This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB98.82 199.76 199.75 199.77 799.87 1699.71 1099.77 899.76 1999.52 299.80 399.79 2199.91 199.56 1399.83 399.75 499.86 999.75 1
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs699.74 299.75 199.73 1199.92 599.67 1599.76 1099.84 1199.59 199.52 2499.87 1199.91 199.43 2799.87 199.81 299.89 699.52 10
SixPastTwentyTwo99.70 399.59 499.82 299.93 399.80 199.86 299.87 698.87 1199.79 599.85 1499.33 6599.74 599.85 299.82 199.74 2499.63 5
v7n99.68 499.61 399.76 899.89 1299.74 799.87 199.82 1399.20 699.71 699.96 199.73 1399.76 399.58 2099.59 1699.52 4799.46 15
anonymousdsp99.64 599.55 699.74 1099.87 1699.56 2599.82 399.73 2398.54 1699.71 699.92 499.84 799.61 999.70 999.63 999.69 3399.64 3
UniMVSNet_ETH3D99.61 699.59 499.63 1399.96 199.70 1199.53 3599.86 899.28 599.48 3099.44 5499.86 599.01 6999.78 499.76 399.90 299.33 21
WR-MVS99.61 699.44 899.82 299.92 599.80 199.80 499.89 198.54 1699.66 1399.78 2299.16 8699.68 799.70 999.63 999.94 199.49 13
PEN-MVS99.54 899.30 1599.83 199.92 599.76 499.80 499.88 397.60 6299.71 699.59 3699.52 4399.75 499.64 1599.51 1999.90 299.46 15
TDRefinement99.54 899.50 799.60 1799.70 6799.35 4599.77 899.58 5199.40 499.28 4999.66 2699.41 5499.55 1599.74 899.65 899.70 3099.25 26
DTE-MVSNet99.52 1099.27 1699.82 299.93 399.77 399.79 699.87 697.89 4499.70 1199.55 4599.21 7799.77 299.65 1399.43 2399.90 299.36 19
PS-CasMVS99.50 1199.23 1999.82 299.92 599.75 699.78 799.89 197.30 7399.71 699.60 3499.23 7399.71 699.65 1399.55 1899.90 299.56 8
WR-MVS_H99.48 1299.23 1999.76 899.91 999.76 499.75 1199.88 397.27 7699.58 1799.56 4199.24 7299.56 1399.60 1899.60 1599.88 899.58 7
pm-mvs199.47 1399.38 999.57 2199.82 2899.49 2999.63 2399.65 3998.88 1099.31 4399.85 1499.02 10599.23 4699.60 1899.58 1799.80 1599.22 33
MIMVSNet199.46 1499.34 1099.60 1799.83 2399.68 1499.74 1499.71 2798.20 2699.41 3599.86 1399.66 2599.41 3099.50 2499.39 2699.50 5299.10 44
TransMVSNet (Re)99.45 1599.32 1399.61 1599.88 1499.60 2099.75 1199.63 4399.11 799.28 4999.83 1898.35 13999.27 4399.70 999.62 1399.84 1099.03 52
ACMH97.81 699.44 1699.33 1199.56 2299.81 3299.42 3699.73 1599.58 5199.02 899.10 7399.41 5999.69 1999.60 1099.45 2899.26 3699.55 4399.05 49
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CP-MVSNet99.39 1799.04 2899.80 699.91 999.70 1199.75 1199.88 396.82 9799.68 1299.32 6298.86 11499.68 799.57 2199.47 2099.89 699.52 10
COLMAP_ROBcopyleft98.29 299.37 1899.25 1799.51 3099.74 5899.12 7399.56 3299.39 8798.96 999.17 6199.44 5499.63 3299.58 1199.48 2699.27 3599.60 4098.81 78
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepC-MVS97.88 499.33 1999.15 2399.53 2999.73 6399.05 8199.49 4099.40 8598.42 1999.55 2199.71 2499.89 399.49 1999.14 4398.81 6699.54 4499.02 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FC-MVSNet-test99.32 2099.33 1199.31 5799.87 1699.65 1899.63 2399.75 2197.76 4697.29 19599.87 1199.63 3299.52 1699.66 1299.63 999.77 2099.12 40
UA-Net99.30 2199.22 2199.39 4499.94 299.66 1798.91 11199.86 897.74 5298.74 11499.00 8999.60 3799.17 5499.50 2499.39 2699.70 3099.64 3
ACMH+97.53 799.29 2299.20 2299.40 4399.81 3299.22 6299.59 2999.50 6898.64 1598.29 14899.21 7499.69 1999.57 1299.53 2399.33 3199.66 3498.81 78
Vis-MVSNetpermissive99.25 2399.32 1399.17 6799.65 7899.55 2799.63 2399.33 10398.16 2799.29 4699.65 3099.77 1097.56 14399.44 3099.14 4199.58 4199.51 12
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TranMVSNet+NR-MVSNet99.23 2498.91 3599.61 1599.81 3299.45 3399.47 4299.68 3097.28 7599.39 3699.54 4699.08 10199.45 2299.09 4998.84 6399.83 1199.04 50
CSCG99.23 2499.15 2399.32 5699.83 2399.45 3398.97 10399.21 12498.83 1299.04 8399.43 5699.64 3099.26 4498.85 7598.20 10299.62 3899.62 6
Gipumacopyleft99.22 2698.86 3999.64 1299.70 6799.24 5699.17 8599.63 4399.52 299.89 196.54 17599.14 9099.93 199.42 3199.15 4099.52 4799.04 50
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tfpnnormal99.19 2798.90 3699.54 2699.81 3299.55 2799.60 2799.54 5998.53 1899.23 5398.40 11098.23 14299.40 3199.29 3699.36 2999.63 3798.95 64
Baseline_NR-MVSNet99.18 2898.87 3799.54 2699.74 5899.56 2599.36 5799.62 4896.53 11899.29 4699.85 1498.64 13199.40 3199.03 6099.63 999.83 1198.86 73
thisisatest051599.16 2998.94 3399.41 3899.75 5299.43 3599.36 5799.63 4397.68 5899.35 3899.31 6398.90 11199.09 6398.95 6599.20 3799.27 8399.11 41
CS-MVS-test99.16 2998.78 4499.60 1799.80 3799.72 999.69 1699.73 2395.88 14099.51 2698.53 10799.54 4199.21 4899.24 3999.43 2399.66 3499.15 39
CS-MVS99.15 3198.75 4699.62 1499.76 4899.73 899.60 2799.75 2195.67 14799.50 2798.53 10799.39 5999.29 4099.21 4199.46 2299.79 1899.29 24
APDe-MVS99.15 3198.95 3099.39 4499.77 4399.28 5399.52 3699.54 5997.22 8099.06 7799.20 7599.64 3099.05 6799.14 4399.02 5199.39 6599.17 37
FC-MVSNet-train99.13 3399.05 2799.21 6299.87 1699.57 2499.67 1899.60 5096.75 10398.28 14999.48 5099.52 4398.10 12299.47 2799.37 2899.76 2299.21 34
NR-MVSNet99.10 3498.68 5699.58 2099.89 1299.23 5999.35 6199.63 4396.58 11199.36 3799.05 8398.67 12999.46 2099.63 1698.73 7699.80 1598.88 72
DVP-MVS++99.09 3599.25 1798.90 10199.53 10799.37 4399.17 8599.48 7398.28 2497.95 16999.54 4699.88 498.13 12199.08 5098.94 5599.15 9699.65 2
DVP-MVScopyleft99.09 3599.07 2699.12 7499.55 10099.40 3899.36 5799.44 8497.75 4998.23 15299.23 7199.80 898.97 7199.08 5098.96 5299.19 9199.25 26
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
UniMVSNet (Re)99.08 3798.69 5499.54 2699.75 5299.33 4899.29 6999.64 4296.75 10399.48 3099.30 6598.69 12599.26 4498.94 6798.76 7299.78 1999.02 54
ACMMPR99.05 3898.72 5099.44 3299.79 3899.12 7399.35 6199.56 5497.74 5299.21 5597.72 13799.55 4099.29 4098.90 7398.81 6699.41 6499.19 35
DU-MVS99.04 3998.59 6099.56 2299.74 5899.23 5999.29 6999.63 4396.58 11199.55 2199.05 8398.68 12799.36 3599.03 6098.60 8399.77 2098.97 59
TSAR-MVS + MP.99.02 4098.95 3099.11 7799.23 15698.79 11799.51 3798.73 16497.50 6698.56 12599.03 8699.59 3899.16 5699.29 3699.17 3999.50 5299.24 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
v1099.01 4198.66 5799.41 3899.52 11299.39 3999.57 3199.66 3797.59 6399.32 4299.88 999.23 7399.50 1897.77 13997.98 11398.92 12598.78 83
EG-PatchMatch MVS99.01 4198.77 4599.28 6199.64 8198.90 11098.81 12399.27 11496.55 11599.71 699.31 6399.66 2599.17 5499.28 3899.11 4399.10 9898.57 98
PVSNet_Blended_VisFu98.98 4398.79 4299.21 6299.76 4899.34 4699.35 6199.35 9997.12 8699.46 3299.56 4198.89 11298.08 12599.05 5498.58 8599.27 8398.98 58
HFP-MVS98.97 4498.70 5299.29 5999.67 7298.98 9399.13 9199.53 6297.76 4698.90 9898.07 12599.50 4999.14 5998.64 8698.78 7099.37 6799.18 36
UniMVSNet_NR-MVSNet98.97 4498.46 7099.56 2299.76 4899.34 4699.29 6999.61 4996.55 11599.55 2199.05 8397.96 15099.36 3598.84 7698.50 9199.81 1498.97 59
casdiffmvs_mvgpermissive98.96 4698.87 3799.07 8099.82 2899.36 4499.36 5799.22 12198.13 2997.74 17699.42 5799.46 5298.59 9498.39 9898.95 5499.71 2998.39 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DROMVSNet98.96 4698.45 7399.56 2299.88 1499.70 1199.68 1799.78 1694.15 18198.97 8798.26 11799.21 7799.35 3799.30 3599.14 4199.73 2599.40 18
SED-MVS98.94 4898.95 3098.91 10099.43 12899.38 4199.12 9399.46 7897.05 8998.43 14099.23 7199.79 997.99 12899.05 5498.94 5599.05 11199.23 31
ACMMP_NAP98.94 4898.72 5099.21 6299.67 7299.08 7699.26 7499.39 8796.84 9498.88 10298.22 11899.68 2198.82 8099.06 5398.90 5899.25 8699.25 26
v114498.94 4898.53 6599.42 3699.62 8599.03 8799.58 3099.36 9697.99 3599.49 2999.91 899.20 8099.51 1797.61 14497.85 12098.95 12098.10 139
v898.94 4898.60 5899.35 5399.54 10499.39 3999.55 3399.67 3497.48 6799.13 6999.81 1999.10 9799.39 3397.86 13497.89 11898.81 13498.66 91
SteuartSystems-ACMMP98.94 4898.52 6699.43 3599.79 3899.13 7299.33 6599.55 5696.17 13399.04 8397.53 14399.65 2999.46 2099.04 5998.76 7299.44 5999.35 20
Skip Steuart: Steuart Systems R&D Blog.
v119298.91 5398.48 6999.41 3899.61 8999.03 8799.64 2099.25 11897.91 4199.58 1799.92 499.07 10399.45 2297.55 14897.68 13498.93 12298.23 129
FMVSNet198.90 5499.10 2598.67 12599.54 10499.48 3099.22 7999.66 3798.39 2297.50 18399.66 2699.04 10496.58 16499.05 5499.03 4899.52 4799.08 46
ACMM96.66 1198.90 5498.44 7599.44 3299.74 5898.95 9999.47 4299.55 5697.66 6099.09 7496.43 17799.41 5499.35 3798.95 6598.67 7999.45 5799.03 52
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2023121198.89 5698.79 4298.99 9399.82 2899.41 3799.18 8499.31 10996.92 9198.54 12798.58 10598.84 11797.46 14599.45 2899.29 3399.65 3699.08 46
v192192098.89 5698.46 7099.39 4499.58 9399.04 8599.64 2099.17 13097.91 4199.64 1599.92 498.99 10999.44 2597.44 15597.57 14398.84 13298.35 119
GeoE98.88 5898.43 7899.41 3899.83 2399.24 5699.51 3799.82 1396.55 11599.22 5498.76 9799.22 7698.96 7298.55 8998.15 10499.10 9898.56 101
v14419298.88 5898.46 7099.37 5199.56 9999.03 8799.61 2699.26 11597.79 4599.58 1799.88 999.11 9599.43 2797.38 16097.61 13998.80 13598.43 113
SMA-MVScopyleft98.87 6098.73 4999.04 8699.72 6499.05 8198.64 13399.17 13096.31 12898.80 10899.07 8199.70 1898.67 8898.93 7098.82 6499.23 8999.23 31
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMP96.54 1398.87 6098.40 8199.41 3899.74 5898.88 11199.29 6999.50 6896.85 9398.96 9097.05 15999.66 2599.43 2798.98 6498.60 8399.52 4798.81 78
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DCV-MVSNet98.86 6298.57 6399.19 6599.86 2099.67 1599.39 5199.71 2797.53 6598.69 11795.85 18898.48 13497.75 13799.57 2199.41 2599.72 2699.48 14
v124098.86 6298.41 8099.38 4999.59 9199.05 8199.65 1999.14 13597.68 5899.66 1399.93 398.72 12499.45 2297.38 16097.72 13298.79 13698.35 119
CP-MVS98.86 6298.43 7899.36 5299.68 7098.97 9799.19 8299.46 7896.60 10999.20 5697.11 15899.51 4799.15 5898.92 7198.82 6499.45 5799.08 46
v2v48298.85 6598.40 8199.38 4999.65 7898.98 9399.55 3399.39 8797.92 4099.35 3899.85 1499.14 9099.39 3397.50 15097.78 12398.98 11797.60 154
DPE-MVScopyleft98.84 6698.69 5499.00 9099.05 17599.26 5499.19 8299.35 9995.85 14298.74 11499.27 6799.66 2598.30 11498.90 7398.93 5799.37 6799.00 56
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
OPM-MVS98.84 6698.59 6099.12 7499.52 11298.50 14299.13 9199.22 12197.76 4698.76 11098.70 9999.61 3598.90 7598.67 8498.37 9699.19 9198.57 98
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test20.0398.84 6698.74 4898.95 9699.77 4399.33 4899.21 8199.46 7897.29 7498.88 10299.65 3099.10 9797.07 15599.11 4698.76 7299.32 7697.98 143
casdiffmvspermissive98.84 6698.75 4698.94 9999.75 5299.21 6399.33 6599.04 14598.04 3197.46 18699.72 2399.72 1598.60 9298.30 11098.37 9699.48 5497.92 145
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LGP-MVS_train98.84 6698.33 8799.44 3299.78 4198.98 9399.39 5199.55 5695.41 15298.90 9897.51 14499.68 2199.44 2599.03 6098.81 6699.57 4298.91 68
RPSCF98.84 6698.81 4198.89 10399.37 13598.95 9998.51 14598.85 15797.73 5498.33 14598.97 9199.14 9098.95 7399.18 4298.68 7899.31 7798.99 57
ACMMPcopyleft98.82 7298.33 8799.39 4499.77 4399.14 7199.37 5499.54 5996.47 12299.03 8596.26 18199.52 4399.28 4298.92 7198.80 6999.37 6799.16 38
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
V4298.81 7398.49 6899.18 6699.52 11298.92 10599.50 3999.29 11197.43 7098.97 8799.81 1999.00 10899.30 3997.93 13098.01 11198.51 16098.34 123
LS3D98.79 7498.52 6699.12 7499.64 8199.09 7599.24 7799.46 7897.75 4998.93 9697.47 14698.23 14297.98 12999.36 3299.30 3299.46 5598.42 114
MP-MVScopyleft98.78 7598.30 8999.34 5599.75 5298.95 9999.26 7499.46 7895.78 14699.17 6196.98 16399.72 1599.06 6698.84 7698.74 7599.33 7399.11 41
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
v14898.77 7698.45 7399.15 7099.68 7098.94 10399.49 4099.31 10997.95 3798.91 9799.65 3099.62 3499.18 5197.99 12897.64 13898.33 16597.38 159
test111198.75 7798.14 10299.46 3199.86 2099.63 1999.47 4299.68 3098.34 2398.76 11099.66 2690.92 19399.23 4699.77 599.71 599.75 2398.95 64
ECVR-MVScopyleft98.74 7898.15 10099.42 3699.83 2399.58 2299.37 5499.67 3498.02 3398.85 10599.59 3691.66 19199.10 6199.77 599.70 699.72 2698.73 85
SD-MVS98.73 7998.54 6498.95 9699.14 16598.76 12098.46 14999.14 13597.71 5698.56 12598.06 12799.61 3598.85 7998.56 8897.74 12999.54 4499.32 22
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSP-MVS98.72 8098.60 5898.87 10599.67 7299.33 4899.15 8899.26 11596.99 9097.90 17298.19 12099.74 1298.29 11597.69 14298.96 5298.96 11899.27 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PGM-MVS98.69 8198.09 10799.39 4499.76 4899.07 7799.30 6899.51 6694.76 16399.18 6096.70 17099.51 4799.20 4998.79 8098.71 7799.39 6599.11 41
pmmvs-eth3d98.68 8298.14 10299.29 5999.49 11798.45 14599.45 4799.38 9297.21 8199.50 2799.65 3099.21 7799.16 5697.11 16797.56 14498.79 13697.82 149
EU-MVSNet98.68 8298.94 3398.37 14599.14 16598.74 12299.64 2098.20 18998.21 2599.17 6199.66 2699.18 8399.08 6499.11 4698.86 5995.00 20198.83 75
PMVScopyleft92.51 1798.66 8498.86 3998.43 14199.26 15198.98 9398.60 13998.59 17397.73 5499.45 3399.38 6098.54 13395.24 18299.62 1799.61 1499.42 6198.17 136
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepC-MVS_fast97.38 898.65 8598.34 8699.02 8999.33 13998.29 15198.99 10198.71 16697.40 7199.31 4398.20 11999.40 5798.54 10198.33 10798.18 10399.23 8998.58 96
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator98.16 398.65 8598.35 8599.00 9099.59 9198.70 12598.90 11599.36 9697.97 3699.09 7496.55 17499.09 9997.97 13098.70 8398.65 8199.12 9798.81 78
TSAR-MVS + ACMM98.64 8798.58 6298.72 11999.17 16398.63 13198.69 12999.10 14297.69 5798.30 14799.12 7999.38 6098.70 8798.45 9397.51 14698.35 16499.25 26
DELS-MVS98.63 8898.70 5298.55 13799.24 15599.04 8598.96 10498.52 17696.83 9698.38 14299.58 3999.68 2197.06 15698.74 8298.44 9399.10 9898.59 95
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
QAPM98.62 8998.40 8198.89 10399.57 9898.80 11698.63 13499.35 9996.82 9798.60 12198.85 9699.08 10198.09 12498.31 10898.21 10099.08 10498.72 86
EPP-MVSNet98.61 9098.19 9799.11 7799.86 2099.60 2099.44 4899.53 6297.37 7296.85 19998.69 10093.75 18499.18 5199.22 4099.35 3099.82 1399.32 22
3Dnovator+97.85 598.61 9098.14 10299.15 7099.62 8598.37 14999.10 9499.51 6698.04 3198.98 8696.07 18598.75 12398.55 9998.51 9198.40 9499.17 9398.82 76
X-MVS98.59 9297.99 11399.30 5899.75 5299.07 7799.17 8599.50 6896.62 10798.95 9293.95 20399.37 6199.11 6098.94 6798.86 5999.35 7199.09 45
MVS_111021_HR98.58 9398.26 9298.96 9599.32 14298.81 11498.48 14798.99 15096.81 9999.16 6498.07 12599.23 7398.89 7798.43 9598.27 9998.90 12798.24 128
MVS_030498.57 9498.36 8498.82 11299.72 6498.94 10398.92 10999.14 13596.76 10299.33 4198.30 11499.73 1396.74 16098.05 12597.79 12299.08 10498.97 59
PM-MVS98.57 9498.24 9498.95 9699.26 15198.59 13499.03 9898.74 16396.84 9499.44 3499.13 7898.31 14198.75 8598.03 12698.21 10098.48 16198.58 96
PHI-MVS98.57 9498.20 9699.00 9099.48 11998.91 10798.68 13099.17 13094.97 15999.27 5198.33 11299.33 6598.05 12698.82 7898.62 8299.34 7298.38 117
HPM-MVS++copyleft98.56 9798.08 10899.11 7799.53 10798.61 13399.02 10099.32 10796.29 13099.06 7797.23 15399.50 4998.77 8398.15 12197.90 11698.96 11898.90 69
TSAR-MVS + GP.98.54 9898.29 9198.82 11299.28 14998.59 13497.73 18899.24 12095.93 13998.59 12299.07 8199.17 8498.86 7898.44 9498.10 10699.26 8598.72 86
UGNet98.52 9999.00 2997.96 16699.58 9399.26 5499.27 7399.40 8598.07 3098.28 14998.76 9799.71 1792.24 20998.94 6798.85 6199.00 11699.43 17
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Anonymous2023120698.50 10098.03 11099.05 8499.50 11599.01 9099.15 8899.26 11596.38 12699.12 7199.50 4999.12 9398.60 9297.68 14397.24 15798.66 14497.30 163
CLD-MVS98.48 10198.15 10098.86 10899.53 10798.35 15098.55 14297.83 19896.02 13898.97 8799.08 8099.75 1199.03 6898.10 12497.33 15399.28 8198.44 112
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CANet98.47 10298.30 8998.67 12599.65 7898.87 11298.82 12299.01 14896.14 13499.29 4698.86 9499.01 10696.54 16598.36 10298.08 10898.72 14098.80 82
APD-MVScopyleft98.47 10297.97 11499.05 8499.64 8198.91 10798.94 10699.45 8394.40 17498.77 10997.26 15299.41 5498.21 11898.67 8498.57 8899.31 7798.57 98
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Vis-MVSNet (Re-imp)98.46 10498.23 9598.73 11899.81 3299.29 5298.79 12499.50 6896.20 13296.03 20598.29 11596.98 16598.54 10199.11 4699.08 4499.70 3098.62 93
Fast-Effi-MVS+98.42 10597.79 12099.15 7099.69 6998.66 12998.94 10699.68 3094.49 16899.05 7998.06 12798.86 11498.48 10498.18 11897.78 12399.05 11198.54 104
ETV-MVS98.41 10697.76 12199.17 6799.58 9399.01 9098.91 11199.50 6893.33 19499.31 4396.82 16798.42 13798.17 12099.13 4599.08 4499.54 4498.56 101
MVS_111021_LR98.39 10798.11 10598.71 12199.08 17298.54 14098.23 17098.56 17596.57 11399.13 6998.41 10998.86 11498.65 9098.23 11697.87 11998.65 14698.28 125
pmmvs598.37 10897.81 11999.03 8799.46 12198.97 9799.03 9898.96 15295.85 14299.05 7999.45 5398.66 13098.79 8296.02 18497.52 14598.87 12998.21 132
OMC-MVS98.35 10998.10 10698.64 13198.85 18297.99 17098.56 14198.21 18797.26 7898.87 10498.54 10699.27 7198.43 10698.34 10597.66 13598.92 12597.65 153
canonicalmvs98.34 11097.92 11698.83 11099.45 12399.21 6398.37 15799.53 6297.06 8897.74 17696.95 16595.05 18198.36 10998.77 8198.85 6199.51 5199.53 9
CHOSEN 1792x268898.31 11198.02 11198.66 12799.55 10098.57 13799.38 5399.25 11898.42 1998.48 13599.58 3999.85 698.31 11395.75 18795.71 18296.96 18898.27 127
CPTT-MVS98.28 11297.51 13499.16 6999.54 10498.78 11898.96 10499.36 9696.30 12998.89 10193.10 20799.30 6899.20 4998.35 10497.96 11499.03 11498.82 76
TinyColmap98.27 11397.62 13199.03 8799.29 14797.79 17998.92 10998.95 15397.48 6799.52 2498.65 10297.86 15298.90 7598.34 10597.27 15598.64 14795.97 183
diffmvspermissive98.26 11498.16 9898.39 14399.61 8998.78 11898.79 12498.61 17197.94 3897.11 19899.51 4899.52 4397.61 14196.55 17696.93 16398.61 14997.87 147
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
USDC98.26 11497.57 13299.06 8199.42 13197.98 17298.83 11998.85 15797.57 6499.59 1699.15 7798.59 13298.99 7097.42 15696.08 18198.69 14396.23 181
SF-MVS98.25 11698.16 9898.35 14699.43 12898.42 14897.05 21099.09 14396.42 12498.13 15897.73 13699.20 8097.22 15198.36 10298.38 9599.16 9598.62 93
MCST-MVS98.25 11697.57 13299.06 8199.53 10798.24 15798.63 13499.17 13095.88 14098.58 12396.11 18399.09 9999.18 5197.58 14797.31 15499.25 8698.75 84
IterMVS-LS98.23 11897.66 12798.90 10199.63 8499.38 4199.07 9599.48 7397.75 4998.81 10799.37 6194.57 18397.88 13496.54 17797.04 16098.53 15798.97 59
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TAPA-MVS96.65 1298.23 11897.96 11598.55 13798.81 18498.16 16198.40 15497.94 19696.68 10598.49 13398.61 10398.89 11298.57 9797.45 15397.59 14199.09 10398.35 119
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CNVR-MVS98.22 12097.76 12198.76 11699.33 13998.26 15598.48 14798.88 15696.22 13198.47 13795.79 18999.33 6598.35 11098.37 10197.99 11299.03 11498.38 117
IS_MVSNet98.20 12198.00 11298.44 14099.82 2899.48 3099.25 7699.56 5495.58 14993.93 21797.56 14296.52 17098.27 11699.08 5099.20 3799.80 1598.56 101
DeepPCF-MVS96.68 1098.20 12198.26 9298.12 15997.03 22098.11 16498.44 15197.70 20096.77 10198.52 12998.91 9299.17 8498.58 9698.41 9798.02 11098.46 16298.46 109
MSDG98.20 12197.88 11898.56 13599.33 13997.74 18098.27 16798.10 19097.20 8398.06 16298.59 10499.16 8698.76 8498.39 9897.71 13398.86 13196.38 178
testgi98.18 12498.44 7597.89 16899.78 4199.23 5998.78 12699.21 12497.26 7897.41 18897.39 14999.36 6492.85 20698.82 7898.66 8099.31 7798.35 119
Effi-MVS+98.11 12597.29 14099.06 8199.62 8598.55 13898.16 17399.80 1594.64 16499.15 6796.59 17297.43 15898.44 10597.46 15297.90 11699.17 9398.45 111
FA-MVS(training)98.08 12697.68 12598.56 13599.14 16598.69 12698.41 15299.83 1295.85 14298.57 12497.95 13296.92 16796.85 15898.51 9198.09 10798.54 15597.74 150
HyFIR lowres test98.08 12697.16 14999.14 7399.72 6498.91 10799.41 4999.58 5197.93 3998.82 10699.24 6995.81 17698.73 8695.16 19895.13 19198.60 15197.94 144
EIA-MVS98.03 12897.20 14698.99 9399.66 7599.24 5698.53 14499.52 6591.56 21099.25 5295.34 19398.78 12097.72 13898.38 10098.58 8599.28 8198.54 104
train_agg97.99 12997.26 14198.83 11099.43 12898.22 15998.91 11199.07 14494.43 17297.96 16896.42 17899.30 6898.81 8197.39 15896.62 16998.82 13398.47 107
MSLP-MVS++97.99 12997.64 13098.40 14298.91 18098.47 14497.12 20898.78 16196.49 12098.48 13593.57 20599.12 9398.51 10398.31 10898.58 8598.58 15398.95 64
CDPH-MVS97.99 12997.23 14498.87 10599.58 9398.29 15198.83 11999.20 12693.76 18898.11 16096.11 18399.16 8698.23 11797.80 13797.22 15899.29 8098.28 125
FMVSNet297.94 13298.08 10897.77 17498.71 18899.21 6398.62 13699.47 7596.62 10796.37 20499.20 7597.70 15494.39 19397.39 15897.75 12899.08 10498.70 88
PVSNet_BlendedMVS97.93 13397.66 12798.25 15299.30 14498.67 12798.31 16297.95 19494.30 17898.75 11297.63 13998.76 12196.30 17298.29 11197.78 12398.93 12298.18 134
PVSNet_Blended97.93 13397.66 12798.25 15299.30 14498.67 12798.31 16297.95 19494.30 17898.75 11297.63 13998.76 12196.30 17298.29 11197.78 12398.93 12298.18 134
OpenMVScopyleft97.26 997.88 13597.17 14898.70 12299.50 11598.55 13898.34 16099.11 14093.92 18698.90 9895.04 19798.23 14297.38 14898.11 12398.12 10598.95 12098.23 129
pmmvs497.87 13697.02 15398.86 10899.20 15797.68 18398.89 11699.03 14696.57 11399.12 7199.03 8697.26 16298.42 10795.16 19896.34 17398.53 15797.10 170
NCCC97.84 13796.96 15598.87 10599.39 13498.27 15498.46 14999.02 14796.78 10098.73 11691.12 21098.91 11098.57 9797.83 13697.49 14799.04 11398.33 124
Effi-MVS+-dtu97.78 13897.37 13898.26 15099.25 15398.50 14297.89 18299.19 12994.51 16698.16 15695.93 18698.80 11995.97 17598.27 11597.38 15099.10 9898.23 129
MDA-MVSNet-bldmvs97.75 13997.26 14198.33 14799.35 13898.45 14599.32 6797.21 20597.90 4399.05 7999.01 8896.86 16899.08 6499.36 3292.97 20195.97 19796.25 180
CDS-MVSNet97.75 13997.68 12597.83 17299.08 17298.20 16098.68 13098.61 17195.63 14897.80 17499.24 6996.93 16694.09 19897.96 12997.82 12198.71 14197.99 141
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CNLPA97.75 13997.26 14198.32 14998.58 19697.86 17597.80 18498.09 19196.49 12098.49 13396.15 18298.08 14598.35 11098.00 12797.03 16198.61 14997.21 167
PLCcopyleft95.63 1597.73 14297.01 15498.57 13499.10 16997.80 17897.72 18998.77 16296.34 12798.38 14293.46 20698.06 14698.66 8997.90 13297.65 13798.77 13897.90 146
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVS_Test97.69 14397.15 15098.33 14799.27 15098.43 14798.25 16899.29 11195.00 15897.39 19098.86 9498.00 14997.14 15395.38 19396.22 17598.62 14898.15 138
GBi-Net97.69 14397.75 12397.62 17598.71 18899.21 6398.62 13699.33 10394.09 18295.60 20798.17 12295.97 17394.39 19399.05 5499.03 4899.08 10498.70 88
test197.69 14397.75 12397.62 17598.71 18899.21 6398.62 13699.33 10394.09 18295.60 20798.17 12295.97 17394.39 19399.05 5499.03 4899.08 10498.70 88
CANet_DTU97.65 14697.50 13697.82 17399.19 16098.08 16698.41 15298.67 16894.40 17499.16 6498.32 11398.69 12593.96 20097.87 13397.61 13997.51 18497.56 156
IterMVS-SCA-FT97.63 14796.86 15798.52 13999.48 11998.71 12498.84 11898.91 15496.44 12399.16 6499.56 4195.54 17897.95 13195.68 19095.07 19496.76 18997.03 173
TSAR-MVS + COLMAP97.62 14897.31 13997.98 16498.47 20297.39 18798.29 16498.25 18696.68 10597.54 18298.87 9398.04 14897.08 15496.78 17196.26 17498.26 16897.12 169
MS-PatchMatch97.60 14997.22 14598.04 16398.67 19297.18 19197.91 18098.28 18595.82 14598.34 14497.66 13898.38 13897.77 13697.10 16897.25 15697.27 18697.18 168
PCF-MVS95.58 1697.60 14996.67 15898.69 12399.44 12698.23 15898.37 15798.81 15993.01 19898.22 15397.97 13199.59 3898.20 11995.72 18995.08 19299.08 10497.09 172
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HQP-MVS97.58 15196.65 16198.66 12799.30 14497.99 17097.88 18398.65 16994.58 16598.66 11894.65 20199.15 8998.59 9496.10 18295.59 18398.90 12798.50 106
DI_MVS_plusplus_trai97.57 15296.55 16398.77 11599.55 10098.76 12099.22 7999.00 14997.08 8797.95 16997.78 13591.35 19298.02 12796.20 18096.81 16598.87 12997.87 147
AdaColmapbinary97.57 15296.57 16298.74 11799.25 15398.01 16898.36 15998.98 15194.44 17198.47 13792.44 20897.91 15198.62 9198.19 11797.74 12998.73 13997.28 164
baseline97.50 15497.51 13497.50 17999.18 16197.38 18898.00 17698.00 19396.52 11997.49 18499.28 6699.43 5395.31 18195.27 19596.22 17596.99 18798.47 107
IterMVS97.40 15596.67 15898.25 15299.45 12398.66 12998.87 11798.73 16496.40 12598.94 9599.56 4195.26 18097.58 14295.38 19394.70 19695.90 19896.72 176
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CVMVSNet97.38 15697.39 13797.37 18298.58 19697.72 18198.70 12897.42 20397.21 8195.95 20699.46 5293.31 18797.38 14897.60 14597.78 12396.18 19498.66 91
new-patchmatchnet97.26 15796.12 17198.58 13399.55 10098.63 13199.14 9097.04 20798.80 1399.19 5899.92 499.19 8298.92 7495.51 19287.04 21097.66 18193.73 199
MIMVSNet97.24 15897.15 15097.36 18399.03 17698.52 14198.55 14299.73 2394.94 16294.94 21497.98 13097.37 16093.66 20197.60 14597.34 15298.23 17196.29 179
PatchMatch-RL97.24 15896.45 16698.17 15698.70 19197.57 18697.31 20398.48 17994.42 17398.39 14195.74 19096.35 17297.88 13497.75 14097.48 14898.24 17095.87 184
thisisatest053097.20 16095.95 17598.66 12799.46 12198.84 11398.29 16499.20 12694.51 16698.25 15197.42 14785.03 20897.68 13998.43 9598.56 8999.08 10498.89 71
tttt051797.18 16195.92 17698.65 13099.49 11798.92 10598.29 16499.20 12694.37 17698.17 15497.37 15084.72 21197.68 13998.55 8998.56 8999.10 9898.95 64
MDTV_nov1_ep13_2view97.12 16296.19 17098.22 15599.13 16898.05 16799.24 7799.47 7597.61 6199.15 6799.59 3699.01 10698.40 10894.87 20190.14 20493.91 20494.04 198
MAR-MVS97.12 16296.28 16998.11 16098.94 17897.22 19097.65 19399.38 9290.93 21698.15 15795.17 19597.13 16396.48 16897.71 14197.40 14998.06 17498.40 115
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Fast-Effi-MVS+-dtu96.99 16496.46 16597.61 17798.98 17797.89 17397.54 19799.76 1993.43 19296.55 20394.93 19898.06 14694.32 19696.93 16996.50 17198.53 15797.47 157
FPMVS96.97 16597.20 14696.70 19997.75 21296.11 20397.72 18995.47 21197.13 8598.02 16497.57 14196.67 16992.97 20599.00 6398.34 9898.28 16795.58 186
TAMVS96.95 16696.94 15696.97 19499.07 17497.67 18597.98 17897.12 20695.04 15795.41 21099.27 6795.57 17794.09 19897.32 16297.11 15998.16 17396.59 177
FMVSNet396.85 16796.67 15897.06 18897.56 21599.01 9097.99 17799.33 10394.09 18295.60 20798.17 12295.97 17393.26 20494.76 20396.22 17598.59 15298.46 109
GA-MVS96.84 16895.86 17897.98 16499.16 16498.29 15197.91 18098.64 17095.14 15597.71 17898.04 12988.90 19696.50 16796.41 17996.61 17097.97 17897.60 154
CHOSEN 280x42096.80 16996.30 16897.39 18099.09 17096.52 19598.76 12799.29 11193.88 18797.65 17998.34 11193.66 18596.29 17498.28 11397.73 13193.27 20795.70 185
gg-mvs-nofinetune96.77 17096.52 16497.06 18899.66 7597.82 17797.54 19799.86 898.69 1498.61 12099.94 289.62 19488.37 21797.55 14896.67 16798.30 16695.35 187
DPM-MVS96.73 17195.70 18197.95 16798.93 17997.26 18997.39 20298.44 18195.47 15197.62 18090.71 21198.47 13697.03 15795.02 20095.27 18898.26 16897.67 152
baseline196.72 17295.40 18398.26 15099.53 10798.81 11498.32 16198.80 16094.96 16096.78 20296.50 17684.87 21096.68 16397.42 15697.91 11599.46 5597.33 162
N_pmnet96.68 17395.70 18197.84 17199.42 13198.00 16999.35 6198.21 18798.40 2198.13 15899.42 5799.30 6897.44 14794.00 20788.79 20594.47 20391.96 205
pmnet_mix0296.61 17495.32 18498.11 16099.41 13397.68 18399.05 9697.59 20198.16 2799.05 7999.48 5099.11 9598.32 11292.36 21187.67 20795.26 20092.80 203
new_pmnet96.59 17596.40 16796.81 19698.24 20895.46 21297.71 19194.75 21496.92 9196.80 20199.23 7197.81 15396.69 16196.58 17595.16 19096.69 19093.64 200
PMMVS96.47 17695.81 17997.23 18497.38 21795.96 20797.31 20396.91 20893.21 19597.93 17197.14 15697.64 15695.70 17795.24 19696.18 17898.17 17295.33 188
EPNet96.44 17796.08 17296.86 19599.32 14297.15 19297.69 19299.32 10793.67 18998.11 16095.64 19193.44 18689.07 21596.86 17096.83 16497.67 18098.97 59
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres600view796.35 17894.27 18698.79 11499.66 7599.18 6898.94 10699.38 9294.37 17697.21 19787.19 21384.10 21298.10 12298.16 11999.47 2099.42 6197.43 158
EPNet_dtu96.31 17995.96 17496.72 19899.18 16195.39 21397.03 21199.13 13993.02 19799.35 3897.23 15397.07 16490.70 21495.74 18895.08 19294.94 20298.16 137
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs396.30 18095.87 17796.80 19797.66 21496.48 19697.93 17993.80 21593.40 19398.54 12798.27 11697.50 15797.37 15097.49 15193.11 20095.52 19994.85 192
PMMVS296.29 18197.05 15295.40 20998.32 20796.16 20098.18 17297.46 20297.20 8384.51 22399.60 3498.68 12796.37 16998.59 8797.38 15097.58 18391.76 206
thres20096.23 18294.13 18798.69 12399.44 12699.18 6898.58 14099.38 9293.52 19197.35 19186.33 21885.83 20697.93 13298.16 11998.78 7099.42 6197.10 170
thres40096.22 18394.08 18998.72 11999.58 9399.05 8198.83 11999.22 12194.01 18597.40 18986.34 21784.91 20997.93 13297.85 13599.08 4499.37 6797.28 164
tfpn200view996.17 18494.08 18998.60 13299.37 13599.18 6898.68 13099.39 8792.02 20497.30 19386.53 21586.34 20397.45 14698.15 12199.08 4499.43 6097.28 164
CMPMVSbinary74.71 1996.17 18496.06 17396.30 20397.41 21694.52 21694.83 21895.46 21291.57 20997.26 19694.45 20298.33 14094.98 18498.28 11397.59 14197.86 17997.68 151
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test250696.12 18693.35 19999.35 5399.83 2399.58 2299.37 5499.67 3498.02 3398.44 13997.51 14460.03 22699.10 6199.77 599.70 699.72 2698.86 73
IB-MVS95.85 1495.87 18794.88 18597.02 19199.09 17098.25 15697.16 20597.38 20491.97 20797.77 17583.61 22097.29 16192.03 21297.16 16697.66 13598.66 14498.20 133
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test0.0.03 195.81 18895.77 18095.85 20899.20 15798.15 16397.49 20198.50 17792.24 20092.74 22096.82 16792.70 18888.60 21697.31 16497.01 16298.57 15496.19 182
thres100view90095.74 18993.66 19898.17 15699.37 13598.59 13498.10 17498.33 18492.02 20497.30 19386.53 21586.34 20396.69 16196.77 17298.47 9299.24 8896.89 174
ET-MVSNet_ETH3D95.72 19093.85 19497.89 16897.30 21898.09 16598.19 17198.40 18294.46 17098.01 16796.71 16977.85 22296.76 15996.08 18396.39 17298.70 14297.36 160
baseline295.58 19194.04 19197.38 18198.80 18598.16 16197.14 20697.80 19991.45 21197.49 18495.22 19483.63 21394.98 18496.42 17896.66 16898.06 17496.76 175
PatchT95.49 19293.29 20098.06 16298.65 19396.20 19998.91 11199.73 2392.00 20698.50 13096.67 17183.25 21496.34 17094.40 20495.50 18496.21 19395.04 190
CR-MVSNet95.38 19393.01 20198.16 15898.63 19495.85 20997.64 19499.78 1691.27 21398.50 13096.84 16682.16 21596.34 17094.40 20495.50 18498.05 17695.04 190
MVSTER95.38 19393.99 19397.01 19298.83 18398.95 9996.62 21299.14 13592.17 20297.44 18797.29 15177.88 22191.63 21397.45 15396.18 17898.41 16397.99 141
MVS-HIRNet94.86 19593.83 19596.07 20497.07 21994.00 21794.31 21999.17 13091.23 21598.17 15498.69 10097.43 15895.66 17894.05 20691.92 20292.04 21489.46 214
test-LLR94.79 19693.71 19696.06 20599.20 15796.16 20096.31 21398.50 17789.98 21794.08 21597.01 16086.43 20192.20 21096.76 17395.31 18696.05 19594.31 195
RPMNet94.72 19792.01 20697.88 17098.56 19995.85 20997.78 18599.70 2991.27 21398.33 14593.69 20481.88 21694.91 18792.60 20994.34 19898.01 17794.46 194
gm-plane-assit94.62 19891.39 20898.39 14399.90 1199.47 3299.40 5099.65 3997.44 6999.56 2099.68 2559.40 22794.23 19796.17 18194.77 19597.61 18292.79 204
test-mter94.62 19894.02 19295.32 21097.72 21396.75 19396.23 21595.67 21089.83 22093.23 21996.99 16285.94 20592.66 20897.32 16296.11 18096.44 19195.22 189
FMVSNet594.57 20092.77 20296.67 20097.88 21098.72 12397.54 19798.70 16788.64 22195.11 21286.90 21481.77 21793.27 20397.92 13198.07 10997.50 18597.34 161
SCA94.53 20191.95 20797.55 17898.58 19697.86 17598.49 14699.68 3095.11 15699.07 7695.87 18787.24 19996.53 16689.77 21487.08 20992.96 20990.69 209
MDTV_nov1_ep1394.47 20292.15 20497.17 18598.54 20196.42 19798.10 17498.89 15594.49 16898.02 16497.41 14886.49 20095.56 17990.85 21287.95 20693.91 20491.45 208
TESTMET0.1,194.44 20393.71 19695.30 21197.84 21196.16 20096.31 21395.32 21389.98 21794.08 21597.01 16086.43 20192.20 21096.76 17395.31 18696.05 19594.31 195
ADS-MVSNet94.41 20492.13 20597.07 18798.86 18196.60 19498.38 15698.47 18096.13 13698.02 16496.98 16387.50 19895.87 17689.89 21387.58 20892.79 21190.27 211
tpm93.89 20591.21 20997.03 19098.36 20596.07 20497.53 20099.65 3992.24 20098.64 11997.23 15374.67 22594.64 19192.68 20890.73 20393.37 20694.82 193
PatchmatchNetpermissive93.88 20691.08 21097.14 18698.75 18796.01 20698.25 16899.39 8794.95 16198.96 9096.32 17985.35 20795.50 18088.89 21585.89 21391.99 21590.15 212
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS93.67 20790.82 21196.99 19398.62 19596.39 19898.40 15499.11 14095.54 15097.87 17397.14 15681.27 21994.97 18688.54 21786.80 21192.95 21090.06 213
MVEpermissive82.47 1893.12 20894.09 18891.99 21490.79 22182.50 22293.93 22096.30 20996.06 13788.81 22198.19 12096.38 17197.56 14397.24 16595.18 18984.58 22193.07 201
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CostFormer92.75 20989.49 21396.55 20198.78 18695.83 21197.55 19698.59 17391.83 20897.34 19296.31 18078.53 22094.50 19286.14 21884.92 21492.54 21292.84 202
tpmrst92.45 21089.48 21495.92 20798.43 20495.03 21497.14 20697.92 19794.16 18097.56 18197.86 13481.63 21893.56 20285.89 21982.86 21590.91 21988.95 216
dps92.35 21188.78 21696.52 20298.21 20995.94 20897.78 18598.38 18389.88 21996.81 20095.07 19675.31 22494.70 19088.62 21686.21 21293.21 20890.41 210
E-PMN92.28 21290.12 21294.79 21298.56 19990.90 21995.16 21793.68 21695.36 15395.10 21396.56 17389.05 19595.24 18295.21 19781.84 21790.98 21781.94 218
EMVS91.84 21389.39 21594.70 21398.44 20390.84 22095.27 21693.53 21795.18 15495.26 21195.62 19287.59 19794.77 18994.87 20180.72 21890.95 21880.88 219
tpm cat191.52 21487.70 21795.97 20698.33 20694.98 21597.06 20998.03 19292.11 20398.03 16394.77 20077.19 22392.71 20783.56 22082.24 21691.67 21689.04 215
test_method77.69 21585.40 21868.69 21542.66 22355.39 22482.17 22352.05 21992.83 19984.52 22294.88 19995.41 17965.37 21892.49 21079.32 21985.36 22087.50 217
GG-mvs-BLEND65.66 21692.62 20334.20 2171.45 22693.75 21885.40 2221.64 22391.37 21217.21 22587.25 21294.78 1823.25 22295.64 19193.80 19996.27 19291.74 207
testmvs9.73 21713.38 2195.48 2193.62 2244.12 2256.40 2263.19 22214.92 2227.68 22722.10 22113.89 2296.83 22013.47 22110.38 2215.14 22414.81 220
test1239.37 21812.26 2206.00 2183.32 2254.06 2266.39 2273.41 22113.20 22310.48 22616.43 22216.22 2286.76 22111.37 22210.40 2205.62 22314.10 221
uanet_test0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
RE-MVS-def99.88 2
9.1498.83 118
SR-MVS99.62 8599.47 7599.40 57
Anonymous20240521198.44 7599.79 3899.32 5199.05 9699.34 10296.59 11097.95 13297.68 15597.16 15299.36 3299.28 3499.61 3998.90 69
our_test_399.29 14797.72 18198.98 102
ambc97.89 11799.45 12397.88 17497.78 18597.27 7699.80 398.99 9098.48 13498.55 9997.80 13796.68 16698.54 15598.10 139
MTAPA99.19 5899.68 21
MTMP99.20 5699.54 41
Patchmatch-RL test32.47 225
tmp_tt65.28 21682.24 22271.50 22370.81 22423.21 22096.14 13481.70 22485.98 21992.44 18949.84 21995.81 18694.36 19783.86 222
XVS99.77 4399.07 7799.46 4598.95 9299.37 6199.33 73
X-MVStestdata99.77 4399.07 7799.46 4598.95 9299.37 6199.33 73
mPP-MVS99.75 5299.49 51
NP-MVS93.07 196
Patchmtry96.05 20597.64 19499.78 1698.50 130
DeepMVS_CXcopyleft87.86 22192.27 22161.98 21893.64 19093.62 21891.17 20991.67 19094.90 18895.99 18592.48 21394.18 197