This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1899.99 2100.00 199.98 1099.78 17100.00 199.92 22100.00 199.87 30
mvs_tets99.90 299.90 399.90 899.96 799.79 4699.72 3099.88 4399.92 2899.98 1399.93 1799.94 499.98 2199.77 38100.00 199.92 18
test_fmvsmconf0.01_n99.89 399.88 699.91 299.98 399.76 6299.12 197100.00 1100.00 199.99 799.91 2499.98 1100.00 199.97 4100.00 199.99 1
test_vis3_rt99.89 399.90 399.87 2199.98 399.75 6899.70 35100.00 199.73 76100.00 199.89 3499.79 1699.88 19099.98 1100.00 199.98 3
jajsoiax99.89 399.89 599.89 1199.96 799.78 4999.70 3599.86 4899.89 3699.98 1399.90 2999.94 499.98 2199.75 39100.00 199.90 20
ANet_high99.88 699.87 1099.91 299.99 199.91 499.65 59100.00 199.90 30100.00 199.97 1199.61 3299.97 3499.75 39100.00 199.84 36
LTVRE_ROB99.19 199.88 699.87 1099.88 1799.91 3299.90 799.96 199.92 2999.90 3099.97 1999.87 4799.81 1499.95 6499.54 6099.99 1699.80 47
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_fmvsmconf0.1_n99.87 899.86 1299.91 299.97 699.74 7499.01 22899.99 1099.99 299.98 1399.88 4299.97 299.99 899.96 9100.00 199.98 3
fmvsm_s_conf0.1_n99.86 999.85 1699.89 1199.93 2699.78 4999.07 21599.98 1199.99 299.98 1399.90 2999.88 899.92 11799.93 2099.99 1699.98 3
pmmvs699.86 999.86 1299.83 3499.94 1999.90 799.83 699.91 3299.85 5199.94 3499.95 1399.73 2199.90 15999.65 4699.97 5699.69 84
fmvsm_s_conf0.1_n_a99.85 1199.83 2099.91 299.95 1599.82 3599.10 20499.98 1199.99 299.98 1399.91 2499.68 2699.93 9599.93 2099.99 1699.99 1
test_fmvsmconf_n99.85 1199.84 1999.88 1799.91 3299.73 7798.97 24099.98 1199.99 299.96 2399.85 5699.93 799.99 899.94 1699.99 1699.93 15
mvsany_test399.85 1199.88 699.75 7599.95 1599.37 17999.53 8599.98 1199.77 7499.99 799.95 1399.85 1099.94 7899.95 1299.98 4199.94 13
UniMVSNet_ETH3D99.85 1199.83 2099.90 899.89 4099.91 499.89 499.71 12599.93 2699.95 3199.89 3499.71 2299.96 5599.51 6599.97 5699.84 36
test_fmvsmvis_n_192099.84 1599.86 1299.81 4199.88 4599.55 13999.17 17799.98 1199.99 299.96 2399.84 6299.96 399.99 899.96 999.99 1699.88 25
test_fmvsm_n_192099.84 1599.85 1699.83 3499.82 7399.70 9199.17 17799.97 1899.99 299.96 2399.82 7399.94 4100.00 199.95 12100.00 199.80 47
PS-MVSNAJss99.84 1599.82 2299.89 1199.96 799.77 5499.68 4599.85 5399.95 2099.98 1399.92 2199.28 6699.98 2199.75 39100.00 199.94 13
test_djsdf99.84 1599.81 2399.91 299.94 1999.84 2499.77 1599.80 7999.73 7699.97 1999.92 2199.77 1999.98 2199.43 73100.00 199.90 20
fmvsm_s_conf0.5_n99.83 1999.81 2399.87 2199.85 5999.78 4999.03 22399.96 2399.99 299.97 1999.84 6299.78 1799.92 11799.92 2299.99 1699.92 18
test_fmvs399.83 1999.93 299.53 17599.96 798.62 27499.67 49100.00 199.95 20100.00 199.95 1399.85 1099.99 899.98 199.99 1699.98 3
fmvsm_s_conf0.5_n_a99.82 2199.79 2799.89 1199.85 5999.82 3599.03 22399.96 2399.99 299.97 1999.84 6299.58 3699.93 9599.92 2299.98 4199.93 15
v7n99.82 2199.80 2699.88 1799.96 799.84 2499.82 899.82 6699.84 5499.94 3499.91 2499.13 8699.96 5599.83 3299.99 1699.83 40
fmvsm_l_conf0.5_n_a99.80 2399.79 2799.84 3199.88 4599.64 11199.12 19799.91 3299.98 1499.95 3199.67 16799.67 2799.99 899.94 1699.99 1699.88 25
fmvsm_l_conf0.5_n99.80 2399.78 3199.85 2799.88 4599.66 10299.11 20199.91 3299.98 1499.96 2399.64 17999.60 3499.99 899.95 1299.99 1699.88 25
anonymousdsp99.80 2399.77 3399.90 899.96 799.88 1299.73 2799.85 5399.70 8799.92 4199.93 1799.45 4799.97 3499.36 86100.00 199.85 35
pm-mvs199.79 2699.79 2799.78 5599.91 3299.83 2999.76 1999.87 4599.73 7699.89 5499.87 4799.63 2999.87 20499.54 6099.92 10699.63 128
sd_testset99.78 2799.78 3199.80 4699.80 8799.76 6299.80 1099.79 8599.97 1699.89 5499.89 3499.53 4399.99 899.36 8699.96 7199.65 113
UA-Net99.78 2799.76 3699.86 2599.72 14199.71 8499.91 399.95 2899.96 1899.71 13399.91 2499.15 8199.97 3499.50 67100.00 199.90 20
TransMVSNet (Re)99.78 2799.77 3399.81 4199.91 3299.85 1999.75 2299.86 4899.70 8799.91 4499.89 3499.60 3499.87 20499.59 5199.74 21899.71 77
SDMVSNet99.77 3099.77 3399.76 6599.80 8799.65 10899.63 6199.86 4899.97 1699.89 5499.89 3499.52 4499.99 899.42 7899.96 7199.65 113
test_cas_vis1_n_192099.76 3199.86 1299.45 19399.93 2698.40 28699.30 13599.98 1199.94 2499.99 799.89 3499.80 1599.97 3499.96 999.97 5699.97 7
test_f99.75 3299.88 699.37 22199.96 798.21 29899.51 90100.00 199.94 24100.00 199.93 1799.58 3699.94 7899.97 499.99 1699.97 7
OurMVSNet-221017-099.75 3299.71 3899.84 3199.96 799.83 2999.83 699.85 5399.80 6599.93 3799.93 1798.54 16299.93 9599.59 5199.98 4199.76 67
Vis-MVSNetpermissive99.75 3299.74 3799.79 5299.88 4599.66 10299.69 4299.92 2999.67 9699.77 10699.75 11799.61 3299.98 2199.35 8999.98 4199.72 74
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
mvsmamba99.74 3599.70 3999.85 2799.93 2699.83 2999.76 1999.81 7599.96 1899.91 4499.81 7998.60 15399.94 7899.58 5499.98 4199.77 61
test_vis1_n_192099.72 3699.88 699.27 24799.93 2697.84 32299.34 122100.00 199.99 299.99 799.82 7399.87 999.99 899.97 499.99 1699.97 7
test_fmvs299.72 3699.85 1699.34 22899.91 3298.08 31199.48 96100.00 199.90 3099.99 799.91 2499.50 4699.98 2199.98 199.99 1699.96 10
TDRefinement99.72 3699.70 3999.77 5899.90 3899.85 1999.86 599.92 2999.69 9099.78 10199.92 2199.37 5699.88 19098.93 15099.95 8499.60 153
XXY-MVS99.71 3999.67 4799.81 4199.89 4099.72 8299.59 7499.82 6699.39 14699.82 8199.84 6299.38 5499.91 14199.38 8199.93 10299.80 47
bld_raw_dy_0_6499.70 4099.65 5099.85 2799.95 1599.77 5499.66 5399.71 12599.95 2099.91 4499.77 10898.35 190100.00 199.54 6099.99 1699.79 54
nrg03099.70 4099.66 4899.82 3899.76 11899.84 2499.61 6899.70 13199.93 2699.78 10199.68 16399.10 8799.78 30599.45 7199.96 7199.83 40
FC-MVSNet-test99.70 4099.65 5099.86 2599.88 4599.86 1899.72 3099.78 9199.90 3099.82 8199.83 6698.45 17799.87 20499.51 6599.97 5699.86 32
GeoE99.69 4399.66 4899.78 5599.76 11899.76 6299.60 7399.82 6699.46 13399.75 11599.56 23599.63 2999.95 6499.43 7399.88 13499.62 139
v1099.69 4399.69 4399.66 11799.81 8199.39 17499.66 5399.75 10499.60 11699.92 4199.87 4798.75 13299.86 22299.90 2599.99 1699.73 72
EC-MVSNet99.69 4399.69 4399.68 10799.71 14499.91 499.76 1999.96 2399.86 4699.51 21299.39 28299.57 3899.93 9599.64 4899.86 15399.20 286
test_vis1_n99.68 4699.79 2799.36 22599.94 1998.18 30199.52 86100.00 199.86 46100.00 199.88 4298.99 10299.96 5599.97 499.96 7199.95 11
test_fmvs1_n99.68 4699.81 2399.28 24499.95 1597.93 32099.49 95100.00 199.82 5999.99 799.89 3499.21 7599.98 2199.97 499.98 4199.93 15
CS-MVS-test99.68 4699.70 3999.64 12999.57 20299.83 2999.78 1299.97 1899.92 2899.50 21499.38 28499.57 3899.95 6499.69 4399.90 11699.15 297
v899.68 4699.69 4399.65 12299.80 8799.40 17299.66 5399.76 9999.64 10499.93 3799.85 5698.66 14599.84 25499.88 2999.99 1699.71 77
DTE-MVSNet99.68 4699.61 6099.88 1799.80 8799.87 1599.67 4999.71 12599.72 8099.84 7699.78 10198.67 14399.97 3499.30 9999.95 8499.80 47
casdiffmvs_mvgpermissive99.68 4699.68 4699.69 10599.81 8199.59 12999.29 14299.90 3799.71 8299.79 9799.73 12499.54 4199.84 25499.36 8699.96 7199.65 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS99.67 5299.70 3999.58 15799.53 22299.84 2499.79 1199.96 2399.90 3099.61 17599.41 27499.51 4599.95 6499.66 4599.89 12598.96 333
RRT_MVS99.67 5299.59 6599.91 299.94 1999.88 1299.78 1299.27 30299.87 4299.91 4499.87 4798.04 21999.96 5599.68 4499.99 1699.90 20
VPA-MVSNet99.66 5499.62 5699.79 5299.68 16499.75 6899.62 6399.69 13799.85 5199.80 9299.81 7998.81 12099.91 14199.47 6999.88 13499.70 80
PS-CasMVS99.66 5499.58 6999.89 1199.80 8799.85 1999.66 5399.73 11399.62 10799.84 7699.71 13998.62 14999.96 5599.30 9999.96 7199.86 32
PEN-MVS99.66 5499.59 6599.89 1199.83 6699.87 1599.66 5399.73 11399.70 8799.84 7699.73 12498.56 15999.96 5599.29 10299.94 9599.83 40
FMVSNet199.66 5499.63 5599.73 8999.78 10699.77 5499.68 4599.70 13199.67 9699.82 8199.83 6698.98 10499.90 15999.24 10699.97 5699.53 189
MIMVSNet199.66 5499.62 5699.80 4699.94 1999.87 1599.69 4299.77 9499.78 7099.93 3799.89 3497.94 22799.92 11799.65 4699.98 4199.62 139
FIs99.65 5999.58 6999.84 3199.84 6299.85 1999.66 5399.75 10499.86 4699.74 12399.79 9398.27 20099.85 23999.37 8499.93 10299.83 40
testf199.63 6099.60 6399.72 9599.94 1999.95 299.47 9999.89 3999.43 14199.88 6299.80 8399.26 7099.90 15998.81 15799.88 13499.32 261
APD_test299.63 6099.60 6399.72 9599.94 1999.95 299.47 9999.89 3999.43 14199.88 6299.80 8399.26 7099.90 15998.81 15799.88 13499.32 261
tt080599.63 6099.57 7299.81 4199.87 5299.88 1299.58 7698.70 34799.72 8099.91 4499.60 21499.43 4899.81 29399.81 3699.53 28799.73 72
KD-MVS_self_test99.63 6099.59 6599.76 6599.84 6299.90 799.37 11799.79 8599.83 5799.88 6299.85 5698.42 18199.90 15999.60 5099.73 22399.49 212
casdiffmvspermissive99.63 6099.61 6099.67 11099.79 9999.59 12999.13 19399.85 5399.79 6899.76 10899.72 13199.33 6199.82 27899.21 10999.94 9599.59 160
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.63 6099.62 5699.66 11799.80 8799.62 11899.44 10599.80 7999.71 8299.72 12899.69 15299.15 8199.83 26999.32 9599.94 9599.53 189
Anonymous2023121199.62 6699.57 7299.76 6599.61 18199.60 12799.81 999.73 11399.82 5999.90 5099.90 2997.97 22699.86 22299.42 7899.96 7199.80 47
DeepC-MVS98.90 499.62 6699.61 6099.67 11099.72 14199.44 15999.24 15799.71 12599.27 16099.93 3799.90 2999.70 2499.93 9598.99 13899.99 1699.64 123
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
dcpmvs_299.61 6899.64 5499.53 17599.79 9998.82 25399.58 7699.97 1899.95 2099.96 2399.76 11298.44 17899.99 899.34 9099.96 7199.78 57
WR-MVS_H99.61 6899.53 8299.87 2199.80 8799.83 2999.67 4999.75 10499.58 11999.85 7399.69 15298.18 21199.94 7899.28 10499.95 8499.83 40
ACMH98.42 699.59 7099.54 7899.72 9599.86 5599.62 11899.56 8199.79 8598.77 23299.80 9299.85 5699.64 2899.85 23998.70 16899.89 12599.70 80
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v119299.57 7199.57 7299.57 16399.77 11499.22 21199.04 21999.60 18799.18 17599.87 7099.72 13199.08 9299.85 23999.89 2899.98 4199.66 105
EG-PatchMatch MVS99.57 7199.56 7799.62 14599.77 11499.33 18999.26 14999.76 9999.32 15499.80 9299.78 10199.29 6499.87 20499.15 12199.91 11599.66 105
Gipumacopyleft99.57 7199.59 6599.49 18299.98 399.71 8499.72 3099.84 5999.81 6299.94 3499.78 10198.91 11299.71 33098.41 18299.95 8499.05 324
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
v192192099.56 7499.57 7299.55 16999.75 12999.11 22499.05 21699.61 17599.15 18699.88 6299.71 13999.08 9299.87 20499.90 2599.97 5699.66 105
v124099.56 7499.58 6999.51 17999.80 8799.00 23599.00 23199.65 15799.15 18699.90 5099.75 11799.09 8999.88 19099.90 2599.96 7199.67 96
V4299.56 7499.54 7899.63 13699.79 9999.46 15299.39 11199.59 19399.24 16699.86 7199.70 14698.55 16099.82 27899.79 3799.95 8499.60 153
v14419299.55 7799.54 7899.58 15799.78 10699.20 21699.11 20199.62 16899.18 17599.89 5499.72 13198.66 14599.87 20499.88 2999.97 5699.66 105
test20.0399.55 7799.54 7899.58 15799.79 9999.37 17999.02 22699.89 3999.60 11699.82 8199.62 19798.81 12099.89 17699.43 7399.86 15399.47 220
v114499.54 7999.53 8299.59 15399.79 9999.28 19799.10 20499.61 17599.20 17399.84 7699.73 12498.67 14399.84 25499.86 3199.98 4199.64 123
CP-MVSNet99.54 7999.43 9799.87 2199.76 11899.82 3599.57 7999.61 17599.54 12099.80 9299.64 17997.79 23899.95 6499.21 10999.94 9599.84 36
TranMVSNet+NR-MVSNet99.54 7999.47 8699.76 6599.58 19299.64 11199.30 13599.63 16599.61 11099.71 13399.56 23598.76 13099.96 5599.14 12799.92 10699.68 90
SSC-MVS99.52 8299.42 9999.83 3499.86 5599.65 10899.52 8699.81 7599.87 4299.81 8899.79 9396.78 28199.99 899.83 3299.51 29199.86 32
patch_mono-299.51 8399.46 9099.64 12999.70 15299.11 22499.04 21999.87 4599.71 8299.47 21999.79 9398.24 20299.98 2199.38 8199.96 7199.83 40
v2v48299.50 8499.47 8699.58 15799.78 10699.25 20499.14 18799.58 20399.25 16499.81 8899.62 19798.24 20299.84 25499.83 3299.97 5699.64 123
ACMH+98.40 899.50 8499.43 9799.71 10099.86 5599.76 6299.32 12799.77 9499.53 12299.77 10699.76 11299.26 7099.78 30597.77 23699.88 13499.60 153
Baseline_NR-MVSNet99.49 8699.37 10799.82 3899.91 3299.84 2498.83 25699.86 4899.68 9299.65 15599.88 4297.67 24599.87 20499.03 13599.86 15399.76 67
TAMVS99.49 8699.45 9299.63 13699.48 24599.42 16699.45 10399.57 20599.66 10099.78 10199.83 6697.85 23499.86 22299.44 7299.96 7199.61 149
test_fmvs199.48 8899.65 5098.97 28799.54 21697.16 34499.11 20199.98 1199.78 7099.96 2399.81 7998.72 13799.97 3499.95 1299.97 5699.79 54
pmmvs-eth3d99.48 8899.47 8699.51 17999.77 11499.41 17198.81 26199.66 14899.42 14599.75 11599.66 17299.20 7699.76 31598.98 14099.99 1699.36 251
EI-MVSNet-UG-set99.48 8899.50 8499.42 20299.57 20298.65 27199.24 15799.46 25599.68 9299.80 9299.66 17298.99 10299.89 17699.19 11399.90 11699.72 74
APDe-MVScopyleft99.48 8899.36 11099.85 2799.55 21499.81 4099.50 9199.69 13798.99 20199.75 11599.71 13998.79 12599.93 9598.46 18099.85 15799.80 47
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
PMMVS299.48 8899.45 9299.57 16399.76 11898.99 23698.09 32799.90 3798.95 20699.78 10199.58 22299.57 3899.93 9599.48 6899.95 8499.79 54
DSMNet-mixed99.48 8899.65 5098.95 28999.71 14497.27 34199.50 9199.82 6699.59 11899.41 23799.85 5699.62 31100.00 199.53 6399.89 12599.59 160
DP-MVS99.48 8899.39 10299.74 8099.57 20299.62 11899.29 14299.61 17599.87 4299.74 12399.76 11298.69 13999.87 20498.20 19899.80 19399.75 70
EI-MVSNet-Vis-set99.47 9599.49 8599.42 20299.57 20298.66 26899.24 15799.46 25599.67 9699.79 9799.65 17798.97 10699.89 17699.15 12199.89 12599.71 77
VPNet99.46 9699.37 10799.71 10099.82 7399.59 12999.48 9699.70 13199.81 6299.69 14099.58 22297.66 24999.86 22299.17 11899.44 30199.67 96
ACMM98.09 1199.46 9699.38 10499.72 9599.80 8799.69 9599.13 19399.65 15798.99 20199.64 15699.72 13199.39 5099.86 22298.23 19599.81 18899.60 153
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_vis1_rt99.45 9899.46 9099.41 20999.71 14498.63 27398.99 23699.96 2399.03 19999.95 3199.12 33398.75 13299.84 25499.82 3599.82 17999.77 61
COLMAP_ROBcopyleft98.06 1299.45 9899.37 10799.70 10499.83 6699.70 9199.38 11399.78 9199.53 12299.67 14999.78 10199.19 7799.86 22297.32 27399.87 14599.55 175
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
WB-MVS99.44 10099.32 11799.80 4699.81 8199.61 12499.47 9999.81 7599.82 5999.71 13399.72 13196.60 28599.98 2199.75 3999.23 33199.82 46
mvsany_test199.44 10099.45 9299.40 21199.37 27798.64 27297.90 34999.59 19399.27 16099.92 4199.82 7399.74 2099.93 9599.55 5999.87 14599.63 128
Anonymous2024052199.44 10099.42 9999.49 18299.89 4098.96 24199.62 6399.76 9999.85 5199.82 8199.88 4296.39 29599.97 3499.59 5199.98 4199.55 175
tfpnnormal99.43 10399.38 10499.60 15199.87 5299.75 6899.59 7499.78 9199.71 8299.90 5099.69 15298.85 11899.90 15997.25 28399.78 20399.15 297
HPM-MVS_fast99.43 10399.30 12499.80 4699.83 6699.81 4099.52 8699.70 13198.35 27699.51 21299.50 25399.31 6299.88 19098.18 20299.84 16299.69 84
3Dnovator99.15 299.43 10399.36 11099.65 12299.39 27299.42 16699.70 3599.56 21099.23 16899.35 24799.80 8399.17 7999.95 6498.21 19799.84 16299.59 160
Anonymous2024052999.42 10699.34 11299.65 12299.53 22299.60 12799.63 6199.39 27699.47 13099.76 10899.78 10198.13 21399.86 22298.70 16899.68 24399.49 212
SixPastTwentyTwo99.42 10699.30 12499.76 6599.92 3199.67 10099.70 3599.14 32699.65 10299.89 5499.90 2996.20 30199.94 7899.42 7899.92 10699.67 96
GBi-Net99.42 10699.31 11999.73 8999.49 24099.77 5499.68 4599.70 13199.44 13699.62 16999.83 6697.21 26699.90 15998.96 14499.90 11699.53 189
test199.42 10699.31 11999.73 8999.49 24099.77 5499.68 4599.70 13199.44 13699.62 16999.83 6697.21 26699.90 15998.96 14499.90 11699.53 189
MVSFormer99.41 11099.44 9599.31 23899.57 20298.40 28699.77 1599.80 7999.73 7699.63 16099.30 30398.02 22199.98 2199.43 7399.69 23899.55 175
IterMVS-LS99.41 11099.47 8699.25 25399.81 8198.09 30898.85 25399.76 9999.62 10799.83 8099.64 17998.54 16299.97 3499.15 12199.99 1699.68 90
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SED-MVS99.40 11299.28 13199.77 5899.69 15699.82 3599.20 16799.54 22299.13 18899.82 8199.63 19098.91 11299.92 11797.85 23199.70 23499.58 165
v14899.40 11299.41 10199.39 21599.76 11898.94 24299.09 20999.59 19399.17 18099.81 8899.61 20698.41 18299.69 33899.32 9599.94 9599.53 189
NR-MVSNet99.40 11299.31 11999.68 10799.43 26499.55 13999.73 2799.50 24499.46 13399.88 6299.36 29097.54 25299.87 20498.97 14299.87 14599.63 128
PVSNet_Blended_VisFu99.40 11299.38 10499.44 19699.90 3898.66 26898.94 24599.91 3297.97 30299.79 9799.73 12499.05 9799.97 3499.15 12199.99 1699.68 90
EU-MVSNet99.39 11699.62 5698.72 31699.88 4596.44 35899.56 8199.85 5399.90 3099.90 5099.85 5698.09 21599.83 26999.58 5499.95 8499.90 20
CHOSEN 1792x268899.39 11699.30 12499.65 12299.88 4599.25 20498.78 26899.88 4398.66 24199.96 2399.79 9397.45 25599.93 9599.34 9099.99 1699.78 57
DVP-MVS++99.38 11899.25 13799.77 5899.03 34899.77 5499.74 2499.61 17599.18 17599.76 10899.61 20699.00 10099.92 11797.72 24299.60 26999.62 139
EI-MVSNet99.38 11899.44 9599.21 25799.58 19298.09 30899.26 14999.46 25599.62 10799.75 11599.67 16798.54 16299.85 23999.15 12199.92 10699.68 90
UGNet99.38 11899.34 11299.49 18298.90 35898.90 24899.70 3599.35 28599.86 4698.57 34399.81 7998.50 17299.93 9599.38 8199.98 4199.66 105
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_NR-MVSNet99.37 12199.25 13799.72 9599.47 25199.56 13698.97 24099.61 17599.43 14199.67 14999.28 30797.85 23499.95 6499.17 11899.81 18899.65 113
UniMVSNet (Re)99.37 12199.26 13599.68 10799.51 22999.58 13398.98 23999.60 18799.43 14199.70 13799.36 29097.70 24199.88 19099.20 11299.87 14599.59 160
CSCG99.37 12199.29 12999.60 15199.71 14499.46 15299.43 10799.85 5398.79 22899.41 23799.60 21498.92 11099.92 11798.02 21199.92 10699.43 236
APD_test199.36 12499.28 13199.61 14899.89 4099.89 1099.32 12799.74 10999.18 17599.69 14099.75 11798.41 18299.84 25497.85 23199.70 23499.10 308
PM-MVS99.36 12499.29 12999.58 15799.83 6699.66 10298.95 24399.86 4898.85 22099.81 8899.73 12498.40 18699.92 11798.36 18599.83 17099.17 293
new-patchmatchnet99.35 12699.57 7298.71 31899.82 7396.62 35698.55 28999.75 10499.50 12499.88 6299.87 4799.31 6299.88 19099.43 73100.00 199.62 139
Anonymous2023120699.35 12699.31 11999.47 18899.74 13599.06 23499.28 14499.74 10999.23 16899.72 12899.53 24697.63 25199.88 19099.11 12999.84 16299.48 216
MTAPA99.35 12699.20 14299.80 4699.81 8199.81 4099.33 12599.53 23199.27 16099.42 23199.63 19098.21 20799.95 6497.83 23599.79 19899.65 113
FMVSNet299.35 12699.28 13199.55 16999.49 24099.35 18699.45 10399.57 20599.44 13699.70 13799.74 12097.21 26699.87 20499.03 13599.94 9599.44 230
3Dnovator+98.92 399.35 12699.24 13999.67 11099.35 28299.47 14899.62 6399.50 24499.44 13699.12 29099.78 10198.77 12999.94 7897.87 22899.72 22999.62 139
TSAR-MVS + MP.99.34 13199.24 13999.63 13699.82 7399.37 17999.26 14999.35 28598.77 23299.57 18699.70 14699.27 6999.88 19097.71 24499.75 21199.65 113
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
diffmvspermissive99.34 13199.32 11799.39 21599.67 16998.77 25998.57 28799.81 7599.61 11099.48 21799.41 27498.47 17399.86 22298.97 14299.90 11699.53 189
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DELS-MVS99.34 13199.30 12499.48 18699.51 22999.36 18398.12 32399.53 23199.36 15099.41 23799.61 20699.22 7499.87 20499.21 10999.68 24399.20 286
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DU-MVS99.33 13499.21 14199.71 10099.43 26499.56 13698.83 25699.53 23199.38 14799.67 14999.36 29097.67 24599.95 6499.17 11899.81 18899.63 128
ab-mvs99.33 13499.28 13199.47 18899.57 20299.39 17499.78 1299.43 26398.87 21899.57 18699.82 7398.06 21899.87 20498.69 17099.73 22399.15 297
DVP-MVScopyleft99.32 13699.17 14599.77 5899.69 15699.80 4499.14 18799.31 29499.16 18299.62 16999.61 20698.35 19099.91 14197.88 22599.72 22999.61 149
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APD-MVS_3200maxsize99.31 13799.16 14699.74 8099.53 22299.75 6899.27 14799.61 17599.19 17499.57 18699.64 17998.76 13099.90 15997.29 27599.62 25999.56 172
SteuartSystems-ACMMP99.30 13899.14 15099.76 6599.87 5299.66 10299.18 17299.60 18798.55 25199.57 18699.67 16799.03 9999.94 7897.01 29399.80 19399.69 84
Skip Steuart: Steuart Systems R&D Blog.
testgi99.29 13999.26 13599.37 22199.75 12998.81 25498.84 25499.89 3998.38 26999.75 11599.04 34399.36 5999.86 22299.08 13299.25 32799.45 225
ACMMP_NAP99.28 14099.11 15999.79 5299.75 12999.81 4098.95 24399.53 23198.27 28599.53 20599.73 12498.75 13299.87 20497.70 24799.83 17099.68 90
LCM-MVSNet-Re99.28 14099.15 14999.67 11099.33 29599.76 6299.34 12299.97 1898.93 21099.91 4499.79 9398.68 14099.93 9596.80 30599.56 27699.30 267
mvs_anonymous99.28 14099.39 10298.94 29099.19 32497.81 32499.02 22699.55 21699.78 7099.85 7399.80 8398.24 20299.86 22299.57 5699.50 29499.15 297
MVS_Test99.28 14099.31 11999.19 26099.35 28298.79 25799.36 12099.49 24899.17 18099.21 27799.67 16798.78 12799.66 35799.09 13199.66 25299.10 308
SR-MVS-dyc-post99.27 14499.11 15999.73 8999.54 21699.74 7499.26 14999.62 16899.16 18299.52 20799.64 17998.41 18299.91 14197.27 27899.61 26699.54 183
XVS99.27 14499.11 15999.75 7599.71 14499.71 8499.37 11799.61 17599.29 15698.76 32899.47 26498.47 17399.88 19097.62 25599.73 22399.67 96
OPM-MVS99.26 14699.13 15299.63 13699.70 15299.61 12498.58 28399.48 24998.50 25799.52 20799.63 19099.14 8499.76 31597.89 22499.77 20799.51 202
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HFP-MVS99.25 14799.08 17099.76 6599.73 13899.70 9199.31 13299.59 19398.36 27199.36 24699.37 28698.80 12499.91 14197.43 26899.75 21199.68 90
HPM-MVScopyleft99.25 14799.07 17499.78 5599.81 8199.75 6899.61 6899.67 14497.72 31799.35 24799.25 31499.23 7399.92 11797.21 28699.82 17999.67 96
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft99.25 14799.08 17099.74 8099.79 9999.68 9899.50 9199.65 15798.07 29699.52 20799.69 15298.57 15799.92 11797.18 28899.79 19899.63 128
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
LS3D99.24 15099.11 15999.61 14898.38 38599.79 4699.57 7999.68 14099.61 11099.15 28599.71 13998.70 13899.91 14197.54 26199.68 24399.13 305
xiu_mvs_v1_base_debu99.23 15199.34 11298.91 29699.59 18798.23 29598.47 29899.66 14899.61 11099.68 14398.94 35999.39 5099.97 3499.18 11599.55 28098.51 362
xiu_mvs_v1_base99.23 15199.34 11298.91 29699.59 18798.23 29598.47 29899.66 14899.61 11099.68 14398.94 35999.39 5099.97 3499.18 11599.55 28098.51 362
xiu_mvs_v1_base_debi99.23 15199.34 11298.91 29699.59 18798.23 29598.47 29899.66 14899.61 11099.68 14398.94 35999.39 5099.97 3499.18 11599.55 28098.51 362
region2R99.23 15199.05 18099.77 5899.76 11899.70 9199.31 13299.59 19398.41 26599.32 25599.36 29098.73 13699.93 9597.29 27599.74 21899.67 96
ACMMPR99.23 15199.06 17699.76 6599.74 13599.69 9599.31 13299.59 19398.36 27199.35 24799.38 28498.61 15199.93 9597.43 26899.75 21199.67 96
XVG-ACMP-BASELINE99.23 15199.10 16799.63 13699.82 7399.58 13398.83 25699.72 12298.36 27199.60 17899.71 13998.92 11099.91 14197.08 29199.84 16299.40 241
CP-MVS99.23 15199.05 18099.75 7599.66 17099.66 10299.38 11399.62 16898.38 26999.06 29899.27 30998.79 12599.94 7897.51 26499.82 17999.66 105
DeepC-MVS_fast98.47 599.23 15199.12 15699.56 16699.28 30799.22 21198.99 23699.40 27399.08 19399.58 18399.64 17998.90 11599.83 26997.44 26799.75 21199.63 128
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ZNCC-MVS99.22 15999.04 18599.77 5899.76 11899.73 7799.28 14499.56 21098.19 29099.14 28799.29 30698.84 11999.92 11797.53 26399.80 19399.64 123
D2MVS99.22 15999.19 14399.29 24299.69 15698.74 26298.81 26199.41 26698.55 25199.68 14399.69 15298.13 21399.87 20498.82 15599.98 4199.24 275
LPG-MVS_test99.22 15999.05 18099.74 8099.82 7399.63 11699.16 18399.73 11397.56 32299.64 15699.69 15299.37 5699.89 17696.66 31399.87 14599.69 84
CDS-MVSNet99.22 15999.13 15299.50 18199.35 28299.11 22498.96 24299.54 22299.46 13399.61 17599.70 14696.31 29799.83 26999.34 9099.88 13499.55 175
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test_040299.22 15999.14 15099.45 19399.79 9999.43 16399.28 14499.68 14099.54 12099.40 24299.56 23599.07 9499.82 27896.01 34199.96 7199.11 306
AllTest99.21 16499.07 17499.63 13699.78 10699.64 11199.12 19799.83 6198.63 24499.63 16099.72 13198.68 14099.75 31996.38 32899.83 17099.51 202
XVG-OURS99.21 16499.06 17699.65 12299.82 7399.62 11897.87 35099.74 10998.36 27199.66 15399.68 16399.71 2299.90 15996.84 30499.88 13499.43 236
Fast-Effi-MVS+-dtu99.20 16699.12 15699.43 20099.25 31299.69 9599.05 21699.82 6699.50 12498.97 30299.05 34198.98 10499.98 2198.20 19899.24 32998.62 355
VDD-MVS99.20 16699.11 15999.44 19699.43 26498.98 23799.50 9198.32 36699.80 6599.56 19399.69 15296.99 27699.85 23998.99 13899.73 22399.50 207
PGM-MVS99.20 16699.01 19299.77 5899.75 12999.71 8499.16 18399.72 12297.99 30099.42 23199.60 21498.81 12099.93 9596.91 29899.74 21899.66 105
SR-MVS99.19 16999.00 19599.74 8099.51 22999.72 8299.18 17299.60 18798.85 22099.47 21999.58 22298.38 18799.92 11796.92 29799.54 28599.57 170
SMA-MVScopyleft99.19 16999.00 19599.73 8999.46 25599.73 7799.13 19399.52 23697.40 33399.57 18699.64 17998.93 10999.83 26997.61 25799.79 19899.63 128
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
pmmvs599.19 16999.11 15999.42 20299.76 11898.88 25098.55 28999.73 11398.82 22499.72 12899.62 19796.56 28699.82 27899.32 9599.95 8499.56 172
mPP-MVS99.19 16999.00 19599.76 6599.76 11899.68 9899.38 11399.54 22298.34 28099.01 30099.50 25398.53 16699.93 9597.18 28899.78 20399.66 105
ETV-MVS99.18 17399.18 14499.16 26399.34 29099.28 19799.12 19799.79 8599.48 12698.93 30698.55 37999.40 4999.93 9598.51 17899.52 29098.28 372
VNet99.18 17399.06 17699.56 16699.24 31499.36 18399.33 12599.31 29499.67 9699.47 21999.57 23196.48 28999.84 25499.15 12199.30 32099.47 220
RPSCF99.18 17399.02 18999.64 12999.83 6699.85 1999.44 10599.82 6698.33 28199.50 21499.78 10197.90 22999.65 36396.78 30699.83 17099.44 230
DeepPCF-MVS98.42 699.18 17399.02 18999.67 11099.22 31799.75 6897.25 37799.47 25298.72 23799.66 15399.70 14699.29 6499.63 36698.07 21099.81 18899.62 139
MVS_030499.17 17799.03 18799.59 15399.44 26098.90 24899.04 21995.32 39199.99 299.68 14399.57 23198.30 19799.97 3499.94 1699.98 4199.88 25
EPP-MVSNet99.17 17799.00 19599.66 11799.80 8799.43 16399.70 3599.24 31199.48 12699.56 19399.77 10894.89 31399.93 9598.72 16799.89 12599.63 128
GST-MVS99.16 17998.96 20699.75 7599.73 13899.73 7799.20 16799.55 21698.22 28799.32 25599.35 29598.65 14799.91 14196.86 30199.74 21899.62 139
MVP-Stereo99.16 17999.08 17099.43 20099.48 24599.07 23299.08 21299.55 21698.63 24499.31 25999.68 16398.19 20999.78 30598.18 20299.58 27499.45 225
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
XVG-OURS-SEG-HR99.16 17998.99 20099.66 11799.84 6299.64 11198.25 31399.73 11398.39 26899.63 16099.43 27299.70 2499.90 15997.34 27298.64 36399.44 230
jason99.16 17999.11 15999.32 23599.75 12998.44 28398.26 31299.39 27698.70 23999.74 12399.30 30398.54 16299.97 3498.48 17999.82 17999.55 175
jason: jason.
DPE-MVScopyleft99.14 18398.92 21299.82 3899.57 20299.77 5498.74 27199.60 18798.55 25199.76 10899.69 15298.23 20699.92 11796.39 32799.75 21199.76 67
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss99.14 18398.92 21299.80 4699.83 6699.83 2998.61 27799.63 16596.84 35399.44 22599.58 22298.81 12099.91 14197.70 24799.82 17999.67 96
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
pmmvs499.13 18599.06 17699.36 22599.57 20299.10 22998.01 33599.25 30898.78 23099.58 18399.44 27198.24 20299.76 31598.74 16599.93 10299.22 280
MVS_111021_LR99.13 18599.03 18799.42 20299.58 19299.32 19197.91 34899.73 11398.68 24099.31 25999.48 26099.09 8999.66 35797.70 24799.77 20799.29 270
EIA-MVS99.12 18799.01 19299.45 19399.36 28099.62 11899.34 12299.79 8598.41 26598.84 31998.89 36398.75 13299.84 25498.15 20699.51 29198.89 340
TSAR-MVS + GP.99.12 18799.04 18599.38 21899.34 29099.16 21998.15 31999.29 29898.18 29199.63 16099.62 19799.18 7899.68 34898.20 19899.74 21899.30 267
MVS_111021_HR99.12 18799.02 18999.40 21199.50 23599.11 22497.92 34699.71 12598.76 23599.08 29499.47 26499.17 7999.54 37897.85 23199.76 20999.54 183
CANet99.11 19099.05 18099.28 24498.83 36598.56 27698.71 27599.41 26699.25 16499.23 27299.22 32197.66 24999.94 7899.19 11399.97 5699.33 258
WR-MVS99.11 19098.93 20899.66 11799.30 30299.42 16698.42 30399.37 28199.04 19899.57 18699.20 32596.89 27899.86 22298.66 17299.87 14599.70 80
PHI-MVS99.11 19098.95 20799.59 15399.13 33299.59 12999.17 17799.65 15797.88 31099.25 26899.46 26798.97 10699.80 29997.26 28099.82 17999.37 248
SF-MVS99.10 19398.93 20899.62 14599.58 19299.51 14499.13 19399.65 15797.97 30299.42 23199.61 20698.86 11799.87 20496.45 32599.68 24399.49 212
MSDG99.08 19498.98 20399.37 22199.60 18399.13 22297.54 36399.74 10998.84 22399.53 20599.55 24299.10 8799.79 30297.07 29299.86 15399.18 291
Effi-MVS+-dtu99.07 19598.92 21299.52 17798.89 36199.78 4999.15 18599.66 14899.34 15198.92 30999.24 31997.69 24399.98 2198.11 20899.28 32398.81 347
Effi-MVS+99.06 19698.97 20499.34 22899.31 29898.98 23798.31 30999.91 3298.81 22598.79 32598.94 35999.14 8499.84 25498.79 15998.74 35799.20 286
MP-MVScopyleft99.06 19698.83 22499.76 6599.76 11899.71 8499.32 12799.50 24498.35 27698.97 30299.48 26098.37 18899.92 11795.95 34799.75 21199.63 128
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MDA-MVSNet-bldmvs99.06 19699.05 18099.07 27999.80 8797.83 32398.89 24899.72 12299.29 15699.63 16099.70 14696.47 29099.89 17698.17 20499.82 17999.50 207
MSLP-MVS++99.05 19999.09 16898.91 29699.21 31998.36 29198.82 26099.47 25298.85 22098.90 31299.56 23598.78 12799.09 39298.57 17599.68 24399.26 272
1112_ss99.05 19998.84 22299.67 11099.66 17099.29 19598.52 29499.82 6697.65 32099.43 22999.16 32796.42 29299.91 14199.07 13399.84 16299.80 47
ACMP97.51 1499.05 19998.84 22299.67 11099.78 10699.55 13998.88 24999.66 14897.11 34899.47 21999.60 21499.07 9499.89 17696.18 33699.85 15799.58 165
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MSP-MVS99.04 20298.79 22999.81 4199.78 10699.73 7799.35 12199.57 20598.54 25499.54 20098.99 35096.81 28099.93 9596.97 29599.53 28799.77 61
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PVSNet_BlendedMVS99.03 20399.01 19299.09 27599.54 21697.99 31398.58 28399.82 6697.62 32199.34 25099.71 13998.52 16999.77 31397.98 21699.97 5699.52 200
IS-MVSNet99.03 20398.85 22099.55 16999.80 8799.25 20499.73 2799.15 32599.37 14899.61 17599.71 13994.73 31699.81 29397.70 24799.88 13499.58 165
xiu_mvs_v2_base99.02 20599.11 15998.77 31399.37 27798.09 30898.13 32299.51 24099.47 13099.42 23198.54 38099.38 5499.97 3498.83 15399.33 31698.24 374
Fast-Effi-MVS+99.02 20598.87 21899.46 19099.38 27599.50 14599.04 21999.79 8597.17 34498.62 33898.74 37199.34 6099.95 6498.32 18999.41 30698.92 338
canonicalmvs99.02 20599.00 19599.09 27599.10 34098.70 26499.61 6899.66 14899.63 10698.64 33797.65 39599.04 9899.54 37898.79 15998.92 34699.04 325
MCST-MVS99.02 20598.81 22699.65 12299.58 19299.49 14698.58 28399.07 33098.40 26799.04 29999.25 31498.51 17199.80 29997.31 27499.51 29199.65 113
SD-MVS99.01 20999.30 12498.15 34099.50 23599.40 17298.94 24599.61 17599.22 17299.75 11599.82 7399.54 4195.51 40097.48 26599.87 14599.54 183
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
LF4IMVS99.01 20998.92 21299.27 24799.71 14499.28 19798.59 28299.77 9498.32 28299.39 24399.41 27498.62 14999.84 25496.62 31799.84 16298.69 353
IterMVS-SCA-FT99.00 21199.16 14698.51 32499.75 12995.90 36898.07 33099.84 5999.84 5499.89 5499.73 12496.01 30499.99 899.33 93100.00 199.63 128
MS-PatchMatch99.00 21198.97 20499.09 27599.11 33998.19 29998.76 27099.33 28898.49 25999.44 22599.58 22298.21 20799.69 33898.20 19899.62 25999.39 243
PS-MVSNAJ99.00 21199.08 17098.76 31499.37 27798.10 30798.00 33799.51 24099.47 13099.41 23798.50 38299.28 6699.97 3498.83 15399.34 31598.20 378
CNVR-MVS98.99 21498.80 22899.56 16699.25 31299.43 16398.54 29299.27 30298.58 24998.80 32499.43 27298.53 16699.70 33297.22 28599.59 27399.54 183
VDDNet98.97 21598.82 22599.42 20299.71 14498.81 25499.62 6398.68 34899.81 6299.38 24499.80 8394.25 32099.85 23998.79 15999.32 31899.59 160
IterMVS98.97 21599.16 14698.42 32899.74 13595.64 37198.06 33299.83 6199.83 5799.85 7399.74 12096.10 30399.99 899.27 105100.00 199.63 128
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TinyColmap98.97 21598.93 20899.07 27999.46 25598.19 29997.75 35499.75 10498.79 22899.54 20099.70 14698.97 10699.62 36796.63 31699.83 17099.41 240
HPM-MVS++copyleft98.96 21898.70 23599.74 8099.52 22799.71 8498.86 25199.19 32198.47 26198.59 34199.06 34098.08 21799.91 14196.94 29699.60 26999.60 153
lupinMVS98.96 21898.87 21899.24 25599.57 20298.40 28698.12 32399.18 32298.28 28499.63 16099.13 32998.02 22199.97 3498.22 19699.69 23899.35 254
USDC98.96 21898.93 20899.05 28199.54 21697.99 31397.07 38399.80 7998.21 28899.75 11599.77 10898.43 17999.64 36597.90 22399.88 13499.51 202
YYNet198.95 22198.99 20098.84 30699.64 17497.14 34698.22 31599.32 29098.92 21299.59 18199.66 17297.40 25799.83 26998.27 19299.90 11699.55 175
MDA-MVSNet_test_wron98.95 22198.99 20098.85 30499.64 17497.16 34498.23 31499.33 28898.93 21099.56 19399.66 17297.39 25999.83 26998.29 19099.88 13499.55 175
Test_1112_low_res98.95 22198.73 23199.63 13699.68 16499.15 22198.09 32799.80 7997.14 34699.46 22399.40 27896.11 30299.89 17699.01 13799.84 16299.84 36
CANet_DTU98.91 22498.85 22099.09 27598.79 37098.13 30398.18 31699.31 29499.48 12698.86 31799.51 25096.56 28699.95 6499.05 13499.95 8499.19 289
HyFIR lowres test98.91 22498.64 23799.73 8999.85 5999.47 14898.07 33099.83 6198.64 24399.89 5499.60 21492.57 338100.00 199.33 9399.97 5699.72 74
HQP_MVS98.90 22698.68 23699.55 16999.58 19299.24 20898.80 26499.54 22298.94 20799.14 28799.25 31497.24 26499.82 27895.84 35099.78 20399.60 153
sss98.90 22698.77 23099.27 24799.48 24598.44 28398.72 27399.32 29097.94 30699.37 24599.35 29596.31 29799.91 14198.85 15299.63 25899.47 220
OMC-MVS98.90 22698.72 23299.44 19699.39 27299.42 16698.58 28399.64 16397.31 33899.44 22599.62 19798.59 15499.69 33896.17 33799.79 19899.22 280
ppachtmachnet_test98.89 22999.12 15698.20 33999.66 17095.24 37597.63 35999.68 14099.08 19399.78 10199.62 19798.65 14799.88 19098.02 21199.96 7199.48 216
new_pmnet98.88 23098.89 21698.84 30699.70 15297.62 33198.15 31999.50 24497.98 30199.62 16999.54 24498.15 21299.94 7897.55 26099.84 16298.95 335
K. test v398.87 23198.60 24099.69 10599.93 2699.46 15299.74 2494.97 39299.78 7099.88 6299.88 4293.66 32899.97 3499.61 4999.95 8499.64 123
APD-MVScopyleft98.87 23198.59 24299.71 10099.50 23599.62 11899.01 22899.57 20596.80 35599.54 20099.63 19098.29 19899.91 14195.24 36299.71 23299.61 149
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
our_test_398.85 23399.09 16898.13 34199.66 17094.90 37897.72 35599.58 20399.07 19599.64 15699.62 19798.19 20999.93 9598.41 18299.95 8499.55 175
UnsupCasMVSNet_eth98.83 23498.57 24699.59 15399.68 16499.45 15798.99 23699.67 14499.48 12699.55 19899.36 29094.92 31299.86 22298.95 14896.57 39199.45 225
NCCC98.82 23598.57 24699.58 15799.21 31999.31 19298.61 27799.25 30898.65 24298.43 34999.26 31297.86 23299.81 29396.55 31899.27 32699.61 149
PMVScopyleft92.94 2198.82 23598.81 22698.85 30499.84 6297.99 31399.20 16799.47 25299.71 8299.42 23199.82 7398.09 21599.47 38593.88 38199.85 15799.07 322
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FMVSNet398.80 23798.63 23999.32 23599.13 33298.72 26399.10 20499.48 24999.23 16899.62 16999.64 17992.57 33899.86 22298.96 14499.90 11699.39 243
Patchmtry98.78 23898.54 25099.49 18298.89 36199.19 21799.32 12799.67 14499.65 10299.72 12899.79 9391.87 34699.95 6498.00 21599.97 5699.33 258
Vis-MVSNet (Re-imp)98.77 23998.58 24599.34 22899.78 10698.88 25099.61 6899.56 21099.11 19299.24 27199.56 23593.00 33699.78 30597.43 26899.89 12599.35 254
CLD-MVS98.76 24098.57 24699.33 23199.57 20298.97 23997.53 36599.55 21696.41 35899.27 26699.13 32999.07 9499.78 30596.73 30999.89 12599.23 278
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
iter_conf_final98.75 24198.54 25099.40 21199.33 29598.75 26099.26 14999.59 19399.80 6599.76 10899.58 22290.17 36799.92 11799.37 8499.97 5699.54 183
Anonymous20240521198.75 24198.46 25699.63 13699.34 29099.66 10299.47 9997.65 37699.28 15999.56 19399.50 25393.15 33299.84 25498.62 17399.58 27499.40 241
CPTT-MVS98.74 24398.44 25899.64 12999.61 18199.38 17699.18 17299.55 21696.49 35799.27 26699.37 28697.11 27299.92 11795.74 35399.67 24999.62 139
F-COLMAP98.74 24398.45 25799.62 14599.57 20299.47 14898.84 25499.65 15796.31 36198.93 30699.19 32697.68 24499.87 20496.52 32099.37 31199.53 189
N_pmnet98.73 24598.53 25299.35 22799.72 14198.67 26598.34 30694.65 39398.35 27699.79 9799.68 16398.03 22099.93 9598.28 19199.92 10699.44 230
c3_l98.72 24698.71 23398.72 31699.12 33497.22 34397.68 35899.56 21098.90 21499.54 20099.48 26096.37 29699.73 32497.88 22599.88 13499.21 282
CL-MVSNet_self_test98.71 24798.56 24999.15 26599.22 31798.66 26897.14 38099.51 24098.09 29599.54 20099.27 30996.87 27999.74 32198.43 18198.96 34399.03 326
PVSNet_Blended98.70 24898.59 24299.02 28399.54 21697.99 31397.58 36299.82 6695.70 36999.34 25098.98 35398.52 16999.77 31397.98 21699.83 17099.30 267
dmvs_re98.69 24998.48 25499.31 23899.55 21499.42 16699.54 8498.38 36499.32 15498.72 33198.71 37296.76 28299.21 39096.01 34199.35 31499.31 265
eth_miper_zixun_eth98.68 25098.71 23398.60 32099.10 34096.84 35397.52 36799.54 22298.94 20799.58 18399.48 26096.25 30099.76 31598.01 21499.93 10299.21 282
PatchMatch-RL98.68 25098.47 25599.30 24199.44 26099.28 19798.14 32199.54 22297.12 34799.11 29199.25 31497.80 23799.70 33296.51 32199.30 32098.93 337
miper_lstm_enhance98.65 25298.60 24098.82 31199.20 32297.33 34097.78 35399.66 14899.01 20099.59 18199.50 25394.62 31799.85 23998.12 20799.90 11699.26 272
h-mvs3398.61 25398.34 26999.44 19699.60 18398.67 26599.27 14799.44 26099.68 9299.32 25599.49 25792.50 341100.00 199.24 10696.51 39299.65 113
CVMVSNet98.61 25398.88 21797.80 34999.58 19293.60 38599.26 14999.64 16399.66 10099.72 12899.67 16793.26 33199.93 9599.30 9999.81 18899.87 30
Patchmatch-RL test98.60 25598.36 26699.33 23199.77 11499.07 23298.27 31199.87 4598.91 21399.74 12399.72 13190.57 36399.79 30298.55 17699.85 15799.11 306
RPMNet98.60 25598.53 25298.83 30899.05 34598.12 30499.30 13599.62 16899.86 4699.16 28399.74 12092.53 34099.92 11798.75 16498.77 35398.44 367
AdaColmapbinary98.60 25598.35 26899.38 21899.12 33499.22 21198.67 27699.42 26597.84 31498.81 32299.27 30997.32 26299.81 29395.14 36499.53 28799.10 308
miper_ehance_all_eth98.59 25898.59 24298.59 32198.98 35497.07 34797.49 36899.52 23698.50 25799.52 20799.37 28696.41 29499.71 33097.86 22999.62 25999.00 332
WTY-MVS98.59 25898.37 26599.26 25099.43 26498.40 28698.74 27199.13 32898.10 29399.21 27799.24 31994.82 31499.90 15997.86 22998.77 35399.49 212
CNLPA98.57 26098.34 26999.28 24499.18 32699.10 22998.34 30699.41 26698.48 26098.52 34598.98 35397.05 27499.78 30595.59 35599.50 29498.96 333
CDPH-MVS98.56 26198.20 28099.61 14899.50 23599.46 15298.32 30899.41 26695.22 37499.21 27799.10 33798.34 19399.82 27895.09 36699.66 25299.56 172
UnsupCasMVSNet_bld98.55 26298.27 27599.40 21199.56 21399.37 17997.97 34299.68 14097.49 32999.08 29499.35 29595.41 31199.82 27897.70 24798.19 37699.01 331
cl____98.54 26398.41 26198.92 29499.03 34897.80 32697.46 36999.59 19398.90 21499.60 17899.46 26793.85 32499.78 30597.97 21899.89 12599.17 293
DIV-MVS_self_test98.54 26398.42 26098.92 29499.03 34897.80 32697.46 36999.59 19398.90 21499.60 17899.46 26793.87 32399.78 30597.97 21899.89 12599.18 291
FA-MVS(test-final)98.52 26598.32 27199.10 27499.48 24598.67 26599.77 1598.60 35497.35 33699.63 16099.80 8393.07 33499.84 25497.92 22199.30 32098.78 350
hse-mvs298.52 26598.30 27399.16 26399.29 30498.60 27598.77 26999.02 33499.68 9299.32 25599.04 34392.50 34199.85 23999.24 10697.87 38399.03 326
MG-MVS98.52 26598.39 26398.94 29099.15 32997.39 33998.18 31699.21 31898.89 21799.23 27299.63 19097.37 26099.74 32194.22 37599.61 26699.69 84
DP-MVS Recon98.50 26898.23 27699.31 23899.49 24099.46 15298.56 28899.63 16594.86 38098.85 31899.37 28697.81 23699.59 37396.08 33899.44 30198.88 341
CMPMVSbinary77.52 2398.50 26898.19 28399.41 20998.33 38799.56 13699.01 22899.59 19395.44 37199.57 18699.80 8395.64 30799.46 38796.47 32499.92 10699.21 282
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
114514_t98.49 27098.11 28799.64 12999.73 13899.58 13399.24 15799.76 9989.94 39199.42 23199.56 23597.76 24099.86 22297.74 24199.82 17999.47 220
PMMVS98.49 27098.29 27499.11 27298.96 35598.42 28597.54 36399.32 29097.53 32698.47 34898.15 38897.88 23199.82 27897.46 26699.24 32999.09 312
MVSTER98.47 27298.22 27899.24 25599.06 34498.35 29299.08 21299.46 25599.27 16099.75 11599.66 17288.61 37599.85 23999.14 12799.92 10699.52 200
iter_conf0598.46 27398.23 27699.15 26599.04 34797.99 31399.10 20499.61 17599.79 6899.76 10899.58 22287.88 37799.92 11799.31 9899.97 5699.53 189
LFMVS98.46 27398.19 28399.26 25099.24 31498.52 27999.62 6396.94 38399.87 4299.31 25999.58 22291.04 35499.81 29398.68 17199.42 30599.45 225
PatchT98.45 27598.32 27198.83 30898.94 35698.29 29399.24 15798.82 34299.84 5499.08 29499.76 11291.37 34999.94 7898.82 15599.00 34298.26 373
MIMVSNet98.43 27698.20 28099.11 27299.53 22298.38 29099.58 7698.61 35298.96 20599.33 25299.76 11290.92 35699.81 29397.38 27199.76 20999.15 297
PVSNet97.47 1598.42 27798.44 25898.35 33199.46 25596.26 36296.70 38899.34 28797.68 31999.00 30199.13 32997.40 25799.72 32697.59 25999.68 24399.08 317
CHOSEN 280x42098.41 27898.41 26198.40 32999.34 29095.89 36996.94 38599.44 26098.80 22799.25 26899.52 24893.51 33099.98 2198.94 14999.98 4199.32 261
BH-RMVSNet98.41 27898.14 28699.21 25799.21 31998.47 28098.60 27998.26 36798.35 27698.93 30699.31 30197.20 26999.66 35794.32 37399.10 33699.51 202
QAPM98.40 28097.99 29399.65 12299.39 27299.47 14899.67 4999.52 23691.70 38898.78 32799.80 8398.55 16099.95 6494.71 37099.75 21199.53 189
API-MVS98.38 28198.39 26398.35 33198.83 36599.26 20199.14 18799.18 32298.59 24898.66 33698.78 36998.61 15199.57 37594.14 37699.56 27696.21 393
HQP-MVS98.36 28298.02 29299.39 21599.31 29898.94 24297.98 33999.37 28197.45 33098.15 35898.83 36696.67 28399.70 33294.73 36899.67 24999.53 189
PAPM_NR98.36 28298.04 29099.33 23199.48 24598.93 24598.79 26799.28 30197.54 32598.56 34498.57 37797.12 27199.69 33894.09 37798.90 34899.38 245
PLCcopyleft97.35 1698.36 28297.99 29399.48 18699.32 29799.24 20898.50 29699.51 24095.19 37698.58 34298.96 35796.95 27799.83 26995.63 35499.25 32799.37 248
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
train_agg98.35 28597.95 29799.57 16399.35 28299.35 18698.11 32599.41 26694.90 37897.92 36898.99 35098.02 22199.85 23995.38 36099.44 30199.50 207
CR-MVSNet98.35 28598.20 28098.83 30899.05 34598.12 30499.30 13599.67 14497.39 33499.16 28399.79 9391.87 34699.91 14198.78 16298.77 35398.44 367
DPM-MVS98.28 28797.94 30199.32 23599.36 28099.11 22497.31 37598.78 34496.88 35198.84 31999.11 33697.77 23999.61 37194.03 37999.36 31299.23 278
alignmvs98.28 28797.96 29699.25 25399.12 33498.93 24599.03 22398.42 36199.64 10498.72 33197.85 39290.86 35999.62 36798.88 15199.13 33399.19 289
test_yl98.25 28997.95 29799.13 27099.17 32798.47 28099.00 23198.67 35098.97 20399.22 27599.02 34891.31 35099.69 33897.26 28098.93 34499.24 275
DCV-MVSNet98.25 28997.95 29799.13 27099.17 32798.47 28099.00 23198.67 35098.97 20399.22 27599.02 34891.31 35099.69 33897.26 28098.93 34499.24 275
MAR-MVS98.24 29197.92 30399.19 26098.78 37299.65 10899.17 17799.14 32695.36 37298.04 36598.81 36897.47 25499.72 32695.47 35899.06 33798.21 376
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
OpenMVScopyleft98.12 1098.23 29297.89 30699.26 25099.19 32499.26 20199.65 5999.69 13791.33 38998.14 36299.77 10898.28 19999.96 5595.41 35999.55 28098.58 359
BH-untuned98.22 29398.09 28898.58 32399.38 27597.24 34298.55 28998.98 33797.81 31599.20 28298.76 37097.01 27599.65 36394.83 36798.33 37198.86 343
HY-MVS98.23 998.21 29497.95 29798.99 28599.03 34898.24 29499.61 6898.72 34696.81 35498.73 33099.51 25094.06 32199.86 22296.91 29898.20 37498.86 343
Syy-MVS98.17 29597.85 30799.15 26598.50 38298.79 25798.60 27999.21 31897.89 30896.76 38796.37 40495.47 31099.57 37599.10 13098.73 35999.09 312
EPNet98.13 29697.77 31199.18 26294.57 40197.99 31399.24 15797.96 37199.74 7597.29 38299.62 19793.13 33399.97 3498.59 17499.83 17099.58 165
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SCA98.11 29798.36 26697.36 35999.20 32292.99 38798.17 31898.49 35998.24 28699.10 29399.57 23196.01 30499.94 7896.86 30199.62 25999.14 302
Patchmatch-test98.10 29897.98 29598.48 32699.27 30996.48 35799.40 10999.07 33098.81 22599.23 27299.57 23190.11 36899.87 20496.69 31099.64 25699.09 312
pmmvs398.08 29997.80 30898.91 29699.41 27097.69 33097.87 35099.66 14895.87 36599.50 21499.51 25090.35 36599.97 3498.55 17699.47 29899.08 317
JIA-IIPM98.06 30097.92 30398.50 32598.59 37997.02 34898.80 26498.51 35799.88 4197.89 37099.87 4791.89 34599.90 15998.16 20597.68 38598.59 357
miper_enhance_ethall98.03 30197.94 30198.32 33498.27 38896.43 35996.95 38499.41 26696.37 36099.43 22998.96 35794.74 31599.69 33897.71 24499.62 25998.83 346
TAPA-MVS97.92 1398.03 30197.55 31799.46 19099.47 25199.44 15998.50 29699.62 16886.79 39299.07 29799.26 31298.26 20199.62 36797.28 27799.73 22399.31 265
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
131498.00 30397.90 30598.27 33898.90 35897.45 33799.30 13599.06 33294.98 37797.21 38499.12 33398.43 17999.67 35395.58 35698.56 36697.71 385
GA-MVS97.99 30497.68 31498.93 29399.52 22798.04 31297.19 37999.05 33398.32 28298.81 32298.97 35589.89 37199.41 38898.33 18899.05 33899.34 257
MVS-HIRNet97.86 30598.22 27896.76 36899.28 30791.53 39598.38 30592.60 39899.13 18899.31 25999.96 1297.18 27099.68 34898.34 18799.83 17099.07 322
FE-MVS97.85 30697.42 31999.15 26599.44 26098.75 26099.77 1598.20 36895.85 36699.33 25299.80 8388.86 37499.88 19096.40 32699.12 33498.81 347
AUN-MVS97.82 30797.38 32099.14 26999.27 30998.53 27798.72 27399.02 33498.10 29397.18 38599.03 34789.26 37399.85 23997.94 22097.91 38199.03 326
FMVSNet597.80 30897.25 32499.42 20298.83 36598.97 23999.38 11399.80 7998.87 21899.25 26899.69 15280.60 39699.91 14198.96 14499.90 11699.38 245
ADS-MVSNet297.78 30997.66 31698.12 34299.14 33095.36 37399.22 16498.75 34596.97 34998.25 35499.64 17990.90 35799.94 7896.51 32199.56 27699.08 317
test111197.74 31098.16 28596.49 37399.60 18389.86 40399.71 3491.21 39999.89 3699.88 6299.87 4793.73 32799.90 15999.56 5799.99 1699.70 80
ECVR-MVScopyleft97.73 31198.04 29096.78 36799.59 18790.81 39999.72 3090.43 40199.89 3699.86 7199.86 5493.60 32999.89 17699.46 7099.99 1699.65 113
baseline197.73 31197.33 32198.96 28899.30 30297.73 32899.40 10998.42 36199.33 15399.46 22399.21 32391.18 35299.82 27898.35 18691.26 39799.32 261
tpmrst97.73 31198.07 28996.73 37098.71 37692.00 39199.10 20498.86 33998.52 25598.92 30999.54 24491.90 34499.82 27898.02 21199.03 34098.37 369
ADS-MVSNet97.72 31497.67 31597.86 34799.14 33094.65 37999.22 16498.86 33996.97 34998.25 35499.64 17990.90 35799.84 25496.51 32199.56 27699.08 317
PatchmatchNetpermissive97.65 31597.80 30897.18 36498.82 36892.49 38999.17 17798.39 36398.12 29298.79 32599.58 22290.71 36199.89 17697.23 28499.41 30699.16 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tttt051797.62 31697.20 32598.90 30299.76 11897.40 33899.48 9694.36 39499.06 19799.70 13799.49 25784.55 39199.94 7898.73 16699.65 25499.36 251
EPNet_dtu97.62 31697.79 31097.11 36696.67 39892.31 39098.51 29598.04 36999.24 16695.77 39399.47 26493.78 32699.66 35798.98 14099.62 25999.37 248
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
wuyk23d97.58 31899.13 15292.93 38099.69 15699.49 14699.52 8699.77 9497.97 30299.96 2399.79 9399.84 1299.94 7895.85 34999.82 17979.36 396
cl2297.56 31997.28 32298.40 32998.37 38696.75 35497.24 37899.37 28197.31 33899.41 23799.22 32187.30 37899.37 38997.70 24799.62 25999.08 317
PAPR97.56 31997.07 32799.04 28298.80 36998.11 30697.63 35999.25 30894.56 38398.02 36698.25 38797.43 25699.68 34890.90 38898.74 35799.33 258
thisisatest053097.45 32196.95 33198.94 29099.68 16497.73 32899.09 20994.19 39698.61 24799.56 19399.30 30384.30 39299.93 9598.27 19299.54 28599.16 295
TR-MVS97.44 32297.15 32698.32 33498.53 38197.46 33698.47 29897.91 37396.85 35298.21 35798.51 38196.42 29299.51 38392.16 38497.29 38797.98 382
tpmvs97.39 32397.69 31396.52 37298.41 38491.76 39299.30 13598.94 33897.74 31697.85 37399.55 24292.40 34399.73 32496.25 33398.73 35998.06 381
test0.0.03 197.37 32496.91 33498.74 31597.72 39497.57 33297.60 36197.36 38298.00 29899.21 27798.02 38990.04 36999.79 30298.37 18495.89 39598.86 343
OpenMVS_ROBcopyleft97.31 1797.36 32596.84 33598.89 30399.29 30499.45 15798.87 25099.48 24986.54 39499.44 22599.74 12097.34 26199.86 22291.61 38599.28 32397.37 389
dmvs_testset97.27 32696.83 33698.59 32199.46 25597.55 33399.25 15696.84 38498.78 23097.24 38397.67 39497.11 27298.97 39486.59 39898.54 36799.27 271
BH-w/o97.20 32797.01 32997.76 35099.08 34395.69 37098.03 33498.52 35695.76 36897.96 36798.02 38995.62 30899.47 38592.82 38397.25 38898.12 380
test-LLR97.15 32896.95 33197.74 35298.18 39195.02 37697.38 37196.10 38598.00 29897.81 37598.58 37590.04 36999.91 14197.69 25398.78 35198.31 370
tpm97.15 32896.95 33197.75 35198.91 35794.24 38199.32 12797.96 37197.71 31898.29 35299.32 29986.72 38699.92 11798.10 20996.24 39499.09 312
E-PMN97.14 33097.43 31896.27 37598.79 37091.62 39495.54 39299.01 33699.44 13698.88 31399.12 33392.78 33799.68 34894.30 37499.03 34097.50 386
cascas96.99 33196.82 33797.48 35597.57 39795.64 37196.43 39099.56 21091.75 38797.13 38697.61 39695.58 30998.63 39696.68 31199.11 33598.18 379
thisisatest051596.98 33296.42 33998.66 31999.42 26997.47 33597.27 37694.30 39597.24 34099.15 28598.86 36585.01 38999.87 20497.10 29099.39 30898.63 354
EMVS96.96 33397.28 32295.99 37898.76 37491.03 39795.26 39398.61 35299.34 15198.92 30998.88 36493.79 32599.66 35792.87 38299.05 33897.30 390
dp96.86 33497.07 32796.24 37698.68 37890.30 40299.19 17198.38 36497.35 33698.23 35699.59 21987.23 37999.82 27896.27 33298.73 35998.59 357
baseline296.83 33596.28 34198.46 32799.09 34296.91 35198.83 25693.87 39797.23 34196.23 39298.36 38488.12 37699.90 15996.68 31198.14 37898.57 360
ET-MVSNet_ETH3D96.78 33696.07 34598.91 29699.26 31197.92 32197.70 35796.05 38897.96 30592.37 39898.43 38387.06 38099.90 15998.27 19297.56 38698.91 339
tpm cat196.78 33696.98 33096.16 37798.85 36490.59 40199.08 21299.32 29092.37 38697.73 37999.46 26791.15 35399.69 33896.07 33998.80 35098.21 376
PCF-MVS96.03 1896.73 33895.86 34999.33 23199.44 26099.16 21996.87 38699.44 26086.58 39398.95 30499.40 27894.38 31999.88 19087.93 39299.80 19398.95 335
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CostFormer96.71 33996.79 33896.46 37498.90 35890.71 40099.41 10898.68 34894.69 38298.14 36299.34 29886.32 38899.80 29997.60 25898.07 38098.88 341
MVEpermissive92.54 2296.66 34096.11 34498.31 33699.68 16497.55 33397.94 34495.60 39099.37 14890.68 39998.70 37396.56 28698.61 39786.94 39799.55 28098.77 351
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
thres600view796.60 34196.16 34397.93 34599.63 17696.09 36699.18 17297.57 37798.77 23298.72 33197.32 39887.04 38199.72 32688.57 39098.62 36497.98 382
EPMVS96.53 34296.32 34097.17 36598.18 39192.97 38899.39 11189.95 40298.21 28898.61 33999.59 21986.69 38799.72 32696.99 29499.23 33198.81 347
testing396.48 34395.63 35399.01 28499.23 31697.81 32498.90 24799.10 32998.72 23797.84 37497.92 39172.44 40399.85 23997.21 28699.33 31699.35 254
thres40096.40 34495.89 34797.92 34699.58 19296.11 36499.00 23197.54 38098.43 26298.52 34596.98 40186.85 38399.67 35387.62 39398.51 36897.98 382
thres100view90096.39 34596.03 34697.47 35699.63 17695.93 36799.18 17297.57 37798.75 23698.70 33497.31 39987.04 38199.67 35387.62 39398.51 36896.81 391
tpm296.35 34696.22 34296.73 37098.88 36391.75 39399.21 16698.51 35793.27 38597.89 37099.21 32384.83 39099.70 33296.04 34098.18 37798.75 352
FPMVS96.32 34795.50 35498.79 31299.60 18398.17 30298.46 30298.80 34397.16 34596.28 38999.63 19082.19 39399.09 39288.45 39198.89 34999.10 308
tfpn200view996.30 34895.89 34797.53 35499.58 19296.11 36499.00 23197.54 38098.43 26298.52 34596.98 40186.85 38399.67 35387.62 39398.51 36896.81 391
TESTMET0.1,196.24 34995.84 35097.41 35898.24 38993.84 38497.38 37195.84 38998.43 26297.81 37598.56 37879.77 39799.89 17697.77 23698.77 35398.52 361
test-mter96.23 35095.73 35197.74 35298.18 39195.02 37697.38 37196.10 38597.90 30797.81 37598.58 37579.12 40099.91 14197.69 25398.78 35198.31 370
X-MVStestdata96.09 35194.87 36099.75 7599.71 14499.71 8499.37 11799.61 17599.29 15698.76 32861.30 40698.47 17399.88 19097.62 25599.73 22399.67 96
thres20096.09 35195.68 35297.33 36199.48 24596.22 36398.53 29397.57 37798.06 29798.37 35196.73 40386.84 38599.61 37186.99 39698.57 36596.16 394
KD-MVS_2432*160095.89 35395.41 35697.31 36294.96 39993.89 38297.09 38199.22 31597.23 34198.88 31399.04 34379.23 39899.54 37896.24 33496.81 38998.50 365
miper_refine_blended95.89 35395.41 35697.31 36294.96 39993.89 38297.09 38199.22 31597.23 34198.88 31399.04 34379.23 39899.54 37896.24 33496.81 38998.50 365
gg-mvs-nofinetune95.87 35595.17 35997.97 34498.19 39096.95 34999.69 4289.23 40399.89 3696.24 39199.94 1681.19 39499.51 38393.99 38098.20 37497.44 387
PVSNet_095.53 1995.85 35695.31 35897.47 35698.78 37293.48 38695.72 39199.40 27396.18 36397.37 38097.73 39395.73 30699.58 37495.49 35781.40 39899.36 251
tmp_tt95.75 35795.42 35596.76 36889.90 40394.42 38098.86 25197.87 37478.01 39599.30 26499.69 15297.70 24195.89 39999.29 10298.14 37899.95 11
MVS95.72 35894.63 36398.99 28598.56 38097.98 31999.30 13598.86 33972.71 39797.30 38199.08 33898.34 19399.74 32189.21 38998.33 37199.26 272
myMVS_eth3d95.63 35994.73 36198.34 33398.50 38296.36 36098.60 27999.21 31897.89 30896.76 38796.37 40472.10 40499.57 37594.38 37298.73 35999.09 312
PAPM95.61 36094.71 36298.31 33699.12 33496.63 35596.66 38998.46 36090.77 39096.25 39098.68 37493.01 33599.69 33881.60 39997.86 38498.62 355
IB-MVS95.41 2095.30 36194.46 36597.84 34898.76 37495.33 37497.33 37496.07 38796.02 36495.37 39697.41 39776.17 40299.96 5597.54 26195.44 39698.22 375
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test250694.73 36294.59 36495.15 37999.59 18785.90 40599.75 2274.01 40599.89 3699.71 13399.86 5479.00 40199.90 15999.52 6499.99 1699.65 113
test_method91.72 36392.32 36689.91 38193.49 40270.18 40690.28 39499.56 21061.71 39895.39 39599.52 24893.90 32299.94 7898.76 16398.27 37399.62 139
EGC-MVSNET89.05 36485.52 36799.64 12999.89 4099.78 4999.56 8199.52 23624.19 39949.96 40099.83 6699.15 8199.92 11797.71 24499.85 15799.21 282
test12329.31 36533.05 37018.08 38225.93 40512.24 40797.53 36510.93 40711.78 40024.21 40150.08 41021.04 4058.60 40123.51 40032.43 40033.39 397
testmvs28.94 36633.33 36815.79 38326.03 4049.81 40896.77 38715.67 40611.55 40123.87 40250.74 40919.03 4068.53 40223.21 40133.07 39929.03 398
cdsmvs_eth3d_5k24.88 36733.17 3690.00 3840.00 4060.00 4090.00 39599.62 1680.00 4020.00 40399.13 32999.82 130.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas16.61 36822.14 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 199.28 660.00 4030.00 4020.00 4010.00 399
test_blank8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
sosnet-low-res8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
sosnet8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
Regformer8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
uanet8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re8.26 37711.02 3800.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40399.16 3270.00 4070.00 4030.00 4020.00 4010.00 399
MM99.55 16998.81 25499.05 21697.79 37599.99 299.48 21799.59 21996.29 29999.95 6499.94 1699.98 4199.88 25
WAC-MVS96.36 36095.20 363
FOURS199.83 6699.89 1099.74 2499.71 12599.69 9099.63 160
MSC_two_6792asdad99.74 8099.03 34899.53 14299.23 31299.92 11797.77 23699.69 23899.78 57
PC_three_145297.56 32299.68 14399.41 27499.09 8997.09 39896.66 31399.60 26999.62 139
No_MVS99.74 8099.03 34899.53 14299.23 31299.92 11797.77 23699.69 23899.78 57
test_one_060199.63 17699.76 6299.55 21699.23 16899.31 25999.61 20698.59 154
eth-test20.00 406
eth-test0.00 406
ZD-MVS99.43 26499.61 12499.43 26396.38 35999.11 29199.07 33997.86 23299.92 11794.04 37899.49 296
RE-MVS-def99.13 15299.54 21699.74 7499.26 14999.62 16899.16 18299.52 20799.64 17998.57 15797.27 27899.61 26699.54 183
IU-MVS99.69 15699.77 5499.22 31597.50 32899.69 14097.75 24099.70 23499.77 61
OPU-MVS99.29 24299.12 33499.44 15999.20 16799.40 27899.00 10098.84 39596.54 31999.60 26999.58 165
test_241102_TWO99.54 22299.13 18899.76 10899.63 19098.32 19699.92 11797.85 23199.69 23899.75 70
test_241102_ONE99.69 15699.82 3599.54 22299.12 19199.82 8199.49 25798.91 11299.52 382
9.1498.64 23799.45 25998.81 26199.60 18797.52 32799.28 26599.56 23598.53 16699.83 26995.36 36199.64 256
save fliter99.53 22299.25 20498.29 31099.38 28099.07 195
test_0728_THIRD99.18 17599.62 16999.61 20698.58 15699.91 14197.72 24299.80 19399.77 61
test_0728_SECOND99.83 3499.70 15299.79 4699.14 18799.61 17599.92 11797.88 22599.72 22999.77 61
test072699.69 15699.80 4499.24 15799.57 20599.16 18299.73 12799.65 17798.35 190
GSMVS99.14 302
test_part299.62 18099.67 10099.55 198
sam_mvs190.81 36099.14 302
sam_mvs90.52 364
ambc99.20 25999.35 28298.53 27799.17 17799.46 25599.67 14999.80 8398.46 17699.70 33297.92 22199.70 23499.38 245
MTGPAbinary99.53 231
test_post199.14 18751.63 40889.54 37299.82 27896.86 301
test_post52.41 40790.25 36699.86 222
patchmatchnet-post99.62 19790.58 36299.94 78
GG-mvs-BLEND97.36 35997.59 39596.87 35299.70 3588.49 40494.64 39797.26 40080.66 39599.12 39191.50 38696.50 39396.08 395
MTMP99.09 20998.59 355
gm-plane-assit97.59 39589.02 40493.47 38498.30 38599.84 25496.38 328
test9_res95.10 36599.44 30199.50 207
TEST999.35 28299.35 18698.11 32599.41 26694.83 38197.92 36898.99 35098.02 22199.85 239
test_899.34 29099.31 19298.08 32999.40 27394.90 37897.87 37298.97 35598.02 22199.84 254
agg_prior294.58 37199.46 30099.50 207
agg_prior99.35 28299.36 18399.39 27697.76 37899.85 239
TestCases99.63 13699.78 10699.64 11199.83 6198.63 24499.63 16099.72 13198.68 14099.75 31996.38 32899.83 17099.51 202
test_prior499.19 21798.00 337
test_prior297.95 34397.87 31198.05 36499.05 34197.90 22995.99 34499.49 296
test_prior99.46 19099.35 28299.22 21199.39 27699.69 33899.48 216
旧先验297.94 34495.33 37398.94 30599.88 19096.75 307
新几何298.04 333
新几何199.52 17799.50 23599.22 21199.26 30595.66 37098.60 34099.28 30797.67 24599.89 17695.95 34799.32 31899.45 225
旧先验199.49 24099.29 19599.26 30599.39 28297.67 24599.36 31299.46 224
无先验98.01 33599.23 31295.83 36799.85 23995.79 35299.44 230
原ACMM297.92 346
原ACMM199.37 22199.47 25198.87 25299.27 30296.74 35698.26 35399.32 29997.93 22899.82 27895.96 34699.38 30999.43 236
test22299.51 22999.08 23197.83 35299.29 29895.21 37598.68 33599.31 30197.28 26399.38 30999.43 236
testdata299.89 17695.99 344
segment_acmp98.37 188
testdata99.42 20299.51 22998.93 24599.30 29796.20 36298.87 31699.40 27898.33 19599.89 17696.29 33199.28 32399.44 230
testdata197.72 35597.86 313
test1299.54 17499.29 30499.33 18999.16 32498.43 34997.54 25299.82 27899.47 29899.48 216
plane_prior799.58 19299.38 176
plane_prior699.47 25199.26 20197.24 264
plane_prior599.54 22299.82 27895.84 35099.78 20399.60 153
plane_prior499.25 314
plane_prior399.31 19298.36 27199.14 287
plane_prior298.80 26498.94 207
plane_prior199.51 229
plane_prior99.24 20898.42 30397.87 31199.71 232
n20.00 408
nn0.00 408
door-mid99.83 61
lessismore_v099.64 12999.86 5599.38 17690.66 40099.89 5499.83 6694.56 31899.97 3499.56 5799.92 10699.57 170
LGP-MVS_train99.74 8099.82 7399.63 11699.73 11397.56 32299.64 15699.69 15299.37 5699.89 17696.66 31399.87 14599.69 84
test1199.29 298
door99.77 94
HQP5-MVS98.94 242
HQP-NCC99.31 29897.98 33997.45 33098.15 358
ACMP_Plane99.31 29897.98 33997.45 33098.15 358
BP-MVS94.73 368
HQP4-MVS98.15 35899.70 33299.53 189
HQP3-MVS99.37 28199.67 249
HQP2-MVS96.67 283
NP-MVS99.40 27199.13 22298.83 366
MDTV_nov1_ep13_2view91.44 39699.14 18797.37 33599.21 27791.78 34896.75 30799.03 326
MDTV_nov1_ep1397.73 31298.70 37790.83 39899.15 18598.02 37098.51 25698.82 32199.61 20690.98 35599.66 35796.89 30098.92 346
ACMMP++_ref99.94 95
ACMMP++99.79 198
Test By Simon98.41 182
ITE_SJBPF99.38 21899.63 17699.44 15999.73 11398.56 25099.33 25299.53 24698.88 11699.68 34896.01 34199.65 25499.02 330
DeepMVS_CXcopyleft97.98 34399.69 15696.95 34999.26 30575.51 39695.74 39498.28 38696.47 29099.62 36791.23 38797.89 38297.38 388