This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB98.82 199.76 199.75 199.77 799.87 1699.71 1099.77 899.76 1999.52 299.80 399.79 2199.91 199.56 1399.83 399.75 499.86 999.75 1
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs699.74 299.75 199.73 1199.92 599.67 1599.76 1099.84 1199.59 199.52 2499.87 1199.91 199.43 2799.87 199.81 299.89 699.52 10
SixPastTwentyTwo99.70 399.59 499.82 299.93 399.80 199.86 299.87 698.87 1299.79 599.85 1499.33 6699.74 599.85 299.82 199.74 2499.63 5
v7n99.68 499.61 399.76 899.89 1299.74 799.87 199.82 1399.20 699.71 699.96 199.73 1399.76 399.58 2099.59 1699.52 4799.46 15
anonymousdsp99.64 599.55 699.74 1099.87 1699.56 2699.82 399.73 2398.54 1799.71 699.92 499.84 799.61 999.70 999.63 999.69 3399.64 3
UniMVSNet_ETH3D99.61 699.59 499.63 1399.96 199.70 1199.53 3599.86 899.28 599.48 3099.44 5499.86 599.01 6999.78 499.76 399.90 299.33 21
WR-MVS99.61 699.44 899.82 299.92 599.80 199.80 499.89 198.54 1799.66 1399.78 2299.16 8799.68 799.70 999.63 999.94 199.49 13
PEN-MVS99.54 899.30 1699.83 199.92 599.76 499.80 499.88 397.60 6399.71 699.59 3699.52 4499.75 499.64 1599.51 1999.90 299.46 15
TDRefinement99.54 899.50 799.60 1799.70 6899.35 4699.77 899.58 5199.40 499.28 4999.66 2699.41 5599.55 1599.74 899.65 899.70 3099.25 26
DTE-MVSNet99.52 1099.27 1799.82 299.93 399.77 399.79 699.87 697.89 4599.70 1199.55 4599.21 7899.77 299.65 1399.43 2399.90 299.36 19
PS-CasMVS99.50 1199.23 2099.82 299.92 599.75 699.78 799.89 197.30 7499.71 699.60 3499.23 7499.71 699.65 1399.55 1899.90 299.56 8
WR-MVS_H99.48 1299.23 2099.76 899.91 999.76 499.75 1199.88 397.27 7799.58 1799.56 4199.24 7399.56 1399.60 1899.60 1599.88 899.58 7
pm-mvs199.47 1399.38 999.57 2199.82 2899.49 3099.63 2399.65 3998.88 1199.31 4399.85 1499.02 10699.23 4699.60 1899.58 1799.80 1599.22 33
MIMVSNet199.46 1499.34 1099.60 1799.83 2399.68 1499.74 1499.71 2798.20 2799.41 3599.86 1399.66 2599.41 3099.50 2499.39 2699.50 5299.10 44
TransMVSNet (Re)99.45 1599.32 1399.61 1599.88 1499.60 2199.75 1199.63 4399.11 799.28 4999.83 1898.35 14199.27 4399.70 999.62 1399.84 1099.03 52
ACMH97.81 699.44 1699.33 1199.56 2299.81 3299.42 3799.73 1599.58 5199.02 899.10 7399.41 5999.69 1999.60 1099.45 2899.26 3799.55 4399.05 49
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CP-MVSNet99.39 1799.04 2999.80 699.91 999.70 1199.75 1199.88 396.82 9899.68 1299.32 6398.86 11599.68 799.57 2199.47 2099.89 699.52 10
COLMAP_ROBcopyleft98.29 299.37 1899.25 1899.51 3099.74 5999.12 7499.56 3299.39 8898.96 1099.17 6199.44 5499.63 3299.58 1199.48 2699.27 3699.60 4098.81 79
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepC-MVS97.88 499.33 1999.15 2499.53 2999.73 6499.05 8299.49 4099.40 8698.42 2099.55 2199.71 2499.89 399.49 1999.14 4498.81 6899.54 4499.02 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FC-MVSNet-test99.32 2099.33 1199.31 5799.87 1699.65 1899.63 2399.75 2197.76 4797.29 19799.87 1199.63 3299.52 1699.66 1299.63 999.77 2099.12 40
UA-Net99.30 2199.22 2299.39 4499.94 299.66 1798.91 11199.86 897.74 5398.74 11599.00 9099.60 3799.17 5499.50 2499.39 2699.70 3099.64 3
ACMH+97.53 799.29 2299.20 2399.40 4399.81 3299.22 6399.59 2999.50 6998.64 1698.29 14999.21 7599.69 1999.57 1299.53 2399.33 3199.66 3498.81 79
Vis-MVSNetpermissive99.25 2399.32 1399.17 6799.65 7999.55 2899.63 2399.33 10498.16 2899.29 4699.65 3099.77 1097.56 14599.44 3099.14 4299.58 4199.51 12
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TranMVSNet+NR-MVSNet99.23 2498.91 3699.61 1599.81 3299.45 3499.47 4299.68 3097.28 7699.39 3699.54 4699.08 10299.45 2299.09 5098.84 6599.83 1199.04 50
CSCG99.23 2499.15 2499.32 5699.83 2399.45 3498.97 10399.21 12598.83 1399.04 8399.43 5699.64 3099.26 4498.85 7698.20 10499.62 3899.62 6
Gipumacopyleft99.22 2698.86 4099.64 1299.70 6899.24 5799.17 8599.63 4399.52 299.89 196.54 17699.14 9199.93 199.42 3299.15 4199.52 4799.04 50
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tfpnnormal99.19 2798.90 3799.54 2699.81 3299.55 2899.60 2799.54 5998.53 1999.23 5398.40 11198.23 14499.40 3199.29 3799.36 2999.63 3798.95 65
Baseline_NR-MVSNet99.18 2898.87 3899.54 2699.74 5999.56 2699.36 5799.62 4896.53 11999.29 4699.85 1498.64 13399.40 3199.03 6199.63 999.83 1198.86 74
thisisatest051599.16 2998.94 3499.41 3899.75 5399.43 3699.36 5799.63 4397.68 5999.35 3899.31 6498.90 11299.09 6398.95 6699.20 3899.27 8499.11 41
CS-MVS-test99.16 2998.78 4599.60 1799.80 3899.72 999.69 1699.73 2395.88 14199.51 2698.53 10899.54 4299.21 4899.24 4099.43 2399.66 3499.15 39
CS-MVS99.15 3198.75 4799.62 1499.76 4999.73 899.60 2799.75 2195.67 14899.50 2798.53 10899.39 6099.29 4099.21 4299.46 2299.79 1899.29 24
APDe-MVScopyleft99.15 3198.95 3199.39 4499.77 4499.28 5499.52 3699.54 5997.22 8199.06 7799.20 7699.64 3099.05 6799.14 4499.02 5299.39 6699.17 37
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
WB-MVS99.14 3399.31 1598.95 9699.81 3299.61 2098.85 11899.51 6699.01 997.37 19299.33 6299.56 4098.70 8799.44 3099.29 3399.45 5798.96 64
FC-MVSNet-train99.13 3499.05 2899.21 6299.87 1699.57 2599.67 1899.60 5096.75 10498.28 15099.48 5099.52 4498.10 12399.47 2799.37 2899.76 2299.21 34
NR-MVSNet99.10 3598.68 5799.58 2099.89 1299.23 6099.35 6199.63 4396.58 11299.36 3799.05 8498.67 13199.46 2099.63 1698.73 7899.80 1598.88 73
DVP-MVS++99.09 3699.25 1898.90 10299.53 10899.37 4499.17 8599.48 7498.28 2597.95 17099.54 4699.88 498.13 12299.08 5198.94 5699.15 9799.65 2
DVP-MVScopyleft99.09 3699.07 2799.12 7499.55 10199.40 3999.36 5799.44 8597.75 5098.23 15399.23 7299.80 898.97 7199.08 5198.96 5399.19 9299.25 26
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
UniMVSNet (Re)99.08 3898.69 5599.54 2699.75 5399.33 4999.29 6999.64 4296.75 10499.48 3099.30 6698.69 12699.26 4498.94 6898.76 7499.78 1999.02 54
ACMMPR99.05 3998.72 5199.44 3299.79 3999.12 7499.35 6199.56 5497.74 5399.21 5597.72 13899.55 4199.29 4098.90 7498.81 6899.41 6599.19 35
DU-MVS99.04 4098.59 6199.56 2299.74 5999.23 6099.29 6999.63 4396.58 11299.55 2199.05 8498.68 12899.36 3599.03 6198.60 8599.77 2098.97 59
TSAR-MVS + MP.99.02 4198.95 3199.11 7799.23 15898.79 11899.51 3798.73 16697.50 6798.56 12699.03 8799.59 3899.16 5699.29 3799.17 4099.50 5299.24 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
v1099.01 4298.66 5899.41 3899.52 11399.39 4099.57 3199.66 3797.59 6499.32 4299.88 999.23 7499.50 1897.77 14197.98 11598.92 12798.78 84
EG-PatchMatch MVS99.01 4298.77 4699.28 6199.64 8298.90 11198.81 12499.27 11596.55 11699.71 699.31 6499.66 2599.17 5499.28 3999.11 4499.10 9998.57 100
PVSNet_Blended_VisFu98.98 4498.79 4399.21 6299.76 4999.34 4799.35 6199.35 10097.12 8799.46 3299.56 4198.89 11398.08 12799.05 5598.58 8799.27 8498.98 58
HFP-MVS98.97 4598.70 5399.29 5999.67 7398.98 9499.13 9199.53 6297.76 4798.90 9898.07 12699.50 5099.14 5998.64 8898.78 7299.37 6899.18 36
UniMVSNet_NR-MVSNet98.97 4598.46 7199.56 2299.76 4999.34 4799.29 6999.61 4996.55 11699.55 2199.05 8497.96 15299.36 3598.84 7798.50 9399.81 1498.97 59
casdiffmvs_mvgpermissive98.96 4798.87 3899.07 8099.82 2899.36 4599.36 5799.22 12298.13 3097.74 17799.42 5799.46 5398.59 9598.39 10098.95 5599.71 2998.39 118
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EC-MVSNet98.96 4798.45 7499.56 2299.88 1499.70 1199.68 1799.78 1694.15 18298.97 8798.26 11899.21 7899.35 3799.30 3699.14 4299.73 2599.40 18
SED-MVS98.94 4998.95 3198.91 10199.43 12999.38 4299.12 9399.46 7997.05 9098.43 14199.23 7299.79 997.99 13099.05 5598.94 5699.05 11399.23 31
ACMMP_NAP98.94 4998.72 5199.21 6299.67 7399.08 7799.26 7499.39 8896.84 9598.88 10298.22 11999.68 2198.82 8099.06 5498.90 5999.25 8799.25 26
v114498.94 4998.53 6699.42 3699.62 8699.03 8899.58 3099.36 9797.99 3699.49 2999.91 899.20 8199.51 1797.61 14697.85 12298.95 12298.10 141
v898.94 4998.60 5999.35 5399.54 10599.39 4099.55 3399.67 3497.48 6899.13 6999.81 1999.10 9899.39 3397.86 13697.89 12098.81 13698.66 93
SteuartSystems-ACMMP98.94 4998.52 6799.43 3599.79 3999.13 7399.33 6599.55 5696.17 13499.04 8397.53 14499.65 2999.46 2099.04 6098.76 7499.44 6099.35 20
Skip Steuart: Steuart Systems R&D Blog.
v119298.91 5498.48 7099.41 3899.61 9099.03 8899.64 2099.25 11997.91 4299.58 1799.92 499.07 10499.45 2297.55 15097.68 13698.93 12498.23 131
FMVSNet198.90 5599.10 2698.67 12799.54 10599.48 3199.22 7999.66 3798.39 2397.50 18499.66 2699.04 10596.58 16699.05 5599.03 4999.52 4799.08 46
ACMM96.66 1198.90 5598.44 7699.44 3299.74 5998.95 10099.47 4299.55 5697.66 6199.09 7496.43 17899.41 5599.35 3798.95 6698.67 8199.45 5799.03 52
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2023121198.89 5798.79 4398.99 9399.82 2899.41 3899.18 8499.31 11096.92 9298.54 12898.58 10698.84 11897.46 14799.45 2899.29 3399.65 3699.08 46
v192192098.89 5798.46 7199.39 4499.58 9499.04 8699.64 2099.17 13197.91 4299.64 1599.92 498.99 11099.44 2597.44 15797.57 14598.84 13498.35 121
GeoE98.88 5998.43 7999.41 3899.83 2399.24 5799.51 3799.82 1396.55 11699.22 5498.76 9899.22 7798.96 7298.55 9198.15 10699.10 9998.56 103
v14419298.88 5998.46 7199.37 5199.56 10099.03 8899.61 2699.26 11697.79 4699.58 1799.88 999.11 9699.43 2797.38 16297.61 14198.80 13798.43 115
SMA-MVScopyleft98.87 6198.73 5099.04 8699.72 6599.05 8298.64 13599.17 13196.31 12998.80 10999.07 8299.70 1898.67 8998.93 7198.82 6699.23 9099.23 31
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMP96.54 1398.87 6198.40 8299.41 3899.74 5998.88 11299.29 6999.50 6996.85 9498.96 9097.05 16099.66 2599.43 2798.98 6598.60 8599.52 4798.81 79
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DCV-MVSNet98.86 6398.57 6499.19 6599.86 2099.67 1599.39 5199.71 2797.53 6698.69 11895.85 18998.48 13697.75 13999.57 2199.41 2599.72 2699.48 14
v124098.86 6398.41 8199.38 4999.59 9299.05 8299.65 1999.14 13697.68 5999.66 1399.93 398.72 12599.45 2297.38 16297.72 13498.79 13898.35 121
CP-MVS98.86 6398.43 7999.36 5299.68 7198.97 9899.19 8299.46 7996.60 11099.20 5697.11 15999.51 4899.15 5898.92 7298.82 6699.45 5799.08 46
v2v48298.85 6698.40 8299.38 4999.65 7998.98 9499.55 3399.39 8897.92 4199.35 3899.85 1499.14 9199.39 3397.50 15297.78 12598.98 11997.60 157
DPE-MVScopyleft98.84 6798.69 5599.00 9099.05 17799.26 5599.19 8299.35 10095.85 14398.74 11599.27 6899.66 2598.30 11598.90 7498.93 5899.37 6899.00 56
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
OPM-MVS98.84 6798.59 6199.12 7499.52 11398.50 14399.13 9199.22 12297.76 4798.76 11198.70 10099.61 3598.90 7598.67 8698.37 9899.19 9298.57 100
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test20.0398.84 6798.74 4998.95 9699.77 4499.33 4999.21 8199.46 7997.29 7598.88 10299.65 3099.10 9897.07 15799.11 4798.76 7499.32 7797.98 145
casdiffmvspermissive98.84 6798.75 4798.94 10099.75 5399.21 6499.33 6599.04 14698.04 3297.46 18799.72 2399.72 1598.60 9398.30 11298.37 9899.48 5497.92 147
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LGP-MVS_train98.84 6798.33 8899.44 3299.78 4298.98 9499.39 5199.55 5695.41 15398.90 9897.51 14599.68 2199.44 2599.03 6198.81 6899.57 4298.91 69
RPSCF98.84 6798.81 4298.89 10499.37 13798.95 10098.51 14798.85 15997.73 5598.33 14698.97 9299.14 9198.95 7399.18 4398.68 8099.31 7898.99 57
ACMMPcopyleft98.82 7398.33 8899.39 4499.77 4499.14 7299.37 5499.54 5996.47 12399.03 8596.26 18299.52 4499.28 4298.92 7298.80 7199.37 6899.16 38
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
V4298.81 7498.49 6999.18 6699.52 11398.92 10699.50 3999.29 11297.43 7198.97 8799.81 1999.00 10999.30 3997.93 13298.01 11398.51 16298.34 125
LS3D98.79 7598.52 6799.12 7499.64 8299.09 7699.24 7799.46 7997.75 5098.93 9697.47 14798.23 14497.98 13199.36 3399.30 3299.46 5598.42 116
MP-MVScopyleft98.78 7698.30 9099.34 5599.75 5398.95 10099.26 7499.46 7995.78 14799.17 6196.98 16499.72 1599.06 6698.84 7798.74 7799.33 7499.11 41
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
v14898.77 7798.45 7499.15 7099.68 7198.94 10499.49 4099.31 11097.95 3898.91 9799.65 3099.62 3499.18 5197.99 13097.64 14098.33 16797.38 162
test111198.75 7898.14 10399.46 3199.86 2099.63 1999.47 4299.68 3098.34 2498.76 11199.66 2690.92 19699.23 4699.77 599.71 599.75 2398.95 65
ECVR-MVScopyleft98.74 7998.15 10199.42 3699.83 2399.58 2399.37 5499.67 3498.02 3498.85 10699.59 3691.66 19499.10 6199.77 599.70 699.72 2698.73 86
SD-MVS98.73 8098.54 6598.95 9699.14 16798.76 12198.46 15199.14 13697.71 5798.56 12698.06 12899.61 3598.85 7998.56 9097.74 13199.54 4499.32 22
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSP-MVS98.72 8198.60 5998.87 10699.67 7399.33 4999.15 8899.26 11696.99 9197.90 17398.19 12199.74 1298.29 11697.69 14498.96 5398.96 12099.27 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PGM-MVS98.69 8298.09 10899.39 4499.76 4999.07 7899.30 6899.51 6694.76 16499.18 6096.70 17199.51 4899.20 4998.79 8298.71 7999.39 6699.11 41
pmmvs-eth3d98.68 8398.14 10399.29 5999.49 11898.45 14699.45 4799.38 9397.21 8299.50 2799.65 3099.21 7899.16 5697.11 16997.56 14698.79 13897.82 151
EU-MVSNet98.68 8398.94 3498.37 14799.14 16798.74 12399.64 2098.20 19198.21 2699.17 6199.66 2699.18 8499.08 6499.11 4798.86 6195.00 20498.83 76
PMVScopyleft92.51 1798.66 8598.86 4098.43 14399.26 15398.98 9498.60 14198.59 17597.73 5599.45 3399.38 6098.54 13595.24 18499.62 1799.61 1499.42 6298.17 138
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepC-MVS_fast97.38 898.65 8698.34 8799.02 8999.33 14198.29 15398.99 10198.71 16897.40 7299.31 4398.20 12099.40 5898.54 10298.33 10998.18 10599.23 9098.58 98
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator98.16 398.65 8698.35 8699.00 9099.59 9298.70 12698.90 11599.36 9797.97 3799.09 7496.55 17599.09 10097.97 13298.70 8598.65 8399.12 9898.81 79
TSAR-MVS + ACMM98.64 8898.58 6398.72 12199.17 16598.63 13298.69 13099.10 14397.69 5898.30 14899.12 8099.38 6198.70 8798.45 9597.51 14898.35 16699.25 26
DELS-MVS98.63 8998.70 5398.55 13999.24 15799.04 8698.96 10498.52 17896.83 9798.38 14399.58 3999.68 2197.06 15898.74 8498.44 9599.10 9998.59 97
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
QAPM98.62 9098.40 8298.89 10499.57 9998.80 11798.63 13699.35 10096.82 9898.60 12298.85 9799.08 10298.09 12598.31 11098.21 10299.08 10598.72 87
EPP-MVSNet98.61 9198.19 9899.11 7799.86 2099.60 2199.44 4899.53 6297.37 7396.85 20298.69 10193.75 18799.18 5199.22 4199.35 3099.82 1399.32 22
3Dnovator+97.85 598.61 9198.14 10399.15 7099.62 8698.37 15099.10 9499.51 6698.04 3298.98 8696.07 18698.75 12498.55 10098.51 9398.40 9699.17 9498.82 77
X-MVS98.59 9397.99 11499.30 5899.75 5399.07 7899.17 8599.50 6996.62 10898.95 9293.95 20599.37 6299.11 6098.94 6898.86 6199.35 7299.09 45
MVS_111021_HR98.58 9498.26 9398.96 9599.32 14498.81 11598.48 14998.99 15196.81 10099.16 6498.07 12699.23 7498.89 7798.43 9798.27 10198.90 12998.24 130
MVS_030498.57 9598.36 8598.82 11399.72 6598.94 10498.92 10999.14 13696.76 10399.33 4198.30 11599.73 1396.74 16298.05 12797.79 12499.08 10598.97 59
PM-MVS98.57 9598.24 9598.95 9699.26 15398.59 13599.03 9898.74 16596.84 9599.44 3499.13 7998.31 14398.75 8598.03 12898.21 10298.48 16398.58 98
PHI-MVS98.57 9598.20 9799.00 9099.48 12098.91 10898.68 13199.17 13194.97 16099.27 5198.33 11399.33 6698.05 12898.82 8098.62 8499.34 7398.38 119
HPM-MVS++copyleft98.56 9898.08 10999.11 7799.53 10898.61 13499.02 10099.32 10896.29 13199.06 7797.23 15499.50 5098.77 8398.15 12397.90 11898.96 12098.90 70
TSAR-MVS + GP.98.54 9998.29 9298.82 11399.28 15198.59 13597.73 19099.24 12195.93 14098.59 12399.07 8299.17 8598.86 7898.44 9698.10 10899.26 8698.72 87
UGNet98.52 10099.00 3097.96 16899.58 9499.26 5599.27 7399.40 8698.07 3198.28 15098.76 9899.71 1792.24 21298.94 6898.85 6399.00 11899.43 17
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Anonymous2023120698.50 10198.03 11199.05 8499.50 11699.01 9199.15 8899.26 11696.38 12799.12 7199.50 4999.12 9498.60 9397.68 14597.24 15998.66 14697.30 166
CLD-MVS98.48 10298.15 10198.86 10999.53 10898.35 15198.55 14497.83 20096.02 13998.97 8799.08 8199.75 1199.03 6898.10 12697.33 15599.28 8298.44 114
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CANet98.47 10398.30 9098.67 12799.65 7998.87 11398.82 12399.01 14996.14 13599.29 4698.86 9599.01 10796.54 16798.36 10498.08 11098.72 14298.80 83
APD-MVScopyleft98.47 10397.97 11599.05 8499.64 8298.91 10898.94 10699.45 8494.40 17598.77 11097.26 15399.41 5598.21 11998.67 8698.57 9099.31 7898.57 100
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Vis-MVSNet (Re-imp)98.46 10598.23 9698.73 12099.81 3299.29 5398.79 12599.50 6996.20 13396.03 20898.29 11696.98 16798.54 10299.11 4799.08 4599.70 3098.62 95
Fast-Effi-MVS+98.42 10697.79 12199.15 7099.69 7098.66 13098.94 10699.68 3094.49 16999.05 7998.06 12898.86 11598.48 10598.18 12097.78 12599.05 11398.54 106
ETV-MVS98.41 10797.76 12299.17 6799.58 9499.01 9198.91 11199.50 6993.33 19599.31 4396.82 16898.42 13998.17 12199.13 4699.08 4599.54 4498.56 103
MVS_111021_LR98.39 10898.11 10698.71 12399.08 17498.54 14198.23 17298.56 17796.57 11499.13 6998.41 11098.86 11598.65 9198.23 11897.87 12198.65 14898.28 127
pmmvs598.37 10997.81 12099.03 8799.46 12298.97 9899.03 9898.96 15395.85 14399.05 7999.45 5398.66 13298.79 8296.02 18697.52 14798.87 13198.21 134
OMC-MVS98.35 11098.10 10798.64 13398.85 18497.99 17298.56 14398.21 18997.26 7998.87 10498.54 10799.27 7298.43 10798.34 10797.66 13798.92 12797.65 156
canonicalmvs98.34 11197.92 11798.83 11199.45 12499.21 6498.37 15999.53 6297.06 8997.74 17796.95 16695.05 18498.36 11098.77 8398.85 6399.51 5199.53 9
CHOSEN 1792x268898.31 11298.02 11298.66 12999.55 10198.57 13899.38 5399.25 11998.42 2098.48 13699.58 3999.85 698.31 11495.75 18995.71 18496.96 19198.27 129
CPTT-MVS98.28 11397.51 13599.16 6999.54 10598.78 11998.96 10499.36 9796.30 13098.89 10193.10 20999.30 6999.20 4998.35 10697.96 11699.03 11698.82 77
TinyColmap98.27 11497.62 13299.03 8799.29 14997.79 18198.92 10998.95 15497.48 6899.52 2498.65 10397.86 15498.90 7598.34 10797.27 15798.64 14995.97 186
diffmvspermissive98.26 11598.16 9998.39 14599.61 9098.78 11998.79 12598.61 17397.94 3997.11 20199.51 4899.52 4497.61 14396.55 17896.93 16598.61 15197.87 149
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
USDC98.26 11597.57 13399.06 8199.42 13297.98 17498.83 12098.85 15997.57 6599.59 1699.15 7898.59 13498.99 7097.42 15896.08 18398.69 14596.23 184
SF-MVS98.25 11798.16 9998.35 14899.43 12998.42 14997.05 21299.09 14496.42 12598.13 15997.73 13799.20 8197.22 15398.36 10498.38 9799.16 9698.62 95
MCST-MVS98.25 11797.57 13399.06 8199.53 10898.24 15998.63 13699.17 13195.88 14198.58 12496.11 18499.09 10099.18 5197.58 14997.31 15699.25 8798.75 85
IterMVS-LS98.23 11997.66 12898.90 10299.63 8599.38 4299.07 9599.48 7497.75 5098.81 10899.37 6194.57 18697.88 13696.54 17997.04 16298.53 15998.97 59
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TAPA-MVS96.65 1298.23 11997.96 11698.55 13998.81 18698.16 16398.40 15697.94 19896.68 10698.49 13498.61 10498.89 11398.57 9897.45 15597.59 14399.09 10498.35 121
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CNVR-MVS98.22 12197.76 12298.76 11899.33 14198.26 15798.48 14998.88 15796.22 13298.47 13895.79 19099.33 6698.35 11198.37 10397.99 11499.03 11698.38 119
IS_MVSNet98.20 12298.00 11398.44 14299.82 2899.48 3199.25 7699.56 5495.58 15093.93 22097.56 14396.52 17298.27 11799.08 5199.20 3899.80 1598.56 103
DeepPCF-MVS96.68 1098.20 12298.26 9398.12 16197.03 22398.11 16698.44 15397.70 20296.77 10298.52 13098.91 9399.17 8598.58 9798.41 9998.02 11298.46 16498.46 111
MSDG98.20 12297.88 11998.56 13799.33 14197.74 18298.27 16998.10 19297.20 8498.06 16398.59 10599.16 8798.76 8498.39 10097.71 13598.86 13396.38 181
testgi98.18 12598.44 7697.89 17099.78 4299.23 6098.78 12799.21 12597.26 7997.41 18997.39 15099.36 6592.85 20898.82 8098.66 8299.31 7898.35 121
Effi-MVS+98.11 12697.29 14199.06 8199.62 8698.55 13998.16 17599.80 1594.64 16599.15 6796.59 17397.43 16098.44 10697.46 15497.90 11899.17 9498.45 113
FA-MVS(training)98.08 12797.68 12698.56 13799.14 16798.69 12798.41 15499.83 1295.85 14398.57 12597.95 13396.92 16996.85 16098.51 9398.09 10998.54 15797.74 152
HyFIR lowres test98.08 12797.16 15099.14 7399.72 6598.91 10899.41 4999.58 5197.93 4098.82 10799.24 7095.81 17898.73 8695.16 20095.13 19398.60 15397.94 146
EIA-MVS98.03 12997.20 14798.99 9399.66 7699.24 5798.53 14699.52 6591.56 21199.25 5295.34 19498.78 12197.72 14098.38 10298.58 8799.28 8298.54 106
train_agg97.99 13097.26 14298.83 11199.43 12998.22 16198.91 11199.07 14594.43 17397.96 16996.42 17999.30 6998.81 8197.39 16096.62 17198.82 13598.47 109
MSLP-MVS++97.99 13097.64 13198.40 14498.91 18298.47 14597.12 21098.78 16396.49 12198.48 13693.57 20799.12 9498.51 10498.31 11098.58 8798.58 15598.95 65
CDPH-MVS97.99 13097.23 14598.87 10699.58 9498.29 15398.83 12099.20 12793.76 18998.11 16196.11 18499.16 8798.23 11897.80 13997.22 16099.29 8198.28 127
FMVSNet297.94 13398.08 10997.77 17698.71 19099.21 6498.62 13899.47 7696.62 10896.37 20799.20 7697.70 15694.39 19597.39 16097.75 13099.08 10598.70 90
PVSNet_BlendedMVS97.93 13497.66 12898.25 15499.30 14698.67 12898.31 16497.95 19694.30 17998.75 11397.63 14098.76 12296.30 17498.29 11397.78 12598.93 12498.18 136
PVSNet_Blended97.93 13497.66 12898.25 15499.30 14698.67 12898.31 16497.95 19694.30 17998.75 11397.63 14098.76 12296.30 17498.29 11397.78 12598.93 12498.18 136
OpenMVScopyleft97.26 997.88 13697.17 14998.70 12499.50 11698.55 13998.34 16299.11 14193.92 18798.90 9895.04 19998.23 14497.38 15098.11 12598.12 10798.95 12298.23 131
pmmvs497.87 13797.02 15498.86 10999.20 15997.68 18598.89 11699.03 14796.57 11499.12 7199.03 8797.26 16498.42 10895.16 20096.34 17598.53 15997.10 173
NCCC97.84 13896.96 15698.87 10699.39 13598.27 15698.46 15199.02 14896.78 10198.73 11791.12 21398.91 11198.57 9897.83 13897.49 14999.04 11598.33 126
Effi-MVS+-dtu97.78 13997.37 13998.26 15299.25 15598.50 14397.89 18499.19 13094.51 16798.16 15795.93 18798.80 12095.97 17798.27 11797.38 15299.10 9998.23 131
MDA-MVSNet-bldmvs97.75 14097.26 14298.33 14999.35 14098.45 14699.32 6797.21 20797.90 4499.05 7999.01 8996.86 17099.08 6499.36 3392.97 20395.97 20096.25 183
CDS-MVSNet97.75 14097.68 12697.83 17499.08 17498.20 16298.68 13198.61 17395.63 14997.80 17599.24 7096.93 16894.09 20097.96 13197.82 12398.71 14397.99 143
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CNLPA97.75 14097.26 14298.32 15198.58 19897.86 17797.80 18698.09 19396.49 12198.49 13496.15 18398.08 14798.35 11198.00 12997.03 16398.61 15197.21 170
PLCcopyleft95.63 1597.73 14397.01 15598.57 13699.10 17197.80 18097.72 19198.77 16496.34 12898.38 14393.46 20898.06 14898.66 9097.90 13497.65 13998.77 14097.90 148
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVS_Test97.69 14497.15 15198.33 14999.27 15298.43 14898.25 17099.29 11295.00 15997.39 19198.86 9598.00 15197.14 15595.38 19596.22 17798.62 15098.15 140
GBi-Net97.69 14497.75 12497.62 17798.71 19099.21 6498.62 13899.33 10494.09 18395.60 21098.17 12395.97 17594.39 19599.05 5599.03 4999.08 10598.70 90
test197.69 14497.75 12497.62 17798.71 19099.21 6498.62 13899.33 10494.09 18395.60 21098.17 12395.97 17594.39 19599.05 5599.03 4999.08 10598.70 90
CANet_DTU97.65 14797.50 13797.82 17599.19 16298.08 16898.41 15498.67 17094.40 17599.16 6498.32 11498.69 12693.96 20297.87 13597.61 14197.51 18797.56 159
IterMVS-SCA-FT97.63 14896.86 15898.52 14199.48 12098.71 12598.84 11998.91 15596.44 12499.16 6499.56 4195.54 18097.95 13395.68 19295.07 19696.76 19297.03 176
TSAR-MVS + COLMAP97.62 14997.31 14097.98 16698.47 20497.39 18998.29 16698.25 18896.68 10697.54 18398.87 9498.04 15097.08 15696.78 17396.26 17698.26 17097.12 172
MS-PatchMatch97.60 15097.22 14698.04 16598.67 19497.18 19497.91 18298.28 18795.82 14698.34 14597.66 13998.38 14097.77 13897.10 17097.25 15897.27 18997.18 171
PCF-MVS95.58 1697.60 15096.67 15998.69 12599.44 12798.23 16098.37 15998.81 16193.01 19998.22 15497.97 13299.59 3898.20 12095.72 19195.08 19499.08 10597.09 175
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HQP-MVS97.58 15296.65 16298.66 12999.30 14697.99 17297.88 18598.65 17194.58 16698.66 11994.65 20399.15 9098.59 9596.10 18495.59 18598.90 12998.50 108
DI_MVS_plusplus_trai97.57 15396.55 16498.77 11799.55 10198.76 12199.22 7999.00 15097.08 8897.95 17097.78 13691.35 19598.02 12996.20 18296.81 16798.87 13197.87 149
AdaColmapbinary97.57 15396.57 16398.74 11999.25 15598.01 17098.36 16198.98 15294.44 17298.47 13892.44 21097.91 15398.62 9298.19 11997.74 13198.73 14197.28 167
baseline97.50 15597.51 13597.50 18199.18 16397.38 19098.00 17898.00 19596.52 12097.49 18599.28 6799.43 5495.31 18395.27 19796.22 17796.99 19098.47 109
IterMVS97.40 15696.67 15998.25 15499.45 12498.66 13098.87 11798.73 16696.40 12698.94 9599.56 4195.26 18297.58 14495.38 19594.70 19895.90 20196.72 179
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dmvs_re97.38 15796.15 17298.82 11399.39 13598.34 15298.65 13498.88 15790.80 21898.86 10592.35 21195.13 18398.09 12598.84 7798.88 6099.06 11298.71 89
CVMVSNet97.38 15797.39 13897.37 18498.58 19897.72 18398.70 12997.42 20597.21 8295.95 20999.46 5293.31 19097.38 15097.60 14797.78 12596.18 19798.66 93
new-patchmatchnet97.26 15996.12 17398.58 13599.55 10198.63 13299.14 9097.04 20998.80 1499.19 5899.92 499.19 8398.92 7495.51 19487.04 21297.66 18493.73 202
MIMVSNet97.24 16097.15 15197.36 18599.03 17898.52 14298.55 14499.73 2394.94 16394.94 21797.98 13197.37 16293.66 20397.60 14797.34 15498.23 17396.29 182
PatchMatch-RL97.24 16096.45 16798.17 15898.70 19397.57 18897.31 20598.48 18194.42 17498.39 14295.74 19196.35 17497.88 13697.75 14297.48 15098.24 17295.87 187
thisisatest053097.20 16295.95 17798.66 12999.46 12298.84 11498.29 16699.20 12794.51 16798.25 15297.42 14885.03 21197.68 14198.43 9798.56 9199.08 10598.89 72
tttt051797.18 16395.92 17898.65 13299.49 11898.92 10698.29 16699.20 12794.37 17798.17 15597.37 15184.72 21497.68 14198.55 9198.56 9199.10 9998.95 65
MDTV_nov1_ep13_2view97.12 16496.19 17198.22 15799.13 17098.05 16999.24 7799.47 7697.61 6299.15 6799.59 3699.01 10798.40 10994.87 20390.14 20693.91 20794.04 201
MAR-MVS97.12 16496.28 17098.11 16298.94 18097.22 19297.65 19599.38 9390.93 21798.15 15895.17 19697.13 16596.48 17097.71 14397.40 15198.06 17798.40 117
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Fast-Effi-MVS+-dtu96.99 16696.46 16697.61 17998.98 17997.89 17597.54 19999.76 1993.43 19396.55 20694.93 20098.06 14894.32 19896.93 17196.50 17398.53 15997.47 160
FPMVS96.97 16797.20 14796.70 20197.75 21596.11 20697.72 19195.47 21397.13 8698.02 16597.57 14296.67 17192.97 20799.00 6498.34 10098.28 16995.58 189
TAMVS96.95 16896.94 15796.97 19699.07 17697.67 18797.98 18097.12 20895.04 15895.41 21399.27 6895.57 17994.09 20097.32 16497.11 16198.16 17596.59 180
FMVSNet396.85 16996.67 15997.06 19097.56 21899.01 9197.99 17999.33 10494.09 18395.60 21098.17 12395.97 17593.26 20694.76 20596.22 17798.59 15498.46 111
GA-MVS96.84 17095.86 18097.98 16699.16 16698.29 15397.91 18298.64 17295.14 15697.71 17998.04 13088.90 19996.50 16996.41 18196.61 17297.97 18197.60 157
CHOSEN 280x42096.80 17196.30 16997.39 18299.09 17296.52 19898.76 12899.29 11293.88 18897.65 18098.34 11293.66 18896.29 17698.28 11597.73 13393.27 21095.70 188
gg-mvs-nofinetune96.77 17296.52 16597.06 19099.66 7697.82 17997.54 19999.86 898.69 1598.61 12199.94 289.62 19788.37 22097.55 15096.67 16998.30 16895.35 190
DPM-MVS96.73 17395.70 18397.95 16998.93 18197.26 19197.39 20498.44 18395.47 15297.62 18190.71 21498.47 13897.03 15995.02 20295.27 19098.26 17097.67 154
baseline196.72 17495.40 18598.26 15299.53 10898.81 11598.32 16398.80 16294.96 16196.78 20596.50 17784.87 21396.68 16597.42 15897.91 11799.46 5597.33 165
N_pmnet96.68 17595.70 18397.84 17399.42 13298.00 17199.35 6198.21 18998.40 2298.13 15999.42 5799.30 6997.44 14994.00 20988.79 20794.47 20691.96 208
pmnet_mix0296.61 17695.32 18698.11 16299.41 13497.68 18599.05 9697.59 20398.16 2899.05 7999.48 5099.11 9698.32 11392.36 21387.67 20995.26 20392.80 206
new_pmnet96.59 17796.40 16896.81 19898.24 21195.46 21597.71 19394.75 21696.92 9296.80 20499.23 7297.81 15596.69 16396.58 17795.16 19296.69 19393.64 203
PMMVS96.47 17895.81 18197.23 18697.38 22095.96 21097.31 20596.91 21093.21 19697.93 17297.14 15797.64 15895.70 17995.24 19896.18 18098.17 17495.33 191
EPNet96.44 17996.08 17496.86 19799.32 14497.15 19597.69 19499.32 10893.67 19098.11 16195.64 19293.44 18989.07 21896.86 17296.83 16697.67 18398.97 59
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres600view796.35 18094.27 18898.79 11699.66 7699.18 6998.94 10699.38 9394.37 17797.21 19987.19 21684.10 21598.10 12398.16 12199.47 2099.42 6297.43 161
EPNet_dtu96.31 18195.96 17696.72 20099.18 16395.39 21697.03 21399.13 14093.02 19899.35 3897.23 15497.07 16690.70 21795.74 19095.08 19494.94 20598.16 139
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs396.30 18295.87 17996.80 19997.66 21796.48 19997.93 18193.80 21793.40 19498.54 12898.27 11797.50 15997.37 15297.49 15393.11 20295.52 20294.85 195
PMMVS296.29 18397.05 15395.40 21198.32 21096.16 20398.18 17497.46 20497.20 8484.51 22699.60 3498.68 12896.37 17198.59 8997.38 15297.58 18691.76 209
thres20096.23 18494.13 18998.69 12599.44 12799.18 6998.58 14299.38 9393.52 19297.35 19386.33 22185.83 20997.93 13498.16 12198.78 7299.42 6297.10 173
thres40096.22 18594.08 19198.72 12199.58 9499.05 8298.83 12099.22 12294.01 18697.40 19086.34 22084.91 21297.93 13497.85 13799.08 4599.37 6897.28 167
tfpn200view996.17 18694.08 19198.60 13499.37 13799.18 6998.68 13199.39 8892.02 20597.30 19586.53 21886.34 20697.45 14898.15 12399.08 4599.43 6197.28 167
CMPMVSbinary74.71 1996.17 18696.06 17596.30 20597.41 21994.52 21994.83 22195.46 21491.57 21097.26 19894.45 20498.33 14294.98 18698.28 11597.59 14397.86 18297.68 153
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test250696.12 18893.35 20199.35 5399.83 2399.58 2399.37 5499.67 3498.02 3498.44 14097.51 14560.03 22999.10 6199.77 599.70 699.72 2698.86 74
IB-MVS95.85 1495.87 18994.88 18797.02 19399.09 17298.25 15897.16 20797.38 20691.97 20897.77 17683.61 22397.29 16392.03 21597.16 16897.66 13798.66 14698.20 135
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test0.0.03 195.81 19095.77 18295.85 21099.20 15998.15 16597.49 20398.50 17992.24 20192.74 22396.82 16892.70 19188.60 21997.31 16697.01 16498.57 15696.19 185
thres100view90095.74 19193.66 20098.17 15899.37 13798.59 13598.10 17698.33 18692.02 20597.30 19586.53 21886.34 20696.69 16396.77 17498.47 9499.24 8996.89 177
ET-MVSNet_ETH3D95.72 19293.85 19697.89 17097.30 22198.09 16798.19 17398.40 18494.46 17198.01 16896.71 17077.85 22596.76 16196.08 18596.39 17498.70 14497.36 163
baseline295.58 19394.04 19397.38 18398.80 18798.16 16397.14 20897.80 20191.45 21297.49 18595.22 19583.63 21694.98 18696.42 18096.66 17098.06 17796.76 178
PatchT95.49 19493.29 20298.06 16498.65 19596.20 20298.91 11199.73 2392.00 20798.50 13196.67 17283.25 21796.34 17294.40 20695.50 18696.21 19695.04 193
CR-MVSNet95.38 19593.01 20398.16 16098.63 19695.85 21297.64 19699.78 1691.27 21498.50 13196.84 16782.16 21896.34 17294.40 20695.50 18698.05 17995.04 193
MVSTER95.38 19593.99 19597.01 19498.83 18598.95 10096.62 21499.14 13692.17 20397.44 18897.29 15277.88 22491.63 21697.45 15596.18 18098.41 16597.99 143
MVS-HIRNet94.86 19793.83 19796.07 20697.07 22294.00 22094.31 22299.17 13191.23 21698.17 15598.69 10197.43 16095.66 18094.05 20891.92 20492.04 21789.46 217
test-LLR94.79 19893.71 19896.06 20799.20 15996.16 20396.31 21698.50 17989.98 21994.08 21897.01 16186.43 20492.20 21396.76 17595.31 18896.05 19894.31 198
RPMNet94.72 19992.01 20897.88 17298.56 20195.85 21297.78 18799.70 2991.27 21498.33 14693.69 20681.88 21994.91 18992.60 21194.34 20098.01 18094.46 197
gm-plane-assit94.62 20091.39 21098.39 14599.90 1199.47 3399.40 5099.65 3997.44 7099.56 2099.68 2559.40 23094.23 19996.17 18394.77 19797.61 18592.79 207
test-mter94.62 20094.02 19495.32 21297.72 21696.75 19696.23 21895.67 21289.83 22293.23 22296.99 16385.94 20892.66 21197.32 16496.11 18296.44 19495.22 192
FMVSNet594.57 20292.77 20496.67 20297.88 21398.72 12497.54 19998.70 16988.64 22395.11 21586.90 21781.77 22093.27 20597.92 13398.07 11197.50 18897.34 164
SCA94.53 20391.95 20997.55 18098.58 19897.86 17798.49 14899.68 3095.11 15799.07 7695.87 18887.24 20296.53 16889.77 21687.08 21192.96 21290.69 212
MDTV_nov1_ep1394.47 20492.15 20697.17 18798.54 20396.42 20098.10 17698.89 15694.49 16998.02 16597.41 14986.49 20395.56 18190.85 21487.95 20893.91 20791.45 211
TESTMET0.1,194.44 20593.71 19895.30 21397.84 21496.16 20396.31 21695.32 21589.98 21994.08 21897.01 16186.43 20492.20 21396.76 17595.31 18896.05 19894.31 198
ADS-MVSNet94.41 20692.13 20797.07 18998.86 18396.60 19798.38 15898.47 18296.13 13798.02 16596.98 16487.50 20195.87 17889.89 21587.58 21092.79 21490.27 214
tpm93.89 20791.21 21197.03 19298.36 20896.07 20797.53 20299.65 3992.24 20198.64 12097.23 15474.67 22894.64 19392.68 21090.73 20593.37 20994.82 196
PatchmatchNetpermissive93.88 20891.08 21297.14 18898.75 18996.01 20998.25 17099.39 8894.95 16298.96 9096.32 18085.35 21095.50 18288.89 21785.89 21591.99 21890.15 215
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS93.67 20990.82 21396.99 19598.62 19796.39 20198.40 15699.11 14195.54 15197.87 17497.14 15781.27 22294.97 18888.54 21986.80 21392.95 21390.06 216
MVEpermissive82.47 1893.12 21094.09 19091.99 21690.79 22482.50 22593.93 22396.30 21196.06 13888.81 22498.19 12196.38 17397.56 14597.24 16795.18 19184.58 22493.07 204
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CostFormer92.75 21189.49 21596.55 20398.78 18895.83 21497.55 19898.59 17591.83 20997.34 19496.31 18178.53 22394.50 19486.14 22084.92 21692.54 21592.84 205
tpmrst92.45 21289.48 21695.92 20998.43 20695.03 21797.14 20897.92 19994.16 18197.56 18297.86 13581.63 22193.56 20485.89 22182.86 21790.91 22288.95 219
dps92.35 21388.78 21896.52 20498.21 21295.94 21197.78 18798.38 18589.88 22196.81 20395.07 19875.31 22794.70 19288.62 21886.21 21493.21 21190.41 213
E-PMN92.28 21490.12 21494.79 21498.56 20190.90 22295.16 22093.68 21895.36 15495.10 21696.56 17489.05 19895.24 18495.21 19981.84 21990.98 22081.94 221
EMVS91.84 21589.39 21794.70 21598.44 20590.84 22395.27 21993.53 21995.18 15595.26 21495.62 19387.59 20094.77 19194.87 20380.72 22090.95 22180.88 222
tpm cat191.52 21687.70 21995.97 20898.33 20994.98 21897.06 21198.03 19492.11 20498.03 16494.77 20277.19 22692.71 20983.56 22282.24 21891.67 21989.04 218
test_method77.69 21785.40 22068.69 21742.66 22655.39 22782.17 22652.05 22192.83 20084.52 22594.88 20195.41 18165.37 22192.49 21279.32 22185.36 22387.50 220
GG-mvs-BLEND65.66 21892.62 20534.20 2191.45 22993.75 22185.40 2251.64 22591.37 21317.21 22887.25 21594.78 1853.25 22595.64 19393.80 20196.27 19591.74 210
testmvs9.73 21913.38 2215.48 2213.62 2274.12 2286.40 2293.19 22414.92 2247.68 23022.10 22413.89 2326.83 22313.47 22310.38 2235.14 22714.81 223
test1239.37 22012.26 2226.00 2203.32 2284.06 2296.39 2303.41 22313.20 22510.48 22916.43 22516.22 2316.76 22411.37 22410.40 2225.62 22614.10 224
uanet_test0.00 2210.00 2230.00 2220.00 2300.00 2300.00 2310.00 2260.00 2260.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet-low-res0.00 2210.00 2230.00 2220.00 2300.00 2300.00 2310.00 2260.00 2260.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet0.00 2210.00 2230.00 2220.00 2300.00 2300.00 2310.00 2260.00 2260.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
TPM-MVS98.38 20797.20 19396.44 21597.17 20095.17 19698.68 12892.69 21098.11 17697.67 154
Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025
RE-MVS-def99.88 2
9.1498.83 119
SR-MVS99.62 8699.47 7699.40 58
Anonymous20240521198.44 7699.79 3999.32 5299.05 9699.34 10396.59 11197.95 13397.68 15797.16 15499.36 3399.28 3599.61 3998.90 70
our_test_399.29 14997.72 18398.98 102
ambc97.89 11899.45 12497.88 17697.78 18797.27 7799.80 398.99 9198.48 13698.55 10097.80 13996.68 16898.54 15798.10 141
MTAPA99.19 5899.68 21
MTMP99.20 5699.54 42
Patchmatch-RL test32.47 228
tmp_tt65.28 21882.24 22571.50 22670.81 22723.21 22296.14 13581.70 22785.98 22292.44 19249.84 22295.81 18894.36 19983.86 225
XVS99.77 4499.07 7899.46 4598.95 9299.37 6299.33 74
X-MVStestdata99.77 4499.07 7899.46 4598.95 9299.37 6299.33 74
mPP-MVS99.75 5399.49 52
NP-MVS93.07 197
Patchmtry96.05 20897.64 19699.78 1698.50 131
DeepMVS_CXcopyleft87.86 22492.27 22461.98 22093.64 19193.62 22191.17 21291.67 19394.90 19095.99 18792.48 21694.18 200