This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2893.86 3199.07 298.98 697.01 1398.92 498.78 1495.22 4098.61 17096.85 399.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement97.68 397.60 497.93 299.02 1295.95 898.61 398.81 997.41 1097.28 5698.46 3094.62 6498.84 12894.64 3399.53 3998.99 56
UA-Net97.35 497.24 1197.69 498.22 7393.87 3098.42 698.19 4296.95 1495.46 14499.23 493.45 8499.57 1495.34 2999.89 299.63 9
UniMVSNet_ETH3D97.13 597.72 395.35 8499.51 287.38 13497.70 897.54 11598.16 298.94 299.33 297.84 499.08 9390.73 14199.73 1399.59 13
HPM-MVS_fast97.01 696.89 1497.39 2199.12 893.92 2897.16 1498.17 4893.11 7496.48 9097.36 9396.92 699.34 6394.31 3999.38 5998.92 72
SR-MVS-dyc-post96.84 796.60 2497.56 1098.07 8295.27 996.37 4498.12 5495.66 3397.00 6897.03 12294.85 5899.42 3393.49 6198.84 13298.00 159
mvs_tets96.83 896.71 1897.17 2798.83 2592.51 4896.58 3397.61 11087.57 20898.80 798.90 996.50 999.59 1396.15 1399.47 4399.40 21
v7n96.82 997.31 1095.33 8698.54 4786.81 14996.83 2398.07 6396.59 2098.46 1798.43 3292.91 10499.52 1996.25 1299.76 1099.65 8
APD-MVS_3200maxsize96.82 996.65 2097.32 2597.95 9493.82 3396.31 5098.25 3295.51 3596.99 7097.05 12195.63 2399.39 4993.31 7398.88 12798.75 91
HPM-MVScopyleft96.81 1196.62 2297.36 2398.89 2093.53 3897.51 1098.44 1792.35 8895.95 11696.41 16196.71 899.42 3393.99 4699.36 6099.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
pmmvs696.80 1297.36 995.15 9799.12 887.82 12996.68 3097.86 8896.10 2798.14 2499.28 397.94 398.21 21191.38 12999.69 1499.42 19
OurMVSNet-221017-096.80 1296.75 1796.96 3599.03 1191.85 5797.98 798.01 7594.15 5198.93 399.07 588.07 19099.57 1495.86 1599.69 1499.46 18
testf196.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2394.96 3897.30 5497.93 5496.05 1697.90 23789.32 18099.23 8698.19 142
APD_test296.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2394.96 3897.30 5497.93 5496.05 1697.90 23789.32 18099.23 8698.19 142
COLMAP_ROBcopyleft91.06 596.75 1696.62 2297.13 2898.38 6294.31 1796.79 2698.32 2596.69 1796.86 7597.56 7595.48 2798.77 14590.11 16499.44 5098.31 134
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
anonymousdsp96.74 1796.42 2997.68 698.00 9094.03 2596.97 2097.61 11087.68 20698.45 1898.77 1594.20 7499.50 2196.70 599.40 5799.53 15
DTE-MVSNet96.74 1797.43 594.67 11399.13 684.68 19596.51 3597.94 8698.14 398.67 1298.32 3495.04 4899.69 293.27 7699.82 799.62 10
SR-MVS96.70 1996.42 2997.54 1198.05 8494.69 1196.13 5998.07 6395.17 3796.82 7796.73 14595.09 4799.43 3292.99 8798.71 15098.50 121
PS-CasMVS96.69 2097.43 594.49 12799.13 684.09 20696.61 3297.97 8097.91 598.64 1398.13 4195.24 3899.65 393.39 7199.84 399.72 2
PEN-MVS96.69 2097.39 894.61 11799.16 484.50 19696.54 3498.05 6798.06 498.64 1398.25 3795.01 5199.65 392.95 8899.83 599.68 4
MTAPA96.65 2296.38 3397.47 1598.95 1894.05 2395.88 7097.62 10894.46 4796.29 9996.94 12893.56 8199.37 5794.29 4099.42 5298.99 56
test_djsdf96.62 2396.49 2697.01 3298.55 4591.77 5997.15 1597.37 12688.98 17698.26 2298.86 1093.35 8999.60 996.41 999.45 4799.66 6
ACMMPcopyleft96.61 2496.34 3497.43 1898.61 3893.88 2996.95 2198.18 4492.26 9196.33 9596.84 13695.10 4699.40 4693.47 6499.33 6699.02 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Anonymous2023121196.60 2597.13 1295.00 10097.46 12986.35 16597.11 1998.24 3597.58 898.72 898.97 793.15 9699.15 8493.18 7999.74 1299.50 17
WR-MVS_H96.60 2597.05 1395.24 9299.02 1286.44 16196.78 2798.08 6097.42 998.48 1697.86 6191.76 13099.63 694.23 4199.84 399.66 6
jajsoiax96.59 2796.42 2997.12 2998.76 3192.49 4996.44 4197.42 12486.96 21798.71 1098.72 1795.36 3299.56 1795.92 1499.45 4799.32 27
ACMH88.36 1296.59 2797.43 594.07 14198.56 4285.33 18996.33 4798.30 2894.66 4298.72 898.30 3597.51 598.00 23094.87 3099.59 2998.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVS96.49 2996.18 4297.44 1698.56 4293.99 2696.50 3697.95 8394.58 4394.38 19196.49 15694.56 6699.39 4993.57 5799.05 10698.93 68
ACMH+88.43 1196.48 3096.82 1595.47 8198.54 4789.06 10195.65 7898.61 1396.10 2798.16 2397.52 8096.90 798.62 16990.30 15599.60 2798.72 96
APDe-MVScopyleft96.46 3196.64 2195.93 6297.68 11589.38 9596.90 2298.41 2092.52 8397.43 4897.92 5795.11 4599.50 2194.45 3599.30 7198.92 72
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMPR96.46 3196.14 4597.41 2098.60 3993.82 3396.30 5497.96 8192.35 8895.57 13796.61 15294.93 5699.41 3993.78 5199.15 9899.00 54
mPP-MVS96.46 3196.05 5197.69 498.62 3694.65 1396.45 3997.74 10192.59 8295.47 14296.68 14894.50 6899.42 3393.10 8299.26 8298.99 56
CP-MVS96.44 3496.08 4997.54 1198.29 6794.62 1496.80 2598.08 6092.67 8195.08 16896.39 16694.77 6099.42 3393.17 8099.44 5098.58 118
ZNCC-MVS96.42 3596.20 4197.07 3098.80 3092.79 4696.08 6198.16 5191.74 11595.34 15196.36 16995.68 2199.44 2994.41 3799.28 7998.97 62
region2R96.41 3696.09 4797.38 2298.62 3693.81 3596.32 4997.96 8192.26 9195.28 15596.57 15495.02 5099.41 3993.63 5599.11 10198.94 66
SteuartSystems-ACMMP96.40 3796.30 3696.71 4098.63 3591.96 5595.70 7598.01 7593.34 7096.64 8596.57 15494.99 5299.36 5893.48 6399.34 6498.82 82
Skip Steuart: Steuart Systems R&D Blog.
HFP-MVS96.39 3896.17 4497.04 3198.51 5093.37 3996.30 5497.98 7892.35 8895.63 13496.47 15795.37 3099.27 7493.78 5199.14 9998.48 124
LPG-MVS_test96.38 3996.23 3996.84 3898.36 6592.13 5295.33 9098.25 3291.78 11197.07 6297.22 10796.38 1299.28 7292.07 10699.59 2999.11 44
nrg03096.32 4096.55 2595.62 7697.83 10188.55 11595.77 7398.29 3192.68 7998.03 2697.91 5895.13 4398.95 11493.85 4999.49 4299.36 24
PGM-MVS96.32 4095.94 5597.43 1898.59 4193.84 3295.33 9098.30 2891.40 12695.76 12696.87 13395.26 3799.45 2792.77 9099.21 9099.00 54
ACMM88.83 996.30 4296.07 5096.97 3498.39 6192.95 4494.74 11298.03 7290.82 13997.15 5996.85 13496.25 1499.00 10593.10 8299.33 6698.95 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GST-MVS96.24 4395.99 5497.00 3398.65 3492.71 4795.69 7798.01 7592.08 9695.74 12996.28 17595.22 4099.42 3393.17 8099.06 10398.88 77
ACMMP_NAP96.21 4496.12 4696.49 4898.90 1991.42 6394.57 12098.03 7290.42 15096.37 9397.35 9695.68 2199.25 7594.44 3699.34 6498.80 85
CP-MVSNet96.19 4596.80 1694.38 13298.99 1683.82 20996.31 5097.53 11797.60 798.34 1997.52 8091.98 12499.63 693.08 8499.81 899.70 3
MP-MVScopyleft96.14 4695.68 6997.51 1398.81 2894.06 2196.10 6097.78 9992.73 7893.48 21696.72 14694.23 7399.42 3391.99 10899.29 7499.05 51
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
LS3D96.11 4795.83 6396.95 3694.75 27894.20 1997.34 1397.98 7897.31 1195.32 15296.77 13893.08 9999.20 8091.79 11598.16 20697.44 212
MP-MVS-pluss96.08 4895.92 5896.57 4499.06 1091.21 6593.25 16698.32 2587.89 19996.86 7597.38 8995.55 2699.39 4995.47 2499.47 4399.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TranMVSNet+NR-MVSNet96.07 4996.26 3895.50 8098.26 7087.69 13193.75 15197.86 8895.96 3297.48 4697.14 11395.33 3499.44 2990.79 13999.76 1099.38 22
PS-MVSNAJss96.01 5096.04 5295.89 6798.82 2688.51 11695.57 8497.88 8788.72 18298.81 698.86 1090.77 15399.60 995.43 2699.53 3999.57 14
SED-MVS96.00 5196.41 3294.76 10998.51 5086.97 14595.21 9598.10 5791.95 9897.63 3597.25 10396.48 1099.35 6093.29 7499.29 7497.95 167
DVP-MVS++95.93 5296.34 3494.70 11296.54 17886.66 15598.45 498.22 3993.26 7197.54 4097.36 9393.12 9799.38 5593.88 4798.68 15598.04 154
APD_test195.91 5395.42 8097.36 2398.82 2696.62 695.64 7997.64 10693.38 6995.89 12197.23 10593.35 8997.66 26588.20 20698.66 15997.79 186
test_fmvsmconf0.01_n95.90 5496.09 4795.31 8997.30 13689.21 9794.24 13298.76 1186.25 22497.56 3998.66 1895.73 1998.44 19297.35 298.99 11398.27 137
DPE-MVScopyleft95.89 5595.88 5995.92 6497.93 9589.83 8593.46 16098.30 2892.37 8697.75 3296.95 12795.14 4299.51 2091.74 11699.28 7998.41 128
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SF-MVS95.88 5695.88 5995.87 6898.12 7889.65 8795.58 8398.56 1591.84 10796.36 9496.68 14894.37 7299.32 6992.41 10099.05 10698.64 111
3Dnovator+92.74 295.86 5795.77 6696.13 5396.81 16290.79 7396.30 5497.82 9396.13 2694.74 18297.23 10591.33 13799.16 8393.25 7798.30 19298.46 125
DVP-MVScopyleft95.82 5896.18 4294.72 11198.51 5086.69 15395.20 9797.00 15891.85 10497.40 5297.35 9695.58 2499.34 6393.44 6799.31 6998.13 148
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CS-MVS95.77 5995.58 7396.37 5096.84 15991.72 6196.73 2999.06 594.23 4992.48 25394.79 24393.56 8199.49 2493.47 6499.05 10697.89 174
SMA-MVScopyleft95.77 5995.54 7496.47 4998.27 6991.19 6695.09 10097.79 9886.48 22097.42 5097.51 8394.47 7199.29 7093.55 5999.29 7498.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_040295.73 6196.22 4094.26 13598.19 7585.77 17993.24 16797.24 14296.88 1697.69 3397.77 6494.12 7599.13 8891.54 12599.29 7497.88 175
ACMP88.15 1395.71 6295.43 7996.54 4598.17 7691.73 6094.24 13298.08 6089.46 16596.61 8796.47 15795.85 1899.12 9090.45 14799.56 3798.77 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-ACMP-BASELINE95.68 6395.34 8496.69 4198.40 6093.04 4194.54 12498.05 6790.45 14996.31 9796.76 14092.91 10498.72 15191.19 13099.42 5298.32 132
DP-MVS95.62 6495.84 6294.97 10197.16 14388.62 11194.54 12497.64 10696.94 1596.58 8897.32 10093.07 10098.72 15190.45 14798.84 13297.57 202
test_fmvsmconf0.1_n95.61 6595.72 6895.26 9096.85 15889.20 9893.51 15898.60 1485.68 23797.42 5098.30 3595.34 3398.39 19396.85 398.98 11498.19 142
OPM-MVS95.61 6595.45 7796.08 5498.49 5791.00 6892.65 18797.33 13490.05 15596.77 8096.85 13495.04 4898.56 17892.77 9099.06 10398.70 100
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
mvsmamba95.61 6595.40 8196.22 5198.44 5989.86 8497.14 1797.45 12391.25 13097.49 4498.14 3983.49 24499.45 2795.52 2199.66 2199.36 24
RPSCF95.58 6894.89 10297.62 797.58 12196.30 795.97 6697.53 11792.42 8493.41 21797.78 6291.21 14297.77 25591.06 13297.06 26398.80 85
MIMVSNet195.52 6995.45 7795.72 7399.14 589.02 10296.23 5796.87 17093.73 6097.87 2898.49 2990.73 15799.05 9886.43 24399.60 2799.10 47
Anonymous2024052995.50 7095.83 6394.50 12597.33 13585.93 17495.19 9996.77 17896.64 1997.61 3898.05 4593.23 9398.79 13988.60 20399.04 11198.78 87
Vis-MVSNetpermissive95.50 7095.48 7695.56 7998.11 7989.40 9495.35 8898.22 3992.36 8794.11 19498.07 4492.02 12299.44 2993.38 7297.67 23997.85 179
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EC-MVSNet95.44 7295.62 7194.89 10396.93 15387.69 13196.48 3899.14 493.93 5692.77 24494.52 25393.95 7899.49 2493.62 5699.22 8997.51 207
test_fmvsmconf_n95.43 7395.50 7595.22 9496.48 18589.19 9993.23 16898.36 2285.61 24096.92 7398.02 4995.23 3998.38 19696.69 698.95 12398.09 150
pm-mvs195.43 7395.94 5593.93 14898.38 6285.08 19295.46 8797.12 15191.84 10797.28 5698.46 3095.30 3697.71 26290.17 16299.42 5298.99 56
DeepC-MVS91.39 495.43 7395.33 8595.71 7497.67 11690.17 8093.86 14898.02 7487.35 21096.22 10597.99 5294.48 7099.05 9892.73 9399.68 1897.93 169
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tt080595.42 7695.93 5793.86 15298.75 3288.47 11797.68 994.29 27196.48 2195.38 14793.63 28194.89 5797.94 23695.38 2796.92 27195.17 307
RRT_MVS95.41 7795.20 9296.05 5598.86 2288.92 10497.49 1194.48 26793.12 7397.94 2798.54 2581.19 27599.63 695.48 2399.69 1499.60 12
XVG-OURS-SEG-HR95.38 7895.00 10096.51 4698.10 8094.07 2092.46 19598.13 5390.69 14293.75 20896.25 17898.03 297.02 29992.08 10595.55 30398.45 126
UniMVSNet_NR-MVSNet95.35 7995.21 9095.76 7197.69 11488.59 11392.26 20997.84 9194.91 4096.80 7895.78 20190.42 16299.41 3991.60 12199.58 3499.29 29
MSP-MVS95.34 8094.63 11797.48 1498.67 3394.05 2396.41 4398.18 4491.26 12895.12 16495.15 22686.60 21999.50 2193.43 7096.81 27598.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CS-MVS-test95.32 8195.10 9695.96 5896.86 15790.75 7496.33 4799.20 293.99 5391.03 28693.73 27993.52 8399.55 1891.81 11499.45 4797.58 201
FC-MVSNet-test95.32 8195.88 5993.62 16098.49 5781.77 23595.90 6998.32 2593.93 5697.53 4297.56 7588.48 18399.40 4692.91 8999.83 599.68 4
UniMVSNet (Re)95.32 8195.15 9395.80 7097.79 10488.91 10592.91 17798.07 6393.46 6796.31 9795.97 19190.14 16799.34 6392.11 10399.64 2499.16 38
Gipumacopyleft95.31 8495.80 6593.81 15597.99 9390.91 7096.42 4297.95 8396.69 1791.78 27398.85 1291.77 12895.49 34391.72 11799.08 10295.02 315
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DU-MVS95.28 8595.12 9595.75 7297.75 10688.59 11392.58 18997.81 9493.99 5396.80 7895.90 19290.10 17099.41 3991.60 12199.58 3499.26 30
NR-MVSNet95.28 8595.28 8895.26 9097.75 10687.21 13895.08 10197.37 12693.92 5897.65 3495.90 19290.10 17099.33 6890.11 16499.66 2199.26 30
TransMVSNet (Re)95.27 8796.04 5292.97 18298.37 6481.92 23495.07 10296.76 17993.97 5597.77 3198.57 2395.72 2097.90 23788.89 19799.23 8699.08 48
SD-MVS95.19 8895.73 6793.55 16396.62 17388.88 10794.67 11498.05 6791.26 12897.25 5896.40 16295.42 2894.36 36392.72 9499.19 9297.40 216
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
VPA-MVSNet95.14 8995.67 7093.58 16297.76 10583.15 21994.58 11997.58 11293.39 6897.05 6598.04 4793.25 9298.51 18489.75 17499.59 2999.08 48
casdiffmvs_mvgpermissive95.10 9095.62 7193.53 16696.25 20483.23 21692.66 18698.19 4293.06 7597.49 4497.15 11294.78 5998.71 15792.27 10298.72 14898.65 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmvis_n_192095.08 9195.40 8194.13 13996.66 16887.75 13093.44 16298.49 1685.57 24198.27 2097.11 11694.11 7697.75 25896.26 1198.72 14896.89 241
HPM-MVS++copyleft95.02 9294.39 12196.91 3797.88 9893.58 3794.09 14096.99 16091.05 13492.40 25895.22 22591.03 14999.25 7592.11 10398.69 15397.90 172
APD-MVScopyleft95.00 9394.69 11195.93 6297.38 13190.88 7194.59 11797.81 9489.22 17295.46 14496.17 18393.42 8799.34 6389.30 18298.87 13097.56 204
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PMVScopyleft87.21 1494.97 9495.33 8593.91 14998.97 1797.16 295.54 8595.85 22396.47 2293.40 21997.46 8695.31 3595.47 34486.18 24798.78 14389.11 386
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
TSAR-MVS + MP.94.96 9594.75 10795.57 7898.86 2288.69 10896.37 4496.81 17485.23 24694.75 18197.12 11591.85 12699.40 4693.45 6698.33 18998.62 115
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SixPastTwentyTwo94.91 9695.21 9093.98 14398.52 4983.19 21895.93 6794.84 25794.86 4198.49 1598.74 1681.45 26999.60 994.69 3299.39 5899.15 39
FIs94.90 9795.35 8393.55 16398.28 6881.76 23695.33 9098.14 5293.05 7697.07 6297.18 11087.65 19799.29 7091.72 11799.69 1499.61 11
AllTest94.88 9894.51 11996.00 5698.02 8892.17 5095.26 9398.43 1890.48 14795.04 16996.74 14392.54 11397.86 24585.11 26298.98 11497.98 163
FMVSNet194.84 9995.13 9493.97 14497.60 11984.29 19995.99 6396.56 19192.38 8597.03 6698.53 2690.12 16898.98 10688.78 19999.16 9798.65 106
ANet_high94.83 10096.28 3790.47 27496.65 16973.16 35294.33 12998.74 1296.39 2498.09 2598.93 893.37 8898.70 15890.38 15099.68 1899.53 15
3Dnovator92.54 394.80 10194.90 10194.47 12895.47 25687.06 14296.63 3197.28 14091.82 11094.34 19397.41 8790.60 16098.65 16792.47 9998.11 21097.70 194
CPTT-MVS94.74 10294.12 13396.60 4398.15 7793.01 4295.84 7197.66 10589.21 17393.28 22395.46 21488.89 18198.98 10689.80 17198.82 13897.80 185
test_fmvsm_n_192094.72 10394.74 10994.67 11396.30 19988.62 11193.19 16998.07 6385.63 23997.08 6197.35 9690.86 15097.66 26595.70 1698.48 17697.74 192
XVG-OURS94.72 10394.12 13396.50 4798.00 9094.23 1891.48 23698.17 4890.72 14195.30 15396.47 15787.94 19496.98 30091.41 12897.61 24398.30 135
CSCG94.69 10594.75 10794.52 12497.55 12387.87 12795.01 10597.57 11392.68 7996.20 10793.44 28791.92 12598.78 14289.11 19199.24 8596.92 239
v1094.68 10695.27 8992.90 18796.57 17580.15 25494.65 11697.57 11390.68 14397.43 4898.00 5088.18 18799.15 8494.84 3199.55 3899.41 20
v894.65 10795.29 8792.74 19296.65 16979.77 26994.59 11797.17 14691.86 10397.47 4797.93 5488.16 18899.08 9394.32 3899.47 4399.38 22
sasdasda94.59 10894.69 11194.30 13395.60 25187.03 14395.59 8098.24 3591.56 12195.21 16192.04 32094.95 5398.66 16491.45 12697.57 24497.20 227
canonicalmvs94.59 10894.69 11194.30 13395.60 25187.03 14395.59 8098.24 3591.56 12195.21 16192.04 32094.95 5398.66 16491.45 12697.57 24497.20 227
CNVR-MVS94.58 11094.29 12695.46 8296.94 15189.35 9691.81 23096.80 17589.66 16293.90 20695.44 21692.80 10898.72 15192.74 9298.52 17198.32 132
GeoE94.55 11194.68 11494.15 13797.23 13885.11 19194.14 13897.34 13388.71 18395.26 15695.50 21394.65 6399.12 9090.94 13698.40 17998.23 138
EG-PatchMatch MVS94.54 11294.67 11594.14 13897.87 10086.50 15792.00 21796.74 18088.16 19596.93 7297.61 7293.04 10197.90 23791.60 12198.12 20998.03 157
IS-MVSNet94.49 11394.35 12594.92 10298.25 7286.46 16097.13 1894.31 27096.24 2596.28 10196.36 16982.88 25299.35 6088.19 20799.52 4198.96 64
Baseline_NR-MVSNet94.47 11495.09 9792.60 20198.50 5680.82 25092.08 21396.68 18393.82 5996.29 9998.56 2490.10 17097.75 25890.10 16699.66 2199.24 32
MGCFI-Net94.44 11594.67 11593.75 15695.56 25385.47 18695.25 9498.24 3591.53 12395.04 16992.21 31594.94 5598.54 18191.56 12497.66 24097.24 225
SDMVSNet94.43 11695.02 9892.69 19497.93 9582.88 22491.92 22295.99 21993.65 6595.51 13998.63 2094.60 6596.48 31887.57 22199.35 6198.70 100
MM94.41 11794.14 13295.22 9495.84 23487.21 13894.31 13190.92 32894.48 4692.80 24297.52 8085.27 23299.49 2496.58 899.57 3698.97 62
VDD-MVS94.37 11894.37 12394.40 13197.49 12686.07 17293.97 14593.28 29094.49 4596.24 10397.78 6287.99 19398.79 13988.92 19599.14 9998.34 131
EI-MVSNet-Vis-set94.36 11994.28 12794.61 11792.55 32885.98 17392.44 19794.69 26393.70 6196.12 11195.81 19791.24 14098.86 12593.76 5498.22 20198.98 60
EI-MVSNet-UG-set94.35 12094.27 12994.59 12192.46 33185.87 17692.42 19994.69 26393.67 6496.13 11095.84 19691.20 14398.86 12593.78 5198.23 19999.03 52
PHI-MVS94.34 12193.80 14095.95 5995.65 24791.67 6294.82 11097.86 8887.86 20093.04 23594.16 26491.58 13298.78 14290.27 15798.96 12197.41 213
casdiffmvspermissive94.32 12294.80 10592.85 18996.05 22081.44 24192.35 20298.05 6791.53 12395.75 12896.80 13793.35 8998.49 18591.01 13598.32 19198.64 111
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tfpnnormal94.27 12394.87 10392.48 20597.71 11180.88 24994.55 12395.41 24293.70 6196.67 8497.72 6591.40 13698.18 21587.45 22399.18 9498.36 130
fmvsm_s_conf0.1_n_a94.26 12494.37 12393.95 14797.36 13385.72 18194.15 13695.44 23983.25 27395.51 13998.05 4592.54 11397.19 29095.55 2097.46 25098.94 66
HQP_MVS94.26 12493.93 13695.23 9397.71 11188.12 12294.56 12197.81 9491.74 11593.31 22095.59 20886.93 21198.95 11489.26 18698.51 17398.60 116
baseline94.26 12494.80 10592.64 19696.08 21880.99 24793.69 15498.04 7190.80 14094.89 17696.32 17193.19 9498.48 18991.68 11998.51 17398.43 127
OMC-MVS94.22 12793.69 14595.81 6997.25 13791.27 6492.27 20897.40 12587.10 21694.56 18695.42 21793.74 7998.11 22086.62 23798.85 13198.06 151
LCM-MVSNet-Re94.20 12894.58 11893.04 17995.91 23183.13 22093.79 15099.19 392.00 9798.84 598.04 4793.64 8099.02 10381.28 30098.54 16996.96 238
DeepPCF-MVS90.46 694.20 12893.56 15396.14 5295.96 22792.96 4389.48 29497.46 12185.14 24996.23 10495.42 21793.19 9498.08 22290.37 15198.76 14597.38 219
fmvsm_s_conf0.1_n94.19 13094.41 12093.52 16897.22 14084.37 19793.73 15295.26 24684.45 26195.76 12698.00 5091.85 12697.21 28795.62 1797.82 23198.98 60
KD-MVS_self_test94.10 13194.73 11092.19 21297.66 11779.49 27594.86 10997.12 15189.59 16496.87 7497.65 6990.40 16498.34 20189.08 19299.35 6198.75 91
NCCC94.08 13293.54 15495.70 7596.49 18389.90 8392.39 20196.91 16790.64 14492.33 26494.60 25090.58 16198.96 11190.21 16197.70 23798.23 138
VDDNet94.03 13394.27 12993.31 17498.87 2182.36 23095.51 8691.78 32097.19 1296.32 9698.60 2284.24 24098.75 14687.09 23098.83 13798.81 84
fmvsm_s_conf0.5_n_a94.02 13494.08 13593.84 15396.72 16585.73 18093.65 15695.23 24783.30 27195.13 16397.56 7592.22 11897.17 29195.51 2297.41 25298.64 111
fmvsm_s_conf0.5_n94.00 13594.20 13193.42 17296.69 16684.37 19793.38 16495.13 24984.50 26095.40 14697.55 7991.77 12897.20 28895.59 1897.79 23298.69 103
dcpmvs_293.96 13695.01 9990.82 26597.60 11974.04 34793.68 15598.85 889.80 16097.82 2997.01 12591.14 14799.21 7890.56 14598.59 16499.19 36
sd_testset93.94 13794.39 12192.61 20097.93 9583.24 21593.17 17095.04 25193.65 6595.51 13998.63 2094.49 6995.89 33681.72 29699.35 6198.70 100
MVS_030493.92 13893.68 14694.64 11695.94 23085.83 17894.34 12888.14 34592.98 7791.09 28597.68 6686.73 21699.36 5896.64 799.59 2998.72 96
EPP-MVSNet93.91 13993.68 14694.59 12198.08 8185.55 18597.44 1294.03 27694.22 5094.94 17396.19 18082.07 26399.57 1487.28 22798.89 12598.65 106
Effi-MVS+-dtu93.90 14092.60 17797.77 394.74 27996.67 594.00 14295.41 24289.94 15691.93 27292.13 31890.12 16898.97 11087.68 22097.48 24897.67 197
fmvsm_l_conf0.5_n93.79 14193.81 13893.73 15796.16 21086.26 16792.46 19596.72 18181.69 29595.77 12597.11 11690.83 15297.82 24895.58 1997.99 22197.11 230
IterMVS-LS93.78 14294.28 12792.27 20996.27 20179.21 28291.87 22696.78 17691.77 11396.57 8997.07 11987.15 20698.74 14991.99 10899.03 11298.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DeepC-MVS_fast89.96 793.73 14393.44 15694.60 12096.14 21387.90 12693.36 16597.14 14885.53 24293.90 20695.45 21591.30 13998.59 17489.51 17798.62 16097.31 222
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_111021_LR93.66 14493.28 16094.80 10796.25 20490.95 6990.21 27195.43 24187.91 19793.74 21094.40 25592.88 10696.38 32390.39 14998.28 19397.07 231
MVS_111021_HR93.63 14593.42 15794.26 13596.65 16986.96 14789.30 30196.23 20788.36 19193.57 21494.60 25093.45 8497.77 25590.23 16098.38 18398.03 157
fmvsm_l_conf0.5_n_a93.59 14693.63 14893.49 17096.10 21685.66 18392.32 20496.57 19081.32 29895.63 13497.14 11390.19 16697.73 26195.37 2898.03 21797.07 231
v114493.50 14793.81 13892.57 20296.28 20079.61 27291.86 22896.96 16186.95 21895.91 11996.32 17187.65 19798.96 11193.51 6098.88 12799.13 41
v119293.49 14893.78 14192.62 19996.16 21079.62 27191.83 22997.22 14486.07 22996.10 11296.38 16787.22 20499.02 10394.14 4398.88 12799.22 33
WR-MVS93.49 14893.72 14392.80 19197.57 12280.03 26090.14 27495.68 22793.70 6196.62 8695.39 22187.21 20599.04 10187.50 22299.64 2499.33 26
V4293.43 15093.58 15192.97 18295.34 26281.22 24492.67 18596.49 19687.25 21296.20 10796.37 16887.32 20398.85 12792.39 10198.21 20298.85 81
K. test v393.37 15193.27 16193.66 15998.05 8482.62 22694.35 12786.62 35896.05 2997.51 4398.85 1276.59 31599.65 393.21 7898.20 20498.73 95
PM-MVS93.33 15292.67 17595.33 8696.58 17494.06 2192.26 20992.18 31185.92 23296.22 10596.61 15285.64 23095.99 33490.35 15298.23 19995.93 282
v124093.29 15393.71 14492.06 21996.01 22577.89 30291.81 23097.37 12685.12 25096.69 8396.40 16286.67 21799.07 9794.51 3498.76 14599.22 33
v2v48293.29 15393.63 14892.29 20896.35 19378.82 28991.77 23296.28 20388.45 18895.70 13396.26 17786.02 22598.90 11893.02 8598.81 14099.14 40
alignmvs93.26 15592.85 16894.50 12595.70 24387.45 13393.45 16195.76 22491.58 12095.25 15892.42 31381.96 26598.72 15191.61 12097.87 22997.33 221
v192192093.26 15593.61 15092.19 21296.04 22478.31 29591.88 22597.24 14285.17 24896.19 10996.19 18086.76 21599.05 9894.18 4298.84 13299.22 33
MSLP-MVS++93.25 15793.88 13791.37 24196.34 19482.81 22593.11 17197.74 10189.37 16894.08 19695.29 22490.40 16496.35 32590.35 15298.25 19794.96 316
GBi-Net93.21 15892.96 16493.97 14495.40 25884.29 19995.99 6396.56 19188.63 18495.10 16598.53 2681.31 27198.98 10686.74 23398.38 18398.65 106
test193.21 15892.96 16493.97 14495.40 25884.29 19995.99 6396.56 19188.63 18495.10 16598.53 2681.31 27198.98 10686.74 23398.38 18398.65 106
v14419293.20 16093.54 15492.16 21696.05 22078.26 29691.95 21897.14 14884.98 25495.96 11596.11 18487.08 20899.04 10193.79 5098.84 13299.17 37
VPNet93.08 16193.76 14291.03 25598.60 3975.83 33391.51 23595.62 22891.84 10795.74 12997.10 11889.31 17898.32 20285.07 26499.06 10398.93 68
UGNet93.08 16192.50 17994.79 10893.87 30487.99 12595.07 10294.26 27390.64 14487.33 35097.67 6886.89 21398.49 18588.10 21098.71 15097.91 171
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TSAR-MVS + GP.93.07 16392.41 18195.06 9995.82 23690.87 7290.97 24792.61 30688.04 19694.61 18593.79 27888.08 18997.81 24989.41 17998.39 18296.50 257
ETV-MVS92.99 16492.74 17193.72 15895.86 23386.30 16692.33 20397.84 9191.70 11892.81 24186.17 38292.22 11899.19 8188.03 21497.73 23495.66 296
EI-MVSNet92.99 16493.26 16292.19 21292.12 34079.21 28292.32 20494.67 26591.77 11395.24 15995.85 19487.14 20798.49 18591.99 10898.26 19598.86 78
MCST-MVS92.91 16692.51 17894.10 14097.52 12485.72 18191.36 24097.13 15080.33 30692.91 24094.24 26091.23 14198.72 15189.99 16897.93 22697.86 177
h-mvs3392.89 16791.99 19095.58 7796.97 14990.55 7693.94 14694.01 27989.23 17093.95 20396.19 18076.88 31199.14 8691.02 13395.71 30097.04 235
QAPM92.88 16892.77 16993.22 17795.82 23683.31 21396.45 3997.35 13283.91 26693.75 20896.77 13889.25 17998.88 12184.56 27097.02 26597.49 208
v14892.87 16993.29 15891.62 23396.25 20477.72 30691.28 24195.05 25089.69 16195.93 11896.04 18787.34 20298.38 19690.05 16797.99 22198.78 87
Anonymous2024052192.86 17093.57 15290.74 26796.57 17575.50 33594.15 13695.60 22989.38 16795.90 12097.90 6080.39 27997.96 23492.60 9799.68 1898.75 91
Effi-MVS+92.79 17192.74 17192.94 18595.10 26683.30 21494.00 14297.53 11791.36 12789.35 31690.65 34394.01 7798.66 16487.40 22595.30 31296.88 243
FMVSNet292.78 17292.73 17392.95 18495.40 25881.98 23394.18 13595.53 23788.63 18496.05 11397.37 9081.31 27198.81 13587.38 22698.67 15798.06 151
Fast-Effi-MVS+-dtu92.77 17392.16 18494.58 12394.66 28488.25 12092.05 21496.65 18589.62 16390.08 30291.23 33192.56 11298.60 17286.30 24596.27 28996.90 240
LF4IMVS92.72 17492.02 18994.84 10695.65 24791.99 5492.92 17696.60 18785.08 25292.44 25693.62 28286.80 21496.35 32586.81 23298.25 19796.18 271
train_agg92.71 17591.83 19595.35 8496.45 18689.46 9090.60 25896.92 16579.37 31590.49 29394.39 25691.20 14398.88 12188.66 20298.43 17897.72 193
VNet92.67 17692.96 16491.79 22596.27 20180.15 25491.95 21894.98 25392.19 9494.52 18896.07 18687.43 20197.39 28184.83 26698.38 18397.83 181
CDPH-MVS92.67 17691.83 19595.18 9696.94 15188.46 11890.70 25597.07 15477.38 33292.34 26395.08 23192.67 11198.88 12185.74 25098.57 16698.20 141
Anonymous20240521192.58 17892.50 17992.83 19096.55 17783.22 21792.43 19891.64 32294.10 5295.59 13696.64 15081.88 26797.50 27285.12 26198.52 17197.77 188
XXY-MVS92.58 17893.16 16390.84 26497.75 10679.84 26591.87 22696.22 20985.94 23195.53 13897.68 6692.69 11094.48 35983.21 27997.51 24698.21 140
MVS_Test92.57 18093.29 15890.40 27893.53 31075.85 33192.52 19196.96 16188.73 18192.35 26196.70 14790.77 15398.37 20092.53 9895.49 30596.99 237
TAPA-MVS88.58 1092.49 18191.75 19794.73 11096.50 18289.69 8692.91 17797.68 10478.02 32992.79 24394.10 26590.85 15197.96 23484.76 26898.16 20696.54 252
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
patch_mono-292.46 18292.72 17491.71 22996.65 16978.91 28788.85 31197.17 14683.89 26792.45 25596.76 14089.86 17497.09 29590.24 15998.59 16499.12 43
test_fmvs392.42 18392.40 18292.46 20793.80 30787.28 13693.86 14897.05 15576.86 33796.25 10298.66 1882.87 25391.26 38295.44 2596.83 27498.82 82
ab-mvs92.40 18492.62 17691.74 22797.02 14781.65 23795.84 7195.50 23886.95 21892.95 23997.56 7590.70 15897.50 27279.63 31997.43 25196.06 276
CANet92.38 18591.99 19093.52 16893.82 30683.46 21291.14 24397.00 15889.81 15986.47 35494.04 26787.90 19599.21 7889.50 17898.27 19497.90 172
EIA-MVS92.35 18692.03 18893.30 17595.81 23883.97 20792.80 18098.17 4887.71 20489.79 31087.56 37291.17 14699.18 8287.97 21597.27 25696.77 247
DP-MVS Recon92.31 18791.88 19393.60 16197.18 14286.87 14891.10 24597.37 12684.92 25592.08 26994.08 26688.59 18298.20 21283.50 27698.14 20895.73 291
F-COLMAP92.28 18891.06 21395.95 5997.52 12491.90 5693.53 15797.18 14583.98 26588.70 32894.04 26788.41 18598.55 18080.17 31295.99 29497.39 217
OpenMVScopyleft89.45 892.27 18992.13 18792.68 19594.53 28784.10 20595.70 7597.03 15682.44 28891.14 28496.42 16088.47 18498.38 19685.95 24897.47 24995.55 301
hse-mvs292.24 19091.20 20995.38 8396.16 21090.65 7592.52 19192.01 31889.23 17093.95 20392.99 29776.88 31198.69 16091.02 13396.03 29296.81 245
MVSFormer92.18 19192.23 18392.04 22094.74 27980.06 25897.15 1597.37 12688.98 17688.83 32092.79 30277.02 30899.60 996.41 996.75 27896.46 259
HQP-MVS92.09 19291.49 20393.88 15096.36 19084.89 19391.37 23797.31 13587.16 21388.81 32293.40 28884.76 23798.60 17286.55 24097.73 23498.14 147
DELS-MVS92.05 19392.16 18491.72 22894.44 28880.13 25687.62 32697.25 14187.34 21192.22 26693.18 29489.54 17798.73 15089.67 17598.20 20496.30 265
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TinyColmap92.00 19492.76 17089.71 29595.62 25077.02 31490.72 25496.17 21287.70 20595.26 15696.29 17392.54 11396.45 32081.77 29498.77 14495.66 296
CLD-MVS91.82 19591.41 20593.04 17996.37 18883.65 21186.82 34697.29 13884.65 25992.27 26589.67 35492.20 12097.85 24783.95 27499.47 4397.62 199
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FA-MVS(test-final)91.81 19691.85 19491.68 23194.95 26979.99 26296.00 6293.44 28887.80 20194.02 20197.29 10177.60 29998.45 19188.04 21397.49 24796.61 251
diffmvspermissive91.74 19791.93 19291.15 25393.06 31778.17 29788.77 31497.51 12086.28 22392.42 25793.96 27288.04 19197.46 27590.69 14396.67 28097.82 183
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CNLPA91.72 19891.20 20993.26 17696.17 20991.02 6791.14 24395.55 23690.16 15490.87 28793.56 28586.31 22194.40 36279.92 31897.12 26194.37 336
IterMVS-SCA-FT91.65 19991.55 19991.94 22193.89 30379.22 28187.56 32993.51 28691.53 12395.37 14996.62 15178.65 29098.90 11891.89 11294.95 32097.70 194
PVSNet_Blended_VisFu91.63 20091.20 20992.94 18597.73 10983.95 20892.14 21297.46 12178.85 32592.35 26194.98 23484.16 24199.08 9386.36 24496.77 27795.79 289
AdaColmapbinary91.63 20091.36 20692.47 20695.56 25386.36 16492.24 21196.27 20488.88 18089.90 30792.69 30591.65 13198.32 20277.38 33897.64 24192.72 368
pmmvs-eth3d91.54 20290.73 22293.99 14295.76 24187.86 12890.83 25093.98 28078.23 32894.02 20196.22 17982.62 25996.83 30986.57 23898.33 18997.29 223
API-MVS91.52 20391.61 19891.26 24794.16 29386.26 16794.66 11594.82 25891.17 13292.13 26891.08 33490.03 17397.06 29879.09 32697.35 25590.45 384
xiu_mvs_v1_base_debu91.47 20491.52 20091.33 24395.69 24481.56 23889.92 28196.05 21683.22 27491.26 28090.74 33891.55 13398.82 13089.29 18395.91 29593.62 355
xiu_mvs_v1_base91.47 20491.52 20091.33 24395.69 24481.56 23889.92 28196.05 21683.22 27491.26 28090.74 33891.55 13398.82 13089.29 18395.91 29593.62 355
xiu_mvs_v1_base_debi91.47 20491.52 20091.33 24395.69 24481.56 23889.92 28196.05 21683.22 27491.26 28090.74 33891.55 13398.82 13089.29 18395.91 29593.62 355
LFMVS91.33 20791.16 21291.82 22496.27 20179.36 27795.01 10585.61 36996.04 3094.82 17897.06 12072.03 33398.46 19084.96 26598.70 15297.65 198
c3_l91.32 20891.42 20491.00 25892.29 33376.79 32187.52 33296.42 19985.76 23594.72 18493.89 27582.73 25698.16 21790.93 13798.55 16798.04 154
Fast-Effi-MVS+91.28 20990.86 21792.53 20495.45 25782.53 22789.25 30496.52 19585.00 25389.91 30688.55 36692.94 10298.84 12884.72 26995.44 30796.22 269
MDA-MVSNet-bldmvs91.04 21090.88 21691.55 23594.68 28380.16 25385.49 36792.14 31490.41 15194.93 17495.79 19885.10 23496.93 30485.15 25994.19 34197.57 202
PAPM_NR91.03 21190.81 21991.68 23196.73 16481.10 24693.72 15396.35 20288.19 19388.77 32692.12 31985.09 23597.25 28582.40 28993.90 34696.68 250
bld_raw_dy_0_6490.86 21290.99 21490.47 27493.95 30177.88 30393.99 14498.93 777.75 33097.03 6690.61 34481.82 26898.58 17685.18 25599.61 2694.95 317
MSDG90.82 21390.67 22391.26 24794.16 29383.08 22186.63 35196.19 21090.60 14691.94 27191.89 32289.16 18095.75 33880.96 30594.51 33194.95 317
test20.0390.80 21490.85 21890.63 27195.63 24979.24 28089.81 28592.87 29789.90 15794.39 19096.40 16285.77 22695.27 35173.86 36199.05 10697.39 217
FMVSNet390.78 21590.32 23292.16 21693.03 31979.92 26492.54 19094.95 25486.17 22895.10 16596.01 18969.97 34098.75 14686.74 23398.38 18397.82 183
eth_miper_zixun_eth90.72 21690.61 22491.05 25492.04 34376.84 32086.91 34296.67 18485.21 24794.41 18993.92 27379.53 28498.26 20889.76 17397.02 26598.06 151
X-MVStestdata90.70 21788.45 26397.44 1698.56 4293.99 2696.50 3697.95 8394.58 4394.38 19126.89 40694.56 6699.39 4993.57 5799.05 10698.93 68
BH-untuned90.68 21890.90 21590.05 28995.98 22679.57 27390.04 27794.94 25587.91 19794.07 19793.00 29687.76 19697.78 25479.19 32595.17 31592.80 367
cl____90.65 21990.56 22690.91 26291.85 34876.98 31786.75 34795.36 24485.53 24294.06 19894.89 23777.36 30597.98 23390.27 15798.98 11497.76 189
DIV-MVS_self_test90.65 21990.56 22690.91 26291.85 34876.99 31686.75 34795.36 24485.52 24494.06 19894.89 23777.37 30497.99 23290.28 15698.97 11997.76 189
test_fmvs290.62 22190.40 23091.29 24691.93 34785.46 18792.70 18496.48 19774.44 35294.91 17597.59 7375.52 31990.57 38493.44 6796.56 28297.84 180
114514_t90.51 22289.80 24292.63 19898.00 9082.24 23193.40 16397.29 13865.84 39389.40 31594.80 24286.99 20998.75 14683.88 27598.61 16196.89 241
miper_ehance_all_eth90.48 22390.42 22990.69 26891.62 35576.57 32486.83 34596.18 21183.38 27094.06 19892.66 30782.20 26198.04 22489.79 17297.02 26597.45 210
BH-RMVSNet90.47 22490.44 22890.56 27395.21 26578.65 29389.15 30593.94 28188.21 19292.74 24594.22 26186.38 22097.88 24178.67 32895.39 30995.14 310
Vis-MVSNet (Re-imp)90.42 22590.16 23391.20 25197.66 11777.32 31194.33 12987.66 35191.20 13192.99 23695.13 22875.40 32098.28 20477.86 33199.19 9297.99 162
test_vis3_rt90.40 22690.03 23791.52 23792.58 32688.95 10390.38 26697.72 10373.30 35997.79 3097.51 8377.05 30787.10 39789.03 19394.89 32198.50 121
PLCcopyleft85.34 1590.40 22688.92 25594.85 10596.53 18190.02 8191.58 23496.48 19780.16 30786.14 35692.18 31685.73 22798.25 20976.87 34194.61 33096.30 265
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test111190.39 22890.61 22489.74 29498.04 8771.50 36395.59 8079.72 39889.41 16695.94 11798.14 3970.79 33798.81 13588.52 20499.32 6898.90 74
testgi90.38 22991.34 20787.50 33397.49 12671.54 36289.43 29695.16 24888.38 19094.54 18794.68 24792.88 10693.09 37471.60 37497.85 23097.88 175
mvs_anonymous90.37 23091.30 20887.58 33292.17 33968.00 37789.84 28494.73 26283.82 26893.22 22997.40 8887.54 19997.40 28087.94 21695.05 31897.34 220
PVSNet_BlendedMVS90.35 23189.96 23891.54 23694.81 27478.80 29190.14 27496.93 16379.43 31488.68 32995.06 23286.27 22298.15 21880.27 30898.04 21697.68 196
UnsupCasMVSNet_eth90.33 23290.34 23190.28 28094.64 28580.24 25289.69 28995.88 22185.77 23493.94 20595.69 20581.99 26492.98 37584.21 27291.30 37797.62 199
MAR-MVS90.32 23388.87 25894.66 11594.82 27391.85 5794.22 13494.75 26180.91 30187.52 34888.07 37086.63 21897.87 24476.67 34296.21 29094.25 339
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
RPMNet90.31 23490.14 23690.81 26691.01 36378.93 28492.52 19198.12 5491.91 10189.10 31796.89 13268.84 34299.41 3990.17 16292.70 36694.08 340
IterMVS90.18 23590.16 23390.21 28493.15 31575.98 33087.56 32992.97 29686.43 22294.09 19596.40 16278.32 29497.43 27787.87 21794.69 32897.23 226
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SSC-MVS90.16 23692.96 16481.78 37797.88 9848.48 40990.75 25287.69 35096.02 3196.70 8297.63 7185.60 23197.80 25085.73 25198.60 16399.06 50
TAMVS90.16 23689.05 25193.49 17096.49 18386.37 16390.34 26892.55 30780.84 30492.99 23694.57 25281.94 26698.20 21273.51 36298.21 20295.90 285
ECVR-MVScopyleft90.12 23890.16 23390.00 29097.81 10272.68 35795.76 7478.54 40189.04 17495.36 15098.10 4270.51 33898.64 16887.10 22999.18 9498.67 104
test_yl90.11 23989.73 24591.26 24794.09 29679.82 26690.44 26292.65 30390.90 13593.19 23093.30 29073.90 32498.03 22582.23 29096.87 27295.93 282
DCV-MVSNet90.11 23989.73 24591.26 24794.09 29679.82 26690.44 26292.65 30390.90 13593.19 23093.30 29073.90 32498.03 22582.23 29096.87 27295.93 282
Patchmtry90.11 23989.92 23990.66 26990.35 37277.00 31592.96 17592.81 29890.25 15394.74 18296.93 12967.11 34997.52 27185.17 25798.98 11497.46 209
MVP-Stereo90.07 24288.92 25593.54 16596.31 19786.49 15890.93 24895.59 23379.80 30891.48 27695.59 20880.79 27697.39 28178.57 32991.19 37896.76 248
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
AUN-MVS90.05 24388.30 26895.32 8896.09 21790.52 7792.42 19992.05 31782.08 29288.45 33292.86 29965.76 35998.69 16088.91 19696.07 29196.75 249
CL-MVSNet_self_test90.04 24489.90 24090.47 27495.24 26477.81 30486.60 35392.62 30585.64 23893.25 22793.92 27383.84 24296.06 33279.93 31698.03 21797.53 206
D2MVS89.93 24589.60 24790.92 26094.03 29878.40 29488.69 31694.85 25678.96 32393.08 23295.09 23074.57 32296.94 30288.19 20798.96 12197.41 213
miper_lstm_enhance89.90 24689.80 24290.19 28691.37 35977.50 30883.82 38395.00 25284.84 25793.05 23494.96 23576.53 31695.20 35289.96 16998.67 15797.86 177
CANet_DTU89.85 24789.17 24991.87 22292.20 33780.02 26190.79 25195.87 22286.02 23082.53 38591.77 32480.01 28198.57 17785.66 25297.70 23797.01 236
tttt051789.81 24888.90 25792.55 20397.00 14879.73 27095.03 10483.65 38289.88 15895.30 15394.79 24353.64 39399.39 4991.99 10898.79 14298.54 119
EPNet89.80 24988.25 27294.45 12983.91 40786.18 16993.87 14787.07 35691.16 13380.64 39594.72 24578.83 28898.89 12085.17 25798.89 12598.28 136
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CDS-MVSNet89.55 25088.22 27593.53 16695.37 26186.49 15889.26 30293.59 28379.76 31091.15 28392.31 31477.12 30698.38 19677.51 33697.92 22795.71 292
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MG-MVS89.54 25189.80 24288.76 31194.88 27072.47 35989.60 29092.44 30985.82 23389.48 31495.98 19082.85 25497.74 26081.87 29395.27 31396.08 275
OpenMVS_ROBcopyleft85.12 1689.52 25289.05 25190.92 26094.58 28681.21 24591.10 24593.41 28977.03 33693.41 21793.99 27183.23 24897.80 25079.93 31694.80 32593.74 351
test_vis1_n_192089.45 25389.85 24188.28 32293.59 30976.71 32290.67 25697.78 9979.67 31290.30 29996.11 18476.62 31492.17 37890.31 15493.57 35195.96 280
WB-MVS89.44 25492.15 18681.32 37897.73 10948.22 41089.73 28787.98 34895.24 3696.05 11396.99 12685.18 23396.95 30182.45 28897.97 22398.78 87
DPM-MVS89.35 25588.40 26492.18 21596.13 21584.20 20386.96 34196.15 21375.40 34687.36 34991.55 32983.30 24798.01 22982.17 29296.62 28194.32 338
MVSTER89.32 25688.75 25991.03 25590.10 37576.62 32390.85 24994.67 26582.27 28995.24 15995.79 19861.09 38098.49 18590.49 14698.26 19597.97 166
PatchMatch-RL89.18 25788.02 28192.64 19695.90 23292.87 4588.67 31891.06 32580.34 30590.03 30491.67 32683.34 24694.42 36176.35 34694.84 32490.64 383
jason89.17 25888.32 26691.70 23095.73 24280.07 25788.10 32293.22 29171.98 36790.09 30192.79 30278.53 29398.56 17887.43 22497.06 26396.46 259
jason: jason.
PCF-MVS84.52 1789.12 25987.71 28493.34 17396.06 21985.84 17786.58 35497.31 13568.46 38693.61 21393.89 27587.51 20098.52 18367.85 38798.11 21095.66 296
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
mvsany_test389.11 26088.21 27691.83 22391.30 36090.25 7988.09 32378.76 39976.37 34096.43 9198.39 3383.79 24390.43 38786.57 23894.20 33994.80 325
FE-MVS89.06 26188.29 26991.36 24294.78 27679.57 27396.77 2890.99 32684.87 25692.96 23896.29 17360.69 38298.80 13880.18 31197.11 26295.71 292
cl2289.02 26288.50 26290.59 27289.76 37776.45 32586.62 35294.03 27682.98 28092.65 24792.49 30872.05 33297.53 27088.93 19497.02 26597.78 187
USDC89.02 26289.08 25088.84 31095.07 26774.50 34288.97 30796.39 20073.21 36093.27 22496.28 17582.16 26296.39 32277.55 33598.80 14195.62 299
test_vis1_n89.01 26489.01 25389.03 30692.57 32782.46 22992.62 18896.06 21473.02 36290.40 29695.77 20274.86 32189.68 39090.78 14094.98 31994.95 317
xiu_mvs_v2_base89.00 26589.19 24888.46 32094.86 27274.63 33986.97 34095.60 22980.88 30287.83 34188.62 36591.04 14898.81 13582.51 28794.38 33391.93 374
new-patchmatchnet88.97 26690.79 22083.50 37294.28 29255.83 40785.34 36993.56 28586.18 22795.47 14295.73 20483.10 24996.51 31785.40 25498.06 21498.16 145
pmmvs488.95 26787.70 28592.70 19394.30 29185.60 18487.22 33592.16 31374.62 35189.75 31294.19 26277.97 29796.41 32182.71 28396.36 28796.09 274
iter_conf0588.94 26888.09 27991.50 23892.74 32476.97 31892.80 18095.92 22082.82 28293.65 21295.37 22349.41 39799.13 8890.82 13899.28 7998.40 129
iter_conf05_1188.91 26988.32 26690.66 26993.95 30178.09 29886.98 33993.06 29479.35 31887.64 34489.80 34880.25 28098.96 11185.18 25598.69 15394.95 317
N_pmnet88.90 27087.25 29293.83 15494.40 29093.81 3584.73 37387.09 35579.36 31793.26 22592.43 31279.29 28691.68 38077.50 33797.22 25896.00 278
PS-MVSNAJ88.86 27188.99 25488.48 31994.88 27074.71 33786.69 34995.60 22980.88 30287.83 34187.37 37590.77 15398.82 13082.52 28694.37 33491.93 374
Patchmatch-RL test88.81 27288.52 26189.69 29695.33 26379.94 26386.22 35992.71 30278.46 32695.80 12494.18 26366.25 35795.33 34989.22 18898.53 17093.78 349
Anonymous2023120688.77 27388.29 26990.20 28596.31 19778.81 29089.56 29293.49 28774.26 35492.38 25995.58 21182.21 26095.43 34672.07 37098.75 14796.34 263
PVSNet_Blended88.74 27488.16 27890.46 27794.81 27478.80 29186.64 35096.93 16374.67 35088.68 32989.18 36186.27 22298.15 21880.27 30896.00 29394.44 335
test_fmvs1_n88.73 27588.38 26589.76 29392.06 34282.53 22792.30 20796.59 18971.14 37192.58 25095.41 22068.55 34389.57 39291.12 13195.66 30197.18 229
thisisatest053088.69 27687.52 28792.20 21196.33 19579.36 27792.81 17984.01 38186.44 22193.67 21192.68 30653.62 39499.25 7589.65 17698.45 17798.00 159
ppachtmachnet_test88.61 27788.64 26088.50 31891.76 35070.99 36684.59 37692.98 29579.30 32092.38 25993.53 28679.57 28397.45 27686.50 24297.17 26097.07 231
UnsupCasMVSNet_bld88.50 27888.03 28089.90 29195.52 25578.88 28887.39 33394.02 27879.32 31993.06 23394.02 26980.72 27794.27 36475.16 35393.08 36296.54 252
miper_enhance_ethall88.42 27987.87 28290.07 28788.67 38975.52 33485.10 37095.59 23375.68 34292.49 25289.45 35778.96 28797.88 24187.86 21897.02 26596.81 245
1112_ss88.42 27987.41 28891.45 23996.69 16680.99 24789.72 28896.72 18173.37 35887.00 35290.69 34177.38 30398.20 21281.38 29993.72 34995.15 309
lupinMVS88.34 28187.31 28991.45 23994.74 27980.06 25887.23 33492.27 31071.10 37288.83 32091.15 33277.02 30898.53 18286.67 23696.75 27895.76 290
test_cas_vis1_n_192088.25 28288.27 27188.20 32492.19 33878.92 28689.45 29595.44 23975.29 34993.23 22895.65 20771.58 33490.23 38888.05 21293.55 35395.44 303
YYNet188.17 28388.24 27387.93 32892.21 33673.62 34980.75 39288.77 33782.51 28794.99 17295.11 22982.70 25793.70 36883.33 27793.83 34796.48 258
MDA-MVSNet_test_wron88.16 28488.23 27487.93 32892.22 33573.71 34880.71 39388.84 33682.52 28694.88 17795.14 22782.70 25793.61 36983.28 27893.80 34896.46 259
MS-PatchMatch88.05 28587.75 28388.95 30793.28 31277.93 30087.88 32592.49 30875.42 34592.57 25193.59 28480.44 27894.24 36681.28 30092.75 36594.69 331
CR-MVSNet87.89 28687.12 29790.22 28391.01 36378.93 28492.52 19192.81 29873.08 36189.10 31796.93 12967.11 34997.64 26788.80 19892.70 36694.08 340
pmmvs587.87 28787.14 29590.07 28793.26 31476.97 31888.89 30992.18 31173.71 35788.36 33393.89 27576.86 31396.73 31280.32 30796.81 27596.51 254
wuyk23d87.83 28890.79 22078.96 38390.46 37188.63 11092.72 18290.67 33191.65 11998.68 1197.64 7096.06 1577.53 40559.84 39999.41 5670.73 403
FMVSNet587.82 28986.56 30691.62 23392.31 33279.81 26893.49 15994.81 26083.26 27291.36 27896.93 12952.77 39597.49 27476.07 34898.03 21797.55 205
GA-MVS87.70 29086.82 30190.31 27993.27 31377.22 31384.72 37592.79 30085.11 25189.82 30890.07 34566.80 35297.76 25784.56 27094.27 33795.96 280
TR-MVS87.70 29087.17 29489.27 30394.11 29579.26 27988.69 31691.86 31981.94 29390.69 29189.79 35182.82 25597.42 27872.65 36891.98 37491.14 380
thres600view787.66 29287.10 29889.36 30196.05 22073.17 35192.72 18285.31 37291.89 10293.29 22290.97 33563.42 37198.39 19373.23 36496.99 27096.51 254
PAPR87.65 29386.77 30390.27 28192.85 32377.38 31088.56 31996.23 20776.82 33984.98 36589.75 35386.08 22497.16 29372.33 36993.35 35596.26 268
baseline187.62 29487.31 28988.54 31694.71 28274.27 34593.10 17288.20 34386.20 22692.18 26793.04 29573.21 32795.52 34179.32 32385.82 39395.83 287
test_fmvs187.59 29587.27 29188.54 31688.32 39081.26 24390.43 26595.72 22670.55 37791.70 27494.63 24868.13 34489.42 39390.59 14495.34 31194.94 321
our_test_387.55 29687.59 28687.44 33491.76 35070.48 36783.83 38290.55 33279.79 30992.06 27092.17 31778.63 29295.63 33984.77 26794.73 32696.22 269
PatchT87.51 29788.17 27785.55 35490.64 36666.91 38192.02 21686.09 36292.20 9389.05 31997.16 11164.15 36796.37 32489.21 18992.98 36493.37 359
Test_1112_low_res87.50 29886.58 30590.25 28296.80 16377.75 30587.53 33196.25 20569.73 38286.47 35493.61 28375.67 31897.88 24179.95 31493.20 35895.11 313
SCA87.43 29987.21 29388.10 32692.01 34471.98 36189.43 29688.11 34682.26 29088.71 32792.83 30078.65 29097.59 26879.61 32093.30 35694.75 328
EU-MVSNet87.39 30086.71 30489.44 29893.40 31176.11 32894.93 10890.00 33457.17 40295.71 13297.37 9064.77 36597.68 26492.67 9594.37 33494.52 333
thres100view90087.35 30186.89 30088.72 31296.14 21373.09 35393.00 17485.31 37292.13 9593.26 22590.96 33663.42 37198.28 20471.27 37696.54 28394.79 326
CMPMVSbinary68.83 2287.28 30285.67 31692.09 21888.77 38885.42 18890.31 26994.38 26970.02 38088.00 33893.30 29073.78 32694.03 36775.96 35096.54 28396.83 244
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
sss87.23 30386.82 30188.46 32093.96 29977.94 29986.84 34492.78 30177.59 33187.61 34791.83 32378.75 28991.92 37977.84 33294.20 33995.52 302
BH-w/o87.21 30487.02 29987.79 33194.77 27777.27 31287.90 32493.21 29381.74 29489.99 30588.39 36883.47 24596.93 30471.29 37592.43 37089.15 385
thres40087.20 30586.52 30889.24 30595.77 23972.94 35491.89 22386.00 36390.84 13792.61 24889.80 34863.93 36898.28 20471.27 37696.54 28396.51 254
CHOSEN 1792x268887.19 30685.92 31591.00 25897.13 14579.41 27684.51 37795.60 22964.14 39690.07 30394.81 24078.26 29597.14 29473.34 36395.38 31096.46 259
HyFIR lowres test87.19 30685.51 31792.24 21097.12 14680.51 25185.03 37196.06 21466.11 39291.66 27592.98 29870.12 33999.14 8675.29 35295.23 31497.07 231
MIMVSNet87.13 30886.54 30788.89 30996.05 22076.11 32894.39 12688.51 33981.37 29788.27 33596.75 14272.38 33095.52 34165.71 39295.47 30695.03 314
tfpn200view987.05 30986.52 30888.67 31395.77 23972.94 35491.89 22386.00 36390.84 13792.61 24889.80 34863.93 36898.28 20471.27 37696.54 28394.79 326
cascas87.02 31086.28 31289.25 30491.56 35776.45 32584.33 37996.78 17671.01 37386.89 35385.91 38381.35 27096.94 30283.09 28095.60 30294.35 337
WTY-MVS86.93 31186.50 31088.24 32394.96 26874.64 33887.19 33692.07 31678.29 32788.32 33491.59 32878.06 29694.27 36474.88 35493.15 36095.80 288
HY-MVS82.50 1886.81 31285.93 31489.47 29793.63 30877.93 30094.02 14191.58 32375.68 34283.64 37693.64 28077.40 30297.42 27871.70 37392.07 37393.05 364
test_f86.65 31387.13 29685.19 35890.28 37386.11 17186.52 35591.66 32169.76 38195.73 13197.21 10969.51 34181.28 40489.15 19094.40 33288.17 390
131486.46 31486.33 31186.87 34191.65 35474.54 34091.94 22094.10 27574.28 35384.78 36787.33 37683.03 25195.00 35378.72 32791.16 37991.06 381
ET-MVSNet_ETH3D86.15 31584.27 32691.79 22593.04 31881.28 24287.17 33786.14 36179.57 31383.65 37588.66 36357.10 38698.18 21587.74 21995.40 30895.90 285
Patchmatch-test86.10 31686.01 31386.38 34990.63 36774.22 34689.57 29186.69 35785.73 23689.81 30992.83 30065.24 36391.04 38377.82 33495.78 29993.88 348
thres20085.85 31785.18 31887.88 33094.44 28872.52 35889.08 30686.21 36088.57 18791.44 27788.40 36764.22 36698.00 23068.35 38595.88 29893.12 361
EPNet_dtu85.63 31884.37 32489.40 30086.30 40074.33 34491.64 23388.26 34184.84 25772.96 40489.85 34671.27 33697.69 26376.60 34397.62 24296.18 271
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_vis1_rt85.58 31984.58 32288.60 31587.97 39186.76 15085.45 36893.59 28366.43 39087.64 34489.20 36079.33 28585.38 40181.59 29789.98 38593.66 353
test250685.42 32084.57 32387.96 32797.81 10266.53 38496.14 5856.35 41189.04 17493.55 21598.10 4242.88 40998.68 16288.09 21199.18 9498.67 104
PatchmatchNetpermissive85.22 32184.64 32186.98 33889.51 38269.83 37390.52 26087.34 35478.87 32487.22 35192.74 30466.91 35196.53 31581.77 29486.88 39194.58 332
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CVMVSNet85.16 32284.72 32086.48 34592.12 34070.19 36892.32 20488.17 34456.15 40390.64 29295.85 19467.97 34796.69 31388.78 19990.52 38292.56 369
JIA-IIPM85.08 32383.04 33591.19 25287.56 39386.14 17089.40 29884.44 38088.98 17682.20 38697.95 5356.82 38896.15 32876.55 34583.45 39791.30 379
MVS84.98 32484.30 32587.01 33791.03 36277.69 30791.94 22094.16 27459.36 40184.23 37287.50 37485.66 22896.80 31071.79 37193.05 36386.54 394
Syy-MVS84.81 32584.93 31984.42 36591.71 35263.36 39985.89 36281.49 38981.03 29985.13 36281.64 39877.44 30195.00 35385.94 24994.12 34294.91 322
thisisatest051584.72 32682.99 33689.90 29192.96 32175.33 33684.36 37883.42 38377.37 33388.27 33586.65 37753.94 39298.72 15182.56 28597.40 25395.67 295
dmvs_re84.69 32783.94 32986.95 33992.24 33482.93 22389.51 29387.37 35384.38 26385.37 35985.08 38972.44 32986.59 39868.05 38691.03 38191.33 378
FPMVS84.50 32883.28 33388.16 32596.32 19694.49 1685.76 36585.47 37083.09 27785.20 36194.26 25963.79 37086.58 39963.72 39591.88 37683.40 397
tpm84.38 32984.08 32785.30 35790.47 37063.43 39889.34 29985.63 36877.24 33587.62 34695.03 23361.00 38197.30 28479.26 32491.09 38095.16 308
tpmvs84.22 33083.97 32884.94 36087.09 39765.18 39191.21 24288.35 34082.87 28185.21 36090.96 33665.24 36396.75 31179.60 32285.25 39492.90 366
WB-MVSnew84.20 33183.89 33085.16 35991.62 35566.15 38888.44 32181.00 39276.23 34187.98 33987.77 37184.98 23693.35 37262.85 39794.10 34495.98 279
ADS-MVSNet284.01 33282.20 34389.41 29989.04 38576.37 32787.57 32790.98 32772.71 36584.46 36892.45 30968.08 34596.48 31870.58 38183.97 39595.38 304
mvsany_test183.91 33382.93 33786.84 34286.18 40185.93 17481.11 39175.03 40670.80 37688.57 33194.63 24883.08 25087.38 39680.39 30686.57 39287.21 392
testing383.66 33482.52 33987.08 33695.84 23465.84 38989.80 28677.17 40588.17 19490.84 28888.63 36430.95 41398.11 22084.05 27397.19 25997.28 224
test-LLR83.58 33583.17 33484.79 36289.68 37966.86 38283.08 38484.52 37883.07 27882.85 38284.78 39062.86 37493.49 37082.85 28194.86 32294.03 343
testing9183.56 33682.45 34086.91 34092.92 32267.29 37886.33 35788.07 34786.22 22584.26 37185.76 38448.15 39997.17 29176.27 34794.08 34596.27 267
baseline283.38 33781.54 34788.90 30891.38 35872.84 35688.78 31381.22 39178.97 32279.82 39787.56 37261.73 37897.80 25074.30 35890.05 38496.05 277
IB-MVS77.21 1983.11 33881.05 35089.29 30291.15 36175.85 33185.66 36686.00 36379.70 31182.02 38986.61 37848.26 39898.39 19377.84 33292.22 37193.63 354
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CostFormer83.09 33982.21 34285.73 35289.27 38467.01 38090.35 26786.47 35970.42 37883.52 37893.23 29361.18 37996.85 30877.21 33988.26 38993.34 360
PMMVS83.00 34081.11 34988.66 31483.81 40886.44 16182.24 38885.65 36761.75 40082.07 38785.64 38679.75 28291.59 38175.99 34993.09 36187.94 391
testing9982.94 34181.72 34486.59 34392.55 32866.53 38486.08 36185.70 36685.47 24583.95 37385.70 38545.87 40097.07 29776.58 34493.56 35296.17 273
PVSNet76.22 2082.89 34282.37 34184.48 36493.96 29964.38 39678.60 39588.61 33871.50 36984.43 37086.36 38174.27 32394.60 35869.87 38393.69 35094.46 334
tpmrst82.85 34382.93 33782.64 37487.65 39258.99 40590.14 27487.90 34975.54 34483.93 37491.63 32766.79 35495.36 34781.21 30281.54 40193.57 358
test0.0.03 182.48 34481.47 34885.48 35589.70 37873.57 35084.73 37381.64 38883.07 27888.13 33786.61 37862.86 37489.10 39566.24 39190.29 38393.77 350
ADS-MVSNet82.25 34581.55 34684.34 36689.04 38565.30 39087.57 32785.13 37672.71 36584.46 36892.45 30968.08 34592.33 37770.58 38183.97 39595.38 304
DSMNet-mixed82.21 34681.56 34584.16 36789.57 38170.00 37290.65 25777.66 40354.99 40483.30 38097.57 7477.89 29890.50 38666.86 39095.54 30491.97 373
KD-MVS_2432*160082.17 34780.75 35486.42 34782.04 40970.09 37081.75 38990.80 32982.56 28490.37 29789.30 35842.90 40796.11 33074.47 35692.55 36893.06 362
miper_refine_blended82.17 34780.75 35486.42 34782.04 40970.09 37081.75 38990.80 32982.56 28490.37 29789.30 35842.90 40796.11 33074.47 35692.55 36893.06 362
gg-mvs-nofinetune82.10 34981.02 35185.34 35687.46 39571.04 36494.74 11267.56 40896.44 2379.43 39898.99 645.24 40196.15 32867.18 38992.17 37288.85 387
testing1181.98 35080.52 35786.38 34992.69 32567.13 37985.79 36484.80 37782.16 29181.19 39485.41 38745.24 40196.88 30774.14 35993.24 35795.14 310
PAPM81.91 35180.11 36187.31 33593.87 30472.32 36084.02 38193.22 29169.47 38376.13 40289.84 34772.15 33197.23 28653.27 40489.02 38692.37 371
tpm281.46 35280.35 35984.80 36189.90 37665.14 39290.44 26285.36 37165.82 39482.05 38892.44 31157.94 38596.69 31370.71 38088.49 38892.56 369
PMMVS281.31 35383.44 33274.92 38690.52 36946.49 41269.19 40085.23 37584.30 26487.95 34094.71 24676.95 31084.36 40364.07 39498.09 21293.89 347
new_pmnet81.22 35481.01 35281.86 37690.92 36570.15 36984.03 38080.25 39770.83 37485.97 35789.78 35267.93 34884.65 40267.44 38891.90 37590.78 382
test-mter81.21 35580.01 36284.79 36289.68 37966.86 38283.08 38484.52 37873.85 35682.85 38284.78 39043.66 40693.49 37082.85 28194.86 32294.03 343
EPMVS81.17 35680.37 35883.58 37185.58 40365.08 39390.31 26971.34 40777.31 33485.80 35891.30 33059.38 38392.70 37679.99 31382.34 40092.96 365
EGC-MVSNET80.97 35775.73 37396.67 4298.85 2494.55 1596.83 2396.60 1872.44 4085.32 40998.25 3792.24 11798.02 22891.85 11399.21 9097.45 210
pmmvs380.83 35878.96 36686.45 34687.23 39677.48 30984.87 37282.31 38663.83 39785.03 36489.50 35649.66 39693.10 37373.12 36695.10 31688.78 389
E-PMN80.72 35980.86 35380.29 38185.11 40468.77 37572.96 39781.97 38787.76 20383.25 38183.01 39662.22 37789.17 39477.15 34094.31 33682.93 398
tpm cat180.61 36079.46 36384.07 36888.78 38765.06 39489.26 30288.23 34262.27 39981.90 39089.66 35562.70 37695.29 35071.72 37280.60 40291.86 376
testing22280.54 36178.53 36886.58 34492.54 33068.60 37686.24 35882.72 38583.78 26982.68 38484.24 39239.25 41195.94 33560.25 39895.09 31795.20 306
EMVS80.35 36280.28 36080.54 38084.73 40669.07 37472.54 39980.73 39487.80 20181.66 39181.73 39762.89 37389.84 38975.79 35194.65 32982.71 399
UWE-MVS80.29 36379.10 36483.87 36991.97 34659.56 40386.50 35677.43 40475.40 34687.79 34388.10 36944.08 40596.90 30664.23 39396.36 28795.14 310
CHOSEN 280x42080.04 36477.97 37186.23 35190.13 37474.53 34172.87 39889.59 33566.38 39176.29 40185.32 38856.96 38795.36 34769.49 38494.72 32788.79 388
ETVMVS79.85 36577.94 37285.59 35392.97 32066.20 38786.13 36080.99 39381.41 29683.52 37883.89 39341.81 41094.98 35656.47 40294.25 33895.61 300
myMVS_eth3d79.62 36678.26 36983.72 37091.71 35261.25 40185.89 36281.49 38981.03 29985.13 36281.64 39832.12 41295.00 35371.17 37994.12 34294.91 322
dp79.28 36778.62 36781.24 37985.97 40256.45 40686.91 34285.26 37472.97 36381.45 39389.17 36256.01 39095.45 34573.19 36576.68 40391.82 377
TESTMET0.1,179.09 36878.04 37082.25 37587.52 39464.03 39783.08 38480.62 39570.28 37980.16 39683.22 39544.13 40490.56 38579.95 31493.36 35492.15 372
MVS-HIRNet78.83 36980.60 35673.51 38793.07 31647.37 41187.10 33878.00 40268.94 38477.53 40097.26 10271.45 33594.62 35763.28 39688.74 38778.55 402
dmvs_testset78.23 37078.99 36575.94 38591.99 34555.34 40888.86 31078.70 40082.69 28381.64 39279.46 40075.93 31785.74 40048.78 40682.85 39986.76 393
PVSNet_070.34 2174.58 37172.96 37479.47 38290.63 36766.24 38673.26 39683.40 38463.67 39878.02 39978.35 40272.53 32889.59 39156.68 40160.05 40682.57 400
MVEpermissive59.87 2373.86 37272.65 37577.47 38487.00 39974.35 34361.37 40260.93 41067.27 38869.69 40586.49 38081.24 27472.33 40656.45 40383.45 39785.74 395
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method50.44 37348.94 37654.93 38839.68 41212.38 41528.59 40390.09 3336.82 40641.10 40878.41 40154.41 39170.69 40750.12 40551.26 40781.72 401
tmp_tt37.97 37444.33 37718.88 39011.80 41321.54 41463.51 40145.66 4144.23 40751.34 40750.48 40559.08 38422.11 40944.50 40768.35 40513.00 405
cdsmvs_eth3d_5k23.35 37531.13 3780.00 3930.00 4160.00 4180.00 40495.58 2350.00 4110.00 41291.15 33293.43 860.00 4120.00 4110.00 4100.00 408
test1239.49 37612.01 3791.91 3912.87 4141.30 41682.38 3871.34 4161.36 4092.84 4106.56 4082.45 4140.97 4102.73 4095.56 4083.47 406
testmvs9.02 37711.42 3801.81 3922.77 4151.13 41779.44 3941.90 4151.18 4102.65 4116.80 4071.95 4150.87 4112.62 4103.45 4093.44 407
pcd_1.5k_mvsjas7.56 37810.09 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41190.77 1530.00 4120.00 4110.00 4100.00 408
ab-mvs-re7.56 37810.08 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41290.69 3410.00 4160.00 4120.00 4110.00 4100.00 408
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS61.25 40174.55 355
FOURS199.21 394.68 1298.45 498.81 997.73 698.27 20
MSC_two_6792asdad95.90 6596.54 17889.57 8896.87 17099.41 3994.06 4499.30 7198.72 96
PC_three_145275.31 34895.87 12295.75 20392.93 10396.34 32787.18 22898.68 15598.04 154
No_MVS95.90 6596.54 17889.57 8896.87 17099.41 3994.06 4499.30 7198.72 96
test_one_060198.26 7087.14 14098.18 4494.25 4896.99 7097.36 9395.13 43
eth-test20.00 416
eth-test0.00 416
ZD-MVS97.23 13890.32 7897.54 11584.40 26294.78 18095.79 19892.76 10999.39 4988.72 20198.40 179
RE-MVS-def96.66 1998.07 8295.27 996.37 4498.12 5495.66 3397.00 6897.03 12295.40 2993.49 6198.84 13298.00 159
IU-MVS98.51 5086.66 15596.83 17372.74 36495.83 12393.00 8699.29 7498.64 111
OPU-MVS95.15 9796.84 15989.43 9295.21 9595.66 20693.12 9798.06 22386.28 24698.61 16197.95 167
test_241102_TWO98.10 5791.95 9897.54 4097.25 10395.37 3099.35 6093.29 7499.25 8398.49 123
test_241102_ONE98.51 5086.97 14598.10 5791.85 10497.63 3597.03 12296.48 1098.95 114
9.1494.81 10497.49 12694.11 13998.37 2187.56 20995.38 14796.03 18894.66 6299.08 9390.70 14298.97 119
save fliter97.46 12988.05 12492.04 21597.08 15387.63 207
test_0728_THIRD93.26 7197.40 5297.35 9694.69 6199.34 6393.88 4799.42 5298.89 75
test_0728_SECOND94.88 10498.55 4586.72 15295.20 9798.22 3999.38 5593.44 6799.31 6998.53 120
test072698.51 5086.69 15395.34 8998.18 4491.85 10497.63 3597.37 9095.58 24
GSMVS94.75 328
test_part298.21 7489.41 9396.72 81
sam_mvs166.64 35594.75 328
sam_mvs66.41 356
ambc92.98 18196.88 15583.01 22295.92 6896.38 20196.41 9297.48 8588.26 18697.80 25089.96 16998.93 12498.12 149
MTGPAbinary97.62 108
test_post190.21 2715.85 41065.36 36196.00 33379.61 320
test_post6.07 40965.74 36095.84 337
patchmatchnet-post91.71 32566.22 35897.59 268
GG-mvs-BLEND83.24 37385.06 40571.03 36594.99 10765.55 40974.09 40375.51 40344.57 40394.46 36059.57 40087.54 39084.24 396
MTMP94.82 11054.62 412
gm-plane-assit87.08 39859.33 40471.22 37083.58 39497.20 28873.95 360
test9_res88.16 20998.40 17997.83 181
TEST996.45 18689.46 9090.60 25896.92 16579.09 32190.49 29394.39 25691.31 13898.88 121
test_896.37 18889.14 10090.51 26196.89 16879.37 31590.42 29594.36 25891.20 14398.82 130
agg_prior287.06 23198.36 18897.98 163
agg_prior96.20 20788.89 10696.88 16990.21 30098.78 142
TestCases96.00 5698.02 8892.17 5098.43 1890.48 14795.04 16996.74 14392.54 11397.86 24585.11 26298.98 11497.98 163
test_prior489.91 8290.74 253
test_prior290.21 27189.33 16990.77 28994.81 24090.41 16388.21 20598.55 167
test_prior94.61 11795.95 22887.23 13797.36 13198.68 16297.93 169
旧先验290.00 27968.65 38592.71 24696.52 31685.15 259
新几何290.02 278
新几何193.17 17897.16 14387.29 13594.43 26867.95 38791.29 27994.94 23686.97 21098.23 21081.06 30497.75 23393.98 345
旧先验196.20 20784.17 20494.82 25895.57 21289.57 17697.89 22896.32 264
无先验89.94 28095.75 22570.81 37598.59 17481.17 30394.81 324
原ACMM289.34 299
原ACMM192.87 18896.91 15484.22 20297.01 15776.84 33889.64 31394.46 25488.00 19298.70 15881.53 29898.01 22095.70 294
test22296.95 15085.27 19088.83 31293.61 28265.09 39590.74 29094.85 23984.62 23997.36 25493.91 346
testdata298.03 22580.24 310
segment_acmp92.14 121
testdata91.03 25596.87 15682.01 23294.28 27271.55 36892.46 25495.42 21785.65 22997.38 28382.64 28497.27 25693.70 352
testdata188.96 30888.44 189
test1294.43 13095.95 22886.75 15196.24 20689.76 31189.79 17598.79 13997.95 22597.75 191
plane_prior797.71 11188.68 109
plane_prior697.21 14188.23 12186.93 211
plane_prior597.81 9498.95 11489.26 18698.51 17398.60 116
plane_prior495.59 208
plane_prior388.43 11990.35 15293.31 220
plane_prior294.56 12191.74 115
plane_prior197.38 131
plane_prior88.12 12293.01 17388.98 17698.06 214
n20.00 417
nn0.00 417
door-mid92.13 315
lessismore_v093.87 15198.05 8483.77 21080.32 39697.13 6097.91 5877.49 30099.11 9292.62 9698.08 21398.74 94
LGP-MVS_train96.84 3898.36 6592.13 5298.25 3291.78 11197.07 6297.22 10796.38 1299.28 7292.07 10699.59 2999.11 44
test1196.65 185
door91.26 324
HQP5-MVS84.89 193
HQP-NCC96.36 19091.37 23787.16 21388.81 322
ACMP_Plane96.36 19091.37 23787.16 21388.81 322
BP-MVS86.55 240
HQP4-MVS88.81 32298.61 17098.15 146
HQP3-MVS97.31 13597.73 234
HQP2-MVS84.76 237
NP-MVS96.82 16187.10 14193.40 288
MDTV_nov1_ep13_2view42.48 41388.45 32067.22 38983.56 37766.80 35272.86 36794.06 342
MDTV_nov1_ep1383.88 33189.42 38361.52 40088.74 31587.41 35273.99 35584.96 36694.01 27065.25 36295.53 34078.02 33093.16 359
ACMMP++_ref98.82 138
ACMMP++99.25 83
Test By Simon90.61 159
ITE_SJBPF95.95 5997.34 13493.36 4096.55 19491.93 10094.82 17895.39 22191.99 12397.08 29685.53 25397.96 22497.41 213
DeepMVS_CXcopyleft53.83 38970.38 41164.56 39548.52 41333.01 40565.50 40674.21 40456.19 38946.64 40838.45 40870.07 40450.30 404