This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB98.82 199.76 199.75 199.77 799.87 1699.71 1099.77 899.76 1999.52 299.80 399.79 2199.91 199.56 1399.83 399.75 499.86 999.75 1
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs699.74 299.75 199.73 1199.92 599.67 1599.76 1099.84 1199.59 199.52 2499.87 1199.91 199.43 2799.87 199.81 299.89 699.52 12
SixPastTwentyTwo99.70 399.59 499.82 299.93 399.80 199.86 299.87 698.87 1299.79 599.85 1499.33 6699.74 599.85 299.82 199.74 2499.63 5
v7n99.68 499.61 399.76 899.89 1299.74 799.87 199.82 1399.20 699.71 699.96 199.73 1399.76 399.58 2099.59 1699.52 4799.46 17
anonymousdsp99.64 599.55 699.74 1099.87 1699.56 2699.82 399.73 2398.54 1799.71 699.92 499.84 799.61 999.70 999.63 999.69 3399.64 3
UniMVSNet_ETH3D99.61 699.59 499.63 1399.96 199.70 1199.53 3599.86 899.28 599.48 3099.44 5499.86 599.01 6999.78 499.76 399.90 299.33 23
WR-MVS99.61 699.44 899.82 299.92 599.80 199.80 499.89 198.54 1799.66 1399.78 2299.16 8799.68 799.70 999.63 999.94 199.49 15
PEN-MVS99.54 899.30 1699.83 199.92 599.76 499.80 499.88 397.60 6399.71 699.59 3699.52 4499.75 499.64 1599.51 1999.90 299.46 17
TDRefinement99.54 899.50 799.60 1799.70 6899.35 4699.77 899.58 5199.40 499.28 4999.66 2699.41 5599.55 1599.74 899.65 899.70 3099.25 28
DTE-MVSNet99.52 1099.27 1799.82 299.93 399.77 399.79 699.87 697.89 4599.70 1199.55 4599.21 7899.77 299.65 1399.43 2399.90 299.36 21
PS-CasMVS99.50 1199.23 2099.82 299.92 599.75 699.78 799.89 197.30 7499.71 699.60 3499.23 7499.71 699.65 1399.55 1899.90 299.56 8
WR-MVS_H99.48 1299.23 2099.76 899.91 999.76 499.75 1199.88 397.27 7799.58 1799.56 4199.24 7399.56 1399.60 1899.60 1599.88 899.58 7
pm-mvs199.47 1399.38 999.57 2199.82 2899.49 3099.63 2399.65 3998.88 1199.31 4399.85 1499.02 10699.23 4699.60 1899.58 1799.80 1599.22 35
MIMVSNet199.46 1499.34 1099.60 1799.83 2399.68 1499.74 1499.71 2798.20 2799.41 3599.86 1399.66 2599.41 3099.50 2499.39 2699.50 5499.10 46
TransMVSNet (Re)99.45 1599.32 1399.61 1599.88 1499.60 2199.75 1199.63 4399.11 799.28 4999.83 1898.35 14199.27 4399.70 999.62 1399.84 1099.03 54
ACMH97.81 699.44 1699.33 1199.56 2299.81 3299.42 3799.73 1599.58 5199.02 899.10 7399.41 5999.69 1999.60 1099.45 2899.26 3799.55 4399.05 51
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CP-MVSNet99.39 1799.04 2999.80 699.91 999.70 1199.75 1199.88 396.82 10099.68 1299.32 6398.86 11599.68 799.57 2199.47 2099.89 699.52 12
COLMAP_ROBcopyleft98.29 299.37 1899.25 1899.51 3099.74 5999.12 7699.56 3299.39 9098.96 1099.17 6199.44 5499.63 3299.58 1199.48 2699.27 3699.60 4098.81 81
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepC-MVS97.88 499.33 1999.15 2499.53 2999.73 6499.05 8499.49 4099.40 8898.42 2099.55 2199.71 2499.89 399.49 1999.14 4498.81 7099.54 4499.02 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FC-MVSNet-test99.32 2099.33 1199.31 5799.87 1699.65 1899.63 2399.75 2197.76 4797.29 19899.87 1199.63 3299.52 1699.66 1299.63 999.77 2099.12 42
UA-Net99.30 2199.22 2299.39 4499.94 299.66 1798.91 11199.86 897.74 5398.74 11599.00 9099.60 3799.17 5499.50 2499.39 2699.70 3099.64 3
ACMH+97.53 799.29 2299.20 2399.40 4399.81 3299.22 6399.59 2999.50 7198.64 1698.29 14999.21 7599.69 1999.57 1299.53 2399.33 3199.66 3498.81 81
Vis-MVSNetpermissive99.25 2399.32 1399.17 6799.65 7999.55 2899.63 2399.33 10698.16 2899.29 4699.65 3099.77 1097.56 14799.44 3099.14 4299.58 4199.51 14
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TranMVSNet+NR-MVSNet99.23 2498.91 3699.61 1599.81 3299.45 3499.47 4299.68 3097.28 7699.39 3699.54 4699.08 10299.45 2299.09 5098.84 6799.83 1199.04 52
CSCG99.23 2499.15 2499.32 5699.83 2399.45 3498.97 10399.21 12798.83 1399.04 8399.43 5699.64 3099.26 4498.85 7698.20 10699.62 3899.62 6
Gipumacopyleft99.22 2698.86 4099.64 1299.70 6899.24 5799.17 8599.63 4399.52 299.89 196.54 17899.14 9199.93 199.42 3299.15 4199.52 4799.04 52
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tfpnnormal99.19 2798.90 3799.54 2699.81 3299.55 2899.60 2799.54 5998.53 1999.23 5398.40 11198.23 14499.40 3199.29 3799.36 2999.63 3798.95 67
Baseline_NR-MVSNet99.18 2898.87 3899.54 2699.74 5999.56 2699.36 5799.62 4896.53 12199.29 4699.85 1498.64 13399.40 3199.03 6199.63 999.83 1198.86 76
thisisatest051599.16 2998.94 3499.41 3899.75 5399.43 3699.36 5799.63 4397.68 5999.35 3899.31 6498.90 11299.09 6398.95 6699.20 3899.27 8699.11 43
CS-MVS-test99.16 2998.78 4599.60 1799.80 3899.72 999.69 1699.73 2395.88 14399.51 2698.53 10899.54 4299.21 4899.24 4099.43 2399.66 3499.15 41
CS-MVS99.15 3198.75 4799.62 1499.76 4999.73 899.60 2799.75 2195.67 15099.50 2798.53 10899.39 6099.29 4099.21 4299.46 2299.79 1899.29 26
APDe-MVScopyleft99.15 3198.95 3199.39 4499.77 4499.28 5499.52 3699.54 5997.22 8199.06 7799.20 7699.64 3099.05 6799.14 4499.02 5299.39 6899.17 39
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
WB-MVS99.14 3399.31 1598.95 9699.81 3299.61 2098.85 11899.51 6899.01 997.37 19399.33 6299.56 4098.70 8799.44 3099.29 3399.45 5998.96 66
FC-MVSNet-train99.13 3499.05 2899.21 6299.87 1699.57 2599.67 1899.60 5096.75 10698.28 15099.48 5099.52 4498.10 12499.47 2799.37 2899.76 2299.21 36
NR-MVSNet99.10 3598.68 5799.58 2099.89 1299.23 6099.35 6199.63 4396.58 11499.36 3799.05 8498.67 13199.46 2099.63 1698.73 8099.80 1598.88 75
DVP-MVS++99.09 3699.25 1898.90 10299.53 10899.37 4499.17 8599.48 7698.28 2597.95 17099.54 4699.88 498.13 12399.08 5198.94 5699.15 9999.65 2
DVP-MVScopyleft99.09 3699.07 2799.12 7499.55 10199.40 3999.36 5799.44 8797.75 5098.23 15399.23 7299.80 898.97 7199.08 5198.96 5399.19 9499.25 28
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
UniMVSNet (Re)99.08 3898.69 5599.54 2699.75 5399.33 4999.29 6999.64 4296.75 10699.48 3099.30 6698.69 12699.26 4498.94 6898.76 7699.78 1999.02 56
ACMMPR99.05 3998.72 5199.44 3299.79 3999.12 7699.35 6199.56 5497.74 5399.21 5597.72 13899.55 4199.29 4098.90 7498.81 7099.41 6799.19 37
DU-MVS99.04 4098.59 6199.56 2299.74 5999.23 6099.29 6999.63 4396.58 11499.55 2199.05 8498.68 12899.36 3599.03 6198.60 8799.77 2098.97 61
TSAR-MVS + MP.99.02 4198.95 3199.11 7799.23 16098.79 12099.51 3798.73 16897.50 6798.56 12699.03 8799.59 3899.16 5699.29 3799.17 4099.50 5499.24 32
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
v1099.01 4298.66 5899.41 3899.52 11399.39 4099.57 3199.66 3797.59 6499.32 4299.88 999.23 7499.50 1897.77 14397.98 11798.92 12998.78 86
EG-PatchMatch MVS99.01 4298.77 4699.28 6199.64 8298.90 11398.81 12499.27 11796.55 11899.71 699.31 6499.66 2599.17 5499.28 3999.11 4499.10 10198.57 102
PVSNet_Blended_VisFu98.98 4498.79 4399.21 6299.76 4999.34 4799.35 6199.35 10297.12 8899.46 3299.56 4198.89 11398.08 12899.05 5598.58 8999.27 8698.98 60
HFP-MVS98.97 4598.70 5399.29 5999.67 7398.98 9699.13 9199.53 6397.76 4798.90 9898.07 12699.50 5099.14 5998.64 9098.78 7499.37 7099.18 38
UniMVSNet_NR-MVSNet98.97 4598.46 7199.56 2299.76 4999.34 4799.29 6999.61 4996.55 11899.55 2199.05 8497.96 15299.36 3598.84 7798.50 9599.81 1498.97 61
casdiffmvs_mvgpermissive98.96 4798.87 3899.07 8099.82 2899.36 4599.36 5799.22 12498.13 3097.74 17799.42 5799.46 5398.59 9598.39 10298.95 5599.71 2998.39 120
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EC-MVSNet98.96 4798.45 7499.56 2299.88 1499.70 1199.68 1799.78 1694.15 18498.97 8798.26 11899.21 7899.35 3799.30 3699.14 4299.73 2599.40 20
SED-MVS98.94 4998.95 3198.91 10199.43 13199.38 4299.12 9399.46 8197.05 9298.43 14199.23 7299.79 997.99 13199.05 5598.94 5699.05 11599.23 33
ACMMP_NAP98.94 4998.72 5199.21 6299.67 7399.08 7999.26 7499.39 9096.84 9798.88 10298.22 11999.68 2198.82 8099.06 5498.90 5999.25 8999.25 28
v114498.94 4998.53 6699.42 3699.62 8699.03 9099.58 3099.36 9997.99 3699.49 2999.91 899.20 8199.51 1797.61 14897.85 12498.95 12498.10 143
v898.94 4998.60 5999.35 5399.54 10599.39 4099.55 3399.67 3497.48 6899.13 6999.81 1999.10 9899.39 3397.86 13897.89 12298.81 13898.66 95
SteuartSystems-ACMMP98.94 4998.52 6799.43 3599.79 3999.13 7599.33 6599.55 5696.17 13699.04 8397.53 14499.65 2999.46 2099.04 6098.76 7699.44 6299.35 22
Skip Steuart: Steuart Systems R&D Blog.
v119298.91 5498.48 7099.41 3899.61 9099.03 9099.64 2099.25 12197.91 4299.58 1799.92 499.07 10499.45 2297.55 15297.68 13898.93 12698.23 133
FMVSNet198.90 5599.10 2698.67 12899.54 10599.48 3199.22 7999.66 3798.39 2397.50 18599.66 2699.04 10596.58 16899.05 5599.03 4999.52 4799.08 48
ACMM96.66 1198.90 5598.44 7699.44 3299.74 5998.95 10299.47 4299.55 5697.66 6199.09 7496.43 18099.41 5599.35 3798.95 6698.67 8399.45 5999.03 54
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2023121198.89 5798.79 4398.99 9399.82 2899.41 3899.18 8499.31 11296.92 9498.54 12898.58 10698.84 11897.46 14999.45 2899.29 3399.65 3699.08 48
v192192098.89 5798.46 7199.39 4499.58 9499.04 8899.64 2099.17 13397.91 4299.64 1599.92 498.99 11099.44 2597.44 15997.57 14798.84 13698.35 123
GeoE98.88 5998.43 7999.41 3899.83 2399.24 5799.51 3799.82 1396.55 11899.22 5498.76 9899.22 7798.96 7298.55 9398.15 10899.10 10198.56 105
v14419298.88 5998.46 7199.37 5199.56 10099.03 9099.61 2699.26 11897.79 4699.58 1799.88 999.11 9699.43 2797.38 16497.61 14398.80 13998.43 117
SMA-MVScopyleft98.87 6198.73 5099.04 8699.72 6599.05 8498.64 13599.17 13396.31 13198.80 10999.07 8299.70 1898.67 8998.93 7198.82 6899.23 9299.23 33
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMP96.54 1398.87 6198.40 8299.41 3899.74 5998.88 11499.29 6999.50 7196.85 9698.96 9097.05 16099.66 2599.43 2798.98 6598.60 8799.52 4798.81 81
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DCV-MVSNet98.86 6398.57 6499.19 6599.86 2099.67 1599.39 5199.71 2797.53 6698.69 11895.85 19198.48 13697.75 14199.57 2199.41 2599.72 2699.48 16
v124098.86 6398.41 8199.38 4999.59 9299.05 8499.65 1999.14 13897.68 5999.66 1399.93 398.72 12599.45 2297.38 16497.72 13698.79 14098.35 123
CP-MVS98.86 6398.43 7999.36 5299.68 7198.97 10099.19 8299.46 8196.60 11299.20 5697.11 15999.51 4899.15 5898.92 7298.82 6899.45 5999.08 48
v2v48298.85 6698.40 8299.38 4999.65 7998.98 9699.55 3399.39 9097.92 4199.35 3899.85 1499.14 9199.39 3397.50 15497.78 12798.98 12197.60 159
DPE-MVScopyleft98.84 6798.69 5599.00 9099.05 17999.26 5599.19 8299.35 10295.85 14598.74 11599.27 6899.66 2598.30 11698.90 7498.93 5899.37 7099.00 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
OPM-MVS98.84 6798.59 6199.12 7499.52 11398.50 14599.13 9199.22 12497.76 4798.76 11198.70 10099.61 3598.90 7598.67 8898.37 10099.19 9498.57 102
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test20.0398.84 6798.74 4998.95 9699.77 4499.33 4999.21 8199.46 8197.29 7598.88 10299.65 3099.10 9897.07 15999.11 4798.76 7699.32 7997.98 147
casdiffmvspermissive98.84 6798.75 4798.94 10099.75 5399.21 6499.33 6599.04 14898.04 3297.46 18899.72 2399.72 1598.60 9398.30 11498.37 10099.48 5697.92 149
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LGP-MVS_train98.84 6798.33 8899.44 3299.78 4298.98 9699.39 5199.55 5695.41 15598.90 9897.51 14599.68 2199.44 2599.03 6198.81 7099.57 4298.91 71
RPSCF98.84 6798.81 4298.89 10499.37 13998.95 10298.51 14798.85 16197.73 5598.33 14698.97 9299.14 9198.95 7399.18 4398.68 8299.31 8098.99 59
ACMMPcopyleft98.82 7398.33 8899.39 4499.77 4499.14 7499.37 5499.54 5996.47 12599.03 8596.26 18499.52 4499.28 4298.92 7298.80 7399.37 7099.16 40
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
V4298.81 7498.49 6999.18 6699.52 11398.92 10899.50 3999.29 11497.43 7198.97 8799.81 1999.00 10999.30 3997.93 13498.01 11598.51 16498.34 127
LS3D98.79 7598.52 6799.12 7499.64 8299.09 7899.24 7799.46 8197.75 5098.93 9697.47 14798.23 14497.98 13299.36 3399.30 3299.46 5798.42 118
MP-MVScopyleft98.78 7698.30 9099.34 5599.75 5398.95 10299.26 7499.46 8195.78 14999.17 6196.98 16499.72 1599.06 6698.84 7798.74 7999.33 7699.11 43
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
v14898.77 7798.45 7499.15 7099.68 7198.94 10699.49 4099.31 11297.95 3898.91 9799.65 3099.62 3499.18 5197.99 13297.64 14298.33 16997.38 164
test111198.75 7898.14 10399.46 3199.86 2099.63 1999.47 4299.68 3098.34 2498.76 11199.66 2690.92 19899.23 4699.77 599.71 599.75 2398.95 67
ECVR-MVScopyleft98.74 7998.15 10199.42 3699.83 2399.58 2399.37 5499.67 3498.02 3498.85 10699.59 3691.66 19699.10 6199.77 599.70 699.72 2698.73 88
SD-MVS98.73 8098.54 6598.95 9699.14 16998.76 12398.46 15199.14 13897.71 5798.56 12698.06 12899.61 3598.85 7998.56 9297.74 13399.54 4499.32 24
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSP-MVS98.72 8198.60 5998.87 10699.67 7399.33 4999.15 8899.26 11896.99 9397.90 17398.19 12199.74 1298.29 11797.69 14698.96 5398.96 12299.27 27
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PGM-MVS98.69 8298.09 10899.39 4499.76 4999.07 8099.30 6899.51 6894.76 16699.18 6096.70 17399.51 4899.20 4998.79 8298.71 8199.39 6899.11 43
pmmvs-eth3d98.68 8398.14 10399.29 5999.49 11898.45 14899.45 4799.38 9597.21 8299.50 2799.65 3099.21 7899.16 5697.11 17197.56 14898.79 14097.82 153
EU-MVSNet98.68 8398.94 3498.37 14999.14 16998.74 12599.64 2098.20 19398.21 2699.17 6199.66 2699.18 8499.08 6499.11 4798.86 6295.00 20698.83 78
PMVScopyleft92.51 1798.66 8598.86 4098.43 14599.26 15598.98 9698.60 14198.59 17797.73 5599.45 3399.38 6098.54 13595.24 18699.62 1799.61 1499.42 6498.17 140
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepC-MVS_fast97.38 898.65 8698.34 8799.02 8999.33 14398.29 15598.99 10198.71 17097.40 7299.31 4398.20 12099.40 5898.54 10298.33 11198.18 10799.23 9298.58 100
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator98.16 398.65 8698.35 8699.00 9099.59 9298.70 12898.90 11599.36 9997.97 3799.09 7496.55 17799.09 10097.97 13398.70 8798.65 8599.12 10098.81 81
TSAR-MVS + ACMM98.64 8898.58 6398.72 12299.17 16798.63 13498.69 13099.10 14597.69 5898.30 14899.12 8099.38 6198.70 8798.45 9797.51 15098.35 16899.25 28
DELS-MVS98.63 8998.70 5398.55 14199.24 15999.04 8898.96 10498.52 18096.83 9998.38 14399.58 3999.68 2197.06 16098.74 8698.44 9799.10 10198.59 99
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
QAPM98.62 9098.40 8298.89 10499.57 9998.80 11998.63 13699.35 10296.82 10098.60 12298.85 9799.08 10298.09 12698.31 11298.21 10499.08 10798.72 89
EPP-MVSNet98.61 9198.19 9899.11 7799.86 2099.60 2199.44 4899.53 6397.37 7396.85 20398.69 10193.75 18999.18 5199.22 4199.35 3099.82 1399.32 24
3Dnovator+97.85 598.61 9198.14 10399.15 7099.62 8698.37 15299.10 9499.51 6898.04 3298.98 8696.07 18898.75 12498.55 10098.51 9598.40 9899.17 9698.82 79
X-MVS98.59 9397.99 11499.30 5899.75 5399.07 8099.17 8599.50 7196.62 11098.95 9293.95 20799.37 6299.11 6098.94 6898.86 6299.35 7499.09 47
MVS_111021_HR98.58 9498.26 9398.96 9599.32 14698.81 11798.48 14998.99 15396.81 10299.16 6498.07 12699.23 7498.89 7798.43 9998.27 10398.90 13198.24 132
MVS_030498.57 9598.36 8598.82 11499.72 6598.94 10698.92 10999.14 13896.76 10599.33 4198.30 11599.73 1396.74 16498.05 12997.79 12699.08 10798.97 61
PM-MVS98.57 9598.24 9598.95 9699.26 15598.59 13799.03 9898.74 16796.84 9799.44 3499.13 7998.31 14398.75 8598.03 13098.21 10498.48 16598.58 100
PHI-MVS98.57 9598.20 9799.00 9099.48 12098.91 11098.68 13199.17 13394.97 16299.27 5198.33 11399.33 6698.05 12998.82 8098.62 8699.34 7598.38 121
HPM-MVS++copyleft98.56 9898.08 10999.11 7799.53 10898.61 13699.02 10099.32 11096.29 13399.06 7797.23 15499.50 5098.77 8398.15 12597.90 12098.96 12298.90 72
TSAR-MVS + GP.98.54 9998.29 9298.82 11499.28 15398.59 13797.73 19299.24 12395.93 14298.59 12399.07 8299.17 8598.86 7898.44 9898.10 11099.26 8898.72 89
UGNet98.52 10099.00 3097.96 17099.58 9499.26 5599.27 7399.40 8898.07 3198.28 15098.76 9899.71 1792.24 21498.94 6898.85 6499.00 12099.43 19
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Anonymous2023120698.50 10198.03 11199.05 8499.50 11699.01 9399.15 8899.26 11896.38 12999.12 7199.50 4999.12 9498.60 9397.68 14797.24 16198.66 14897.30 168
CLD-MVS98.48 10298.15 10198.86 10999.53 10898.35 15398.55 14497.83 20296.02 14198.97 8799.08 8199.75 1199.03 6898.10 12897.33 15799.28 8498.44 116
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CANet98.47 10398.30 9098.67 12899.65 7998.87 11598.82 12399.01 15196.14 13799.29 4698.86 9599.01 10796.54 16998.36 10698.08 11298.72 14498.80 85
APD-MVScopyleft98.47 10397.97 11599.05 8499.64 8298.91 11098.94 10699.45 8694.40 17798.77 11097.26 15399.41 5598.21 12098.67 8898.57 9299.31 8098.57 102
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Vis-MVSNet (Re-imp)98.46 10598.23 9698.73 12199.81 3299.29 5398.79 12599.50 7196.20 13596.03 21098.29 11696.98 16798.54 10299.11 4799.08 4599.70 3098.62 97
Fast-Effi-MVS+98.42 10697.79 12399.15 7099.69 7098.66 13298.94 10699.68 3094.49 17199.05 7998.06 12898.86 11598.48 10598.18 12297.78 12799.05 11598.54 108
ETV-MVS98.41 10797.76 12499.17 6799.58 9499.01 9398.91 11199.50 7193.33 19799.31 4396.82 17098.42 13998.17 12299.13 4699.08 4599.54 4498.56 105
MVS_111021_LR98.39 10898.11 10698.71 12499.08 17698.54 14398.23 17498.56 17996.57 11699.13 6998.41 11098.86 11598.65 9198.23 12097.87 12398.65 15098.28 129
pmmvs598.37 10997.81 12299.03 8799.46 12298.97 10099.03 9898.96 15595.85 14599.05 7999.45 5398.66 13298.79 8296.02 18897.52 14998.87 13398.21 136
OMC-MVS98.35 11098.10 10798.64 13498.85 18697.99 17498.56 14398.21 19197.26 7998.87 10498.54 10799.27 7298.43 10798.34 10997.66 13998.92 12997.65 158
sasdasda98.34 11197.92 11898.83 11199.45 12499.21 6498.37 15999.53 6397.06 9097.74 17796.95 16795.05 18498.36 11098.77 8398.85 6499.51 5299.53 10
canonicalmvs98.34 11197.92 11898.83 11199.45 12499.21 6498.37 15999.53 6397.06 9097.74 17796.95 16795.05 18498.36 11098.77 8398.85 6499.51 5299.53 10
CHOSEN 1792x268898.31 11398.02 11298.66 13099.55 10198.57 14099.38 5399.25 12198.42 2098.48 13699.58 3999.85 698.31 11595.75 19195.71 18696.96 19398.27 131
CPTT-MVS98.28 11497.51 13799.16 6999.54 10598.78 12198.96 10499.36 9996.30 13298.89 10193.10 21199.30 6999.20 4998.35 10897.96 11899.03 11898.82 79
TinyColmap98.27 11597.62 13499.03 8799.29 15197.79 18398.92 10998.95 15697.48 6899.52 2498.65 10397.86 15498.90 7598.34 10997.27 15998.64 15195.97 188
diffmvspermissive98.26 11698.16 9998.39 14799.61 9098.78 12198.79 12598.61 17597.94 3997.11 20299.51 4899.52 4497.61 14596.55 18096.93 16798.61 15397.87 151
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
USDC98.26 11697.57 13599.06 8199.42 13497.98 17698.83 12098.85 16197.57 6599.59 1699.15 7898.59 13498.99 7097.42 16096.08 18598.69 14796.23 186
SF-MVS98.25 11898.16 9998.35 15099.43 13198.42 15197.05 21499.09 14696.42 12798.13 15997.73 13799.20 8197.22 15598.36 10698.38 9999.16 9898.62 97
MCST-MVS98.25 11897.57 13599.06 8199.53 10898.24 16198.63 13699.17 13395.88 14398.58 12496.11 18699.09 10099.18 5197.58 15197.31 15899.25 8998.75 87
MGCFI-Net98.23 12097.93 11798.58 13699.44 12899.20 7098.37 15999.54 5997.14 8696.70 20796.98 16495.04 18697.92 13798.75 8598.89 6099.52 4799.55 9
IterMVS-LS98.23 12097.66 13098.90 10299.63 8599.38 4299.07 9599.48 7697.75 5098.81 10899.37 6194.57 18897.88 13896.54 18197.04 16498.53 16198.97 61
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TAPA-MVS96.65 1298.23 12097.96 11698.55 14198.81 18898.16 16598.40 15697.94 20096.68 10898.49 13498.61 10498.89 11398.57 9897.45 15797.59 14599.09 10698.35 123
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CNVR-MVS98.22 12397.76 12498.76 11999.33 14398.26 15998.48 14998.88 15996.22 13498.47 13895.79 19299.33 6698.35 11298.37 10597.99 11699.03 11898.38 121
IS_MVSNet98.20 12498.00 11398.44 14499.82 2899.48 3199.25 7699.56 5495.58 15293.93 22297.56 14396.52 17298.27 11899.08 5199.20 3899.80 1598.56 105
DeepPCF-MVS96.68 1098.20 12498.26 9398.12 16397.03 22598.11 16898.44 15397.70 20496.77 10498.52 13098.91 9399.17 8598.58 9798.41 10198.02 11498.46 16698.46 113
MSDG98.20 12497.88 12198.56 13999.33 14397.74 18498.27 17198.10 19497.20 8498.06 16398.59 10599.16 8798.76 8498.39 10297.71 13798.86 13596.38 183
testgi98.18 12798.44 7697.89 17299.78 4299.23 6098.78 12799.21 12797.26 7997.41 19097.39 15099.36 6592.85 21098.82 8098.66 8499.31 8098.35 123
Effi-MVS+98.11 12897.29 14399.06 8199.62 8698.55 14198.16 17799.80 1594.64 16799.15 6796.59 17597.43 16098.44 10697.46 15697.90 12099.17 9698.45 115
FA-MVS(training)98.08 12997.68 12898.56 13999.14 16998.69 12998.41 15499.83 1295.85 14598.57 12597.95 13396.92 16996.85 16298.51 9598.09 11198.54 15997.74 154
HyFIR lowres test98.08 12997.16 15299.14 7399.72 6598.91 11099.41 4999.58 5197.93 4098.82 10799.24 7095.81 17898.73 8695.16 20295.13 19598.60 15597.94 148
EIA-MVS98.03 13197.20 14998.99 9399.66 7699.24 5798.53 14699.52 6791.56 21399.25 5295.34 19698.78 12197.72 14298.38 10498.58 8999.28 8498.54 108
train_agg97.99 13297.26 14498.83 11199.43 13198.22 16398.91 11199.07 14794.43 17597.96 16996.42 18199.30 6998.81 8197.39 16296.62 17398.82 13798.47 111
MSLP-MVS++97.99 13297.64 13398.40 14698.91 18498.47 14797.12 21298.78 16596.49 12398.48 13693.57 20999.12 9498.51 10498.31 11298.58 8998.58 15798.95 67
CDPH-MVS97.99 13297.23 14798.87 10699.58 9498.29 15598.83 12099.20 12993.76 19198.11 16196.11 18699.16 8798.23 11997.80 14197.22 16299.29 8398.28 129
FMVSNet297.94 13598.08 10997.77 17898.71 19299.21 6498.62 13899.47 7896.62 11096.37 20999.20 7697.70 15694.39 19797.39 16297.75 13299.08 10798.70 92
PVSNet_BlendedMVS97.93 13697.66 13098.25 15699.30 14898.67 13098.31 16697.95 19894.30 18198.75 11397.63 14098.76 12296.30 17698.29 11597.78 12798.93 12698.18 138
PVSNet_Blended97.93 13697.66 13098.25 15699.30 14898.67 13098.31 16697.95 19894.30 18198.75 11397.63 14098.76 12296.30 17698.29 11597.78 12798.93 12698.18 138
OpenMVScopyleft97.26 997.88 13897.17 15198.70 12599.50 11698.55 14198.34 16499.11 14393.92 18998.90 9895.04 20198.23 14497.38 15298.11 12798.12 10998.95 12498.23 133
pmmvs497.87 13997.02 15698.86 10999.20 16197.68 18798.89 11699.03 14996.57 11699.12 7199.03 8797.26 16498.42 10895.16 20296.34 17798.53 16197.10 175
NCCC97.84 14096.96 15898.87 10699.39 13798.27 15898.46 15199.02 15096.78 10398.73 11791.12 21598.91 11198.57 9897.83 14097.49 15199.04 11798.33 128
Effi-MVS+-dtu97.78 14197.37 14198.26 15499.25 15798.50 14597.89 18699.19 13294.51 16998.16 15795.93 18998.80 12095.97 17998.27 11997.38 15499.10 10198.23 133
MDA-MVSNet-bldmvs97.75 14297.26 14498.33 15199.35 14298.45 14899.32 6797.21 20997.90 4499.05 7999.01 8996.86 17099.08 6499.36 3392.97 20595.97 20296.25 185
CDS-MVSNet97.75 14297.68 12897.83 17699.08 17698.20 16498.68 13198.61 17595.63 15197.80 17599.24 7096.93 16894.09 20297.96 13397.82 12598.71 14597.99 145
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CNLPA97.75 14297.26 14498.32 15398.58 20097.86 17997.80 18898.09 19596.49 12398.49 13496.15 18598.08 14798.35 11298.00 13197.03 16598.61 15397.21 172
PLCcopyleft95.63 1597.73 14597.01 15798.57 13899.10 17397.80 18297.72 19398.77 16696.34 13098.38 14393.46 21098.06 14898.66 9097.90 13697.65 14198.77 14297.90 150
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVS_Test97.69 14697.15 15398.33 15199.27 15498.43 15098.25 17299.29 11495.00 16197.39 19298.86 9598.00 15197.14 15795.38 19796.22 17998.62 15298.15 142
GBi-Net97.69 14697.75 12697.62 17998.71 19299.21 6498.62 13899.33 10694.09 18595.60 21298.17 12395.97 17594.39 19799.05 5599.03 4999.08 10798.70 92
test197.69 14697.75 12697.62 17998.71 19299.21 6498.62 13899.33 10694.09 18595.60 21298.17 12395.97 17594.39 19799.05 5599.03 4999.08 10798.70 92
CANet_DTU97.65 14997.50 13997.82 17799.19 16498.08 17098.41 15498.67 17294.40 17799.16 6498.32 11498.69 12693.96 20497.87 13797.61 14397.51 18997.56 161
IterMVS-SCA-FT97.63 15096.86 16098.52 14399.48 12098.71 12798.84 11998.91 15796.44 12699.16 6499.56 4195.54 18097.95 13495.68 19495.07 19896.76 19497.03 178
TSAR-MVS + COLMAP97.62 15197.31 14297.98 16898.47 20697.39 19198.29 16898.25 19096.68 10897.54 18498.87 9498.04 15097.08 15896.78 17596.26 17898.26 17297.12 174
MS-PatchMatch97.60 15297.22 14898.04 16798.67 19697.18 19697.91 18498.28 18995.82 14898.34 14597.66 13998.38 14097.77 14097.10 17297.25 16097.27 19197.18 173
PCF-MVS95.58 1697.60 15296.67 16198.69 12699.44 12898.23 16298.37 15998.81 16393.01 20198.22 15497.97 13299.59 3898.20 12195.72 19395.08 19699.08 10797.09 177
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HQP-MVS97.58 15496.65 16498.66 13099.30 14897.99 17497.88 18798.65 17394.58 16898.66 11994.65 20599.15 9098.59 9596.10 18695.59 18798.90 13198.50 110
DI_MVS_plusplus_trai97.57 15596.55 16698.77 11899.55 10198.76 12399.22 7999.00 15297.08 8997.95 17097.78 13691.35 19798.02 13096.20 18496.81 16998.87 13397.87 151
AdaColmapbinary97.57 15596.57 16598.74 12099.25 15798.01 17298.36 16398.98 15494.44 17498.47 13892.44 21297.91 15398.62 9298.19 12197.74 13398.73 14397.28 169
baseline97.50 15797.51 13797.50 18399.18 16597.38 19298.00 18098.00 19796.52 12297.49 18699.28 6799.43 5495.31 18595.27 19996.22 17996.99 19298.47 111
IterMVS97.40 15896.67 16198.25 15699.45 12498.66 13298.87 11798.73 16896.40 12898.94 9599.56 4195.26 18297.58 14695.38 19794.70 20095.90 20396.72 181
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dmvs_re97.38 15996.15 17498.82 11499.39 13798.34 15498.65 13498.88 15990.80 22098.86 10592.35 21395.13 18398.09 12698.84 7798.88 6199.06 11498.71 91
CVMVSNet97.38 15997.39 14097.37 18698.58 20097.72 18598.70 12997.42 20797.21 8295.95 21199.46 5293.31 19297.38 15297.60 14997.78 12796.18 19998.66 95
new-patchmatchnet97.26 16196.12 17598.58 13699.55 10198.63 13499.14 9097.04 21198.80 1499.19 5899.92 499.19 8398.92 7495.51 19687.04 21497.66 18693.73 204
MIMVSNet97.24 16297.15 15397.36 18799.03 18098.52 14498.55 14499.73 2394.94 16594.94 21997.98 13197.37 16293.66 20597.60 14997.34 15698.23 17596.29 184
PatchMatch-RL97.24 16296.45 16998.17 16098.70 19597.57 19097.31 20798.48 18394.42 17698.39 14295.74 19396.35 17497.88 13897.75 14497.48 15298.24 17495.87 189
thisisatest053097.20 16495.95 17998.66 13099.46 12298.84 11698.29 16899.20 12994.51 16998.25 15297.42 14885.03 21397.68 14398.43 9998.56 9399.08 10798.89 74
tttt051797.18 16595.92 18098.65 13399.49 11898.92 10898.29 16899.20 12994.37 17998.17 15597.37 15184.72 21697.68 14398.55 9398.56 9399.10 10198.95 67
MDTV_nov1_ep13_2view97.12 16696.19 17398.22 15999.13 17298.05 17199.24 7799.47 7897.61 6299.15 6799.59 3699.01 10798.40 10994.87 20590.14 20893.91 20994.04 203
MAR-MVS97.12 16696.28 17298.11 16498.94 18297.22 19497.65 19799.38 9590.93 21998.15 15895.17 19897.13 16596.48 17297.71 14597.40 15398.06 17998.40 119
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Fast-Effi-MVS+-dtu96.99 16896.46 16897.61 18198.98 18197.89 17797.54 20199.76 1993.43 19596.55 20894.93 20298.06 14894.32 20096.93 17396.50 17598.53 16197.47 162
FPMVS96.97 16997.20 14996.70 20397.75 21796.11 20897.72 19395.47 21597.13 8798.02 16597.57 14296.67 17192.97 20999.00 6498.34 10298.28 17195.58 191
TAMVS96.95 17096.94 15996.97 19899.07 17897.67 18997.98 18297.12 21095.04 16095.41 21599.27 6895.57 17994.09 20297.32 16697.11 16398.16 17796.59 182
FMVSNet396.85 17196.67 16197.06 19297.56 22099.01 9397.99 18199.33 10694.09 18595.60 21298.17 12395.97 17593.26 20894.76 20796.22 17998.59 15698.46 113
GA-MVS96.84 17295.86 18297.98 16899.16 16898.29 15597.91 18498.64 17495.14 15897.71 18098.04 13088.90 20196.50 17196.41 18396.61 17497.97 18397.60 159
CHOSEN 280x42096.80 17396.30 17197.39 18499.09 17496.52 20098.76 12899.29 11493.88 19097.65 18198.34 11293.66 19096.29 17898.28 11797.73 13593.27 21295.70 190
gg-mvs-nofinetune96.77 17496.52 16797.06 19299.66 7697.82 18197.54 20199.86 898.69 1598.61 12199.94 289.62 19988.37 22297.55 15296.67 17198.30 17095.35 192
DPM-MVS96.73 17595.70 18597.95 17198.93 18397.26 19397.39 20698.44 18595.47 15497.62 18290.71 21698.47 13897.03 16195.02 20495.27 19298.26 17297.67 156
baseline196.72 17695.40 18798.26 15499.53 10898.81 11798.32 16598.80 16494.96 16396.78 20696.50 17984.87 21596.68 16797.42 16097.91 11999.46 5797.33 167
N_pmnet96.68 17795.70 18597.84 17599.42 13498.00 17399.35 6198.21 19198.40 2298.13 15999.42 5799.30 6997.44 15194.00 21188.79 20994.47 20891.96 210
pmnet_mix0296.61 17895.32 18898.11 16499.41 13697.68 18799.05 9697.59 20598.16 2899.05 7999.48 5099.11 9698.32 11492.36 21587.67 21195.26 20592.80 208
new_pmnet96.59 17996.40 17096.81 20098.24 21395.46 21797.71 19594.75 21896.92 9496.80 20599.23 7297.81 15596.69 16596.58 17995.16 19496.69 19593.64 205
PMMVS96.47 18095.81 18397.23 18897.38 22295.96 21297.31 20796.91 21293.21 19897.93 17297.14 15797.64 15895.70 18195.24 20096.18 18298.17 17695.33 193
EPNet96.44 18196.08 17696.86 19999.32 14697.15 19797.69 19699.32 11093.67 19298.11 16195.64 19493.44 19189.07 22096.86 17496.83 16897.67 18598.97 61
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres600view796.35 18294.27 19098.79 11799.66 7699.18 7198.94 10699.38 9594.37 17997.21 20087.19 21884.10 21798.10 12498.16 12399.47 2099.42 6497.43 163
EPNet_dtu96.31 18395.96 17896.72 20299.18 16595.39 21897.03 21599.13 14293.02 20099.35 3897.23 15497.07 16690.70 21995.74 19295.08 19694.94 20798.16 141
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs396.30 18495.87 18196.80 20197.66 21996.48 20197.93 18393.80 21993.40 19698.54 12898.27 11797.50 15997.37 15497.49 15593.11 20495.52 20494.85 197
PMMVS296.29 18597.05 15595.40 21398.32 21296.16 20598.18 17697.46 20697.20 8484.51 22899.60 3498.68 12896.37 17398.59 9197.38 15497.58 18891.76 211
thres20096.23 18694.13 19198.69 12699.44 12899.18 7198.58 14299.38 9593.52 19497.35 19486.33 22385.83 21197.93 13598.16 12398.78 7499.42 6497.10 175
thres40096.22 18794.08 19398.72 12299.58 9499.05 8498.83 12099.22 12494.01 18897.40 19186.34 22284.91 21497.93 13597.85 13999.08 4599.37 7097.28 169
tfpn200view996.17 18894.08 19398.60 13599.37 13999.18 7198.68 13199.39 9092.02 20797.30 19686.53 22086.34 20897.45 15098.15 12599.08 4599.43 6397.28 169
CMPMVSbinary74.71 1996.17 18896.06 17796.30 20797.41 22194.52 22194.83 22395.46 21691.57 21297.26 19994.45 20698.33 14294.98 18898.28 11797.59 14597.86 18497.68 155
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test250696.12 19093.35 20399.35 5399.83 2399.58 2399.37 5499.67 3498.02 3498.44 14097.51 14560.03 23199.10 6199.77 599.70 699.72 2698.86 76
IB-MVS95.85 1495.87 19194.88 18997.02 19599.09 17498.25 16097.16 20997.38 20891.97 21097.77 17683.61 22597.29 16392.03 21797.16 17097.66 13998.66 14898.20 137
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test0.0.03 195.81 19295.77 18495.85 21299.20 16198.15 16797.49 20598.50 18192.24 20392.74 22596.82 17092.70 19388.60 22197.31 16897.01 16698.57 15896.19 187
thres100view90095.74 19393.66 20298.17 16099.37 13998.59 13798.10 17898.33 18892.02 20797.30 19686.53 22086.34 20896.69 16596.77 17698.47 9699.24 9196.89 179
ET-MVSNet_ETH3D95.72 19493.85 19897.89 17297.30 22398.09 16998.19 17598.40 18694.46 17398.01 16896.71 17277.85 22796.76 16396.08 18796.39 17698.70 14697.36 165
baseline295.58 19594.04 19597.38 18598.80 18998.16 16597.14 21097.80 20391.45 21497.49 18695.22 19783.63 21894.98 18896.42 18296.66 17298.06 17996.76 180
PatchT95.49 19693.29 20498.06 16698.65 19796.20 20498.91 11199.73 2392.00 20998.50 13196.67 17483.25 21996.34 17494.40 20895.50 18896.21 19895.04 195
CR-MVSNet95.38 19793.01 20598.16 16298.63 19895.85 21497.64 19899.78 1691.27 21698.50 13196.84 16982.16 22096.34 17494.40 20895.50 18898.05 18195.04 195
MVSTER95.38 19793.99 19797.01 19698.83 18798.95 10296.62 21699.14 13892.17 20597.44 18997.29 15277.88 22691.63 21897.45 15796.18 18298.41 16797.99 145
MVS-HIRNet94.86 19993.83 19996.07 20897.07 22494.00 22294.31 22499.17 13391.23 21898.17 15598.69 10197.43 16095.66 18294.05 21091.92 20692.04 21989.46 219
test-LLR94.79 20093.71 20096.06 20999.20 16196.16 20596.31 21898.50 18189.98 22194.08 22097.01 16186.43 20692.20 21596.76 17795.31 19096.05 20094.31 200
RPMNet94.72 20192.01 21097.88 17498.56 20395.85 21497.78 18999.70 2991.27 21698.33 14693.69 20881.88 22194.91 19192.60 21394.34 20298.01 18294.46 199
gm-plane-assit94.62 20291.39 21298.39 14799.90 1199.47 3399.40 5099.65 3997.44 7099.56 2099.68 2559.40 23294.23 20196.17 18594.77 19997.61 18792.79 209
test-mter94.62 20294.02 19695.32 21497.72 21896.75 19896.23 22095.67 21489.83 22493.23 22496.99 16385.94 21092.66 21397.32 16696.11 18496.44 19695.22 194
FMVSNet594.57 20492.77 20696.67 20497.88 21598.72 12697.54 20198.70 17188.64 22595.11 21786.90 21981.77 22293.27 20797.92 13598.07 11397.50 19097.34 166
SCA94.53 20591.95 21197.55 18298.58 20097.86 17998.49 14899.68 3095.11 15999.07 7695.87 19087.24 20496.53 17089.77 21887.08 21392.96 21490.69 214
MDTV_nov1_ep1394.47 20692.15 20897.17 18998.54 20596.42 20298.10 17898.89 15894.49 17198.02 16597.41 14986.49 20595.56 18390.85 21687.95 21093.91 20991.45 213
TESTMET0.1,194.44 20793.71 20095.30 21597.84 21696.16 20596.31 21895.32 21789.98 22194.08 22097.01 16186.43 20692.20 21596.76 17795.31 19096.05 20094.31 200
ADS-MVSNet94.41 20892.13 20997.07 19198.86 18596.60 19998.38 15898.47 18496.13 13998.02 16596.98 16487.50 20395.87 18089.89 21787.58 21292.79 21690.27 216
tpm93.89 20991.21 21397.03 19498.36 21096.07 20997.53 20499.65 3992.24 20398.64 12097.23 15474.67 23094.64 19592.68 21290.73 20793.37 21194.82 198
PatchmatchNetpermissive93.88 21091.08 21497.14 19098.75 19196.01 21198.25 17299.39 9094.95 16498.96 9096.32 18285.35 21295.50 18488.89 21985.89 21791.99 22090.15 217
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS93.67 21190.82 21596.99 19798.62 19996.39 20398.40 15699.11 14395.54 15397.87 17497.14 15781.27 22494.97 19088.54 22186.80 21592.95 21590.06 218
MVEpermissive82.47 1893.12 21294.09 19291.99 21890.79 22682.50 22793.93 22596.30 21396.06 14088.81 22698.19 12196.38 17397.56 14797.24 16995.18 19384.58 22693.07 206
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CostFormer92.75 21389.49 21796.55 20598.78 19095.83 21697.55 20098.59 17791.83 21197.34 19596.31 18378.53 22594.50 19686.14 22284.92 21892.54 21792.84 207
tpmrst92.45 21489.48 21895.92 21198.43 20895.03 21997.14 21097.92 20194.16 18397.56 18397.86 13581.63 22393.56 20685.89 22382.86 21990.91 22488.95 221
dps92.35 21588.78 22096.52 20698.21 21495.94 21397.78 18998.38 18789.88 22396.81 20495.07 20075.31 22994.70 19488.62 22086.21 21693.21 21390.41 215
E-PMN92.28 21690.12 21694.79 21698.56 20390.90 22495.16 22293.68 22095.36 15695.10 21896.56 17689.05 20095.24 18695.21 20181.84 22190.98 22281.94 223
EMVS91.84 21789.39 21994.70 21798.44 20790.84 22595.27 22193.53 22195.18 15795.26 21695.62 19587.59 20294.77 19394.87 20580.72 22290.95 22380.88 224
tpm cat191.52 21887.70 22195.97 21098.33 21194.98 22097.06 21398.03 19692.11 20698.03 16494.77 20477.19 22892.71 21183.56 22482.24 22091.67 22189.04 220
test_method77.69 21985.40 22268.69 21942.66 22855.39 22982.17 22852.05 22392.83 20284.52 22794.88 20395.41 18165.37 22392.49 21479.32 22385.36 22587.50 222
GG-mvs-BLEND65.66 22092.62 20734.20 2211.45 23193.75 22385.40 2271.64 22791.37 21517.21 23087.25 21794.78 1873.25 22795.64 19593.80 20396.27 19791.74 212
testmvs9.73 22113.38 2235.48 2233.62 2294.12 2306.40 2313.19 22614.92 2267.68 23222.10 22613.89 2346.83 22513.47 22510.38 2255.14 22914.81 225
test1239.37 22212.26 2246.00 2223.32 2304.06 2316.39 2323.41 22513.20 22710.48 23116.43 22716.22 2336.76 22611.37 22610.40 2245.62 22814.10 226
uanet_test0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet-low-res0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
TPM-MVS98.38 20997.20 19596.44 21797.17 20195.17 19898.68 12892.69 21298.11 17897.67 156
Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025
RE-MVS-def99.88 2
9.1498.83 119
SR-MVS99.62 8699.47 7899.40 58
Anonymous20240521198.44 7699.79 3999.32 5299.05 9699.34 10596.59 11397.95 13397.68 15797.16 15699.36 3399.28 3599.61 3998.90 72
our_test_399.29 15197.72 18598.98 102
ambc97.89 12099.45 12497.88 17897.78 18997.27 7799.80 398.99 9198.48 13698.55 10097.80 14196.68 17098.54 15998.10 143
MTAPA99.19 5899.68 21
MTMP99.20 5699.54 42
Patchmatch-RL test32.47 230
tmp_tt65.28 22082.24 22771.50 22870.81 22923.21 22496.14 13781.70 22985.98 22492.44 19449.84 22495.81 19094.36 20183.86 227
XVS99.77 4499.07 8099.46 4598.95 9299.37 6299.33 76
X-MVStestdata99.77 4499.07 8099.46 4598.95 9299.37 6299.33 76
mPP-MVS99.75 5399.49 52
NP-MVS93.07 199
Patchmtry96.05 21097.64 19899.78 1698.50 131
DeepMVS_CXcopyleft87.86 22692.27 22661.98 22293.64 19393.62 22391.17 21491.67 19594.90 19295.99 18992.48 21894.18 202