This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1099.99 1100.00 199.98 1099.78 9100.00 199.92 9100.00 199.87 16
mvs_tets99.90 299.90 399.90 599.96 599.79 4499.72 2999.88 3099.92 1199.98 1099.93 1799.94 199.98 1099.77 22100.00 199.92 10
test_vis3_rt99.89 399.90 399.87 1599.98 399.75 6299.70 34100.00 199.73 57100.00 199.89 3199.79 899.88 17299.98 1100.00 199.98 1
jajsoiax99.89 399.89 599.89 899.96 599.78 4799.70 3499.86 3599.89 1999.98 1099.90 2799.94 199.98 1099.75 23100.00 199.90 11
ANet_high99.88 599.87 899.91 299.99 199.91 499.65 58100.00 199.90 13100.00 199.97 1199.61 2199.97 2299.75 23100.00 199.84 21
LTVRE_ROB99.19 199.88 599.87 899.88 1299.91 2699.90 799.96 199.92 1899.90 1399.97 1399.87 4099.81 799.95 5199.54 4399.99 1399.80 31
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs699.86 799.86 1099.83 2599.94 1699.90 799.83 699.91 2199.85 3399.94 2199.95 1399.73 1299.90 14199.65 2999.97 4299.69 67
mvsany_test399.85 899.88 699.75 6099.95 1399.37 16399.53 8299.98 899.77 5599.99 799.95 1399.85 399.94 6499.95 799.98 3099.94 7
UniMVSNet_ETH3D99.85 899.83 1299.90 599.89 3399.91 499.89 499.71 10899.93 999.95 1999.89 3199.71 1399.96 4199.51 4899.97 4299.84 21
PS-MVSNAJss99.84 1099.82 1399.89 899.96 599.77 5099.68 4499.85 3999.95 499.98 1099.92 2199.28 5199.98 1099.75 23100.00 199.94 7
test_djsdf99.84 1099.81 1499.91 299.94 1699.84 2499.77 1499.80 6399.73 5799.97 1399.92 2199.77 1099.98 1099.43 56100.00 199.90 11
test_fmvs399.83 1299.93 299.53 15899.96 598.62 25699.67 48100.00 199.95 4100.00 199.95 1399.85 399.99 699.98 199.99 1399.98 1
v7n99.82 1399.80 1699.88 1299.96 599.84 2499.82 899.82 5299.84 3699.94 2199.91 2499.13 7199.96 4199.83 1799.99 1399.83 25
anonymousdsp99.80 1499.77 1999.90 599.96 599.88 1299.73 2699.85 3999.70 6899.92 2899.93 1799.45 3299.97 2299.36 68100.00 199.85 20
pm-mvs199.79 1599.79 1799.78 4199.91 2699.83 2999.76 1899.87 3299.73 5799.89 4199.87 4099.63 1899.87 18699.54 4399.92 9099.63 109
UA-Net99.78 1699.76 2199.86 1899.72 12499.71 7699.91 399.95 1799.96 299.71 11799.91 2499.15 6699.97 2299.50 50100.00 199.90 11
TransMVSNet (Re)99.78 1699.77 1999.81 3099.91 2699.85 1999.75 2199.86 3599.70 6899.91 3199.89 3199.60 2399.87 18699.59 3499.74 20299.71 60
test_f99.75 1899.88 699.37 20499.96 598.21 27999.51 86100.00 199.94 8100.00 199.93 1799.58 2499.94 6499.97 499.99 1399.97 3
OurMVSNet-221017-099.75 1899.71 2399.84 2399.96 599.83 2999.83 699.85 3999.80 4699.93 2499.93 1798.54 14799.93 8199.59 3499.98 3099.76 50
Vis-MVSNetpermissive99.75 1899.74 2299.79 3899.88 3899.66 9399.69 4199.92 1899.67 7799.77 9099.75 10399.61 2199.98 1099.35 7099.98 3099.72 57
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
mvsmamba99.74 2199.70 2499.85 2099.93 2399.83 2999.76 1899.81 6199.96 299.91 3199.81 6698.60 13899.94 6499.58 3799.98 3099.77 44
test_fmvs299.72 2299.85 1199.34 21199.91 2698.08 29299.48 92100.00 199.90 1399.99 799.91 2499.50 3199.98 1099.98 199.99 1399.96 4
TDRefinement99.72 2299.70 2499.77 4499.90 3199.85 1999.86 599.92 1899.69 7199.78 8599.92 2199.37 4199.88 17298.93 13199.95 6799.60 134
XXY-MVS99.71 2499.67 3299.81 3099.89 3399.72 7499.59 7299.82 5299.39 12799.82 6699.84 5499.38 3999.91 12399.38 6399.93 8699.80 31
bld_raw_dy_0_6499.70 2599.65 3599.85 2099.95 1399.77 5099.66 5299.71 10899.95 499.91 3199.77 9498.35 175100.00 199.54 4399.99 1399.79 37
nrg03099.70 2599.66 3399.82 2799.76 10199.84 2499.61 6699.70 11499.93 999.78 8599.68 14899.10 7299.78 28699.45 5499.96 5699.83 25
FC-MVSNet-test99.70 2599.65 3599.86 1899.88 3899.86 1899.72 2999.78 7499.90 1399.82 6699.83 5598.45 16299.87 18699.51 4899.97 4299.86 18
GeoE99.69 2899.66 3399.78 4199.76 10199.76 5899.60 7199.82 5299.46 11499.75 9999.56 21799.63 1899.95 5199.43 5699.88 11899.62 120
v1099.69 2899.69 2899.66 10299.81 6799.39 15899.66 5299.75 8799.60 9799.92 2899.87 4098.75 11799.86 20499.90 1099.99 1399.73 55
DROMVSNet99.69 2899.69 2899.68 9299.71 12799.91 499.76 1899.96 1499.86 2899.51 19499.39 26499.57 2599.93 8199.64 3199.86 13799.20 265
test_vis1_n99.68 3199.79 1799.36 20899.94 1698.18 28299.52 83100.00 199.86 28100.00 199.88 3698.99 8799.96 4199.97 499.96 5699.95 5
test_fmvs1_n99.68 3199.81 1499.28 22699.95 1397.93 30199.49 91100.00 199.82 4199.99 799.89 3199.21 6099.98 1099.97 499.98 3099.93 9
CS-MVS-test99.68 3199.70 2499.64 11499.57 18599.83 2999.78 1199.97 1099.92 1199.50 19699.38 26699.57 2599.95 5199.69 2699.90 10099.15 276
v899.68 3199.69 2899.65 10799.80 7299.40 15699.66 5299.76 8299.64 8599.93 2499.85 4998.66 13099.84 23599.88 1499.99 1399.71 60
DTE-MVSNet99.68 3199.61 4599.88 1299.80 7299.87 1599.67 4899.71 10899.72 6199.84 6199.78 8798.67 12899.97 2299.30 8099.95 6799.80 31
casdiffmvs_mvgpermissive99.68 3199.68 3199.69 9099.81 6799.59 11599.29 13699.90 2499.71 6399.79 8199.73 11099.54 2899.84 23599.36 6899.96 5699.65 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS99.67 3799.70 2499.58 14199.53 20499.84 2499.79 1099.96 1499.90 1399.61 15799.41 25699.51 3099.95 5199.66 2899.89 10998.96 310
RRT_MVS99.67 3799.59 5099.91 299.94 1699.88 1299.78 1199.27 28699.87 2599.91 3199.87 4098.04 20399.96 4199.68 2799.99 1399.90 11
VPA-MVSNet99.66 3999.62 4199.79 3899.68 14799.75 6299.62 6199.69 12099.85 3399.80 7699.81 6698.81 10599.91 12399.47 5299.88 11899.70 63
PS-CasMVS99.66 3999.58 5499.89 899.80 7299.85 1999.66 5299.73 9699.62 8899.84 6199.71 12498.62 13499.96 4199.30 8099.96 5699.86 18
PEN-MVS99.66 3999.59 5099.89 899.83 5399.87 1599.66 5299.73 9699.70 6899.84 6199.73 11098.56 14499.96 4199.29 8399.94 7899.83 25
FMVSNet199.66 3999.63 4099.73 7499.78 8999.77 5099.68 4499.70 11499.67 7799.82 6699.83 5598.98 8999.90 14199.24 8799.97 4299.53 170
MIMVSNet199.66 3999.62 4199.80 3499.94 1699.87 1599.69 4199.77 7799.78 5199.93 2499.89 3197.94 21199.92 10199.65 2999.98 3099.62 120
FIs99.65 4499.58 5499.84 2399.84 4999.85 1999.66 5299.75 8799.86 2899.74 10799.79 8098.27 18499.85 22199.37 6699.93 8699.83 25
testf199.63 4599.60 4899.72 8099.94 1699.95 299.47 9599.89 2699.43 12299.88 4799.80 7099.26 5599.90 14198.81 13899.88 11899.32 241
APD_test299.63 4599.60 4899.72 8099.94 1699.95 299.47 9599.89 2699.43 12299.88 4799.80 7099.26 5599.90 14198.81 13899.88 11899.32 241
tt080599.63 4599.57 5799.81 3099.87 4299.88 1299.58 7498.70 32899.72 6199.91 3199.60 19899.43 3399.81 27499.81 2099.53 27199.73 55
KD-MVS_self_test99.63 4599.59 5099.76 5199.84 4999.90 799.37 11399.79 6999.83 3999.88 4799.85 4998.42 16699.90 14199.60 3399.73 20799.49 193
casdiffmvspermissive99.63 4599.61 4599.67 9599.79 8299.59 11599.13 18499.85 3999.79 4999.76 9299.72 11799.33 4699.82 25999.21 9099.94 7899.59 141
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.63 4599.62 4199.66 10299.80 7299.62 10599.44 10199.80 6399.71 6399.72 11299.69 13799.15 6699.83 25099.32 7699.94 7899.53 170
Anonymous2023121199.62 5199.57 5799.76 5199.61 16499.60 11399.81 999.73 9699.82 4199.90 3799.90 2797.97 21099.86 20499.42 6199.96 5699.80 31
DeepC-MVS98.90 499.62 5199.61 4599.67 9599.72 12499.44 14499.24 15099.71 10899.27 14099.93 2499.90 2799.70 1599.93 8198.99 11999.99 1399.64 104
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
dcpmvs_299.61 5399.64 3999.53 15899.79 8298.82 23799.58 7499.97 1099.95 499.96 1599.76 9898.44 16399.99 699.34 7199.96 5699.78 40
WR-MVS_H99.61 5399.53 6799.87 1599.80 7299.83 2999.67 4899.75 8799.58 10099.85 5899.69 13798.18 19599.94 6499.28 8599.95 6799.83 25
ACMH98.42 699.59 5599.54 6399.72 8099.86 4599.62 10599.56 7999.79 6998.77 21199.80 7699.85 4999.64 1799.85 22198.70 14999.89 10999.70 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v119299.57 5699.57 5799.57 14799.77 9799.22 19599.04 20499.60 17099.18 15599.87 5599.72 11799.08 7799.85 22199.89 1399.98 3099.66 88
EG-PatchMatch MVS99.57 5699.56 6299.62 13099.77 9799.33 17399.26 14399.76 8299.32 13599.80 7699.78 8799.29 4999.87 18699.15 10399.91 9999.66 88
Gipumacopyleft99.57 5699.59 5099.49 16599.98 399.71 7699.72 2999.84 4599.81 4399.94 2199.78 8798.91 9799.71 31198.41 16399.95 6799.05 301
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
v192192099.56 5999.57 5799.55 15399.75 11299.11 20899.05 20299.61 15899.15 16699.88 4799.71 12499.08 7799.87 18699.90 1099.97 4299.66 88
v124099.56 5999.58 5499.51 16299.80 7299.00 21999.00 21299.65 14099.15 16699.90 3799.75 10399.09 7499.88 17299.90 1099.96 5699.67 79
V4299.56 5999.54 6399.63 12199.79 8299.46 13799.39 10799.59 17699.24 14699.86 5699.70 13198.55 14599.82 25999.79 2199.95 6799.60 134
v14419299.55 6299.54 6399.58 14199.78 8999.20 20099.11 19099.62 15199.18 15599.89 4199.72 11798.66 13099.87 18699.88 1499.97 4299.66 88
test20.0399.55 6299.54 6399.58 14199.79 8299.37 16399.02 20899.89 2699.60 9799.82 6699.62 18198.81 10599.89 15899.43 5699.86 13799.47 201
v114499.54 6499.53 6799.59 13899.79 8299.28 18199.10 19299.61 15899.20 15399.84 6199.73 11098.67 12899.84 23599.86 1699.98 3099.64 104
CP-MVSNet99.54 6499.43 8299.87 1599.76 10199.82 3599.57 7799.61 15899.54 10199.80 7699.64 16497.79 22299.95 5199.21 9099.94 7899.84 21
TranMVSNet+NR-MVSNet99.54 6499.47 7199.76 5199.58 17599.64 9999.30 13099.63 14899.61 9199.71 11799.56 21798.76 11599.96 4199.14 10999.92 9099.68 73
patch_mono-299.51 6799.46 7599.64 11499.70 13599.11 20899.04 20499.87 3299.71 6399.47 20099.79 8098.24 18699.98 1099.38 6399.96 5699.83 25
v2v48299.50 6899.47 7199.58 14199.78 8999.25 18899.14 17899.58 18699.25 14499.81 7399.62 18198.24 18699.84 23599.83 1799.97 4299.64 104
ACMH+98.40 899.50 6899.43 8299.71 8599.86 4599.76 5899.32 12299.77 7799.53 10399.77 9099.76 9899.26 5599.78 28697.77 21799.88 11899.60 134
Baseline_NR-MVSNet99.49 7099.37 9199.82 2799.91 2699.84 2498.83 23599.86 3599.68 7399.65 13799.88 3697.67 22999.87 18699.03 11699.86 13799.76 50
TAMVS99.49 7099.45 7799.63 12199.48 22799.42 15199.45 9899.57 18899.66 8199.78 8599.83 5597.85 21899.86 20499.44 5599.96 5699.61 130
test_fmvs199.48 7299.65 3598.97 26699.54 19897.16 32299.11 19099.98 899.78 5199.96 1599.81 6698.72 12299.97 2299.95 799.97 4299.79 37
pmmvs-eth3d99.48 7299.47 7199.51 16299.77 9799.41 15598.81 24099.66 13199.42 12699.75 9999.66 15799.20 6199.76 29698.98 12199.99 1399.36 232
EI-MVSNet-UG-set99.48 7299.50 6999.42 18499.57 18598.65 25399.24 15099.46 23899.68 7399.80 7699.66 15798.99 8799.89 15899.19 9499.90 10099.72 57
APDe-MVS99.48 7299.36 9499.85 2099.55 19799.81 3899.50 8799.69 12098.99 18199.75 9999.71 12498.79 11099.93 8198.46 16199.85 14199.80 31
PMMVS299.48 7299.45 7799.57 14799.76 10198.99 22098.09 30499.90 2498.95 18699.78 8599.58 20599.57 2599.93 8199.48 5199.95 6799.79 37
DSMNet-mixed99.48 7299.65 3598.95 26899.71 12797.27 31999.50 8799.82 5299.59 9999.41 21899.85 4999.62 20100.00 199.53 4699.89 10999.59 141
DP-MVS99.48 7299.39 8699.74 6599.57 18599.62 10599.29 13699.61 15899.87 2599.74 10799.76 9898.69 12499.87 18698.20 17999.80 17799.75 53
EI-MVSNet-Vis-set99.47 7999.49 7099.42 18499.57 18598.66 25099.24 15099.46 23899.67 7799.79 8199.65 16298.97 9199.89 15899.15 10399.89 10999.71 60
VPNet99.46 8099.37 9199.71 8599.82 6099.59 11599.48 9299.70 11499.81 4399.69 12399.58 20597.66 23399.86 20499.17 9999.44 28499.67 79
ACMM98.09 1199.46 8099.38 8899.72 8099.80 7299.69 8699.13 18499.65 14098.99 18199.64 13899.72 11799.39 3599.86 20498.23 17699.81 17299.60 134
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_vis1_rt99.45 8299.46 7599.41 19199.71 12798.63 25598.99 21799.96 1499.03 17999.95 1999.12 31598.75 11799.84 23599.82 1999.82 16399.77 44
COLMAP_ROBcopyleft98.06 1299.45 8299.37 9199.70 8999.83 5399.70 8399.38 10999.78 7499.53 10399.67 13199.78 8799.19 6299.86 20497.32 25499.87 12999.55 156
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
mvsany_test199.44 8499.45 7799.40 19399.37 25798.64 25497.90 32699.59 17699.27 14099.92 2899.82 6299.74 1199.93 8199.55 4299.87 12999.63 109
Anonymous2024052199.44 8499.42 8499.49 16599.89 3398.96 22599.62 6199.76 8299.85 3399.82 6699.88 3696.39 27599.97 2299.59 3499.98 3099.55 156
tfpnnormal99.43 8699.38 8899.60 13699.87 4299.75 6299.59 7299.78 7499.71 6399.90 3799.69 13798.85 10399.90 14197.25 26499.78 18799.15 276
HPM-MVS_fast99.43 8699.30 10799.80 3499.83 5399.81 3899.52 8399.70 11498.35 25599.51 19499.50 23599.31 4799.88 17298.18 18399.84 14699.69 67
3Dnovator99.15 299.43 8699.36 9499.65 10799.39 25299.42 15199.70 3499.56 19399.23 14899.35 22899.80 7099.17 6499.95 5198.21 17899.84 14699.59 141
Anonymous2024052999.42 8999.34 9699.65 10799.53 20499.60 11399.63 6099.39 25999.47 11199.76 9299.78 8798.13 19799.86 20498.70 14999.68 22799.49 193
SixPastTwentyTwo99.42 8999.30 10799.76 5199.92 2599.67 9199.70 3499.14 30899.65 8399.89 4199.90 2796.20 28099.94 6499.42 6199.92 9099.67 79
GBi-Net99.42 8999.31 10299.73 7499.49 22299.77 5099.68 4499.70 11499.44 11799.62 15199.83 5597.21 25099.90 14198.96 12599.90 10099.53 170
test199.42 8999.31 10299.73 7499.49 22299.77 5099.68 4499.70 11499.44 11799.62 15199.83 5597.21 25099.90 14198.96 12599.90 10099.53 170
MVSFormer99.41 9399.44 8099.31 22199.57 18598.40 26899.77 1499.80 6399.73 5799.63 14299.30 28598.02 20599.98 1099.43 5699.69 22299.55 156
IterMVS-LS99.41 9399.47 7199.25 23499.81 6798.09 28998.85 23299.76 8299.62 8899.83 6599.64 16498.54 14799.97 2299.15 10399.99 1399.68 73
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SED-MVS99.40 9599.28 11499.77 4499.69 13999.82 3599.20 16099.54 20599.13 16899.82 6699.63 17498.91 9799.92 10197.85 21299.70 21899.58 146
v14899.40 9599.41 8599.39 19799.76 10198.94 22699.09 19699.59 17699.17 16099.81 7399.61 19098.41 16799.69 31999.32 7699.94 7899.53 170
NR-MVSNet99.40 9599.31 10299.68 9299.43 24499.55 12599.73 2699.50 22799.46 11499.88 4799.36 27297.54 23699.87 18698.97 12399.87 12999.63 109
PVSNet_Blended_VisFu99.40 9599.38 8899.44 17899.90 3198.66 25098.94 22599.91 2197.97 28199.79 8199.73 11099.05 8299.97 2299.15 10399.99 1399.68 73
EU-MVSNet99.39 9999.62 4198.72 29599.88 3896.44 33699.56 7999.85 3999.90 1399.90 3799.85 4998.09 19999.83 25099.58 3799.95 6799.90 11
CHOSEN 1792x268899.39 9999.30 10799.65 10799.88 3899.25 18898.78 24799.88 3098.66 21999.96 1599.79 8097.45 23999.93 8199.34 7199.99 1399.78 40
DVP-MVS++99.38 10199.25 12099.77 4499.03 32799.77 5099.74 2399.61 15899.18 15599.76 9299.61 19099.00 8599.92 10197.72 22399.60 25399.62 120
EI-MVSNet99.38 10199.44 8099.21 23899.58 17598.09 28999.26 14399.46 23899.62 8899.75 9999.67 15398.54 14799.85 22199.15 10399.92 9099.68 73
UGNet99.38 10199.34 9699.49 16598.90 33798.90 23399.70 3499.35 26899.86 2898.57 32399.81 6698.50 15799.93 8199.38 6399.98 3099.66 88
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_NR-MVSNet99.37 10499.25 12099.72 8099.47 23399.56 12298.97 22199.61 15899.43 12299.67 13199.28 28997.85 21899.95 5199.17 9999.81 17299.65 96
UniMVSNet (Re)99.37 10499.26 11899.68 9299.51 21199.58 11998.98 22099.60 17099.43 12299.70 12099.36 27297.70 22599.88 17299.20 9399.87 12999.59 141
CSCG99.37 10499.29 11299.60 13699.71 12799.46 13799.43 10399.85 3998.79 20899.41 21899.60 19898.92 9599.92 10198.02 19299.92 9099.43 217
APD_test199.36 10799.28 11499.61 13399.89 3399.89 1099.32 12299.74 9299.18 15599.69 12399.75 10398.41 16799.84 23597.85 21299.70 21899.10 287
PM-MVS99.36 10799.29 11299.58 14199.83 5399.66 9398.95 22399.86 3598.85 20099.81 7399.73 11098.40 17199.92 10198.36 16699.83 15499.17 272
new-patchmatchnet99.35 10999.57 5798.71 29799.82 6096.62 33498.55 26699.75 8799.50 10599.88 4799.87 4099.31 4799.88 17299.43 56100.00 199.62 120
Anonymous2023120699.35 10999.31 10299.47 17199.74 11899.06 21899.28 13899.74 9299.23 14899.72 11299.53 22897.63 23599.88 17299.11 11199.84 14699.48 197
MTAPA99.35 10999.20 12599.80 3499.81 6799.81 3899.33 12099.53 21499.27 14099.42 21299.63 17498.21 19199.95 5197.83 21699.79 18299.65 96
FMVSNet299.35 10999.28 11499.55 15399.49 22299.35 17099.45 9899.57 18899.44 11799.70 12099.74 10697.21 25099.87 18699.03 11699.94 7899.44 211
3Dnovator+98.92 399.35 10999.24 12299.67 9599.35 26299.47 13399.62 6199.50 22799.44 11799.12 27199.78 8798.77 11499.94 6497.87 20999.72 21399.62 120
TSAR-MVS + MP.99.34 11499.24 12299.63 12199.82 6099.37 16399.26 14399.35 26898.77 21199.57 16899.70 13199.27 5499.88 17297.71 22599.75 19599.65 96
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
diffmvspermissive99.34 11499.32 10199.39 19799.67 15298.77 24198.57 26499.81 6199.61 9199.48 19999.41 25698.47 15899.86 20498.97 12399.90 10099.53 170
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DELS-MVS99.34 11499.30 10799.48 16999.51 21199.36 16798.12 30099.53 21499.36 13199.41 21899.61 19099.22 5999.87 18699.21 9099.68 22799.20 265
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DU-MVS99.33 11799.21 12499.71 8599.43 24499.56 12298.83 23599.53 21499.38 12899.67 13199.36 27297.67 22999.95 5199.17 9999.81 17299.63 109
ab-mvs99.33 11799.28 11499.47 17199.57 18599.39 15899.78 1199.43 24698.87 19899.57 16899.82 6298.06 20299.87 18698.69 15199.73 20799.15 276
DVP-MVScopyleft99.32 11999.17 12899.77 4499.69 13999.80 4299.14 17899.31 27799.16 16299.62 15199.61 19098.35 17599.91 12397.88 20699.72 21399.61 130
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APD-MVS_3200maxsize99.31 12099.16 12999.74 6599.53 20499.75 6299.27 14199.61 15899.19 15499.57 16899.64 16498.76 11599.90 14197.29 25699.62 24399.56 153
SteuartSystems-ACMMP99.30 12199.14 13399.76 5199.87 4299.66 9399.18 16599.60 17098.55 23099.57 16899.67 15399.03 8499.94 6497.01 27399.80 17799.69 67
Skip Steuart: Steuart Systems R&D Blog.
testgi99.29 12299.26 11899.37 20499.75 11298.81 23898.84 23399.89 2698.38 24899.75 9999.04 32599.36 4499.86 20499.08 11399.25 30899.45 206
ACMMP_NAP99.28 12399.11 14299.79 3899.75 11299.81 3898.95 22399.53 21498.27 26499.53 18799.73 11098.75 11799.87 18697.70 22899.83 15499.68 73
LCM-MVSNet-Re99.28 12399.15 13299.67 9599.33 27599.76 5899.34 11899.97 1098.93 19099.91 3199.79 8098.68 12599.93 8196.80 28599.56 26099.30 246
mvs_anonymous99.28 12399.39 8698.94 26999.19 30397.81 30499.02 20899.55 19999.78 5199.85 5899.80 7098.24 18699.86 20499.57 3999.50 27799.15 276
MVS_Test99.28 12399.31 10299.19 24199.35 26298.79 24099.36 11699.49 23199.17 16099.21 25899.67 15398.78 11299.66 33899.09 11299.66 23699.10 287
SR-MVS-dyc-post99.27 12799.11 14299.73 7499.54 19899.74 6899.26 14399.62 15199.16 16299.52 18999.64 16498.41 16799.91 12397.27 25999.61 25099.54 164
XVS99.27 12799.11 14299.75 6099.71 12799.71 7699.37 11399.61 15899.29 13698.76 30999.47 24698.47 15899.88 17297.62 23699.73 20799.67 79
OPM-MVS99.26 12999.13 13599.63 12199.70 13599.61 11198.58 26099.48 23298.50 23699.52 18999.63 17499.14 6999.76 29697.89 20599.77 19199.51 183
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HFP-MVS99.25 13099.08 15399.76 5199.73 12199.70 8399.31 12799.59 17698.36 25099.36 22799.37 26898.80 10999.91 12397.43 24999.75 19599.68 73
HPM-MVScopyleft99.25 13099.07 15799.78 4199.81 6799.75 6299.61 6699.67 12797.72 29499.35 22899.25 29699.23 5899.92 10197.21 26799.82 16399.67 79
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft99.25 13099.08 15399.74 6599.79 8299.68 8999.50 8799.65 14098.07 27599.52 18999.69 13798.57 14299.92 10197.18 26899.79 18299.63 109
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
LS3D99.24 13399.11 14299.61 13398.38 36399.79 4499.57 7799.68 12399.61 9199.15 26699.71 12498.70 12399.91 12397.54 24299.68 22799.13 284
xiu_mvs_v1_base_debu99.23 13499.34 9698.91 27599.59 17098.23 27698.47 27599.66 13199.61 9199.68 12698.94 34199.39 3599.97 2299.18 9699.55 26498.51 339
xiu_mvs_v1_base99.23 13499.34 9698.91 27599.59 17098.23 27698.47 27599.66 13199.61 9199.68 12698.94 34199.39 3599.97 2299.18 9699.55 26498.51 339
xiu_mvs_v1_base_debi99.23 13499.34 9698.91 27599.59 17098.23 27698.47 27599.66 13199.61 9199.68 12698.94 34199.39 3599.97 2299.18 9699.55 26498.51 339
region2R99.23 13499.05 16399.77 4499.76 10199.70 8399.31 12799.59 17698.41 24499.32 23699.36 27298.73 12199.93 8197.29 25699.74 20299.67 79
ACMMPR99.23 13499.06 15999.76 5199.74 11899.69 8699.31 12799.59 17698.36 25099.35 22899.38 26698.61 13699.93 8197.43 24999.75 19599.67 79
XVG-ACMP-BASELINE99.23 13499.10 15099.63 12199.82 6099.58 11998.83 23599.72 10598.36 25099.60 16099.71 12498.92 9599.91 12397.08 27199.84 14699.40 222
CP-MVS99.23 13499.05 16399.75 6099.66 15399.66 9399.38 10999.62 15198.38 24899.06 27999.27 29198.79 11099.94 6497.51 24599.82 16399.66 88
DeepC-MVS_fast98.47 599.23 13499.12 13999.56 15099.28 28799.22 19598.99 21799.40 25699.08 17399.58 16599.64 16498.90 10099.83 25097.44 24899.75 19599.63 109
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ZNCC-MVS99.22 14299.04 16899.77 4499.76 10199.73 7099.28 13899.56 19398.19 26999.14 26899.29 28898.84 10499.92 10197.53 24499.80 17799.64 104
D2MVS99.22 14299.19 12699.29 22499.69 13998.74 24498.81 24099.41 24998.55 23099.68 12699.69 13798.13 19799.87 18698.82 13699.98 3099.24 254
LPG-MVS_test99.22 14299.05 16399.74 6599.82 6099.63 10399.16 17499.73 9697.56 29999.64 13899.69 13799.37 4199.89 15896.66 29399.87 12999.69 67
CDS-MVSNet99.22 14299.13 13599.50 16499.35 26299.11 20898.96 22299.54 20599.46 11499.61 15799.70 13196.31 27799.83 25099.34 7199.88 11899.55 156
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test_040299.22 14299.14 13399.45 17699.79 8299.43 14899.28 13899.68 12399.54 10199.40 22399.56 21799.07 7999.82 25996.01 32199.96 5699.11 285
AllTest99.21 14799.07 15799.63 12199.78 8999.64 9999.12 18899.83 4798.63 22299.63 14299.72 11798.68 12599.75 30096.38 30899.83 15499.51 183
XVG-OURS99.21 14799.06 15999.65 10799.82 6099.62 10597.87 32799.74 9298.36 25099.66 13599.68 14899.71 1399.90 14196.84 28499.88 11899.43 217
Fast-Effi-MVS+-dtu99.20 14999.12 13999.43 18299.25 29299.69 8699.05 20299.82 5299.50 10598.97 28399.05 32398.98 8999.98 1098.20 17999.24 31098.62 332
VDD-MVS99.20 14999.11 14299.44 17899.43 24498.98 22199.50 8798.32 34699.80 4699.56 17599.69 13796.99 25999.85 22198.99 11999.73 20799.50 188
PGM-MVS99.20 14999.01 17499.77 4499.75 11299.71 7699.16 17499.72 10597.99 27999.42 21299.60 19898.81 10599.93 8196.91 27899.74 20299.66 88
SR-MVS99.19 15299.00 17799.74 6599.51 21199.72 7499.18 16599.60 17098.85 20099.47 20099.58 20598.38 17299.92 10196.92 27799.54 26999.57 151
SMA-MVScopyleft99.19 15299.00 17799.73 7499.46 23799.73 7099.13 18499.52 21997.40 31099.57 16899.64 16498.93 9499.83 25097.61 23899.79 18299.63 109
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
pmmvs599.19 15299.11 14299.42 18499.76 10198.88 23498.55 26699.73 9698.82 20499.72 11299.62 18196.56 26699.82 25999.32 7699.95 6799.56 153
mPP-MVS99.19 15299.00 17799.76 5199.76 10199.68 8999.38 10999.54 20598.34 25999.01 28199.50 23598.53 15199.93 8197.18 26899.78 18799.66 88
ETV-MVS99.18 15699.18 12799.16 24499.34 27099.28 18199.12 18899.79 6999.48 10798.93 28798.55 36099.40 3499.93 8198.51 15999.52 27498.28 349
VNet99.18 15699.06 15999.56 15099.24 29499.36 16799.33 12099.31 27799.67 7799.47 20099.57 21496.48 26999.84 23599.15 10399.30 30199.47 201
RPSCF99.18 15699.02 17199.64 11499.83 5399.85 1999.44 10199.82 5298.33 26099.50 19699.78 8797.90 21399.65 34496.78 28699.83 15499.44 211
DeepPCF-MVS98.42 699.18 15699.02 17199.67 9599.22 29699.75 6297.25 35499.47 23598.72 21699.66 13599.70 13199.29 4999.63 34798.07 19199.81 17299.62 120
EPP-MVSNet99.17 16099.00 17799.66 10299.80 7299.43 14899.70 3499.24 29599.48 10799.56 17599.77 9494.89 29299.93 8198.72 14899.89 10999.63 109
GST-MVS99.16 16198.96 18899.75 6099.73 12199.73 7099.20 16099.55 19998.22 26699.32 23699.35 27798.65 13299.91 12396.86 28199.74 20299.62 120
MVP-Stereo99.16 16199.08 15399.43 18299.48 22799.07 21699.08 19999.55 19998.63 22299.31 24099.68 14898.19 19399.78 28698.18 18399.58 25899.45 206
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
XVG-OURS-SEG-HR99.16 16198.99 18299.66 10299.84 4999.64 9998.25 29099.73 9698.39 24799.63 14299.43 25499.70 1599.90 14197.34 25398.64 34199.44 211
jason99.16 16199.11 14299.32 21899.75 11298.44 26598.26 28999.39 25998.70 21799.74 10799.30 28598.54 14799.97 2298.48 16099.82 16399.55 156
jason: jason.
DPE-MVScopyleft99.14 16598.92 19499.82 2799.57 18599.77 5098.74 25099.60 17098.55 23099.76 9299.69 13798.23 19099.92 10196.39 30799.75 19599.76 50
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss99.14 16598.92 19499.80 3499.83 5399.83 2998.61 25699.63 14896.84 33099.44 20699.58 20598.81 10599.91 12397.70 22899.82 16399.67 79
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
pmmvs499.13 16799.06 15999.36 20899.57 18599.10 21398.01 31299.25 29298.78 21099.58 16599.44 25398.24 18699.76 29698.74 14699.93 8699.22 259
MVS_111021_LR99.13 16799.03 17099.42 18499.58 17599.32 17597.91 32599.73 9698.68 21899.31 24099.48 24299.09 7499.66 33897.70 22899.77 19199.29 249
EIA-MVS99.12 16999.01 17499.45 17699.36 26099.62 10599.34 11899.79 6998.41 24498.84 30098.89 34598.75 11799.84 23598.15 18799.51 27598.89 317
TSAR-MVS + GP.99.12 16999.04 16899.38 20199.34 27099.16 20398.15 29699.29 28298.18 27099.63 14299.62 18199.18 6399.68 32998.20 17999.74 20299.30 246
MVS_111021_HR99.12 16999.02 17199.40 19399.50 21799.11 20897.92 32399.71 10898.76 21499.08 27599.47 24699.17 6499.54 35797.85 21299.76 19399.54 164
CANet99.11 17299.05 16399.28 22698.83 34598.56 25898.71 25499.41 24999.25 14499.23 25399.22 30397.66 23399.94 6499.19 9499.97 4299.33 238
WR-MVS99.11 17298.93 19099.66 10299.30 28299.42 15198.42 28099.37 26499.04 17899.57 16899.20 30796.89 26199.86 20498.66 15399.87 12999.70 63
PHI-MVS99.11 17298.95 18999.59 13899.13 31199.59 11599.17 17099.65 14097.88 28799.25 24999.46 24998.97 9199.80 28097.26 26199.82 16399.37 229
SF-MVS99.10 17598.93 19099.62 13099.58 17599.51 12999.13 18499.65 14097.97 28199.42 21299.61 19098.86 10299.87 18696.45 30599.68 22799.49 193
MSDG99.08 17698.98 18599.37 20499.60 16699.13 20697.54 34099.74 9298.84 20399.53 18799.55 22499.10 7299.79 28397.07 27299.86 13799.18 270
Effi-MVS+-dtu99.07 17798.92 19499.52 16098.89 34099.78 4799.15 17699.66 13199.34 13298.92 29099.24 30197.69 22799.98 1098.11 18999.28 30498.81 324
Effi-MVS+99.06 17898.97 18699.34 21199.31 27898.98 22198.31 28699.91 2198.81 20598.79 30698.94 34199.14 6999.84 23598.79 14098.74 33799.20 265
MP-MVScopyleft99.06 17898.83 20699.76 5199.76 10199.71 7699.32 12299.50 22798.35 25598.97 28399.48 24298.37 17399.92 10195.95 32699.75 19599.63 109
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MDA-MVSNet-bldmvs99.06 17899.05 16399.07 25999.80 7297.83 30398.89 22799.72 10599.29 13699.63 14299.70 13196.47 27099.89 15898.17 18599.82 16399.50 188
MSLP-MVS++99.05 18199.09 15198.91 27599.21 29898.36 27298.82 23999.47 23598.85 20098.90 29399.56 21798.78 11299.09 37098.57 15699.68 22799.26 251
1112_ss99.05 18198.84 20499.67 9599.66 15399.29 17998.52 27199.82 5297.65 29799.43 21099.16 30996.42 27299.91 12399.07 11499.84 14699.80 31
ACMP97.51 1499.05 18198.84 20499.67 9599.78 8999.55 12598.88 22899.66 13197.11 32599.47 20099.60 19899.07 7999.89 15896.18 31699.85 14199.58 146
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MSP-MVS99.04 18498.79 21199.81 3099.78 8999.73 7099.35 11799.57 18898.54 23399.54 18298.99 33296.81 26399.93 8196.97 27599.53 27199.77 44
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PVSNet_BlendedMVS99.03 18599.01 17499.09 25599.54 19897.99 29498.58 26099.82 5297.62 29899.34 23199.71 12498.52 15499.77 29497.98 19799.97 4299.52 181
IS-MVSNet99.03 18598.85 20299.55 15399.80 7299.25 18899.73 2699.15 30799.37 12999.61 15799.71 12494.73 29599.81 27497.70 22899.88 11899.58 146
xiu_mvs_v2_base99.02 18799.11 14298.77 29299.37 25798.09 28998.13 29999.51 22399.47 11199.42 21298.54 36199.38 3999.97 2298.83 13499.33 29898.24 351
Fast-Effi-MVS+99.02 18798.87 20099.46 17399.38 25599.50 13099.04 20499.79 6997.17 32198.62 31898.74 35399.34 4599.95 5198.32 17099.41 28998.92 315
canonicalmvs99.02 18799.00 17799.09 25599.10 31998.70 24699.61 6699.66 13199.63 8798.64 31797.65 37499.04 8399.54 35798.79 14098.92 32699.04 302
MCST-MVS99.02 18798.81 20899.65 10799.58 17599.49 13198.58 26099.07 31198.40 24699.04 28099.25 29698.51 15699.80 28097.31 25599.51 27599.65 96
SD-MVS99.01 19199.30 10798.15 31799.50 21799.40 15698.94 22599.61 15899.22 15299.75 9999.82 6299.54 2895.51 37797.48 24699.87 12999.54 164
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
LF4IMVS99.01 19198.92 19499.27 22999.71 12799.28 18198.59 25999.77 7798.32 26199.39 22499.41 25698.62 13499.84 23596.62 29799.84 14698.69 330
IterMVS-SCA-FT99.00 19399.16 12998.51 30299.75 11295.90 34498.07 30799.84 4599.84 3699.89 4199.73 11096.01 28499.99 699.33 74100.00 199.63 109
MS-PatchMatch99.00 19398.97 18699.09 25599.11 31898.19 28098.76 24999.33 27198.49 23899.44 20699.58 20598.21 19199.69 31998.20 17999.62 24399.39 224
PS-MVSNAJ99.00 19399.08 15398.76 29399.37 25798.10 28898.00 31499.51 22399.47 11199.41 21898.50 36399.28 5199.97 2298.83 13499.34 29798.20 355
CNVR-MVS98.99 19698.80 21099.56 15099.25 29299.43 14898.54 26999.27 28698.58 22798.80 30599.43 25498.53 15199.70 31397.22 26699.59 25799.54 164
VDDNet98.97 19798.82 20799.42 18499.71 12798.81 23899.62 6198.68 32999.81 4399.38 22599.80 7094.25 29999.85 22198.79 14099.32 29999.59 141
IterMVS98.97 19799.16 12998.42 30699.74 11895.64 34798.06 30999.83 4799.83 3999.85 5899.74 10696.10 28399.99 699.27 86100.00 199.63 109
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TinyColmap98.97 19798.93 19099.07 25999.46 23798.19 28097.75 33199.75 8798.79 20899.54 18299.70 13198.97 9199.62 34896.63 29699.83 15499.41 221
HPM-MVS++copyleft98.96 20098.70 21899.74 6599.52 20999.71 7698.86 23099.19 30398.47 24098.59 32199.06 32298.08 20199.91 12396.94 27699.60 25399.60 134
lupinMVS98.96 20098.87 20099.24 23699.57 18598.40 26898.12 30099.18 30498.28 26399.63 14299.13 31198.02 20599.97 2298.22 17799.69 22299.35 235
USDC98.96 20098.93 19099.05 26199.54 19897.99 29497.07 36099.80 6398.21 26799.75 9999.77 9498.43 16499.64 34697.90 20499.88 11899.51 183
YYNet198.95 20398.99 18298.84 28599.64 15797.14 32498.22 29299.32 27398.92 19299.59 16399.66 15797.40 24199.83 25098.27 17399.90 10099.55 156
MDA-MVSNet_test_wron98.95 20398.99 18298.85 28399.64 15797.16 32298.23 29199.33 27198.93 19099.56 17599.66 15797.39 24399.83 25098.29 17199.88 11899.55 156
Test_1112_low_res98.95 20398.73 21399.63 12199.68 14799.15 20598.09 30499.80 6397.14 32399.46 20499.40 26096.11 28299.89 15899.01 11899.84 14699.84 21
CANet_DTU98.91 20698.85 20299.09 25598.79 35098.13 28498.18 29399.31 27799.48 10798.86 29899.51 23296.56 26699.95 5199.05 11599.95 6799.19 268
HyFIR lowres test98.91 20698.64 22099.73 7499.85 4899.47 13398.07 30799.83 4798.64 22199.89 4199.60 19892.57 317100.00 199.33 7499.97 4299.72 57
HQP_MVS98.90 20898.68 21999.55 15399.58 17599.24 19298.80 24399.54 20598.94 18799.14 26899.25 29697.24 24899.82 25995.84 32999.78 18799.60 134
sss98.90 20898.77 21299.27 22999.48 22798.44 26598.72 25299.32 27397.94 28599.37 22699.35 27796.31 27799.91 12398.85 13399.63 24299.47 201
OMC-MVS98.90 20898.72 21499.44 17899.39 25299.42 15198.58 26099.64 14697.31 31599.44 20699.62 18198.59 13999.69 31996.17 31799.79 18299.22 259
ppachtmachnet_test98.89 21199.12 13998.20 31699.66 15395.24 35197.63 33699.68 12399.08 17399.78 8599.62 18198.65 13299.88 17298.02 19299.96 5699.48 197
MVS_030498.88 21298.71 21599.39 19798.85 34398.91 23299.45 9899.30 28098.56 22897.26 36299.68 14896.18 28199.96 4199.17 9999.94 7899.29 249
new_pmnet98.88 21298.89 19898.84 28599.70 13597.62 31098.15 29699.50 22797.98 28099.62 15199.54 22698.15 19699.94 6497.55 24199.84 14698.95 312
K. test v398.87 21498.60 22399.69 9099.93 2399.46 13799.74 2394.97 36999.78 5199.88 4799.88 3693.66 30799.97 2299.61 3299.95 6799.64 104
APD-MVScopyleft98.87 21498.59 22599.71 8599.50 21799.62 10599.01 21099.57 18896.80 33299.54 18299.63 17498.29 18299.91 12395.24 34199.71 21699.61 130
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
our_test_398.85 21699.09 15198.13 31899.66 15394.90 35497.72 33299.58 18699.07 17599.64 13899.62 18198.19 19399.93 8198.41 16399.95 6799.55 156
UnsupCasMVSNet_eth98.83 21798.57 22999.59 13899.68 14799.45 14298.99 21799.67 12799.48 10799.55 18099.36 27294.92 29199.86 20498.95 12996.57 36899.45 206
NCCC98.82 21898.57 22999.58 14199.21 29899.31 17698.61 25699.25 29298.65 22098.43 32999.26 29497.86 21699.81 27496.55 29899.27 30799.61 130
PMVScopyleft92.94 2198.82 21898.81 20898.85 28399.84 4997.99 29499.20 16099.47 23599.71 6399.42 21299.82 6298.09 19999.47 36493.88 35899.85 14199.07 299
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FMVSNet398.80 22098.63 22299.32 21899.13 31198.72 24599.10 19299.48 23299.23 14899.62 15199.64 16492.57 31799.86 20498.96 12599.90 10099.39 224
Patchmtry98.78 22198.54 23399.49 16598.89 34099.19 20199.32 12299.67 12799.65 8399.72 11299.79 8091.87 32599.95 5198.00 19699.97 4299.33 238
Vis-MVSNet (Re-imp)98.77 22298.58 22899.34 21199.78 8998.88 23499.61 6699.56 19399.11 17299.24 25299.56 21793.00 31599.78 28697.43 24999.89 10999.35 235
CLD-MVS98.76 22398.57 22999.33 21499.57 18598.97 22397.53 34299.55 19996.41 33599.27 24799.13 31199.07 7999.78 28696.73 28999.89 10999.23 257
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
iter_conf_final98.75 22498.54 23399.40 19399.33 27598.75 24299.26 14399.59 17699.80 4699.76 9299.58 20590.17 34699.92 10199.37 6699.97 4299.54 164
Anonymous20240521198.75 22498.46 23899.63 12199.34 27099.66 9399.47 9597.65 35599.28 13999.56 17599.50 23593.15 31199.84 23598.62 15499.58 25899.40 222
CPTT-MVS98.74 22698.44 24099.64 11499.61 16499.38 16099.18 16599.55 19996.49 33499.27 24799.37 26897.11 25699.92 10195.74 33299.67 23399.62 120
F-COLMAP98.74 22698.45 23999.62 13099.57 18599.47 13398.84 23399.65 14096.31 33898.93 28799.19 30897.68 22899.87 18696.52 30099.37 29499.53 170
N_pmnet98.73 22898.53 23599.35 21099.72 12498.67 24798.34 28394.65 37098.35 25599.79 8199.68 14898.03 20499.93 8198.28 17299.92 9099.44 211
c3_l98.72 22998.71 21598.72 29599.12 31397.22 32197.68 33599.56 19398.90 19499.54 18299.48 24296.37 27699.73 30597.88 20699.88 11899.21 261
CL-MVSNet_self_test98.71 23098.56 23299.15 24699.22 29698.66 25097.14 35799.51 22398.09 27499.54 18299.27 29196.87 26299.74 30298.43 16298.96 32399.03 303
PVSNet_Blended98.70 23198.59 22599.02 26399.54 19897.99 29497.58 33999.82 5295.70 34699.34 23198.98 33598.52 15499.77 29497.98 19799.83 15499.30 246
eth_miper_zixun_eth98.68 23298.71 21598.60 29999.10 31996.84 33197.52 34499.54 20598.94 18799.58 16599.48 24296.25 27999.76 29698.01 19599.93 8699.21 261
PatchMatch-RL98.68 23298.47 23799.30 22399.44 24199.28 18198.14 29899.54 20597.12 32499.11 27299.25 29697.80 22199.70 31396.51 30199.30 30198.93 314
miper_lstm_enhance98.65 23498.60 22398.82 29099.20 30197.33 31897.78 33099.66 13199.01 18099.59 16399.50 23594.62 29699.85 22198.12 18899.90 10099.26 251
h-mvs3398.61 23598.34 25199.44 17899.60 16698.67 24799.27 14199.44 24399.68 7399.32 23699.49 23992.50 320100.00 199.24 8796.51 36999.65 96
CVMVSNet98.61 23598.88 19997.80 32699.58 17593.60 36199.26 14399.64 14699.66 8199.72 11299.67 15393.26 31099.93 8199.30 8099.81 17299.87 16
Patchmatch-RL test98.60 23798.36 24899.33 21499.77 9799.07 21698.27 28899.87 3298.91 19399.74 10799.72 11790.57 34299.79 28398.55 15799.85 14199.11 285
RPMNet98.60 23798.53 23598.83 28799.05 32498.12 28599.30 13099.62 15199.86 2899.16 26499.74 10692.53 31999.92 10198.75 14598.77 33398.44 344
AdaColmapbinary98.60 23798.35 25099.38 20199.12 31399.22 19598.67 25599.42 24897.84 29198.81 30399.27 29197.32 24699.81 27495.14 34299.53 27199.10 287
miper_ehance_all_eth98.59 24098.59 22598.59 30098.98 33397.07 32597.49 34599.52 21998.50 23699.52 18999.37 26896.41 27499.71 31197.86 21099.62 24399.00 309
WTY-MVS98.59 24098.37 24799.26 23199.43 24498.40 26898.74 25099.13 31098.10 27299.21 25899.24 30194.82 29399.90 14197.86 21098.77 33399.49 193
CNLPA98.57 24298.34 25199.28 22699.18 30599.10 21398.34 28399.41 24998.48 23998.52 32598.98 33597.05 25799.78 28695.59 33499.50 27798.96 310
CDPH-MVS98.56 24398.20 26299.61 13399.50 21799.46 13798.32 28599.41 24995.22 35199.21 25899.10 31998.34 17899.82 25995.09 34499.66 23699.56 153
UnsupCasMVSNet_bld98.55 24498.27 25799.40 19399.56 19699.37 16397.97 31999.68 12397.49 30699.08 27599.35 27795.41 29099.82 25997.70 22898.19 35399.01 308
cl____98.54 24598.41 24398.92 27399.03 32797.80 30597.46 34699.59 17698.90 19499.60 16099.46 24993.85 30399.78 28697.97 19999.89 10999.17 272
DIV-MVS_self_test98.54 24598.42 24298.92 27399.03 32797.80 30597.46 34699.59 17698.90 19499.60 16099.46 24993.87 30299.78 28697.97 19999.89 10999.18 270
FA-MVS(test-final)98.52 24798.32 25399.10 25499.48 22798.67 24799.77 1498.60 33597.35 31399.63 14299.80 7093.07 31399.84 23597.92 20299.30 30198.78 327
hse-mvs298.52 24798.30 25599.16 24499.29 28498.60 25798.77 24899.02 31599.68 7399.32 23699.04 32592.50 32099.85 22199.24 8797.87 36099.03 303
MG-MVS98.52 24798.39 24598.94 26999.15 30897.39 31798.18 29399.21 30298.89 19799.23 25399.63 17497.37 24499.74 30294.22 35299.61 25099.69 67
DP-MVS Recon98.50 25098.23 25899.31 22199.49 22299.46 13798.56 26599.63 14894.86 35798.85 29999.37 26897.81 22099.59 35496.08 31899.44 28498.88 318
CMPMVSbinary77.52 2398.50 25098.19 26599.41 19198.33 36599.56 12299.01 21099.59 17695.44 34899.57 16899.80 7095.64 28799.46 36696.47 30499.92 9099.21 261
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
114514_t98.49 25298.11 26999.64 11499.73 12199.58 11999.24 15099.76 8289.94 36899.42 21299.56 21797.76 22499.86 20497.74 22299.82 16399.47 201
PMMVS98.49 25298.29 25699.11 25298.96 33498.42 26797.54 34099.32 27397.53 30398.47 32898.15 36997.88 21599.82 25997.46 24799.24 31099.09 291
MVSTER98.47 25498.22 26099.24 23699.06 32398.35 27399.08 19999.46 23899.27 14099.75 9999.66 15788.61 35499.85 22199.14 10999.92 9099.52 181
iter_conf0598.46 25598.23 25899.15 24699.04 32697.99 29499.10 19299.61 15899.79 4999.76 9299.58 20587.88 35699.92 10199.31 7999.97 4299.53 170
LFMVS98.46 25598.19 26599.26 23199.24 29498.52 26199.62 6196.94 36299.87 2599.31 24099.58 20591.04 33399.81 27498.68 15299.42 28899.45 206
PatchT98.45 25798.32 25398.83 28798.94 33598.29 27499.24 15098.82 32399.84 3699.08 27599.76 9891.37 32899.94 6498.82 13699.00 32298.26 350
MIMVSNet98.43 25898.20 26299.11 25299.53 20498.38 27199.58 7498.61 33398.96 18599.33 23399.76 9890.92 33599.81 27497.38 25299.76 19399.15 276
PVSNet97.47 1598.42 25998.44 24098.35 30999.46 23796.26 33896.70 36599.34 27097.68 29699.00 28299.13 31197.40 24199.72 30797.59 24099.68 22799.08 294
CHOSEN 280x42098.41 26098.41 24398.40 30799.34 27095.89 34596.94 36299.44 24398.80 20799.25 24999.52 23093.51 30999.98 1098.94 13099.98 3099.32 241
BH-RMVSNet98.41 26098.14 26899.21 23899.21 29898.47 26298.60 25898.26 34798.35 25598.93 28799.31 28397.20 25399.66 33894.32 35099.10 31699.51 183
QAPM98.40 26297.99 27599.65 10799.39 25299.47 13399.67 4899.52 21991.70 36598.78 30899.80 7098.55 14599.95 5194.71 34899.75 19599.53 170
API-MVS98.38 26398.39 24598.35 30998.83 34599.26 18599.14 17899.18 30498.59 22698.66 31698.78 35198.61 13699.57 35694.14 35399.56 26096.21 370
HQP-MVS98.36 26498.02 27499.39 19799.31 27898.94 22697.98 31699.37 26497.45 30798.15 33898.83 34896.67 26499.70 31394.73 34699.67 23399.53 170
PAPM_NR98.36 26498.04 27299.33 21499.48 22798.93 22998.79 24699.28 28597.54 30298.56 32498.57 35897.12 25599.69 31994.09 35498.90 32899.38 226
PLCcopyleft97.35 1698.36 26497.99 27599.48 16999.32 27799.24 19298.50 27399.51 22395.19 35398.58 32298.96 33996.95 26099.83 25095.63 33399.25 30899.37 229
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
train_agg98.35 26797.95 27999.57 14799.35 26299.35 17098.11 30299.41 24994.90 35597.92 34898.99 33298.02 20599.85 22195.38 33999.44 28499.50 188
CR-MVSNet98.35 26798.20 26298.83 28799.05 32498.12 28599.30 13099.67 12797.39 31199.16 26499.79 8091.87 32599.91 12398.78 14398.77 33398.44 344
DPM-MVS98.28 26997.94 28399.32 21899.36 26099.11 20897.31 35298.78 32596.88 32898.84 30099.11 31897.77 22399.61 35294.03 35699.36 29599.23 257
alignmvs98.28 26997.96 27899.25 23499.12 31398.93 22999.03 20798.42 34299.64 8598.72 31297.85 37290.86 33899.62 34898.88 13299.13 31399.19 268
test_yl98.25 27197.95 27999.13 25099.17 30698.47 26299.00 21298.67 33198.97 18399.22 25699.02 33091.31 32999.69 31997.26 26198.93 32499.24 254
DCV-MVSNet98.25 27197.95 27999.13 25099.17 30698.47 26299.00 21298.67 33198.97 18399.22 25699.02 33091.31 32999.69 31997.26 26198.93 32499.24 254
MAR-MVS98.24 27397.92 28599.19 24198.78 35299.65 9899.17 17099.14 30895.36 34998.04 34598.81 35097.47 23899.72 30795.47 33799.06 31798.21 353
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
OpenMVScopyleft98.12 1098.23 27497.89 28899.26 23199.19 30399.26 18599.65 5899.69 12091.33 36698.14 34299.77 9498.28 18399.96 4195.41 33899.55 26498.58 336
BH-untuned98.22 27598.09 27098.58 30199.38 25597.24 32098.55 26698.98 31897.81 29299.20 26398.76 35297.01 25899.65 34494.83 34598.33 34898.86 320
HY-MVS98.23 998.21 27697.95 27998.99 26499.03 32798.24 27599.61 6698.72 32796.81 33198.73 31199.51 23294.06 30099.86 20496.91 27898.20 35198.86 320
EPNet98.13 27797.77 29299.18 24394.57 37997.99 29499.24 15097.96 35199.74 5697.29 36199.62 18193.13 31299.97 2298.59 15599.83 15499.58 146
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SCA98.11 27898.36 24897.36 33699.20 30192.99 36398.17 29598.49 34098.24 26599.10 27499.57 21496.01 28499.94 6496.86 28199.62 24399.14 281
Patchmatch-test98.10 27997.98 27798.48 30499.27 28996.48 33599.40 10599.07 31198.81 20599.23 25399.57 21490.11 34799.87 18696.69 29099.64 24099.09 291
pmmvs398.08 28097.80 28998.91 27599.41 25097.69 30997.87 32799.66 13195.87 34299.50 19699.51 23290.35 34499.97 2298.55 15799.47 28199.08 294
JIA-IIPM98.06 28197.92 28598.50 30398.59 35997.02 32698.80 24398.51 33899.88 2497.89 35099.87 4091.89 32499.90 14198.16 18697.68 36298.59 334
miper_enhance_ethall98.03 28297.94 28398.32 31198.27 36696.43 33796.95 36199.41 24996.37 33799.43 21098.96 33994.74 29499.69 31997.71 22599.62 24398.83 323
TAPA-MVS97.92 1398.03 28297.55 29899.46 17399.47 23399.44 14498.50 27399.62 15186.79 36999.07 27899.26 29498.26 18599.62 34897.28 25899.73 20799.31 245
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
131498.00 28497.90 28798.27 31598.90 33797.45 31599.30 13099.06 31394.98 35497.21 36399.12 31598.43 16499.67 33495.58 33598.56 34497.71 362
GA-MVS97.99 28597.68 29598.93 27299.52 20998.04 29397.19 35699.05 31498.32 26198.81 30398.97 33789.89 35099.41 36798.33 16999.05 31899.34 237
MVS-HIRNet97.86 28698.22 26096.76 34599.28 28791.53 37198.38 28292.60 37599.13 16899.31 24099.96 1297.18 25499.68 32998.34 16899.83 15499.07 299
FE-MVS97.85 28797.42 30099.15 24699.44 24198.75 24299.77 1498.20 34895.85 34399.33 23399.80 7088.86 35399.88 17296.40 30699.12 31498.81 324
AUN-MVS97.82 28897.38 30199.14 24999.27 28998.53 25998.72 25299.02 31598.10 27297.18 36499.03 32989.26 35299.85 22197.94 20197.91 35899.03 303
FMVSNet597.80 28997.25 30599.42 18498.83 34598.97 22399.38 10999.80 6398.87 19899.25 24999.69 13780.60 37599.91 12398.96 12599.90 10099.38 226
ADS-MVSNet297.78 29097.66 29798.12 31999.14 30995.36 34999.22 15798.75 32696.97 32698.25 33499.64 16490.90 33699.94 6496.51 30199.56 26099.08 294
test111197.74 29198.16 26796.49 35099.60 16689.86 37999.71 3391.21 37699.89 1999.88 4799.87 4093.73 30699.90 14199.56 4099.99 1399.70 63
ECVR-MVScopyleft97.73 29298.04 27296.78 34499.59 17090.81 37599.72 2990.43 37899.89 1999.86 5699.86 4793.60 30899.89 15899.46 5399.99 1399.65 96
baseline197.73 29297.33 30298.96 26799.30 28297.73 30799.40 10598.42 34299.33 13499.46 20499.21 30591.18 33199.82 25998.35 16791.26 37499.32 241
tpmrst97.73 29298.07 27196.73 34798.71 35692.00 36799.10 19298.86 32098.52 23498.92 29099.54 22691.90 32399.82 25998.02 19299.03 32098.37 346
ADS-MVSNet97.72 29597.67 29697.86 32499.14 30994.65 35599.22 15798.86 32096.97 32698.25 33499.64 16490.90 33699.84 23596.51 30199.56 26099.08 294
PatchmatchNetpermissive97.65 29697.80 28997.18 34198.82 34892.49 36599.17 17098.39 34498.12 27198.79 30699.58 20590.71 34099.89 15897.23 26599.41 28999.16 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tttt051797.62 29797.20 30698.90 28199.76 10197.40 31699.48 9294.36 37199.06 17799.70 12099.49 23984.55 37099.94 6498.73 14799.65 23899.36 232
EPNet_dtu97.62 29797.79 29197.11 34396.67 37692.31 36698.51 27298.04 34999.24 14695.77 37099.47 24693.78 30599.66 33898.98 12199.62 24399.37 229
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
wuyk23d97.58 29999.13 13592.93 35799.69 13999.49 13199.52 8399.77 7797.97 28199.96 1599.79 8099.84 599.94 6495.85 32899.82 16379.36 373
cl2297.56 30097.28 30398.40 30798.37 36496.75 33297.24 35599.37 26497.31 31599.41 21899.22 30387.30 35799.37 36897.70 22899.62 24399.08 294
PAPR97.56 30097.07 30899.04 26298.80 34998.11 28797.63 33699.25 29294.56 36098.02 34698.25 36897.43 24099.68 32990.90 36598.74 33799.33 238
thisisatest053097.45 30296.95 31298.94 26999.68 14797.73 30799.09 19694.19 37398.61 22599.56 17599.30 28584.30 37199.93 8198.27 17399.54 26999.16 274
TR-MVS97.44 30397.15 30798.32 31198.53 36197.46 31498.47 27597.91 35396.85 32998.21 33798.51 36296.42 27299.51 36292.16 36197.29 36497.98 359
tpmvs97.39 30497.69 29496.52 34998.41 36291.76 36899.30 13098.94 31997.74 29397.85 35399.55 22492.40 32299.73 30596.25 31398.73 33998.06 358
test0.0.03 197.37 30596.91 31598.74 29497.72 37297.57 31197.60 33897.36 36198.00 27799.21 25898.02 37090.04 34899.79 28398.37 16595.89 37298.86 320
OpenMVS_ROBcopyleft97.31 1797.36 30696.84 31698.89 28299.29 28499.45 14298.87 22999.48 23286.54 37199.44 20699.74 10697.34 24599.86 20491.61 36299.28 30497.37 366
BH-w/o97.20 30797.01 31097.76 32799.08 32295.69 34698.03 31198.52 33795.76 34597.96 34798.02 37095.62 28899.47 36492.82 36097.25 36598.12 357
test-LLR97.15 30896.95 31297.74 32998.18 36995.02 35297.38 34896.10 36398.00 27797.81 35498.58 35690.04 34899.91 12397.69 23498.78 33198.31 347
tpm97.15 30896.95 31297.75 32898.91 33694.24 35799.32 12297.96 35197.71 29598.29 33299.32 28186.72 36599.92 10198.10 19096.24 37199.09 291
E-PMN97.14 31097.43 29996.27 35298.79 35091.62 37095.54 36999.01 31799.44 11798.88 29499.12 31592.78 31699.68 32994.30 35199.03 32097.50 363
cascas96.99 31196.82 31797.48 33297.57 37595.64 34796.43 36799.56 19391.75 36497.13 36597.61 37595.58 28998.63 37396.68 29199.11 31598.18 356
thisisatest051596.98 31296.42 31998.66 29899.42 24997.47 31397.27 35394.30 37297.24 31799.15 26698.86 34785.01 36899.87 18697.10 27099.39 29198.63 331
EMVS96.96 31397.28 30395.99 35598.76 35491.03 37395.26 37098.61 33399.34 13298.92 29098.88 34693.79 30499.66 33892.87 35999.05 31897.30 367
dp96.86 31497.07 30896.24 35398.68 35890.30 37899.19 16498.38 34597.35 31398.23 33699.59 20387.23 35899.82 25996.27 31298.73 33998.59 334
baseline296.83 31596.28 32198.46 30599.09 32196.91 32998.83 23593.87 37497.23 31896.23 36998.36 36588.12 35599.90 14196.68 29198.14 35598.57 337
ET-MVSNet_ETH3D96.78 31696.07 32598.91 27599.26 29197.92 30297.70 33496.05 36697.96 28492.37 37598.43 36487.06 35999.90 14198.27 17397.56 36398.91 316
tpm cat196.78 31696.98 31196.16 35498.85 34390.59 37799.08 19999.32 27392.37 36397.73 35899.46 24991.15 33299.69 31996.07 31998.80 33098.21 353
PCF-MVS96.03 1896.73 31895.86 32999.33 21499.44 24199.16 20396.87 36399.44 24386.58 37098.95 28599.40 26094.38 29899.88 17287.93 36999.80 17798.95 312
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CostFormer96.71 31996.79 31896.46 35198.90 33790.71 37699.41 10498.68 32994.69 35998.14 34299.34 28086.32 36799.80 28097.60 23998.07 35798.88 318
MVEpermissive92.54 2296.66 32096.11 32498.31 31399.68 14797.55 31297.94 32195.60 36899.37 12990.68 37698.70 35496.56 26698.61 37486.94 37499.55 26498.77 328
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
thres600view796.60 32196.16 32397.93 32299.63 15996.09 34299.18 16597.57 35698.77 21198.72 31297.32 37787.04 36099.72 30788.57 36798.62 34297.98 359
EPMVS96.53 32296.32 32097.17 34298.18 36992.97 36499.39 10789.95 37998.21 26798.61 31999.59 20386.69 36699.72 30796.99 27499.23 31298.81 324
thres40096.40 32395.89 32797.92 32399.58 17596.11 34099.00 21297.54 35998.43 24198.52 32596.98 38086.85 36299.67 33487.62 37098.51 34597.98 359
thres100view90096.39 32496.03 32697.47 33399.63 15995.93 34399.18 16597.57 35698.75 21598.70 31497.31 37887.04 36099.67 33487.62 37098.51 34596.81 368
tpm296.35 32596.22 32296.73 34798.88 34291.75 36999.21 15998.51 33893.27 36297.89 35099.21 30584.83 36999.70 31396.04 32098.18 35498.75 329
FPMVS96.32 32695.50 33398.79 29199.60 16698.17 28398.46 27998.80 32497.16 32296.28 36699.63 17482.19 37299.09 37088.45 36898.89 32999.10 287
tfpn200view996.30 32795.89 32797.53 33199.58 17596.11 34099.00 21297.54 35998.43 24198.52 32596.98 38086.85 36299.67 33487.62 37098.51 34596.81 368
TESTMET0.1,196.24 32895.84 33097.41 33598.24 36793.84 36097.38 34895.84 36798.43 24197.81 35498.56 35979.77 37699.89 15897.77 21798.77 33398.52 338
test-mter96.23 32995.73 33197.74 32998.18 36995.02 35297.38 34896.10 36397.90 28697.81 35498.58 35679.12 37999.91 12397.69 23498.78 33198.31 347
X-MVStestdata96.09 33094.87 33999.75 6099.71 12799.71 7699.37 11399.61 15899.29 13698.76 30961.30 38398.47 15899.88 17297.62 23699.73 20799.67 79
thres20096.09 33095.68 33297.33 33899.48 22796.22 33998.53 27097.57 35698.06 27698.37 33196.73 38286.84 36499.61 35286.99 37398.57 34396.16 371
KD-MVS_2432*160095.89 33295.41 33597.31 33994.96 37793.89 35897.09 35899.22 29997.23 31898.88 29499.04 32579.23 37799.54 35796.24 31496.81 36698.50 342
miper_refine_blended95.89 33295.41 33597.31 33994.96 37793.89 35897.09 35899.22 29997.23 31898.88 29499.04 32579.23 37799.54 35796.24 31496.81 36698.50 342
gg-mvs-nofinetune95.87 33495.17 33897.97 32198.19 36896.95 32799.69 4189.23 38099.89 1996.24 36899.94 1681.19 37399.51 36293.99 35798.20 35197.44 364
PVSNet_095.53 1995.85 33595.31 33797.47 33398.78 35293.48 36295.72 36899.40 25696.18 34097.37 35997.73 37395.73 28699.58 35595.49 33681.40 37599.36 232
tmp_tt95.75 33695.42 33496.76 34589.90 38194.42 35698.86 23097.87 35478.01 37299.30 24599.69 13797.70 22595.89 37699.29 8398.14 35599.95 5
MVS95.72 33794.63 34198.99 26498.56 36097.98 30099.30 13098.86 32072.71 37497.30 36099.08 32098.34 17899.74 30289.21 36698.33 34899.26 251
PAPM95.61 33894.71 34098.31 31399.12 31396.63 33396.66 36698.46 34190.77 36796.25 36798.68 35593.01 31499.69 31981.60 37597.86 36198.62 332
IB-MVS95.41 2095.30 33994.46 34397.84 32598.76 35495.33 35097.33 35196.07 36596.02 34195.37 37397.41 37676.17 38199.96 4197.54 24295.44 37398.22 352
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test250694.73 34094.59 34295.15 35699.59 17085.90 38199.75 2174.01 38299.89 1999.71 11799.86 4779.00 38099.90 14199.52 4799.99 1399.65 96
test_method91.72 34192.32 34489.91 35893.49 38070.18 38290.28 37199.56 19361.71 37595.39 37299.52 23093.90 30199.94 6498.76 14498.27 35099.62 120
EGC-MVSNET89.05 34285.52 34599.64 11499.89 3399.78 4799.56 7999.52 21924.19 37649.96 37799.83 5599.15 6699.92 10197.71 22599.85 14199.21 261
test12329.31 34333.05 34818.08 35925.93 38312.24 38397.53 34210.93 38411.78 37724.21 37850.08 38721.04 3828.60 37823.51 37632.43 37733.39 374
testmvs28.94 34433.33 34615.79 36026.03 3829.81 38496.77 36415.67 38311.55 37823.87 37950.74 38619.03 3838.53 37923.21 37733.07 37629.03 375
cdsmvs_eth3d_5k24.88 34533.17 3470.00 3610.00 3840.00 3850.00 37299.62 1510.00 3790.00 38099.13 31199.82 60.00 3800.00 3780.00 3780.00 376
pcd_1.5k_mvsjas16.61 34622.14 3490.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 199.28 510.00 3800.00 3780.00 3780.00 376
test_blank8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
uanet_test8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
DCPMVS8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
sosnet-low-res8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
sosnet8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
uncertanet8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
Regformer8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
uanet8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
ab-mvs-re8.26 35511.02 3580.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38099.16 3090.00 3840.00 3800.00 3780.00 3780.00 376
FOURS199.83 5399.89 1099.74 2399.71 10899.69 7199.63 142
MSC_two_6792asdad99.74 6599.03 32799.53 12799.23 29699.92 10197.77 21799.69 22299.78 40
PC_three_145297.56 29999.68 12699.41 25699.09 7497.09 37596.66 29399.60 25399.62 120
No_MVS99.74 6599.03 32799.53 12799.23 29699.92 10197.77 21799.69 22299.78 40
test_one_060199.63 15999.76 5899.55 19999.23 14899.31 24099.61 19098.59 139
eth-test20.00 384
eth-test0.00 384
ZD-MVS99.43 24499.61 11199.43 24696.38 33699.11 27299.07 32197.86 21699.92 10194.04 35599.49 279
RE-MVS-def99.13 13599.54 19899.74 6899.26 14399.62 15199.16 16299.52 18999.64 16498.57 14297.27 25999.61 25099.54 164
IU-MVS99.69 13999.77 5099.22 29997.50 30599.69 12397.75 22199.70 21899.77 44
OPU-MVS99.29 22499.12 31399.44 14499.20 16099.40 26099.00 8598.84 37296.54 29999.60 25399.58 146
test_241102_TWO99.54 20599.13 16899.76 9299.63 17498.32 18199.92 10197.85 21299.69 22299.75 53
test_241102_ONE99.69 13999.82 3599.54 20599.12 17199.82 6699.49 23998.91 9799.52 361
9.1498.64 22099.45 24098.81 24099.60 17097.52 30499.28 24699.56 21798.53 15199.83 25095.36 34099.64 240
save fliter99.53 20499.25 18898.29 28799.38 26399.07 175
test_0728_THIRD99.18 15599.62 15199.61 19098.58 14199.91 12397.72 22399.80 17799.77 44
test_0728_SECOND99.83 2599.70 13599.79 4499.14 17899.61 15899.92 10197.88 20699.72 21399.77 44
test072699.69 13999.80 4299.24 15099.57 18899.16 16299.73 11199.65 16298.35 175
GSMVS99.14 281
test_part299.62 16399.67 9199.55 180
sam_mvs190.81 33999.14 281
sam_mvs90.52 343
ambc99.20 24099.35 26298.53 25999.17 17099.46 23899.67 13199.80 7098.46 16199.70 31397.92 20299.70 21899.38 226
MTGPAbinary99.53 214
test_post199.14 17851.63 38589.54 35199.82 25996.86 281
test_post52.41 38490.25 34599.86 204
patchmatchnet-post99.62 18190.58 34199.94 64
GG-mvs-BLEND97.36 33697.59 37396.87 33099.70 3488.49 38194.64 37497.26 37980.66 37499.12 36991.50 36396.50 37096.08 372
MTMP99.09 19698.59 336
gm-plane-assit97.59 37389.02 38093.47 36198.30 36699.84 23596.38 308
test9_res95.10 34399.44 28499.50 188
TEST999.35 26299.35 17098.11 30299.41 24994.83 35897.92 34898.99 33298.02 20599.85 221
test_899.34 27099.31 17698.08 30699.40 25694.90 35597.87 35298.97 33798.02 20599.84 235
agg_prior294.58 34999.46 28399.50 188
agg_prior99.35 26299.36 16799.39 25997.76 35799.85 221
TestCases99.63 12199.78 8999.64 9999.83 4798.63 22299.63 14299.72 11798.68 12599.75 30096.38 30899.83 15499.51 183
test_prior499.19 20198.00 314
test_prior297.95 32097.87 28898.05 34499.05 32397.90 21395.99 32399.49 279
test_prior99.46 17399.35 26299.22 19599.39 25999.69 31999.48 197
旧先验297.94 32195.33 35098.94 28699.88 17296.75 287
新几何298.04 310
新几何199.52 16099.50 21799.22 19599.26 28995.66 34798.60 32099.28 28997.67 22999.89 15895.95 32699.32 29999.45 206
旧先验199.49 22299.29 17999.26 28999.39 26497.67 22999.36 29599.46 205
无先验98.01 31299.23 29695.83 34499.85 22195.79 33199.44 211
原ACMM297.92 323
原ACMM199.37 20499.47 23398.87 23699.27 28696.74 33398.26 33399.32 28197.93 21299.82 25995.96 32599.38 29299.43 217
test22299.51 21199.08 21597.83 32999.29 28295.21 35298.68 31599.31 28397.28 24799.38 29299.43 217
testdata299.89 15895.99 323
segment_acmp98.37 173
testdata99.42 18499.51 21198.93 22999.30 28096.20 33998.87 29799.40 26098.33 18099.89 15896.29 31199.28 30499.44 211
testdata197.72 33297.86 290
test1299.54 15799.29 28499.33 17399.16 30698.43 32997.54 23699.82 25999.47 28199.48 197
plane_prior799.58 17599.38 160
plane_prior699.47 23399.26 18597.24 248
plane_prior599.54 20599.82 25995.84 32999.78 18799.60 134
plane_prior499.25 296
plane_prior399.31 17698.36 25099.14 268
plane_prior298.80 24398.94 187
plane_prior199.51 211
plane_prior99.24 19298.42 28097.87 28899.71 216
n20.00 385
nn0.00 385
door-mid99.83 47
lessismore_v099.64 11499.86 4599.38 16090.66 37799.89 4199.83 5594.56 29799.97 2299.56 4099.92 9099.57 151
LGP-MVS_train99.74 6599.82 6099.63 10399.73 9697.56 29999.64 13899.69 13799.37 4199.89 15896.66 29399.87 12999.69 67
test1199.29 282
door99.77 77
HQP5-MVS98.94 226
HQP-NCC99.31 27897.98 31697.45 30798.15 338
ACMP_Plane99.31 27897.98 31697.45 30798.15 338
BP-MVS94.73 346
HQP4-MVS98.15 33899.70 31399.53 170
HQP3-MVS99.37 26499.67 233
HQP2-MVS96.67 264
NP-MVS99.40 25199.13 20698.83 348
MDTV_nov1_ep13_2view91.44 37299.14 17897.37 31299.21 25891.78 32796.75 28799.03 303
MDTV_nov1_ep1397.73 29398.70 35790.83 37499.15 17698.02 35098.51 23598.82 30299.61 19090.98 33499.66 33896.89 28098.92 326
ACMMP++_ref99.94 78
ACMMP++99.79 182
Test By Simon98.41 167
ITE_SJBPF99.38 20199.63 15999.44 14499.73 9698.56 22899.33 23399.53 22898.88 10199.68 32996.01 32199.65 23899.02 307
DeepMVS_CXcopyleft97.98 32099.69 13996.95 32799.26 28975.51 37395.74 37198.28 36796.47 27099.62 34891.23 36497.89 35997.38 365