 20188.32 14396.67 1173.61 21398.29 1898.80 1580.60 17095.73 8992.18 13687.66 19684.64 182
tttt051789.64 15088.05 17191.49 11993.52 13491.65 15793.67 14187.53 15182.77 17889.39 13890.37 15270.05 21688.21 11493.71 13093.79 11696.63 9094.04 86
PatchMatch-RL89.59 15188.80 16490.51 13592.20 17088.00 18491.72 17986.64 16784.75 16688.25 15187.10 18790.66 16489.85 10093.23 13592.28 13494.41 15585.60 180
Fast-Effi-MVS+-dtu89.57 15288.42 16890.92 12993.35 13991.57 15893.01 15795.71 978.94 20187.65 15384.68 20093.14 15182.00 16290.84 16591.01 15693.78 16388.77 164
thisisatest053089.54 15387.99 17391.35 12493.17 14391.31 16193.45 14687.53 15182.96 17689.17 14090.45 14970.32 21588.21 11493.37 13393.79 11696.54 9293.71 94
test250689.51 15487.77 17691.55 11794.76 9595.23 8594.26 13292.80 5292.49 6783.31 18189.97 15750.93 23086.84 12597.62 4196.72 4897.32 6991.42 138
GBi-Net89.35 15590.58 14387.91 17091.22 18294.05 11592.88 16190.05 11279.40 19378.60 20190.58 14587.05 18378.54 18095.32 9794.98 9196.17 10992.67 116
test189.35 15590.58 14387.91 17091.22 18294.05 11592.88 16190.05 11279.40 19378.60 20190.58 14587.05 18378.54 18095.32 9794.98 9196.17 10992.67 116
thres600view789.14 15788.83 16289.51 15493.71 13293.55 13093.93 13988.02 14787.30 14482.40 18581.18 21180.63 20282.69 15894.27 12195.90 7096.27 10488.94 161
CVMVSNet88.97 15889.73 15488.10 16887.33 21285.22 19594.68 11978.68 20588.94 13086.98 15995.55 8485.71 18889.87 9991.19 16389.69 16691.05 18191.78 134
CANet_DTU88.95 15989.51 15788.29 16693.12 14691.22 16393.61 14383.47 19580.07 19290.71 11989.19 16593.68 14676.27 19991.44 16191.17 15592.59 17889.83 154
GA-MVS88.76 16088.04 17289.59 15292.32 16791.46 15992.28 17286.62 16883.82 17389.84 12992.51 13481.94 19683.53 15189.41 17889.27 17192.95 17587.90 169
pmmvs588.63 16189.70 15587.39 17589.24 19890.64 16991.87 17682.13 19983.34 17487.86 15294.58 10396.15 10079.87 17487.33 19389.07 17593.39 16786.76 175
thres40088.54 16288.15 17088.98 15693.17 14392.84 13893.56 14486.93 16486.45 15382.37 18679.96 21381.46 19981.83 16593.21 13694.76 10096.04 11388.39 166
CDS-MVSNet88.41 16389.79 15386.79 18094.55 10590.82 16692.50 16889.85 11983.26 17580.52 19591.05 14189.93 16969.11 21093.17 13992.71 13094.21 15887.63 170
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
gg-mvs-nofinetune88.32 16488.81 16387.75 17293.07 14789.37 17789.06 20095.94 895.29 2187.15 15597.38 4476.38 20568.05 21391.04 16489.10 17493.24 17083.10 189
IterMVS88.32 16488.25 16988.41 16490.83 18891.24 16293.07 15681.69 20186.77 15088.55 14695.61 8086.91 18687.01 12187.38 19283.77 19489.29 18686.06 178
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
thres20088.29 16687.88 17488.76 16092.50 16193.55 13092.47 16988.02 14784.80 16481.44 19179.28 21582.20 19581.83 16594.27 12193.67 11996.27 10487.40 172
IB-MVS86.01 1788.24 16787.63 17788.94 15792.03 17391.77 15592.40 17185.58 17878.24 20484.85 16971.99 22093.45 14783.96 14893.48 13292.33 13394.84 14592.15 124
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MDTV_nov1_ep13_2view88.22 16887.85 17588.65 16291.40 17986.75 18994.07 13784.97 18388.86 13293.20 6396.11 7396.21 9983.70 15087.29 19480.29 20184.56 20579.46 202
test20.0388.20 16991.26 14084.63 19296.64 4289.39 17690.73 18889.97 11791.07 10472.02 21694.98 9795.45 11569.35 20992.70 14091.19 15489.06 18884.02 183
HyFIR lowres test88.19 17086.56 18490.09 14191.24 18192.17 15094.30 13088.79 13784.06 16885.45 16589.52 16285.64 18988.64 10985.40 20187.28 18292.14 18081.87 192
ET-MVSNet_ETH3D88.06 17185.75 18990.74 13192.82 15590.68 16793.77 14088.59 13981.22 18589.78 13189.15 16666.79 22384.29 14591.72 15791.34 15295.22 13289.36 157
tfpn200view987.94 17287.51 17988.44 16392.28 16893.63 12793.35 14988.11 14580.90 18780.89 19278.25 21682.25 19379.65 17694.27 12194.76 10096.36 9888.48 165
FMVSNet387.90 17388.63 16687.04 17689.78 19693.46 13491.62 18290.05 11279.40 19378.60 20190.58 14587.05 18377.07 19488.03 18989.86 16595.12 13792.04 126
MS-PatchMatch87.72 17488.62 16786.66 18190.81 18988.18 18190.92 18582.25 19885.86 15780.40 19690.14 15689.29 17584.93 13889.39 17989.12 17390.67 18288.34 167
Anonymous2023120687.45 17589.66 15684.87 18994.00 11787.73 18791.36 18386.41 17288.89 13175.03 20992.59 13396.82 8272.48 20789.72 17588.06 17989.93 18583.81 185
EPNet_dtu87.40 17686.27 18588.72 16195.68 7483.37 20192.09 17490.08 11178.11 20691.29 10786.33 19389.74 17175.39 20289.07 18087.89 18087.81 19389.38 156
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline186.96 17787.58 17886.24 18393.07 14790.44 17289.24 19986.85 16685.14 16377.26 20790.45 14976.09 20775.79 20091.80 15691.81 14395.20 13387.35 173
baseline86.71 17888.89 16184.16 19587.85 20885.23 19489.82 19377.69 20884.03 17084.75 17094.91 9994.59 13277.19 19386.57 19786.51 18787.66 19690.36 151
CHOSEN 1792x268886.64 17986.62 18286.65 18290.33 19287.86 18693.19 15483.30 19683.95 17282.32 18787.93 17989.34 17486.92 12385.64 20084.95 19383.85 20986.68 176
dmvs_re86.51 18086.14 18786.95 17893.07 14786.11 19192.01 17586.04 17472.70 21779.10 19975.37 21989.99 16778.10 18694.56 11593.01 12693.35 16991.26 140
testgi86.49 18190.31 14982.03 19995.63 7588.18 18193.47 14584.89 18493.23 5569.54 22087.16 18697.96 4760.66 21791.90 15589.90 16487.99 19183.84 184
thres100view90086.46 18286.00 18886.99 17792.28 16891.03 16491.09 18484.49 18880.90 18780.89 19278.25 21682.25 19377.57 19090.17 17092.84 12995.63 12386.57 177
gm-plane-assit86.15 18382.51 19790.40 13795.81 7092.29 14797.99 3484.66 18792.15 7893.15 6597.84 3044.65 23178.60 17988.02 19085.95 18992.20 17976.69 210
CMPMVSbinary66.55 1885.55 18487.46 18083.32 19684.99 21481.97 20679.19 22175.93 21079.32 19688.82 14385.09 19991.07 16082.12 16192.56 14489.63 16888.84 18992.56 120
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CR-MVSNet85.32 18581.58 19989.69 15090.36 19184.79 19786.72 21292.22 6375.38 21290.73 11590.41 15167.88 22084.86 14083.76 20485.74 19093.24 17083.14 187
baseline284.95 18682.68 19687.59 17392.64 15888.41 18090.09 19084.25 18975.88 21085.23 16682.49 20971.15 21380.14 17388.21 18887.21 18593.21 17385.39 181
pmnet_mix0284.85 18786.58 18382.83 19790.19 19381.10 20988.52 20478.58 20691.50 9080.32 19796.48 6695.86 10675.42 20185.17 20276.44 21083.91 20879.51 201
MVSTER84.79 18883.79 19285.96 18589.14 19989.80 17589.39 19782.99 19774.16 21682.78 18385.97 19566.81 22276.84 19590.77 16688.83 17894.66 14890.19 153
MIMVSNet84.76 18986.75 18182.44 19891.71 17685.95 19289.74 19589.49 12785.28 16169.69 21987.93 17990.88 16364.85 21588.26 18787.74 18189.18 18781.24 193
SCA84.69 19081.10 20088.87 15989.02 20090.31 17392.21 17392.09 7382.72 17989.68 13286.83 19073.08 20985.80 13580.50 21277.51 20784.45 20776.80 209
new-patchmatchnet84.45 19188.75 16579.43 20593.28 14081.87 20781.68 21883.48 19494.47 2971.53 21798.33 1697.88 5158.61 22090.35 16877.33 20887.99 19181.05 195
PatchT83.44 19281.10 20086.18 18477.92 22282.58 20589.87 19287.39 15775.88 21090.73 11589.86 15866.71 22484.86 14083.76 20485.74 19086.33 20283.14 187
RPMNet83.42 19378.40 20989.28 15589.79 19584.79 19790.64 18992.11 7175.38 21287.10 15779.80 21461.99 22982.79 15681.88 21082.07 19893.23 17282.87 190
TAMVS82.96 19486.15 18679.24 20890.57 19083.12 20487.29 20875.12 21284.06 16865.81 22192.22 13688.27 18069.11 21088.72 18287.26 18487.56 19879.38 203
PatchmatchNetpermissive82.44 19578.69 20886.83 17989.81 19481.55 20890.78 18787.27 16082.39 18188.85 14288.31 17570.96 21481.90 16378.58 21674.33 21682.35 21374.69 213
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep1382.33 19679.66 20385.45 18788.83 20283.88 19990.09 19081.98 20079.07 20088.82 14388.70 16973.77 20878.41 18480.29 21476.08 21184.56 20575.83 211
CostFormer82.15 19779.54 20485.20 18888.92 20185.70 19390.87 18686.26 17379.19 19983.87 17887.89 18169.20 21876.62 19777.50 21975.28 21384.69 20482.02 191
PMMVS81.93 19883.48 19480.12 20472.35 22575.05 21888.54 20364.01 21777.02 20982.22 18887.51 18391.12 15979.70 17586.59 19586.64 18693.88 16080.41 196
pmmvs381.69 19983.83 19179.19 20978.33 22178.57 21289.53 19658.71 22078.88 20384.34 17588.36 17491.96 15577.69 18987.48 19182.42 19786.54 20179.18 204
tpm81.58 20078.84 20684.79 19191.11 18579.50 21089.79 19483.75 19079.30 19792.05 8890.98 14264.78 22674.54 20380.50 21276.67 20977.49 21880.15 199
test0.0.03 181.51 20183.30 19579.42 20693.99 11886.50 19085.93 21687.32 15878.16 20561.62 22280.78 21281.78 19759.87 21888.40 18687.27 18387.78 19580.19 198
dps81.42 20277.88 21485.56 18687.67 21085.17 19688.37 20687.46 15574.37 21584.55 17286.80 19162.18 22880.20 17281.13 21177.52 20685.10 20377.98 207
test-LLR80.62 20377.20 21784.62 19393.99 11875.11 21687.04 20987.32 15870.11 22078.59 20483.17 20671.60 21173.88 20582.32 20879.20 20386.91 19978.87 205
tpm cat180.03 20475.93 22084.81 19089.31 19783.26 20388.86 20286.55 17179.24 19886.10 16184.22 20263.62 22777.37 19273.43 22070.88 21980.67 21476.87 208
N_pmnet79.33 20584.22 19073.62 21591.72 17573.72 21986.11 21476.36 20992.38 7153.38 22395.54 8695.62 11059.14 21984.23 20374.84 21575.03 22173.25 217
EPMVS79.26 20678.20 21280.49 20287.04 21378.86 21186.08 21583.51 19382.63 18073.94 21289.59 16068.67 21972.03 20878.17 21775.08 21480.37 21574.37 214
CHOSEN 280x42079.24 20778.26 21180.38 20379.60 22068.80 22489.32 19875.38 21177.25 20878.02 20675.57 21876.17 20681.19 16888.61 18581.39 19978.79 21680.03 200
ADS-MVSNet79.11 20879.38 20578.80 21181.90 21875.59 21584.36 21783.69 19187.31 14376.76 20887.58 18276.90 20468.55 21278.70 21575.56 21277.53 21774.07 215
FMVSNet579.08 20978.83 20779.38 20787.52 21186.78 18887.64 20778.15 20769.54 22270.64 21865.97 22365.44 22563.87 21690.17 17090.46 15988.48 19083.45 186
tpmrst78.81 21076.18 21981.87 20088.56 20377.45 21386.74 21181.52 20280.08 19183.48 18090.84 14466.88 22174.54 20373.04 22171.02 21876.38 21973.95 216
test-mter78.71 21178.35 21079.12 21084.03 21576.58 21488.51 20559.06 21971.06 21878.87 20083.73 20571.83 21076.44 19883.41 20780.61 20087.79 19481.24 193
MVS-HIRNet78.28 21275.28 22181.79 20180.33 21969.38 22376.83 22286.59 16970.76 21986.66 16089.57 16181.04 20077.74 18877.81 21871.65 21782.62 21166.73 221
E-PMN77.81 21377.88 21477.73 21488.26 20670.48 22280.19 22071.20 21486.66 15172.89 21588.09 17881.74 19878.75 17890.02 17268.30 22075.10 22059.85 222
EMVS77.65 21477.49 21677.83 21287.75 20971.02 22181.13 21970.54 21586.38 15474.52 21189.38 16380.19 20378.22 18589.48 17767.13 22174.83 22258.84 223
TESTMET0.1,177.47 21577.20 21777.78 21381.94 21775.11 21687.04 20958.33 22170.11 22078.59 20483.17 20671.60 21173.88 20582.32 20879.20 20386.91 19978.87 205
new_pmnet76.65 21683.52 19368.63 21682.60 21672.08 22076.76 22364.17 21684.41 16749.73 22591.77 13991.53 15856.16 22186.59 19583.26 19682.37 21275.02 212
MVEpermissive60.41 1973.21 21780.84 20264.30 21756.34 22657.24 22675.28 22572.76 21387.14 14741.39 22786.31 19485.30 19080.66 16986.17 19983.36 19559.35 22480.38 197
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS269.86 21882.14 19855.52 21875.19 22363.08 22575.52 22460.97 21888.50 13425.11 22991.77 13996.44 9025.43 22388.70 18379.34 20270.93 22367.17 220
GG-mvs-BLEND54.28 21977.89 21326.72 2210.37 23183.31 20270.04 2260.39 22774.71 2145.36 23068.78 22183.06 1920.62 22783.73 20678.99 20583.55 21072.68 219
test_method43.16 22051.13 22233.85 2197.35 22812.38 22951.70 22811.91 22362.51 22447.64 22662.49 22480.78 20128.84 22259.55 22434.48 22355.68 22545.72 224
testmvs2.38 2213.35 2231.26 2230.83 2290.96 2311.53 2310.83 2253.59 2261.63 2326.03 2262.93 2331.55 2263.49 2252.51 2251.21 2293.92 226
test1232.16 2222.82 2241.41 2220.62 2301.18 2301.53 2310.82 2262.78 2272.27 2314.18 2271.98 2341.64 2252.58 2263.01 2241.56 2284.00 225
uanet_test0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet-low-res0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
TPM-MVS94.35 10893.52 13392.94 15989.43 13784.20 20390.07 16680.21 17194.56 15293.77 92
Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025
RE-MVS-def97.21 5
9.1493.19 150
SR-MVS97.13 2394.77 1797.77 54
Anonymous20240521194.63 7494.51 10694.96 9693.94 13891.35 9090.82 10995.60 8295.85 10781.74 16796.47 7595.84 7397.39 6592.85 110
our_test_391.78 17488.87 17994.37 125
ambc94.61 7598.09 495.14 8891.71 18094.18 3896.46 1296.26 6996.30 9391.26 6894.70 11192.00 14293.45 16593.67 95
MTAPA94.88 2896.88 80
MTMP95.43 1897.25 68
Patchmatch-RL test8.96 230
tmp_tt28.44 22036.05 22715.86 22821.29 2296.40 22454.52 22551.96 22450.37 22538.68 2329.55 22461.75 22359.66 22245.36 227
XVS96.86 3297.48 1898.73 393.28 5996.82 8298.17 35
X-MVStestdata96.86 3297.48 1898.73 393.28 5996.82 8298.17 35
mPP-MVS98.24 297.65 60
NP-MVS85.48 160
Patchmtry83.74 20086.72 21292.22 6390.73 115
DeepMVS_CXcopyleft47.68 22753.20 22719.21 22263.24 22326.96 22866.50 22269.82 21766.91 21464.27 22254.91 22672.72 218