| LTVRE_ROB | | 98.82 1 | 99.76 1 | 99.75 1 | 99.77 7 | 99.87 16 | 99.71 10 | 99.77 8 | 99.76 19 | 99.52 2 | 99.80 3 | 99.79 21 | 99.91 1 | 99.56 13 | 99.83 3 | 99.75 4 | 99.86 9 | 99.75 1 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| pmmvs6 | | | 99.74 2 | 99.75 1 | 99.73 11 | 99.92 5 | 99.67 15 | 99.76 10 | 99.84 11 | 99.59 1 | 99.52 24 | 99.87 11 | 99.91 1 | 99.43 27 | 99.87 1 | 99.81 2 | 99.89 6 | 99.52 10 |
|
| SixPastTwentyTwo | | | 99.70 3 | 99.59 4 | 99.82 2 | 99.93 3 | 99.80 1 | 99.86 2 | 99.87 6 | 98.87 12 | 99.79 5 | 99.85 14 | 99.33 66 | 99.74 5 | 99.85 2 | 99.82 1 | 99.74 24 | 99.63 5 |
|
| v7n | | | 99.68 4 | 99.61 3 | 99.76 8 | 99.89 12 | 99.74 7 | 99.87 1 | 99.82 13 | 99.20 6 | 99.71 6 | 99.96 1 | 99.73 13 | 99.76 3 | 99.58 20 | 99.59 16 | 99.52 47 | 99.46 15 |
|
| anonymousdsp | | | 99.64 5 | 99.55 6 | 99.74 10 | 99.87 16 | 99.56 26 | 99.82 3 | 99.73 23 | 98.54 17 | 99.71 6 | 99.92 4 | 99.84 7 | 99.61 9 | 99.70 9 | 99.63 9 | 99.69 33 | 99.64 3 |
|
| UniMVSNet_ETH3D | | | 99.61 6 | 99.59 4 | 99.63 13 | 99.96 1 | 99.70 11 | 99.53 35 | 99.86 8 | 99.28 5 | 99.48 30 | 99.44 54 | 99.86 5 | 99.01 69 | 99.78 4 | 99.76 3 | 99.90 2 | 99.33 21 |
|
| WR-MVS | | | 99.61 6 | 99.44 8 | 99.82 2 | 99.92 5 | 99.80 1 | 99.80 4 | 99.89 1 | 98.54 17 | 99.66 13 | 99.78 22 | 99.16 87 | 99.68 7 | 99.70 9 | 99.63 9 | 99.94 1 | 99.49 13 |
|
| PEN-MVS | | | 99.54 8 | 99.30 16 | 99.83 1 | 99.92 5 | 99.76 4 | 99.80 4 | 99.88 3 | 97.60 63 | 99.71 6 | 99.59 36 | 99.52 44 | 99.75 4 | 99.64 15 | 99.51 19 | 99.90 2 | 99.46 15 |
|
| TDRefinement | | | 99.54 8 | 99.50 7 | 99.60 17 | 99.70 68 | 99.35 46 | 99.77 8 | 99.58 51 | 99.40 4 | 99.28 49 | 99.66 26 | 99.41 55 | 99.55 15 | 99.74 8 | 99.65 8 | 99.70 30 | 99.25 26 |
|
| DTE-MVSNet | | | 99.52 10 | 99.27 17 | 99.82 2 | 99.93 3 | 99.77 3 | 99.79 6 | 99.87 6 | 97.89 45 | 99.70 11 | 99.55 45 | 99.21 78 | 99.77 2 | 99.65 13 | 99.43 23 | 99.90 2 | 99.36 19 |
|
| PS-CasMVS | | | 99.50 11 | 99.23 20 | 99.82 2 | 99.92 5 | 99.75 6 | 99.78 7 | 99.89 1 | 97.30 74 | 99.71 6 | 99.60 34 | 99.23 74 | 99.71 6 | 99.65 13 | 99.55 18 | 99.90 2 | 99.56 8 |
|
| WR-MVS_H | | | 99.48 12 | 99.23 20 | 99.76 8 | 99.91 9 | 99.76 4 | 99.75 11 | 99.88 3 | 97.27 77 | 99.58 17 | 99.56 41 | 99.24 73 | 99.56 13 | 99.60 18 | 99.60 15 | 99.88 8 | 99.58 7 |
|
| pm-mvs1 | | | 99.47 13 | 99.38 9 | 99.57 21 | 99.82 28 | 99.49 30 | 99.63 23 | 99.65 39 | 98.88 11 | 99.31 43 | 99.85 14 | 99.02 106 | 99.23 46 | 99.60 18 | 99.58 17 | 99.80 15 | 99.22 33 |
|
| MIMVSNet1 | | | 99.46 14 | 99.34 10 | 99.60 17 | 99.83 23 | 99.68 14 | 99.74 14 | 99.71 27 | 98.20 27 | 99.41 35 | 99.86 13 | 99.66 25 | 99.41 30 | 99.50 24 | 99.39 26 | 99.50 52 | 99.10 44 |
|
| TransMVSNet (Re) | | | 99.45 15 | 99.32 13 | 99.61 15 | 99.88 14 | 99.60 21 | 99.75 11 | 99.63 43 | 99.11 7 | 99.28 49 | 99.83 18 | 98.35 141 | 99.27 43 | 99.70 9 | 99.62 13 | 99.84 10 | 99.03 52 |
|
| ACMH | | 97.81 6 | 99.44 16 | 99.33 11 | 99.56 22 | 99.81 32 | 99.42 37 | 99.73 15 | 99.58 51 | 99.02 8 | 99.10 73 | 99.41 59 | 99.69 19 | 99.60 10 | 99.45 28 | 99.26 37 | 99.55 43 | 99.05 49 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| CP-MVSNet | | | 99.39 17 | 99.04 29 | 99.80 6 | 99.91 9 | 99.70 11 | 99.75 11 | 99.88 3 | 96.82 98 | 99.68 12 | 99.32 63 | 98.86 115 | 99.68 7 | 99.57 21 | 99.47 20 | 99.89 6 | 99.52 10 |
|
| COLMAP_ROB |  | 98.29 2 | 99.37 18 | 99.25 18 | 99.51 30 | 99.74 59 | 99.12 74 | 99.56 32 | 99.39 88 | 98.96 10 | 99.17 61 | 99.44 54 | 99.63 32 | 99.58 11 | 99.48 26 | 99.27 36 | 99.60 40 | 98.81 79 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| DeepC-MVS | | 97.88 4 | 99.33 19 | 99.15 24 | 99.53 29 | 99.73 64 | 99.05 82 | 99.49 40 | 99.40 86 | 98.42 20 | 99.55 21 | 99.71 24 | 99.89 3 | 99.49 19 | 99.14 44 | 98.81 68 | 99.54 44 | 99.02 54 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| FC-MVSNet-test | | | 99.32 20 | 99.33 11 | 99.31 57 | 99.87 16 | 99.65 18 | 99.63 23 | 99.75 21 | 97.76 47 | 97.29 197 | 99.87 11 | 99.63 32 | 99.52 16 | 99.66 12 | 99.63 9 | 99.77 20 | 99.12 40 |
|
| UA-Net | | | 99.30 21 | 99.22 22 | 99.39 44 | 99.94 2 | 99.66 17 | 98.91 111 | 99.86 8 | 97.74 53 | 98.74 115 | 99.00 90 | 99.60 37 | 99.17 54 | 99.50 24 | 99.39 26 | 99.70 30 | 99.64 3 |
|
| ACMH+ | | 97.53 7 | 99.29 22 | 99.20 23 | 99.40 43 | 99.81 32 | 99.22 63 | 99.59 29 | 99.50 69 | 98.64 16 | 98.29 149 | 99.21 75 | 99.69 19 | 99.57 12 | 99.53 23 | 99.33 31 | 99.66 34 | 98.81 79 |
|
| Vis-MVSNet |  | | 99.25 23 | 99.32 13 | 99.17 67 | 99.65 79 | 99.55 28 | 99.63 23 | 99.33 104 | 98.16 28 | 99.29 46 | 99.65 30 | 99.77 10 | 97.56 145 | 99.44 30 | 99.14 42 | 99.58 41 | 99.51 12 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| TranMVSNet+NR-MVSNet | | | 99.23 24 | 98.91 36 | 99.61 15 | 99.81 32 | 99.45 34 | 99.47 42 | 99.68 30 | 97.28 76 | 99.39 36 | 99.54 46 | 99.08 102 | 99.45 22 | 99.09 50 | 98.84 65 | 99.83 11 | 99.04 50 |
|
| CSCG | | | 99.23 24 | 99.15 24 | 99.32 56 | 99.83 23 | 99.45 34 | 98.97 103 | 99.21 125 | 98.83 13 | 99.04 83 | 99.43 56 | 99.64 30 | 99.26 44 | 98.85 76 | 98.20 104 | 99.62 38 | 99.62 6 |
|
| Gipuma |  | | 99.22 26 | 98.86 40 | 99.64 12 | 99.70 68 | 99.24 57 | 99.17 85 | 99.63 43 | 99.52 2 | 99.89 1 | 96.54 176 | 99.14 91 | 99.93 1 | 99.42 32 | 99.15 41 | 99.52 47 | 99.04 50 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| tfpnnormal | | | 99.19 27 | 98.90 37 | 99.54 26 | 99.81 32 | 99.55 28 | 99.60 27 | 99.54 59 | 98.53 19 | 99.23 53 | 98.40 111 | 98.23 144 | 99.40 31 | 99.29 37 | 99.36 29 | 99.63 37 | 98.95 65 |
|
| Baseline_NR-MVSNet | | | 99.18 28 | 98.87 38 | 99.54 26 | 99.74 59 | 99.56 26 | 99.36 57 | 99.62 48 | 96.53 119 | 99.29 46 | 99.85 14 | 98.64 133 | 99.40 31 | 99.03 61 | 99.63 9 | 99.83 11 | 98.86 74 |
|
| thisisatest0515 | | | 99.16 29 | 98.94 34 | 99.41 38 | 99.75 53 | 99.43 36 | 99.36 57 | 99.63 43 | 97.68 59 | 99.35 38 | 99.31 64 | 98.90 112 | 99.09 63 | 98.95 66 | 99.20 38 | 99.27 84 | 99.11 41 |
|
| CS-MVS-test | | | 99.16 29 | 98.78 45 | 99.60 17 | 99.80 38 | 99.72 9 | 99.69 16 | 99.73 23 | 95.88 141 | 99.51 26 | 98.53 108 | 99.54 42 | 99.21 48 | 99.24 40 | 99.43 23 | 99.66 34 | 99.15 39 |
|
| CS-MVS | | | 99.15 31 | 98.75 47 | 99.62 14 | 99.76 49 | 99.73 8 | 99.60 27 | 99.75 21 | 95.67 148 | 99.50 27 | 98.53 108 | 99.39 60 | 99.29 40 | 99.21 42 | 99.46 22 | 99.79 18 | 99.29 24 |
|
| APDe-MVS |  | | 99.15 31 | 98.95 31 | 99.39 44 | 99.77 44 | 99.28 54 | 99.52 36 | 99.54 59 | 97.22 81 | 99.06 77 | 99.20 76 | 99.64 30 | 99.05 67 | 99.14 44 | 99.02 52 | 99.39 66 | 99.17 37 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| WB-MVS | | | 99.14 33 | 99.31 15 | 98.95 96 | 99.81 32 | 99.61 20 | 98.85 118 | 99.51 66 | 99.01 9 | 97.37 192 | 99.33 62 | 99.56 40 | 98.70 87 | 99.44 30 | 99.29 33 | 99.45 57 | 98.96 64 |
|
| FC-MVSNet-train | | | 99.13 34 | 99.05 28 | 99.21 62 | 99.87 16 | 99.57 25 | 99.67 18 | 99.60 50 | 96.75 104 | 98.28 150 | 99.48 50 | 99.52 44 | 98.10 123 | 99.47 27 | 99.37 28 | 99.76 22 | 99.21 34 |
|
| NR-MVSNet | | | 99.10 35 | 98.68 57 | 99.58 20 | 99.89 12 | 99.23 60 | 99.35 61 | 99.63 43 | 96.58 112 | 99.36 37 | 99.05 84 | 98.67 131 | 99.46 20 | 99.63 16 | 98.73 78 | 99.80 15 | 98.88 73 |
|
| DVP-MVS++ | | | 99.09 36 | 99.25 18 | 98.90 102 | 99.53 108 | 99.37 44 | 99.17 85 | 99.48 74 | 98.28 25 | 97.95 170 | 99.54 46 | 99.88 4 | 98.13 122 | 99.08 51 | 98.94 56 | 99.15 97 | 99.65 2 |
|
| DVP-MVS |  | | 99.09 36 | 99.07 27 | 99.12 74 | 99.55 101 | 99.40 39 | 99.36 57 | 99.44 85 | 97.75 50 | 98.23 153 | 99.23 72 | 99.80 8 | 98.97 71 | 99.08 51 | 98.96 53 | 99.19 92 | 99.25 26 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| UniMVSNet (Re) | | | 99.08 38 | 98.69 55 | 99.54 26 | 99.75 53 | 99.33 49 | 99.29 69 | 99.64 42 | 96.75 104 | 99.48 30 | 99.30 66 | 98.69 126 | 99.26 44 | 98.94 68 | 98.76 74 | 99.78 19 | 99.02 54 |
|
| ACMMPR | | | 99.05 39 | 98.72 51 | 99.44 32 | 99.79 39 | 99.12 74 | 99.35 61 | 99.56 54 | 97.74 53 | 99.21 55 | 97.72 138 | 99.55 41 | 99.29 40 | 98.90 74 | 98.81 68 | 99.41 65 | 99.19 35 |
|
| DU-MVS | | | 99.04 40 | 98.59 61 | 99.56 22 | 99.74 59 | 99.23 60 | 99.29 69 | 99.63 43 | 96.58 112 | 99.55 21 | 99.05 84 | 98.68 128 | 99.36 35 | 99.03 61 | 98.60 85 | 99.77 20 | 98.97 59 |
|
| TSAR-MVS + MP. | | | 99.02 41 | 98.95 31 | 99.11 77 | 99.23 158 | 98.79 118 | 99.51 37 | 98.73 166 | 97.50 67 | 98.56 126 | 99.03 87 | 99.59 38 | 99.16 56 | 99.29 37 | 99.17 40 | 99.50 52 | 99.24 30 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| v10 | | | 99.01 42 | 98.66 58 | 99.41 38 | 99.52 113 | 99.39 40 | 99.57 31 | 99.66 37 | 97.59 64 | 99.32 42 | 99.88 9 | 99.23 74 | 99.50 18 | 97.77 141 | 97.98 115 | 98.92 127 | 98.78 84 |
|
| EG-PatchMatch MVS | | | 99.01 42 | 98.77 46 | 99.28 61 | 99.64 82 | 98.90 111 | 98.81 124 | 99.27 115 | 96.55 116 | 99.71 6 | 99.31 64 | 99.66 25 | 99.17 54 | 99.28 39 | 99.11 44 | 99.10 99 | 98.57 100 |
|
| PVSNet_Blended_VisFu | | | 98.98 44 | 98.79 43 | 99.21 62 | 99.76 49 | 99.34 47 | 99.35 61 | 99.35 100 | 97.12 87 | 99.46 32 | 99.56 41 | 98.89 113 | 98.08 127 | 99.05 55 | 98.58 87 | 99.27 84 | 98.98 58 |
|
| HFP-MVS | | | 98.97 45 | 98.70 53 | 99.29 59 | 99.67 73 | 98.98 94 | 99.13 91 | 99.53 62 | 97.76 47 | 98.90 98 | 98.07 126 | 99.50 50 | 99.14 59 | 98.64 88 | 98.78 72 | 99.37 68 | 99.18 36 |
|
| UniMVSNet_NR-MVSNet | | | 98.97 45 | 98.46 71 | 99.56 22 | 99.76 49 | 99.34 47 | 99.29 69 | 99.61 49 | 96.55 116 | 99.55 21 | 99.05 84 | 97.96 152 | 99.36 35 | 98.84 77 | 98.50 93 | 99.81 14 | 98.97 59 |
|
| casdiffmvs_mvg |  | | 98.96 47 | 98.87 38 | 99.07 80 | 99.82 28 | 99.36 45 | 99.36 57 | 99.22 122 | 98.13 30 | 97.74 177 | 99.42 57 | 99.46 53 | 98.59 95 | 98.39 100 | 98.95 55 | 99.71 29 | 98.39 118 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| EC-MVSNet | | | 98.96 47 | 98.45 74 | 99.56 22 | 99.88 14 | 99.70 11 | 99.68 17 | 99.78 16 | 94.15 182 | 98.97 87 | 98.26 118 | 99.21 78 | 99.35 37 | 99.30 36 | 99.14 42 | 99.73 25 | 99.40 18 |
|
| SED-MVS | | | 98.94 49 | 98.95 31 | 98.91 101 | 99.43 129 | 99.38 42 | 99.12 93 | 99.46 79 | 97.05 90 | 98.43 141 | 99.23 72 | 99.79 9 | 97.99 130 | 99.05 55 | 98.94 56 | 99.05 113 | 99.23 31 |
|
| ACMMP_NAP | | | 98.94 49 | 98.72 51 | 99.21 62 | 99.67 73 | 99.08 77 | 99.26 74 | 99.39 88 | 96.84 95 | 98.88 102 | 98.22 119 | 99.68 21 | 98.82 80 | 99.06 54 | 98.90 59 | 99.25 87 | 99.25 26 |
|
| v1144 | | | 98.94 49 | 98.53 66 | 99.42 36 | 99.62 86 | 99.03 88 | 99.58 30 | 99.36 97 | 97.99 36 | 99.49 29 | 99.91 8 | 99.20 81 | 99.51 17 | 97.61 146 | 97.85 122 | 98.95 122 | 98.10 141 |
|
| v8 | | | 98.94 49 | 98.60 59 | 99.35 53 | 99.54 105 | 99.39 40 | 99.55 33 | 99.67 34 | 97.48 68 | 99.13 69 | 99.81 19 | 99.10 98 | 99.39 33 | 97.86 136 | 97.89 120 | 98.81 136 | 98.66 93 |
|
| SteuartSystems-ACMMP | | | 98.94 49 | 98.52 67 | 99.43 35 | 99.79 39 | 99.13 73 | 99.33 65 | 99.55 56 | 96.17 134 | 99.04 83 | 97.53 144 | 99.65 29 | 99.46 20 | 99.04 60 | 98.76 74 | 99.44 60 | 99.35 20 |
| Skip Steuart: Steuart Systems R&D Blog. |
| v1192 | | | 98.91 54 | 98.48 70 | 99.41 38 | 99.61 90 | 99.03 88 | 99.64 20 | 99.25 119 | 97.91 42 | 99.58 17 | 99.92 4 | 99.07 104 | 99.45 22 | 97.55 150 | 97.68 136 | 98.93 124 | 98.23 131 |
|
| FMVSNet1 | | | 98.90 55 | 99.10 26 | 98.67 127 | 99.54 105 | 99.48 31 | 99.22 79 | 99.66 37 | 98.39 23 | 97.50 184 | 99.66 26 | 99.04 105 | 96.58 166 | 99.05 55 | 99.03 49 | 99.52 47 | 99.08 46 |
|
| ACMM | | 96.66 11 | 98.90 55 | 98.44 76 | 99.44 32 | 99.74 59 | 98.95 100 | 99.47 42 | 99.55 56 | 97.66 61 | 99.09 74 | 96.43 178 | 99.41 55 | 99.35 37 | 98.95 66 | 98.67 81 | 99.45 57 | 99.03 52 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| Anonymous20231211 | | | 98.89 57 | 98.79 43 | 98.99 93 | 99.82 28 | 99.41 38 | 99.18 84 | 99.31 110 | 96.92 92 | 98.54 128 | 98.58 106 | 98.84 118 | 97.46 147 | 99.45 28 | 99.29 33 | 99.65 36 | 99.08 46 |
|
| v1921920 | | | 98.89 57 | 98.46 71 | 99.39 44 | 99.58 94 | 99.04 86 | 99.64 20 | 99.17 131 | 97.91 42 | 99.64 15 | 99.92 4 | 98.99 110 | 99.44 25 | 97.44 157 | 97.57 145 | 98.84 134 | 98.35 121 |
|
| GeoE | | | 98.88 59 | 98.43 79 | 99.41 38 | 99.83 23 | 99.24 57 | 99.51 37 | 99.82 13 | 96.55 116 | 99.22 54 | 98.76 98 | 99.22 77 | 98.96 72 | 98.55 91 | 98.15 106 | 99.10 99 | 98.56 103 |
|
| v144192 | | | 98.88 59 | 98.46 71 | 99.37 51 | 99.56 100 | 99.03 88 | 99.61 26 | 99.26 116 | 97.79 46 | 99.58 17 | 99.88 9 | 99.11 96 | 99.43 27 | 97.38 162 | 97.61 141 | 98.80 137 | 98.43 115 |
|
| SMA-MVS |  | | 98.87 61 | 98.73 50 | 99.04 86 | 99.72 65 | 99.05 82 | 98.64 135 | 99.17 131 | 96.31 129 | 98.80 109 | 99.07 82 | 99.70 18 | 98.67 89 | 98.93 71 | 98.82 66 | 99.23 90 | 99.23 31 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| ACMP | | 96.54 13 | 98.87 61 | 98.40 82 | 99.41 38 | 99.74 59 | 98.88 112 | 99.29 69 | 99.50 69 | 96.85 94 | 98.96 90 | 97.05 160 | 99.66 25 | 99.43 27 | 98.98 65 | 98.60 85 | 99.52 47 | 98.81 79 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| DCV-MVSNet | | | 98.86 63 | 98.57 64 | 99.19 65 | 99.86 20 | 99.67 15 | 99.39 51 | 99.71 27 | 97.53 66 | 98.69 118 | 95.85 189 | 98.48 136 | 97.75 139 | 99.57 21 | 99.41 25 | 99.72 26 | 99.48 14 |
|
| v1240 | | | 98.86 63 | 98.41 81 | 99.38 49 | 99.59 92 | 99.05 82 | 99.65 19 | 99.14 136 | 97.68 59 | 99.66 13 | 99.93 3 | 98.72 125 | 99.45 22 | 97.38 162 | 97.72 134 | 98.79 138 | 98.35 121 |
|
| CP-MVS | | | 98.86 63 | 98.43 79 | 99.36 52 | 99.68 71 | 98.97 98 | 99.19 82 | 99.46 79 | 96.60 110 | 99.20 56 | 97.11 159 | 99.51 48 | 99.15 58 | 98.92 72 | 98.82 66 | 99.45 57 | 99.08 46 |
|
| v2v482 | | | 98.85 66 | 98.40 82 | 99.38 49 | 99.65 79 | 98.98 94 | 99.55 33 | 99.39 88 | 97.92 41 | 99.35 38 | 99.85 14 | 99.14 91 | 99.39 33 | 97.50 152 | 97.78 125 | 98.98 119 | 97.60 157 |
|
| DPE-MVS |  | | 98.84 67 | 98.69 55 | 99.00 90 | 99.05 177 | 99.26 55 | 99.19 82 | 99.35 100 | 95.85 143 | 98.74 115 | 99.27 68 | 99.66 25 | 98.30 115 | 98.90 74 | 98.93 58 | 99.37 68 | 99.00 56 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| OPM-MVS | | | 98.84 67 | 98.59 61 | 99.12 74 | 99.52 113 | 98.50 143 | 99.13 91 | 99.22 122 | 97.76 47 | 98.76 111 | 98.70 100 | 99.61 35 | 98.90 75 | 98.67 86 | 98.37 98 | 99.19 92 | 98.57 100 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| test20.03 | | | 98.84 67 | 98.74 49 | 98.95 96 | 99.77 44 | 99.33 49 | 99.21 81 | 99.46 79 | 97.29 75 | 98.88 102 | 99.65 30 | 99.10 98 | 97.07 157 | 99.11 47 | 98.76 74 | 99.32 77 | 97.98 145 |
|
| casdiffmvs |  | | 98.84 67 | 98.75 47 | 98.94 100 | 99.75 53 | 99.21 64 | 99.33 65 | 99.04 146 | 98.04 32 | 97.46 187 | 99.72 23 | 99.72 15 | 98.60 93 | 98.30 112 | 98.37 98 | 99.48 54 | 97.92 147 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| LGP-MVS_train | | | 98.84 67 | 98.33 88 | 99.44 32 | 99.78 42 | 98.98 94 | 99.39 51 | 99.55 56 | 95.41 153 | 98.90 98 | 97.51 145 | 99.68 21 | 99.44 25 | 99.03 61 | 98.81 68 | 99.57 42 | 98.91 69 |
|
| RPSCF | | | 98.84 67 | 98.81 42 | 98.89 104 | 99.37 137 | 98.95 100 | 98.51 147 | 98.85 159 | 97.73 55 | 98.33 146 | 98.97 92 | 99.14 91 | 98.95 73 | 99.18 43 | 98.68 80 | 99.31 78 | 98.99 57 |
|
| ACMMP |  | | 98.82 73 | 98.33 88 | 99.39 44 | 99.77 44 | 99.14 72 | 99.37 54 | 99.54 59 | 96.47 123 | 99.03 85 | 96.26 182 | 99.52 44 | 99.28 42 | 98.92 72 | 98.80 71 | 99.37 68 | 99.16 38 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| V42 | | | 98.81 74 | 98.49 69 | 99.18 66 | 99.52 113 | 98.92 106 | 99.50 39 | 99.29 112 | 97.43 71 | 98.97 87 | 99.81 19 | 99.00 109 | 99.30 39 | 97.93 132 | 98.01 113 | 98.51 162 | 98.34 125 |
|
| LS3D | | | 98.79 75 | 98.52 67 | 99.12 74 | 99.64 82 | 99.09 76 | 99.24 77 | 99.46 79 | 97.75 50 | 98.93 96 | 97.47 147 | 98.23 144 | 97.98 131 | 99.36 33 | 99.30 32 | 99.46 55 | 98.42 116 |
|
| MP-MVS |  | | 98.78 76 | 98.30 90 | 99.34 55 | 99.75 53 | 98.95 100 | 99.26 74 | 99.46 79 | 95.78 147 | 99.17 61 | 96.98 164 | 99.72 15 | 99.06 66 | 98.84 77 | 98.74 77 | 99.33 74 | 99.11 41 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| v148 | | | 98.77 77 | 98.45 74 | 99.15 70 | 99.68 71 | 98.94 104 | 99.49 40 | 99.31 110 | 97.95 38 | 98.91 97 | 99.65 30 | 99.62 34 | 99.18 51 | 97.99 130 | 97.64 140 | 98.33 167 | 97.38 162 |
|
| test1111 | | | 98.75 78 | 98.14 103 | 99.46 31 | 99.86 20 | 99.63 19 | 99.47 42 | 99.68 30 | 98.34 24 | 98.76 111 | 99.66 26 | 90.92 196 | 99.23 46 | 99.77 5 | 99.71 5 | 99.75 23 | 98.95 65 |
|
| ECVR-MVS |  | | 98.74 79 | 98.15 101 | 99.42 36 | 99.83 23 | 99.58 23 | 99.37 54 | 99.67 34 | 98.02 34 | 98.85 106 | 99.59 36 | 91.66 194 | 99.10 61 | 99.77 5 | 99.70 6 | 99.72 26 | 98.73 86 |
|
| SD-MVS | | | 98.73 80 | 98.54 65 | 98.95 96 | 99.14 167 | 98.76 121 | 98.46 151 | 99.14 136 | 97.71 57 | 98.56 126 | 98.06 128 | 99.61 35 | 98.85 79 | 98.56 90 | 97.74 131 | 99.54 44 | 99.32 22 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| MSP-MVS | | | 98.72 81 | 98.60 59 | 98.87 106 | 99.67 73 | 99.33 49 | 99.15 88 | 99.26 116 | 96.99 91 | 97.90 173 | 98.19 121 | 99.74 12 | 98.29 116 | 97.69 144 | 98.96 53 | 98.96 120 | 99.27 25 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| PGM-MVS | | | 98.69 82 | 98.09 108 | 99.39 44 | 99.76 49 | 99.07 78 | 99.30 68 | 99.51 66 | 94.76 164 | 99.18 60 | 96.70 171 | 99.51 48 | 99.20 49 | 98.79 82 | 98.71 79 | 99.39 66 | 99.11 41 |
|
| pmmvs-eth3d | | | 98.68 83 | 98.14 103 | 99.29 59 | 99.49 118 | 98.45 146 | 99.45 47 | 99.38 93 | 97.21 82 | 99.50 27 | 99.65 30 | 99.21 78 | 99.16 56 | 97.11 169 | 97.56 146 | 98.79 138 | 97.82 151 |
|
| EU-MVSNet | | | 98.68 83 | 98.94 34 | 98.37 147 | 99.14 167 | 98.74 123 | 99.64 20 | 98.20 191 | 98.21 26 | 99.17 61 | 99.66 26 | 99.18 84 | 99.08 64 | 99.11 47 | 98.86 61 | 95.00 204 | 98.83 76 |
|
| PMVS |  | 92.51 17 | 98.66 85 | 98.86 40 | 98.43 143 | 99.26 153 | 98.98 94 | 98.60 141 | 98.59 175 | 97.73 55 | 99.45 33 | 99.38 60 | 98.54 135 | 95.24 184 | 99.62 17 | 99.61 14 | 99.42 62 | 98.17 138 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| DeepC-MVS_fast | | 97.38 8 | 98.65 86 | 98.34 87 | 99.02 89 | 99.33 141 | 98.29 153 | 98.99 101 | 98.71 168 | 97.40 72 | 99.31 43 | 98.20 120 | 99.40 58 | 98.54 102 | 98.33 109 | 98.18 105 | 99.23 90 | 98.58 98 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| 3Dnovator | | 98.16 3 | 98.65 86 | 98.35 86 | 99.00 90 | 99.59 92 | 98.70 126 | 98.90 115 | 99.36 97 | 97.97 37 | 99.09 74 | 96.55 175 | 99.09 100 | 97.97 132 | 98.70 85 | 98.65 83 | 99.12 98 | 98.81 79 |
|
| TSAR-MVS + ACMM | | | 98.64 88 | 98.58 63 | 98.72 121 | 99.17 165 | 98.63 132 | 98.69 130 | 99.10 143 | 97.69 58 | 98.30 148 | 99.12 80 | 99.38 61 | 98.70 87 | 98.45 95 | 97.51 148 | 98.35 166 | 99.25 26 |
|
| DELS-MVS | | | 98.63 89 | 98.70 53 | 98.55 139 | 99.24 157 | 99.04 86 | 98.96 104 | 98.52 178 | 96.83 97 | 98.38 143 | 99.58 39 | 99.68 21 | 97.06 158 | 98.74 84 | 98.44 95 | 99.10 99 | 98.59 97 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| QAPM | | | 98.62 90 | 98.40 82 | 98.89 104 | 99.57 99 | 98.80 117 | 98.63 136 | 99.35 100 | 96.82 98 | 98.60 122 | 98.85 97 | 99.08 102 | 98.09 125 | 98.31 110 | 98.21 102 | 99.08 105 | 98.72 87 |
|
| EPP-MVSNet | | | 98.61 91 | 98.19 98 | 99.11 77 | 99.86 20 | 99.60 21 | 99.44 48 | 99.53 62 | 97.37 73 | 96.85 202 | 98.69 101 | 93.75 187 | 99.18 51 | 99.22 41 | 99.35 30 | 99.82 13 | 99.32 22 |
|
| 3Dnovator+ | | 97.85 5 | 98.61 91 | 98.14 103 | 99.15 70 | 99.62 86 | 98.37 150 | 99.10 94 | 99.51 66 | 98.04 32 | 98.98 86 | 96.07 186 | 98.75 124 | 98.55 100 | 98.51 93 | 98.40 96 | 99.17 94 | 98.82 77 |
|
| X-MVS | | | 98.59 93 | 97.99 114 | 99.30 58 | 99.75 53 | 99.07 78 | 99.17 85 | 99.50 69 | 96.62 108 | 98.95 92 | 93.95 205 | 99.37 62 | 99.11 60 | 98.94 68 | 98.86 61 | 99.35 72 | 99.09 45 |
|
| MVS_111021_HR | | | 98.58 94 | 98.26 93 | 98.96 95 | 99.32 144 | 98.81 115 | 98.48 149 | 98.99 151 | 96.81 100 | 99.16 64 | 98.07 126 | 99.23 74 | 98.89 77 | 98.43 97 | 98.27 101 | 98.90 129 | 98.24 130 |
|
| MVS_0304 | | | 98.57 95 | 98.36 85 | 98.82 113 | 99.72 65 | 98.94 104 | 98.92 109 | 99.14 136 | 96.76 103 | 99.33 41 | 98.30 115 | 99.73 13 | 96.74 162 | 98.05 127 | 97.79 124 | 99.08 105 | 98.97 59 |
|
| PM-MVS | | | 98.57 95 | 98.24 95 | 98.95 96 | 99.26 153 | 98.59 135 | 99.03 98 | 98.74 165 | 96.84 95 | 99.44 34 | 99.13 79 | 98.31 143 | 98.75 85 | 98.03 128 | 98.21 102 | 98.48 163 | 98.58 98 |
|
| PHI-MVS | | | 98.57 95 | 98.20 97 | 99.00 90 | 99.48 120 | 98.91 108 | 98.68 131 | 99.17 131 | 94.97 160 | 99.27 51 | 98.33 113 | 99.33 66 | 98.05 128 | 98.82 80 | 98.62 84 | 99.34 73 | 98.38 119 |
|
| HPM-MVS++ |  | | 98.56 98 | 98.08 109 | 99.11 77 | 99.53 108 | 98.61 134 | 99.02 100 | 99.32 108 | 96.29 131 | 99.06 77 | 97.23 154 | 99.50 50 | 98.77 83 | 98.15 123 | 97.90 118 | 98.96 120 | 98.90 70 |
|
| TSAR-MVS + GP. | | | 98.54 99 | 98.29 92 | 98.82 113 | 99.28 151 | 98.59 135 | 97.73 190 | 99.24 121 | 95.93 140 | 98.59 123 | 99.07 82 | 99.17 85 | 98.86 78 | 98.44 96 | 98.10 108 | 99.26 86 | 98.72 87 |
|
| UGNet | | | 98.52 100 | 99.00 30 | 97.96 168 | 99.58 94 | 99.26 55 | 99.27 73 | 99.40 86 | 98.07 31 | 98.28 150 | 98.76 98 | 99.71 17 | 92.24 212 | 98.94 68 | 98.85 63 | 99.00 118 | 99.43 17 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| Anonymous20231206 | | | 98.50 101 | 98.03 111 | 99.05 84 | 99.50 116 | 99.01 91 | 99.15 88 | 99.26 116 | 96.38 127 | 99.12 71 | 99.50 49 | 99.12 94 | 98.60 93 | 97.68 145 | 97.24 159 | 98.66 146 | 97.30 166 |
|
| CLD-MVS | | | 98.48 102 | 98.15 101 | 98.86 109 | 99.53 108 | 98.35 151 | 98.55 144 | 97.83 200 | 96.02 139 | 98.97 87 | 99.08 81 | 99.75 11 | 99.03 68 | 98.10 126 | 97.33 155 | 99.28 82 | 98.44 114 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| CANet | | | 98.47 103 | 98.30 90 | 98.67 127 | 99.65 79 | 98.87 113 | 98.82 123 | 99.01 149 | 96.14 135 | 99.29 46 | 98.86 95 | 99.01 107 | 96.54 167 | 98.36 104 | 98.08 110 | 98.72 142 | 98.80 83 |
|
| APD-MVS |  | | 98.47 103 | 97.97 115 | 99.05 84 | 99.64 82 | 98.91 108 | 98.94 106 | 99.45 84 | 94.40 175 | 98.77 110 | 97.26 153 | 99.41 55 | 98.21 119 | 98.67 86 | 98.57 90 | 99.31 78 | 98.57 100 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| Vis-MVSNet (Re-imp) | | | 98.46 105 | 98.23 96 | 98.73 120 | 99.81 32 | 99.29 53 | 98.79 125 | 99.50 69 | 96.20 133 | 96.03 208 | 98.29 116 | 96.98 167 | 98.54 102 | 99.11 47 | 99.08 45 | 99.70 30 | 98.62 95 |
|
| Fast-Effi-MVS+ | | | 98.42 106 | 97.79 121 | 99.15 70 | 99.69 70 | 98.66 130 | 98.94 106 | 99.68 30 | 94.49 169 | 99.05 79 | 98.06 128 | 98.86 115 | 98.48 105 | 98.18 120 | 97.78 125 | 99.05 113 | 98.54 106 |
|
| ETV-MVS | | | 98.41 107 | 97.76 122 | 99.17 67 | 99.58 94 | 99.01 91 | 98.91 111 | 99.50 69 | 93.33 195 | 99.31 43 | 96.82 168 | 98.42 139 | 98.17 121 | 99.13 46 | 99.08 45 | 99.54 44 | 98.56 103 |
|
| MVS_111021_LR | | | 98.39 108 | 98.11 106 | 98.71 123 | 99.08 174 | 98.54 141 | 98.23 172 | 98.56 177 | 96.57 114 | 99.13 69 | 98.41 110 | 98.86 115 | 98.65 91 | 98.23 118 | 97.87 121 | 98.65 148 | 98.28 127 |
|
| pmmvs5 | | | 98.37 109 | 97.81 120 | 99.03 87 | 99.46 122 | 98.97 98 | 99.03 98 | 98.96 153 | 95.85 143 | 99.05 79 | 99.45 53 | 98.66 132 | 98.79 82 | 96.02 186 | 97.52 147 | 98.87 131 | 98.21 134 |
|
| OMC-MVS | | | 98.35 110 | 98.10 107 | 98.64 133 | 98.85 184 | 97.99 172 | 98.56 143 | 98.21 189 | 97.26 79 | 98.87 104 | 98.54 107 | 99.27 72 | 98.43 107 | 98.34 107 | 97.66 137 | 98.92 127 | 97.65 156 |
|
| canonicalmvs | | | 98.34 111 | 97.92 117 | 98.83 111 | 99.45 124 | 99.21 64 | 98.37 159 | 99.53 62 | 97.06 89 | 97.74 177 | 96.95 166 | 95.05 184 | 98.36 110 | 98.77 83 | 98.85 63 | 99.51 51 | 99.53 9 |
|
| CHOSEN 1792x2688 | | | 98.31 112 | 98.02 112 | 98.66 129 | 99.55 101 | 98.57 138 | 99.38 53 | 99.25 119 | 98.42 20 | 98.48 136 | 99.58 39 | 99.85 6 | 98.31 114 | 95.75 189 | 95.71 184 | 96.96 191 | 98.27 129 |
|
| CPTT-MVS | | | 98.28 113 | 97.51 135 | 99.16 69 | 99.54 105 | 98.78 119 | 98.96 104 | 99.36 97 | 96.30 130 | 98.89 101 | 93.10 209 | 99.30 69 | 99.20 49 | 98.35 106 | 97.96 116 | 99.03 116 | 98.82 77 |
|
| TinyColmap | | | 98.27 114 | 97.62 132 | 99.03 87 | 99.29 149 | 97.79 181 | 98.92 109 | 98.95 154 | 97.48 68 | 99.52 24 | 98.65 103 | 97.86 154 | 98.90 75 | 98.34 107 | 97.27 157 | 98.64 149 | 95.97 186 |
|
| diffmvs |  | | 98.26 115 | 98.16 99 | 98.39 145 | 99.61 90 | 98.78 119 | 98.79 125 | 98.61 173 | 97.94 39 | 97.11 201 | 99.51 48 | 99.52 44 | 97.61 143 | 96.55 178 | 96.93 165 | 98.61 151 | 97.87 149 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| USDC | | | 98.26 115 | 97.57 133 | 99.06 81 | 99.42 132 | 97.98 174 | 98.83 120 | 98.85 159 | 97.57 65 | 99.59 16 | 99.15 78 | 98.59 134 | 98.99 70 | 97.42 158 | 96.08 183 | 98.69 145 | 96.23 184 |
|
| SF-MVS | | | 98.25 117 | 98.16 99 | 98.35 148 | 99.43 129 | 98.42 149 | 97.05 212 | 99.09 144 | 96.42 125 | 98.13 159 | 97.73 137 | 99.20 81 | 97.22 153 | 98.36 104 | 98.38 97 | 99.16 96 | 98.62 95 |
|
| MCST-MVS | | | 98.25 117 | 97.57 133 | 99.06 81 | 99.53 108 | 98.24 159 | 98.63 136 | 99.17 131 | 95.88 141 | 98.58 124 | 96.11 184 | 99.09 100 | 99.18 51 | 97.58 149 | 97.31 156 | 99.25 87 | 98.75 85 |
|
| IterMVS-LS | | | 98.23 119 | 97.66 128 | 98.90 102 | 99.63 85 | 99.38 42 | 99.07 95 | 99.48 74 | 97.75 50 | 98.81 108 | 99.37 61 | 94.57 186 | 97.88 136 | 96.54 179 | 97.04 162 | 98.53 159 | 98.97 59 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| TAPA-MVS | | 96.65 12 | 98.23 119 | 97.96 116 | 98.55 139 | 98.81 186 | 98.16 163 | 98.40 156 | 97.94 198 | 96.68 106 | 98.49 134 | 98.61 104 | 98.89 113 | 98.57 98 | 97.45 155 | 97.59 143 | 99.09 104 | 98.35 121 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| CNVR-MVS | | | 98.22 121 | 97.76 122 | 98.76 118 | 99.33 141 | 98.26 157 | 98.48 149 | 98.88 157 | 96.22 132 | 98.47 138 | 95.79 190 | 99.33 66 | 98.35 111 | 98.37 103 | 97.99 114 | 99.03 116 | 98.38 119 |
|
| IS_MVSNet | | | 98.20 122 | 98.00 113 | 98.44 142 | 99.82 28 | 99.48 31 | 99.25 76 | 99.56 54 | 95.58 150 | 93.93 220 | 97.56 143 | 96.52 172 | 98.27 117 | 99.08 51 | 99.20 38 | 99.80 15 | 98.56 103 |
|
| DeepPCF-MVS | | 96.68 10 | 98.20 122 | 98.26 93 | 98.12 161 | 97.03 223 | 98.11 166 | 98.44 153 | 97.70 202 | 96.77 102 | 98.52 130 | 98.91 93 | 99.17 85 | 98.58 97 | 98.41 99 | 98.02 112 | 98.46 164 | 98.46 111 |
|
| MSDG | | | 98.20 122 | 97.88 119 | 98.56 137 | 99.33 141 | 97.74 182 | 98.27 169 | 98.10 192 | 97.20 84 | 98.06 163 | 98.59 105 | 99.16 87 | 98.76 84 | 98.39 100 | 97.71 135 | 98.86 133 | 96.38 181 |
|
| testgi | | | 98.18 125 | 98.44 76 | 97.89 170 | 99.78 42 | 99.23 60 | 98.78 127 | 99.21 125 | 97.26 79 | 97.41 189 | 97.39 150 | 99.36 65 | 92.85 208 | 98.82 80 | 98.66 82 | 99.31 78 | 98.35 121 |
|
| Effi-MVS+ | | | 98.11 126 | 97.29 141 | 99.06 81 | 99.62 86 | 98.55 139 | 98.16 175 | 99.80 15 | 94.64 165 | 99.15 67 | 96.59 173 | 97.43 160 | 98.44 106 | 97.46 154 | 97.90 118 | 99.17 94 | 98.45 113 |
|
| FA-MVS(training) | | | 98.08 127 | 97.68 126 | 98.56 137 | 99.14 167 | 98.69 127 | 98.41 154 | 99.83 12 | 95.85 143 | 98.57 125 | 97.95 133 | 96.92 169 | 96.85 160 | 98.51 93 | 98.09 109 | 98.54 157 | 97.74 152 |
|
| HyFIR lowres test | | | 98.08 127 | 97.16 150 | 99.14 73 | 99.72 65 | 98.91 108 | 99.41 49 | 99.58 51 | 97.93 40 | 98.82 107 | 99.24 70 | 95.81 178 | 98.73 86 | 95.16 200 | 95.13 193 | 98.60 153 | 97.94 146 |
|
| EIA-MVS | | | 98.03 129 | 97.20 147 | 98.99 93 | 99.66 76 | 99.24 57 | 98.53 146 | 99.52 65 | 91.56 211 | 99.25 52 | 95.34 194 | 98.78 121 | 97.72 140 | 98.38 102 | 98.58 87 | 99.28 82 | 98.54 106 |
|
| train_agg | | | 97.99 130 | 97.26 142 | 98.83 111 | 99.43 129 | 98.22 161 | 98.91 111 | 99.07 145 | 94.43 173 | 97.96 169 | 96.42 179 | 99.30 69 | 98.81 81 | 97.39 160 | 96.62 171 | 98.82 135 | 98.47 109 |
|
| MSLP-MVS++ | | | 97.99 130 | 97.64 131 | 98.40 144 | 98.91 182 | 98.47 145 | 97.12 210 | 98.78 163 | 96.49 121 | 98.48 136 | 93.57 207 | 99.12 94 | 98.51 104 | 98.31 110 | 98.58 87 | 98.58 155 | 98.95 65 |
|
| CDPH-MVS | | | 97.99 130 | 97.23 145 | 98.87 106 | 99.58 94 | 98.29 153 | 98.83 120 | 99.20 127 | 93.76 189 | 98.11 161 | 96.11 184 | 99.16 87 | 98.23 118 | 97.80 139 | 97.22 160 | 99.29 81 | 98.28 127 |
|
| FMVSNet2 | | | 97.94 133 | 98.08 109 | 97.77 176 | 98.71 190 | 99.21 64 | 98.62 138 | 99.47 76 | 96.62 108 | 96.37 207 | 99.20 76 | 97.70 156 | 94.39 195 | 97.39 160 | 97.75 130 | 99.08 105 | 98.70 90 |
|
| PVSNet_BlendedMVS | | | 97.93 134 | 97.66 128 | 98.25 154 | 99.30 146 | 98.67 128 | 98.31 164 | 97.95 196 | 94.30 179 | 98.75 113 | 97.63 140 | 98.76 122 | 96.30 174 | 98.29 113 | 97.78 125 | 98.93 124 | 98.18 136 |
|
| PVSNet_Blended | | | 97.93 134 | 97.66 128 | 98.25 154 | 99.30 146 | 98.67 128 | 98.31 164 | 97.95 196 | 94.30 179 | 98.75 113 | 97.63 140 | 98.76 122 | 96.30 174 | 98.29 113 | 97.78 125 | 98.93 124 | 98.18 136 |
|
| OpenMVS |  | 97.26 9 | 97.88 136 | 97.17 149 | 98.70 124 | 99.50 116 | 98.55 139 | 98.34 162 | 99.11 141 | 93.92 187 | 98.90 98 | 95.04 199 | 98.23 144 | 97.38 150 | 98.11 125 | 98.12 107 | 98.95 122 | 98.23 131 |
|
| pmmvs4 | | | 97.87 137 | 97.02 154 | 98.86 109 | 99.20 159 | 97.68 185 | 98.89 116 | 99.03 147 | 96.57 114 | 99.12 71 | 99.03 87 | 97.26 164 | 98.42 108 | 95.16 200 | 96.34 175 | 98.53 159 | 97.10 173 |
|
| NCCC | | | 97.84 138 | 96.96 156 | 98.87 106 | 99.39 135 | 98.27 156 | 98.46 151 | 99.02 148 | 96.78 101 | 98.73 117 | 91.12 213 | 98.91 111 | 98.57 98 | 97.83 138 | 97.49 149 | 99.04 115 | 98.33 126 |
|
| Effi-MVS+-dtu | | | 97.78 139 | 97.37 139 | 98.26 152 | 99.25 155 | 98.50 143 | 97.89 184 | 99.19 130 | 94.51 167 | 98.16 157 | 95.93 187 | 98.80 120 | 95.97 177 | 98.27 117 | 97.38 152 | 99.10 99 | 98.23 131 |
|
| MDA-MVSNet-bldmvs | | | 97.75 140 | 97.26 142 | 98.33 149 | 99.35 140 | 98.45 146 | 99.32 67 | 97.21 207 | 97.90 44 | 99.05 79 | 99.01 89 | 96.86 170 | 99.08 64 | 99.36 33 | 92.97 203 | 95.97 200 | 96.25 183 |
|
| CDS-MVSNet | | | 97.75 140 | 97.68 126 | 97.83 174 | 99.08 174 | 98.20 162 | 98.68 131 | 98.61 173 | 95.63 149 | 97.80 175 | 99.24 70 | 96.93 168 | 94.09 200 | 97.96 131 | 97.82 123 | 98.71 143 | 97.99 143 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| CNLPA | | | 97.75 140 | 97.26 142 | 98.32 151 | 98.58 198 | 97.86 177 | 97.80 186 | 98.09 193 | 96.49 121 | 98.49 134 | 96.15 183 | 98.08 147 | 98.35 111 | 98.00 129 | 97.03 163 | 98.61 151 | 97.21 170 |
|
| PLC |  | 95.63 15 | 97.73 143 | 97.01 155 | 98.57 136 | 99.10 171 | 97.80 180 | 97.72 191 | 98.77 164 | 96.34 128 | 98.38 143 | 93.46 208 | 98.06 148 | 98.66 90 | 97.90 134 | 97.65 139 | 98.77 140 | 97.90 148 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| MVS_Test | | | 97.69 144 | 97.15 151 | 98.33 149 | 99.27 152 | 98.43 148 | 98.25 170 | 99.29 112 | 95.00 159 | 97.39 191 | 98.86 95 | 98.00 151 | 97.14 155 | 95.38 195 | 96.22 177 | 98.62 150 | 98.15 140 |
|
| GBi-Net | | | 97.69 144 | 97.75 124 | 97.62 177 | 98.71 190 | 99.21 64 | 98.62 138 | 99.33 104 | 94.09 183 | 95.60 210 | 98.17 123 | 95.97 175 | 94.39 195 | 99.05 55 | 99.03 49 | 99.08 105 | 98.70 90 |
|
| test1 | | | 97.69 144 | 97.75 124 | 97.62 177 | 98.71 190 | 99.21 64 | 98.62 138 | 99.33 104 | 94.09 183 | 95.60 210 | 98.17 123 | 95.97 175 | 94.39 195 | 99.05 55 | 99.03 49 | 99.08 105 | 98.70 90 |
|
| CANet_DTU | | | 97.65 147 | 97.50 137 | 97.82 175 | 99.19 162 | 98.08 168 | 98.41 154 | 98.67 170 | 94.40 175 | 99.16 64 | 98.32 114 | 98.69 126 | 93.96 202 | 97.87 135 | 97.61 141 | 97.51 187 | 97.56 159 |
|
| IterMVS-SCA-FT | | | 97.63 148 | 96.86 158 | 98.52 141 | 99.48 120 | 98.71 125 | 98.84 119 | 98.91 155 | 96.44 124 | 99.16 64 | 99.56 41 | 95.54 180 | 97.95 133 | 95.68 192 | 95.07 196 | 96.76 192 | 97.03 176 |
|
| TSAR-MVS + COLMAP | | | 97.62 149 | 97.31 140 | 97.98 166 | 98.47 204 | 97.39 189 | 98.29 166 | 98.25 188 | 96.68 106 | 97.54 183 | 98.87 94 | 98.04 150 | 97.08 156 | 96.78 173 | 96.26 176 | 98.26 170 | 97.12 172 |
|
| MS-PatchMatch | | | 97.60 150 | 97.22 146 | 98.04 165 | 98.67 194 | 97.18 194 | 97.91 182 | 98.28 187 | 95.82 146 | 98.34 145 | 97.66 139 | 98.38 140 | 97.77 138 | 97.10 170 | 97.25 158 | 97.27 189 | 97.18 171 |
|
| PCF-MVS | | 95.58 16 | 97.60 150 | 96.67 159 | 98.69 125 | 99.44 127 | 98.23 160 | 98.37 159 | 98.81 161 | 93.01 199 | 98.22 154 | 97.97 132 | 99.59 38 | 98.20 120 | 95.72 191 | 95.08 194 | 99.08 105 | 97.09 175 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| HQP-MVS | | | 97.58 152 | 96.65 162 | 98.66 129 | 99.30 146 | 97.99 172 | 97.88 185 | 98.65 171 | 94.58 166 | 98.66 119 | 94.65 203 | 99.15 90 | 98.59 95 | 96.10 184 | 95.59 185 | 98.90 129 | 98.50 108 |
|
| DI_MVS_plusplus_trai | | | 97.57 153 | 96.55 164 | 98.77 117 | 99.55 101 | 98.76 121 | 99.22 79 | 99.00 150 | 97.08 88 | 97.95 170 | 97.78 136 | 91.35 195 | 98.02 129 | 96.20 182 | 96.81 167 | 98.87 131 | 97.87 149 |
|
| AdaColmap |  | | 97.57 153 | 96.57 163 | 98.74 119 | 99.25 155 | 98.01 170 | 98.36 161 | 98.98 152 | 94.44 172 | 98.47 138 | 92.44 210 | 97.91 153 | 98.62 92 | 98.19 119 | 97.74 131 | 98.73 141 | 97.28 167 |
|
| baseline | | | 97.50 155 | 97.51 135 | 97.50 181 | 99.18 163 | 97.38 190 | 98.00 178 | 98.00 195 | 96.52 120 | 97.49 185 | 99.28 67 | 99.43 54 | 95.31 183 | 95.27 197 | 96.22 177 | 96.99 190 | 98.47 109 |
|
| IterMVS | | | 97.40 156 | 96.67 159 | 98.25 154 | 99.45 124 | 98.66 130 | 98.87 117 | 98.73 166 | 96.40 126 | 98.94 95 | 99.56 41 | 95.26 182 | 97.58 144 | 95.38 195 | 94.70 198 | 95.90 201 | 96.72 179 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| dmvs_re | | | 97.38 157 | 96.15 172 | 98.82 113 | 99.39 135 | 98.34 152 | 98.65 134 | 98.88 157 | 90.80 218 | 98.86 105 | 92.35 211 | 95.13 183 | 98.09 125 | 98.84 77 | 98.88 60 | 99.06 112 | 98.71 89 |
|
| CVMVSNet | | | 97.38 157 | 97.39 138 | 97.37 184 | 98.58 198 | 97.72 183 | 98.70 129 | 97.42 205 | 97.21 82 | 95.95 209 | 99.46 52 | 93.31 190 | 97.38 150 | 97.60 147 | 97.78 125 | 96.18 197 | 98.66 93 |
|
| new-patchmatchnet | | | 97.26 159 | 96.12 173 | 98.58 135 | 99.55 101 | 98.63 132 | 99.14 90 | 97.04 209 | 98.80 14 | 99.19 58 | 99.92 4 | 99.19 83 | 98.92 74 | 95.51 194 | 87.04 212 | 97.66 184 | 93.73 202 |
|
| MIMVSNet | | | 97.24 160 | 97.15 151 | 97.36 185 | 99.03 178 | 98.52 142 | 98.55 144 | 99.73 23 | 94.94 163 | 94.94 217 | 97.98 131 | 97.37 162 | 93.66 203 | 97.60 147 | 97.34 154 | 98.23 173 | 96.29 182 |
|
| PatchMatch-RL | | | 97.24 160 | 96.45 167 | 98.17 158 | 98.70 193 | 97.57 188 | 97.31 205 | 98.48 181 | 94.42 174 | 98.39 142 | 95.74 191 | 96.35 174 | 97.88 136 | 97.75 142 | 97.48 150 | 98.24 172 | 95.87 187 |
|
| thisisatest0530 | | | 97.20 162 | 95.95 177 | 98.66 129 | 99.46 122 | 98.84 114 | 98.29 166 | 99.20 127 | 94.51 167 | 98.25 152 | 97.42 148 | 85.03 211 | 97.68 141 | 98.43 97 | 98.56 91 | 99.08 105 | 98.89 72 |
|
| tttt0517 | | | 97.18 163 | 95.92 178 | 98.65 132 | 99.49 118 | 98.92 106 | 98.29 166 | 99.20 127 | 94.37 177 | 98.17 155 | 97.37 151 | 84.72 214 | 97.68 141 | 98.55 91 | 98.56 91 | 99.10 99 | 98.95 65 |
|
| MDTV_nov1_ep13_2view | | | 97.12 164 | 96.19 171 | 98.22 157 | 99.13 170 | 98.05 169 | 99.24 77 | 99.47 76 | 97.61 62 | 99.15 67 | 99.59 36 | 99.01 107 | 98.40 109 | 94.87 203 | 90.14 206 | 93.91 207 | 94.04 201 |
|
| MAR-MVS | | | 97.12 164 | 96.28 170 | 98.11 162 | 98.94 180 | 97.22 192 | 97.65 195 | 99.38 93 | 90.93 217 | 98.15 158 | 95.17 196 | 97.13 165 | 96.48 170 | 97.71 143 | 97.40 151 | 98.06 177 | 98.40 117 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| Fast-Effi-MVS+-dtu | | | 96.99 166 | 96.46 166 | 97.61 179 | 98.98 179 | 97.89 175 | 97.54 199 | 99.76 19 | 93.43 193 | 96.55 206 | 94.93 200 | 98.06 148 | 94.32 198 | 96.93 171 | 96.50 173 | 98.53 159 | 97.47 160 |
|
| FPMVS | | | 96.97 167 | 97.20 147 | 96.70 201 | 97.75 215 | 96.11 206 | 97.72 191 | 95.47 213 | 97.13 86 | 98.02 165 | 97.57 142 | 96.67 171 | 92.97 207 | 99.00 64 | 98.34 100 | 98.28 169 | 95.58 189 |
|
| TAMVS | | | 96.95 168 | 96.94 157 | 96.97 196 | 99.07 176 | 97.67 187 | 97.98 180 | 97.12 208 | 95.04 158 | 95.41 213 | 99.27 68 | 95.57 179 | 94.09 200 | 97.32 164 | 97.11 161 | 98.16 175 | 96.59 180 |
|
| FMVSNet3 | | | 96.85 169 | 96.67 159 | 97.06 190 | 97.56 218 | 99.01 91 | 97.99 179 | 99.33 104 | 94.09 183 | 95.60 210 | 98.17 123 | 95.97 175 | 93.26 206 | 94.76 205 | 96.22 177 | 98.59 154 | 98.46 111 |
|
| GA-MVS | | | 96.84 170 | 95.86 180 | 97.98 166 | 99.16 166 | 98.29 153 | 97.91 182 | 98.64 172 | 95.14 156 | 97.71 179 | 98.04 130 | 88.90 199 | 96.50 169 | 96.41 181 | 96.61 172 | 97.97 181 | 97.60 157 |
|
| CHOSEN 280x420 | | | 96.80 171 | 96.30 169 | 97.39 182 | 99.09 172 | 96.52 198 | 98.76 128 | 99.29 112 | 93.88 188 | 97.65 180 | 98.34 112 | 93.66 188 | 96.29 176 | 98.28 115 | 97.73 133 | 93.27 210 | 95.70 188 |
|
| gg-mvs-nofinetune | | | 96.77 172 | 96.52 165 | 97.06 190 | 99.66 76 | 97.82 179 | 97.54 199 | 99.86 8 | 98.69 15 | 98.61 121 | 99.94 2 | 89.62 197 | 88.37 220 | 97.55 150 | 96.67 169 | 98.30 168 | 95.35 190 |
|
| DPM-MVS | | | 96.73 173 | 95.70 183 | 97.95 169 | 98.93 181 | 97.26 191 | 97.39 204 | 98.44 183 | 95.47 152 | 97.62 181 | 90.71 214 | 98.47 138 | 97.03 159 | 95.02 202 | 95.27 190 | 98.26 170 | 97.67 154 |
|
| baseline1 | | | 96.72 174 | 95.40 185 | 98.26 152 | 99.53 108 | 98.81 115 | 98.32 163 | 98.80 162 | 94.96 161 | 96.78 205 | 96.50 177 | 84.87 213 | 96.68 165 | 97.42 158 | 97.91 117 | 99.46 55 | 97.33 165 |
|
| N_pmnet | | | 96.68 175 | 95.70 183 | 97.84 173 | 99.42 132 | 98.00 171 | 99.35 61 | 98.21 189 | 98.40 22 | 98.13 159 | 99.42 57 | 99.30 69 | 97.44 149 | 94.00 209 | 88.79 207 | 94.47 206 | 91.96 208 |
|
| pmnet_mix02 | | | 96.61 176 | 95.32 186 | 98.11 162 | 99.41 134 | 97.68 185 | 99.05 96 | 97.59 203 | 98.16 28 | 99.05 79 | 99.48 50 | 99.11 96 | 98.32 113 | 92.36 213 | 87.67 209 | 95.26 203 | 92.80 206 |
|
| new_pmnet | | | 96.59 177 | 96.40 168 | 96.81 198 | 98.24 211 | 95.46 215 | 97.71 193 | 94.75 216 | 96.92 92 | 96.80 204 | 99.23 72 | 97.81 155 | 96.69 163 | 96.58 177 | 95.16 192 | 96.69 193 | 93.64 203 |
|
| PMMVS | | | 96.47 178 | 95.81 181 | 97.23 186 | 97.38 220 | 95.96 210 | 97.31 205 | 96.91 210 | 93.21 196 | 97.93 172 | 97.14 157 | 97.64 158 | 95.70 179 | 95.24 198 | 96.18 180 | 98.17 174 | 95.33 191 |
|
| EPNet | | | 96.44 179 | 96.08 174 | 96.86 197 | 99.32 144 | 97.15 195 | 97.69 194 | 99.32 108 | 93.67 190 | 98.11 161 | 95.64 192 | 93.44 189 | 89.07 218 | 96.86 172 | 96.83 166 | 97.67 183 | 98.97 59 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| thres600view7 | | | 96.35 180 | 94.27 188 | 98.79 116 | 99.66 76 | 99.18 69 | 98.94 106 | 99.38 93 | 94.37 177 | 97.21 199 | 87.19 216 | 84.10 215 | 98.10 123 | 98.16 121 | 99.47 20 | 99.42 62 | 97.43 161 |
|
| EPNet_dtu | | | 96.31 181 | 95.96 176 | 96.72 200 | 99.18 163 | 95.39 216 | 97.03 213 | 99.13 140 | 93.02 198 | 99.35 38 | 97.23 154 | 97.07 166 | 90.70 217 | 95.74 190 | 95.08 194 | 94.94 205 | 98.16 139 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| pmmvs3 | | | 96.30 182 | 95.87 179 | 96.80 199 | 97.66 217 | 96.48 199 | 97.93 181 | 93.80 217 | 93.40 194 | 98.54 128 | 98.27 117 | 97.50 159 | 97.37 152 | 97.49 153 | 93.11 202 | 95.52 202 | 94.85 195 |
|
| PMMVS2 | | | 96.29 183 | 97.05 153 | 95.40 211 | 98.32 210 | 96.16 203 | 98.18 174 | 97.46 204 | 97.20 84 | 84.51 226 | 99.60 34 | 98.68 128 | 96.37 171 | 98.59 89 | 97.38 152 | 97.58 186 | 91.76 209 |
|
| thres200 | | | 96.23 184 | 94.13 189 | 98.69 125 | 99.44 127 | 99.18 69 | 98.58 142 | 99.38 93 | 93.52 192 | 97.35 193 | 86.33 221 | 85.83 209 | 97.93 134 | 98.16 121 | 98.78 72 | 99.42 62 | 97.10 173 |
|
| thres400 | | | 96.22 185 | 94.08 191 | 98.72 121 | 99.58 94 | 99.05 82 | 98.83 120 | 99.22 122 | 94.01 186 | 97.40 190 | 86.34 220 | 84.91 212 | 97.93 134 | 97.85 137 | 99.08 45 | 99.37 68 | 97.28 167 |
|
| tfpn200view9 | | | 96.17 186 | 94.08 191 | 98.60 134 | 99.37 137 | 99.18 69 | 98.68 131 | 99.39 88 | 92.02 205 | 97.30 195 | 86.53 218 | 86.34 206 | 97.45 148 | 98.15 123 | 99.08 45 | 99.43 61 | 97.28 167 |
|
| CMPMVS |  | 74.71 19 | 96.17 186 | 96.06 175 | 96.30 205 | 97.41 219 | 94.52 219 | 94.83 221 | 95.46 214 | 91.57 210 | 97.26 198 | 94.45 204 | 98.33 142 | 94.98 186 | 98.28 115 | 97.59 143 | 97.86 182 | 97.68 153 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| test2506 | | | 96.12 188 | 93.35 201 | 99.35 53 | 99.83 23 | 99.58 23 | 99.37 54 | 99.67 34 | 98.02 34 | 98.44 140 | 97.51 145 | 60.03 229 | 99.10 61 | 99.77 5 | 99.70 6 | 99.72 26 | 98.86 74 |
|
| IB-MVS | | 95.85 14 | 95.87 189 | 94.88 187 | 97.02 193 | 99.09 172 | 98.25 158 | 97.16 207 | 97.38 206 | 91.97 208 | 97.77 176 | 83.61 223 | 97.29 163 | 92.03 215 | 97.16 168 | 97.66 137 | 98.66 146 | 98.20 135 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| test0.0.03 1 | | | 95.81 190 | 95.77 182 | 95.85 210 | 99.20 159 | 98.15 165 | 97.49 203 | 98.50 179 | 92.24 201 | 92.74 223 | 96.82 168 | 92.70 191 | 88.60 219 | 97.31 166 | 97.01 164 | 98.57 156 | 96.19 185 |
|
| thres100view900 | | | 95.74 191 | 93.66 200 | 98.17 158 | 99.37 137 | 98.59 135 | 98.10 176 | 98.33 186 | 92.02 205 | 97.30 195 | 86.53 218 | 86.34 206 | 96.69 163 | 96.77 174 | 98.47 94 | 99.24 89 | 96.89 177 |
|
| ET-MVSNet_ETH3D | | | 95.72 192 | 93.85 196 | 97.89 170 | 97.30 221 | 98.09 167 | 98.19 173 | 98.40 184 | 94.46 171 | 98.01 168 | 96.71 170 | 77.85 225 | 96.76 161 | 96.08 185 | 96.39 174 | 98.70 144 | 97.36 163 |
|
| baseline2 | | | 95.58 193 | 94.04 193 | 97.38 183 | 98.80 187 | 98.16 163 | 97.14 208 | 97.80 201 | 91.45 212 | 97.49 185 | 95.22 195 | 83.63 216 | 94.98 186 | 96.42 180 | 96.66 170 | 98.06 177 | 96.76 178 |
|
| PatchT | | | 95.49 194 | 93.29 202 | 98.06 164 | 98.65 195 | 96.20 202 | 98.91 111 | 99.73 23 | 92.00 207 | 98.50 131 | 96.67 172 | 83.25 217 | 96.34 172 | 94.40 206 | 95.50 186 | 96.21 196 | 95.04 193 |
|
| CR-MVSNet | | | 95.38 195 | 93.01 203 | 98.16 160 | 98.63 196 | 95.85 212 | 97.64 196 | 99.78 16 | 91.27 214 | 98.50 131 | 96.84 167 | 82.16 218 | 96.34 172 | 94.40 206 | 95.50 186 | 98.05 179 | 95.04 193 |
|
| MVSTER | | | 95.38 195 | 93.99 195 | 97.01 194 | 98.83 185 | 98.95 100 | 96.62 214 | 99.14 136 | 92.17 203 | 97.44 188 | 97.29 152 | 77.88 224 | 91.63 216 | 97.45 155 | 96.18 180 | 98.41 165 | 97.99 143 |
|
| MVS-HIRNet | | | 94.86 197 | 93.83 197 | 96.07 206 | 97.07 222 | 94.00 220 | 94.31 222 | 99.17 131 | 91.23 216 | 98.17 155 | 98.69 101 | 97.43 160 | 95.66 180 | 94.05 208 | 91.92 204 | 92.04 217 | 89.46 217 |
|
| test-LLR | | | 94.79 198 | 93.71 198 | 96.06 207 | 99.20 159 | 96.16 203 | 96.31 216 | 98.50 179 | 89.98 219 | 94.08 218 | 97.01 161 | 86.43 204 | 92.20 213 | 96.76 175 | 95.31 188 | 96.05 198 | 94.31 198 |
|
| RPMNet | | | 94.72 199 | 92.01 208 | 97.88 172 | 98.56 201 | 95.85 212 | 97.78 187 | 99.70 29 | 91.27 214 | 98.33 146 | 93.69 206 | 81.88 219 | 94.91 189 | 92.60 211 | 94.34 200 | 98.01 180 | 94.46 197 |
|
| gm-plane-assit | | | 94.62 200 | 91.39 210 | 98.39 145 | 99.90 11 | 99.47 33 | 99.40 50 | 99.65 39 | 97.44 70 | 99.56 20 | 99.68 25 | 59.40 230 | 94.23 199 | 96.17 183 | 94.77 197 | 97.61 185 | 92.79 207 |
|
| test-mter | | | 94.62 200 | 94.02 194 | 95.32 212 | 97.72 216 | 96.75 196 | 96.23 218 | 95.67 212 | 89.83 222 | 93.23 222 | 96.99 163 | 85.94 208 | 92.66 211 | 97.32 164 | 96.11 182 | 96.44 194 | 95.22 192 |
|
| FMVSNet5 | | | 94.57 202 | 92.77 204 | 96.67 202 | 97.88 213 | 98.72 124 | 97.54 199 | 98.70 169 | 88.64 223 | 95.11 215 | 86.90 217 | 81.77 220 | 93.27 205 | 97.92 133 | 98.07 111 | 97.50 188 | 97.34 164 |
|
| SCA | | | 94.53 203 | 91.95 209 | 97.55 180 | 98.58 198 | 97.86 177 | 98.49 148 | 99.68 30 | 95.11 157 | 99.07 76 | 95.87 188 | 87.24 202 | 96.53 168 | 89.77 216 | 87.08 211 | 92.96 212 | 90.69 212 |
|
| MDTV_nov1_ep13 | | | 94.47 204 | 92.15 206 | 97.17 187 | 98.54 203 | 96.42 200 | 98.10 176 | 98.89 156 | 94.49 169 | 98.02 165 | 97.41 149 | 86.49 203 | 95.56 181 | 90.85 214 | 87.95 208 | 93.91 207 | 91.45 211 |
|
| TESTMET0.1,1 | | | 94.44 205 | 93.71 198 | 95.30 213 | 97.84 214 | 96.16 203 | 96.31 216 | 95.32 215 | 89.98 219 | 94.08 218 | 97.01 161 | 86.43 204 | 92.20 213 | 96.76 175 | 95.31 188 | 96.05 198 | 94.31 198 |
|
| ADS-MVSNet | | | 94.41 206 | 92.13 207 | 97.07 189 | 98.86 183 | 96.60 197 | 98.38 158 | 98.47 182 | 96.13 137 | 98.02 165 | 96.98 164 | 87.50 201 | 95.87 178 | 89.89 215 | 87.58 210 | 92.79 214 | 90.27 214 |
|
| tpm | | | 93.89 207 | 91.21 211 | 97.03 192 | 98.36 208 | 96.07 207 | 97.53 202 | 99.65 39 | 92.24 201 | 98.64 120 | 97.23 154 | 74.67 228 | 94.64 193 | 92.68 210 | 90.73 205 | 93.37 209 | 94.82 196 |
|
| PatchmatchNet |  | | 93.88 208 | 91.08 212 | 97.14 188 | 98.75 189 | 96.01 209 | 98.25 170 | 99.39 88 | 94.95 162 | 98.96 90 | 96.32 180 | 85.35 210 | 95.50 182 | 88.89 217 | 85.89 215 | 91.99 218 | 90.15 215 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| EPMVS | | | 93.67 209 | 90.82 213 | 96.99 195 | 98.62 197 | 96.39 201 | 98.40 156 | 99.11 141 | 95.54 151 | 97.87 174 | 97.14 157 | 81.27 222 | 94.97 188 | 88.54 219 | 86.80 213 | 92.95 213 | 90.06 216 |
|
| MVE |  | 82.47 18 | 93.12 210 | 94.09 190 | 91.99 216 | 90.79 224 | 82.50 225 | 93.93 223 | 96.30 211 | 96.06 138 | 88.81 224 | 98.19 121 | 96.38 173 | 97.56 145 | 97.24 167 | 95.18 191 | 84.58 224 | 93.07 204 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| CostFormer | | | 92.75 211 | 89.49 215 | 96.55 203 | 98.78 188 | 95.83 214 | 97.55 198 | 98.59 175 | 91.83 209 | 97.34 194 | 96.31 181 | 78.53 223 | 94.50 194 | 86.14 220 | 84.92 216 | 92.54 215 | 92.84 205 |
|
| tpmrst | | | 92.45 212 | 89.48 216 | 95.92 209 | 98.43 206 | 95.03 217 | 97.14 208 | 97.92 199 | 94.16 181 | 97.56 182 | 97.86 135 | 81.63 221 | 93.56 204 | 85.89 221 | 82.86 217 | 90.91 222 | 88.95 219 |
|
| dps | | | 92.35 213 | 88.78 218 | 96.52 204 | 98.21 212 | 95.94 211 | 97.78 187 | 98.38 185 | 89.88 221 | 96.81 203 | 95.07 198 | 75.31 227 | 94.70 192 | 88.62 218 | 86.21 214 | 93.21 211 | 90.41 213 |
|
| E-PMN | | | 92.28 214 | 90.12 214 | 94.79 214 | 98.56 201 | 90.90 222 | 95.16 220 | 93.68 218 | 95.36 154 | 95.10 216 | 96.56 174 | 89.05 198 | 95.24 184 | 95.21 199 | 81.84 219 | 90.98 220 | 81.94 221 |
|
| EMVS | | | 91.84 215 | 89.39 217 | 94.70 215 | 98.44 205 | 90.84 223 | 95.27 219 | 93.53 219 | 95.18 155 | 95.26 214 | 95.62 193 | 87.59 200 | 94.77 191 | 94.87 203 | 80.72 220 | 90.95 221 | 80.88 222 |
|
| tpm cat1 | | | 91.52 216 | 87.70 219 | 95.97 208 | 98.33 209 | 94.98 218 | 97.06 211 | 98.03 194 | 92.11 204 | 98.03 164 | 94.77 202 | 77.19 226 | 92.71 209 | 83.56 222 | 82.24 218 | 91.67 219 | 89.04 218 |
|
| test_method | | | 77.69 217 | 85.40 220 | 68.69 217 | 42.66 226 | 55.39 227 | 82.17 226 | 52.05 221 | 92.83 200 | 84.52 225 | 94.88 201 | 95.41 181 | 65.37 221 | 92.49 212 | 79.32 221 | 85.36 223 | 87.50 220 |
|
| GG-mvs-BLEND | | | 65.66 218 | 92.62 205 | 34.20 219 | 1.45 229 | 93.75 221 | 85.40 225 | 1.64 225 | 91.37 213 | 17.21 228 | 87.25 215 | 94.78 185 | 3.25 225 | 95.64 193 | 93.80 201 | 96.27 195 | 91.74 210 |
|
| testmvs | | | 9.73 219 | 13.38 221 | 5.48 221 | 3.62 227 | 4.12 228 | 6.40 229 | 3.19 224 | 14.92 224 | 7.68 230 | 22.10 224 | 13.89 232 | 6.83 223 | 13.47 223 | 10.38 223 | 5.14 227 | 14.81 223 |
|
| test123 | | | 9.37 220 | 12.26 222 | 6.00 220 | 3.32 228 | 4.06 229 | 6.39 230 | 3.41 223 | 13.20 225 | 10.48 229 | 16.43 225 | 16.22 231 | 6.76 224 | 11.37 224 | 10.40 222 | 5.62 226 | 14.10 224 |
|
| uanet_test | | | 0.00 221 | 0.00 223 | 0.00 222 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 226 | 0.00 226 | 0.00 231 | 0.00 226 | 0.00 233 | 0.00 226 | 0.00 225 | 0.00 224 | 0.00 228 | 0.00 225 |
|
| sosnet-low-res | | | 0.00 221 | 0.00 223 | 0.00 222 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 226 | 0.00 226 | 0.00 231 | 0.00 226 | 0.00 233 | 0.00 226 | 0.00 225 | 0.00 224 | 0.00 228 | 0.00 225 |
|
| sosnet | | | 0.00 221 | 0.00 223 | 0.00 222 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 226 | 0.00 226 | 0.00 231 | 0.00 226 | 0.00 233 | 0.00 226 | 0.00 225 | 0.00 224 | 0.00 228 | 0.00 225 |
|
| TPM-MVS | | | | | | 98.38 207 | 97.20 193 | 96.44 215 | | | 97.17 200 | 95.17 196 | 98.68 128 | 92.69 210 | | | 98.11 176 | 97.67 154 |
| Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025 |
| RE-MVS-def | | | | | | | | | | | 99.88 2 | | | | | | | |
|
| 9.14 | | | | | | | | | | | | | 98.83 119 | | | | | |
|
| SR-MVS | | | | | | 99.62 86 | | | 99.47 76 | | | | 99.40 58 | | | | | |
|
| Anonymous202405211 | | | | 98.44 76 | | 99.79 39 | 99.32 52 | 99.05 96 | 99.34 103 | 96.59 111 | | 97.95 133 | 97.68 157 | 97.16 154 | 99.36 33 | 99.28 35 | 99.61 39 | 98.90 70 |
|
| our_test_3 | | | | | | 99.29 149 | 97.72 183 | 98.98 102 | | | | | | | | | | |
|
| ambc | | | | 97.89 118 | | 99.45 124 | 97.88 176 | 97.78 187 | | 97.27 77 | 99.80 3 | 98.99 91 | 98.48 136 | 98.55 100 | 97.80 139 | 96.68 168 | 98.54 157 | 98.10 141 |
|
| MTAPA | | | | | | | | | | | 99.19 58 | | 99.68 21 | | | | | |
|
| MTMP | | | | | | | | | | | 99.20 56 | | 99.54 42 | | | | | |
|
| Patchmatch-RL test | | | | | | | | 32.47 228 | | | | | | | | | | |
|
| tmp_tt | | | | | 65.28 218 | 82.24 225 | 71.50 226 | 70.81 227 | 23.21 222 | 96.14 135 | 81.70 227 | 85.98 222 | 92.44 192 | 49.84 222 | 95.81 188 | 94.36 199 | 83.86 225 | |
|
| XVS | | | | | | 99.77 44 | 99.07 78 | 99.46 45 | | | 98.95 92 | | 99.37 62 | | | | 99.33 74 | |
|
| X-MVStestdata | | | | | | 99.77 44 | 99.07 78 | 99.46 45 | | | 98.95 92 | | 99.37 62 | | | | 99.33 74 | |
|
| mPP-MVS | | | | | | 99.75 53 | | | | | | | 99.49 52 | | | | | |
|
| NP-MVS | | | | | | | | | | 93.07 197 | | | | | | | | |
|
| Patchmtry | | | | | | | 96.05 208 | 97.64 196 | 99.78 16 | | 98.50 131 | | | | | | | |
|
| DeepMVS_CX |  | | | | | | 87.86 224 | 92.27 224 | 61.98 220 | 93.64 191 | 93.62 221 | 91.17 212 | 91.67 193 | 94.90 190 | 95.99 187 | | 92.48 216 | 94.18 200 |
|