LTVRE_ROB | | 98.82 1 | 99.76 1 | 99.75 1 | 99.77 7 | 99.87 16 | 99.71 10 | 99.77 8 | 99.76 19 | 99.52 2 | 99.80 3 | 99.79 21 | 99.91 1 | 99.56 13 | 99.83 3 | 99.75 4 | 99.86 9 | 99.75 1 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
pmmvs6 | | | 99.74 2 | 99.75 1 | 99.73 11 | 99.92 5 | 99.67 15 | 99.76 10 | 99.84 11 | 99.59 1 | 99.52 24 | 99.87 11 | 99.91 1 | 99.43 27 | 99.87 1 | 99.81 2 | 99.89 6 | 99.52 10 |
|
SixPastTwentyTwo | | | 99.70 3 | 99.59 4 | 99.82 2 | 99.93 3 | 99.80 1 | 99.86 2 | 99.87 6 | 98.87 11 | 99.79 5 | 99.85 14 | 99.33 65 | 99.74 5 | 99.85 2 | 99.82 1 | 99.74 24 | 99.63 5 |
|
v7n | | | 99.68 4 | 99.61 3 | 99.76 8 | 99.89 12 | 99.74 7 | 99.87 1 | 99.82 13 | 99.20 6 | 99.71 6 | 99.96 1 | 99.73 13 | 99.76 3 | 99.58 20 | 99.59 16 | 99.52 47 | 99.46 15 |
|
anonymousdsp | | | 99.64 5 | 99.55 6 | 99.74 10 | 99.87 16 | 99.56 25 | 99.82 3 | 99.73 23 | 98.54 16 | 99.71 6 | 99.92 4 | 99.84 7 | 99.61 9 | 99.70 9 | 99.63 9 | 99.69 33 | 99.64 3 |
|
UniMVSNet_ETH3D | | | 99.61 6 | 99.59 4 | 99.63 13 | 99.96 1 | 99.70 11 | 99.53 35 | 99.86 8 | 99.28 5 | 99.48 30 | 99.44 54 | 99.86 5 | 99.01 69 | 99.78 4 | 99.76 3 | 99.90 2 | 99.33 21 |
|
WR-MVS | | | 99.61 6 | 99.44 8 | 99.82 2 | 99.92 5 | 99.80 1 | 99.80 4 | 99.89 1 | 98.54 16 | 99.66 13 | 99.78 22 | 99.16 86 | 99.68 7 | 99.70 9 | 99.63 9 | 99.94 1 | 99.49 13 |
|
PEN-MVS | | | 99.54 8 | 99.30 15 | 99.83 1 | 99.92 5 | 99.76 4 | 99.80 4 | 99.88 3 | 97.60 62 | 99.71 6 | 99.59 36 | 99.52 43 | 99.75 4 | 99.64 15 | 99.51 19 | 99.90 2 | 99.46 15 |
|
TDRefinement | | | 99.54 8 | 99.50 7 | 99.60 17 | 99.70 67 | 99.35 45 | 99.77 8 | 99.58 51 | 99.40 4 | 99.28 49 | 99.66 26 | 99.41 54 | 99.55 15 | 99.74 8 | 99.65 8 | 99.70 30 | 99.25 26 |
|
DTE-MVSNet | | | 99.52 10 | 99.27 16 | 99.82 2 | 99.93 3 | 99.77 3 | 99.79 6 | 99.87 6 | 97.89 44 | 99.70 11 | 99.55 45 | 99.21 77 | 99.77 2 | 99.65 13 | 99.43 23 | 99.90 2 | 99.36 19 |
|
PS-CasMVS | | | 99.50 11 | 99.23 19 | 99.82 2 | 99.92 5 | 99.75 6 | 99.78 7 | 99.89 1 | 97.30 73 | 99.71 6 | 99.60 34 | 99.23 73 | 99.71 6 | 99.65 13 | 99.55 18 | 99.90 2 | 99.56 8 |
|
WR-MVS_H | | | 99.48 12 | 99.23 19 | 99.76 8 | 99.91 9 | 99.76 4 | 99.75 11 | 99.88 3 | 97.27 76 | 99.58 17 | 99.56 41 | 99.24 72 | 99.56 13 | 99.60 18 | 99.60 15 | 99.88 8 | 99.58 7 |
|
pm-mvs1 | | | 99.47 13 | 99.38 9 | 99.57 21 | 99.82 28 | 99.49 29 | 99.63 23 | 99.65 39 | 98.88 10 | 99.31 43 | 99.85 14 | 99.02 105 | 99.23 46 | 99.60 18 | 99.58 17 | 99.80 15 | 99.22 33 |
|
MIMVSNet1 | | | 99.46 14 | 99.34 10 | 99.60 17 | 99.83 23 | 99.68 14 | 99.74 14 | 99.71 27 | 98.20 26 | 99.41 35 | 99.86 13 | 99.66 25 | 99.41 30 | 99.50 24 | 99.39 26 | 99.50 52 | 99.10 44 |
|
TransMVSNet (Re) | | | 99.45 15 | 99.32 13 | 99.61 15 | 99.88 14 | 99.60 20 | 99.75 11 | 99.63 43 | 99.11 7 | 99.28 49 | 99.83 18 | 98.35 139 | 99.27 43 | 99.70 9 | 99.62 13 | 99.84 10 | 99.03 52 |
|
ACMH | | 97.81 6 | 99.44 16 | 99.33 11 | 99.56 22 | 99.81 32 | 99.42 36 | 99.73 15 | 99.58 51 | 99.02 8 | 99.10 73 | 99.41 59 | 99.69 19 | 99.60 10 | 99.45 28 | 99.26 36 | 99.55 43 | 99.05 49 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CP-MVSNet | | | 99.39 17 | 99.04 28 | 99.80 6 | 99.91 9 | 99.70 11 | 99.75 11 | 99.88 3 | 96.82 97 | 99.68 12 | 99.32 62 | 98.86 114 | 99.68 7 | 99.57 21 | 99.47 20 | 99.89 6 | 99.52 10 |
|
COLMAP_ROB |  | 98.29 2 | 99.37 18 | 99.25 17 | 99.51 30 | 99.74 58 | 99.12 73 | 99.56 32 | 99.39 87 | 98.96 9 | 99.17 61 | 99.44 54 | 99.63 32 | 99.58 11 | 99.48 26 | 99.27 35 | 99.60 40 | 98.81 78 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
DeepC-MVS | | 97.88 4 | 99.33 19 | 99.15 23 | 99.53 29 | 99.73 63 | 99.05 81 | 99.49 40 | 99.40 85 | 98.42 19 | 99.55 21 | 99.71 24 | 99.89 3 | 99.49 19 | 99.14 43 | 98.81 66 | 99.54 44 | 99.02 54 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
FC-MVSNet-test | | | 99.32 20 | 99.33 11 | 99.31 57 | 99.87 16 | 99.65 18 | 99.63 23 | 99.75 21 | 97.76 46 | 97.29 195 | 99.87 11 | 99.63 32 | 99.52 16 | 99.66 12 | 99.63 9 | 99.77 20 | 99.12 40 |
|
UA-Net | | | 99.30 21 | 99.22 21 | 99.39 44 | 99.94 2 | 99.66 17 | 98.91 111 | 99.86 8 | 97.74 52 | 98.74 114 | 99.00 89 | 99.60 37 | 99.17 54 | 99.50 24 | 99.39 26 | 99.70 30 | 99.64 3 |
|
ACMH+ | | 97.53 7 | 99.29 22 | 99.20 22 | 99.40 43 | 99.81 32 | 99.22 62 | 99.59 29 | 99.50 68 | 98.64 15 | 98.29 148 | 99.21 74 | 99.69 19 | 99.57 12 | 99.53 23 | 99.33 31 | 99.66 34 | 98.81 78 |
|
Vis-MVSNet |  | | 99.25 23 | 99.32 13 | 99.17 67 | 99.65 78 | 99.55 27 | 99.63 23 | 99.33 103 | 98.16 27 | 99.29 46 | 99.65 30 | 99.77 10 | 97.56 143 | 99.44 30 | 99.14 41 | 99.58 41 | 99.51 12 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
TranMVSNet+NR-MVSNet | | | 99.23 24 | 98.91 35 | 99.61 15 | 99.81 32 | 99.45 33 | 99.47 42 | 99.68 30 | 97.28 75 | 99.39 36 | 99.54 46 | 99.08 101 | 99.45 22 | 99.09 49 | 98.84 63 | 99.83 11 | 99.04 50 |
|
CSCG | | | 99.23 24 | 99.15 23 | 99.32 56 | 99.83 23 | 99.45 33 | 98.97 103 | 99.21 124 | 98.83 12 | 99.04 83 | 99.43 56 | 99.64 30 | 99.26 44 | 98.85 75 | 98.20 102 | 99.62 38 | 99.62 6 |
|
Gipuma |  | | 99.22 26 | 98.86 39 | 99.64 12 | 99.70 67 | 99.24 56 | 99.17 85 | 99.63 43 | 99.52 2 | 99.89 1 | 96.54 175 | 99.14 90 | 99.93 1 | 99.42 31 | 99.15 40 | 99.52 47 | 99.04 50 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
tfpnnormal | | | 99.19 27 | 98.90 36 | 99.54 26 | 99.81 32 | 99.55 27 | 99.60 27 | 99.54 59 | 98.53 18 | 99.23 53 | 98.40 110 | 98.23 142 | 99.40 31 | 99.29 36 | 99.36 29 | 99.63 37 | 98.95 64 |
|
Baseline_NR-MVSNet | | | 99.18 28 | 98.87 37 | 99.54 26 | 99.74 58 | 99.56 25 | 99.36 57 | 99.62 48 | 96.53 118 | 99.29 46 | 99.85 14 | 98.64 131 | 99.40 31 | 99.03 60 | 99.63 9 | 99.83 11 | 98.86 73 |
|
thisisatest0515 | | | 99.16 29 | 98.94 33 | 99.41 38 | 99.75 52 | 99.43 35 | 99.36 57 | 99.63 43 | 97.68 58 | 99.35 38 | 99.31 63 | 98.90 111 | 99.09 63 | 98.95 65 | 99.20 37 | 99.27 83 | 99.11 41 |
|
CS-MVS-test | | | 99.16 29 | 98.78 44 | 99.60 17 | 99.80 37 | 99.72 9 | 99.69 16 | 99.73 23 | 95.88 140 | 99.51 26 | 98.53 107 | 99.54 41 | 99.21 48 | 99.24 39 | 99.43 23 | 99.66 34 | 99.15 39 |
|
CS-MVS | | | 99.15 31 | 98.75 46 | 99.62 14 | 99.76 48 | 99.73 8 | 99.60 27 | 99.75 21 | 95.67 147 | 99.50 27 | 98.53 107 | 99.39 59 | 99.29 40 | 99.21 41 | 99.46 22 | 99.79 18 | 99.29 24 |
|
APDe-MVS | | | 99.15 31 | 98.95 30 | 99.39 44 | 99.77 43 | 99.28 53 | 99.52 36 | 99.54 59 | 97.22 80 | 99.06 77 | 99.20 75 | 99.64 30 | 99.05 67 | 99.14 43 | 99.02 51 | 99.39 65 | 99.17 37 |
|
FC-MVSNet-train | | | 99.13 33 | 99.05 27 | 99.21 62 | 99.87 16 | 99.57 24 | 99.67 18 | 99.60 50 | 96.75 103 | 98.28 149 | 99.48 50 | 99.52 43 | 98.10 122 | 99.47 27 | 99.37 28 | 99.76 22 | 99.21 34 |
|
NR-MVSNet | | | 99.10 34 | 98.68 56 | 99.58 20 | 99.89 12 | 99.23 59 | 99.35 61 | 99.63 43 | 96.58 111 | 99.36 37 | 99.05 83 | 98.67 129 | 99.46 20 | 99.63 16 | 98.73 76 | 99.80 15 | 98.88 72 |
|
DVP-MVS++ | | | 99.09 35 | 99.25 17 | 98.90 101 | 99.53 107 | 99.37 43 | 99.17 85 | 99.48 73 | 98.28 24 | 97.95 169 | 99.54 46 | 99.88 4 | 98.13 121 | 99.08 50 | 98.94 55 | 99.15 96 | 99.65 2 |
|
DVP-MVS |  | | 99.09 35 | 99.07 26 | 99.12 74 | 99.55 100 | 99.40 38 | 99.36 57 | 99.44 84 | 97.75 49 | 98.23 152 | 99.23 71 | 99.80 8 | 98.97 71 | 99.08 50 | 98.96 52 | 99.19 91 | 99.25 26 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
UniMVSNet (Re) | | | 99.08 37 | 98.69 54 | 99.54 26 | 99.75 52 | 99.33 48 | 99.29 69 | 99.64 42 | 96.75 103 | 99.48 30 | 99.30 65 | 98.69 125 | 99.26 44 | 98.94 67 | 98.76 72 | 99.78 19 | 99.02 54 |
|
ACMMPR | | | 99.05 38 | 98.72 50 | 99.44 32 | 99.79 38 | 99.12 73 | 99.35 61 | 99.56 54 | 97.74 52 | 99.21 55 | 97.72 137 | 99.55 40 | 99.29 40 | 98.90 73 | 98.81 66 | 99.41 64 | 99.19 35 |
|
DU-MVS | | | 99.04 39 | 98.59 60 | 99.56 22 | 99.74 58 | 99.23 59 | 99.29 69 | 99.63 43 | 96.58 111 | 99.55 21 | 99.05 83 | 98.68 127 | 99.36 35 | 99.03 60 | 98.60 83 | 99.77 20 | 98.97 59 |
|
TSAR-MVS + MP. | | | 99.02 40 | 98.95 30 | 99.11 77 | 99.23 156 | 98.79 117 | 99.51 37 | 98.73 164 | 97.50 66 | 98.56 125 | 99.03 86 | 99.59 38 | 99.16 56 | 99.29 36 | 99.17 39 | 99.50 52 | 99.24 30 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
v10 | | | 99.01 41 | 98.66 57 | 99.41 38 | 99.52 112 | 99.39 39 | 99.57 31 | 99.66 37 | 97.59 63 | 99.32 42 | 99.88 9 | 99.23 73 | 99.50 18 | 97.77 139 | 97.98 113 | 98.92 125 | 98.78 83 |
|
EG-PatchMatch MVS | | | 99.01 41 | 98.77 45 | 99.28 61 | 99.64 81 | 98.90 110 | 98.81 123 | 99.27 114 | 96.55 115 | 99.71 6 | 99.31 63 | 99.66 25 | 99.17 54 | 99.28 38 | 99.11 43 | 99.10 98 | 98.57 98 |
|
PVSNet_Blended_VisFu | | | 98.98 43 | 98.79 42 | 99.21 62 | 99.76 48 | 99.34 46 | 99.35 61 | 99.35 99 | 97.12 86 | 99.46 32 | 99.56 41 | 98.89 112 | 98.08 125 | 99.05 54 | 98.58 85 | 99.27 83 | 98.98 58 |
|
HFP-MVS | | | 98.97 44 | 98.70 52 | 99.29 59 | 99.67 72 | 98.98 93 | 99.13 91 | 99.53 62 | 97.76 46 | 98.90 98 | 98.07 125 | 99.50 49 | 99.14 59 | 98.64 86 | 98.78 70 | 99.37 67 | 99.18 36 |
|
UniMVSNet_NR-MVSNet | | | 98.97 44 | 98.46 70 | 99.56 22 | 99.76 48 | 99.34 46 | 99.29 69 | 99.61 49 | 96.55 115 | 99.55 21 | 99.05 83 | 97.96 150 | 99.36 35 | 98.84 76 | 98.50 91 | 99.81 14 | 98.97 59 |
|
casdiffmvs_mvg |  | | 98.96 46 | 98.87 37 | 99.07 80 | 99.82 28 | 99.36 44 | 99.36 57 | 99.22 121 | 98.13 29 | 97.74 176 | 99.42 57 | 99.46 52 | 98.59 94 | 98.39 98 | 98.95 54 | 99.71 29 | 98.39 116 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
DROMVSNet | | | 98.96 46 | 98.45 73 | 99.56 22 | 99.88 14 | 99.70 11 | 99.68 17 | 99.78 16 | 94.15 181 | 98.97 87 | 98.26 117 | 99.21 77 | 99.35 37 | 99.30 35 | 99.14 41 | 99.73 25 | 99.40 18 |
|
SED-MVS | | | 98.94 48 | 98.95 30 | 98.91 100 | 99.43 128 | 99.38 41 | 99.12 93 | 99.46 78 | 97.05 89 | 98.43 140 | 99.23 71 | 99.79 9 | 97.99 128 | 99.05 54 | 98.94 55 | 99.05 111 | 99.23 31 |
|
ACMMP_NAP | | | 98.94 48 | 98.72 50 | 99.21 62 | 99.67 72 | 99.08 76 | 99.26 74 | 99.39 87 | 96.84 94 | 98.88 102 | 98.22 118 | 99.68 21 | 98.82 80 | 99.06 53 | 98.90 58 | 99.25 86 | 99.25 26 |
|
v1144 | | | 98.94 48 | 98.53 65 | 99.42 36 | 99.62 85 | 99.03 87 | 99.58 30 | 99.36 96 | 97.99 35 | 99.49 29 | 99.91 8 | 99.20 80 | 99.51 17 | 97.61 144 | 97.85 120 | 98.95 120 | 98.10 139 |
|
v8 | | | 98.94 48 | 98.60 58 | 99.35 53 | 99.54 104 | 99.39 39 | 99.55 33 | 99.67 34 | 97.48 67 | 99.13 69 | 99.81 19 | 99.10 97 | 99.39 33 | 97.86 134 | 97.89 118 | 98.81 134 | 98.66 91 |
|
SteuartSystems-ACMMP | | | 98.94 48 | 98.52 66 | 99.43 35 | 99.79 38 | 99.13 72 | 99.33 65 | 99.55 56 | 96.17 133 | 99.04 83 | 97.53 143 | 99.65 29 | 99.46 20 | 99.04 59 | 98.76 72 | 99.44 59 | 99.35 20 |
Skip Steuart: Steuart Systems R&D Blog. |
v1192 | | | 98.91 53 | 98.48 69 | 99.41 38 | 99.61 89 | 99.03 87 | 99.64 20 | 99.25 118 | 97.91 41 | 99.58 17 | 99.92 4 | 99.07 103 | 99.45 22 | 97.55 148 | 97.68 134 | 98.93 122 | 98.23 129 |
|
FMVSNet1 | | | 98.90 54 | 99.10 25 | 98.67 125 | 99.54 104 | 99.48 30 | 99.22 79 | 99.66 37 | 98.39 22 | 97.50 183 | 99.66 26 | 99.04 104 | 96.58 164 | 99.05 54 | 99.03 48 | 99.52 47 | 99.08 46 |
|
ACMM | | 96.66 11 | 98.90 54 | 98.44 75 | 99.44 32 | 99.74 58 | 98.95 99 | 99.47 42 | 99.55 56 | 97.66 60 | 99.09 74 | 96.43 177 | 99.41 54 | 99.35 37 | 98.95 65 | 98.67 79 | 99.45 57 | 99.03 52 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Anonymous20231211 | | | 98.89 56 | 98.79 42 | 98.99 93 | 99.82 28 | 99.41 37 | 99.18 84 | 99.31 109 | 96.92 91 | 98.54 127 | 98.58 105 | 98.84 117 | 97.46 145 | 99.45 28 | 99.29 33 | 99.65 36 | 99.08 46 |
|
v1921920 | | | 98.89 56 | 98.46 70 | 99.39 44 | 99.58 93 | 99.04 85 | 99.64 20 | 99.17 130 | 97.91 41 | 99.64 15 | 99.92 4 | 98.99 109 | 99.44 25 | 97.44 155 | 97.57 143 | 98.84 132 | 98.35 119 |
|
GeoE | | | 98.88 58 | 98.43 78 | 99.41 38 | 99.83 23 | 99.24 56 | 99.51 37 | 99.82 13 | 96.55 115 | 99.22 54 | 98.76 97 | 99.22 76 | 98.96 72 | 98.55 89 | 98.15 104 | 99.10 98 | 98.56 101 |
|
v144192 | | | 98.88 58 | 98.46 70 | 99.37 51 | 99.56 99 | 99.03 87 | 99.61 26 | 99.26 115 | 97.79 45 | 99.58 17 | 99.88 9 | 99.11 95 | 99.43 27 | 97.38 160 | 97.61 139 | 98.80 135 | 98.43 113 |
|
SMA-MVS |  | | 98.87 60 | 98.73 49 | 99.04 86 | 99.72 64 | 99.05 81 | 98.64 133 | 99.17 130 | 96.31 128 | 98.80 108 | 99.07 81 | 99.70 18 | 98.67 88 | 98.93 70 | 98.82 64 | 99.23 89 | 99.23 31 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
ACMP | | 96.54 13 | 98.87 60 | 98.40 81 | 99.41 38 | 99.74 58 | 98.88 111 | 99.29 69 | 99.50 68 | 96.85 93 | 98.96 90 | 97.05 159 | 99.66 25 | 99.43 27 | 98.98 64 | 98.60 83 | 99.52 47 | 98.81 78 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
DCV-MVSNet | | | 98.86 62 | 98.57 63 | 99.19 65 | 99.86 20 | 99.67 15 | 99.39 51 | 99.71 27 | 97.53 65 | 98.69 117 | 95.85 188 | 98.48 134 | 97.75 137 | 99.57 21 | 99.41 25 | 99.72 26 | 99.48 14 |
|
v1240 | | | 98.86 62 | 98.41 80 | 99.38 49 | 99.59 91 | 99.05 81 | 99.65 19 | 99.14 135 | 97.68 58 | 99.66 13 | 99.93 3 | 98.72 124 | 99.45 22 | 97.38 160 | 97.72 132 | 98.79 136 | 98.35 119 |
|
CP-MVS | | | 98.86 62 | 98.43 78 | 99.36 52 | 99.68 70 | 98.97 97 | 99.19 82 | 99.46 78 | 96.60 109 | 99.20 56 | 97.11 158 | 99.51 47 | 99.15 58 | 98.92 71 | 98.82 64 | 99.45 57 | 99.08 46 |
|
v2v482 | | | 98.85 65 | 98.40 81 | 99.38 49 | 99.65 78 | 98.98 93 | 99.55 33 | 99.39 87 | 97.92 40 | 99.35 38 | 99.85 14 | 99.14 90 | 99.39 33 | 97.50 150 | 97.78 123 | 98.98 117 | 97.60 154 |
|
DPE-MVS |  | | 98.84 66 | 98.69 54 | 99.00 90 | 99.05 175 | 99.26 54 | 99.19 82 | 99.35 99 | 95.85 142 | 98.74 114 | 99.27 67 | 99.66 25 | 98.30 114 | 98.90 73 | 98.93 57 | 99.37 67 | 99.00 56 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
OPM-MVS | | | 98.84 66 | 98.59 60 | 99.12 74 | 99.52 112 | 98.50 142 | 99.13 91 | 99.22 121 | 97.76 46 | 98.76 110 | 98.70 99 | 99.61 35 | 98.90 75 | 98.67 84 | 98.37 96 | 99.19 91 | 98.57 98 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
test20.03 | | | 98.84 66 | 98.74 48 | 98.95 96 | 99.77 43 | 99.33 48 | 99.21 81 | 99.46 78 | 97.29 74 | 98.88 102 | 99.65 30 | 99.10 97 | 97.07 155 | 99.11 46 | 98.76 72 | 99.32 76 | 97.98 143 |
|
casdiffmvs |  | | 98.84 66 | 98.75 46 | 98.94 99 | 99.75 52 | 99.21 63 | 99.33 65 | 99.04 145 | 98.04 31 | 97.46 186 | 99.72 23 | 99.72 15 | 98.60 92 | 98.30 110 | 98.37 96 | 99.48 54 | 97.92 145 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
LGP-MVS_train | | | 98.84 66 | 98.33 87 | 99.44 32 | 99.78 41 | 98.98 93 | 99.39 51 | 99.55 56 | 95.41 152 | 98.90 98 | 97.51 144 | 99.68 21 | 99.44 25 | 99.03 60 | 98.81 66 | 99.57 42 | 98.91 68 |
|
RPSCF | | | 98.84 66 | 98.81 41 | 98.89 103 | 99.37 135 | 98.95 99 | 98.51 145 | 98.85 157 | 97.73 54 | 98.33 145 | 98.97 91 | 99.14 90 | 98.95 73 | 99.18 42 | 98.68 78 | 99.31 77 | 98.99 57 |
|
ACMMP |  | | 98.82 72 | 98.33 87 | 99.39 44 | 99.77 43 | 99.14 71 | 99.37 54 | 99.54 59 | 96.47 122 | 99.03 85 | 96.26 181 | 99.52 43 | 99.28 42 | 98.92 71 | 98.80 69 | 99.37 67 | 99.16 38 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
V42 | | | 98.81 73 | 98.49 68 | 99.18 66 | 99.52 112 | 98.92 105 | 99.50 39 | 99.29 111 | 97.43 70 | 98.97 87 | 99.81 19 | 99.00 108 | 99.30 39 | 97.93 130 | 98.01 111 | 98.51 160 | 98.34 123 |
|
LS3D | | | 98.79 74 | 98.52 66 | 99.12 74 | 99.64 81 | 99.09 75 | 99.24 77 | 99.46 78 | 97.75 49 | 98.93 96 | 97.47 146 | 98.23 142 | 97.98 129 | 99.36 32 | 99.30 32 | 99.46 55 | 98.42 114 |
|
MP-MVS |  | | 98.78 75 | 98.30 89 | 99.34 55 | 99.75 52 | 98.95 99 | 99.26 74 | 99.46 78 | 95.78 146 | 99.17 61 | 96.98 163 | 99.72 15 | 99.06 66 | 98.84 76 | 98.74 75 | 99.33 73 | 99.11 41 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
v148 | | | 98.77 76 | 98.45 73 | 99.15 70 | 99.68 70 | 98.94 103 | 99.49 40 | 99.31 109 | 97.95 37 | 98.91 97 | 99.65 30 | 99.62 34 | 99.18 51 | 97.99 128 | 97.64 138 | 98.33 165 | 97.38 159 |
|
test1111 | | | 98.75 77 | 98.14 102 | 99.46 31 | 99.86 20 | 99.63 19 | 99.47 42 | 99.68 30 | 98.34 23 | 98.76 110 | 99.66 26 | 90.92 193 | 99.23 46 | 99.77 5 | 99.71 5 | 99.75 23 | 98.95 64 |
|
ECVR-MVS |  | | 98.74 78 | 98.15 100 | 99.42 36 | 99.83 23 | 99.58 22 | 99.37 54 | 99.67 34 | 98.02 33 | 98.85 105 | 99.59 36 | 91.66 191 | 99.10 61 | 99.77 5 | 99.70 6 | 99.72 26 | 98.73 85 |
|
SD-MVS | | | 98.73 79 | 98.54 64 | 98.95 96 | 99.14 165 | 98.76 120 | 98.46 149 | 99.14 135 | 97.71 56 | 98.56 125 | 98.06 127 | 99.61 35 | 98.85 79 | 98.56 88 | 97.74 129 | 99.54 44 | 99.32 22 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
MSP-MVS | | | 98.72 80 | 98.60 58 | 98.87 105 | 99.67 72 | 99.33 48 | 99.15 88 | 99.26 115 | 96.99 90 | 97.90 172 | 98.19 120 | 99.74 12 | 98.29 115 | 97.69 142 | 98.96 52 | 98.96 118 | 99.27 25 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
PGM-MVS | | | 98.69 81 | 98.09 107 | 99.39 44 | 99.76 48 | 99.07 77 | 99.30 68 | 99.51 66 | 94.76 163 | 99.18 60 | 96.70 170 | 99.51 47 | 99.20 49 | 98.79 80 | 98.71 77 | 99.39 65 | 99.11 41 |
|
pmmvs-eth3d | | | 98.68 82 | 98.14 102 | 99.29 59 | 99.49 117 | 98.45 145 | 99.45 47 | 99.38 92 | 97.21 81 | 99.50 27 | 99.65 30 | 99.21 77 | 99.16 56 | 97.11 167 | 97.56 144 | 98.79 136 | 97.82 149 |
|
EU-MVSNet | | | 98.68 82 | 98.94 33 | 98.37 145 | 99.14 165 | 98.74 122 | 99.64 20 | 98.20 189 | 98.21 25 | 99.17 61 | 99.66 26 | 99.18 83 | 99.08 64 | 99.11 46 | 98.86 59 | 95.00 201 | 98.83 75 |
|
PMVS |  | 92.51 17 | 98.66 84 | 98.86 39 | 98.43 141 | 99.26 151 | 98.98 93 | 98.60 139 | 98.59 173 | 97.73 54 | 99.45 33 | 99.38 60 | 98.54 133 | 95.24 182 | 99.62 17 | 99.61 14 | 99.42 61 | 98.17 136 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
DeepC-MVS_fast | | 97.38 8 | 98.65 85 | 98.34 86 | 99.02 89 | 99.33 139 | 98.29 151 | 98.99 101 | 98.71 166 | 97.40 71 | 99.31 43 | 98.20 119 | 99.40 57 | 98.54 101 | 98.33 107 | 98.18 103 | 99.23 89 | 98.58 96 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
3Dnovator | | 98.16 3 | 98.65 85 | 98.35 85 | 99.00 90 | 99.59 91 | 98.70 125 | 98.90 115 | 99.36 96 | 97.97 36 | 99.09 74 | 96.55 174 | 99.09 99 | 97.97 130 | 98.70 83 | 98.65 81 | 99.12 97 | 98.81 78 |
|
TSAR-MVS + ACMM | | | 98.64 87 | 98.58 62 | 98.72 119 | 99.17 163 | 98.63 131 | 98.69 129 | 99.10 142 | 97.69 57 | 98.30 147 | 99.12 79 | 99.38 60 | 98.70 87 | 98.45 93 | 97.51 146 | 98.35 164 | 99.25 26 |
|
DELS-MVS | | | 98.63 88 | 98.70 52 | 98.55 137 | 99.24 155 | 99.04 85 | 98.96 104 | 98.52 176 | 96.83 96 | 98.38 142 | 99.58 39 | 99.68 21 | 97.06 156 | 98.74 82 | 98.44 93 | 99.10 98 | 98.59 95 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
QAPM | | | 98.62 89 | 98.40 81 | 98.89 103 | 99.57 98 | 98.80 116 | 98.63 134 | 99.35 99 | 96.82 97 | 98.60 121 | 98.85 96 | 99.08 101 | 98.09 124 | 98.31 108 | 98.21 100 | 99.08 104 | 98.72 86 |
|
EPP-MVSNet | | | 98.61 90 | 98.19 97 | 99.11 77 | 99.86 20 | 99.60 20 | 99.44 48 | 99.53 62 | 97.37 72 | 96.85 199 | 98.69 100 | 93.75 184 | 99.18 51 | 99.22 40 | 99.35 30 | 99.82 13 | 99.32 22 |
|
3Dnovator+ | | 97.85 5 | 98.61 90 | 98.14 102 | 99.15 70 | 99.62 85 | 98.37 149 | 99.10 94 | 99.51 66 | 98.04 31 | 98.98 86 | 96.07 185 | 98.75 123 | 98.55 99 | 98.51 91 | 98.40 94 | 99.17 93 | 98.82 76 |
|
X-MVS | | | 98.59 92 | 97.99 113 | 99.30 58 | 99.75 52 | 99.07 77 | 99.17 85 | 99.50 68 | 96.62 107 | 98.95 92 | 93.95 203 | 99.37 61 | 99.11 60 | 98.94 67 | 98.86 59 | 99.35 71 | 99.09 45 |
|
MVS_111021_HR | | | 98.58 93 | 98.26 92 | 98.96 95 | 99.32 142 | 98.81 114 | 98.48 147 | 98.99 150 | 96.81 99 | 99.16 64 | 98.07 125 | 99.23 73 | 98.89 77 | 98.43 95 | 98.27 99 | 98.90 127 | 98.24 128 |
|
MVS_0304 | | | 98.57 94 | 98.36 84 | 98.82 112 | 99.72 64 | 98.94 103 | 98.92 109 | 99.14 135 | 96.76 102 | 99.33 41 | 98.30 114 | 99.73 13 | 96.74 160 | 98.05 125 | 97.79 122 | 99.08 104 | 98.97 59 |
|
PM-MVS | | | 98.57 94 | 98.24 94 | 98.95 96 | 99.26 151 | 98.59 134 | 99.03 98 | 98.74 163 | 96.84 94 | 99.44 34 | 99.13 78 | 98.31 141 | 98.75 85 | 98.03 126 | 98.21 100 | 98.48 161 | 98.58 96 |
|
PHI-MVS | | | 98.57 94 | 98.20 96 | 99.00 90 | 99.48 119 | 98.91 107 | 98.68 130 | 99.17 130 | 94.97 159 | 99.27 51 | 98.33 112 | 99.33 65 | 98.05 126 | 98.82 78 | 98.62 82 | 99.34 72 | 98.38 117 |
|
HPM-MVS++ |  | | 98.56 97 | 98.08 108 | 99.11 77 | 99.53 107 | 98.61 133 | 99.02 100 | 99.32 107 | 96.29 130 | 99.06 77 | 97.23 153 | 99.50 49 | 98.77 83 | 98.15 121 | 97.90 116 | 98.96 118 | 98.90 69 |
|
TSAR-MVS + GP. | | | 98.54 98 | 98.29 91 | 98.82 112 | 99.28 149 | 98.59 134 | 97.73 188 | 99.24 120 | 95.93 139 | 98.59 122 | 99.07 81 | 99.17 84 | 98.86 78 | 98.44 94 | 98.10 106 | 99.26 85 | 98.72 86 |
|
UGNet | | | 98.52 99 | 99.00 29 | 97.96 166 | 99.58 93 | 99.26 54 | 99.27 73 | 99.40 85 | 98.07 30 | 98.28 149 | 98.76 97 | 99.71 17 | 92.24 209 | 98.94 67 | 98.85 61 | 99.00 116 | 99.43 17 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
Anonymous20231206 | | | 98.50 100 | 98.03 110 | 99.05 84 | 99.50 115 | 99.01 90 | 99.15 88 | 99.26 115 | 96.38 126 | 99.12 71 | 99.50 49 | 99.12 93 | 98.60 92 | 97.68 143 | 97.24 157 | 98.66 144 | 97.30 163 |
|
CLD-MVS | | | 98.48 101 | 98.15 100 | 98.86 108 | 99.53 107 | 98.35 150 | 98.55 142 | 97.83 198 | 96.02 138 | 98.97 87 | 99.08 80 | 99.75 11 | 99.03 68 | 98.10 124 | 97.33 153 | 99.28 81 | 98.44 112 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
CANet | | | 98.47 102 | 98.30 89 | 98.67 125 | 99.65 78 | 98.87 112 | 98.82 122 | 99.01 148 | 96.14 134 | 99.29 46 | 98.86 94 | 99.01 106 | 96.54 165 | 98.36 102 | 98.08 108 | 98.72 140 | 98.80 82 |
|
APD-MVS |  | | 98.47 102 | 97.97 114 | 99.05 84 | 99.64 81 | 98.91 107 | 98.94 106 | 99.45 83 | 94.40 174 | 98.77 109 | 97.26 152 | 99.41 54 | 98.21 118 | 98.67 84 | 98.57 88 | 99.31 77 | 98.57 98 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
Vis-MVSNet (Re-imp) | | | 98.46 104 | 98.23 95 | 98.73 118 | 99.81 32 | 99.29 52 | 98.79 124 | 99.50 68 | 96.20 132 | 96.03 205 | 98.29 115 | 96.98 165 | 98.54 101 | 99.11 46 | 99.08 44 | 99.70 30 | 98.62 93 |
|
Fast-Effi-MVS+ | | | 98.42 105 | 97.79 120 | 99.15 70 | 99.69 69 | 98.66 129 | 98.94 106 | 99.68 30 | 94.49 168 | 99.05 79 | 98.06 127 | 98.86 114 | 98.48 104 | 98.18 118 | 97.78 123 | 99.05 111 | 98.54 104 |
|
ETV-MVS | | | 98.41 106 | 97.76 121 | 99.17 67 | 99.58 93 | 99.01 90 | 98.91 111 | 99.50 68 | 93.33 194 | 99.31 43 | 96.82 167 | 98.42 137 | 98.17 120 | 99.13 45 | 99.08 44 | 99.54 44 | 98.56 101 |
|
MVS_111021_LR | | | 98.39 107 | 98.11 105 | 98.71 121 | 99.08 172 | 98.54 140 | 98.23 170 | 98.56 175 | 96.57 113 | 99.13 69 | 98.41 109 | 98.86 114 | 98.65 90 | 98.23 116 | 97.87 119 | 98.65 146 | 98.28 125 |
|
pmmvs5 | | | 98.37 108 | 97.81 119 | 99.03 87 | 99.46 121 | 98.97 97 | 99.03 98 | 98.96 152 | 95.85 142 | 99.05 79 | 99.45 53 | 98.66 130 | 98.79 82 | 96.02 184 | 97.52 145 | 98.87 129 | 98.21 132 |
|
OMC-MVS | | | 98.35 109 | 98.10 106 | 98.64 131 | 98.85 182 | 97.99 170 | 98.56 141 | 98.21 187 | 97.26 78 | 98.87 104 | 98.54 106 | 99.27 71 | 98.43 106 | 98.34 105 | 97.66 135 | 98.92 125 | 97.65 153 |
|
canonicalmvs | | | 98.34 110 | 97.92 116 | 98.83 110 | 99.45 123 | 99.21 63 | 98.37 157 | 99.53 62 | 97.06 88 | 97.74 176 | 96.95 165 | 95.05 181 | 98.36 109 | 98.77 81 | 98.85 61 | 99.51 51 | 99.53 9 |
|
CHOSEN 1792x2688 | | | 98.31 111 | 98.02 111 | 98.66 127 | 99.55 100 | 98.57 137 | 99.38 53 | 99.25 118 | 98.42 19 | 98.48 135 | 99.58 39 | 99.85 6 | 98.31 113 | 95.75 187 | 95.71 182 | 96.96 188 | 98.27 127 |
|
CPTT-MVS | | | 98.28 112 | 97.51 134 | 99.16 69 | 99.54 104 | 98.78 118 | 98.96 104 | 99.36 96 | 96.30 129 | 98.89 101 | 93.10 207 | 99.30 68 | 99.20 49 | 98.35 104 | 97.96 114 | 99.03 114 | 98.82 76 |
|
TinyColmap | | | 98.27 113 | 97.62 131 | 99.03 87 | 99.29 147 | 97.79 179 | 98.92 109 | 98.95 153 | 97.48 67 | 99.52 24 | 98.65 102 | 97.86 152 | 98.90 75 | 98.34 105 | 97.27 155 | 98.64 147 | 95.97 183 |
|
diffmvs |  | | 98.26 114 | 98.16 98 | 98.39 143 | 99.61 89 | 98.78 118 | 98.79 124 | 98.61 171 | 97.94 38 | 97.11 198 | 99.51 48 | 99.52 43 | 97.61 141 | 96.55 176 | 96.93 163 | 98.61 149 | 97.87 147 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
USDC | | | 98.26 114 | 97.57 132 | 99.06 81 | 99.42 131 | 97.98 172 | 98.83 119 | 98.85 157 | 97.57 64 | 99.59 16 | 99.15 77 | 98.59 132 | 98.99 70 | 97.42 156 | 96.08 181 | 98.69 143 | 96.23 181 |
|
SF-MVS | | | 98.25 116 | 98.16 98 | 98.35 146 | 99.43 128 | 98.42 148 | 97.05 210 | 99.09 143 | 96.42 124 | 98.13 158 | 97.73 136 | 99.20 80 | 97.22 151 | 98.36 102 | 98.38 95 | 99.16 95 | 98.62 93 |
|
MCST-MVS | | | 98.25 116 | 97.57 132 | 99.06 81 | 99.53 107 | 98.24 157 | 98.63 134 | 99.17 130 | 95.88 140 | 98.58 123 | 96.11 183 | 99.09 99 | 99.18 51 | 97.58 147 | 97.31 154 | 99.25 86 | 98.75 84 |
|
IterMVS-LS | | | 98.23 118 | 97.66 127 | 98.90 101 | 99.63 84 | 99.38 41 | 99.07 95 | 99.48 73 | 97.75 49 | 98.81 107 | 99.37 61 | 94.57 183 | 97.88 134 | 96.54 177 | 97.04 160 | 98.53 157 | 98.97 59 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
TAPA-MVS | | 96.65 12 | 98.23 118 | 97.96 115 | 98.55 137 | 98.81 184 | 98.16 161 | 98.40 154 | 97.94 196 | 96.68 105 | 98.49 133 | 98.61 103 | 98.89 112 | 98.57 97 | 97.45 153 | 97.59 141 | 99.09 103 | 98.35 119 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
CNVR-MVS | | | 98.22 120 | 97.76 121 | 98.76 116 | 99.33 139 | 98.26 155 | 98.48 147 | 98.88 156 | 96.22 131 | 98.47 137 | 95.79 189 | 99.33 65 | 98.35 110 | 98.37 101 | 97.99 112 | 99.03 114 | 98.38 117 |
|
IS_MVSNet | | | 98.20 121 | 98.00 112 | 98.44 140 | 99.82 28 | 99.48 30 | 99.25 76 | 99.56 54 | 95.58 149 | 93.93 217 | 97.56 142 | 96.52 170 | 98.27 116 | 99.08 50 | 99.20 37 | 99.80 15 | 98.56 101 |
|
DeepPCF-MVS | | 96.68 10 | 98.20 121 | 98.26 92 | 98.12 159 | 97.03 220 | 98.11 164 | 98.44 151 | 97.70 200 | 96.77 101 | 98.52 129 | 98.91 92 | 99.17 84 | 98.58 96 | 98.41 97 | 98.02 110 | 98.46 162 | 98.46 109 |
|
MSDG | | | 98.20 121 | 97.88 118 | 98.56 135 | 99.33 139 | 97.74 180 | 98.27 167 | 98.10 190 | 97.20 83 | 98.06 162 | 98.59 104 | 99.16 86 | 98.76 84 | 98.39 98 | 97.71 133 | 98.86 131 | 96.38 178 |
|
testgi | | | 98.18 124 | 98.44 75 | 97.89 168 | 99.78 41 | 99.23 59 | 98.78 126 | 99.21 124 | 97.26 78 | 97.41 188 | 97.39 149 | 99.36 64 | 92.85 206 | 98.82 78 | 98.66 80 | 99.31 77 | 98.35 119 |
|
Effi-MVS+ | | | 98.11 125 | 97.29 140 | 99.06 81 | 99.62 85 | 98.55 138 | 98.16 173 | 99.80 15 | 94.64 164 | 99.15 67 | 96.59 172 | 97.43 158 | 98.44 105 | 97.46 152 | 97.90 116 | 99.17 93 | 98.45 111 |
|
FA-MVS(training) | | | 98.08 126 | 97.68 125 | 98.56 135 | 99.14 165 | 98.69 126 | 98.41 152 | 99.83 12 | 95.85 142 | 98.57 124 | 97.95 132 | 96.92 167 | 96.85 158 | 98.51 91 | 98.09 107 | 98.54 155 | 97.74 150 |
|
HyFIR lowres test | | | 98.08 126 | 97.16 149 | 99.14 73 | 99.72 64 | 98.91 107 | 99.41 49 | 99.58 51 | 97.93 39 | 98.82 106 | 99.24 69 | 95.81 176 | 98.73 86 | 95.16 198 | 95.13 191 | 98.60 151 | 97.94 144 |
|
EIA-MVS | | | 98.03 128 | 97.20 146 | 98.99 93 | 99.66 75 | 99.24 56 | 98.53 144 | 99.52 65 | 91.56 210 | 99.25 52 | 95.34 193 | 98.78 120 | 97.72 138 | 98.38 100 | 98.58 85 | 99.28 81 | 98.54 104 |
|
train_agg | | | 97.99 129 | 97.26 141 | 98.83 110 | 99.43 128 | 98.22 159 | 98.91 111 | 99.07 144 | 94.43 172 | 97.96 168 | 96.42 178 | 99.30 68 | 98.81 81 | 97.39 158 | 96.62 169 | 98.82 133 | 98.47 107 |
|
MSLP-MVS++ | | | 97.99 129 | 97.64 130 | 98.40 142 | 98.91 180 | 98.47 144 | 97.12 208 | 98.78 161 | 96.49 120 | 98.48 135 | 93.57 205 | 99.12 93 | 98.51 103 | 98.31 108 | 98.58 85 | 98.58 153 | 98.95 64 |
|
CDPH-MVS | | | 97.99 129 | 97.23 144 | 98.87 105 | 99.58 93 | 98.29 151 | 98.83 119 | 99.20 126 | 93.76 188 | 98.11 160 | 96.11 183 | 99.16 86 | 98.23 117 | 97.80 137 | 97.22 158 | 99.29 80 | 98.28 125 |
|
FMVSNet2 | | | 97.94 132 | 98.08 108 | 97.77 174 | 98.71 188 | 99.21 63 | 98.62 136 | 99.47 75 | 96.62 107 | 96.37 204 | 99.20 75 | 97.70 154 | 94.39 193 | 97.39 158 | 97.75 128 | 99.08 104 | 98.70 88 |
|
PVSNet_BlendedMVS | | | 97.93 133 | 97.66 127 | 98.25 152 | 99.30 144 | 98.67 127 | 98.31 162 | 97.95 194 | 94.30 178 | 98.75 112 | 97.63 139 | 98.76 121 | 96.30 172 | 98.29 111 | 97.78 123 | 98.93 122 | 98.18 134 |
|
PVSNet_Blended | | | 97.93 133 | 97.66 127 | 98.25 152 | 99.30 144 | 98.67 127 | 98.31 162 | 97.95 194 | 94.30 178 | 98.75 112 | 97.63 139 | 98.76 121 | 96.30 172 | 98.29 111 | 97.78 123 | 98.93 122 | 98.18 134 |
|
OpenMVS |  | 97.26 9 | 97.88 135 | 97.17 148 | 98.70 122 | 99.50 115 | 98.55 138 | 98.34 160 | 99.11 140 | 93.92 186 | 98.90 98 | 95.04 197 | 98.23 142 | 97.38 148 | 98.11 123 | 98.12 105 | 98.95 120 | 98.23 129 |
|
pmmvs4 | | | 97.87 136 | 97.02 153 | 98.86 108 | 99.20 157 | 97.68 183 | 98.89 116 | 99.03 146 | 96.57 113 | 99.12 71 | 99.03 86 | 97.26 162 | 98.42 107 | 95.16 198 | 96.34 173 | 98.53 157 | 97.10 170 |
|
NCCC | | | 97.84 137 | 96.96 155 | 98.87 105 | 99.39 134 | 98.27 154 | 98.46 149 | 99.02 147 | 96.78 100 | 98.73 116 | 91.12 210 | 98.91 110 | 98.57 97 | 97.83 136 | 97.49 147 | 99.04 113 | 98.33 124 |
|
Effi-MVS+-dtu | | | 97.78 138 | 97.37 138 | 98.26 150 | 99.25 153 | 98.50 142 | 97.89 182 | 99.19 129 | 94.51 166 | 98.16 156 | 95.93 186 | 98.80 119 | 95.97 175 | 98.27 115 | 97.38 150 | 99.10 98 | 98.23 129 |
|
MDA-MVSNet-bldmvs | | | 97.75 139 | 97.26 141 | 98.33 147 | 99.35 138 | 98.45 145 | 99.32 67 | 97.21 205 | 97.90 43 | 99.05 79 | 99.01 88 | 96.86 168 | 99.08 64 | 99.36 32 | 92.97 201 | 95.97 197 | 96.25 180 |
|
CDS-MVSNet | | | 97.75 139 | 97.68 125 | 97.83 172 | 99.08 172 | 98.20 160 | 98.68 130 | 98.61 171 | 95.63 148 | 97.80 174 | 99.24 69 | 96.93 166 | 94.09 198 | 97.96 129 | 97.82 121 | 98.71 141 | 97.99 141 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
CNLPA | | | 97.75 139 | 97.26 141 | 98.32 149 | 98.58 196 | 97.86 175 | 97.80 184 | 98.09 191 | 96.49 120 | 98.49 133 | 96.15 182 | 98.08 145 | 98.35 110 | 98.00 127 | 97.03 161 | 98.61 149 | 97.21 167 |
|
PLC |  | 95.63 15 | 97.73 142 | 97.01 154 | 98.57 134 | 99.10 169 | 97.80 178 | 97.72 189 | 98.77 162 | 96.34 127 | 98.38 142 | 93.46 206 | 98.06 146 | 98.66 89 | 97.90 132 | 97.65 137 | 98.77 138 | 97.90 146 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
MVS_Test | | | 97.69 143 | 97.15 150 | 98.33 147 | 99.27 150 | 98.43 147 | 98.25 168 | 99.29 111 | 95.00 158 | 97.39 190 | 98.86 94 | 98.00 149 | 97.14 153 | 95.38 193 | 96.22 175 | 98.62 148 | 98.15 138 |
|
GBi-Net | | | 97.69 143 | 97.75 123 | 97.62 175 | 98.71 188 | 99.21 63 | 98.62 136 | 99.33 103 | 94.09 182 | 95.60 207 | 98.17 122 | 95.97 173 | 94.39 193 | 99.05 54 | 99.03 48 | 99.08 104 | 98.70 88 |
|
test1 | | | 97.69 143 | 97.75 123 | 97.62 175 | 98.71 188 | 99.21 63 | 98.62 136 | 99.33 103 | 94.09 182 | 95.60 207 | 98.17 122 | 95.97 173 | 94.39 193 | 99.05 54 | 99.03 48 | 99.08 104 | 98.70 88 |
|
CANet_DTU | | | 97.65 146 | 97.50 136 | 97.82 173 | 99.19 160 | 98.08 166 | 98.41 152 | 98.67 168 | 94.40 174 | 99.16 64 | 98.32 113 | 98.69 125 | 93.96 200 | 97.87 133 | 97.61 139 | 97.51 184 | 97.56 156 |
|
IterMVS-SCA-FT | | | 97.63 147 | 96.86 157 | 98.52 139 | 99.48 119 | 98.71 124 | 98.84 118 | 98.91 154 | 96.44 123 | 99.16 64 | 99.56 41 | 95.54 178 | 97.95 131 | 95.68 190 | 95.07 194 | 96.76 189 | 97.03 173 |
|
TSAR-MVS + COLMAP | | | 97.62 148 | 97.31 139 | 97.98 164 | 98.47 202 | 97.39 187 | 98.29 164 | 98.25 186 | 96.68 105 | 97.54 182 | 98.87 93 | 98.04 148 | 97.08 154 | 96.78 171 | 96.26 174 | 98.26 168 | 97.12 169 |
|
MS-PatchMatch | | | 97.60 149 | 97.22 145 | 98.04 163 | 98.67 192 | 97.18 191 | 97.91 180 | 98.28 185 | 95.82 145 | 98.34 144 | 97.66 138 | 98.38 138 | 97.77 136 | 97.10 168 | 97.25 156 | 97.27 186 | 97.18 168 |
|
PCF-MVS | | 95.58 16 | 97.60 149 | 96.67 158 | 98.69 123 | 99.44 126 | 98.23 158 | 98.37 157 | 98.81 159 | 93.01 198 | 98.22 153 | 97.97 131 | 99.59 38 | 98.20 119 | 95.72 189 | 95.08 192 | 99.08 104 | 97.09 172 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
HQP-MVS | | | 97.58 151 | 96.65 161 | 98.66 127 | 99.30 144 | 97.99 170 | 97.88 183 | 98.65 169 | 94.58 165 | 98.66 118 | 94.65 201 | 99.15 89 | 98.59 94 | 96.10 182 | 95.59 183 | 98.90 127 | 98.50 106 |
|
DI_MVS_plusplus_trai | | | 97.57 152 | 96.55 163 | 98.77 115 | 99.55 100 | 98.76 120 | 99.22 79 | 99.00 149 | 97.08 87 | 97.95 169 | 97.78 135 | 91.35 192 | 98.02 127 | 96.20 180 | 96.81 165 | 98.87 129 | 97.87 147 |
|
AdaColmap |  | | 97.57 152 | 96.57 162 | 98.74 117 | 99.25 153 | 98.01 168 | 98.36 159 | 98.98 151 | 94.44 171 | 98.47 137 | 92.44 208 | 97.91 151 | 98.62 91 | 98.19 117 | 97.74 129 | 98.73 139 | 97.28 164 |
|
baseline | | | 97.50 154 | 97.51 134 | 97.50 179 | 99.18 161 | 97.38 188 | 98.00 176 | 98.00 193 | 96.52 119 | 97.49 184 | 99.28 66 | 99.43 53 | 95.31 181 | 95.27 195 | 96.22 175 | 96.99 187 | 98.47 107 |
|
IterMVS | | | 97.40 155 | 96.67 158 | 98.25 152 | 99.45 123 | 98.66 129 | 98.87 117 | 98.73 164 | 96.40 125 | 98.94 95 | 99.56 41 | 95.26 180 | 97.58 142 | 95.38 193 | 94.70 196 | 95.90 198 | 96.72 176 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CVMVSNet | | | 97.38 156 | 97.39 137 | 97.37 182 | 98.58 196 | 97.72 181 | 98.70 128 | 97.42 203 | 97.21 81 | 95.95 206 | 99.46 52 | 93.31 187 | 97.38 148 | 97.60 145 | 97.78 123 | 96.18 194 | 98.66 91 |
|
new-patchmatchnet | | | 97.26 157 | 96.12 171 | 98.58 133 | 99.55 100 | 98.63 131 | 99.14 90 | 97.04 207 | 98.80 13 | 99.19 58 | 99.92 4 | 99.19 82 | 98.92 74 | 95.51 192 | 87.04 210 | 97.66 181 | 93.73 199 |
|
MIMVSNet | | | 97.24 158 | 97.15 150 | 97.36 183 | 99.03 176 | 98.52 141 | 98.55 142 | 99.73 23 | 94.94 162 | 94.94 214 | 97.98 130 | 97.37 160 | 93.66 201 | 97.60 145 | 97.34 152 | 98.23 171 | 96.29 179 |
|
PatchMatch-RL | | | 97.24 158 | 96.45 166 | 98.17 156 | 98.70 191 | 97.57 186 | 97.31 203 | 98.48 179 | 94.42 173 | 98.39 141 | 95.74 190 | 96.35 172 | 97.88 134 | 97.75 140 | 97.48 148 | 98.24 170 | 95.87 184 |
|
thisisatest0530 | | | 97.20 160 | 95.95 175 | 98.66 127 | 99.46 121 | 98.84 113 | 98.29 164 | 99.20 126 | 94.51 166 | 98.25 151 | 97.42 147 | 85.03 208 | 97.68 139 | 98.43 95 | 98.56 89 | 99.08 104 | 98.89 71 |
|
tttt0517 | | | 97.18 161 | 95.92 176 | 98.65 130 | 99.49 117 | 98.92 105 | 98.29 164 | 99.20 126 | 94.37 176 | 98.17 154 | 97.37 150 | 84.72 211 | 97.68 139 | 98.55 89 | 98.56 89 | 99.10 98 | 98.95 64 |
|
MDTV_nov1_ep13_2view | | | 97.12 162 | 96.19 170 | 98.22 155 | 99.13 168 | 98.05 167 | 99.24 77 | 99.47 75 | 97.61 61 | 99.15 67 | 99.59 36 | 99.01 106 | 98.40 108 | 94.87 201 | 90.14 204 | 93.91 204 | 94.04 198 |
|
MAR-MVS | | | 97.12 162 | 96.28 169 | 98.11 160 | 98.94 178 | 97.22 190 | 97.65 193 | 99.38 92 | 90.93 216 | 98.15 157 | 95.17 195 | 97.13 163 | 96.48 168 | 97.71 141 | 97.40 149 | 98.06 174 | 98.40 115 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
Fast-Effi-MVS+-dtu | | | 96.99 164 | 96.46 165 | 97.61 177 | 98.98 177 | 97.89 173 | 97.54 197 | 99.76 19 | 93.43 192 | 96.55 203 | 94.93 198 | 98.06 146 | 94.32 196 | 96.93 169 | 96.50 171 | 98.53 157 | 97.47 157 |
|
FPMVS | | | 96.97 165 | 97.20 146 | 96.70 199 | 97.75 212 | 96.11 203 | 97.72 189 | 95.47 211 | 97.13 85 | 98.02 164 | 97.57 141 | 96.67 169 | 92.97 205 | 99.00 63 | 98.34 98 | 98.28 167 | 95.58 186 |
|
TAMVS | | | 96.95 166 | 96.94 156 | 96.97 194 | 99.07 174 | 97.67 185 | 97.98 178 | 97.12 206 | 95.04 157 | 95.41 210 | 99.27 67 | 95.57 177 | 94.09 198 | 97.32 162 | 97.11 159 | 98.16 173 | 96.59 177 |
|
FMVSNet3 | | | 96.85 167 | 96.67 158 | 97.06 188 | 97.56 215 | 99.01 90 | 97.99 177 | 99.33 103 | 94.09 182 | 95.60 207 | 98.17 122 | 95.97 173 | 93.26 204 | 94.76 203 | 96.22 175 | 98.59 152 | 98.46 109 |
|
GA-MVS | | | 96.84 168 | 95.86 178 | 97.98 164 | 99.16 164 | 98.29 151 | 97.91 180 | 98.64 170 | 95.14 155 | 97.71 178 | 98.04 129 | 88.90 196 | 96.50 167 | 96.41 179 | 96.61 170 | 97.97 178 | 97.60 154 |
|
CHOSEN 280x420 | | | 96.80 169 | 96.30 168 | 97.39 180 | 99.09 170 | 96.52 195 | 98.76 127 | 99.29 111 | 93.88 187 | 97.65 179 | 98.34 111 | 93.66 185 | 96.29 174 | 98.28 113 | 97.73 131 | 93.27 207 | 95.70 185 |
|
gg-mvs-nofinetune | | | 96.77 170 | 96.52 164 | 97.06 188 | 99.66 75 | 97.82 177 | 97.54 197 | 99.86 8 | 98.69 14 | 98.61 120 | 99.94 2 | 89.62 194 | 88.37 217 | 97.55 148 | 96.67 167 | 98.30 166 | 95.35 187 |
|
DPM-MVS | | | 96.73 171 | 95.70 181 | 97.95 167 | 98.93 179 | 97.26 189 | 97.39 202 | 98.44 181 | 95.47 151 | 97.62 180 | 90.71 211 | 98.47 136 | 97.03 157 | 95.02 200 | 95.27 188 | 98.26 168 | 97.67 152 |
|
baseline1 | | | 96.72 172 | 95.40 183 | 98.26 150 | 99.53 107 | 98.81 114 | 98.32 161 | 98.80 160 | 94.96 160 | 96.78 202 | 96.50 176 | 84.87 210 | 96.68 163 | 97.42 156 | 97.91 115 | 99.46 55 | 97.33 162 |
|
N_pmnet | | | 96.68 173 | 95.70 181 | 97.84 171 | 99.42 131 | 98.00 169 | 99.35 61 | 98.21 187 | 98.40 21 | 98.13 158 | 99.42 57 | 99.30 68 | 97.44 147 | 94.00 207 | 88.79 205 | 94.47 203 | 91.96 205 |
|
pmnet_mix02 | | | 96.61 174 | 95.32 184 | 98.11 160 | 99.41 133 | 97.68 183 | 99.05 96 | 97.59 201 | 98.16 27 | 99.05 79 | 99.48 50 | 99.11 95 | 98.32 112 | 92.36 211 | 87.67 207 | 95.26 200 | 92.80 203 |
|
new_pmnet | | | 96.59 175 | 96.40 167 | 96.81 196 | 98.24 208 | 95.46 212 | 97.71 191 | 94.75 214 | 96.92 91 | 96.80 201 | 99.23 71 | 97.81 153 | 96.69 161 | 96.58 175 | 95.16 190 | 96.69 190 | 93.64 200 |
|
PMMVS | | | 96.47 176 | 95.81 179 | 97.23 184 | 97.38 217 | 95.96 207 | 97.31 203 | 96.91 208 | 93.21 195 | 97.93 171 | 97.14 156 | 97.64 156 | 95.70 177 | 95.24 196 | 96.18 178 | 98.17 172 | 95.33 188 |
|
EPNet | | | 96.44 177 | 96.08 172 | 96.86 195 | 99.32 142 | 97.15 192 | 97.69 192 | 99.32 107 | 93.67 189 | 98.11 160 | 95.64 191 | 93.44 186 | 89.07 215 | 96.86 170 | 96.83 164 | 97.67 180 | 98.97 59 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
thres600view7 | | | 96.35 178 | 94.27 186 | 98.79 114 | 99.66 75 | 99.18 68 | 98.94 106 | 99.38 92 | 94.37 176 | 97.21 197 | 87.19 213 | 84.10 212 | 98.10 122 | 98.16 119 | 99.47 20 | 99.42 61 | 97.43 158 |
|
EPNet_dtu | | | 96.31 179 | 95.96 174 | 96.72 198 | 99.18 161 | 95.39 213 | 97.03 211 | 99.13 139 | 93.02 197 | 99.35 38 | 97.23 153 | 97.07 164 | 90.70 214 | 95.74 188 | 95.08 192 | 94.94 202 | 98.16 137 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
pmmvs3 | | | 96.30 180 | 95.87 177 | 96.80 197 | 97.66 214 | 96.48 196 | 97.93 179 | 93.80 215 | 93.40 193 | 98.54 127 | 98.27 116 | 97.50 157 | 97.37 150 | 97.49 151 | 93.11 200 | 95.52 199 | 94.85 192 |
|
PMMVS2 | | | 96.29 181 | 97.05 152 | 95.40 209 | 98.32 207 | 96.16 200 | 98.18 172 | 97.46 202 | 97.20 83 | 84.51 223 | 99.60 34 | 98.68 127 | 96.37 169 | 98.59 87 | 97.38 150 | 97.58 183 | 91.76 206 |
|
thres200 | | | 96.23 182 | 94.13 187 | 98.69 123 | 99.44 126 | 99.18 68 | 98.58 140 | 99.38 92 | 93.52 191 | 97.35 191 | 86.33 218 | 85.83 206 | 97.93 132 | 98.16 119 | 98.78 70 | 99.42 61 | 97.10 170 |
|
thres400 | | | 96.22 183 | 94.08 189 | 98.72 119 | 99.58 93 | 99.05 81 | 98.83 119 | 99.22 121 | 94.01 185 | 97.40 189 | 86.34 217 | 84.91 209 | 97.93 132 | 97.85 135 | 99.08 44 | 99.37 67 | 97.28 164 |
|
tfpn200view9 | | | 96.17 184 | 94.08 189 | 98.60 132 | 99.37 135 | 99.18 68 | 98.68 130 | 99.39 87 | 92.02 204 | 97.30 193 | 86.53 215 | 86.34 203 | 97.45 146 | 98.15 121 | 99.08 44 | 99.43 60 | 97.28 164 |
|
CMPMVS |  | 74.71 19 | 96.17 184 | 96.06 173 | 96.30 203 | 97.41 216 | 94.52 216 | 94.83 218 | 95.46 212 | 91.57 209 | 97.26 196 | 94.45 202 | 98.33 140 | 94.98 184 | 98.28 113 | 97.59 141 | 97.86 179 | 97.68 151 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
test2506 | | | 96.12 186 | 93.35 199 | 99.35 53 | 99.83 23 | 99.58 22 | 99.37 54 | 99.67 34 | 98.02 33 | 98.44 139 | 97.51 144 | 60.03 226 | 99.10 61 | 99.77 5 | 99.70 6 | 99.72 26 | 98.86 73 |
|
IB-MVS | | 95.85 14 | 95.87 187 | 94.88 185 | 97.02 191 | 99.09 170 | 98.25 156 | 97.16 205 | 97.38 204 | 91.97 207 | 97.77 175 | 83.61 220 | 97.29 161 | 92.03 212 | 97.16 166 | 97.66 135 | 98.66 144 | 98.20 133 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
test0.0.03 1 | | | 95.81 188 | 95.77 180 | 95.85 208 | 99.20 157 | 98.15 163 | 97.49 201 | 98.50 177 | 92.24 200 | 92.74 220 | 96.82 167 | 92.70 188 | 88.60 216 | 97.31 164 | 97.01 162 | 98.57 154 | 96.19 182 |
|
thres100view900 | | | 95.74 189 | 93.66 198 | 98.17 156 | 99.37 135 | 98.59 134 | 98.10 174 | 98.33 184 | 92.02 204 | 97.30 193 | 86.53 215 | 86.34 203 | 96.69 161 | 96.77 172 | 98.47 92 | 99.24 88 | 96.89 174 |
|
ET-MVSNet_ETH3D | | | 95.72 190 | 93.85 194 | 97.89 168 | 97.30 218 | 98.09 165 | 98.19 171 | 98.40 182 | 94.46 170 | 98.01 167 | 96.71 169 | 77.85 222 | 96.76 159 | 96.08 183 | 96.39 172 | 98.70 142 | 97.36 160 |
|
baseline2 | | | 95.58 191 | 94.04 191 | 97.38 181 | 98.80 185 | 98.16 161 | 97.14 206 | 97.80 199 | 91.45 211 | 97.49 184 | 95.22 194 | 83.63 213 | 94.98 184 | 96.42 178 | 96.66 168 | 98.06 174 | 96.76 175 |
|
PatchT | | | 95.49 192 | 93.29 200 | 98.06 162 | 98.65 193 | 96.20 199 | 98.91 111 | 99.73 23 | 92.00 206 | 98.50 130 | 96.67 171 | 83.25 214 | 96.34 170 | 94.40 204 | 95.50 184 | 96.21 193 | 95.04 190 |
|
CR-MVSNet | | | 95.38 193 | 93.01 201 | 98.16 158 | 98.63 194 | 95.85 209 | 97.64 194 | 99.78 16 | 91.27 213 | 98.50 130 | 96.84 166 | 82.16 215 | 96.34 170 | 94.40 204 | 95.50 184 | 98.05 176 | 95.04 190 |
|
MVSTER | | | 95.38 193 | 93.99 193 | 97.01 192 | 98.83 183 | 98.95 99 | 96.62 212 | 99.14 135 | 92.17 202 | 97.44 187 | 97.29 151 | 77.88 221 | 91.63 213 | 97.45 153 | 96.18 178 | 98.41 163 | 97.99 141 |
|
MVS-HIRNet | | | 94.86 195 | 93.83 195 | 96.07 204 | 97.07 219 | 94.00 217 | 94.31 219 | 99.17 130 | 91.23 215 | 98.17 154 | 98.69 100 | 97.43 158 | 95.66 178 | 94.05 206 | 91.92 202 | 92.04 214 | 89.46 214 |
|
test-LLR | | | 94.79 196 | 93.71 196 | 96.06 205 | 99.20 157 | 96.16 200 | 96.31 213 | 98.50 177 | 89.98 217 | 94.08 215 | 97.01 160 | 86.43 201 | 92.20 210 | 96.76 173 | 95.31 186 | 96.05 195 | 94.31 195 |
|
RPMNet | | | 94.72 197 | 92.01 206 | 97.88 170 | 98.56 199 | 95.85 209 | 97.78 185 | 99.70 29 | 91.27 213 | 98.33 145 | 93.69 204 | 81.88 216 | 94.91 187 | 92.60 209 | 94.34 198 | 98.01 177 | 94.46 194 |
|
gm-plane-assit | | | 94.62 198 | 91.39 208 | 98.39 143 | 99.90 11 | 99.47 32 | 99.40 50 | 99.65 39 | 97.44 69 | 99.56 20 | 99.68 25 | 59.40 227 | 94.23 197 | 96.17 181 | 94.77 195 | 97.61 182 | 92.79 204 |
|
test-mter | | | 94.62 198 | 94.02 192 | 95.32 210 | 97.72 213 | 96.75 193 | 96.23 215 | 95.67 210 | 89.83 220 | 93.23 219 | 96.99 162 | 85.94 205 | 92.66 208 | 97.32 162 | 96.11 180 | 96.44 191 | 95.22 189 |
|
FMVSNet5 | | | 94.57 200 | 92.77 202 | 96.67 200 | 97.88 210 | 98.72 123 | 97.54 197 | 98.70 167 | 88.64 221 | 95.11 212 | 86.90 214 | 81.77 217 | 93.27 203 | 97.92 131 | 98.07 109 | 97.50 185 | 97.34 161 |
|
SCA | | | 94.53 201 | 91.95 207 | 97.55 178 | 98.58 196 | 97.86 175 | 98.49 146 | 99.68 30 | 95.11 156 | 99.07 76 | 95.87 187 | 87.24 199 | 96.53 166 | 89.77 214 | 87.08 209 | 92.96 209 | 90.69 209 |
|
MDTV_nov1_ep13 | | | 94.47 202 | 92.15 204 | 97.17 185 | 98.54 201 | 96.42 197 | 98.10 174 | 98.89 155 | 94.49 168 | 98.02 164 | 97.41 148 | 86.49 200 | 95.56 179 | 90.85 212 | 87.95 206 | 93.91 204 | 91.45 208 |
|
TESTMET0.1,1 | | | 94.44 203 | 93.71 196 | 95.30 211 | 97.84 211 | 96.16 200 | 96.31 213 | 95.32 213 | 89.98 217 | 94.08 215 | 97.01 160 | 86.43 201 | 92.20 210 | 96.76 173 | 95.31 186 | 96.05 195 | 94.31 195 |
|
ADS-MVSNet | | | 94.41 204 | 92.13 205 | 97.07 187 | 98.86 181 | 96.60 194 | 98.38 156 | 98.47 180 | 96.13 136 | 98.02 164 | 96.98 163 | 87.50 198 | 95.87 176 | 89.89 213 | 87.58 208 | 92.79 211 | 90.27 211 |
|
tpm | | | 93.89 205 | 91.21 209 | 97.03 190 | 98.36 205 | 96.07 204 | 97.53 200 | 99.65 39 | 92.24 200 | 98.64 119 | 97.23 153 | 74.67 225 | 94.64 191 | 92.68 208 | 90.73 203 | 93.37 206 | 94.82 193 |
|
PatchmatchNet |  | | 93.88 206 | 91.08 210 | 97.14 186 | 98.75 187 | 96.01 206 | 98.25 168 | 99.39 87 | 94.95 161 | 98.96 90 | 96.32 179 | 85.35 207 | 95.50 180 | 88.89 215 | 85.89 213 | 91.99 215 | 90.15 212 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
EPMVS | | | 93.67 207 | 90.82 211 | 96.99 193 | 98.62 195 | 96.39 198 | 98.40 154 | 99.11 140 | 95.54 150 | 97.87 173 | 97.14 156 | 81.27 219 | 94.97 186 | 88.54 217 | 86.80 211 | 92.95 210 | 90.06 213 |
|
MVE |  | 82.47 18 | 93.12 208 | 94.09 188 | 91.99 214 | 90.79 221 | 82.50 222 | 93.93 220 | 96.30 209 | 96.06 137 | 88.81 221 | 98.19 120 | 96.38 171 | 97.56 143 | 97.24 165 | 95.18 189 | 84.58 221 | 93.07 201 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
CostFormer | | | 92.75 209 | 89.49 213 | 96.55 201 | 98.78 186 | 95.83 211 | 97.55 196 | 98.59 173 | 91.83 208 | 97.34 192 | 96.31 180 | 78.53 220 | 94.50 192 | 86.14 218 | 84.92 214 | 92.54 212 | 92.84 202 |
|
tpmrst | | | 92.45 210 | 89.48 214 | 95.92 207 | 98.43 204 | 95.03 214 | 97.14 206 | 97.92 197 | 94.16 180 | 97.56 181 | 97.86 134 | 81.63 218 | 93.56 202 | 85.89 219 | 82.86 215 | 90.91 219 | 88.95 216 |
|
dps | | | 92.35 211 | 88.78 216 | 96.52 202 | 98.21 209 | 95.94 208 | 97.78 185 | 98.38 183 | 89.88 219 | 96.81 200 | 95.07 196 | 75.31 224 | 94.70 190 | 88.62 216 | 86.21 212 | 93.21 208 | 90.41 210 |
|
E-PMN | | | 92.28 212 | 90.12 212 | 94.79 212 | 98.56 199 | 90.90 219 | 95.16 217 | 93.68 216 | 95.36 153 | 95.10 213 | 96.56 173 | 89.05 195 | 95.24 182 | 95.21 197 | 81.84 217 | 90.98 217 | 81.94 218 |
|
EMVS | | | 91.84 213 | 89.39 215 | 94.70 213 | 98.44 203 | 90.84 220 | 95.27 216 | 93.53 217 | 95.18 154 | 95.26 211 | 95.62 192 | 87.59 197 | 94.77 189 | 94.87 201 | 80.72 218 | 90.95 218 | 80.88 219 |
|
tpm cat1 | | | 91.52 214 | 87.70 217 | 95.97 206 | 98.33 206 | 94.98 215 | 97.06 209 | 98.03 192 | 92.11 203 | 98.03 163 | 94.77 200 | 77.19 223 | 92.71 207 | 83.56 220 | 82.24 216 | 91.67 216 | 89.04 215 |
|
test_method | | | 77.69 215 | 85.40 218 | 68.69 215 | 42.66 223 | 55.39 224 | 82.17 223 | 52.05 219 | 92.83 199 | 84.52 222 | 94.88 199 | 95.41 179 | 65.37 218 | 92.49 210 | 79.32 219 | 85.36 220 | 87.50 217 |
|
GG-mvs-BLEND | | | 65.66 216 | 92.62 203 | 34.20 217 | 1.45 226 | 93.75 218 | 85.40 222 | 1.64 223 | 91.37 212 | 17.21 225 | 87.25 212 | 94.78 182 | 3.25 222 | 95.64 191 | 93.80 199 | 96.27 192 | 91.74 207 |
|
testmvs | | | 9.73 217 | 13.38 219 | 5.48 219 | 3.62 224 | 4.12 225 | 6.40 226 | 3.19 222 | 14.92 222 | 7.68 227 | 22.10 221 | 13.89 229 | 6.83 220 | 13.47 221 | 10.38 221 | 5.14 224 | 14.81 220 |
|
test123 | | | 9.37 218 | 12.26 220 | 6.00 218 | 3.32 225 | 4.06 226 | 6.39 227 | 3.41 221 | 13.20 223 | 10.48 226 | 16.43 222 | 16.22 228 | 6.76 221 | 11.37 222 | 10.40 220 | 5.62 223 | 14.10 221 |
|
uanet_test | | | 0.00 219 | 0.00 221 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 224 | 0.00 228 | 0.00 223 | 0.00 230 | 0.00 223 | 0.00 223 | 0.00 222 | 0.00 225 | 0.00 222 |
|
sosnet-low-res | | | 0.00 219 | 0.00 221 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 224 | 0.00 228 | 0.00 223 | 0.00 230 | 0.00 223 | 0.00 223 | 0.00 222 | 0.00 225 | 0.00 222 |
|
sosnet | | | 0.00 219 | 0.00 221 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 224 | 0.00 228 | 0.00 223 | 0.00 230 | 0.00 223 | 0.00 223 | 0.00 222 | 0.00 225 | 0.00 222 |
|
RE-MVS-def | | | | | | | | | | | 99.88 2 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 98.83 118 | | | | | |
|
SR-MVS | | | | | | 99.62 85 | | | 99.47 75 | | | | 99.40 57 | | | | | |
|
Anonymous202405211 | | | | 98.44 75 | | 99.79 38 | 99.32 51 | 99.05 96 | 99.34 102 | 96.59 110 | | 97.95 132 | 97.68 155 | 97.16 152 | 99.36 32 | 99.28 34 | 99.61 39 | 98.90 69 |
|
our_test_3 | | | | | | 99.29 147 | 97.72 181 | 98.98 102 | | | | | | | | | | |
|
ambc | | | | 97.89 117 | | 99.45 123 | 97.88 174 | 97.78 185 | | 97.27 76 | 99.80 3 | 98.99 90 | 98.48 134 | 98.55 99 | 97.80 137 | 96.68 166 | 98.54 155 | 98.10 139 |
|
MTAPA | | | | | | | | | | | 99.19 58 | | 99.68 21 | | | | | |
|
MTMP | | | | | | | | | | | 99.20 56 | | 99.54 41 | | | | | |
|
Patchmatch-RL test | | | | | | | | 32.47 225 | | | | | | | | | | |
|
tmp_tt | | | | | 65.28 216 | 82.24 222 | 71.50 223 | 70.81 224 | 23.21 220 | 96.14 134 | 81.70 224 | 85.98 219 | 92.44 189 | 49.84 219 | 95.81 186 | 94.36 197 | 83.86 222 | |
|
XVS | | | | | | 99.77 43 | 99.07 77 | 99.46 45 | | | 98.95 92 | | 99.37 61 | | | | 99.33 73 | |
|
X-MVStestdata | | | | | | 99.77 43 | 99.07 77 | 99.46 45 | | | 98.95 92 | | 99.37 61 | | | | 99.33 73 | |
|
mPP-MVS | | | | | | 99.75 52 | | | | | | | 99.49 51 | | | | | |
|
NP-MVS | | | | | | | | | | 93.07 196 | | | | | | | | |
|
Patchmtry | | | | | | | 96.05 205 | 97.64 194 | 99.78 16 | | 98.50 130 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 87.86 221 | 92.27 221 | 61.98 218 | 93.64 190 | 93.62 218 | 91.17 209 | 91.67 190 | 94.90 188 | 95.99 185 | | 92.48 213 | 94.18 197 |
|