LTVRE_ROB | | 95.06 1 | 97.73 1 | 98.39 1 | 96.95 1 | 96.33 51 | 96.94 35 | 98.30 20 | 94.90 15 | 98.61 1 | 97.73 3 | 97.97 24 | 98.57 22 | 95.74 4 | 99.24 1 | 98.70 4 | 98.72 7 | 98.70 2 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
TDRefinement | | | 97.59 2 | 98.32 2 | 96.73 4 | 95.90 66 | 98.10 2 | 99.08 2 | 93.92 31 | 98.24 3 | 96.44 13 | 98.12 19 | 97.86 52 | 96.06 2 | 99.24 1 | 98.93 1 | 99.00 2 | 97.77 5 |
|
WR-MVS | | | 97.53 3 | 98.20 3 | 96.76 3 | 96.93 29 | 98.17 1 | 98.60 10 | 96.67 7 | 96.39 14 | 94.46 32 | 99.14 1 | 98.92 10 | 94.57 15 | 99.06 3 | 98.80 2 | 99.32 1 | 96.92 26 |
|
SixPastTwentyTwo | | | 97.36 4 | 97.73 10 | 96.92 2 | 97.36 13 | 96.15 55 | 98.29 21 | 94.43 23 | 96.50 12 | 96.96 7 | 98.74 5 | 98.74 17 | 96.04 3 | 99.03 5 | 97.74 16 | 98.44 23 | 97.22 14 |
|
PS-CasMVS | | | 97.22 5 | 97.84 7 | 96.50 5 | 97.08 25 | 97.92 6 | 98.17 30 | 97.02 2 | 94.71 26 | 95.32 21 | 98.52 12 | 98.97 9 | 92.91 42 | 99.04 4 | 98.47 5 | 98.49 19 | 97.24 13 |
|
PEN-MVS | | | 97.16 6 | 97.87 6 | 96.33 11 | 97.20 21 | 97.97 4 | 98.25 25 | 96.86 6 | 95.09 24 | 94.93 26 | 98.66 7 | 99.16 5 | 92.27 52 | 98.98 6 | 98.39 7 | 98.49 19 | 96.83 30 |
|
DTE-MVSNet | | | 97.16 6 | 97.75 9 | 96.47 6 | 97.40 12 | 97.95 5 | 98.20 28 | 96.89 5 | 95.30 19 | 95.15 24 | 98.66 7 | 98.80 15 | 92.77 46 | 98.97 7 | 98.27 9 | 98.44 23 | 96.28 40 |
|
COLMAP_ROB |  | 93.74 2 | 97.09 8 | 97.98 4 | 96.05 17 | 95.97 63 | 97.78 9 | 98.56 11 | 91.72 86 | 97.53 7 | 96.01 15 | 98.14 18 | 98.76 16 | 95.28 5 | 98.76 11 | 98.23 10 | 98.77 5 | 96.67 34 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
WR-MVS_H | | | 97.06 9 | 97.78 8 | 96.23 13 | 96.74 37 | 98.04 3 | 98.25 25 | 97.32 1 | 94.40 32 | 93.71 52 | 98.55 10 | 98.89 11 | 92.97 39 | 98.91 9 | 98.45 6 | 98.38 28 | 97.19 15 |
|
CP-MVSNet | | | 96.97 10 | 97.42 14 | 96.44 7 | 97.06 26 | 97.82 8 | 98.12 33 | 96.98 3 | 93.50 46 | 95.21 23 | 97.98 23 | 98.44 25 | 92.83 45 | 98.93 8 | 98.37 8 | 98.46 22 | 96.91 27 |
|
DVP-MVS++ | | | 96.63 11 | 97.92 5 | 95.12 40 | 97.77 6 | 97.52 15 | 98.29 21 | 93.83 34 | 96.72 9 | 92.52 75 | 98.10 20 | 99.07 8 | 90.87 78 | 97.83 31 | 97.44 28 | 97.44 59 | 98.76 1 |
|
ACMH | | 90.17 8 | 96.61 12 | 97.69 12 | 95.35 30 | 95.29 81 | 96.94 35 | 98.43 14 | 92.05 74 | 98.04 4 | 95.38 19 | 98.07 21 | 99.25 4 | 93.23 33 | 98.35 16 | 97.16 39 | 97.72 51 | 96.00 45 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
UA-Net | | | 96.56 13 | 96.73 24 | 96.36 9 | 98.99 1 | 97.90 7 | 97.79 43 | 95.64 10 | 92.78 59 | 92.54 74 | 96.23 71 | 95.02 128 | 94.31 18 | 98.43 15 | 98.12 11 | 98.89 3 | 98.58 3 |
|
ACMMPR | | | 96.54 14 | 96.71 25 | 96.35 10 | 97.55 9 | 97.63 11 | 98.62 9 | 94.54 19 | 94.45 29 | 94.19 39 | 95.04 95 | 97.35 66 | 94.92 10 | 97.85 28 | 97.50 25 | 98.26 29 | 97.17 16 |
|
v7n | | | 96.49 15 | 97.20 18 | 95.65 22 | 95.57 76 | 96.04 57 | 97.93 38 | 92.49 58 | 96.40 13 | 97.13 6 | 98.99 2 | 99.41 3 | 93.79 25 | 97.84 30 | 96.15 65 | 97.00 81 | 95.60 53 |
|
DeepC-MVS | | 92.47 4 | 96.44 16 | 96.75 23 | 96.08 16 | 97.57 7 | 97.19 31 | 97.96 37 | 94.28 24 | 95.29 20 | 94.92 27 | 98.31 17 | 96.92 77 | 93.69 27 | 96.81 67 | 96.50 56 | 98.06 40 | 96.27 41 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ACMM | | 90.06 9 | 96.31 17 | 96.42 32 | 96.19 14 | 97.21 20 | 97.16 33 | 98.71 5 | 93.79 37 | 94.35 33 | 93.81 46 | 92.80 130 | 98.23 33 | 95.11 6 | 98.07 20 | 97.45 27 | 98.51 18 | 96.86 29 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMH+ | | 89.90 10 | 96.27 18 | 97.52 13 | 94.81 47 | 95.19 84 | 97.18 32 | 97.97 36 | 92.52 56 | 96.72 9 | 90.50 122 | 97.31 45 | 99.11 6 | 94.10 19 | 98.67 12 | 97.90 14 | 98.56 15 | 95.79 49 |
|
APDe-MVS | | | 96.23 19 | 97.22 17 | 95.08 41 | 96.66 41 | 97.56 14 | 98.63 8 | 93.69 41 | 94.62 27 | 89.80 130 | 97.73 32 | 98.13 37 | 93.84 24 | 97.79 33 | 97.63 18 | 97.87 47 | 97.08 21 |
|
CP-MVS | | | 96.21 20 | 96.16 43 | 96.27 12 | 97.56 8 | 97.13 34 | 98.43 14 | 94.70 18 | 92.62 62 | 94.13 41 | 92.71 131 | 98.03 43 | 94.54 16 | 98.00 24 | 97.60 20 | 98.23 31 | 97.05 22 |
|
HFP-MVS | | | 96.18 21 | 96.53 29 | 95.77 20 | 97.34 16 | 97.26 28 | 98.16 31 | 94.54 19 | 94.45 29 | 92.52 75 | 95.05 93 | 96.95 76 | 93.89 22 | 97.28 49 | 97.46 26 | 98.19 33 | 97.25 11 |
|
UniMVSNet_ETH3D | | | 96.15 22 | 97.71 11 | 94.33 55 | 97.31 17 | 96.71 40 | 95.06 107 | 96.91 4 | 97.86 5 | 90.42 123 | 98.55 10 | 99.60 1 | 88.01 117 | 98.51 13 | 97.81 15 | 98.26 29 | 94.95 65 |
|
MP-MVS |  | | 96.13 23 | 95.93 47 | 96.37 8 | 98.19 3 | 97.31 27 | 98.49 13 | 94.53 22 | 91.39 94 | 94.38 35 | 94.32 108 | 96.43 90 | 94.59 14 | 97.75 35 | 97.44 28 | 98.04 41 | 96.88 28 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ACMMP |  | | 96.12 24 | 96.27 39 | 95.93 18 | 97.20 21 | 97.60 12 | 98.64 7 | 93.74 38 | 92.47 66 | 93.13 66 | 93.23 123 | 98.06 40 | 94.51 17 | 97.99 25 | 97.57 22 | 98.39 27 | 96.99 23 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
DVP-MVS |  | | 96.10 25 | 97.23 16 | 94.79 49 | 96.28 54 | 97.49 16 | 97.90 39 | 93.60 43 | 95.47 17 | 89.57 136 | 97.32 44 | 97.72 55 | 93.89 22 | 97.74 36 | 97.53 23 | 97.51 56 | 97.34 9 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
LGP-MVS_train | | | 96.10 25 | 96.29 36 | 95.87 19 | 96.72 38 | 97.35 26 | 98.43 14 | 93.83 34 | 90.81 108 | 92.67 73 | 95.05 93 | 98.86 13 | 95.01 7 | 98.11 18 | 97.37 35 | 98.52 17 | 96.50 36 |
|
CSCG | | | 96.07 27 | 97.15 19 | 94.81 47 | 96.06 61 | 97.58 13 | 96.52 73 | 90.98 97 | 96.51 11 | 93.60 54 | 97.13 52 | 98.55 23 | 93.01 37 | 97.17 53 | 95.36 80 | 98.68 9 | 97.78 4 |
|
DPE-MVS |  | | 96.00 28 | 96.80 22 | 95.06 42 | 95.87 69 | 97.47 21 | 98.25 25 | 93.73 39 | 92.38 68 | 91.57 103 | 97.55 39 | 97.97 45 | 92.98 38 | 97.49 47 | 97.61 19 | 97.96 45 | 97.16 17 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
SMA-MVS |  | | 95.99 29 | 96.48 30 | 95.41 29 | 97.43 11 | 97.36 24 | 97.55 48 | 93.70 40 | 94.05 40 | 93.79 47 | 97.02 55 | 94.53 133 | 92.28 51 | 97.53 45 | 97.19 37 | 97.73 50 | 97.67 7 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
TSAR-MVS + MP. | | | 95.99 29 | 96.57 28 | 95.31 32 | 96.87 30 | 96.50 47 | 98.71 5 | 91.58 87 | 93.25 51 | 92.71 70 | 96.86 57 | 96.57 88 | 93.92 20 | 98.09 19 | 97.91 13 | 98.08 38 | 96.81 31 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
OPM-MVS | | | 95.96 31 | 96.59 27 | 95.23 35 | 96.67 40 | 96.52 46 | 97.86 41 | 93.28 47 | 95.27 22 | 93.46 56 | 96.26 68 | 98.85 14 | 92.89 43 | 97.09 54 | 96.37 60 | 97.22 73 | 95.78 50 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
SteuartSystems-ACMMP | | | 95.96 31 | 96.13 44 | 95.76 21 | 97.06 26 | 97.36 24 | 98.40 18 | 94.24 26 | 91.49 88 | 91.91 93 | 94.50 104 | 96.89 78 | 94.99 8 | 98.01 23 | 97.44 28 | 97.97 44 | 97.25 11 |
Skip Steuart: Steuart Systems R&D Blog. |
ACMP | | 89.62 11 | 95.96 31 | 96.28 37 | 95.59 23 | 96.58 43 | 97.23 30 | 98.26 24 | 93.22 48 | 92.33 71 | 92.31 83 | 94.29 109 | 98.73 18 | 94.68 12 | 98.04 21 | 97.14 40 | 98.47 21 | 96.17 43 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
PGM-MVS | | | 95.90 34 | 95.72 51 | 96.10 15 | 97.53 10 | 97.45 22 | 98.55 12 | 94.12 28 | 90.25 111 | 93.71 52 | 93.20 124 | 97.18 70 | 94.63 13 | 97.68 39 | 97.34 36 | 98.08 38 | 96.97 24 |
|
PMVS |  | 87.16 16 | 95.88 35 | 96.47 31 | 95.19 37 | 97.00 28 | 96.02 58 | 96.70 64 | 91.57 88 | 94.43 31 | 95.33 20 | 97.16 51 | 95.37 116 | 92.39 48 | 98.89 10 | 98.72 3 | 98.17 35 | 94.71 71 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
ACMMP_NAP | | | 95.86 36 | 96.18 40 | 95.47 28 | 97.11 24 | 97.26 28 | 98.37 19 | 93.48 45 | 93.49 47 | 93.99 44 | 95.61 79 | 94.11 137 | 92.49 47 | 97.87 27 | 97.44 28 | 97.40 62 | 97.52 8 |
|
Gipuma |  | | 95.86 36 | 96.17 41 | 95.50 27 | 95.92 65 | 94.59 104 | 94.77 116 | 92.50 57 | 97.82 6 | 97.90 2 | 95.56 82 | 97.88 50 | 94.71 11 | 98.02 22 | 94.81 94 | 97.23 72 | 94.48 78 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
LS3D | | | 95.83 38 | 96.35 34 | 95.22 36 | 96.47 47 | 97.49 16 | 97.99 34 | 92.35 61 | 94.92 25 | 94.58 30 | 94.88 99 | 95.11 126 | 91.52 63 | 98.48 14 | 98.05 12 | 98.42 25 | 95.49 54 |
|
SD-MVS | | | 95.77 39 | 96.17 41 | 95.30 33 | 96.72 38 | 96.19 54 | 97.01 56 | 93.04 49 | 94.03 41 | 92.71 70 | 96.45 66 | 96.78 85 | 93.91 21 | 96.79 68 | 95.89 71 | 98.42 25 | 97.09 20 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
SED-MVS | | | 95.73 40 | 96.98 20 | 94.28 56 | 96.08 59 | 97.39 23 | 98.18 29 | 93.80 36 | 94.20 35 | 89.61 135 | 97.29 46 | 97.49 63 | 90.69 82 | 97.74 36 | 97.41 32 | 97.32 67 | 97.34 9 |
|
TranMVSNet+NR-MVSNet | | | 95.72 41 | 96.42 32 | 94.91 46 | 96.21 55 | 96.77 39 | 96.90 61 | 94.99 13 | 92.62 62 | 91.92 92 | 98.51 13 | 98.63 20 | 90.82 79 | 97.27 50 | 96.83 45 | 98.63 12 | 94.31 79 |
|
DU-MVS | | | 95.51 42 | 95.68 52 | 95.33 31 | 96.45 48 | 96.44 49 | 96.61 70 | 95.32 11 | 89.97 116 | 93.78 48 | 97.46 41 | 98.07 39 | 91.19 70 | 97.03 57 | 96.53 53 | 98.61 13 | 94.22 80 |
|
UniMVSNet (Re) | | | 95.46 43 | 95.86 49 | 95.00 45 | 96.09 57 | 96.60 41 | 96.68 68 | 94.99 13 | 90.36 110 | 92.13 86 | 97.64 36 | 98.13 37 | 91.38 64 | 96.90 62 | 96.74 47 | 98.73 6 | 94.63 74 |
|
RPSCF | | | 95.46 43 | 96.95 21 | 93.73 79 | 95.72 73 | 95.94 62 | 95.58 98 | 88.08 143 | 95.31 18 | 91.34 106 | 96.26 68 | 98.04 42 | 93.63 28 | 98.28 17 | 97.67 17 | 98.01 42 | 97.13 18 |
|
anonymousdsp | | | 95.45 45 | 96.70 26 | 93.99 67 | 88.43 200 | 92.05 149 | 99.18 1 | 85.42 177 | 94.29 34 | 96.10 14 | 98.63 9 | 99.08 7 | 96.11 1 | 97.77 34 | 97.41 32 | 98.70 8 | 97.69 6 |
|
APD-MVS |  | | 95.38 46 | 95.68 52 | 95.03 43 | 97.30 18 | 96.90 37 | 97.83 42 | 93.92 31 | 89.40 123 | 90.35 124 | 95.41 86 | 97.69 57 | 92.97 39 | 97.24 52 | 97.17 38 | 97.83 48 | 95.96 46 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
UniMVSNet_NR-MVSNet | | | 95.34 47 | 95.51 56 | 95.14 39 | 95.80 71 | 96.55 42 | 96.61 70 | 94.79 16 | 90.04 115 | 93.78 48 | 97.51 40 | 97.25 67 | 91.19 70 | 96.68 70 | 96.31 62 | 98.65 11 | 94.22 80 |
|
X-MVS | | | 95.33 48 | 95.13 64 | 95.57 25 | 97.35 14 | 97.48 18 | 98.43 14 | 94.28 24 | 92.30 72 | 93.28 59 | 86.89 186 | 96.82 81 | 91.87 57 | 97.85 28 | 97.59 21 | 98.19 33 | 96.95 25 |
|
MSP-MVS | | | 95.32 49 | 96.28 37 | 94.19 59 | 96.87 30 | 97.77 10 | 98.27 23 | 93.88 33 | 94.15 39 | 89.63 134 | 95.36 87 | 98.37 28 | 90.73 80 | 94.37 114 | 97.53 23 | 95.77 120 | 96.40 37 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
3Dnovator+ | | 92.82 3 | 95.22 50 | 95.16 62 | 95.29 34 | 96.17 56 | 96.55 42 | 97.64 45 | 94.02 30 | 94.16 38 | 94.29 37 | 92.09 137 | 93.71 142 | 91.90 55 | 96.68 70 | 96.51 54 | 97.70 53 | 96.40 37 |
|
HPM-MVS++ |  | | 95.21 51 | 94.89 67 | 95.59 23 | 97.79 5 | 95.39 80 | 97.68 44 | 94.05 29 | 91.91 80 | 94.35 36 | 93.38 121 | 95.07 127 | 92.94 41 | 96.01 82 | 95.88 72 | 96.73 84 | 96.61 35 |
|
TSAR-MVS + ACMM | | | 95.17 52 | 95.95 45 | 94.26 57 | 96.07 60 | 96.46 48 | 95.67 96 | 94.21 27 | 93.84 43 | 90.99 114 | 97.18 49 | 95.24 124 | 93.55 29 | 96.60 73 | 95.61 78 | 95.06 138 | 96.69 33 |
|
CPTT-MVS | | | 95.00 53 | 94.52 76 | 95.57 25 | 96.84 34 | 96.78 38 | 97.88 40 | 93.67 42 | 92.20 73 | 92.35 82 | 85.87 193 | 97.56 62 | 94.98 9 | 96.96 60 | 96.07 68 | 97.70 53 | 96.18 42 |
|
SF-MVS | | | 94.88 54 | 95.87 48 | 93.73 79 | 95.30 79 | 95.93 63 | 94.80 115 | 91.76 84 | 93.11 55 | 91.93 91 | 95.83 76 | 97.07 73 | 91.11 73 | 96.62 72 | 96.44 58 | 97.46 57 | 96.13 44 |
|
Baseline_NR-MVSNet | | | 94.85 55 | 95.35 60 | 94.26 57 | 96.45 48 | 93.86 120 | 96.70 64 | 94.54 19 | 90.07 114 | 90.17 128 | 98.77 4 | 97.89 47 | 90.64 85 | 97.03 57 | 96.16 64 | 97.04 80 | 93.67 92 |
|
EG-PatchMatch MVS | | | 94.81 56 | 95.53 55 | 93.97 68 | 95.89 68 | 94.62 102 | 95.55 100 | 88.18 141 | 92.77 60 | 94.88 28 | 97.04 54 | 98.61 21 | 93.31 30 | 96.89 63 | 95.19 84 | 95.99 113 | 93.56 95 |
|
CS-MVS | | | 94.76 57 | 94.41 80 | 95.18 38 | 94.95 90 | 95.99 60 | 97.28 49 | 91.99 76 | 85.51 156 | 94.55 31 | 93.07 126 | 97.69 57 | 93.77 26 | 97.08 55 | 96.79 46 | 98.53 16 | 94.72 69 |
|
OMC-MVS | | | 94.74 58 | 95.46 58 | 93.91 71 | 94.62 102 | 96.26 52 | 96.64 69 | 89.36 130 | 94.20 35 | 94.15 40 | 94.02 114 | 97.73 54 | 91.34 66 | 96.15 80 | 95.04 88 | 97.37 64 | 94.80 67 |
|
DeepC-MVS_fast | | 91.38 6 | 94.73 59 | 94.98 65 | 94.44 51 | 96.83 36 | 96.12 56 | 96.69 66 | 92.17 67 | 92.98 57 | 93.72 50 | 94.14 110 | 95.45 114 | 90.49 91 | 95.73 88 | 95.30 81 | 96.71 85 | 95.13 63 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PHI-MVS | | | 94.65 60 | 94.84 69 | 94.44 51 | 94.95 90 | 96.55 42 | 96.46 76 | 91.10 95 | 88.96 126 | 96.00 16 | 94.55 103 | 95.32 119 | 90.67 83 | 96.97 59 | 96.69 51 | 97.44 59 | 94.84 66 |
|
CS-MVS-test | | | 94.63 61 | 94.30 85 | 95.02 44 | 94.63 100 | 95.71 70 | 98.15 32 | 92.13 69 | 85.62 155 | 94.22 38 | 93.63 119 | 97.63 61 | 93.08 36 | 97.50 46 | 96.51 54 | 97.88 46 | 93.50 96 |
|
pmmvs6 | | | 94.58 62 | 97.30 15 | 91.40 122 | 94.84 94 | 94.61 103 | 93.40 147 | 92.43 60 | 98.51 2 | 85.61 162 | 98.73 6 | 99.53 2 | 84.40 142 | 97.88 26 | 97.03 41 | 97.72 51 | 94.79 68 |
|
DeepPCF-MVS | | 90.68 7 | 94.56 63 | 94.92 66 | 94.15 60 | 94.11 114 | 95.71 70 | 97.03 55 | 90.65 102 | 93.39 50 | 94.08 42 | 95.29 90 | 94.15 136 | 93.21 34 | 95.22 99 | 94.92 92 | 95.82 119 | 95.75 51 |
|
NR-MVSNet | | | 94.55 64 | 95.66 54 | 93.25 91 | 94.26 110 | 96.44 49 | 96.69 66 | 95.32 11 | 89.97 116 | 91.79 98 | 97.46 41 | 98.39 27 | 82.85 152 | 96.87 65 | 96.48 57 | 98.57 14 | 93.98 86 |
|
Vis-MVSNet |  | | 94.39 65 | 95.85 50 | 92.68 99 | 90.91 183 | 95.88 65 | 97.62 47 | 91.41 89 | 91.95 79 | 89.20 138 | 97.29 46 | 96.26 93 | 90.60 90 | 96.95 61 | 95.91 69 | 96.32 100 | 96.71 32 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
TSAR-MVS + GP. | | | 94.25 66 | 94.81 71 | 93.60 81 | 96.52 46 | 95.80 68 | 94.37 125 | 92.47 59 | 90.89 104 | 88.92 140 | 95.34 88 | 94.38 134 | 92.85 44 | 96.36 78 | 95.62 77 | 96.47 92 | 95.28 60 |
|
CNVR-MVS | | | 94.24 67 | 94.47 77 | 93.96 69 | 96.56 44 | 95.67 72 | 96.43 77 | 91.95 78 | 92.08 76 | 91.28 108 | 90.51 147 | 95.35 117 | 91.20 69 | 96.34 79 | 95.50 79 | 96.34 98 | 95.88 48 |
|
DROMVSNet | | | 94.23 68 | 93.81 99 | 94.71 50 | 94.85 93 | 96.23 53 | 97.14 51 | 93.40 46 | 81.79 179 | 91.58 102 | 93.29 122 | 95.21 125 | 93.13 35 | 97.73 38 | 96.95 42 | 98.20 32 | 95.45 55 |
|
v1192 | | | 93.98 69 | 93.94 93 | 94.01 65 | 93.91 122 | 94.63 101 | 97.00 57 | 89.75 120 | 91.01 102 | 96.50 10 | 97.93 25 | 98.26 32 | 91.74 59 | 92.06 146 | 92.05 136 | 95.18 133 | 91.66 134 |
|
v10 | | | 93.96 70 | 94.12 90 | 93.77 78 | 93.37 135 | 95.45 76 | 96.83 63 | 91.13 94 | 89.70 120 | 95.02 25 | 97.88 28 | 98.23 33 | 91.27 67 | 92.39 141 | 92.18 133 | 94.99 140 | 93.00 105 |
|
CDPH-MVS | | | 93.96 70 | 93.86 95 | 94.08 62 | 96.31 52 | 95.84 66 | 96.92 59 | 91.85 81 | 87.21 142 | 91.25 110 | 92.83 128 | 96.06 101 | 91.05 75 | 95.57 90 | 94.81 94 | 97.12 75 | 94.72 69 |
|
MVS_0304 | | | 93.92 72 | 93.81 99 | 94.05 64 | 96.06 61 | 96.00 59 | 96.43 77 | 92.76 54 | 85.99 153 | 94.43 34 | 94.04 113 | 97.08 72 | 88.12 116 | 94.65 110 | 94.20 108 | 96.47 92 | 94.71 71 |
|
MSLP-MVS++ | | | 93.91 73 | 94.30 85 | 93.45 83 | 95.51 77 | 95.83 67 | 93.12 153 | 91.93 80 | 91.45 91 | 91.40 105 | 87.42 181 | 96.12 100 | 93.27 31 | 96.57 74 | 96.40 59 | 95.49 123 | 96.29 39 |
|
v1921920 | | | 93.90 74 | 93.82 97 | 94.00 66 | 93.74 127 | 94.31 108 | 97.12 52 | 89.33 131 | 91.13 99 | 96.77 9 | 97.90 26 | 98.06 40 | 91.95 54 | 91.93 150 | 91.54 145 | 95.10 136 | 91.85 128 |
|
train_agg | | | 93.89 75 | 93.46 110 | 94.40 53 | 97.35 14 | 93.78 122 | 97.63 46 | 92.19 66 | 88.12 133 | 90.52 121 | 93.57 120 | 95.78 107 | 92.31 50 | 94.78 107 | 93.46 119 | 96.36 96 | 94.70 73 |
|
v144192 | | | 93.89 75 | 93.85 96 | 93.94 70 | 93.50 132 | 94.33 107 | 97.12 52 | 89.49 125 | 90.89 104 | 96.49 11 | 97.78 30 | 98.27 31 | 91.89 56 | 92.17 145 | 91.70 142 | 95.19 132 | 91.78 131 |
|
v1240 | | | 93.89 75 | 93.72 101 | 94.09 61 | 93.98 119 | 94.31 108 | 97.12 52 | 89.37 129 | 90.74 109 | 96.92 8 | 98.05 22 | 97.89 47 | 92.15 53 | 91.53 156 | 91.60 143 | 94.99 140 | 91.93 126 |
|
NCCC | | | 93.87 78 | 93.42 111 | 94.40 53 | 96.84 34 | 95.42 77 | 96.47 75 | 92.62 55 | 92.36 70 | 92.05 88 | 83.83 200 | 95.55 110 | 91.84 58 | 95.89 84 | 95.23 83 | 96.56 89 | 95.63 52 |
|
v1144 | | | 93.83 79 | 93.87 94 | 93.78 77 | 93.72 128 | 94.57 105 | 96.85 62 | 89.98 114 | 91.31 96 | 95.90 17 | 97.89 27 | 98.40 26 | 91.13 72 | 92.01 149 | 92.01 137 | 95.10 136 | 90.94 139 |
|
MVS_111021_HR | | | 93.82 80 | 94.26 88 | 93.31 86 | 95.01 88 | 93.97 118 | 95.73 93 | 89.75 120 | 92.06 77 | 92.49 77 | 94.01 115 | 96.05 102 | 90.61 89 | 95.95 83 | 94.78 97 | 96.28 101 | 93.04 104 |
|
thisisatest0515 | | | 93.79 81 | 94.41 80 | 93.06 96 | 94.14 111 | 92.50 141 | 95.56 99 | 88.55 138 | 91.61 84 | 92.45 78 | 96.84 58 | 95.71 108 | 90.62 87 | 94.58 111 | 95.07 86 | 97.05 78 | 94.58 75 |
|
TAPA-MVS | | 88.94 13 | 93.78 82 | 94.31 84 | 93.18 93 | 94.14 111 | 95.99 60 | 95.74 92 | 86.98 160 | 93.43 49 | 93.88 45 | 90.16 154 | 96.88 79 | 91.05 75 | 94.33 115 | 93.95 110 | 97.28 70 | 95.40 56 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
GeoE | | | 93.72 83 | 93.62 105 | 93.84 72 | 94.75 97 | 94.90 95 | 97.24 50 | 91.81 83 | 86.97 146 | 92.74 69 | 93.83 117 | 97.24 69 | 90.46 92 | 95.10 103 | 94.09 109 | 96.08 110 | 93.18 102 |
|
EPP-MVSNet | | | 93.63 84 | 93.95 92 | 93.26 89 | 95.15 85 | 96.54 45 | 96.18 85 | 91.97 77 | 91.74 81 | 85.76 160 | 94.95 97 | 84.27 186 | 91.60 62 | 97.61 43 | 97.38 34 | 98.87 4 | 95.18 62 |
|
v8 | | | 93.60 85 | 93.82 97 | 93.34 84 | 93.13 142 | 95.06 88 | 96.39 79 | 90.75 100 | 89.90 118 | 94.03 43 | 97.70 34 | 98.21 35 | 91.08 74 | 92.36 142 | 91.47 146 | 94.63 148 | 92.07 122 |
|
MCST-MVS | | | 93.60 85 | 93.40 113 | 93.83 73 | 95.30 79 | 95.40 79 | 96.49 74 | 90.87 98 | 90.08 113 | 91.72 99 | 90.28 152 | 95.99 103 | 91.69 60 | 93.94 124 | 92.99 124 | 96.93 82 | 95.13 63 |
|
PVSNet_Blended_VisFu | | | 93.60 85 | 93.41 112 | 93.83 73 | 96.31 52 | 95.65 73 | 95.71 94 | 90.58 104 | 88.08 135 | 93.17 64 | 95.29 90 | 92.20 151 | 90.72 81 | 94.69 109 | 93.41 121 | 96.51 91 | 94.54 76 |
|
TransMVSNet (Re) | | | 93.55 88 | 96.32 35 | 90.32 138 | 94.38 107 | 94.05 113 | 93.30 150 | 89.53 124 | 97.15 8 | 85.12 165 | 98.83 3 | 97.89 47 | 82.21 158 | 96.75 69 | 96.14 66 | 97.35 65 | 93.46 97 |
|
DCV-MVSNet | | | 93.49 89 | 95.15 63 | 91.55 116 | 94.05 115 | 95.92 64 | 95.15 105 | 91.21 91 | 92.76 61 | 87.01 156 | 89.71 158 | 97.16 71 | 83.90 147 | 97.65 40 | 96.87 44 | 97.99 43 | 95.95 47 |
|
v2v482 | | | 93.42 90 | 93.49 109 | 93.32 85 | 93.44 134 | 94.05 113 | 96.36 82 | 89.76 119 | 91.41 93 | 95.24 22 | 97.63 37 | 98.34 29 | 90.44 93 | 91.65 154 | 91.76 141 | 94.69 145 | 89.62 151 |
|
canonicalmvs | | | 93.38 91 | 94.36 82 | 92.24 105 | 93.94 121 | 96.41 51 | 94.18 134 | 90.47 105 | 93.07 56 | 88.47 146 | 88.66 168 | 93.78 141 | 88.80 106 | 95.74 87 | 95.75 75 | 97.57 55 | 97.13 18 |
|
3Dnovator | | 91.81 5 | 93.36 92 | 94.27 87 | 92.29 104 | 92.99 146 | 95.03 89 | 95.76 91 | 87.79 146 | 93.82 44 | 92.38 81 | 92.19 136 | 93.37 146 | 88.14 115 | 95.26 98 | 94.85 93 | 96.69 86 | 95.40 56 |
|
pm-mvs1 | | | 93.27 93 | 95.94 46 | 90.16 139 | 94.13 113 | 93.66 123 | 92.61 163 | 89.91 116 | 95.73 16 | 84.28 174 | 98.51 13 | 98.29 30 | 82.80 153 | 96.44 76 | 95.76 74 | 97.25 71 | 93.21 101 |
|
casdiffmvs_mvg |  | | 93.27 93 | 94.83 70 | 91.45 120 | 93.59 130 | 94.47 106 | 94.91 111 | 89.83 118 | 92.04 78 | 87.14 154 | 97.57 38 | 98.47 24 | 86.03 132 | 94.07 122 | 94.44 104 | 97.21 74 | 92.76 111 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
test1111 | | | 93.25 95 | 94.43 78 | 91.88 110 | 95.09 87 | 94.97 93 | 94.58 121 | 92.81 51 | 93.60 45 | 83.79 177 | 97.17 50 | 89.25 171 | 87.59 119 | 97.54 44 | 96.57 52 | 97.42 61 | 91.89 127 |
|
Anonymous20231211 | | | 93.19 96 | 95.50 57 | 90.49 135 | 93.77 126 | 95.29 82 | 94.36 129 | 90.04 113 | 91.44 92 | 84.59 169 | 96.72 61 | 97.65 59 | 82.45 157 | 97.25 51 | 96.32 61 | 97.74 49 | 93.79 89 |
|
TinyColmap | | | 93.17 97 | 93.33 114 | 93.00 97 | 93.84 124 | 92.76 136 | 94.75 118 | 88.90 134 | 93.97 42 | 97.48 4 | 95.28 92 | 95.29 120 | 88.37 111 | 95.31 97 | 91.58 144 | 94.65 147 | 89.10 155 |
|
MVS_111021_LR | | | 93.15 98 | 93.65 103 | 92.56 100 | 93.89 123 | 92.28 144 | 95.09 106 | 86.92 162 | 91.26 98 | 92.99 68 | 94.46 106 | 96.22 96 | 90.64 85 | 95.11 102 | 93.45 120 | 95.85 117 | 92.74 112 |
|
CNLPA | | | 93.14 99 | 93.67 102 | 92.53 101 | 94.62 102 | 94.73 98 | 95.00 110 | 86.57 167 | 92.85 58 | 92.43 79 | 90.94 142 | 94.67 130 | 90.35 94 | 95.41 92 | 93.70 116 | 96.23 104 | 93.37 99 |
|
PLC |  | 87.27 15 | 93.08 100 | 92.92 118 | 93.26 89 | 94.67 98 | 95.03 89 | 94.38 124 | 90.10 108 | 91.69 82 | 92.14 85 | 87.24 182 | 93.91 139 | 91.61 61 | 95.05 104 | 94.73 100 | 96.67 87 | 92.80 108 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
CANet | | | 93.07 101 | 93.05 117 | 93.10 94 | 95.90 66 | 95.41 78 | 95.88 88 | 91.94 79 | 84.77 162 | 93.36 57 | 94.05 112 | 95.25 123 | 86.25 130 | 94.33 115 | 93.94 111 | 95.30 126 | 93.58 94 |
|
TSAR-MVS + COLMAP | | | 93.06 102 | 93.65 103 | 92.36 102 | 94.62 102 | 94.28 110 | 95.36 104 | 89.46 127 | 92.18 74 | 91.64 100 | 95.55 83 | 95.27 122 | 88.60 109 | 93.24 130 | 92.50 129 | 94.46 150 | 92.55 118 |
|
ECVR-MVS |  | | 93.05 103 | 94.25 89 | 91.65 113 | 94.76 95 | 95.23 83 | 94.26 132 | 92.80 52 | 92.49 64 | 83.90 175 | 96.75 60 | 89.99 163 | 86.84 124 | 97.62 41 | 96.72 48 | 97.32 67 | 90.92 140 |
|
Effi-MVS+ | | | 92.93 104 | 92.16 129 | 93.83 73 | 94.29 108 | 93.53 130 | 95.04 108 | 92.98 50 | 85.27 159 | 94.46 32 | 90.24 153 | 95.34 118 | 89.99 97 | 93.72 125 | 94.23 107 | 96.22 105 | 92.79 109 |
|
Fast-Effi-MVS+ | | | 92.93 104 | 92.64 122 | 93.27 88 | 93.81 125 | 93.88 119 | 95.90 87 | 90.61 103 | 83.98 168 | 92.71 70 | 92.81 129 | 96.22 96 | 90.67 83 | 94.90 106 | 93.92 112 | 95.92 115 | 92.77 110 |
|
HQP-MVS | | | 92.87 106 | 92.49 123 | 93.31 86 | 95.75 72 | 95.01 92 | 95.64 97 | 91.06 96 | 88.54 130 | 91.62 101 | 88.16 173 | 96.25 94 | 89.47 101 | 92.26 144 | 91.81 139 | 96.34 98 | 95.40 56 |
|
FMVSNet1 | | | 92.86 107 | 95.26 61 | 90.06 141 | 92.40 160 | 95.16 85 | 94.37 125 | 92.22 63 | 93.18 54 | 82.16 187 | 96.76 59 | 97.48 64 | 81.85 162 | 95.32 94 | 94.98 89 | 97.34 66 | 93.93 87 |
|
CLD-MVS | | | 92.81 108 | 94.32 83 | 91.05 126 | 95.39 78 | 95.31 81 | 95.82 90 | 81.44 200 | 89.40 123 | 91.94 90 | 95.86 74 | 97.36 65 | 85.83 133 | 95.35 93 | 94.59 102 | 95.85 117 | 92.34 119 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
IS_MVSNet | | | 92.76 109 | 93.25 115 | 92.19 106 | 94.91 92 | 95.56 74 | 95.86 89 | 92.12 70 | 88.10 134 | 82.71 182 | 93.15 125 | 88.30 174 | 88.86 105 | 97.29 48 | 96.95 42 | 98.66 10 | 93.38 98 |
|
FC-MVSNet-train | | | 92.75 110 | 95.40 59 | 89.66 149 | 95.21 83 | 94.82 96 | 97.00 57 | 89.40 128 | 91.13 99 | 81.71 188 | 97.72 33 | 96.43 90 | 77.57 185 | 96.89 63 | 96.72 48 | 97.05 78 | 94.09 83 |
|
V42 | | | 92.67 111 | 93.50 108 | 91.71 112 | 91.41 174 | 92.96 134 | 95.71 94 | 85.00 178 | 89.67 121 | 93.22 62 | 97.67 35 | 98.01 44 | 91.02 77 | 92.65 137 | 92.12 134 | 93.86 158 | 91.42 135 |
|
PM-MVS | | | 92.65 112 | 93.20 116 | 92.00 108 | 92.11 168 | 90.16 170 | 95.99 86 | 84.81 182 | 91.31 96 | 92.41 80 | 95.87 73 | 96.64 87 | 92.35 49 | 93.65 127 | 92.91 125 | 94.34 153 | 91.85 128 |
|
QAPM | | | 92.57 113 | 93.51 107 | 91.47 119 | 92.91 148 | 94.82 96 | 93.01 155 | 87.51 150 | 91.49 88 | 91.21 111 | 92.24 134 | 91.70 154 | 88.74 107 | 94.54 112 | 94.39 106 | 95.41 124 | 95.37 59 |
|
MIMVSNet1 | | | 92.52 114 | 94.88 68 | 89.77 145 | 96.09 57 | 91.99 150 | 96.92 59 | 89.68 122 | 95.92 15 | 84.55 170 | 96.64 63 | 98.21 35 | 78.44 179 | 96.08 81 | 95.10 85 | 92.91 172 | 90.22 148 |
|
tfpnnormal | | | 92.45 115 | 94.77 72 | 89.74 146 | 93.95 120 | 93.44 132 | 93.25 151 | 88.49 140 | 95.27 22 | 83.20 180 | 96.51 64 | 96.23 95 | 83.17 151 | 95.47 91 | 94.52 103 | 96.38 95 | 91.97 125 |
|
PCF-MVS | | 87.46 14 | 92.44 116 | 91.80 131 | 93.19 92 | 94.66 99 | 95.80 68 | 96.37 80 | 90.19 107 | 87.57 139 | 92.23 84 | 89.26 163 | 93.97 138 | 89.24 102 | 91.32 158 | 90.82 154 | 96.46 94 | 93.86 88 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
casdiffmvs |  | | 92.42 117 | 93.99 91 | 90.60 133 | 93.25 138 | 93.82 121 | 94.28 131 | 88.73 136 | 91.53 86 | 84.53 172 | 97.74 31 | 98.64 19 | 86.60 127 | 93.21 132 | 91.20 149 | 96.21 106 | 91.76 133 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
AdaColmap |  | | 92.41 118 | 91.49 135 | 93.48 82 | 95.96 64 | 95.02 91 | 95.37 103 | 91.73 85 | 87.97 137 | 91.28 108 | 82.82 204 | 91.04 158 | 90.62 87 | 95.82 86 | 95.07 86 | 95.95 114 | 92.67 113 |
|
v148 | | | 92.38 119 | 92.78 120 | 91.91 109 | 92.86 149 | 92.13 147 | 94.84 113 | 87.03 159 | 91.47 90 | 93.07 67 | 96.92 56 | 98.89 11 | 90.10 96 | 92.05 147 | 89.69 162 | 93.56 161 | 88.27 164 |
|
pmmvs-eth3d | | | 92.34 120 | 92.33 124 | 92.34 103 | 92.67 153 | 90.67 164 | 96.37 80 | 89.06 132 | 90.98 103 | 93.60 54 | 97.13 52 | 97.02 75 | 88.29 112 | 90.20 165 | 91.42 147 | 94.07 156 | 88.89 159 |
|
DELS-MVS | | | 92.33 121 | 93.61 106 | 90.83 129 | 92.84 150 | 95.13 87 | 94.76 117 | 87.22 158 | 87.78 138 | 88.42 148 | 95.78 77 | 95.28 121 | 85.71 136 | 94.44 113 | 93.91 113 | 96.01 112 | 92.97 106 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
Effi-MVS+-dtu | | | 92.32 122 | 91.66 133 | 93.09 95 | 95.13 86 | 94.73 98 | 94.57 122 | 92.14 68 | 81.74 180 | 90.33 125 | 88.13 174 | 95.91 104 | 89.24 102 | 94.23 120 | 93.65 118 | 97.12 75 | 93.23 100 |
|
UGNet | | | 92.31 123 | 94.70 73 | 89.53 151 | 90.99 182 | 95.53 75 | 96.19 84 | 92.10 72 | 91.35 95 | 85.76 160 | 95.31 89 | 95.48 113 | 76.84 190 | 95.22 99 | 94.79 96 | 95.32 125 | 95.19 61 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
USDC | | | 92.17 124 | 92.17 128 | 92.18 107 | 92.93 147 | 92.22 145 | 93.66 141 | 87.41 153 | 93.49 47 | 97.99 1 | 94.10 111 | 96.68 86 | 86.46 128 | 92.04 148 | 89.18 168 | 94.61 149 | 87.47 167 |
|
ETV-MVS | | | 92.12 125 | 90.44 143 | 94.08 62 | 96.36 50 | 93.63 125 | 96.27 83 | 92.00 75 | 78.90 199 | 92.13 86 | 85.29 195 | 89.85 165 | 90.26 95 | 97.07 56 | 96.29 63 | 97.46 57 | 92.04 123 |
|
IterMVS-LS | | | 92.10 126 | 92.33 124 | 91.82 111 | 93.18 139 | 93.66 123 | 92.80 161 | 92.27 62 | 90.82 106 | 90.59 120 | 97.19 48 | 90.97 159 | 87.76 118 | 89.60 172 | 90.94 153 | 94.34 153 | 93.16 103 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MSDG | | | 92.09 127 | 92.84 119 | 91.22 125 | 92.55 155 | 92.97 133 | 93.42 146 | 85.43 176 | 90.24 112 | 91.83 95 | 94.70 100 | 94.59 131 | 88.48 110 | 94.91 105 | 93.31 123 | 95.59 122 | 89.15 154 |
|
EIA-MVS | | | 91.95 128 | 90.36 145 | 93.81 76 | 96.54 45 | 94.65 100 | 95.38 102 | 90.40 106 | 78.01 204 | 93.72 50 | 86.70 189 | 91.95 153 | 89.93 98 | 95.67 89 | 94.72 101 | 96.89 83 | 90.79 142 |
|
MAR-MVS | | | 91.86 129 | 91.14 139 | 92.71 98 | 94.29 108 | 94.24 111 | 94.91 111 | 91.82 82 | 81.66 181 | 93.32 58 | 84.51 198 | 93.42 145 | 86.86 123 | 95.16 101 | 94.44 104 | 95.05 139 | 94.53 77 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
EU-MVSNet | | | 91.63 130 | 92.73 121 | 90.35 137 | 88.36 201 | 87.89 181 | 96.53 72 | 81.51 199 | 92.45 67 | 91.82 96 | 96.44 67 | 97.05 74 | 93.26 32 | 94.10 121 | 88.94 173 | 90.61 179 | 92.24 120 |
|
FC-MVSNet-test | | | 91.49 131 | 94.43 78 | 88.07 167 | 94.97 89 | 90.53 167 | 95.42 101 | 91.18 93 | 93.24 52 | 72.94 209 | 98.37 15 | 93.86 140 | 78.78 173 | 97.82 32 | 96.13 67 | 95.13 134 | 91.05 137 |
|
FA-MVS(training) | | | 91.38 132 | 91.18 138 | 91.62 115 | 93.49 133 | 92.38 142 | 95.03 109 | 90.81 99 | 87.20 143 | 91.46 104 | 93.00 127 | 89.47 168 | 84.19 144 | 93.20 134 | 92.08 135 | 94.74 144 | 90.90 141 |
|
OpenMVS |  | 89.22 12 | 91.09 133 | 91.42 136 | 90.71 131 | 92.79 152 | 93.61 127 | 92.74 162 | 85.47 175 | 86.10 152 | 90.73 115 | 85.71 194 | 93.07 149 | 86.69 126 | 94.07 122 | 93.34 122 | 95.86 116 | 94.02 85 |
|
FPMVS | | | 90.81 134 | 91.60 134 | 89.88 144 | 92.52 156 | 88.18 177 | 93.31 149 | 83.62 188 | 91.59 85 | 88.45 147 | 88.96 166 | 89.73 167 | 86.96 121 | 96.42 77 | 95.69 76 | 94.43 151 | 90.65 143 |
|
DI_MVS_plusplus_trai | | | 90.68 135 | 90.40 144 | 91.00 127 | 92.43 159 | 92.61 140 | 94.17 135 | 88.98 133 | 88.32 132 | 88.76 144 | 93.67 118 | 87.58 176 | 86.44 129 | 89.74 170 | 90.33 157 | 95.24 129 | 90.56 146 |
|
Vis-MVSNet (Re-imp) | | | 90.68 135 | 92.18 127 | 88.92 156 | 94.63 100 | 92.75 137 | 92.91 157 | 91.20 92 | 89.21 125 | 75.01 206 | 93.96 116 | 89.07 172 | 82.72 155 | 95.88 85 | 95.30 81 | 97.08 77 | 89.08 156 |
|
DPM-MVS | | | 90.67 137 | 89.86 149 | 91.63 114 | 95.29 81 | 94.16 112 | 94.52 123 | 89.63 123 | 89.59 122 | 89.67 133 | 81.95 206 | 88.64 173 | 85.75 135 | 90.46 163 | 90.43 156 | 94.91 142 | 93.77 90 |
|
diffmvs |  | | 90.44 138 | 92.23 126 | 88.35 163 | 91.36 176 | 91.38 156 | 92.45 167 | 84.84 181 | 89.88 119 | 85.09 166 | 96.69 62 | 97.71 56 | 83.33 150 | 90.01 169 | 88.96 172 | 93.03 170 | 91.00 138 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
FMVSNet2 | | | 90.28 139 | 92.04 130 | 88.23 165 | 91.22 178 | 94.05 113 | 92.88 158 | 90.69 101 | 86.53 149 | 79.89 195 | 94.38 107 | 92.73 150 | 78.54 176 | 91.64 155 | 92.26 132 | 96.17 107 | 92.67 113 |
|
IterMVS-SCA-FT | | | 90.24 140 | 89.37 155 | 91.26 124 | 92.50 157 | 92.11 148 | 91.69 177 | 87.48 151 | 87.05 145 | 91.82 96 | 95.76 78 | 87.25 177 | 91.36 65 | 89.02 177 | 85.53 188 | 92.68 173 | 88.90 158 |
|
MVS_Test | | | 90.19 141 | 90.58 140 | 89.74 146 | 92.12 167 | 91.74 152 | 92.51 164 | 88.54 139 | 82.80 174 | 87.50 152 | 94.62 101 | 95.02 128 | 83.97 145 | 88.69 180 | 89.32 166 | 93.79 159 | 91.85 128 |
|
EPNet | | | 90.17 142 | 89.07 157 | 91.45 120 | 97.25 19 | 90.62 166 | 94.84 113 | 93.54 44 | 80.96 183 | 91.85 94 | 86.98 185 | 85.88 182 | 77.79 182 | 92.30 143 | 92.58 128 | 93.41 163 | 94.20 82 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
PVSNet_BlendedMVS | | | 90.09 143 | 90.12 147 | 90.05 142 | 92.40 160 | 92.74 138 | 91.74 173 | 85.89 171 | 80.54 186 | 90.30 126 | 88.54 169 | 95.51 111 | 84.69 140 | 92.64 138 | 90.25 158 | 95.28 127 | 90.61 144 |
|
PVSNet_Blended | | | 90.09 143 | 90.12 147 | 90.05 142 | 92.40 160 | 92.74 138 | 91.74 173 | 85.89 171 | 80.54 186 | 90.30 126 | 88.54 169 | 95.51 111 | 84.69 140 | 92.64 138 | 90.25 158 | 95.28 127 | 90.61 144 |
|
pmmvs4 | | | 89.95 145 | 89.32 156 | 90.69 132 | 91.60 173 | 89.17 174 | 94.37 125 | 87.63 147 | 88.07 136 | 91.02 113 | 94.50 104 | 90.50 162 | 86.13 131 | 86.33 194 | 89.40 165 | 93.39 164 | 87.29 170 |
|
MDA-MVSNet-bldmvs | | | 89.75 146 | 91.67 132 | 87.50 172 | 74.25 219 | 90.88 161 | 94.68 119 | 85.89 171 | 91.64 83 | 91.03 112 | 95.86 74 | 94.35 135 | 89.10 104 | 96.87 65 | 86.37 184 | 90.04 180 | 85.72 175 |
|
tttt0517 | | | 89.64 147 | 88.05 168 | 91.49 118 | 93.52 131 | 91.65 153 | 93.67 140 | 87.53 148 | 82.77 175 | 89.39 137 | 90.37 151 | 70.05 211 | 88.21 113 | 93.71 126 | 93.79 114 | 96.63 88 | 94.04 84 |
|
PatchMatch-RL | | | 89.59 148 | 88.80 161 | 90.51 134 | 92.20 166 | 88.00 180 | 91.72 175 | 86.64 164 | 84.75 163 | 88.25 149 | 87.10 184 | 90.66 161 | 89.85 100 | 93.23 131 | 92.28 131 | 94.41 152 | 85.60 176 |
|
Fast-Effi-MVS+-dtu | | | 89.57 149 | 88.42 165 | 90.92 128 | 93.35 136 | 91.57 154 | 93.01 155 | 95.71 9 | 78.94 198 | 87.65 151 | 84.68 197 | 93.14 148 | 82.00 160 | 90.84 161 | 91.01 152 | 93.78 160 | 88.77 160 |
|
thisisatest0530 | | | 89.54 150 | 87.99 170 | 91.35 123 | 93.17 140 | 91.31 157 | 93.45 145 | 87.53 148 | 82.96 173 | 89.17 139 | 90.45 148 | 70.32 210 | 88.21 113 | 93.37 129 | 93.79 114 | 96.54 90 | 93.71 91 |
|
test2506 | | | 89.51 151 | 87.77 173 | 91.55 116 | 94.76 95 | 95.23 83 | 94.26 132 | 92.80 52 | 92.49 64 | 83.31 179 | 89.97 156 | 50.93 225 | 86.84 124 | 97.62 41 | 96.72 48 | 97.32 67 | 91.42 135 |
|
GBi-Net | | | 89.35 152 | 90.58 140 | 87.91 168 | 91.22 178 | 94.05 113 | 92.88 158 | 90.05 110 | 79.40 190 | 78.60 197 | 90.58 144 | 87.05 178 | 78.54 176 | 95.32 94 | 94.98 89 | 96.17 107 | 92.67 113 |
|
test1 | | | 89.35 152 | 90.58 140 | 87.91 168 | 91.22 178 | 94.05 113 | 92.88 158 | 90.05 110 | 79.40 190 | 78.60 197 | 90.58 144 | 87.05 178 | 78.54 176 | 95.32 94 | 94.98 89 | 96.17 107 | 92.67 113 |
|
thres600view7 | | | 89.14 154 | 88.83 159 | 89.51 152 | 93.71 129 | 93.55 128 | 93.93 138 | 88.02 144 | 87.30 141 | 82.40 183 | 81.18 207 | 80.63 197 | 82.69 156 | 94.27 117 | 95.90 70 | 96.27 102 | 88.94 157 |
|
CVMVSNet | | | 88.97 155 | 89.73 151 | 88.10 166 | 87.33 207 | 85.22 190 | 94.68 119 | 78.68 201 | 88.94 127 | 86.98 157 | 95.55 83 | 85.71 183 | 89.87 99 | 91.19 159 | 89.69 162 | 91.05 177 | 91.78 131 |
|
CANet_DTU | | | 88.95 156 | 89.51 154 | 88.29 164 | 93.12 143 | 91.22 159 | 93.61 142 | 83.47 191 | 80.07 189 | 90.71 119 | 89.19 164 | 93.68 143 | 76.27 194 | 91.44 157 | 91.17 151 | 92.59 174 | 89.83 150 |
|
GA-MVS | | | 88.76 157 | 88.04 169 | 89.59 150 | 92.32 163 | 91.46 155 | 92.28 169 | 86.62 165 | 83.82 170 | 89.84 129 | 92.51 133 | 81.94 191 | 83.53 149 | 89.41 174 | 89.27 167 | 92.95 171 | 87.90 165 |
|
pmmvs5 | | | 88.63 158 | 89.70 152 | 87.39 173 | 89.24 194 | 90.64 165 | 91.87 172 | 82.13 195 | 83.34 171 | 87.86 150 | 94.58 102 | 96.15 99 | 79.87 170 | 87.33 189 | 89.07 171 | 93.39 164 | 86.76 171 |
|
thres400 | | | 88.54 159 | 88.15 167 | 88.98 154 | 93.17 140 | 92.84 135 | 93.56 143 | 86.93 161 | 86.45 150 | 82.37 184 | 79.96 209 | 81.46 194 | 81.83 163 | 93.21 132 | 94.76 98 | 96.04 111 | 88.39 162 |
|
CDS-MVSNet | | | 88.41 160 | 89.79 150 | 86.79 177 | 94.55 105 | 90.82 162 | 92.50 165 | 89.85 117 | 83.26 172 | 80.52 192 | 91.05 140 | 89.93 164 | 69.11 205 | 93.17 135 | 92.71 127 | 94.21 155 | 87.63 166 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
gg-mvs-nofinetune | | | 88.32 161 | 88.81 160 | 87.75 170 | 93.07 144 | 89.37 173 | 89.06 196 | 95.94 8 | 95.29 20 | 87.15 153 | 97.38 43 | 76.38 200 | 68.05 208 | 91.04 160 | 89.10 170 | 93.24 166 | 83.10 184 |
|
IterMVS | | | 88.32 161 | 88.25 166 | 88.41 162 | 90.83 184 | 91.24 158 | 93.07 154 | 81.69 197 | 86.77 147 | 88.55 145 | 95.61 79 | 86.91 181 | 87.01 120 | 87.38 188 | 83.77 190 | 89.29 182 | 86.06 174 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
thres200 | | | 88.29 163 | 87.88 171 | 88.76 158 | 92.50 157 | 93.55 128 | 92.47 166 | 88.02 144 | 84.80 161 | 81.44 189 | 79.28 211 | 82.20 190 | 81.83 163 | 94.27 117 | 93.67 117 | 96.27 102 | 87.40 168 |
|
IB-MVS | | 86.01 17 | 88.24 164 | 87.63 174 | 88.94 155 | 92.03 169 | 91.77 151 | 92.40 168 | 85.58 174 | 78.24 201 | 84.85 167 | 71.99 215 | 93.45 144 | 83.96 146 | 93.48 128 | 92.33 130 | 94.84 143 | 92.15 121 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
MDTV_nov1_ep13_2view | | | 88.22 165 | 87.85 172 | 88.65 160 | 91.40 175 | 86.75 185 | 94.07 136 | 84.97 179 | 88.86 129 | 93.20 63 | 96.11 72 | 96.21 98 | 83.70 148 | 87.29 190 | 80.29 197 | 84.56 200 | 79.46 197 |
|
test20.03 | | | 88.20 166 | 91.26 137 | 84.63 189 | 96.64 42 | 89.39 172 | 90.73 184 | 89.97 115 | 91.07 101 | 72.02 211 | 94.98 96 | 95.45 114 | 69.35 204 | 92.70 136 | 91.19 150 | 89.06 184 | 84.02 178 |
|
HyFIR lowres test | | | 88.19 167 | 86.56 181 | 90.09 140 | 91.24 177 | 92.17 146 | 94.30 130 | 88.79 135 | 84.06 165 | 85.45 163 | 89.52 161 | 85.64 184 | 88.64 108 | 85.40 197 | 87.28 178 | 92.14 176 | 81.87 187 |
|
ET-MVSNet_ETH3D | | | 88.06 168 | 85.75 185 | 90.74 130 | 92.82 151 | 90.68 163 | 93.77 139 | 88.59 137 | 81.22 182 | 89.78 131 | 89.15 165 | 66.79 218 | 84.29 143 | 91.72 153 | 91.34 148 | 95.22 130 | 89.36 153 |
|
tfpn200view9 | | | 87.94 169 | 87.51 176 | 88.44 161 | 92.28 164 | 93.63 125 | 93.35 148 | 88.11 142 | 80.90 184 | 80.89 190 | 78.25 212 | 82.25 188 | 79.65 172 | 94.27 117 | 94.76 98 | 96.36 96 | 88.48 161 |
|
FMVSNet3 | | | 87.90 170 | 88.63 163 | 87.04 174 | 89.78 192 | 93.46 131 | 91.62 178 | 90.05 110 | 79.40 190 | 78.60 197 | 90.58 144 | 87.05 178 | 77.07 189 | 88.03 185 | 89.86 161 | 95.12 135 | 92.04 123 |
|
MS-PatchMatch | | | 87.72 171 | 88.62 164 | 86.66 178 | 90.81 185 | 88.18 177 | 90.92 181 | 82.25 194 | 85.86 154 | 80.40 193 | 90.14 155 | 89.29 170 | 84.93 137 | 89.39 175 | 89.12 169 | 90.67 178 | 88.34 163 |
|
Anonymous20231206 | | | 87.45 172 | 89.66 153 | 84.87 186 | 94.00 116 | 87.73 183 | 91.36 179 | 86.41 169 | 88.89 128 | 75.03 205 | 92.59 132 | 96.82 81 | 72.48 202 | 89.72 171 | 88.06 175 | 89.93 181 | 83.81 180 |
|
EPNet_dtu | | | 87.40 173 | 86.27 182 | 88.72 159 | 95.68 74 | 83.37 196 | 92.09 171 | 90.08 109 | 78.11 203 | 91.29 107 | 86.33 190 | 89.74 166 | 75.39 197 | 89.07 176 | 87.89 176 | 87.81 189 | 89.38 152 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
baseline1 | | | 86.96 174 | 87.58 175 | 86.24 180 | 93.07 144 | 90.44 168 | 89.24 195 | 86.85 163 | 85.14 160 | 77.26 203 | 90.45 148 | 76.09 202 | 75.79 195 | 91.80 152 | 91.81 139 | 95.20 131 | 87.35 169 |
|
baseline | | | 86.71 175 | 88.89 158 | 84.16 191 | 87.85 203 | 85.23 189 | 89.82 189 | 77.69 204 | 84.03 167 | 84.75 168 | 94.91 98 | 94.59 131 | 77.19 188 | 86.57 193 | 86.51 183 | 87.66 192 | 90.36 147 |
|
CHOSEN 1792x2688 | | | 86.64 176 | 86.62 179 | 86.65 179 | 90.33 188 | 87.86 182 | 93.19 152 | 83.30 192 | 83.95 169 | 82.32 185 | 87.93 176 | 89.34 169 | 86.92 122 | 85.64 196 | 84.95 189 | 83.85 204 | 86.68 172 |
|
testgi | | | 86.49 177 | 90.31 146 | 82.03 195 | 95.63 75 | 88.18 177 | 93.47 144 | 84.89 180 | 93.23 53 | 69.54 215 | 87.16 183 | 97.96 46 | 60.66 212 | 91.90 151 | 89.90 160 | 87.99 187 | 83.84 179 |
|
thres100view900 | | | 86.46 178 | 86.00 184 | 86.99 175 | 92.28 164 | 91.03 160 | 91.09 180 | 84.49 184 | 80.90 184 | 80.89 190 | 78.25 212 | 82.25 188 | 77.57 185 | 90.17 166 | 92.84 126 | 95.63 121 | 86.57 173 |
|
gm-plane-assit | | | 86.15 179 | 82.51 193 | 90.40 136 | 95.81 70 | 92.29 143 | 97.99 34 | 84.66 183 | 92.15 75 | 93.15 65 | 97.84 29 | 44.65 226 | 78.60 175 | 88.02 186 | 85.95 185 | 92.20 175 | 76.69 205 |
|
CMPMVS |  | 66.55 18 | 85.55 180 | 87.46 177 | 83.32 192 | 84.99 209 | 81.97 201 | 79.19 216 | 75.93 206 | 79.32 193 | 88.82 142 | 85.09 196 | 91.07 157 | 82.12 159 | 92.56 140 | 89.63 164 | 88.84 185 | 92.56 117 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
CR-MVSNet | | | 85.32 181 | 81.58 195 | 89.69 148 | 90.36 187 | 84.79 192 | 86.72 207 | 92.22 63 | 75.38 209 | 90.73 115 | 90.41 150 | 67.88 215 | 84.86 138 | 83.76 200 | 85.74 186 | 93.24 166 | 83.14 182 |
|
baseline2 | | | 84.95 182 | 82.68 192 | 87.59 171 | 92.64 154 | 88.41 176 | 90.09 186 | 84.25 185 | 75.88 207 | 85.23 164 | 82.49 205 | 71.15 208 | 80.14 169 | 88.21 184 | 87.21 181 | 93.21 169 | 85.39 177 |
|
pmnet_mix02 | | | 84.85 183 | 86.58 180 | 82.83 193 | 90.19 189 | 81.10 204 | 88.52 199 | 78.58 202 | 91.50 87 | 80.32 194 | 96.48 65 | 95.86 105 | 75.42 196 | 85.17 198 | 76.44 206 | 83.91 203 | 79.51 196 |
|
MVSTER | | | 84.79 184 | 83.79 188 | 85.96 182 | 89.14 195 | 89.80 171 | 89.39 193 | 82.99 193 | 74.16 213 | 82.78 181 | 85.97 192 | 66.81 217 | 76.84 190 | 90.77 162 | 88.83 174 | 94.66 146 | 90.19 149 |
|
MIMVSNet | | | 84.76 185 | 86.75 178 | 82.44 194 | 91.71 172 | 85.95 187 | 89.74 191 | 89.49 125 | 85.28 158 | 69.69 214 | 87.93 176 | 90.88 160 | 64.85 210 | 88.26 183 | 87.74 177 | 89.18 183 | 81.24 188 |
|
SCA | | | 84.69 186 | 81.10 196 | 88.87 157 | 89.02 196 | 90.31 169 | 92.21 170 | 92.09 73 | 82.72 176 | 89.68 132 | 86.83 187 | 73.08 204 | 85.80 134 | 80.50 208 | 77.51 203 | 84.45 202 | 76.80 204 |
|
new-patchmatchnet | | | 84.45 187 | 88.75 162 | 79.43 201 | 93.28 137 | 81.87 202 | 81.68 213 | 83.48 190 | 94.47 28 | 71.53 212 | 98.33 16 | 97.88 50 | 58.61 215 | 90.35 164 | 77.33 204 | 87.99 187 | 81.05 190 |
|
PatchT | | | 83.44 188 | 81.10 196 | 86.18 181 | 77.92 217 | 82.58 200 | 89.87 188 | 87.39 154 | 75.88 207 | 90.73 115 | 89.86 157 | 66.71 219 | 84.86 138 | 83.76 200 | 85.74 186 | 86.33 197 | 83.14 182 |
|
RPMNet | | | 83.42 189 | 78.40 205 | 89.28 153 | 89.79 191 | 84.79 192 | 90.64 185 | 92.11 71 | 75.38 209 | 87.10 155 | 79.80 210 | 61.99 224 | 82.79 154 | 81.88 206 | 82.07 194 | 93.23 168 | 82.87 185 |
|
TAMVS | | | 82.96 190 | 86.15 183 | 79.24 204 | 90.57 186 | 83.12 199 | 87.29 203 | 75.12 208 | 84.06 165 | 65.81 216 | 92.22 135 | 88.27 175 | 69.11 205 | 88.72 178 | 87.26 180 | 87.56 193 | 79.38 198 |
|
PatchmatchNet |  | | 82.44 191 | 78.69 204 | 86.83 176 | 89.81 190 | 81.55 203 | 90.78 183 | 87.27 157 | 82.39 178 | 88.85 141 | 88.31 172 | 70.96 209 | 81.90 161 | 78.58 212 | 74.33 212 | 82.35 208 | 74.69 208 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
MDTV_nov1_ep13 | | | 82.33 192 | 79.66 199 | 85.45 184 | 88.83 198 | 83.88 194 | 90.09 186 | 81.98 196 | 79.07 197 | 88.82 142 | 88.70 167 | 73.77 203 | 78.41 180 | 80.29 210 | 76.08 207 | 84.56 200 | 75.83 206 |
|
CostFormer | | | 82.15 193 | 79.54 200 | 85.20 185 | 88.92 197 | 85.70 188 | 90.87 182 | 86.26 170 | 79.19 196 | 83.87 176 | 87.89 178 | 69.20 213 | 76.62 192 | 77.50 215 | 75.28 209 | 84.69 199 | 82.02 186 |
|
PMMVS | | | 81.93 194 | 83.48 190 | 80.12 200 | 72.35 220 | 75.05 213 | 88.54 198 | 64.01 213 | 77.02 206 | 82.22 186 | 87.51 180 | 91.12 156 | 79.70 171 | 86.59 191 | 86.64 182 | 93.88 157 | 80.41 191 |
|
pmmvs3 | | | 81.69 195 | 83.83 187 | 79.19 205 | 78.33 216 | 78.57 207 | 89.53 192 | 58.71 216 | 78.88 200 | 84.34 173 | 88.36 171 | 91.96 152 | 77.69 184 | 87.48 187 | 82.42 193 | 86.54 196 | 79.18 199 |
|
tpm | | | 81.58 196 | 78.84 202 | 84.79 188 | 91.11 181 | 79.50 205 | 89.79 190 | 83.75 186 | 79.30 194 | 92.05 88 | 90.98 141 | 64.78 221 | 74.54 198 | 80.50 208 | 76.67 205 | 77.49 213 | 80.15 194 |
|
test0.0.03 1 | | | 81.51 197 | 83.30 191 | 79.42 202 | 93.99 117 | 86.50 186 | 85.93 211 | 87.32 155 | 78.16 202 | 61.62 217 | 80.78 208 | 81.78 192 | 59.87 213 | 88.40 182 | 87.27 179 | 87.78 191 | 80.19 193 |
|
dps | | | 81.42 198 | 77.88 210 | 85.56 183 | 87.67 205 | 85.17 191 | 88.37 201 | 87.46 152 | 74.37 212 | 84.55 170 | 86.80 188 | 62.18 223 | 80.20 168 | 81.13 207 | 77.52 202 | 85.10 198 | 77.98 202 |
|
test-LLR | | | 80.62 199 | 77.20 213 | 84.62 190 | 93.99 117 | 75.11 211 | 87.04 204 | 87.32 155 | 70.11 216 | 78.59 200 | 83.17 202 | 71.60 206 | 73.88 200 | 82.32 204 | 79.20 199 | 86.91 194 | 78.87 200 |
|
tpm cat1 | | | 80.03 200 | 75.93 216 | 84.81 187 | 89.31 193 | 83.26 198 | 88.86 197 | 86.55 168 | 79.24 195 | 86.10 159 | 84.22 199 | 63.62 222 | 77.37 187 | 73.43 216 | 70.88 215 | 80.67 209 | 76.87 203 |
|
N_pmnet | | | 79.33 201 | 84.22 186 | 73.62 211 | 91.72 171 | 73.72 214 | 86.11 209 | 76.36 205 | 92.38 68 | 53.38 218 | 95.54 85 | 95.62 109 | 59.14 214 | 84.23 199 | 74.84 211 | 75.03 216 | 73.25 212 |
|
EPMVS | | | 79.26 202 | 78.20 208 | 80.49 198 | 87.04 208 | 78.86 206 | 86.08 210 | 83.51 189 | 82.63 177 | 73.94 208 | 89.59 159 | 68.67 214 | 72.03 203 | 78.17 213 | 75.08 210 | 80.37 210 | 74.37 209 |
|
CHOSEN 280x420 | | | 79.24 203 | 78.26 207 | 80.38 199 | 79.60 215 | 68.80 219 | 89.32 194 | 75.38 207 | 77.25 205 | 78.02 202 | 75.57 214 | 76.17 201 | 81.19 166 | 88.61 181 | 81.39 195 | 78.79 211 | 80.03 195 |
|
ADS-MVSNet | | | 79.11 204 | 79.38 201 | 78.80 207 | 81.90 213 | 75.59 210 | 84.36 212 | 83.69 187 | 87.31 140 | 76.76 204 | 87.58 179 | 76.90 199 | 68.55 207 | 78.70 211 | 75.56 208 | 77.53 212 | 74.07 210 |
|
FMVSNet5 | | | 79.08 205 | 78.83 203 | 79.38 203 | 87.52 206 | 86.78 184 | 87.64 202 | 78.15 203 | 69.54 218 | 70.64 213 | 65.97 218 | 65.44 220 | 63.87 211 | 90.17 166 | 90.46 155 | 88.48 186 | 83.45 181 |
|
tpmrst | | | 78.81 206 | 76.18 215 | 81.87 196 | 88.56 199 | 77.45 208 | 86.74 206 | 81.52 198 | 80.08 188 | 83.48 178 | 90.84 143 | 66.88 216 | 74.54 198 | 73.04 217 | 71.02 214 | 76.38 214 | 73.95 211 |
|
test-mter | | | 78.71 207 | 78.35 206 | 79.12 206 | 84.03 210 | 76.58 209 | 88.51 200 | 59.06 215 | 71.06 214 | 78.87 196 | 83.73 201 | 71.83 205 | 76.44 193 | 83.41 203 | 80.61 196 | 87.79 190 | 81.24 188 |
|
MVS-HIRNet | | | 78.28 208 | 75.28 217 | 81.79 197 | 80.33 214 | 69.38 218 | 76.83 217 | 86.59 166 | 70.76 215 | 86.66 158 | 89.57 160 | 81.04 195 | 77.74 183 | 77.81 214 | 71.65 213 | 82.62 206 | 66.73 216 |
|
E-PMN | | | 77.81 209 | 77.88 210 | 77.73 210 | 88.26 202 | 70.48 217 | 80.19 215 | 71.20 210 | 86.66 148 | 72.89 210 | 88.09 175 | 81.74 193 | 78.75 174 | 90.02 168 | 68.30 216 | 75.10 215 | 59.85 217 |
|
EMVS | | | 77.65 210 | 77.49 212 | 77.83 208 | 87.75 204 | 71.02 216 | 81.13 214 | 70.54 211 | 86.38 151 | 74.52 207 | 89.38 162 | 80.19 198 | 78.22 181 | 89.48 173 | 67.13 217 | 74.83 217 | 58.84 218 |
|
TESTMET0.1,1 | | | 77.47 211 | 77.20 213 | 77.78 209 | 81.94 212 | 75.11 211 | 87.04 204 | 58.33 217 | 70.11 216 | 78.59 200 | 83.17 202 | 71.60 206 | 73.88 200 | 82.32 204 | 79.20 199 | 86.91 194 | 78.87 200 |
|
new_pmnet | | | 76.65 212 | 83.52 189 | 68.63 212 | 82.60 211 | 72.08 215 | 76.76 218 | 64.17 212 | 84.41 164 | 49.73 220 | 91.77 138 | 91.53 155 | 56.16 216 | 86.59 191 | 83.26 192 | 82.37 207 | 75.02 207 |
|
MVE |  | 60.41 19 | 73.21 213 | 80.84 198 | 64.30 213 | 56.34 221 | 57.24 221 | 75.28 220 | 72.76 209 | 87.14 144 | 41.39 222 | 86.31 191 | 85.30 185 | 80.66 167 | 86.17 195 | 83.36 191 | 59.35 219 | 80.38 192 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
PMMVS2 | | | 69.86 214 | 82.14 194 | 55.52 214 | 75.19 218 | 63.08 220 | 75.52 219 | 60.97 214 | 88.50 131 | 25.11 224 | 91.77 138 | 96.44 89 | 25.43 218 | 88.70 179 | 79.34 198 | 70.93 218 | 67.17 215 |
|
GG-mvs-BLEND | | | 54.28 215 | 77.89 209 | 26.72 217 | 0.37 226 | 83.31 197 | 70.04 221 | 0.39 223 | 74.71 211 | 5.36 225 | 68.78 216 | 83.06 187 | 0.62 222 | 83.73 202 | 78.99 201 | 83.55 205 | 72.68 214 |
|
test_method | | | 43.16 216 | 51.13 218 | 33.85 215 | 7.35 223 | 12.38 224 | 51.70 223 | 11.91 219 | 62.51 220 | 47.64 221 | 62.49 219 | 80.78 196 | 28.84 217 | 59.55 220 | 34.48 219 | 55.68 220 | 45.72 219 |
|
testmvs | | | 2.38 217 | 3.35 219 | 1.26 219 | 0.83 224 | 0.96 226 | 1.53 226 | 0.83 221 | 3.59 222 | 1.63 227 | 6.03 221 | 2.93 228 | 1.55 221 | 3.49 221 | 2.51 221 | 1.21 224 | 3.92 221 |
|
test123 | | | 2.16 218 | 2.82 220 | 1.41 218 | 0.62 225 | 1.18 225 | 1.53 226 | 0.82 222 | 2.78 223 | 2.27 226 | 4.18 222 | 1.98 229 | 1.64 220 | 2.58 222 | 3.01 220 | 1.56 223 | 4.00 220 |
|
uanet_test | | | 0.00 219 | 0.00 221 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 224 | 0.00 228 | 0.00 223 | 0.00 230 | 0.00 223 | 0.00 223 | 0.00 222 | 0.00 225 | 0.00 222 |
|
sosnet-low-res | | | 0.00 219 | 0.00 221 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 224 | 0.00 228 | 0.00 223 | 0.00 230 | 0.00 223 | 0.00 223 | 0.00 222 | 0.00 225 | 0.00 222 |
|
sosnet | | | 0.00 219 | 0.00 221 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 224 | 0.00 228 | 0.00 223 | 0.00 230 | 0.00 223 | 0.00 223 | 0.00 222 | 0.00 225 | 0.00 222 |
|
RE-MVS-def | | | | | | | | | | | 97.21 5 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 93.19 147 | | | | | |
|
SR-MVS | | | | | | 97.13 23 | | | 94.77 17 | | | | 97.77 53 | | | | | |
|
Anonymous202405211 | | | | 94.63 74 | | 94.51 106 | 94.96 94 | 93.94 137 | 91.35 90 | 90.82 106 | | 95.60 81 | 95.85 106 | 81.74 165 | 96.47 75 | 95.84 73 | 97.39 63 | 92.85 107 |
|
our_test_3 | | | | | | 91.78 170 | 88.87 175 | 94.37 125 | | | | | | | | | | |
|
ambc | | | | 94.61 75 | | 98.09 4 | 95.14 86 | 91.71 176 | | 94.18 37 | 96.46 12 | 96.26 68 | 96.30 92 | 91.26 68 | 94.70 108 | 92.00 138 | 93.45 162 | 93.67 92 |
|
MTAPA | | | | | | | | | | | 94.88 28 | | 96.88 79 | | | | | |
|
MTMP | | | | | | | | | | | 95.43 18 | | 97.25 67 | | | | | |
|
Patchmatch-RL test | | | | | | | | 8.96 225 | | | | | | | | | | |
|
tmp_tt | | | | | 28.44 216 | 36.05 222 | 15.86 223 | 21.29 224 | 6.40 220 | 54.52 221 | 51.96 219 | 50.37 220 | 38.68 227 | 9.55 219 | 61.75 219 | 59.66 218 | 45.36 222 | |
|
XVS | | | | | | 96.86 32 | 97.48 18 | 98.73 3 | | | 93.28 59 | | 96.82 81 | | | | 98.17 35 | |
|
X-MVStestdata | | | | | | 96.86 32 | 97.48 18 | 98.73 3 | | | 93.28 59 | | 96.82 81 | | | | 98.17 35 | |
|
mPP-MVS | | | | | | 98.24 2 | | | | | | | 97.65 59 | | | | | |
|
NP-MVS | | | | | | | | | | 85.48 157 | | | | | | | | |
|
Patchmtry | | | | | | | 83.74 195 | 86.72 207 | 92.22 63 | | 90.73 115 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 47.68 222 | 53.20 222 | 19.21 218 | 63.24 219 | 26.96 223 | 66.50 217 | 69.82 212 | 66.91 209 | 64.27 218 | | 54.91 221 | 72.72 213 |
|