DVP-MVS++ | | | 95.79 1 | 96.42 1 | 95.06 1 | 97.84 2 | 98.17 2 | 97.03 4 | 92.84 3 | 96.68 1 | 92.83 3 | 95.90 5 | 94.38 4 | 92.90 5 | 95.98 2 | 94.85 5 | 96.93 3 | 98.99 1 |
|
SED-MVS | | | 95.61 2 | 96.36 2 | 94.73 3 | 96.84 19 | 98.15 3 | 97.08 3 | 92.92 2 | 95.64 3 | 91.84 4 | 95.98 4 | 95.33 1 | 92.83 7 | 96.00 1 | 94.94 3 | 96.90 4 | 98.45 3 |
|
DVP-MVS |  | | 95.56 3 | 96.26 3 | 94.73 3 | 96.93 16 | 98.19 1 | 96.62 7 | 92.81 5 | 96.15 2 | 91.73 5 | 95.01 7 | 95.31 2 | 93.41 1 | 95.95 3 | 94.77 8 | 96.90 4 | 98.46 2 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
DPE-MVS |  | | 95.53 4 | 96.13 4 | 94.82 2 | 96.81 22 | 98.05 4 | 97.42 1 | 93.09 1 | 94.31 9 | 91.49 6 | 97.12 1 | 95.03 3 | 93.27 3 | 95.55 6 | 94.58 12 | 96.86 6 | 98.25 4 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
APDe-MVS | | | 95.23 5 | 95.69 6 | 94.70 5 | 97.12 10 | 97.81 6 | 97.19 2 | 92.83 4 | 95.06 6 | 90.98 9 | 96.47 2 | 92.77 10 | 93.38 2 | 95.34 9 | 94.21 16 | 96.68 9 | 98.17 5 |
|
MSP-MVS | | | 95.12 6 | 95.83 5 | 94.30 6 | 96.82 21 | 97.94 5 | 96.98 5 | 92.37 11 | 95.40 4 | 90.59 12 | 96.16 3 | 93.71 6 | 92.70 8 | 94.80 17 | 94.77 8 | 96.37 14 | 97.99 8 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
SMA-MVS |  | | 94.70 7 | 95.35 7 | 93.93 11 | 97.57 3 | 97.57 8 | 95.98 12 | 91.91 13 | 94.50 7 | 90.35 13 | 93.46 17 | 92.72 11 | 91.89 17 | 95.89 4 | 95.22 1 | 95.88 31 | 98.10 6 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
SF-MVS | | | 94.61 8 | 94.96 10 | 94.20 9 | 96.75 24 | 97.07 12 | 95.82 18 | 92.60 7 | 93.98 12 | 91.09 8 | 95.89 6 | 92.54 12 | 91.93 15 | 94.40 27 | 93.56 29 | 97.04 2 | 97.27 17 |
|
HPM-MVS++ |  | | 94.60 9 | 94.91 11 | 94.24 8 | 97.86 1 | 96.53 32 | 96.14 9 | 92.51 8 | 93.87 14 | 90.76 11 | 93.45 18 | 93.84 5 | 92.62 9 | 95.11 12 | 94.08 19 | 95.58 54 | 97.48 14 |
|
SD-MVS | | | 94.53 10 | 95.22 8 | 93.73 14 | 95.69 35 | 97.03 14 | 95.77 21 | 91.95 12 | 94.41 8 | 91.35 7 | 94.97 8 | 93.34 8 | 91.80 19 | 94.72 20 | 93.99 20 | 95.82 38 | 98.07 7 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
TSAR-MVS + MP. | | | 94.48 11 | 94.97 9 | 93.90 12 | 95.53 36 | 97.01 15 | 96.69 6 | 90.71 23 | 94.24 10 | 90.92 10 | 94.97 8 | 92.19 15 | 93.03 4 | 94.83 16 | 93.60 27 | 96.51 13 | 97.97 9 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
APD-MVS |  | | 94.37 12 | 94.47 16 | 94.26 7 | 97.18 8 | 96.99 16 | 96.53 8 | 92.68 6 | 92.45 23 | 89.96 16 | 94.53 11 | 91.63 20 | 92.89 6 | 94.58 22 | 93.82 23 | 96.31 18 | 97.26 18 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
CNVR-MVS | | | 94.37 12 | 94.65 12 | 94.04 10 | 97.29 6 | 97.11 11 | 96.00 11 | 92.43 10 | 93.45 15 | 89.85 18 | 90.92 25 | 93.04 9 | 92.59 10 | 95.77 5 | 94.82 6 | 96.11 25 | 97.42 16 |
|
SteuartSystems-ACMMP | | | 94.06 14 | 94.65 12 | 93.38 18 | 96.97 15 | 97.36 9 | 96.12 10 | 91.78 14 | 92.05 27 | 87.34 29 | 94.42 12 | 90.87 24 | 91.87 18 | 95.47 8 | 94.59 11 | 96.21 23 | 97.77 11 |
Skip Steuart: Steuart Systems R&D Blog. |
HFP-MVS | | | 94.02 15 | 94.22 18 | 93.78 13 | 97.25 7 | 96.85 20 | 95.81 19 | 90.94 22 | 94.12 11 | 90.29 15 | 94.09 14 | 89.98 30 | 92.52 11 | 93.94 33 | 93.49 32 | 95.87 33 | 97.10 23 |
|
ACMMP_NAP | | | 93.94 16 | 94.49 15 | 93.30 19 | 97.03 13 | 97.31 10 | 95.96 13 | 91.30 18 | 93.41 17 | 88.55 23 | 93.00 19 | 90.33 27 | 91.43 25 | 95.53 7 | 94.41 14 | 95.53 57 | 97.47 15 |
|
MCST-MVS | | | 93.81 17 | 94.06 19 | 93.53 16 | 96.79 23 | 96.85 20 | 95.95 14 | 91.69 16 | 92.20 25 | 87.17 31 | 90.83 27 | 93.41 7 | 91.96 14 | 94.49 25 | 93.50 30 | 97.61 1 | 97.12 22 |
|
ACMMPR | | | 93.72 18 | 93.94 20 | 93.48 17 | 97.07 11 | 96.93 17 | 95.78 20 | 90.66 25 | 93.88 13 | 89.24 20 | 93.53 16 | 89.08 37 | 92.24 12 | 93.89 35 | 93.50 30 | 95.88 31 | 96.73 30 |
|
NCCC | | | 93.69 19 | 93.66 23 | 93.72 15 | 97.37 5 | 96.66 29 | 95.93 17 | 92.50 9 | 93.40 18 | 88.35 24 | 87.36 34 | 92.33 14 | 92.18 13 | 94.89 15 | 94.09 18 | 96.00 27 | 96.91 26 |
|
MP-MVS |  | | 93.35 20 | 93.59 24 | 93.08 22 | 97.39 4 | 96.82 22 | 95.38 24 | 90.71 23 | 90.82 35 | 88.07 26 | 92.83 21 | 90.29 28 | 91.32 27 | 94.03 30 | 93.19 39 | 95.61 52 | 97.16 20 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
CP-MVS | | | 93.25 21 | 93.26 26 | 93.24 20 | 96.84 19 | 96.51 33 | 95.52 23 | 90.61 26 | 92.37 24 | 88.88 21 | 90.91 26 | 89.52 33 | 91.91 16 | 93.64 40 | 92.78 45 | 95.69 45 | 97.09 24 |
|
DeepC-MVS_fast | | 88.76 1 | 93.10 22 | 93.02 29 | 93.19 21 | 97.13 9 | 96.51 33 | 95.35 25 | 91.19 19 | 93.14 20 | 88.14 25 | 85.26 39 | 89.49 34 | 91.45 22 | 95.17 10 | 95.07 2 | 95.85 36 | 96.48 34 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TSAR-MVS + ACMM | | | 92.97 23 | 94.51 14 | 91.16 36 | 95.88 33 | 96.59 30 | 95.09 28 | 90.45 29 | 93.42 16 | 83.01 54 | 94.68 10 | 90.74 25 | 88.74 42 | 94.75 19 | 93.78 24 | 93.82 134 | 97.63 12 |
|
train_agg | | | 92.87 24 | 93.53 25 | 92.09 29 | 96.88 18 | 95.38 49 | 95.94 15 | 90.59 27 | 90.65 37 | 83.65 51 | 94.31 13 | 91.87 19 | 90.30 32 | 93.38 43 | 92.42 50 | 95.17 74 | 96.73 30 |
|
PGM-MVS | | | 92.76 25 | 93.03 28 | 92.45 27 | 97.03 13 | 96.67 28 | 95.73 22 | 87.92 41 | 90.15 41 | 86.53 35 | 92.97 20 | 88.33 43 | 91.69 20 | 93.62 41 | 93.03 40 | 95.83 37 | 96.41 37 |
|
CSCG | | | 92.76 25 | 93.16 27 | 92.29 28 | 96.30 27 | 97.74 7 | 94.67 32 | 88.98 35 | 92.46 22 | 89.73 19 | 86.67 36 | 92.15 17 | 88.69 43 | 92.26 59 | 92.92 43 | 95.40 62 | 97.89 10 |
|
TSAR-MVS + GP. | | | 92.71 27 | 93.91 21 | 91.30 34 | 91.96 72 | 96.00 39 | 93.43 40 | 87.94 40 | 92.53 21 | 86.27 38 | 93.57 15 | 91.94 18 | 91.44 24 | 93.29 44 | 92.89 44 | 96.78 7 | 97.15 21 |
|
DeepPCF-MVS | | 88.51 2 | 92.64 28 | 94.42 17 | 90.56 39 | 94.84 43 | 96.92 18 | 91.31 61 | 89.61 31 | 95.16 5 | 84.55 46 | 89.91 29 | 91.45 21 | 90.15 35 | 95.12 11 | 94.81 7 | 92.90 153 | 97.58 13 |
|
X-MVS | | | 92.36 29 | 92.75 30 | 91.90 32 | 96.89 17 | 96.70 25 | 95.25 26 | 90.48 28 | 91.50 32 | 83.95 48 | 88.20 31 | 88.82 39 | 89.11 38 | 93.75 38 | 93.43 33 | 95.75 43 | 96.83 28 |
|
DeepC-MVS | | 87.86 3 | 92.26 30 | 91.86 33 | 92.73 24 | 96.18 28 | 96.87 19 | 95.19 27 | 91.76 15 | 92.17 26 | 86.58 34 | 81.79 51 | 85.85 50 | 90.88 30 | 94.57 23 | 94.61 10 | 95.80 39 | 97.18 19 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PHI-MVS | | | 92.05 31 | 93.74 22 | 90.08 42 | 94.96 40 | 97.06 13 | 93.11 44 | 87.71 43 | 90.71 36 | 80.78 69 | 92.40 22 | 91.03 22 | 87.68 53 | 94.32 28 | 94.48 13 | 96.21 23 | 96.16 41 |
|
ACMMP |  | | 92.03 32 | 92.16 31 | 91.87 33 | 95.88 33 | 96.55 31 | 94.47 34 | 89.49 32 | 91.71 30 | 85.26 41 | 91.52 24 | 84.48 56 | 90.21 34 | 92.82 52 | 91.63 57 | 95.92 30 | 96.42 36 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
MSLP-MVS++ | | | 92.02 33 | 91.40 36 | 92.75 23 | 96.01 31 | 95.88 42 | 93.73 39 | 89.00 33 | 89.89 42 | 90.31 14 | 81.28 57 | 88.85 38 | 91.45 22 | 92.88 51 | 94.24 15 | 96.00 27 | 96.76 29 |
|
DPM-MVS | | | 91.72 34 | 91.48 34 | 92.00 30 | 95.53 36 | 95.75 45 | 95.94 15 | 91.07 20 | 91.20 33 | 85.58 39 | 81.63 55 | 90.74 25 | 88.40 46 | 93.40 42 | 93.75 25 | 95.45 61 | 93.85 82 |
|
3Dnovator+ | | 86.06 4 | 91.60 35 | 90.86 42 | 92.47 26 | 96.00 32 | 96.50 35 | 94.70 31 | 87.83 42 | 90.49 38 | 89.92 17 | 74.68 91 | 89.35 35 | 90.66 31 | 94.02 31 | 94.14 17 | 95.67 47 | 96.85 27 |
|
CPTT-MVS | | | 91.39 36 | 90.95 40 | 91.91 31 | 95.06 38 | 95.24 53 | 95.02 29 | 88.98 35 | 91.02 34 | 86.71 33 | 84.89 41 | 88.58 42 | 91.60 21 | 90.82 87 | 89.67 97 | 94.08 121 | 96.45 35 |
|
CANet | | | 91.33 37 | 91.46 35 | 91.18 35 | 95.01 39 | 96.71 24 | 93.77 37 | 87.39 45 | 87.72 50 | 87.26 30 | 81.77 52 | 89.73 31 | 87.32 59 | 94.43 26 | 93.86 22 | 96.31 18 | 96.02 44 |
|
CDPH-MVS | | | 91.14 38 | 92.01 32 | 90.11 41 | 96.18 28 | 96.18 37 | 94.89 30 | 88.80 37 | 88.76 46 | 77.88 85 | 89.18 30 | 87.71 46 | 87.29 60 | 93.13 46 | 93.31 37 | 95.62 50 | 95.84 46 |
|
MVS_0304 | | | 90.88 39 | 91.35 37 | 90.34 40 | 93.91 50 | 96.79 23 | 94.49 33 | 86.54 48 | 86.57 55 | 82.85 55 | 81.68 54 | 89.70 32 | 87.57 55 | 94.64 21 | 93.93 21 | 96.67 11 | 96.15 42 |
|
MVS_111021_HR | | | 90.56 40 | 91.29 38 | 89.70 48 | 94.71 45 | 95.63 47 | 91.81 56 | 86.38 49 | 87.53 51 | 81.29 64 | 87.96 32 | 85.43 52 | 87.69 52 | 93.90 34 | 92.93 42 | 96.33 16 | 95.69 49 |
|
3Dnovator | | 85.17 5 | 90.48 41 | 89.90 48 | 91.16 36 | 94.88 42 | 95.74 46 | 93.82 36 | 85.36 55 | 89.28 43 | 87.81 27 | 74.34 94 | 87.40 47 | 88.56 44 | 93.07 47 | 93.74 26 | 96.53 12 | 95.71 48 |
|
CS-MVS | | | 90.34 42 | 90.58 44 | 90.07 43 | 93.11 59 | 95.82 44 | 90.57 64 | 83.62 76 | 87.07 53 | 85.35 40 | 82.98 45 | 83.47 60 | 91.37 26 | 94.94 13 | 93.37 36 | 96.37 14 | 96.41 37 |
|
CS-MVS-test | | | 90.29 43 | 90.96 39 | 89.51 51 | 93.18 58 | 95.87 43 | 89.18 83 | 83.72 75 | 88.32 48 | 84.82 45 | 84.89 41 | 85.23 53 | 90.25 33 | 94.04 29 | 92.66 49 | 95.94 29 | 95.69 49 |
|
AdaColmap |  | | 90.29 43 | 88.38 58 | 92.53 25 | 96.10 30 | 95.19 54 | 92.98 45 | 91.40 17 | 89.08 45 | 88.65 22 | 78.35 71 | 81.44 70 | 91.30 28 | 90.81 88 | 90.21 81 | 94.72 94 | 93.59 88 |
|
OMC-MVS | | | 90.23 45 | 90.40 45 | 90.03 44 | 93.45 55 | 95.29 50 | 91.89 54 | 86.34 50 | 93.25 19 | 84.94 44 | 81.72 53 | 86.65 49 | 88.90 39 | 91.69 67 | 90.27 80 | 94.65 98 | 93.95 80 |
|
MVS_111021_LR | | | 90.14 46 | 90.89 41 | 89.26 53 | 93.23 57 | 94.05 74 | 90.43 66 | 84.65 61 | 90.16 40 | 84.52 47 | 90.14 28 | 83.80 59 | 87.99 49 | 92.50 56 | 90.92 66 | 94.74 92 | 94.70 66 |
|
DROMVSNet | | | 89.96 47 | 90.77 43 | 89.01 55 | 90.54 90 | 95.15 55 | 91.34 60 | 81.43 106 | 85.27 61 | 83.08 53 | 82.83 46 | 87.22 48 | 90.97 29 | 94.79 18 | 93.38 34 | 96.73 8 | 96.71 32 |
|
DELS-MVS | | | 89.71 48 | 89.68 50 | 89.74 46 | 93.75 52 | 96.22 36 | 93.76 38 | 85.84 51 | 82.53 77 | 85.05 43 | 78.96 68 | 84.24 57 | 84.25 76 | 94.91 14 | 94.91 4 | 95.78 42 | 96.02 44 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
EPNet | | | 89.60 49 | 89.91 47 | 89.24 54 | 96.45 26 | 93.61 79 | 92.95 46 | 88.03 39 | 85.74 59 | 83.36 52 | 87.29 35 | 83.05 63 | 80.98 98 | 92.22 60 | 91.85 55 | 93.69 139 | 95.58 53 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
QAPM | | | 89.49 50 | 89.58 51 | 89.38 52 | 94.73 44 | 95.94 40 | 92.35 48 | 85.00 58 | 85.69 60 | 80.03 73 | 76.97 78 | 87.81 45 | 87.87 50 | 92.18 63 | 92.10 53 | 96.33 16 | 96.40 39 |
|
canonicalmvs | | | 89.36 51 | 89.92 46 | 88.70 59 | 91.38 78 | 95.92 41 | 91.81 56 | 82.61 98 | 90.37 39 | 82.73 57 | 82.09 49 | 79.28 85 | 88.30 47 | 91.17 75 | 93.59 28 | 95.36 64 | 97.04 25 |
|
ETV-MVS | | | 89.22 52 | 89.76 49 | 88.60 61 | 91.60 76 | 94.61 66 | 89.48 80 | 83.46 85 | 85.20 63 | 81.58 62 | 82.75 47 | 82.59 65 | 88.80 40 | 94.57 23 | 93.28 38 | 96.68 9 | 95.31 56 |
|
HQP-MVS | | | 89.13 53 | 89.58 51 | 88.60 61 | 93.53 54 | 93.67 77 | 93.29 42 | 87.58 44 | 88.53 47 | 75.50 90 | 87.60 33 | 80.32 75 | 87.07 61 | 90.66 93 | 89.95 89 | 94.62 100 | 96.35 40 |
|
TAPA-MVS | | 84.37 7 | 88.91 54 | 88.93 54 | 88.89 56 | 93.00 63 | 94.85 62 | 92.00 51 | 84.84 59 | 91.68 31 | 80.05 72 | 79.77 63 | 84.56 55 | 88.17 48 | 90.11 97 | 89.00 114 | 95.30 68 | 92.57 111 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
PCF-MVS | | 84.60 6 | 88.66 55 | 87.75 68 | 89.73 47 | 93.06 62 | 96.02 38 | 93.22 43 | 90.00 30 | 82.44 80 | 80.02 74 | 77.96 74 | 85.16 54 | 87.36 58 | 88.54 116 | 88.54 119 | 94.72 94 | 95.61 52 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
CLD-MVS | | | 88.66 55 | 88.52 56 | 88.82 57 | 91.37 79 | 94.22 70 | 92.82 47 | 82.08 101 | 88.27 49 | 85.14 42 | 81.86 50 | 78.53 90 | 85.93 69 | 91.17 75 | 90.61 74 | 95.55 55 | 95.00 58 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
PLC |  | 83.76 9 | 88.61 57 | 86.83 75 | 90.70 38 | 94.22 47 | 92.63 97 | 91.50 58 | 87.19 46 | 89.16 44 | 86.87 32 | 75.51 86 | 80.87 72 | 89.98 36 | 90.01 98 | 89.20 108 | 94.41 113 | 90.45 146 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
TSAR-MVS + COLMAP | | | 88.40 58 | 89.09 53 | 87.60 71 | 92.72 67 | 93.92 76 | 92.21 49 | 85.57 54 | 91.73 29 | 73.72 101 | 91.75 23 | 73.22 120 | 87.64 54 | 91.49 69 | 89.71 96 | 93.73 137 | 91.82 125 |
|
CNLPA | | | 88.40 58 | 87.00 73 | 90.03 44 | 93.73 53 | 94.28 69 | 89.56 78 | 85.81 52 | 91.87 28 | 87.55 28 | 69.53 121 | 81.49 69 | 89.23 37 | 89.45 107 | 88.59 118 | 94.31 117 | 93.82 83 |
|
MAR-MVS | | | 88.39 60 | 88.44 57 | 88.33 66 | 94.90 41 | 95.06 58 | 90.51 65 | 83.59 79 | 85.27 61 | 79.07 77 | 77.13 76 | 82.89 64 | 87.70 51 | 92.19 62 | 92.32 51 | 94.23 118 | 94.20 78 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
ACMP | | 83.90 8 | 88.32 61 | 88.06 61 | 88.62 60 | 92.18 70 | 93.98 75 | 91.28 62 | 85.24 56 | 86.69 54 | 81.23 65 | 85.62 38 | 75.13 105 | 87.01 63 | 89.83 100 | 89.77 94 | 94.79 88 | 95.43 55 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
LGP-MVS_train | | | 88.25 62 | 88.55 55 | 87.89 67 | 92.84 66 | 93.66 78 | 93.35 41 | 85.22 57 | 85.77 58 | 74.03 100 | 86.60 37 | 76.29 101 | 86.62 65 | 91.20 73 | 90.58 76 | 95.29 69 | 95.75 47 |
|
PVSNet_BlendedMVS | | | 88.19 63 | 88.00 63 | 88.42 63 | 92.71 68 | 94.82 63 | 89.08 88 | 83.81 72 | 84.91 66 | 86.38 36 | 79.14 65 | 78.11 92 | 82.66 84 | 93.05 48 | 91.10 61 | 95.86 34 | 94.86 62 |
|
PVSNet_Blended | | | 88.19 63 | 88.00 63 | 88.42 63 | 92.71 68 | 94.82 63 | 89.08 88 | 83.81 72 | 84.91 66 | 86.38 36 | 79.14 65 | 78.11 92 | 82.66 84 | 93.05 48 | 91.10 61 | 95.86 34 | 94.86 62 |
|
casdiffmvs_mvg |  | | 87.97 65 | 87.63 70 | 88.37 65 | 90.55 89 | 94.42 67 | 91.82 55 | 84.69 60 | 84.05 69 | 82.08 61 | 76.57 79 | 79.00 86 | 85.49 71 | 92.35 57 | 92.29 52 | 95.55 55 | 94.70 66 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
EIA-MVS | | | 87.94 66 | 88.05 62 | 87.81 68 | 91.46 77 | 95.00 60 | 88.67 95 | 82.81 90 | 82.53 77 | 80.81 68 | 80.04 61 | 80.20 76 | 87.48 56 | 92.58 55 | 91.61 58 | 95.63 49 | 94.36 72 |
|
OpenMVS |  | 82.53 11 | 87.71 67 | 86.84 74 | 88.73 58 | 94.42 46 | 95.06 58 | 91.02 63 | 83.49 82 | 82.50 79 | 82.24 60 | 67.62 132 | 85.48 51 | 85.56 70 | 91.19 74 | 91.30 60 | 95.67 47 | 94.75 64 |
|
ACMM | | 83.27 10 | 87.68 68 | 86.09 81 | 89.54 50 | 93.26 56 | 92.19 103 | 91.43 59 | 86.74 47 | 86.02 57 | 82.85 55 | 75.63 85 | 75.14 104 | 88.41 45 | 90.68 92 | 89.99 86 | 94.59 101 | 92.97 96 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
OPM-MVS | | | 87.56 69 | 85.80 85 | 89.62 49 | 93.90 51 | 94.09 73 | 94.12 35 | 88.18 38 | 75.40 132 | 77.30 88 | 76.41 80 | 77.93 94 | 88.79 41 | 92.20 61 | 90.82 68 | 95.40 62 | 93.72 86 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
casdiffmvs |  | | 87.45 70 | 87.15 72 | 87.79 70 | 90.15 101 | 94.22 70 | 89.96 71 | 83.93 71 | 85.08 64 | 80.91 66 | 75.81 84 | 77.88 95 | 86.08 67 | 91.86 66 | 90.86 67 | 95.74 44 | 94.37 71 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
PVSNet_Blended_VisFu | | | 87.40 71 | 87.80 65 | 86.92 74 | 92.86 64 | 95.40 48 | 88.56 101 | 83.45 86 | 79.55 108 | 82.26 58 | 74.49 93 | 84.03 58 | 79.24 128 | 92.97 50 | 91.53 59 | 95.15 76 | 96.65 33 |
|
MVS_Test | | | 86.93 72 | 87.24 71 | 86.56 75 | 90.10 102 | 93.47 81 | 90.31 67 | 80.12 120 | 83.55 71 | 78.12 81 | 79.58 64 | 79.80 80 | 85.45 72 | 90.17 96 | 90.59 75 | 95.29 69 | 93.53 89 |
|
EPP-MVSNet | | | 86.55 73 | 87.76 67 | 85.15 87 | 90.52 91 | 94.41 68 | 87.24 117 | 82.32 100 | 81.79 87 | 73.60 102 | 78.57 70 | 82.41 66 | 82.07 89 | 91.23 71 | 90.39 78 | 95.14 77 | 95.48 54 |
|
diffmvs |  | | 86.52 74 | 86.76 77 | 86.23 77 | 88.31 116 | 92.63 97 | 89.58 77 | 81.61 105 | 86.14 56 | 80.26 71 | 79.00 67 | 77.27 97 | 83.58 77 | 88.94 112 | 89.06 111 | 94.05 123 | 94.29 73 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
DI_MVS_plusplus_trai | | | 86.41 75 | 85.54 88 | 87.42 72 | 89.24 107 | 93.13 86 | 92.16 50 | 82.65 96 | 82.30 81 | 80.75 70 | 68.30 128 | 80.41 74 | 85.01 73 | 90.56 94 | 90.07 84 | 94.70 96 | 94.01 79 |
|
IS_MVSNet | | | 86.18 76 | 88.18 60 | 83.85 105 | 91.02 82 | 94.72 65 | 87.48 111 | 82.46 99 | 81.05 95 | 70.28 117 | 76.98 77 | 82.20 68 | 76.65 144 | 93.97 32 | 93.38 34 | 95.18 73 | 94.97 59 |
|
UA-Net | | | 86.07 77 | 87.78 66 | 84.06 102 | 92.85 65 | 95.11 57 | 87.73 108 | 84.38 65 | 73.22 152 | 73.18 105 | 79.99 62 | 89.22 36 | 71.47 172 | 93.22 45 | 93.03 40 | 94.76 91 | 90.69 141 |
|
MVSTER | | | 86.03 78 | 86.12 80 | 85.93 80 | 88.62 113 | 89.93 128 | 89.33 82 | 79.91 125 | 81.87 86 | 81.35 63 | 81.07 58 | 74.91 106 | 80.66 103 | 92.13 64 | 90.10 83 | 95.68 46 | 92.80 101 |
|
LS3D | | | 85.96 79 | 84.37 96 | 87.81 68 | 94.13 48 | 93.27 85 | 90.26 69 | 89.00 33 | 84.91 66 | 72.84 109 | 71.74 107 | 72.47 122 | 87.45 57 | 89.53 106 | 89.09 110 | 93.20 149 | 89.60 149 |
|
UGNet | | | 85.90 80 | 88.23 59 | 83.18 112 | 88.96 111 | 94.10 72 | 87.52 110 | 83.60 78 | 81.66 88 | 77.90 84 | 80.76 59 | 83.19 62 | 66.70 189 | 91.13 80 | 90.71 72 | 94.39 114 | 96.06 43 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
DCV-MVSNet | | | 85.88 81 | 86.17 79 | 85.54 84 | 89.10 110 | 89.85 130 | 89.34 81 | 80.70 111 | 83.04 73 | 78.08 83 | 76.19 82 | 79.00 86 | 82.42 87 | 89.67 103 | 90.30 79 | 93.63 142 | 95.12 57 |
|
FA-MVS(training) | | | 85.65 82 | 85.79 86 | 85.48 85 | 90.44 95 | 93.47 81 | 88.66 97 | 73.11 174 | 83.34 72 | 82.26 58 | 71.79 106 | 78.39 91 | 83.14 81 | 91.00 82 | 89.47 102 | 95.28 71 | 93.06 94 |
|
CANet_DTU | | | 85.43 83 | 87.72 69 | 82.76 116 | 90.95 85 | 93.01 90 | 89.99 70 | 75.46 166 | 82.67 74 | 64.91 147 | 83.14 44 | 80.09 77 | 80.68 102 | 92.03 65 | 91.03 63 | 94.57 103 | 92.08 119 |
|
Effi-MVS+ | | | 85.33 84 | 85.08 90 | 85.63 82 | 89.69 104 | 93.42 83 | 89.90 72 | 80.31 118 | 79.32 109 | 72.48 111 | 73.52 100 | 74.03 111 | 86.55 66 | 90.99 83 | 89.98 87 | 94.83 87 | 94.27 77 |
|
ECVR-MVS |  | | 85.25 85 | 84.47 94 | 86.16 78 | 91.84 73 | 95.28 51 | 89.18 83 | 84.49 63 | 82.59 75 | 73.49 103 | 66.12 137 | 69.28 135 | 81.68 91 | 93.76 36 | 92.71 46 | 96.28 21 | 91.58 134 |
|
test2506 | | | 85.20 86 | 84.11 98 | 86.47 76 | 91.84 73 | 95.28 51 | 89.18 83 | 84.49 63 | 82.59 75 | 75.34 94 | 74.66 92 | 58.07 186 | 81.68 91 | 93.76 36 | 92.71 46 | 96.28 21 | 91.71 127 |
|
FC-MVSNet-train | | | 85.18 87 | 85.31 89 | 85.03 88 | 90.67 86 | 91.62 107 | 87.66 109 | 83.61 77 | 79.75 106 | 74.37 98 | 78.69 69 | 71.21 126 | 78.91 129 | 91.23 71 | 89.96 88 | 94.96 82 | 94.69 68 |
|
thisisatest0530 | | | 85.15 88 | 85.86 83 | 84.33 95 | 89.19 109 | 92.57 100 | 87.22 118 | 80.11 121 | 82.15 83 | 74.41 97 | 78.15 72 | 73.80 114 | 79.90 116 | 90.99 83 | 89.58 98 | 95.13 78 | 93.75 85 |
|
tttt0517 | | | 85.11 89 | 85.81 84 | 84.30 96 | 89.24 107 | 92.68 96 | 87.12 122 | 80.11 121 | 81.98 84 | 74.31 99 | 78.08 73 | 73.57 116 | 79.90 116 | 91.01 81 | 89.58 98 | 95.11 80 | 93.77 84 |
|
baseline | | | 84.89 90 | 86.06 82 | 83.52 110 | 87.25 127 | 89.67 137 | 87.76 107 | 75.68 165 | 84.92 65 | 78.40 79 | 80.10 60 | 80.98 71 | 80.20 112 | 86.69 140 | 87.05 134 | 91.86 164 | 92.99 95 |
|
test1111 | | | 84.86 91 | 84.21 97 | 85.61 83 | 91.75 75 | 95.14 56 | 88.63 98 | 84.57 62 | 81.88 85 | 71.21 112 | 65.66 143 | 68.51 139 | 81.19 95 | 93.74 39 | 92.68 48 | 96.31 18 | 91.86 124 |
|
ET-MVSNet_ETH3D | | | 84.65 92 | 85.58 87 | 83.56 109 | 74.99 210 | 92.62 99 | 90.29 68 | 80.38 113 | 82.16 82 | 73.01 108 | 83.41 43 | 71.10 127 | 87.05 62 | 87.77 124 | 90.17 82 | 95.62 50 | 91.82 125 |
|
GeoE | | | 84.62 93 | 83.98 100 | 85.35 86 | 89.34 106 | 92.83 93 | 88.34 102 | 78.95 135 | 79.29 110 | 77.16 89 | 68.10 129 | 74.56 107 | 83.40 79 | 89.31 109 | 89.23 107 | 94.92 83 | 94.57 70 |
|
baseline1 | | | 84.54 94 | 84.43 95 | 84.67 90 | 90.62 87 | 91.16 110 | 88.63 98 | 83.75 74 | 79.78 105 | 71.16 113 | 75.14 88 | 74.10 110 | 77.84 137 | 91.56 68 | 90.67 73 | 96.04 26 | 88.58 155 |
|
GBi-Net | | | 84.51 95 | 84.80 91 | 84.17 99 | 84.20 162 | 89.95 125 | 89.70 74 | 80.37 114 | 81.17 91 | 75.50 90 | 69.63 117 | 79.69 82 | 79.75 120 | 90.73 89 | 90.72 69 | 95.52 58 | 91.71 127 |
|
test1 | | | 84.51 95 | 84.80 91 | 84.17 99 | 84.20 162 | 89.95 125 | 89.70 74 | 80.37 114 | 81.17 91 | 75.50 90 | 69.63 117 | 79.69 82 | 79.75 120 | 90.73 89 | 90.72 69 | 95.52 58 | 91.71 127 |
|
FMVSNet3 | | | 84.44 97 | 84.64 93 | 84.21 98 | 84.32 161 | 90.13 123 | 89.85 73 | 80.37 114 | 81.17 91 | 75.50 90 | 69.63 117 | 79.69 82 | 79.62 123 | 89.72 102 | 90.52 77 | 95.59 53 | 91.58 134 |
|
Anonymous20231211 | | | 84.42 98 | 83.02 104 | 86.05 79 | 88.85 112 | 92.70 95 | 88.92 94 | 83.40 87 | 79.99 103 | 78.31 80 | 55.83 190 | 78.92 88 | 83.33 80 | 89.06 111 | 89.76 95 | 93.50 144 | 94.90 60 |
|
Vis-MVSNet |  | | 84.38 99 | 86.68 78 | 81.70 126 | 87.65 123 | 94.89 61 | 88.14 104 | 80.90 110 | 74.48 138 | 68.23 129 | 77.53 75 | 80.72 73 | 69.98 176 | 92.68 53 | 91.90 54 | 95.33 67 | 94.58 69 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
FMVSNet2 | | | 83.87 100 | 83.73 102 | 84.05 103 | 84.20 162 | 89.95 125 | 89.70 74 | 80.21 119 | 79.17 112 | 74.89 95 | 65.91 138 | 77.49 96 | 79.75 120 | 90.87 86 | 91.00 65 | 95.52 58 | 91.71 127 |
|
MSDG | | | 83.87 100 | 81.02 122 | 87.19 73 | 92.17 71 | 89.80 132 | 89.15 86 | 85.72 53 | 80.61 100 | 79.24 76 | 66.66 135 | 68.75 138 | 82.69 83 | 87.95 123 | 87.44 128 | 94.19 119 | 85.92 178 |
|
Fast-Effi-MVS+ | | | 83.77 102 | 82.98 105 | 84.69 89 | 87.98 117 | 91.87 105 | 88.10 105 | 77.70 149 | 78.10 118 | 73.04 107 | 69.13 123 | 68.51 139 | 86.66 64 | 90.49 95 | 89.85 92 | 94.67 97 | 92.88 98 |
|
Vis-MVSNet (Re-imp) | | | 83.65 103 | 86.81 76 | 79.96 146 | 90.46 94 | 92.71 94 | 84.84 147 | 82.00 102 | 80.93 97 | 62.44 162 | 76.29 81 | 82.32 67 | 65.54 192 | 92.29 58 | 91.66 56 | 94.49 108 | 91.47 136 |
|
RPSCF | | | 83.46 104 | 83.36 103 | 83.59 108 | 87.75 119 | 87.35 164 | 84.82 148 | 79.46 130 | 83.84 70 | 78.12 81 | 82.69 48 | 79.87 78 | 82.60 86 | 82.47 185 | 81.13 188 | 88.78 189 | 86.13 176 |
|
PatchMatch-RL | | | 83.34 105 | 81.36 117 | 85.65 81 | 90.33 98 | 89.52 140 | 84.36 151 | 81.82 103 | 80.87 99 | 79.29 75 | 74.04 95 | 62.85 160 | 86.05 68 | 88.40 119 | 87.04 135 | 92.04 161 | 86.77 171 |
|
IterMVS-LS | | | 83.28 106 | 82.95 106 | 83.65 106 | 88.39 115 | 88.63 155 | 86.80 126 | 78.64 140 | 76.56 124 | 73.43 104 | 72.52 105 | 75.35 103 | 80.81 100 | 86.43 146 | 88.51 120 | 93.84 133 | 92.66 106 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
tfpn200view9 | | | 82.86 107 | 81.46 115 | 84.48 92 | 90.30 99 | 93.09 87 | 89.05 90 | 82.71 92 | 75.14 133 | 69.56 120 | 65.72 140 | 63.13 155 | 80.38 109 | 91.15 77 | 89.51 100 | 94.91 84 | 92.50 115 |
|
baseline2 | | | 82.80 108 | 82.86 107 | 82.73 117 | 87.68 122 | 90.50 116 | 84.92 146 | 78.93 136 | 78.07 119 | 73.06 106 | 75.08 89 | 69.77 132 | 77.31 140 | 88.90 113 | 86.94 136 | 94.50 106 | 90.74 140 |
|
thres200 | | | 82.77 109 | 81.25 119 | 84.54 91 | 90.38 96 | 93.05 88 | 89.13 87 | 82.67 94 | 74.40 139 | 69.53 122 | 65.69 142 | 63.03 158 | 80.63 104 | 91.15 77 | 89.42 103 | 94.88 85 | 92.04 121 |
|
thres400 | | | 82.68 110 | 81.15 120 | 84.47 93 | 90.52 91 | 92.89 92 | 88.95 93 | 82.71 92 | 74.33 140 | 69.22 125 | 65.31 145 | 62.61 161 | 80.63 104 | 90.96 85 | 89.50 101 | 94.79 88 | 92.45 117 |
|
IB-MVS | | 79.09 12 | 82.60 111 | 82.19 110 | 83.07 113 | 91.08 81 | 93.55 80 | 80.90 178 | 81.35 107 | 76.56 124 | 80.87 67 | 64.81 151 | 69.97 131 | 68.87 179 | 85.64 154 | 90.06 85 | 95.36 64 | 94.74 65 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
thres100view900 | | | 82.55 112 | 81.01 124 | 84.34 94 | 90.30 99 | 92.27 101 | 89.04 91 | 82.77 91 | 75.14 133 | 69.56 120 | 65.72 140 | 63.13 155 | 79.62 123 | 89.97 99 | 89.26 106 | 94.73 93 | 91.61 133 |
|
thres600view7 | | | 82.53 113 | 81.02 122 | 84.28 97 | 90.61 88 | 93.05 88 | 88.57 100 | 82.67 94 | 74.12 143 | 68.56 128 | 65.09 148 | 62.13 166 | 80.40 108 | 91.15 77 | 89.02 113 | 94.88 85 | 92.59 109 |
|
CHOSEN 1792x2688 | | | 82.16 114 | 80.91 125 | 83.61 107 | 91.14 80 | 92.01 104 | 89.55 79 | 79.15 134 | 79.87 104 | 70.29 116 | 52.51 198 | 72.56 121 | 81.39 93 | 88.87 114 | 88.17 122 | 90.15 182 | 92.37 118 |
|
Effi-MVS+-dtu | | | 82.05 115 | 81.76 112 | 82.38 120 | 87.72 120 | 90.56 115 | 86.90 125 | 78.05 145 | 73.85 146 | 66.85 134 | 71.29 109 | 71.90 124 | 82.00 90 | 86.64 141 | 85.48 160 | 92.76 155 | 92.58 110 |
|
EPNet_dtu | | | 81.98 116 | 83.82 101 | 79.83 148 | 94.10 49 | 85.97 173 | 87.29 115 | 84.08 70 | 80.61 100 | 59.96 180 | 81.62 56 | 77.19 98 | 62.91 196 | 87.21 128 | 86.38 147 | 90.66 178 | 87.77 166 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
UniMVSNet_NR-MVSNet | | | 81.87 117 | 81.33 118 | 82.50 118 | 85.31 148 | 91.30 108 | 85.70 136 | 84.25 66 | 75.89 128 | 64.21 149 | 66.95 134 | 64.65 151 | 80.22 110 | 87.07 130 | 89.18 109 | 95.27 72 | 94.29 73 |
|
ACMH | | 78.52 14 | 81.86 118 | 80.45 129 | 83.51 111 | 90.51 93 | 91.22 109 | 85.62 139 | 84.23 67 | 70.29 168 | 62.21 163 | 69.04 125 | 64.05 153 | 84.48 75 | 87.57 126 | 88.45 121 | 94.01 125 | 92.54 113 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMH+ | | 79.08 13 | 81.84 119 | 80.06 134 | 83.91 104 | 89.92 103 | 90.62 114 | 86.21 131 | 83.48 84 | 73.88 145 | 65.75 140 | 66.38 136 | 65.30 149 | 84.63 74 | 85.90 151 | 87.25 131 | 93.45 145 | 91.13 139 |
|
MS-PatchMatch | | | 81.79 120 | 81.44 116 | 82.19 123 | 90.35 97 | 89.29 144 | 88.08 106 | 75.36 167 | 77.60 120 | 69.00 126 | 64.37 154 | 78.87 89 | 77.14 143 | 88.03 122 | 85.70 158 | 93.19 150 | 86.24 175 |
|
PMMVS | | | 81.65 121 | 84.05 99 | 78.86 153 | 78.56 201 | 82.63 195 | 83.10 159 | 67.22 197 | 81.39 89 | 70.11 119 | 84.91 40 | 79.74 81 | 82.12 88 | 87.31 127 | 85.70 158 | 92.03 162 | 86.67 174 |
|
FMVSNet1 | | | 81.64 122 | 80.61 127 | 82.84 115 | 82.36 187 | 89.20 146 | 88.67 95 | 79.58 128 | 70.79 163 | 72.63 110 | 58.95 181 | 72.26 123 | 79.34 126 | 90.73 89 | 90.72 69 | 94.47 109 | 91.62 132 |
|
CDS-MVSNet | | | 81.63 123 | 82.09 111 | 81.09 135 | 87.21 128 | 90.28 119 | 87.46 113 | 80.33 117 | 69.06 172 | 70.66 114 | 71.30 108 | 73.87 112 | 67.99 182 | 89.58 104 | 89.87 91 | 92.87 154 | 90.69 141 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
HyFIR lowres test | | | 81.62 124 | 79.45 144 | 84.14 101 | 91.00 83 | 93.38 84 | 88.27 103 | 78.19 143 | 76.28 126 | 70.18 118 | 48.78 202 | 73.69 115 | 83.52 78 | 87.05 131 | 87.83 126 | 93.68 140 | 89.15 152 |
|
UniMVSNet (Re) | | | 81.22 125 | 81.08 121 | 81.39 130 | 85.35 147 | 91.76 106 | 84.93 145 | 82.88 89 | 76.13 127 | 65.02 146 | 64.94 149 | 63.09 157 | 75.17 152 | 87.71 125 | 89.04 112 | 94.97 81 | 94.88 61 |
|
DU-MVS | | | 81.20 126 | 80.30 130 | 82.25 121 | 84.98 155 | 90.94 112 | 85.70 136 | 83.58 80 | 75.74 129 | 64.21 149 | 65.30 146 | 59.60 179 | 80.22 110 | 86.89 133 | 89.31 104 | 94.77 90 | 94.29 73 |
|
CostFormer | | | 80.94 127 | 80.21 131 | 81.79 125 | 87.69 121 | 88.58 156 | 87.47 112 | 70.66 183 | 80.02 102 | 77.88 85 | 73.03 101 | 71.40 125 | 78.24 133 | 79.96 194 | 79.63 190 | 88.82 188 | 88.84 153 |
|
USDC | | | 80.69 128 | 79.89 137 | 81.62 128 | 86.48 134 | 89.11 149 | 86.53 128 | 78.86 137 | 81.15 94 | 63.48 155 | 72.98 102 | 59.12 184 | 81.16 96 | 87.10 129 | 85.01 164 | 93.23 148 | 84.77 183 |
|
TranMVSNet+NR-MVSNet | | | 80.52 129 | 79.84 138 | 81.33 132 | 84.92 157 | 90.39 117 | 85.53 141 | 84.22 68 | 74.27 141 | 60.68 178 | 64.93 150 | 59.96 174 | 77.48 139 | 86.75 138 | 89.28 105 | 95.12 79 | 93.29 90 |
|
COLMAP_ROB |  | 76.78 15 | 80.50 130 | 78.49 149 | 82.85 114 | 90.96 84 | 89.65 138 | 86.20 132 | 83.40 87 | 77.15 122 | 66.54 135 | 62.27 159 | 65.62 148 | 77.89 136 | 85.23 161 | 84.70 168 | 92.11 160 | 84.83 182 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
CHOSEN 280x420 | | | 80.28 131 | 81.66 113 | 78.67 157 | 82.92 180 | 79.24 207 | 85.36 142 | 66.79 199 | 78.11 117 | 70.32 115 | 75.03 90 | 79.87 78 | 81.09 97 | 89.07 110 | 83.16 178 | 85.54 204 | 87.17 168 |
|
NR-MVSNet | | | 80.25 132 | 79.98 136 | 80.56 141 | 85.20 150 | 90.94 112 | 85.65 138 | 83.58 80 | 75.74 129 | 61.36 173 | 65.30 146 | 56.75 193 | 72.38 168 | 88.46 118 | 88.80 116 | 95.16 75 | 93.87 81 |
|
pmmvs4 | | | 79.99 133 | 78.08 155 | 82.22 122 | 83.04 177 | 87.16 167 | 84.95 144 | 78.80 139 | 78.64 115 | 74.53 96 | 64.61 152 | 59.41 180 | 79.45 125 | 84.13 174 | 84.54 171 | 92.53 157 | 88.08 161 |
|
Fast-Effi-MVS+-dtu | | | 79.95 134 | 80.69 126 | 79.08 151 | 86.36 135 | 89.14 148 | 85.85 134 | 72.28 177 | 72.85 155 | 59.32 183 | 70.43 115 | 68.42 141 | 77.57 138 | 86.14 148 | 86.44 146 | 93.11 151 | 91.39 137 |
|
v8 | | | 79.90 135 | 78.39 152 | 81.66 127 | 83.97 166 | 89.81 131 | 87.16 120 | 77.40 151 | 71.49 158 | 67.71 130 | 61.24 164 | 62.49 162 | 79.83 119 | 85.48 158 | 86.17 150 | 93.89 130 | 92.02 123 |
|
v2v482 | | | 79.84 136 | 78.07 156 | 81.90 124 | 83.75 167 | 90.21 122 | 87.17 119 | 79.85 126 | 70.65 164 | 65.93 139 | 61.93 161 | 60.07 173 | 80.82 99 | 85.25 160 | 86.71 139 | 93.88 131 | 91.70 131 |
|
Baseline_NR-MVSNet | | | 79.84 136 | 78.37 153 | 81.55 129 | 84.98 155 | 86.66 169 | 85.06 143 | 83.49 82 | 75.57 131 | 63.31 156 | 58.22 185 | 60.97 169 | 78.00 135 | 86.89 133 | 87.13 132 | 94.47 109 | 93.15 92 |
|
thisisatest0515 | | | 79.76 138 | 80.59 128 | 78.80 154 | 84.40 160 | 88.91 153 | 79.48 184 | 76.94 155 | 72.29 156 | 67.33 132 | 67.82 131 | 65.99 146 | 70.80 174 | 88.50 117 | 87.84 124 | 93.86 132 | 92.75 104 |
|
v10 | | | 79.62 139 | 78.19 154 | 81.28 133 | 83.73 168 | 89.69 136 | 87.27 116 | 76.86 156 | 70.50 166 | 65.46 141 | 60.58 171 | 60.47 171 | 80.44 107 | 86.91 132 | 86.63 142 | 93.93 127 | 92.55 112 |
|
V42 | | | 79.59 140 | 78.43 151 | 80.94 136 | 82.79 183 | 89.71 135 | 86.66 127 | 76.73 158 | 71.38 159 | 67.42 131 | 61.01 166 | 62.30 164 | 78.39 132 | 85.56 156 | 86.48 144 | 93.65 141 | 92.60 108 |
|
GA-MVS | | | 79.52 141 | 79.71 141 | 79.30 150 | 85.68 142 | 90.36 118 | 84.55 149 | 78.44 141 | 70.47 167 | 57.87 188 | 68.52 127 | 61.38 167 | 76.21 146 | 89.40 108 | 87.89 123 | 93.04 152 | 89.96 148 |
|
SCA | | | 79.51 142 | 80.15 133 | 78.75 155 | 86.58 133 | 87.70 161 | 83.07 160 | 68.53 192 | 81.31 90 | 66.40 136 | 73.83 96 | 75.38 102 | 79.30 127 | 80.49 192 | 79.39 193 | 88.63 191 | 82.96 190 |
|
test-LLR | | | 79.47 143 | 79.84 138 | 79.03 152 | 87.47 124 | 82.40 198 | 81.24 175 | 78.05 145 | 73.72 147 | 62.69 159 | 73.76 97 | 74.42 108 | 73.49 163 | 84.61 170 | 82.99 180 | 91.25 172 | 87.01 169 |
|
IterMVS-SCA-FT | | | 79.41 144 | 80.20 132 | 78.49 159 | 85.88 138 | 86.26 171 | 83.95 154 | 71.94 178 | 73.55 150 | 61.94 166 | 70.48 114 | 70.50 128 | 75.23 150 | 85.81 153 | 84.61 170 | 91.99 163 | 90.18 147 |
|
v1144 | | | 79.38 145 | 77.83 159 | 81.18 134 | 83.62 169 | 90.23 120 | 87.15 121 | 78.35 142 | 69.13 171 | 64.02 152 | 60.20 173 | 59.41 180 | 80.14 114 | 86.78 136 | 86.57 143 | 93.81 135 | 92.53 114 |
|
UniMVSNet_ETH3D | | | 79.24 146 | 76.47 172 | 82.48 119 | 85.66 143 | 90.97 111 | 86.08 133 | 81.63 104 | 64.48 192 | 68.94 127 | 54.47 192 | 57.65 188 | 78.83 130 | 85.20 164 | 88.91 115 | 93.72 138 | 93.60 87 |
|
MDTV_nov1_ep13 | | | 79.14 147 | 79.49 143 | 78.74 156 | 85.40 146 | 86.89 168 | 84.32 153 | 70.29 185 | 78.85 113 | 69.42 123 | 75.37 87 | 73.29 119 | 75.64 149 | 80.61 191 | 79.48 192 | 87.36 195 | 81.91 192 |
|
TDRefinement | | | 79.05 148 | 77.05 167 | 81.39 130 | 88.45 114 | 89.00 151 | 86.92 123 | 82.65 96 | 74.21 142 | 64.41 148 | 59.17 178 | 59.16 182 | 74.52 158 | 85.23 161 | 85.09 163 | 91.37 170 | 87.51 167 |
|
v1192 | | | 78.94 149 | 77.33 163 | 80.82 137 | 83.25 173 | 89.90 129 | 86.91 124 | 77.72 148 | 68.63 175 | 62.61 161 | 59.17 178 | 57.53 189 | 80.62 106 | 86.89 133 | 86.47 145 | 93.79 136 | 92.75 104 |
|
v144192 | | | 78.81 150 | 77.22 165 | 80.67 139 | 82.95 178 | 89.79 133 | 86.40 129 | 77.42 150 | 68.26 177 | 63.13 157 | 59.50 176 | 58.13 185 | 80.08 115 | 85.93 150 | 86.08 152 | 94.06 122 | 92.83 100 |
|
IterMVS | | | 78.79 151 | 79.71 141 | 77.71 163 | 85.26 149 | 85.91 174 | 84.54 150 | 69.84 189 | 73.38 151 | 61.25 174 | 70.53 113 | 70.35 129 | 74.43 159 | 85.21 163 | 83.80 175 | 90.95 176 | 88.77 154 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CR-MVSNet | | | 78.71 152 | 78.86 146 | 78.55 158 | 85.85 141 | 85.15 182 | 82.30 167 | 68.23 193 | 74.71 136 | 65.37 143 | 64.39 153 | 69.59 134 | 77.18 141 | 85.10 166 | 84.87 165 | 92.34 159 | 88.21 159 |
|
PatchmatchNet |  | | 78.67 153 | 78.85 147 | 78.46 160 | 86.85 132 | 86.03 172 | 83.77 156 | 68.11 195 | 80.88 98 | 66.19 137 | 72.90 103 | 73.40 118 | 78.06 134 | 79.25 198 | 77.71 198 | 87.75 194 | 81.75 193 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
v148 | | | 78.59 154 | 76.84 170 | 80.62 140 | 83.61 170 | 89.16 147 | 83.65 157 | 79.24 133 | 69.38 170 | 69.34 124 | 59.88 175 | 60.41 172 | 75.19 151 | 83.81 176 | 84.63 169 | 92.70 156 | 90.63 143 |
|
v1921920 | | | 78.57 155 | 76.99 168 | 80.41 144 | 82.93 179 | 89.63 139 | 86.38 130 | 77.14 153 | 68.31 176 | 61.80 169 | 58.89 182 | 56.79 192 | 80.19 113 | 86.50 145 | 86.05 154 | 94.02 124 | 92.76 103 |
|
pm-mvs1 | | | 78.51 156 | 77.75 161 | 79.40 149 | 84.83 158 | 89.30 143 | 83.55 158 | 79.38 131 | 62.64 196 | 63.68 154 | 58.73 183 | 64.68 150 | 70.78 175 | 89.79 101 | 87.84 124 | 94.17 120 | 91.28 138 |
|
v1240 | | | 78.15 157 | 76.53 171 | 80.04 145 | 82.85 182 | 89.48 142 | 85.61 140 | 76.77 157 | 67.05 179 | 61.18 176 | 58.37 184 | 56.16 196 | 79.89 118 | 86.11 149 | 86.08 152 | 93.92 128 | 92.47 116 |
|
dps | | | 78.02 158 | 75.94 180 | 80.44 143 | 86.06 137 | 86.62 170 | 82.58 162 | 69.98 187 | 75.14 133 | 77.76 87 | 69.08 124 | 59.93 175 | 78.47 131 | 79.47 196 | 77.96 197 | 87.78 193 | 83.40 187 |
|
anonymousdsp | | | 77.94 159 | 79.00 145 | 76.71 171 | 79.03 199 | 87.83 160 | 79.58 183 | 72.87 175 | 65.80 187 | 58.86 187 | 65.82 139 | 62.48 163 | 75.99 147 | 86.77 137 | 88.66 117 | 93.92 128 | 95.68 51 |
|
test-mter | | | 77.79 160 | 80.02 135 | 75.18 182 | 81.18 195 | 82.85 193 | 80.52 181 | 62.03 211 | 73.62 149 | 62.16 164 | 73.55 99 | 73.83 113 | 73.81 161 | 84.67 169 | 83.34 177 | 91.37 170 | 88.31 158 |
|
TESTMET0.1,1 | | | 77.78 161 | 79.84 138 | 75.38 181 | 80.86 196 | 82.40 198 | 81.24 175 | 62.72 210 | 73.72 147 | 62.69 159 | 73.76 97 | 74.42 108 | 73.49 163 | 84.61 170 | 82.99 180 | 91.25 172 | 87.01 169 |
|
tpm cat1 | | | 77.78 161 | 75.28 187 | 80.70 138 | 87.14 129 | 85.84 175 | 85.81 135 | 70.40 184 | 77.44 121 | 78.80 78 | 63.72 155 | 64.01 154 | 76.55 145 | 75.60 206 | 75.21 204 | 85.51 205 | 85.12 180 |
|
EPMVS | | | 77.53 163 | 78.07 156 | 76.90 170 | 86.89 131 | 84.91 185 | 82.18 170 | 66.64 200 | 81.00 96 | 64.11 151 | 72.75 104 | 69.68 133 | 74.42 160 | 79.36 197 | 78.13 196 | 87.14 197 | 80.68 199 |
|
tfpnnormal | | | 77.46 164 | 74.86 189 | 80.49 142 | 86.34 136 | 88.92 152 | 84.33 152 | 81.26 108 | 61.39 200 | 61.70 170 | 51.99 199 | 53.66 205 | 74.84 155 | 88.63 115 | 87.38 130 | 94.50 106 | 92.08 119 |
|
v7n | | | 77.22 165 | 76.23 175 | 78.38 161 | 81.89 190 | 89.10 150 | 82.24 169 | 76.36 159 | 65.96 186 | 61.21 175 | 56.56 188 | 55.79 197 | 75.07 154 | 86.55 142 | 86.68 140 | 93.52 143 | 92.95 97 |
|
RPMNet | | | 77.07 166 | 77.63 162 | 76.42 173 | 85.56 145 | 85.15 182 | 81.37 172 | 65.27 204 | 74.71 136 | 60.29 179 | 63.71 156 | 66.59 145 | 73.64 162 | 82.71 183 | 82.12 185 | 92.38 158 | 88.39 157 |
|
pmmvs5 | | | 76.93 167 | 76.33 174 | 77.62 164 | 81.97 189 | 88.40 158 | 81.32 174 | 74.35 170 | 65.42 190 | 61.42 172 | 63.07 157 | 57.95 187 | 73.23 166 | 85.60 155 | 85.35 162 | 93.41 146 | 88.55 156 |
|
TinyColmap | | | 76.73 168 | 73.95 192 | 79.96 146 | 85.16 152 | 85.64 178 | 82.34 166 | 78.19 143 | 70.63 165 | 62.06 165 | 60.69 170 | 49.61 210 | 80.81 100 | 85.12 165 | 83.69 176 | 91.22 174 | 82.27 191 |
|
CVMVSNet | | | 76.70 169 | 78.46 150 | 74.64 187 | 83.34 172 | 84.48 186 | 81.83 171 | 74.58 168 | 68.88 173 | 51.23 201 | 69.77 116 | 70.05 130 | 67.49 185 | 84.27 173 | 83.81 174 | 89.38 186 | 87.96 163 |
|
WR-MVS | | | 76.63 170 | 78.02 158 | 75.02 183 | 84.14 165 | 89.76 134 | 78.34 191 | 80.64 112 | 69.56 169 | 52.32 197 | 61.26 163 | 61.24 168 | 60.66 197 | 84.45 172 | 87.07 133 | 93.99 126 | 92.77 102 |
|
TransMVSNet (Re) | | | 76.57 171 | 75.16 188 | 78.22 162 | 85.60 144 | 87.24 165 | 82.46 163 | 81.23 109 | 59.80 204 | 59.05 186 | 57.07 187 | 59.14 183 | 66.60 190 | 88.09 121 | 86.82 137 | 94.37 115 | 87.95 164 |
|
tpmrst | | | 76.55 172 | 75.99 179 | 77.20 166 | 87.32 126 | 83.05 191 | 82.86 161 | 65.62 202 | 78.61 116 | 67.22 133 | 69.19 122 | 65.71 147 | 75.87 148 | 76.75 204 | 75.33 203 | 84.31 207 | 83.28 188 |
|
FC-MVSNet-test | | | 76.53 173 | 81.62 114 | 70.58 197 | 84.99 154 | 85.73 176 | 74.81 199 | 78.85 138 | 77.00 123 | 39.13 215 | 75.90 83 | 73.50 117 | 54.08 204 | 86.54 143 | 85.99 155 | 91.65 166 | 86.68 172 |
|
PatchT | | | 76.42 174 | 77.81 160 | 74.80 185 | 78.46 202 | 84.30 187 | 71.82 205 | 65.03 206 | 73.89 144 | 65.37 143 | 61.58 162 | 66.70 144 | 77.18 141 | 85.10 166 | 84.87 165 | 90.94 177 | 88.21 159 |
|
TAMVS | | | 76.42 174 | 77.16 166 | 75.56 179 | 83.05 176 | 85.55 179 | 80.58 180 | 71.43 180 | 65.40 191 | 61.04 177 | 67.27 133 | 69.22 137 | 67.99 182 | 84.88 168 | 84.78 167 | 89.28 187 | 83.01 189 |
|
EG-PatchMatch MVS | | | 76.40 176 | 75.47 185 | 77.48 165 | 85.86 140 | 90.22 121 | 82.45 164 | 73.96 172 | 59.64 205 | 59.60 182 | 52.75 197 | 62.20 165 | 68.44 181 | 88.23 120 | 87.50 127 | 94.55 104 | 87.78 165 |
|
CP-MVSNet | | | 76.36 177 | 76.41 173 | 76.32 175 | 82.73 184 | 88.64 154 | 79.39 185 | 79.62 127 | 67.21 178 | 53.70 193 | 60.72 169 | 55.22 199 | 67.91 184 | 83.52 178 | 86.34 148 | 94.55 104 | 93.19 91 |
|
tpm | | | 76.30 178 | 76.05 178 | 76.59 172 | 86.97 130 | 83.01 192 | 83.83 155 | 67.06 198 | 71.83 157 | 63.87 153 | 69.56 120 | 62.88 159 | 73.41 165 | 79.79 195 | 78.59 194 | 84.41 206 | 86.68 172 |
|
test0.0.03 1 | | | 76.03 179 | 78.51 148 | 73.12 193 | 87.47 124 | 85.13 184 | 76.32 196 | 78.05 145 | 73.19 154 | 50.98 202 | 70.64 111 | 69.28 135 | 55.53 200 | 85.33 159 | 84.38 172 | 90.39 180 | 81.63 194 |
|
PEN-MVS | | | 76.02 180 | 76.07 176 | 75.95 178 | 83.17 175 | 87.97 159 | 79.65 182 | 80.07 124 | 66.57 182 | 51.45 199 | 60.94 167 | 55.47 198 | 66.81 188 | 82.72 182 | 86.80 138 | 94.59 101 | 92.03 122 |
|
SixPastTwentyTwo | | | 76.02 180 | 75.72 182 | 76.36 174 | 83.38 171 | 87.54 162 | 75.50 198 | 76.22 160 | 65.50 189 | 57.05 189 | 70.64 111 | 53.97 204 | 74.54 157 | 80.96 190 | 82.12 185 | 91.44 168 | 89.35 151 |
|
PS-CasMVS | | | 75.90 182 | 75.86 181 | 75.96 177 | 82.59 185 | 88.46 157 | 79.23 188 | 79.56 129 | 66.00 185 | 52.77 195 | 59.48 177 | 54.35 203 | 67.14 187 | 83.37 179 | 86.23 149 | 94.47 109 | 93.10 93 |
|
WR-MVS_H | | | 75.84 183 | 76.93 169 | 74.57 188 | 82.86 181 | 89.50 141 | 78.34 191 | 79.36 132 | 66.90 180 | 52.51 196 | 60.20 173 | 59.71 176 | 59.73 198 | 83.61 177 | 85.77 157 | 94.65 98 | 92.84 99 |
|
LTVRE_ROB | | 74.41 16 | 75.78 184 | 74.72 190 | 77.02 169 | 85.88 138 | 89.22 145 | 82.44 165 | 77.17 152 | 50.57 214 | 45.45 208 | 65.44 144 | 52.29 207 | 81.25 94 | 85.50 157 | 87.42 129 | 89.94 184 | 92.62 107 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
gg-mvs-nofinetune | | | 75.64 185 | 77.26 164 | 73.76 189 | 87.92 118 | 92.20 102 | 87.32 114 | 64.67 207 | 51.92 213 | 35.35 217 | 46.44 205 | 77.05 99 | 71.97 169 | 92.64 54 | 91.02 64 | 95.34 66 | 89.53 150 |
|
FMVSNet5 | | | 75.50 186 | 76.07 176 | 74.83 184 | 76.16 206 | 81.19 201 | 81.34 173 | 70.21 186 | 73.20 153 | 61.59 171 | 58.97 180 | 68.33 142 | 68.50 180 | 85.87 152 | 85.85 156 | 91.18 175 | 79.11 202 |
|
DTE-MVSNet | | | 75.14 187 | 75.44 186 | 74.80 185 | 83.18 174 | 87.19 166 | 78.25 193 | 80.11 121 | 66.05 184 | 48.31 204 | 60.88 168 | 54.67 200 | 64.54 193 | 82.57 184 | 86.17 150 | 94.43 112 | 90.53 145 |
|
pmmvs6 | | | 74.83 188 | 72.89 195 | 77.09 167 | 82.11 188 | 87.50 163 | 80.88 179 | 76.97 154 | 52.79 212 | 61.91 168 | 46.66 204 | 60.49 170 | 69.28 178 | 86.74 139 | 85.46 161 | 91.39 169 | 90.56 144 |
|
MIMVSNet | | | 74.69 189 | 75.60 184 | 73.62 190 | 76.02 208 | 85.31 181 | 81.21 177 | 67.43 196 | 71.02 161 | 59.07 185 | 54.48 191 | 64.07 152 | 66.14 191 | 86.52 144 | 86.64 141 | 91.83 165 | 81.17 196 |
|
ADS-MVSNet | | | 74.53 190 | 75.69 183 | 73.17 192 | 81.57 193 | 80.71 203 | 79.27 187 | 63.03 209 | 79.27 111 | 59.94 181 | 67.86 130 | 68.32 143 | 71.08 173 | 77.33 202 | 76.83 200 | 84.12 209 | 79.53 200 |
|
pmmvs-eth3d | | | 74.32 191 | 71.96 197 | 77.08 168 | 77.33 204 | 82.71 194 | 78.41 190 | 76.02 163 | 66.65 181 | 65.98 138 | 54.23 194 | 49.02 212 | 73.14 167 | 82.37 186 | 82.69 182 | 91.61 167 | 86.05 177 |
|
PM-MVS | | | 74.17 192 | 73.10 193 | 75.41 180 | 76.07 207 | 82.53 196 | 77.56 194 | 71.69 179 | 71.04 160 | 61.92 167 | 61.23 165 | 47.30 213 | 74.82 156 | 81.78 188 | 79.80 189 | 90.42 179 | 88.05 162 |
|
CMPMVS |  | 56.49 17 | 73.84 193 | 71.73 199 | 76.31 176 | 85.20 150 | 85.67 177 | 75.80 197 | 73.23 173 | 62.26 197 | 65.40 142 | 53.40 196 | 59.70 177 | 71.77 171 | 80.25 193 | 79.56 191 | 86.45 201 | 81.28 195 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
MDTV_nov1_ep13_2view | | | 73.21 194 | 72.91 194 | 73.56 191 | 80.01 197 | 84.28 188 | 78.62 189 | 66.43 201 | 68.64 174 | 59.12 184 | 60.39 172 | 59.69 178 | 69.81 177 | 78.82 200 | 77.43 199 | 87.36 195 | 81.11 197 |
|
pmnet_mix02 | | | 71.95 195 | 71.83 198 | 72.10 194 | 81.40 194 | 80.63 204 | 73.78 201 | 72.85 176 | 70.90 162 | 54.89 191 | 62.17 160 | 57.42 190 | 62.92 195 | 76.80 203 | 73.98 207 | 86.74 200 | 80.87 198 |
|
testgi | | | 71.92 196 | 74.20 191 | 69.27 199 | 84.58 159 | 83.06 190 | 73.40 202 | 74.39 169 | 64.04 194 | 46.17 207 | 68.90 126 | 57.15 191 | 48.89 208 | 84.07 175 | 83.08 179 | 88.18 192 | 79.09 203 |
|
Anonymous20231206 | | | 70.80 197 | 70.59 201 | 71.04 196 | 81.60 192 | 82.49 197 | 74.64 200 | 75.87 164 | 64.17 193 | 49.27 203 | 44.85 208 | 53.59 206 | 54.68 203 | 83.07 180 | 82.34 184 | 90.17 181 | 83.65 186 |
|
gm-plane-assit | | | 70.29 198 | 70.65 200 | 69.88 198 | 85.03 153 | 78.50 208 | 58.41 215 | 65.47 203 | 50.39 215 | 40.88 213 | 49.60 201 | 50.11 209 | 75.14 153 | 91.43 70 | 89.78 93 | 94.32 116 | 84.73 184 |
|
EU-MVSNet | | | 69.98 199 | 72.30 196 | 67.28 202 | 75.67 209 | 79.39 206 | 73.12 203 | 69.94 188 | 63.59 195 | 42.80 211 | 62.93 158 | 56.71 194 | 55.07 202 | 79.13 199 | 78.55 195 | 87.06 198 | 85.82 179 |
|
MVS-HIRNet | | | 68.83 200 | 66.39 204 | 71.68 195 | 77.58 203 | 75.52 210 | 66.45 210 | 65.05 205 | 62.16 198 | 62.84 158 | 44.76 209 | 56.60 195 | 71.96 170 | 78.04 201 | 75.06 205 | 86.18 203 | 72.56 209 |
|
test20.03 | | | 68.31 201 | 70.05 202 | 66.28 204 | 82.41 186 | 80.84 202 | 67.35 209 | 76.11 162 | 58.44 207 | 40.80 214 | 53.77 195 | 54.54 201 | 42.28 211 | 83.07 180 | 81.96 187 | 88.73 190 | 77.76 205 |
|
N_pmnet | | | 66.85 202 | 66.63 203 | 67.11 203 | 78.73 200 | 74.66 211 | 70.53 206 | 71.07 181 | 66.46 183 | 46.54 206 | 51.68 200 | 51.91 208 | 55.48 201 | 74.68 207 | 72.38 208 | 80.29 212 | 74.65 208 |
|
MDA-MVSNet-bldmvs | | | 66.22 203 | 64.49 206 | 68.24 200 | 61.67 214 | 82.11 200 | 70.07 207 | 76.16 161 | 59.14 206 | 47.94 205 | 54.35 193 | 35.82 220 | 67.33 186 | 64.94 213 | 75.68 202 | 86.30 202 | 79.36 201 |
|
MIMVSNet1 | | | 65.00 204 | 66.24 205 | 63.55 206 | 58.41 217 | 80.01 205 | 69.00 208 | 74.03 171 | 55.81 210 | 41.88 212 | 36.81 213 | 49.48 211 | 47.89 209 | 81.32 189 | 82.40 183 | 90.08 183 | 77.88 204 |
|
new-patchmatchnet | | | 63.80 205 | 63.31 207 | 64.37 205 | 76.49 205 | 75.99 209 | 63.73 212 | 70.99 182 | 57.27 208 | 43.08 210 | 45.86 206 | 43.80 214 | 45.13 210 | 73.20 208 | 70.68 211 | 86.80 199 | 76.34 207 |
|
FPMVS | | | 63.63 206 | 60.08 211 | 67.78 201 | 80.01 197 | 71.50 213 | 72.88 204 | 69.41 191 | 61.82 199 | 53.11 194 | 45.12 207 | 42.11 217 | 50.86 206 | 66.69 211 | 63.84 212 | 80.41 211 | 69.46 211 |
|
pmmvs3 | | | 61.89 207 | 61.74 209 | 62.06 207 | 64.30 213 | 70.83 214 | 64.22 211 | 52.14 215 | 48.78 216 | 44.47 209 | 41.67 211 | 41.70 218 | 63.03 194 | 76.06 205 | 76.02 201 | 84.18 208 | 77.14 206 |
|
new_pmnet | | | 59.28 208 | 61.47 210 | 56.73 209 | 61.66 215 | 68.29 215 | 59.57 214 | 54.91 212 | 60.83 201 | 34.38 218 | 44.66 210 | 43.65 215 | 49.90 207 | 71.66 209 | 71.56 210 | 79.94 213 | 69.67 210 |
|
GG-mvs-BLEND | | | 57.56 209 | 82.61 109 | 28.34 216 | 0.22 224 | 90.10 124 | 79.37 186 | 0.14 222 | 79.56 107 | 0.40 225 | 71.25 110 | 83.40 61 | 0.30 222 | 86.27 147 | 83.87 173 | 89.59 185 | 83.83 185 |
|
PMVS |  | 50.48 18 | 55.81 210 | 51.93 212 | 60.33 208 | 72.90 211 | 49.34 217 | 48.78 216 | 69.51 190 | 43.49 217 | 54.25 192 | 36.26 214 | 41.04 219 | 39.71 213 | 65.07 212 | 60.70 213 | 76.85 214 | 67.58 212 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
Gipuma |  | | 49.17 211 | 47.05 214 | 51.65 210 | 59.67 216 | 48.39 218 | 41.98 219 | 63.47 208 | 55.64 211 | 33.33 219 | 14.90 217 | 13.78 224 | 41.34 212 | 69.31 210 | 72.30 209 | 70.11 215 | 55.00 216 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
test_method | | | 41.78 212 | 48.10 213 | 34.42 214 | 10.74 223 | 19.78 224 | 44.64 218 | 17.73 219 | 59.83 203 | 38.67 216 | 35.82 215 | 54.41 202 | 34.94 214 | 62.87 214 | 43.13 217 | 59.81 217 | 60.82 214 |
|
PMMVS2 | | | 41.68 213 | 44.74 215 | 38.10 211 | 46.97 220 | 52.32 216 | 40.63 220 | 48.08 216 | 35.51 218 | 7.36 224 | 26.86 216 | 24.64 222 | 16.72 218 | 55.24 216 | 59.03 214 | 68.85 216 | 59.59 215 |
|
E-PMN | | | 31.40 214 | 26.80 217 | 36.78 212 | 51.39 219 | 29.96 221 | 20.20 222 | 54.17 213 | 25.93 220 | 12.75 222 | 14.73 218 | 8.58 226 | 34.10 216 | 27.36 219 | 37.83 218 | 48.07 220 | 43.18 218 |
|
MVE |  | 30.17 19 | 30.88 215 | 33.52 216 | 27.80 217 | 23.78 222 | 39.16 220 | 18.69 224 | 46.90 217 | 21.88 221 | 15.39 221 | 14.37 219 | 7.31 227 | 24.41 217 | 41.63 218 | 56.22 215 | 37.64 222 | 54.07 217 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
EMVS | | | 30.49 216 | 25.44 218 | 36.39 213 | 51.47 218 | 29.89 222 | 20.17 223 | 54.00 214 | 26.49 219 | 12.02 223 | 13.94 220 | 8.84 225 | 34.37 215 | 25.04 220 | 34.37 219 | 46.29 221 | 39.53 219 |
|
testmvs | | | 1.03 217 | 1.63 219 | 0.34 218 | 0.09 225 | 0.35 225 | 0.61 226 | 0.16 221 | 1.49 222 | 0.10 226 | 3.15 221 | 0.15 228 | 0.86 221 | 1.32 221 | 1.18 220 | 0.20 223 | 3.76 221 |
|
test123 | | | 0.87 218 | 1.40 220 | 0.25 219 | 0.03 226 | 0.25 226 | 0.35 227 | 0.08 223 | 1.21 223 | 0.05 227 | 2.84 222 | 0.03 229 | 0.89 220 | 0.43 222 | 1.16 221 | 0.13 224 | 3.87 220 |
|
uanet_test | | | 0.00 219 | 0.00 221 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 224 | 0.00 228 | 0.00 223 | 0.00 230 | 0.00 223 | 0.00 223 | 0.00 222 | 0.00 225 | 0.00 222 |
|
sosnet-low-res | | | 0.00 219 | 0.00 221 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 224 | 0.00 228 | 0.00 223 | 0.00 230 | 0.00 223 | 0.00 223 | 0.00 222 | 0.00 225 | 0.00 222 |
|
sosnet | | | 0.00 219 | 0.00 221 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 224 | 0.00 228 | 0.00 223 | 0.00 230 | 0.00 223 | 0.00 223 | 0.00 222 | 0.00 225 | 0.00 222 |
|
RE-MVS-def | | | | | | | | | | | 56.08 190 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 92.16 16 | | | | | |
|
SR-MVS | | | | | | 96.58 25 | | | 90.99 21 | | | | 92.40 13 | | | | | |
|
Anonymous202405211 | | | | 82.75 108 | | 89.58 105 | 92.97 91 | 89.04 91 | 84.13 69 | 78.72 114 | | 57.18 186 | 76.64 100 | 83.13 82 | 89.55 105 | 89.92 90 | 93.38 147 | 94.28 76 |
|
our_test_3 | | | | | | 81.81 191 | 83.96 189 | 76.61 195 | | | | | | | | | | |
|
ambc | | | | 61.92 208 | | 70.98 212 | 73.54 212 | 63.64 213 | | 60.06 202 | 52.23 198 | 38.44 212 | 19.17 223 | 57.12 199 | 82.33 187 | 75.03 206 | 83.21 210 | 84.89 181 |
|
MTAPA | | | | | | | | | | | 92.97 2 | | 91.03 22 | | | | | |
|
MTMP | | | | | | | | | | | 93.14 1 | | 90.21 29 | | | | | |
|
Patchmatch-RL test | | | | | | | | 8.55 225 | | | | | | | | | | |
|
tmp_tt | | | | | 32.73 215 | 43.96 221 | 21.15 223 | 26.71 221 | 8.99 220 | 65.67 188 | 51.39 200 | 56.01 189 | 42.64 216 | 11.76 219 | 56.60 215 | 50.81 216 | 53.55 219 | |
|
XVS | | | | | | 93.11 59 | 96.70 25 | 91.91 52 | | | 83.95 48 | | 88.82 39 | | | | 95.79 40 | |
|
X-MVStestdata | | | | | | 93.11 59 | 96.70 25 | 91.91 52 | | | 83.95 48 | | 88.82 39 | | | | 95.79 40 | |
|
mPP-MVS | | | | | | 97.06 12 | | | | | | | 88.08 44 | | | | | |
|
NP-MVS | | | | | | | | | | 87.47 52 | | | | | | | | |
|
Patchmtry | | | | | | | 85.54 180 | 82.30 167 | 68.23 193 | | 65.37 143 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 48.31 219 | 48.03 217 | 26.08 218 | 56.42 209 | 25.77 220 | 47.51 203 | 31.31 221 | 51.30 205 | 48.49 217 | | 53.61 218 | 61.52 213 |
|