| LTVRE_ROB | | 98.82 1 | 99.76 1 | 99.75 1 | 99.77 7 | 99.87 16 | 99.71 10 | 99.77 8 | 99.76 19 | 99.52 2 | 99.80 3 | 99.79 21 | 99.91 1 | 99.56 13 | 99.83 3 | 99.75 4 | 99.86 9 | 99.75 1 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| pmmvs6 | | | 99.74 2 | 99.75 1 | 99.73 11 | 99.92 5 | 99.67 15 | 99.76 10 | 99.84 11 | 99.59 1 | 99.52 24 | 99.87 11 | 99.91 1 | 99.43 27 | 99.87 1 | 99.81 2 | 99.89 6 | 99.52 12 |
|
| SixPastTwentyTwo | | | 99.70 3 | 99.59 4 | 99.82 2 | 99.93 3 | 99.80 1 | 99.86 2 | 99.87 6 | 98.87 12 | 99.79 5 | 99.85 14 | 99.33 66 | 99.74 5 | 99.85 2 | 99.82 1 | 99.74 24 | 99.63 5 |
|
| v7n | | | 99.68 4 | 99.61 3 | 99.76 8 | 99.89 12 | 99.74 7 | 99.87 1 | 99.82 13 | 99.20 6 | 99.71 6 | 99.96 1 | 99.73 13 | 99.76 3 | 99.58 20 | 99.59 16 | 99.52 47 | 99.46 17 |
|
| anonymousdsp | | | 99.64 5 | 99.55 6 | 99.74 10 | 99.87 16 | 99.56 26 | 99.82 3 | 99.73 23 | 98.54 17 | 99.71 6 | 99.92 4 | 99.84 7 | 99.61 9 | 99.70 9 | 99.63 9 | 99.69 33 | 99.64 3 |
|
| UniMVSNet_ETH3D | | | 99.61 6 | 99.59 4 | 99.63 13 | 99.96 1 | 99.70 11 | 99.53 35 | 99.86 8 | 99.28 5 | 99.48 30 | 99.44 54 | 99.86 5 | 99.01 69 | 99.78 4 | 99.76 3 | 99.90 2 | 99.33 23 |
|
| WR-MVS | | | 99.61 6 | 99.44 8 | 99.82 2 | 99.92 5 | 99.80 1 | 99.80 4 | 99.89 1 | 98.54 17 | 99.66 13 | 99.78 22 | 99.16 87 | 99.68 7 | 99.70 9 | 99.63 9 | 99.94 1 | 99.49 15 |
|
| PEN-MVS | | | 99.54 8 | 99.30 16 | 99.83 1 | 99.92 5 | 99.76 4 | 99.80 4 | 99.88 3 | 97.60 63 | 99.71 6 | 99.59 36 | 99.52 44 | 99.75 4 | 99.64 15 | 99.51 19 | 99.90 2 | 99.46 17 |
|
| TDRefinement | | | 99.54 8 | 99.50 7 | 99.60 17 | 99.70 68 | 99.35 46 | 99.77 8 | 99.58 51 | 99.40 4 | 99.28 49 | 99.66 26 | 99.41 55 | 99.55 15 | 99.74 8 | 99.65 8 | 99.70 30 | 99.25 28 |
|
| DTE-MVSNet | | | 99.52 10 | 99.27 17 | 99.82 2 | 99.93 3 | 99.77 3 | 99.79 6 | 99.87 6 | 97.89 45 | 99.70 11 | 99.55 45 | 99.21 78 | 99.77 2 | 99.65 13 | 99.43 23 | 99.90 2 | 99.36 21 |
|
| PS-CasMVS | | | 99.50 11 | 99.23 20 | 99.82 2 | 99.92 5 | 99.75 6 | 99.78 7 | 99.89 1 | 97.30 74 | 99.71 6 | 99.60 34 | 99.23 74 | 99.71 6 | 99.65 13 | 99.55 18 | 99.90 2 | 99.56 8 |
|
| WR-MVS_H | | | 99.48 12 | 99.23 20 | 99.76 8 | 99.91 9 | 99.76 4 | 99.75 11 | 99.88 3 | 97.27 77 | 99.58 17 | 99.56 41 | 99.24 73 | 99.56 13 | 99.60 18 | 99.60 15 | 99.88 8 | 99.58 7 |
|
| pm-mvs1 | | | 99.47 13 | 99.38 9 | 99.57 21 | 99.82 28 | 99.49 30 | 99.63 23 | 99.65 39 | 98.88 11 | 99.31 43 | 99.85 14 | 99.02 106 | 99.23 46 | 99.60 18 | 99.58 17 | 99.80 15 | 99.22 35 |
|
| MIMVSNet1 | | | 99.46 14 | 99.34 10 | 99.60 17 | 99.83 23 | 99.68 14 | 99.74 14 | 99.71 27 | 98.20 27 | 99.41 35 | 99.86 13 | 99.66 25 | 99.41 30 | 99.50 24 | 99.39 26 | 99.50 54 | 99.10 46 |
|
| TransMVSNet (Re) | | | 99.45 15 | 99.32 13 | 99.61 15 | 99.88 14 | 99.60 21 | 99.75 11 | 99.63 43 | 99.11 7 | 99.28 49 | 99.83 18 | 98.35 141 | 99.27 43 | 99.70 9 | 99.62 13 | 99.84 10 | 99.03 54 |
|
| ACMH | | 97.81 6 | 99.44 16 | 99.33 11 | 99.56 22 | 99.81 32 | 99.42 37 | 99.73 15 | 99.58 51 | 99.02 8 | 99.10 73 | 99.41 59 | 99.69 19 | 99.60 10 | 99.45 28 | 99.26 37 | 99.55 43 | 99.05 51 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| CP-MVSNet | | | 99.39 17 | 99.04 29 | 99.80 6 | 99.91 9 | 99.70 11 | 99.75 11 | 99.88 3 | 96.82 100 | 99.68 12 | 99.32 63 | 98.86 115 | 99.68 7 | 99.57 21 | 99.47 20 | 99.89 6 | 99.52 12 |
|
| COLMAP_ROB |  | 98.29 2 | 99.37 18 | 99.25 18 | 99.51 30 | 99.74 59 | 99.12 76 | 99.56 32 | 99.39 90 | 98.96 10 | 99.17 61 | 99.44 54 | 99.63 32 | 99.58 11 | 99.48 26 | 99.27 36 | 99.60 40 | 98.81 81 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| DeepC-MVS | | 97.88 4 | 99.33 19 | 99.15 24 | 99.53 29 | 99.73 64 | 99.05 84 | 99.49 40 | 99.40 88 | 98.42 20 | 99.55 21 | 99.71 24 | 99.89 3 | 99.49 19 | 99.14 44 | 98.81 70 | 99.54 44 | 99.02 56 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| FC-MVSNet-test | | | 99.32 20 | 99.33 11 | 99.31 57 | 99.87 16 | 99.65 18 | 99.63 23 | 99.75 21 | 97.76 47 | 97.29 198 | 99.87 11 | 99.63 32 | 99.52 16 | 99.66 12 | 99.63 9 | 99.77 20 | 99.12 42 |
|
| UA-Net | | | 99.30 21 | 99.22 22 | 99.39 44 | 99.94 2 | 99.66 17 | 98.91 111 | 99.86 8 | 97.74 53 | 98.74 115 | 99.00 90 | 99.60 37 | 99.17 54 | 99.50 24 | 99.39 26 | 99.70 30 | 99.64 3 |
|
| ACMH+ | | 97.53 7 | 99.29 22 | 99.20 23 | 99.40 43 | 99.81 32 | 99.22 63 | 99.59 29 | 99.50 71 | 98.64 16 | 98.29 149 | 99.21 75 | 99.69 19 | 99.57 12 | 99.53 23 | 99.33 31 | 99.66 34 | 98.81 81 |
|
| Vis-MVSNet |  | | 99.25 23 | 99.32 13 | 99.17 67 | 99.65 79 | 99.55 28 | 99.63 23 | 99.33 106 | 98.16 28 | 99.29 46 | 99.65 30 | 99.77 10 | 97.56 147 | 99.44 30 | 99.14 42 | 99.58 41 | 99.51 14 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| TranMVSNet+NR-MVSNet | | | 99.23 24 | 98.91 36 | 99.61 15 | 99.81 32 | 99.45 34 | 99.47 42 | 99.68 30 | 97.28 76 | 99.39 36 | 99.54 46 | 99.08 102 | 99.45 22 | 99.09 50 | 98.84 67 | 99.83 11 | 99.04 52 |
|
| CSCG | | | 99.23 24 | 99.15 24 | 99.32 56 | 99.83 23 | 99.45 34 | 98.97 103 | 99.21 127 | 98.83 13 | 99.04 83 | 99.43 56 | 99.64 30 | 99.26 44 | 98.85 76 | 98.20 106 | 99.62 38 | 99.62 6 |
|
| Gipuma |  | | 99.22 26 | 98.86 40 | 99.64 12 | 99.70 68 | 99.24 57 | 99.17 85 | 99.63 43 | 99.52 2 | 99.89 1 | 96.54 178 | 99.14 91 | 99.93 1 | 99.42 32 | 99.15 41 | 99.52 47 | 99.04 52 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| tfpnnormal | | | 99.19 27 | 98.90 37 | 99.54 26 | 99.81 32 | 99.55 28 | 99.60 27 | 99.54 59 | 98.53 19 | 99.23 53 | 98.40 111 | 98.23 144 | 99.40 31 | 99.29 37 | 99.36 29 | 99.63 37 | 98.95 67 |
|
| Baseline_NR-MVSNet | | | 99.18 28 | 98.87 38 | 99.54 26 | 99.74 59 | 99.56 26 | 99.36 57 | 99.62 48 | 96.53 121 | 99.29 46 | 99.85 14 | 98.64 133 | 99.40 31 | 99.03 61 | 99.63 9 | 99.83 11 | 98.86 76 |
|
| thisisatest0515 | | | 99.16 29 | 98.94 34 | 99.41 38 | 99.75 53 | 99.43 36 | 99.36 57 | 99.63 43 | 97.68 59 | 99.35 38 | 99.31 64 | 98.90 112 | 99.09 63 | 98.95 66 | 99.20 38 | 99.27 86 | 99.11 43 |
|
| CS-MVS-test | | | 99.16 29 | 98.78 45 | 99.60 17 | 99.80 38 | 99.72 9 | 99.69 16 | 99.73 23 | 95.88 143 | 99.51 26 | 98.53 108 | 99.54 42 | 99.21 48 | 99.24 40 | 99.43 23 | 99.66 34 | 99.15 41 |
|
| CS-MVS | | | 99.15 31 | 98.75 47 | 99.62 14 | 99.76 49 | 99.73 8 | 99.60 27 | 99.75 21 | 95.67 150 | 99.50 27 | 98.53 108 | 99.39 60 | 99.29 40 | 99.21 42 | 99.46 22 | 99.79 18 | 99.29 26 |
|
| APDe-MVS |  | | 99.15 31 | 98.95 31 | 99.39 44 | 99.77 44 | 99.28 54 | 99.52 36 | 99.54 59 | 97.22 81 | 99.06 77 | 99.20 76 | 99.64 30 | 99.05 67 | 99.14 44 | 99.02 52 | 99.39 68 | 99.17 39 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| WB-MVS | | | 99.14 33 | 99.31 15 | 98.95 96 | 99.81 32 | 99.61 20 | 98.85 118 | 99.51 68 | 99.01 9 | 97.37 193 | 99.33 62 | 99.56 40 | 98.70 87 | 99.44 30 | 99.29 33 | 99.45 59 | 98.96 66 |
|
| FC-MVSNet-train | | | 99.13 34 | 99.05 28 | 99.21 62 | 99.87 16 | 99.57 25 | 99.67 18 | 99.60 50 | 96.75 106 | 98.28 150 | 99.48 50 | 99.52 44 | 98.10 124 | 99.47 27 | 99.37 28 | 99.76 22 | 99.21 36 |
|
| NR-MVSNet | | | 99.10 35 | 98.68 57 | 99.58 20 | 99.89 12 | 99.23 60 | 99.35 61 | 99.63 43 | 96.58 114 | 99.36 37 | 99.05 84 | 98.67 131 | 99.46 20 | 99.63 16 | 98.73 80 | 99.80 15 | 98.88 75 |
|
| DVP-MVS++ | | | 99.09 36 | 99.25 18 | 98.90 102 | 99.53 108 | 99.37 44 | 99.17 85 | 99.48 76 | 98.28 25 | 97.95 170 | 99.54 46 | 99.88 4 | 98.13 123 | 99.08 51 | 98.94 56 | 99.15 99 | 99.65 2 |
|
| DVP-MVS |  | | 99.09 36 | 99.07 27 | 99.12 74 | 99.55 101 | 99.40 39 | 99.36 57 | 99.44 87 | 97.75 50 | 98.23 153 | 99.23 72 | 99.80 8 | 98.97 71 | 99.08 51 | 98.96 53 | 99.19 94 | 99.25 28 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| UniMVSNet (Re) | | | 99.08 38 | 98.69 55 | 99.54 26 | 99.75 53 | 99.33 49 | 99.29 69 | 99.64 42 | 96.75 106 | 99.48 30 | 99.30 66 | 98.69 126 | 99.26 44 | 98.94 68 | 98.76 76 | 99.78 19 | 99.02 56 |
|
| ACMMPR | | | 99.05 39 | 98.72 51 | 99.44 32 | 99.79 39 | 99.12 76 | 99.35 61 | 99.56 54 | 97.74 53 | 99.21 55 | 97.72 138 | 99.55 41 | 99.29 40 | 98.90 74 | 98.81 70 | 99.41 67 | 99.19 37 |
|
| DU-MVS | | | 99.04 40 | 98.59 61 | 99.56 22 | 99.74 59 | 99.23 60 | 99.29 69 | 99.63 43 | 96.58 114 | 99.55 21 | 99.05 84 | 98.68 128 | 99.36 35 | 99.03 61 | 98.60 87 | 99.77 20 | 98.97 61 |
|
| TSAR-MVS + MP. | | | 99.02 41 | 98.95 31 | 99.11 77 | 99.23 160 | 98.79 120 | 99.51 37 | 98.73 168 | 97.50 67 | 98.56 126 | 99.03 87 | 99.59 38 | 99.16 56 | 99.29 37 | 99.17 40 | 99.50 54 | 99.24 32 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| v10 | | | 99.01 42 | 98.66 58 | 99.41 38 | 99.52 113 | 99.39 40 | 99.57 31 | 99.66 37 | 97.59 64 | 99.32 42 | 99.88 9 | 99.23 74 | 99.50 18 | 97.77 143 | 97.98 117 | 98.92 129 | 98.78 86 |
|
| EG-PatchMatch MVS | | | 99.01 42 | 98.77 46 | 99.28 61 | 99.64 82 | 98.90 113 | 98.81 124 | 99.27 117 | 96.55 118 | 99.71 6 | 99.31 64 | 99.66 25 | 99.17 54 | 99.28 39 | 99.11 44 | 99.10 101 | 98.57 102 |
|
| PVSNet_Blended_VisFu | | | 98.98 44 | 98.79 43 | 99.21 62 | 99.76 49 | 99.34 47 | 99.35 61 | 99.35 102 | 97.12 88 | 99.46 32 | 99.56 41 | 98.89 113 | 98.08 128 | 99.05 55 | 98.58 89 | 99.27 86 | 98.98 60 |
|
| HFP-MVS | | | 98.97 45 | 98.70 53 | 99.29 59 | 99.67 73 | 98.98 96 | 99.13 91 | 99.53 63 | 97.76 47 | 98.90 98 | 98.07 126 | 99.50 50 | 99.14 59 | 98.64 90 | 98.78 74 | 99.37 70 | 99.18 38 |
|
| UniMVSNet_NR-MVSNet | | | 98.97 45 | 98.46 71 | 99.56 22 | 99.76 49 | 99.34 47 | 99.29 69 | 99.61 49 | 96.55 118 | 99.55 21 | 99.05 84 | 97.96 152 | 99.36 35 | 98.84 77 | 98.50 95 | 99.81 14 | 98.97 61 |
|
| casdiffmvs_mvg |  | | 98.96 47 | 98.87 38 | 99.07 80 | 99.82 28 | 99.36 45 | 99.36 57 | 99.22 124 | 98.13 30 | 97.74 177 | 99.42 57 | 99.46 53 | 98.59 95 | 98.39 102 | 98.95 55 | 99.71 29 | 98.39 120 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| EC-MVSNet | | | 98.96 47 | 98.45 74 | 99.56 22 | 99.88 14 | 99.70 11 | 99.68 17 | 99.78 16 | 94.15 184 | 98.97 87 | 98.26 118 | 99.21 78 | 99.35 37 | 99.30 36 | 99.14 42 | 99.73 25 | 99.40 20 |
|
| SED-MVS | | | 98.94 49 | 98.95 31 | 98.91 101 | 99.43 131 | 99.38 42 | 99.12 93 | 99.46 81 | 97.05 92 | 98.43 141 | 99.23 72 | 99.79 9 | 97.99 131 | 99.05 55 | 98.94 56 | 99.05 115 | 99.23 33 |
|
| ACMMP_NAP | | | 98.94 49 | 98.72 51 | 99.21 62 | 99.67 73 | 99.08 79 | 99.26 74 | 99.39 90 | 96.84 97 | 98.88 102 | 98.22 119 | 99.68 21 | 98.82 80 | 99.06 54 | 98.90 59 | 99.25 89 | 99.25 28 |
|
| v1144 | | | 98.94 49 | 98.53 66 | 99.42 36 | 99.62 86 | 99.03 90 | 99.58 30 | 99.36 99 | 97.99 36 | 99.49 29 | 99.91 8 | 99.20 81 | 99.51 17 | 97.61 148 | 97.85 124 | 98.95 124 | 98.10 143 |
|
| v8 | | | 98.94 49 | 98.60 59 | 99.35 53 | 99.54 105 | 99.39 40 | 99.55 33 | 99.67 34 | 97.48 68 | 99.13 69 | 99.81 19 | 99.10 98 | 99.39 33 | 97.86 138 | 97.89 122 | 98.81 138 | 98.66 95 |
|
| SteuartSystems-ACMMP | | | 98.94 49 | 98.52 67 | 99.43 35 | 99.79 39 | 99.13 75 | 99.33 65 | 99.55 56 | 96.17 136 | 99.04 83 | 97.53 144 | 99.65 29 | 99.46 20 | 99.04 60 | 98.76 76 | 99.44 62 | 99.35 22 |
| Skip Steuart: Steuart Systems R&D Blog. |
| v1192 | | | 98.91 54 | 98.48 70 | 99.41 38 | 99.61 90 | 99.03 90 | 99.64 20 | 99.25 121 | 97.91 42 | 99.58 17 | 99.92 4 | 99.07 104 | 99.45 22 | 97.55 152 | 97.68 138 | 98.93 126 | 98.23 133 |
|
| FMVSNet1 | | | 98.90 55 | 99.10 26 | 98.67 128 | 99.54 105 | 99.48 31 | 99.22 79 | 99.66 37 | 98.39 23 | 97.50 185 | 99.66 26 | 99.04 105 | 96.58 168 | 99.05 55 | 99.03 49 | 99.52 47 | 99.08 48 |
|
| ACMM | | 96.66 11 | 98.90 55 | 98.44 76 | 99.44 32 | 99.74 59 | 98.95 102 | 99.47 42 | 99.55 56 | 97.66 61 | 99.09 74 | 96.43 180 | 99.41 55 | 99.35 37 | 98.95 66 | 98.67 83 | 99.45 59 | 99.03 54 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| Anonymous20231211 | | | 98.89 57 | 98.79 43 | 98.99 93 | 99.82 28 | 99.41 38 | 99.18 84 | 99.31 112 | 96.92 94 | 98.54 128 | 98.58 106 | 98.84 118 | 97.46 149 | 99.45 28 | 99.29 33 | 99.65 36 | 99.08 48 |
|
| v1921920 | | | 98.89 57 | 98.46 71 | 99.39 44 | 99.58 94 | 99.04 88 | 99.64 20 | 99.17 133 | 97.91 42 | 99.64 15 | 99.92 4 | 98.99 110 | 99.44 25 | 97.44 159 | 97.57 147 | 98.84 136 | 98.35 123 |
|
| GeoE | | | 98.88 59 | 98.43 79 | 99.41 38 | 99.83 23 | 99.24 57 | 99.51 37 | 99.82 13 | 96.55 118 | 99.22 54 | 98.76 98 | 99.22 77 | 98.96 72 | 98.55 93 | 98.15 108 | 99.10 101 | 98.56 105 |
|
| v144192 | | | 98.88 59 | 98.46 71 | 99.37 51 | 99.56 100 | 99.03 90 | 99.61 26 | 99.26 118 | 97.79 46 | 99.58 17 | 99.88 9 | 99.11 96 | 99.43 27 | 97.38 164 | 97.61 143 | 98.80 139 | 98.43 117 |
|
| SMA-MVS |  | | 98.87 61 | 98.73 50 | 99.04 86 | 99.72 65 | 99.05 84 | 98.64 135 | 99.17 133 | 96.31 131 | 98.80 109 | 99.07 82 | 99.70 18 | 98.67 89 | 98.93 71 | 98.82 68 | 99.23 92 | 99.23 33 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| ACMP | | 96.54 13 | 98.87 61 | 98.40 82 | 99.41 38 | 99.74 59 | 98.88 114 | 99.29 69 | 99.50 71 | 96.85 96 | 98.96 90 | 97.05 160 | 99.66 25 | 99.43 27 | 98.98 65 | 98.60 87 | 99.52 47 | 98.81 81 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| DCV-MVSNet | | | 98.86 63 | 98.57 64 | 99.19 65 | 99.86 20 | 99.67 15 | 99.39 51 | 99.71 27 | 97.53 66 | 98.69 118 | 95.85 191 | 98.48 136 | 97.75 141 | 99.57 21 | 99.41 25 | 99.72 26 | 99.48 16 |
|
| v1240 | | | 98.86 63 | 98.41 81 | 99.38 49 | 99.59 92 | 99.05 84 | 99.65 19 | 99.14 138 | 97.68 59 | 99.66 13 | 99.93 3 | 98.72 125 | 99.45 22 | 97.38 164 | 97.72 136 | 98.79 140 | 98.35 123 |
|
| CP-MVS | | | 98.86 63 | 98.43 79 | 99.36 52 | 99.68 71 | 98.97 100 | 99.19 82 | 99.46 81 | 96.60 112 | 99.20 56 | 97.11 159 | 99.51 48 | 99.15 58 | 98.92 72 | 98.82 68 | 99.45 59 | 99.08 48 |
|
| v2v482 | | | 98.85 66 | 98.40 82 | 99.38 49 | 99.65 79 | 98.98 96 | 99.55 33 | 99.39 90 | 97.92 41 | 99.35 38 | 99.85 14 | 99.14 91 | 99.39 33 | 97.50 154 | 97.78 127 | 98.98 121 | 97.60 159 |
|
| DPE-MVS |  | | 98.84 67 | 98.69 55 | 99.00 90 | 99.05 179 | 99.26 55 | 99.19 82 | 99.35 102 | 95.85 145 | 98.74 115 | 99.27 68 | 99.66 25 | 98.30 116 | 98.90 74 | 98.93 58 | 99.37 70 | 99.00 58 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| OPM-MVS | | | 98.84 67 | 98.59 61 | 99.12 74 | 99.52 113 | 98.50 145 | 99.13 91 | 99.22 124 | 97.76 47 | 98.76 111 | 98.70 100 | 99.61 35 | 98.90 75 | 98.67 88 | 98.37 100 | 99.19 94 | 98.57 102 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| test20.03 | | | 98.84 67 | 98.74 49 | 98.95 96 | 99.77 44 | 99.33 49 | 99.21 81 | 99.46 81 | 97.29 75 | 98.88 102 | 99.65 30 | 99.10 98 | 97.07 159 | 99.11 47 | 98.76 76 | 99.32 79 | 97.98 147 |
|
| casdiffmvs |  | | 98.84 67 | 98.75 47 | 98.94 100 | 99.75 53 | 99.21 64 | 99.33 65 | 99.04 148 | 98.04 32 | 97.46 188 | 99.72 23 | 99.72 15 | 98.60 93 | 98.30 114 | 98.37 100 | 99.48 56 | 97.92 149 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| LGP-MVS_train | | | 98.84 67 | 98.33 88 | 99.44 32 | 99.78 42 | 98.98 96 | 99.39 51 | 99.55 56 | 95.41 155 | 98.90 98 | 97.51 145 | 99.68 21 | 99.44 25 | 99.03 61 | 98.81 70 | 99.57 42 | 98.91 71 |
|
| RPSCF | | | 98.84 67 | 98.81 42 | 98.89 104 | 99.37 139 | 98.95 102 | 98.51 147 | 98.85 161 | 97.73 55 | 98.33 146 | 98.97 92 | 99.14 91 | 98.95 73 | 99.18 43 | 98.68 82 | 99.31 80 | 98.99 59 |
|
| ACMMP |  | | 98.82 73 | 98.33 88 | 99.39 44 | 99.77 44 | 99.14 74 | 99.37 54 | 99.54 59 | 96.47 125 | 99.03 85 | 96.26 184 | 99.52 44 | 99.28 42 | 98.92 72 | 98.80 73 | 99.37 70 | 99.16 40 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| V42 | | | 98.81 74 | 98.49 69 | 99.18 66 | 99.52 113 | 98.92 108 | 99.50 39 | 99.29 114 | 97.43 71 | 98.97 87 | 99.81 19 | 99.00 109 | 99.30 39 | 97.93 134 | 98.01 115 | 98.51 164 | 98.34 127 |
|
| LS3D | | | 98.79 75 | 98.52 67 | 99.12 74 | 99.64 82 | 99.09 78 | 99.24 77 | 99.46 81 | 97.75 50 | 98.93 96 | 97.47 147 | 98.23 144 | 97.98 132 | 99.36 33 | 99.30 32 | 99.46 57 | 98.42 118 |
|
| MP-MVS |  | | 98.78 76 | 98.30 90 | 99.34 55 | 99.75 53 | 98.95 102 | 99.26 74 | 99.46 81 | 95.78 149 | 99.17 61 | 96.98 164 | 99.72 15 | 99.06 66 | 98.84 77 | 98.74 79 | 99.33 76 | 99.11 43 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| v148 | | | 98.77 77 | 98.45 74 | 99.15 70 | 99.68 71 | 98.94 106 | 99.49 40 | 99.31 112 | 97.95 38 | 98.91 97 | 99.65 30 | 99.62 34 | 99.18 51 | 97.99 132 | 97.64 142 | 98.33 169 | 97.38 164 |
|
| test1111 | | | 98.75 78 | 98.14 103 | 99.46 31 | 99.86 20 | 99.63 19 | 99.47 42 | 99.68 30 | 98.34 24 | 98.76 111 | 99.66 26 | 90.92 198 | 99.23 46 | 99.77 5 | 99.71 5 | 99.75 23 | 98.95 67 |
|
| ECVR-MVS |  | | 98.74 79 | 98.15 101 | 99.42 36 | 99.83 23 | 99.58 23 | 99.37 54 | 99.67 34 | 98.02 34 | 98.85 106 | 99.59 36 | 91.66 196 | 99.10 61 | 99.77 5 | 99.70 6 | 99.72 26 | 98.73 88 |
|
| SD-MVS | | | 98.73 80 | 98.54 65 | 98.95 96 | 99.14 169 | 98.76 123 | 98.46 151 | 99.14 138 | 97.71 57 | 98.56 126 | 98.06 128 | 99.61 35 | 98.85 79 | 98.56 92 | 97.74 133 | 99.54 44 | 99.32 24 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| MSP-MVS | | | 98.72 81 | 98.60 59 | 98.87 106 | 99.67 73 | 99.33 49 | 99.15 88 | 99.26 118 | 96.99 93 | 97.90 173 | 98.19 121 | 99.74 12 | 98.29 117 | 97.69 146 | 98.96 53 | 98.96 122 | 99.27 27 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| PGM-MVS | | | 98.69 82 | 98.09 108 | 99.39 44 | 99.76 49 | 99.07 80 | 99.30 68 | 99.51 68 | 94.76 166 | 99.18 60 | 96.70 173 | 99.51 48 | 99.20 49 | 98.79 82 | 98.71 81 | 99.39 68 | 99.11 43 |
|
| pmmvs-eth3d | | | 98.68 83 | 98.14 103 | 99.29 59 | 99.49 118 | 98.45 148 | 99.45 47 | 99.38 95 | 97.21 82 | 99.50 27 | 99.65 30 | 99.21 78 | 99.16 56 | 97.11 171 | 97.56 148 | 98.79 140 | 97.82 153 |
|
| EU-MVSNet | | | 98.68 83 | 98.94 34 | 98.37 149 | 99.14 169 | 98.74 125 | 99.64 20 | 98.20 193 | 98.21 26 | 99.17 61 | 99.66 26 | 99.18 84 | 99.08 64 | 99.11 47 | 98.86 62 | 95.00 206 | 98.83 78 |
|
| PMVS |  | 92.51 17 | 98.66 85 | 98.86 40 | 98.43 145 | 99.26 155 | 98.98 96 | 98.60 141 | 98.59 177 | 97.73 55 | 99.45 33 | 99.38 60 | 98.54 135 | 95.24 186 | 99.62 17 | 99.61 14 | 99.42 64 | 98.17 140 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| DeepC-MVS_fast | | 97.38 8 | 98.65 86 | 98.34 87 | 99.02 89 | 99.33 143 | 98.29 155 | 98.99 101 | 98.71 170 | 97.40 72 | 99.31 43 | 98.20 120 | 99.40 58 | 98.54 102 | 98.33 111 | 98.18 107 | 99.23 92 | 98.58 100 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| 3Dnovator | | 98.16 3 | 98.65 86 | 98.35 86 | 99.00 90 | 99.59 92 | 98.70 128 | 98.90 115 | 99.36 99 | 97.97 37 | 99.09 74 | 96.55 177 | 99.09 100 | 97.97 133 | 98.70 87 | 98.65 85 | 99.12 100 | 98.81 81 |
|
| TSAR-MVS + ACMM | | | 98.64 88 | 98.58 63 | 98.72 122 | 99.17 167 | 98.63 134 | 98.69 130 | 99.10 145 | 97.69 58 | 98.30 148 | 99.12 80 | 99.38 61 | 98.70 87 | 98.45 97 | 97.51 150 | 98.35 168 | 99.25 28 |
|
| DELS-MVS | | | 98.63 89 | 98.70 53 | 98.55 141 | 99.24 159 | 99.04 88 | 98.96 104 | 98.52 180 | 96.83 99 | 98.38 143 | 99.58 39 | 99.68 21 | 97.06 160 | 98.74 86 | 98.44 97 | 99.10 101 | 98.59 99 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| QAPM | | | 98.62 90 | 98.40 82 | 98.89 104 | 99.57 99 | 98.80 119 | 98.63 136 | 99.35 102 | 96.82 100 | 98.60 122 | 98.85 97 | 99.08 102 | 98.09 126 | 98.31 112 | 98.21 104 | 99.08 107 | 98.72 89 |
|
| EPP-MVSNet | | | 98.61 91 | 98.19 98 | 99.11 77 | 99.86 20 | 99.60 21 | 99.44 48 | 99.53 63 | 97.37 73 | 96.85 203 | 98.69 101 | 93.75 189 | 99.18 51 | 99.22 41 | 99.35 30 | 99.82 13 | 99.32 24 |
|
| 3Dnovator+ | | 97.85 5 | 98.61 91 | 98.14 103 | 99.15 70 | 99.62 86 | 98.37 152 | 99.10 94 | 99.51 68 | 98.04 32 | 98.98 86 | 96.07 188 | 98.75 124 | 98.55 100 | 98.51 95 | 98.40 98 | 99.17 96 | 98.82 79 |
|
| X-MVS | | | 98.59 93 | 97.99 114 | 99.30 58 | 99.75 53 | 99.07 80 | 99.17 85 | 99.50 71 | 96.62 110 | 98.95 92 | 93.95 207 | 99.37 62 | 99.11 60 | 98.94 68 | 98.86 62 | 99.35 74 | 99.09 47 |
|
| MVS_111021_HR | | | 98.58 94 | 98.26 93 | 98.96 95 | 99.32 146 | 98.81 117 | 98.48 149 | 98.99 153 | 96.81 102 | 99.16 64 | 98.07 126 | 99.23 74 | 98.89 77 | 98.43 99 | 98.27 103 | 98.90 131 | 98.24 132 |
|
| MVS_0304 | | | 98.57 95 | 98.36 85 | 98.82 114 | 99.72 65 | 98.94 106 | 98.92 109 | 99.14 138 | 96.76 105 | 99.33 41 | 98.30 115 | 99.73 13 | 96.74 164 | 98.05 129 | 97.79 126 | 99.08 107 | 98.97 61 |
|
| PM-MVS | | | 98.57 95 | 98.24 95 | 98.95 96 | 99.26 155 | 98.59 137 | 99.03 98 | 98.74 167 | 96.84 97 | 99.44 34 | 99.13 79 | 98.31 143 | 98.75 85 | 98.03 130 | 98.21 104 | 98.48 165 | 98.58 100 |
|
| PHI-MVS | | | 98.57 95 | 98.20 97 | 99.00 90 | 99.48 120 | 98.91 110 | 98.68 131 | 99.17 133 | 94.97 162 | 99.27 51 | 98.33 113 | 99.33 66 | 98.05 129 | 98.82 80 | 98.62 86 | 99.34 75 | 98.38 121 |
|
| HPM-MVS++ |  | | 98.56 98 | 98.08 109 | 99.11 77 | 99.53 108 | 98.61 136 | 99.02 100 | 99.32 110 | 96.29 133 | 99.06 77 | 97.23 154 | 99.50 50 | 98.77 83 | 98.15 125 | 97.90 120 | 98.96 122 | 98.90 72 |
|
| TSAR-MVS + GP. | | | 98.54 99 | 98.29 92 | 98.82 114 | 99.28 153 | 98.59 137 | 97.73 192 | 99.24 123 | 95.93 142 | 98.59 123 | 99.07 82 | 99.17 85 | 98.86 78 | 98.44 98 | 98.10 110 | 99.26 88 | 98.72 89 |
|
| UGNet | | | 98.52 100 | 99.00 30 | 97.96 170 | 99.58 94 | 99.26 55 | 99.27 73 | 99.40 88 | 98.07 31 | 98.28 150 | 98.76 98 | 99.71 17 | 92.24 214 | 98.94 68 | 98.85 64 | 99.00 120 | 99.43 19 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| Anonymous20231206 | | | 98.50 101 | 98.03 111 | 99.05 84 | 99.50 116 | 99.01 93 | 99.15 88 | 99.26 118 | 96.38 129 | 99.12 71 | 99.50 49 | 99.12 94 | 98.60 93 | 97.68 147 | 97.24 161 | 98.66 148 | 97.30 168 |
|
| CLD-MVS | | | 98.48 102 | 98.15 101 | 98.86 109 | 99.53 108 | 98.35 153 | 98.55 144 | 97.83 202 | 96.02 141 | 98.97 87 | 99.08 81 | 99.75 11 | 99.03 68 | 98.10 128 | 97.33 157 | 99.28 84 | 98.44 116 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| CANet | | | 98.47 103 | 98.30 90 | 98.67 128 | 99.65 79 | 98.87 115 | 98.82 123 | 99.01 151 | 96.14 137 | 99.29 46 | 98.86 95 | 99.01 107 | 96.54 169 | 98.36 106 | 98.08 112 | 98.72 144 | 98.80 85 |
|
| APD-MVS |  | | 98.47 103 | 97.97 115 | 99.05 84 | 99.64 82 | 98.91 110 | 98.94 106 | 99.45 86 | 94.40 177 | 98.77 110 | 97.26 153 | 99.41 55 | 98.21 120 | 98.67 88 | 98.57 92 | 99.31 80 | 98.57 102 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| Vis-MVSNet (Re-imp) | | | 98.46 105 | 98.23 96 | 98.73 121 | 99.81 32 | 99.29 53 | 98.79 125 | 99.50 71 | 96.20 135 | 96.03 210 | 98.29 116 | 96.98 167 | 98.54 102 | 99.11 47 | 99.08 45 | 99.70 30 | 98.62 97 |
|
| Fast-Effi-MVS+ | | | 98.42 106 | 97.79 123 | 99.15 70 | 99.69 70 | 98.66 132 | 98.94 106 | 99.68 30 | 94.49 171 | 99.05 79 | 98.06 128 | 98.86 115 | 98.48 105 | 98.18 122 | 97.78 127 | 99.05 115 | 98.54 108 |
|
| ETV-MVS | | | 98.41 107 | 97.76 124 | 99.17 67 | 99.58 94 | 99.01 93 | 98.91 111 | 99.50 71 | 93.33 197 | 99.31 43 | 96.82 170 | 98.42 139 | 98.17 122 | 99.13 46 | 99.08 45 | 99.54 44 | 98.56 105 |
|
| MVS_111021_LR | | | 98.39 108 | 98.11 106 | 98.71 124 | 99.08 176 | 98.54 143 | 98.23 174 | 98.56 179 | 96.57 116 | 99.13 69 | 98.41 110 | 98.86 115 | 98.65 91 | 98.23 120 | 97.87 123 | 98.65 150 | 98.28 129 |
|
| pmmvs5 | | | 98.37 109 | 97.81 122 | 99.03 87 | 99.46 122 | 98.97 100 | 99.03 98 | 98.96 155 | 95.85 145 | 99.05 79 | 99.45 53 | 98.66 132 | 98.79 82 | 96.02 188 | 97.52 149 | 98.87 133 | 98.21 136 |
|
| OMC-MVS | | | 98.35 110 | 98.10 107 | 98.64 134 | 98.85 186 | 97.99 174 | 98.56 143 | 98.21 191 | 97.26 79 | 98.87 104 | 98.54 107 | 99.27 72 | 98.43 107 | 98.34 109 | 97.66 139 | 98.92 129 | 97.65 158 |
|
| sasdasda | | | 98.34 111 | 97.92 118 | 98.83 111 | 99.45 124 | 99.21 64 | 98.37 159 | 99.53 63 | 97.06 90 | 97.74 177 | 96.95 167 | 95.05 184 | 98.36 110 | 98.77 83 | 98.85 64 | 99.51 52 | 99.53 10 |
|
| canonicalmvs | | | 98.34 111 | 97.92 118 | 98.83 111 | 99.45 124 | 99.21 64 | 98.37 159 | 99.53 63 | 97.06 90 | 97.74 177 | 96.95 167 | 95.05 184 | 98.36 110 | 98.77 83 | 98.85 64 | 99.51 52 | 99.53 10 |
|
| CHOSEN 1792x2688 | | | 98.31 113 | 98.02 112 | 98.66 130 | 99.55 101 | 98.57 140 | 99.38 53 | 99.25 121 | 98.42 20 | 98.48 136 | 99.58 39 | 99.85 6 | 98.31 115 | 95.75 191 | 95.71 186 | 96.96 193 | 98.27 131 |
|
| CPTT-MVS | | | 98.28 114 | 97.51 137 | 99.16 69 | 99.54 105 | 98.78 121 | 98.96 104 | 99.36 99 | 96.30 132 | 98.89 101 | 93.10 211 | 99.30 69 | 99.20 49 | 98.35 108 | 97.96 118 | 99.03 118 | 98.82 79 |
|
| TinyColmap | | | 98.27 115 | 97.62 134 | 99.03 87 | 99.29 151 | 97.79 183 | 98.92 109 | 98.95 156 | 97.48 68 | 99.52 24 | 98.65 103 | 97.86 154 | 98.90 75 | 98.34 109 | 97.27 159 | 98.64 151 | 95.97 188 |
|
| diffmvs |  | | 98.26 116 | 98.16 99 | 98.39 147 | 99.61 90 | 98.78 121 | 98.79 125 | 98.61 175 | 97.94 39 | 97.11 202 | 99.51 48 | 99.52 44 | 97.61 145 | 96.55 180 | 96.93 167 | 98.61 153 | 97.87 151 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| USDC | | | 98.26 116 | 97.57 135 | 99.06 81 | 99.42 134 | 97.98 176 | 98.83 120 | 98.85 161 | 97.57 65 | 99.59 16 | 99.15 78 | 98.59 134 | 98.99 70 | 97.42 160 | 96.08 185 | 98.69 147 | 96.23 186 |
|
| SF-MVS | | | 98.25 118 | 98.16 99 | 98.35 150 | 99.43 131 | 98.42 151 | 97.05 214 | 99.09 146 | 96.42 127 | 98.13 159 | 97.73 137 | 99.20 81 | 97.22 155 | 98.36 106 | 98.38 99 | 99.16 98 | 98.62 97 |
|
| MCST-MVS | | | 98.25 118 | 97.57 135 | 99.06 81 | 99.53 108 | 98.24 161 | 98.63 136 | 99.17 133 | 95.88 143 | 98.58 124 | 96.11 186 | 99.09 100 | 99.18 51 | 97.58 151 | 97.31 158 | 99.25 89 | 98.75 87 |
|
| MGCFI-Net | | | 98.23 120 | 97.93 117 | 98.58 136 | 99.44 128 | 99.20 70 | 98.37 159 | 99.54 59 | 97.14 86 | 96.70 207 | 96.98 164 | 95.04 186 | 97.92 137 | 98.75 85 | 98.89 60 | 99.52 47 | 99.55 9 |
|
| IterMVS-LS | | | 98.23 120 | 97.66 130 | 98.90 102 | 99.63 85 | 99.38 42 | 99.07 95 | 99.48 76 | 97.75 50 | 98.81 108 | 99.37 61 | 94.57 188 | 97.88 138 | 96.54 181 | 97.04 164 | 98.53 161 | 98.97 61 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| TAPA-MVS | | 96.65 12 | 98.23 120 | 97.96 116 | 98.55 141 | 98.81 188 | 98.16 165 | 98.40 156 | 97.94 200 | 96.68 108 | 98.49 134 | 98.61 104 | 98.89 113 | 98.57 98 | 97.45 157 | 97.59 145 | 99.09 106 | 98.35 123 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| CNVR-MVS | | | 98.22 123 | 97.76 124 | 98.76 119 | 99.33 143 | 98.26 159 | 98.48 149 | 98.88 159 | 96.22 134 | 98.47 138 | 95.79 192 | 99.33 66 | 98.35 112 | 98.37 105 | 97.99 116 | 99.03 118 | 98.38 121 |
|
| IS_MVSNet | | | 98.20 124 | 98.00 113 | 98.44 144 | 99.82 28 | 99.48 31 | 99.25 76 | 99.56 54 | 95.58 152 | 93.93 222 | 97.56 143 | 96.52 172 | 98.27 118 | 99.08 51 | 99.20 38 | 99.80 15 | 98.56 105 |
|
| DeepPCF-MVS | | 96.68 10 | 98.20 124 | 98.26 93 | 98.12 163 | 97.03 225 | 98.11 168 | 98.44 153 | 97.70 204 | 96.77 104 | 98.52 130 | 98.91 93 | 99.17 85 | 98.58 97 | 98.41 101 | 98.02 114 | 98.46 166 | 98.46 113 |
|
| MSDG | | | 98.20 124 | 97.88 121 | 98.56 139 | 99.33 143 | 97.74 184 | 98.27 171 | 98.10 194 | 97.20 84 | 98.06 163 | 98.59 105 | 99.16 87 | 98.76 84 | 98.39 102 | 97.71 137 | 98.86 135 | 96.38 183 |
|
| testgi | | | 98.18 127 | 98.44 76 | 97.89 172 | 99.78 42 | 99.23 60 | 98.78 127 | 99.21 127 | 97.26 79 | 97.41 190 | 97.39 150 | 99.36 65 | 92.85 210 | 98.82 80 | 98.66 84 | 99.31 80 | 98.35 123 |
|
| Effi-MVS+ | | | 98.11 128 | 97.29 143 | 99.06 81 | 99.62 86 | 98.55 141 | 98.16 177 | 99.80 15 | 94.64 167 | 99.15 67 | 96.59 175 | 97.43 160 | 98.44 106 | 97.46 156 | 97.90 120 | 99.17 96 | 98.45 115 |
|
| FA-MVS(training) | | | 98.08 129 | 97.68 128 | 98.56 139 | 99.14 169 | 98.69 129 | 98.41 154 | 99.83 12 | 95.85 145 | 98.57 125 | 97.95 133 | 96.92 169 | 96.85 162 | 98.51 95 | 98.09 111 | 98.54 159 | 97.74 154 |
|
| HyFIR lowres test | | | 98.08 129 | 97.16 152 | 99.14 73 | 99.72 65 | 98.91 110 | 99.41 49 | 99.58 51 | 97.93 40 | 98.82 107 | 99.24 70 | 95.81 178 | 98.73 86 | 95.16 202 | 95.13 195 | 98.60 155 | 97.94 148 |
|
| EIA-MVS | | | 98.03 131 | 97.20 149 | 98.99 93 | 99.66 76 | 99.24 57 | 98.53 146 | 99.52 67 | 91.56 213 | 99.25 52 | 95.34 196 | 98.78 121 | 97.72 142 | 98.38 104 | 98.58 89 | 99.28 84 | 98.54 108 |
|
| train_agg | | | 97.99 132 | 97.26 144 | 98.83 111 | 99.43 131 | 98.22 163 | 98.91 111 | 99.07 147 | 94.43 175 | 97.96 169 | 96.42 181 | 99.30 69 | 98.81 81 | 97.39 162 | 96.62 173 | 98.82 137 | 98.47 111 |
|
| MSLP-MVS++ | | | 97.99 132 | 97.64 133 | 98.40 146 | 98.91 184 | 98.47 147 | 97.12 212 | 98.78 165 | 96.49 123 | 98.48 136 | 93.57 209 | 99.12 94 | 98.51 104 | 98.31 112 | 98.58 89 | 98.58 157 | 98.95 67 |
|
| CDPH-MVS | | | 97.99 132 | 97.23 147 | 98.87 106 | 99.58 94 | 98.29 155 | 98.83 120 | 99.20 129 | 93.76 191 | 98.11 161 | 96.11 186 | 99.16 87 | 98.23 119 | 97.80 141 | 97.22 162 | 99.29 83 | 98.28 129 |
|
| FMVSNet2 | | | 97.94 135 | 98.08 109 | 97.77 178 | 98.71 192 | 99.21 64 | 98.62 138 | 99.47 78 | 96.62 110 | 96.37 209 | 99.20 76 | 97.70 156 | 94.39 197 | 97.39 162 | 97.75 132 | 99.08 107 | 98.70 92 |
|
| PVSNet_BlendedMVS | | | 97.93 136 | 97.66 130 | 98.25 156 | 99.30 148 | 98.67 130 | 98.31 166 | 97.95 198 | 94.30 181 | 98.75 113 | 97.63 140 | 98.76 122 | 96.30 176 | 98.29 115 | 97.78 127 | 98.93 126 | 98.18 138 |
|
| PVSNet_Blended | | | 97.93 136 | 97.66 130 | 98.25 156 | 99.30 148 | 98.67 130 | 98.31 166 | 97.95 198 | 94.30 181 | 98.75 113 | 97.63 140 | 98.76 122 | 96.30 176 | 98.29 115 | 97.78 127 | 98.93 126 | 98.18 138 |
|
| OpenMVS |  | 97.26 9 | 97.88 138 | 97.17 151 | 98.70 125 | 99.50 116 | 98.55 141 | 98.34 164 | 99.11 143 | 93.92 189 | 98.90 98 | 95.04 201 | 98.23 144 | 97.38 152 | 98.11 127 | 98.12 109 | 98.95 124 | 98.23 133 |
|
| pmmvs4 | | | 97.87 139 | 97.02 156 | 98.86 109 | 99.20 161 | 97.68 187 | 98.89 116 | 99.03 149 | 96.57 116 | 99.12 71 | 99.03 87 | 97.26 164 | 98.42 108 | 95.16 202 | 96.34 177 | 98.53 161 | 97.10 175 |
|
| NCCC | | | 97.84 140 | 96.96 158 | 98.87 106 | 99.39 137 | 98.27 158 | 98.46 151 | 99.02 150 | 96.78 103 | 98.73 117 | 91.12 215 | 98.91 111 | 98.57 98 | 97.83 140 | 97.49 151 | 99.04 117 | 98.33 128 |
|
| Effi-MVS+-dtu | | | 97.78 141 | 97.37 141 | 98.26 154 | 99.25 157 | 98.50 145 | 97.89 186 | 99.19 132 | 94.51 169 | 98.16 157 | 95.93 189 | 98.80 120 | 95.97 179 | 98.27 119 | 97.38 154 | 99.10 101 | 98.23 133 |
|
| MDA-MVSNet-bldmvs | | | 97.75 142 | 97.26 144 | 98.33 151 | 99.35 142 | 98.45 148 | 99.32 67 | 97.21 209 | 97.90 44 | 99.05 79 | 99.01 89 | 96.86 170 | 99.08 64 | 99.36 33 | 92.97 205 | 95.97 202 | 96.25 185 |
|
| CDS-MVSNet | | | 97.75 142 | 97.68 128 | 97.83 176 | 99.08 176 | 98.20 164 | 98.68 131 | 98.61 175 | 95.63 151 | 97.80 175 | 99.24 70 | 96.93 168 | 94.09 202 | 97.96 133 | 97.82 125 | 98.71 145 | 97.99 145 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| CNLPA | | | 97.75 142 | 97.26 144 | 98.32 153 | 98.58 200 | 97.86 179 | 97.80 188 | 98.09 195 | 96.49 123 | 98.49 134 | 96.15 185 | 98.08 147 | 98.35 112 | 98.00 131 | 97.03 165 | 98.61 153 | 97.21 172 |
|
| PLC |  | 95.63 15 | 97.73 145 | 97.01 157 | 98.57 138 | 99.10 173 | 97.80 182 | 97.72 193 | 98.77 166 | 96.34 130 | 98.38 143 | 93.46 210 | 98.06 148 | 98.66 90 | 97.90 136 | 97.65 141 | 98.77 142 | 97.90 150 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| MVS_Test | | | 97.69 146 | 97.15 153 | 98.33 151 | 99.27 154 | 98.43 150 | 98.25 172 | 99.29 114 | 95.00 161 | 97.39 192 | 98.86 95 | 98.00 151 | 97.14 157 | 95.38 197 | 96.22 179 | 98.62 152 | 98.15 142 |
|
| GBi-Net | | | 97.69 146 | 97.75 126 | 97.62 179 | 98.71 192 | 99.21 64 | 98.62 138 | 99.33 106 | 94.09 185 | 95.60 212 | 98.17 123 | 95.97 175 | 94.39 197 | 99.05 55 | 99.03 49 | 99.08 107 | 98.70 92 |
|
| test1 | | | 97.69 146 | 97.75 126 | 97.62 179 | 98.71 192 | 99.21 64 | 98.62 138 | 99.33 106 | 94.09 185 | 95.60 212 | 98.17 123 | 95.97 175 | 94.39 197 | 99.05 55 | 99.03 49 | 99.08 107 | 98.70 92 |
|
| CANet_DTU | | | 97.65 149 | 97.50 139 | 97.82 177 | 99.19 164 | 98.08 170 | 98.41 154 | 98.67 172 | 94.40 177 | 99.16 64 | 98.32 114 | 98.69 126 | 93.96 204 | 97.87 137 | 97.61 143 | 97.51 189 | 97.56 161 |
|
| IterMVS-SCA-FT | | | 97.63 150 | 96.86 160 | 98.52 143 | 99.48 120 | 98.71 127 | 98.84 119 | 98.91 157 | 96.44 126 | 99.16 64 | 99.56 41 | 95.54 180 | 97.95 134 | 95.68 194 | 95.07 198 | 96.76 194 | 97.03 178 |
|
| TSAR-MVS + COLMAP | | | 97.62 151 | 97.31 142 | 97.98 168 | 98.47 206 | 97.39 191 | 98.29 168 | 98.25 190 | 96.68 108 | 97.54 184 | 98.87 94 | 98.04 150 | 97.08 158 | 96.78 175 | 96.26 178 | 98.26 172 | 97.12 174 |
|
| MS-PatchMatch | | | 97.60 152 | 97.22 148 | 98.04 167 | 98.67 196 | 97.18 196 | 97.91 184 | 98.28 189 | 95.82 148 | 98.34 145 | 97.66 139 | 98.38 140 | 97.77 140 | 97.10 172 | 97.25 160 | 97.27 191 | 97.18 173 |
|
| PCF-MVS | | 95.58 16 | 97.60 152 | 96.67 161 | 98.69 126 | 99.44 128 | 98.23 162 | 98.37 159 | 98.81 163 | 93.01 201 | 98.22 154 | 97.97 132 | 99.59 38 | 98.20 121 | 95.72 193 | 95.08 196 | 99.08 107 | 97.09 177 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| HQP-MVS | | | 97.58 154 | 96.65 164 | 98.66 130 | 99.30 148 | 97.99 174 | 97.88 187 | 98.65 173 | 94.58 168 | 98.66 119 | 94.65 205 | 99.15 90 | 98.59 95 | 96.10 186 | 95.59 187 | 98.90 131 | 98.50 110 |
|
| DI_MVS_plusplus_trai | | | 97.57 155 | 96.55 166 | 98.77 118 | 99.55 101 | 98.76 123 | 99.22 79 | 99.00 152 | 97.08 89 | 97.95 170 | 97.78 136 | 91.35 197 | 98.02 130 | 96.20 184 | 96.81 169 | 98.87 133 | 97.87 151 |
|
| AdaColmap |  | | 97.57 155 | 96.57 165 | 98.74 120 | 99.25 157 | 98.01 172 | 98.36 163 | 98.98 154 | 94.44 174 | 98.47 138 | 92.44 212 | 97.91 153 | 98.62 92 | 98.19 121 | 97.74 133 | 98.73 143 | 97.28 169 |
|
| baseline | | | 97.50 157 | 97.51 137 | 97.50 183 | 99.18 165 | 97.38 192 | 98.00 180 | 98.00 197 | 96.52 122 | 97.49 186 | 99.28 67 | 99.43 54 | 95.31 185 | 95.27 199 | 96.22 179 | 96.99 192 | 98.47 111 |
|
| IterMVS | | | 97.40 158 | 96.67 161 | 98.25 156 | 99.45 124 | 98.66 132 | 98.87 117 | 98.73 168 | 96.40 128 | 98.94 95 | 99.56 41 | 95.26 182 | 97.58 146 | 95.38 197 | 94.70 200 | 95.90 203 | 96.72 181 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| dmvs_re | | | 97.38 159 | 96.15 174 | 98.82 114 | 99.39 137 | 98.34 154 | 98.65 134 | 98.88 159 | 90.80 220 | 98.86 105 | 92.35 213 | 95.13 183 | 98.09 126 | 98.84 77 | 98.88 61 | 99.06 114 | 98.71 91 |
|
| CVMVSNet | | | 97.38 159 | 97.39 140 | 97.37 186 | 98.58 200 | 97.72 185 | 98.70 129 | 97.42 207 | 97.21 82 | 95.95 211 | 99.46 52 | 93.31 192 | 97.38 152 | 97.60 149 | 97.78 127 | 96.18 199 | 98.66 95 |
|
| new-patchmatchnet | | | 97.26 161 | 96.12 175 | 98.58 136 | 99.55 101 | 98.63 134 | 99.14 90 | 97.04 211 | 98.80 14 | 99.19 58 | 99.92 4 | 99.19 83 | 98.92 74 | 95.51 196 | 87.04 214 | 97.66 186 | 93.73 204 |
|
| MIMVSNet | | | 97.24 162 | 97.15 153 | 97.36 187 | 99.03 180 | 98.52 144 | 98.55 144 | 99.73 23 | 94.94 165 | 94.94 219 | 97.98 131 | 97.37 162 | 93.66 205 | 97.60 149 | 97.34 156 | 98.23 175 | 96.29 184 |
|
| PatchMatch-RL | | | 97.24 162 | 96.45 169 | 98.17 160 | 98.70 195 | 97.57 190 | 97.31 207 | 98.48 183 | 94.42 176 | 98.39 142 | 95.74 193 | 96.35 174 | 97.88 138 | 97.75 144 | 97.48 152 | 98.24 174 | 95.87 189 |
|
| thisisatest0530 | | | 97.20 164 | 95.95 179 | 98.66 130 | 99.46 122 | 98.84 116 | 98.29 168 | 99.20 129 | 94.51 169 | 98.25 152 | 97.42 148 | 85.03 213 | 97.68 143 | 98.43 99 | 98.56 93 | 99.08 107 | 98.89 74 |
|
| tttt0517 | | | 97.18 165 | 95.92 180 | 98.65 133 | 99.49 118 | 98.92 108 | 98.29 168 | 99.20 129 | 94.37 179 | 98.17 155 | 97.37 151 | 84.72 216 | 97.68 143 | 98.55 93 | 98.56 93 | 99.10 101 | 98.95 67 |
|
| MDTV_nov1_ep13_2view | | | 97.12 166 | 96.19 173 | 98.22 159 | 99.13 172 | 98.05 171 | 99.24 77 | 99.47 78 | 97.61 62 | 99.15 67 | 99.59 36 | 99.01 107 | 98.40 109 | 94.87 205 | 90.14 208 | 93.91 209 | 94.04 203 |
|
| MAR-MVS | | | 97.12 166 | 96.28 172 | 98.11 164 | 98.94 182 | 97.22 194 | 97.65 197 | 99.38 95 | 90.93 219 | 98.15 158 | 95.17 198 | 97.13 165 | 96.48 172 | 97.71 145 | 97.40 153 | 98.06 179 | 98.40 119 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| Fast-Effi-MVS+-dtu | | | 96.99 168 | 96.46 168 | 97.61 181 | 98.98 181 | 97.89 177 | 97.54 201 | 99.76 19 | 93.43 195 | 96.55 208 | 94.93 202 | 98.06 148 | 94.32 200 | 96.93 173 | 96.50 175 | 98.53 161 | 97.47 162 |
|
| FPMVS | | | 96.97 169 | 97.20 149 | 96.70 203 | 97.75 217 | 96.11 208 | 97.72 193 | 95.47 215 | 97.13 87 | 98.02 165 | 97.57 142 | 96.67 171 | 92.97 209 | 99.00 64 | 98.34 102 | 98.28 171 | 95.58 191 |
|
| TAMVS | | | 96.95 170 | 96.94 159 | 96.97 198 | 99.07 178 | 97.67 189 | 97.98 182 | 97.12 210 | 95.04 160 | 95.41 215 | 99.27 68 | 95.57 179 | 94.09 202 | 97.32 166 | 97.11 163 | 98.16 177 | 96.59 182 |
|
| FMVSNet3 | | | 96.85 171 | 96.67 161 | 97.06 192 | 97.56 220 | 99.01 93 | 97.99 181 | 99.33 106 | 94.09 185 | 95.60 212 | 98.17 123 | 95.97 175 | 93.26 208 | 94.76 207 | 96.22 179 | 98.59 156 | 98.46 113 |
|
| GA-MVS | | | 96.84 172 | 95.86 182 | 97.98 168 | 99.16 168 | 98.29 155 | 97.91 184 | 98.64 174 | 95.14 158 | 97.71 180 | 98.04 130 | 88.90 201 | 96.50 171 | 96.41 183 | 96.61 174 | 97.97 183 | 97.60 159 |
|
| CHOSEN 280x420 | | | 96.80 173 | 96.30 171 | 97.39 184 | 99.09 174 | 96.52 200 | 98.76 128 | 99.29 114 | 93.88 190 | 97.65 181 | 98.34 112 | 93.66 190 | 96.29 178 | 98.28 117 | 97.73 135 | 93.27 212 | 95.70 190 |
|
| gg-mvs-nofinetune | | | 96.77 174 | 96.52 167 | 97.06 192 | 99.66 76 | 97.82 181 | 97.54 201 | 99.86 8 | 98.69 15 | 98.61 121 | 99.94 2 | 89.62 199 | 88.37 222 | 97.55 152 | 96.67 171 | 98.30 170 | 95.35 192 |
|
| DPM-MVS | | | 96.73 175 | 95.70 185 | 97.95 171 | 98.93 183 | 97.26 193 | 97.39 206 | 98.44 185 | 95.47 154 | 97.62 182 | 90.71 216 | 98.47 138 | 97.03 161 | 95.02 204 | 95.27 192 | 98.26 172 | 97.67 156 |
|
| baseline1 | | | 96.72 176 | 95.40 187 | 98.26 154 | 99.53 108 | 98.81 117 | 98.32 165 | 98.80 164 | 94.96 163 | 96.78 206 | 96.50 179 | 84.87 215 | 96.68 167 | 97.42 160 | 97.91 119 | 99.46 57 | 97.33 167 |
|
| N_pmnet | | | 96.68 177 | 95.70 185 | 97.84 175 | 99.42 134 | 98.00 173 | 99.35 61 | 98.21 191 | 98.40 22 | 98.13 159 | 99.42 57 | 99.30 69 | 97.44 151 | 94.00 211 | 88.79 209 | 94.47 208 | 91.96 210 |
|
| pmnet_mix02 | | | 96.61 178 | 95.32 188 | 98.11 164 | 99.41 136 | 97.68 187 | 99.05 96 | 97.59 205 | 98.16 28 | 99.05 79 | 99.48 50 | 99.11 96 | 98.32 114 | 92.36 215 | 87.67 211 | 95.26 205 | 92.80 208 |
|
| new_pmnet | | | 96.59 179 | 96.40 170 | 96.81 200 | 98.24 213 | 95.46 217 | 97.71 195 | 94.75 218 | 96.92 94 | 96.80 205 | 99.23 72 | 97.81 155 | 96.69 165 | 96.58 179 | 95.16 194 | 96.69 195 | 93.64 205 |
|
| PMMVS | | | 96.47 180 | 95.81 183 | 97.23 188 | 97.38 222 | 95.96 212 | 97.31 207 | 96.91 212 | 93.21 198 | 97.93 172 | 97.14 157 | 97.64 158 | 95.70 181 | 95.24 200 | 96.18 182 | 98.17 176 | 95.33 193 |
|
| EPNet | | | 96.44 181 | 96.08 176 | 96.86 199 | 99.32 146 | 97.15 197 | 97.69 196 | 99.32 110 | 93.67 192 | 98.11 161 | 95.64 194 | 93.44 191 | 89.07 220 | 96.86 174 | 96.83 168 | 97.67 185 | 98.97 61 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| thres600view7 | | | 96.35 182 | 94.27 190 | 98.79 117 | 99.66 76 | 99.18 71 | 98.94 106 | 99.38 95 | 94.37 179 | 97.21 200 | 87.19 218 | 84.10 217 | 98.10 124 | 98.16 123 | 99.47 20 | 99.42 64 | 97.43 163 |
|
| EPNet_dtu | | | 96.31 183 | 95.96 178 | 96.72 202 | 99.18 165 | 95.39 218 | 97.03 215 | 99.13 142 | 93.02 200 | 99.35 38 | 97.23 154 | 97.07 166 | 90.70 219 | 95.74 192 | 95.08 196 | 94.94 207 | 98.16 141 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| pmmvs3 | | | 96.30 184 | 95.87 181 | 96.80 201 | 97.66 219 | 96.48 201 | 97.93 183 | 93.80 219 | 93.40 196 | 98.54 128 | 98.27 117 | 97.50 159 | 97.37 154 | 97.49 155 | 93.11 204 | 95.52 204 | 94.85 197 |
|
| PMMVS2 | | | 96.29 185 | 97.05 155 | 95.40 213 | 98.32 212 | 96.16 205 | 98.18 176 | 97.46 206 | 97.20 84 | 84.51 228 | 99.60 34 | 98.68 128 | 96.37 173 | 98.59 91 | 97.38 154 | 97.58 188 | 91.76 211 |
|
| thres200 | | | 96.23 186 | 94.13 191 | 98.69 126 | 99.44 128 | 99.18 71 | 98.58 142 | 99.38 95 | 93.52 194 | 97.35 194 | 86.33 223 | 85.83 211 | 97.93 135 | 98.16 123 | 98.78 74 | 99.42 64 | 97.10 175 |
|
| thres400 | | | 96.22 187 | 94.08 193 | 98.72 122 | 99.58 94 | 99.05 84 | 98.83 120 | 99.22 124 | 94.01 188 | 97.40 191 | 86.34 222 | 84.91 214 | 97.93 135 | 97.85 139 | 99.08 45 | 99.37 70 | 97.28 169 |
|
| tfpn200view9 | | | 96.17 188 | 94.08 193 | 98.60 135 | 99.37 139 | 99.18 71 | 98.68 131 | 99.39 90 | 92.02 207 | 97.30 196 | 86.53 220 | 86.34 208 | 97.45 150 | 98.15 125 | 99.08 45 | 99.43 63 | 97.28 169 |
|
| CMPMVS |  | 74.71 19 | 96.17 188 | 96.06 177 | 96.30 207 | 97.41 221 | 94.52 221 | 94.83 223 | 95.46 216 | 91.57 212 | 97.26 199 | 94.45 206 | 98.33 142 | 94.98 188 | 98.28 117 | 97.59 145 | 97.86 184 | 97.68 155 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| test2506 | | | 96.12 190 | 93.35 203 | 99.35 53 | 99.83 23 | 99.58 23 | 99.37 54 | 99.67 34 | 98.02 34 | 98.44 140 | 97.51 145 | 60.03 231 | 99.10 61 | 99.77 5 | 99.70 6 | 99.72 26 | 98.86 76 |
|
| IB-MVS | | 95.85 14 | 95.87 191 | 94.88 189 | 97.02 195 | 99.09 174 | 98.25 160 | 97.16 209 | 97.38 208 | 91.97 210 | 97.77 176 | 83.61 225 | 97.29 163 | 92.03 217 | 97.16 170 | 97.66 139 | 98.66 148 | 98.20 137 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| test0.0.03 1 | | | 95.81 192 | 95.77 184 | 95.85 212 | 99.20 161 | 98.15 167 | 97.49 205 | 98.50 181 | 92.24 203 | 92.74 225 | 96.82 170 | 92.70 193 | 88.60 221 | 97.31 168 | 97.01 166 | 98.57 158 | 96.19 187 |
|
| thres100view900 | | | 95.74 193 | 93.66 202 | 98.17 160 | 99.37 139 | 98.59 137 | 98.10 178 | 98.33 188 | 92.02 207 | 97.30 196 | 86.53 220 | 86.34 208 | 96.69 165 | 96.77 176 | 98.47 96 | 99.24 91 | 96.89 179 |
|
| ET-MVSNet_ETH3D | | | 95.72 194 | 93.85 198 | 97.89 172 | 97.30 223 | 98.09 169 | 98.19 175 | 98.40 186 | 94.46 173 | 98.01 168 | 96.71 172 | 77.85 227 | 96.76 163 | 96.08 187 | 96.39 176 | 98.70 146 | 97.36 165 |
|
| baseline2 | | | 95.58 195 | 94.04 195 | 97.38 185 | 98.80 189 | 98.16 165 | 97.14 210 | 97.80 203 | 91.45 214 | 97.49 186 | 95.22 197 | 83.63 218 | 94.98 188 | 96.42 182 | 96.66 172 | 98.06 179 | 96.76 180 |
|
| PatchT | | | 95.49 196 | 93.29 204 | 98.06 166 | 98.65 197 | 96.20 204 | 98.91 111 | 99.73 23 | 92.00 209 | 98.50 131 | 96.67 174 | 83.25 219 | 96.34 174 | 94.40 208 | 95.50 188 | 96.21 198 | 95.04 195 |
|
| CR-MVSNet | | | 95.38 197 | 93.01 205 | 98.16 162 | 98.63 198 | 95.85 214 | 97.64 198 | 99.78 16 | 91.27 216 | 98.50 131 | 96.84 169 | 82.16 220 | 96.34 174 | 94.40 208 | 95.50 188 | 98.05 181 | 95.04 195 |
|
| MVSTER | | | 95.38 197 | 93.99 197 | 97.01 196 | 98.83 187 | 98.95 102 | 96.62 216 | 99.14 138 | 92.17 205 | 97.44 189 | 97.29 152 | 77.88 226 | 91.63 218 | 97.45 157 | 96.18 182 | 98.41 167 | 97.99 145 |
|
| MVS-HIRNet | | | 94.86 199 | 93.83 199 | 96.07 208 | 97.07 224 | 94.00 222 | 94.31 224 | 99.17 133 | 91.23 218 | 98.17 155 | 98.69 101 | 97.43 160 | 95.66 182 | 94.05 210 | 91.92 206 | 92.04 219 | 89.46 219 |
|
| test-LLR | | | 94.79 200 | 93.71 200 | 96.06 209 | 99.20 161 | 96.16 205 | 96.31 218 | 98.50 181 | 89.98 221 | 94.08 220 | 97.01 161 | 86.43 206 | 92.20 215 | 96.76 177 | 95.31 190 | 96.05 200 | 94.31 200 |
|
| RPMNet | | | 94.72 201 | 92.01 210 | 97.88 174 | 98.56 203 | 95.85 214 | 97.78 189 | 99.70 29 | 91.27 216 | 98.33 146 | 93.69 208 | 81.88 221 | 94.91 191 | 92.60 213 | 94.34 202 | 98.01 182 | 94.46 199 |
|
| gm-plane-assit | | | 94.62 202 | 91.39 212 | 98.39 147 | 99.90 11 | 99.47 33 | 99.40 50 | 99.65 39 | 97.44 70 | 99.56 20 | 99.68 25 | 59.40 232 | 94.23 201 | 96.17 185 | 94.77 199 | 97.61 187 | 92.79 209 |
|
| test-mter | | | 94.62 202 | 94.02 196 | 95.32 214 | 97.72 218 | 96.75 198 | 96.23 220 | 95.67 214 | 89.83 224 | 93.23 224 | 96.99 163 | 85.94 210 | 92.66 213 | 97.32 166 | 96.11 184 | 96.44 196 | 95.22 194 |
|
| FMVSNet5 | | | 94.57 204 | 92.77 206 | 96.67 204 | 97.88 215 | 98.72 126 | 97.54 201 | 98.70 171 | 88.64 225 | 95.11 217 | 86.90 219 | 81.77 222 | 93.27 207 | 97.92 135 | 98.07 113 | 97.50 190 | 97.34 166 |
|
| SCA | | | 94.53 205 | 91.95 211 | 97.55 182 | 98.58 200 | 97.86 179 | 98.49 148 | 99.68 30 | 95.11 159 | 99.07 76 | 95.87 190 | 87.24 204 | 96.53 170 | 89.77 218 | 87.08 213 | 92.96 214 | 90.69 214 |
|
| MDTV_nov1_ep13 | | | 94.47 206 | 92.15 208 | 97.17 189 | 98.54 205 | 96.42 202 | 98.10 178 | 98.89 158 | 94.49 171 | 98.02 165 | 97.41 149 | 86.49 205 | 95.56 183 | 90.85 216 | 87.95 210 | 93.91 209 | 91.45 213 |
|
| TESTMET0.1,1 | | | 94.44 207 | 93.71 200 | 95.30 215 | 97.84 216 | 96.16 205 | 96.31 218 | 95.32 217 | 89.98 221 | 94.08 220 | 97.01 161 | 86.43 206 | 92.20 215 | 96.76 177 | 95.31 190 | 96.05 200 | 94.31 200 |
|
| ADS-MVSNet | | | 94.41 208 | 92.13 209 | 97.07 191 | 98.86 185 | 96.60 199 | 98.38 158 | 98.47 184 | 96.13 139 | 98.02 165 | 96.98 164 | 87.50 203 | 95.87 180 | 89.89 217 | 87.58 212 | 92.79 216 | 90.27 216 |
|
| tpm | | | 93.89 209 | 91.21 213 | 97.03 194 | 98.36 210 | 96.07 209 | 97.53 204 | 99.65 39 | 92.24 203 | 98.64 120 | 97.23 154 | 74.67 230 | 94.64 195 | 92.68 212 | 90.73 207 | 93.37 211 | 94.82 198 |
|
| PatchmatchNet |  | | 93.88 210 | 91.08 214 | 97.14 190 | 98.75 191 | 96.01 211 | 98.25 172 | 99.39 90 | 94.95 164 | 98.96 90 | 96.32 182 | 85.35 212 | 95.50 184 | 88.89 219 | 85.89 217 | 91.99 220 | 90.15 217 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| EPMVS | | | 93.67 211 | 90.82 215 | 96.99 197 | 98.62 199 | 96.39 203 | 98.40 156 | 99.11 143 | 95.54 153 | 97.87 174 | 97.14 157 | 81.27 224 | 94.97 190 | 88.54 221 | 86.80 215 | 92.95 215 | 90.06 218 |
|
| MVE |  | 82.47 18 | 93.12 212 | 94.09 192 | 91.99 218 | 90.79 226 | 82.50 227 | 93.93 225 | 96.30 213 | 96.06 140 | 88.81 226 | 98.19 121 | 96.38 173 | 97.56 147 | 97.24 169 | 95.18 193 | 84.58 226 | 93.07 206 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| CostFormer | | | 92.75 213 | 89.49 217 | 96.55 205 | 98.78 190 | 95.83 216 | 97.55 200 | 98.59 177 | 91.83 211 | 97.34 195 | 96.31 183 | 78.53 225 | 94.50 196 | 86.14 222 | 84.92 218 | 92.54 217 | 92.84 207 |
|
| tpmrst | | | 92.45 214 | 89.48 218 | 95.92 211 | 98.43 208 | 95.03 219 | 97.14 210 | 97.92 201 | 94.16 183 | 97.56 183 | 97.86 135 | 81.63 223 | 93.56 206 | 85.89 223 | 82.86 219 | 90.91 224 | 88.95 221 |
|
| dps | | | 92.35 215 | 88.78 220 | 96.52 206 | 98.21 214 | 95.94 213 | 97.78 189 | 98.38 187 | 89.88 223 | 96.81 204 | 95.07 200 | 75.31 229 | 94.70 194 | 88.62 220 | 86.21 216 | 93.21 213 | 90.41 215 |
|
| E-PMN | | | 92.28 216 | 90.12 216 | 94.79 216 | 98.56 203 | 90.90 224 | 95.16 222 | 93.68 220 | 95.36 156 | 95.10 218 | 96.56 176 | 89.05 200 | 95.24 186 | 95.21 201 | 81.84 221 | 90.98 222 | 81.94 223 |
|
| EMVS | | | 91.84 217 | 89.39 219 | 94.70 217 | 98.44 207 | 90.84 225 | 95.27 221 | 93.53 221 | 95.18 157 | 95.26 216 | 95.62 195 | 87.59 202 | 94.77 193 | 94.87 205 | 80.72 222 | 90.95 223 | 80.88 224 |
|
| tpm cat1 | | | 91.52 218 | 87.70 221 | 95.97 210 | 98.33 211 | 94.98 220 | 97.06 213 | 98.03 196 | 92.11 206 | 98.03 164 | 94.77 204 | 77.19 228 | 92.71 211 | 83.56 224 | 82.24 220 | 91.67 221 | 89.04 220 |
|
| test_method | | | 77.69 219 | 85.40 222 | 68.69 219 | 42.66 228 | 55.39 229 | 82.17 228 | 52.05 223 | 92.83 202 | 84.52 227 | 94.88 203 | 95.41 181 | 65.37 223 | 92.49 214 | 79.32 223 | 85.36 225 | 87.50 222 |
|
| GG-mvs-BLEND | | | 65.66 220 | 92.62 207 | 34.20 221 | 1.45 231 | 93.75 223 | 85.40 227 | 1.64 227 | 91.37 215 | 17.21 230 | 87.25 217 | 94.78 187 | 3.25 227 | 95.64 195 | 93.80 203 | 96.27 197 | 91.74 212 |
|
| testmvs | | | 9.73 221 | 13.38 223 | 5.48 223 | 3.62 229 | 4.12 230 | 6.40 231 | 3.19 226 | 14.92 226 | 7.68 232 | 22.10 226 | 13.89 234 | 6.83 225 | 13.47 225 | 10.38 225 | 5.14 229 | 14.81 225 |
|
| test123 | | | 9.37 222 | 12.26 224 | 6.00 222 | 3.32 230 | 4.06 231 | 6.39 232 | 3.41 225 | 13.20 227 | 10.48 231 | 16.43 227 | 16.22 233 | 6.76 226 | 11.37 226 | 10.40 224 | 5.62 228 | 14.10 226 |
|
| uanet_test | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 232 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 235 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| sosnet-low-res | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 232 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 235 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| sosnet | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 232 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 235 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| TPM-MVS | | | | | | 98.38 209 | 97.20 195 | 96.44 217 | | | 97.17 201 | 95.17 198 | 98.68 128 | 92.69 212 | | | 98.11 178 | 97.67 156 |
| Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025 |
| RE-MVS-def | | | | | | | | | | | 99.88 2 | | | | | | | |
|
| 9.14 | | | | | | | | | | | | | 98.83 119 | | | | | |
|
| SR-MVS | | | | | | 99.62 86 | | | 99.47 78 | | | | 99.40 58 | | | | | |
|
| Anonymous202405211 | | | | 98.44 76 | | 99.79 39 | 99.32 52 | 99.05 96 | 99.34 105 | 96.59 113 | | 97.95 133 | 97.68 157 | 97.16 156 | 99.36 33 | 99.28 35 | 99.61 39 | 98.90 72 |
|
| our_test_3 | | | | | | 99.29 151 | 97.72 185 | 98.98 102 | | | | | | | | | | |
|
| ambc | | | | 97.89 120 | | 99.45 124 | 97.88 178 | 97.78 189 | | 97.27 77 | 99.80 3 | 98.99 91 | 98.48 136 | 98.55 100 | 97.80 141 | 96.68 170 | 98.54 159 | 98.10 143 |
|
| MTAPA | | | | | | | | | | | 99.19 58 | | 99.68 21 | | | | | |
|
| MTMP | | | | | | | | | | | 99.20 56 | | 99.54 42 | | | | | |
|
| Patchmatch-RL test | | | | | | | | 32.47 230 | | | | | | | | | | |
|
| tmp_tt | | | | | 65.28 220 | 82.24 227 | 71.50 228 | 70.81 229 | 23.21 224 | 96.14 137 | 81.70 229 | 85.98 224 | 92.44 194 | 49.84 224 | 95.81 190 | 94.36 201 | 83.86 227 | |
|
| XVS | | | | | | 99.77 44 | 99.07 80 | 99.46 45 | | | 98.95 92 | | 99.37 62 | | | | 99.33 76 | |
|
| X-MVStestdata | | | | | | 99.77 44 | 99.07 80 | 99.46 45 | | | 98.95 92 | | 99.37 62 | | | | 99.33 76 | |
|
| mPP-MVS | | | | | | 99.75 53 | | | | | | | 99.49 52 | | | | | |
|
| NP-MVS | | | | | | | | | | 93.07 199 | | | | | | | | |
|
| Patchmtry | | | | | | | 96.05 210 | 97.64 198 | 99.78 16 | | 98.50 131 | | | | | | | |
|
| DeepMVS_CX |  | | | | | | 87.86 226 | 92.27 226 | 61.98 222 | 93.64 193 | 93.62 223 | 91.17 214 | 91.67 195 | 94.90 192 | 95.99 189 | | 92.48 218 | 94.18 202 |
|