This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
APDe-MVS99.66 199.57 399.92 199.77 5299.89 499.75 3999.56 5699.02 2599.88 1099.85 4199.18 1099.96 2199.22 5299.92 1399.90 3
SED-MVS99.61 299.52 699.88 599.84 3099.90 299.60 8999.48 14199.08 2099.91 699.81 7599.20 799.96 2198.91 8299.85 5499.79 59
DVP-MVS++99.59 399.50 899.88 599.51 15599.88 899.87 999.51 10298.99 3299.88 1099.81 7599.27 599.96 2198.85 9599.80 8299.81 46
TSAR-MVS + MP.99.58 499.50 899.81 3699.91 199.66 5399.63 7699.39 20998.91 4599.78 3499.85 4199.36 299.94 5698.84 9899.88 3699.82 39
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EI-MVSNet-UG-set99.58 499.57 399.64 6499.78 4699.14 11799.60 8999.45 17999.01 2799.90 899.83 5598.98 2399.93 6999.59 1099.95 899.86 18
EI-MVSNet-Vis-set99.58 499.56 599.64 6499.78 4699.15 11699.61 8899.45 17999.01 2799.89 999.82 6299.01 1899.92 7999.56 1399.95 899.85 21
DVP-MVScopyleft99.57 799.47 1299.88 599.85 2499.89 499.57 10799.37 22399.10 1599.81 2499.80 8898.94 2999.96 2198.93 7999.86 4799.81 46
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SteuartSystems-ACMMP99.54 899.42 1599.87 1199.82 3699.81 2599.59 9599.51 10298.62 6699.79 2999.83 5599.28 499.97 1398.48 14899.90 2499.84 25
Skip Steuart: Steuart Systems R&D Blog.
XVS99.53 999.42 1599.87 1199.85 2499.83 1699.69 5199.68 1998.98 3599.37 14399.74 12698.81 4499.94 5698.79 10699.86 4799.84 25
MTAPA99.52 1099.39 1999.89 499.90 499.86 1399.66 6499.47 15998.79 5799.68 5999.81 7598.43 7899.97 1398.88 8599.90 2499.83 34
HPM-MVS_fast99.51 1199.40 1899.85 2599.91 199.79 3099.76 3699.56 5697.72 16799.76 4299.75 12199.13 1299.92 7999.07 6699.92 1399.85 21
mvsany_test199.50 1299.46 1499.62 6999.61 12899.09 12298.94 30899.48 14199.10 1599.96 599.91 1198.85 3999.96 2199.72 499.58 12299.82 39
CS-MVS99.50 1299.48 1099.54 8299.76 5599.42 8599.90 199.55 6498.56 7099.78 3499.70 14198.65 6599.79 16599.65 899.78 8999.41 173
CS-MVS-test99.49 1499.48 1099.54 8299.78 4699.30 9699.89 299.58 4898.56 7099.73 4799.69 15198.55 7099.82 15199.69 599.85 5499.48 158
HFP-MVS99.49 1499.37 2299.86 2099.87 1599.80 2799.66 6499.67 2298.15 11699.68 5999.69 15199.06 1699.96 2198.69 11899.87 3999.84 25
ACMMPR99.49 1499.36 2499.86 2099.87 1599.79 3099.66 6499.67 2298.15 11699.67 6399.69 15198.95 2799.96 2198.69 11899.87 3999.84 25
DeepC-MVS_fast98.69 199.49 1499.39 1999.77 4599.63 11899.59 6299.36 20899.46 16899.07 2299.79 2999.82 6298.85 3999.92 7998.68 12099.87 3999.82 39
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
region2R99.48 1899.35 2699.87 1199.88 1199.80 2799.65 7099.66 2698.13 11999.66 6899.68 15798.96 2499.96 2198.62 12699.87 3999.84 25
APD-MVS_3200maxsize99.48 1899.35 2699.85 2599.76 5599.83 1699.63 7699.54 7298.36 8999.79 2999.82 6298.86 3899.95 4798.62 12699.81 7899.78 65
DELS-MVS99.48 1899.42 1599.65 5999.72 8199.40 8899.05 28099.66 2699.14 1099.57 9699.80 8898.46 7699.94 5699.57 1299.84 6299.60 128
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ZNCC-MVS99.47 2199.33 3099.87 1199.87 1599.81 2599.64 7299.67 2298.08 12999.55 10199.64 17598.91 3499.96 2198.72 11399.90 2499.82 39
ACMMP_NAP99.47 2199.34 2899.88 599.87 1599.86 1399.47 16399.48 14198.05 13599.76 4299.86 3698.82 4399.93 6998.82 10599.91 1799.84 25
DPE-MVScopyleft99.46 2399.32 3299.91 299.78 4699.88 899.36 20899.51 10298.73 6099.88 1099.84 5198.72 5899.96 2198.16 17599.87 3999.88 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSLP-MVS++99.46 2399.47 1299.44 11299.60 13399.16 11199.41 18599.71 1398.98 3599.45 11799.78 10599.19 999.54 23399.28 4699.84 6299.63 122
SR-MVS-dyc-post99.45 2599.31 3899.85 2599.76 5599.82 2299.63 7699.52 8898.38 8599.76 4299.82 6298.53 7199.95 4798.61 12999.81 7899.77 67
PGM-MVS99.45 2599.31 3899.86 2099.87 1599.78 3699.58 10399.65 3197.84 15399.71 5399.80 8899.12 1399.97 1398.33 16299.87 3999.83 34
CP-MVS99.45 2599.32 3299.85 2599.83 3499.75 3999.69 5199.52 8898.07 13099.53 10499.63 18198.93 3399.97 1398.74 11099.91 1799.83 34
ACMMPcopyleft99.45 2599.32 3299.82 3399.89 899.67 5199.62 8299.69 1898.12 12099.63 7999.84 5198.73 5799.96 2198.55 14499.83 7199.81 46
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SMA-MVScopyleft99.44 2999.30 4099.85 2599.73 7799.83 1699.56 11399.47 15997.45 19499.78 3499.82 6299.18 1099.91 8998.79 10699.89 3399.81 46
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
mPP-MVS99.44 2999.30 4099.86 2099.88 1199.79 3099.69 5199.48 14198.12 12099.50 10999.75 12198.78 4799.97 1398.57 13899.89 3399.83 34
DROMVSNet99.44 2999.39 1999.58 7599.56 14399.49 7899.88 499.58 4898.38 8599.73 4799.69 15198.20 9099.70 20199.64 999.82 7599.54 141
SR-MVS99.43 3299.29 4499.86 2099.75 6399.83 1699.59 9599.62 3398.21 10799.73 4799.79 9998.68 6199.96 2198.44 15399.77 9299.79 59
MCST-MVS99.43 3299.30 4099.82 3399.79 4499.74 4199.29 22799.40 20698.79 5799.52 10699.62 18698.91 3499.90 10098.64 12499.75 9799.82 39
MSP-MVS99.42 3499.27 4899.88 599.89 899.80 2799.67 6099.50 12198.70 6299.77 3799.49 23098.21 8999.95 4798.46 15299.77 9299.88 11
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
UA-Net99.42 3499.29 4499.80 3899.62 12499.55 6899.50 14499.70 1598.79 5799.77 3799.96 197.45 10999.96 2198.92 8199.90 2499.89 5
HPM-MVScopyleft99.42 3499.28 4699.83 3299.90 499.72 4299.81 2099.54 7297.59 17899.68 5999.63 18198.91 3499.94 5698.58 13599.91 1799.84 25
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CNVR-MVS99.42 3499.30 4099.78 4399.62 12499.71 4499.26 24299.52 8898.82 5299.39 13899.71 13798.96 2499.85 12898.59 13499.80 8299.77 67
SD-MVS99.41 3899.52 699.05 16199.74 7099.68 4899.46 16699.52 8899.11 1499.88 1099.91 1199.43 197.70 35898.72 11399.93 1299.77 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS_111021_LR99.41 3899.33 3099.65 5999.77 5299.51 7798.94 30899.85 698.82 5299.65 7499.74 12698.51 7399.80 16298.83 10199.89 3399.64 119
MVS_111021_HR99.41 3899.32 3299.66 5599.72 8199.47 8198.95 30699.85 698.82 5299.54 10299.73 13298.51 7399.74 17998.91 8299.88 3699.77 67
GST-MVS99.40 4199.24 5399.85 2599.86 2099.79 3099.60 8999.67 2297.97 14199.63 7999.68 15798.52 7299.95 4798.38 15699.86 4799.81 46
HPM-MVS++copyleft99.39 4299.23 5599.87 1199.75 6399.84 1599.43 17699.51 10298.68 6499.27 16799.53 21898.64 6699.96 2198.44 15399.80 8299.79 59
SF-MVS99.38 4399.24 5399.79 4199.79 4499.68 4899.57 10799.54 7297.82 15899.71 5399.80 8898.95 2799.93 6998.19 17199.84 6299.74 77
MP-MVS-pluss99.37 4499.20 5799.88 599.90 499.87 1299.30 22399.52 8897.18 21899.60 8999.79 9998.79 4699.95 4798.83 10199.91 1799.83 34
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + GP.99.36 4599.36 2499.36 12099.67 9998.61 18399.07 27599.33 24099.00 3099.82 2399.81 7599.06 1699.84 13499.09 6399.42 13299.65 112
PVSNet_Blended_VisFu99.36 4599.28 4699.61 7099.86 2099.07 12799.47 16399.93 297.66 17499.71 5399.86 3697.73 10499.96 2199.47 2699.82 7599.79 59
NCCC99.34 4799.19 5899.79 4199.61 12899.65 5699.30 22399.48 14198.86 4799.21 18199.63 18198.72 5899.90 10098.25 16799.63 11899.80 55
MP-MVScopyleft99.33 4899.15 6199.87 1199.88 1199.82 2299.66 6499.46 16898.09 12599.48 11399.74 12698.29 8699.96 2197.93 19199.87 3999.82 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PS-MVSNAJ99.32 4999.32 3299.30 13299.57 13998.94 15198.97 30299.46 16898.92 4499.71 5399.24 29399.01 1899.98 799.35 3499.66 11398.97 214
CSCG99.32 4999.32 3299.32 12799.85 2498.29 20899.71 4899.66 2698.11 12299.41 13099.80 8898.37 8399.96 2198.99 7299.96 799.72 88
PHI-MVS99.30 5199.17 6099.70 5399.56 14399.52 7699.58 10399.80 897.12 22499.62 8399.73 13298.58 6799.90 10098.61 12999.91 1799.68 102
DeepC-MVS98.35 299.30 5199.19 5899.64 6499.82 3699.23 10499.62 8299.55 6498.94 4199.63 7999.95 295.82 16699.94 5699.37 3399.97 599.73 82
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
xiu_mvs_v1_base_debu99.29 5399.27 4899.34 12199.63 11898.97 13999.12 26599.51 10298.86 4799.84 1799.47 23898.18 9199.99 199.50 1999.31 14299.08 199
xiu_mvs_v1_base99.29 5399.27 4899.34 12199.63 11898.97 13999.12 26599.51 10298.86 4799.84 1799.47 23898.18 9199.99 199.50 1999.31 14299.08 199
xiu_mvs_v1_base_debi99.29 5399.27 4899.34 12199.63 11898.97 13999.12 26599.51 10298.86 4799.84 1799.47 23898.18 9199.99 199.50 1999.31 14299.08 199
APD-MVScopyleft99.27 5699.08 6999.84 3199.75 6399.79 3099.50 14499.50 12197.16 22099.77 3799.82 6298.78 4799.94 5697.56 22899.86 4799.80 55
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
LS3D99.27 5699.12 6499.74 4999.18 24499.75 3999.56 11399.57 5198.45 7999.49 11299.85 4197.77 10399.94 5698.33 16299.84 6299.52 147
patch_mono-299.26 5899.62 198.16 27199.81 4094.59 33299.52 13399.64 3299.33 299.73 4799.90 1599.00 2299.99 199.69 599.98 299.89 5
ETV-MVS99.26 5899.21 5699.40 11599.46 17699.30 9699.56 11399.52 8898.52 7499.44 12299.27 28998.41 8199.86 12299.10 6299.59 12199.04 206
xiu_mvs_v2_base99.26 5899.25 5299.29 13599.53 14998.91 15599.02 28999.45 17998.80 5699.71 5399.26 29198.94 2999.98 799.34 3899.23 14798.98 213
CANet99.25 6199.14 6299.59 7299.41 18799.16 11199.35 21399.57 5198.82 5299.51 10899.61 19096.46 14299.95 4799.59 1099.98 299.65 112
3Dnovator97.25 999.24 6299.05 7199.81 3699.12 25799.66 5399.84 1399.74 1099.09 1998.92 23199.90 1595.94 16099.98 798.95 7699.92 1399.79 59
dcpmvs_299.23 6399.58 298.16 27199.83 3494.68 33199.76 3699.52 8899.07 2299.98 399.88 2598.56 6999.93 6999.67 799.98 299.87 16
CHOSEN 1792x268899.19 6499.10 6699.45 10899.89 898.52 19399.39 19799.94 198.73 6099.11 19999.89 1995.50 17699.94 5699.50 1999.97 599.89 5
F-COLMAP99.19 6499.04 7399.64 6499.78 4699.27 10099.42 18399.54 7297.29 20999.41 13099.59 19598.42 8099.93 6998.19 17199.69 10899.73 82
EIA-MVS99.18 6699.09 6899.45 10899.49 16699.18 10899.67 6099.53 8397.66 17499.40 13599.44 24498.10 9499.81 15698.94 7799.62 11999.35 179
3Dnovator+97.12 1399.18 6698.97 8799.82 3399.17 25099.68 4899.81 2099.51 10299.20 798.72 25799.89 1995.68 17299.97 1398.86 9399.86 4799.81 46
MVSFormer99.17 6899.12 6499.29 13599.51 15598.94 15199.88 499.46 16897.55 18399.80 2799.65 16997.39 11099.28 27699.03 6899.85 5499.65 112
sss99.17 6899.05 7199.53 9099.62 12498.97 13999.36 20899.62 3397.83 15499.67 6399.65 16997.37 11399.95 4799.19 5499.19 15099.68 102
DP-MVS99.16 7098.95 9199.78 4399.77 5299.53 7399.41 18599.50 12197.03 23499.04 21399.88 2597.39 11099.92 7998.66 12299.90 2499.87 16
casdiffmvs_mvgpermissive99.15 7199.02 7899.55 8199.66 10799.09 12299.64 7299.56 5698.26 9999.45 11799.87 3196.03 15599.81 15699.54 1499.15 15499.73 82
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.15 7199.02 7899.53 9099.66 10799.14 11799.72 4699.48 14198.35 9099.42 12699.84 5196.07 15399.79 16599.51 1899.14 15599.67 105
diffmvspermissive99.14 7399.02 7899.51 9899.61 12898.96 14399.28 22999.49 12998.46 7899.72 5299.71 13796.50 14199.88 11599.31 4199.11 15799.67 105
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CNLPA99.14 7398.99 8399.59 7299.58 13799.41 8799.16 25799.44 18798.45 7999.19 18799.49 23098.08 9599.89 11097.73 21199.75 9799.48 158
CDPH-MVS99.13 7598.91 9599.80 3899.75 6399.71 4499.15 26099.41 19896.60 26599.60 8999.55 20998.83 4299.90 10097.48 23599.83 7199.78 65
casdiffmvspermissive99.13 7598.98 8699.56 7999.65 11399.16 11199.56 11399.50 12198.33 9399.41 13099.86 3695.92 16199.83 14599.45 2899.16 15199.70 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
jason99.13 7599.03 7599.45 10899.46 17698.87 15899.12 26599.26 26798.03 13899.79 2999.65 16997.02 12499.85 12899.02 7099.90 2499.65 112
jason: jason.
lupinMVS99.13 7599.01 8299.46 10799.51 15598.94 15199.05 28099.16 28297.86 14999.80 2799.56 20697.39 11099.86 12298.94 7799.85 5499.58 136
EPP-MVSNet99.13 7598.99 8399.53 9099.65 11399.06 12899.81 2099.33 24097.43 19799.60 8999.88 2597.14 11899.84 13499.13 5998.94 17199.69 98
MG-MVS99.13 7599.02 7899.45 10899.57 13998.63 18099.07 27599.34 23398.99 3299.61 8699.82 6297.98 9899.87 11997.00 26499.80 8299.85 21
CHOSEN 280x42099.12 8199.13 6399.08 15699.66 10797.89 22998.43 34899.71 1398.88 4699.62 8399.76 11896.63 13799.70 20199.46 2799.99 199.66 108
DP-MVS Recon99.12 8198.95 9199.65 5999.74 7099.70 4699.27 23499.57 5196.40 28299.42 12699.68 15798.75 5499.80 16297.98 18899.72 10399.44 169
Vis-MVSNetpermissive99.12 8198.97 8799.56 7999.78 4699.10 12199.68 5799.66 2698.49 7699.86 1599.87 3194.77 20699.84 13499.19 5499.41 13399.74 77
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAMVS99.12 8199.08 6999.24 14299.46 17698.55 18799.51 13899.46 16898.09 12599.45 11799.82 6298.34 8499.51 23498.70 11598.93 17299.67 105
VNet99.11 8598.90 9699.73 5199.52 15399.56 6699.41 18599.39 20999.01 2799.74 4699.78 10595.56 17499.92 7999.52 1798.18 21299.72 88
CPTT-MVS99.11 8598.90 9699.74 4999.80 4399.46 8299.59 9599.49 12997.03 23499.63 7999.69 15197.27 11699.96 2197.82 20199.84 6299.81 46
HyFIR lowres test99.11 8598.92 9399.65 5999.90 499.37 8999.02 28999.91 397.67 17399.59 9299.75 12195.90 16399.73 18599.53 1599.02 16899.86 18
MVS_Test99.10 8898.97 8799.48 10299.49 16699.14 11799.67 6099.34 23397.31 20799.58 9399.76 11897.65 10699.82 15198.87 8899.07 16399.46 166
CDS-MVSNet99.09 8999.03 7599.25 14099.42 18498.73 17299.45 16799.46 16898.11 12299.46 11699.77 11298.01 9799.37 25798.70 11598.92 17499.66 108
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PVSNet_Blended99.08 9098.97 8799.42 11399.76 5598.79 16998.78 32499.91 396.74 25199.67 6399.49 23097.53 10799.88 11598.98 7399.85 5499.60 128
OMC-MVS99.08 9099.04 7399.20 14699.67 9998.22 21199.28 22999.52 8898.07 13099.66 6899.81 7597.79 10299.78 17097.79 20399.81 7899.60 128
WTY-MVS99.06 9298.88 9999.61 7099.62 12499.16 11199.37 20499.56 5698.04 13699.53 10499.62 18696.84 13099.94 5698.85 9598.49 19899.72 88
IS-MVSNet99.05 9398.87 10099.57 7799.73 7799.32 9299.75 3999.20 27798.02 13999.56 9799.86 3696.54 14099.67 20898.09 17899.13 15699.73 82
PAPM_NR99.04 9498.84 10599.66 5599.74 7099.44 8499.39 19799.38 21597.70 16999.28 16399.28 28698.34 8499.85 12896.96 26899.45 13099.69 98
API-MVS99.04 9499.03 7599.06 15999.40 19299.31 9599.55 12299.56 5698.54 7299.33 15499.39 25998.76 5199.78 17096.98 26699.78 8998.07 334
mvs_anonymous99.03 9698.99 8399.16 15099.38 19698.52 19399.51 13899.38 21597.79 15999.38 14199.81 7597.30 11499.45 23899.35 3498.99 16999.51 153
train_agg99.02 9798.77 11299.77 4599.67 9999.65 5699.05 28099.41 19896.28 28698.95 22699.49 23098.76 5199.91 8997.63 21999.72 10399.75 73
canonicalmvs99.02 9798.86 10399.51 9899.42 18499.32 9299.80 2499.48 14198.63 6599.31 15798.81 33097.09 12199.75 17899.27 4997.90 22199.47 164
PLCcopyleft97.94 499.02 9798.85 10499.53 9099.66 10799.01 13499.24 24699.52 8896.85 24699.27 16799.48 23598.25 8899.91 8997.76 20799.62 11999.65 112
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
AdaColmapbinary99.01 10098.80 10899.66 5599.56 14399.54 7099.18 25599.70 1598.18 11499.35 15099.63 18196.32 14799.90 10097.48 23599.77 9299.55 139
1112_ss98.98 10198.77 11299.59 7299.68 9899.02 13299.25 24499.48 14197.23 21599.13 19599.58 19996.93 12999.90 10098.87 8898.78 18599.84 25
MSDG98.98 10198.80 10899.53 9099.76 5599.19 10698.75 32799.55 6497.25 21299.47 11499.77 11297.82 10199.87 11996.93 27199.90 2499.54 141
CANet_DTU98.97 10398.87 10099.25 14099.33 20798.42 20599.08 27499.30 25899.16 899.43 12399.75 12195.27 18499.97 1398.56 14199.95 899.36 178
DPM-MVS98.95 10498.71 11799.66 5599.63 11899.55 6898.64 33799.10 28897.93 14499.42 12699.55 20998.67 6399.80 16295.80 30199.68 11199.61 126
114514_t98.93 10598.67 12199.72 5299.85 2499.53 7399.62 8299.59 4392.65 34799.71 5399.78 10598.06 9699.90 10098.84 9899.91 1799.74 77
PS-MVSNAJss98.92 10698.92 9398.90 18798.78 30798.53 18999.78 3199.54 7298.07 13099.00 22099.76 11899.01 1899.37 25799.13 5997.23 25998.81 223
mvsmamba98.92 10698.87 10099.08 15699.07 26799.16 11199.88 499.51 10298.15 11699.40 13599.89 1997.12 11999.33 26799.38 3197.40 25398.73 238
Test_1112_low_res98.89 10898.66 12499.57 7799.69 9498.95 14899.03 28699.47 15996.98 23699.15 19399.23 29496.77 13399.89 11098.83 10198.78 18599.86 18
test_fmvs198.88 10998.79 11199.16 15099.69 9497.61 24299.55 12299.49 12999.32 399.98 399.91 1191.41 29899.96 2199.82 299.92 1399.90 3
AllTest98.87 11098.72 11599.31 12899.86 2098.48 19999.56 11399.61 3597.85 15199.36 14799.85 4195.95 15899.85 12896.66 28499.83 7199.59 132
UGNet98.87 11098.69 11999.40 11599.22 23598.72 17399.44 17299.68 1999.24 699.18 19099.42 24892.74 26299.96 2199.34 3899.94 1199.53 146
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Vis-MVSNet (Re-imp)98.87 11098.72 11599.31 12899.71 8698.88 15799.80 2499.44 18797.91 14699.36 14799.78 10595.49 17799.43 24797.91 19299.11 15799.62 124
test_yl98.86 11398.63 12799.54 8299.49 16699.18 10899.50 14499.07 29498.22 10599.61 8699.51 22495.37 18099.84 13498.60 13298.33 20199.59 132
DCV-MVSNet98.86 11398.63 12799.54 8299.49 16699.18 10899.50 14499.07 29498.22 10599.61 8699.51 22495.37 18099.84 13498.60 13298.33 20199.59 132
EPNet98.86 11398.71 11799.30 13297.20 35598.18 21299.62 8298.91 31299.28 598.63 27599.81 7595.96 15799.99 199.24 5199.72 10399.73 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_BlendedMVS98.86 11398.80 10899.03 16399.76 5598.79 16999.28 22999.91 397.42 19999.67 6399.37 26397.53 10799.88 11598.98 7397.29 25798.42 315
ab-mvs98.86 11398.63 12799.54 8299.64 11599.19 10699.44 17299.54 7297.77 16199.30 15999.81 7594.20 22899.93 6999.17 5798.82 18299.49 157
MAR-MVS98.86 11398.63 12799.54 8299.37 19899.66 5399.45 16799.54 7296.61 26399.01 21699.40 25597.09 12199.86 12297.68 21899.53 12699.10 194
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
COLMAP_ROBcopyleft97.56 698.86 11398.75 11499.17 14999.88 1198.53 18999.34 21699.59 4397.55 18398.70 26499.89 1995.83 16599.90 10098.10 17799.90 2499.08 199
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GeoE98.85 12098.62 13299.53 9099.61 12899.08 12599.80 2499.51 10297.10 22899.31 15799.78 10595.23 18899.77 17298.21 16999.03 16699.75 73
HY-MVS97.30 798.85 12098.64 12699.47 10599.42 18499.08 12599.62 8299.36 22497.39 20299.28 16399.68 15796.44 14499.92 7998.37 15898.22 20799.40 175
PVSNet96.02 1798.85 12098.84 10598.89 19099.73 7797.28 24998.32 35499.60 4097.86 14999.50 10999.57 20396.75 13499.86 12298.56 14199.70 10799.54 141
PatchMatch-RL98.84 12398.62 13299.52 9699.71 8699.28 9899.06 27899.77 997.74 16699.50 10999.53 21895.41 17899.84 13497.17 25799.64 11699.44 169
Effi-MVS+98.81 12498.59 13999.48 10299.46 17699.12 12098.08 36099.50 12197.50 19099.38 14199.41 25296.37 14699.81 15699.11 6198.54 19599.51 153
alignmvs98.81 12498.56 14299.58 7599.43 18299.42 8599.51 13898.96 30598.61 6799.35 15098.92 32794.78 20399.77 17299.35 3498.11 21799.54 141
DeepPCF-MVS98.18 398.81 12499.37 2297.12 31799.60 13391.75 35598.61 33899.44 18799.35 199.83 2299.85 4198.70 6099.81 15699.02 7099.91 1799.81 46
PMMVS98.80 12798.62 13299.34 12199.27 22498.70 17498.76 32699.31 25497.34 20499.21 18199.07 31097.20 11799.82 15198.56 14198.87 17799.52 147
Effi-MVS+-dtu98.78 12898.89 9898.47 24399.33 20796.91 27699.57 10799.30 25898.47 7799.41 13098.99 31996.78 13299.74 17998.73 11299.38 13498.74 236
FIs98.78 12898.63 12799.23 14499.18 24499.54 7099.83 1699.59 4398.28 9698.79 25199.81 7596.75 13499.37 25799.08 6596.38 27598.78 226
Fast-Effi-MVS+-dtu98.77 13098.83 10798.60 22399.41 18796.99 27099.52 13399.49 12998.11 12299.24 17399.34 27296.96 12899.79 16597.95 19099.45 13099.02 209
FA-MVS(test-final)98.75 13198.53 14499.41 11499.55 14799.05 13099.80 2499.01 29996.59 26799.58 9399.59 19595.39 17999.90 10097.78 20499.49 12899.28 186
FC-MVSNet-test98.75 13198.62 13299.15 15399.08 26699.45 8399.86 1299.60 4098.23 10498.70 26499.82 6296.80 13199.22 28799.07 6696.38 27598.79 225
XVG-OURS98.73 13398.68 12098.88 19299.70 9197.73 23698.92 31099.55 6498.52 7499.45 11799.84 5195.27 18499.91 8998.08 18298.84 18099.00 210
iter_conf_final98.71 13498.61 13898.99 16999.49 16698.96 14399.63 7699.41 19898.19 11099.39 13899.77 11294.82 19999.38 25299.30 4497.52 23798.64 274
Fast-Effi-MVS+98.70 13598.43 14899.51 9899.51 15599.28 9899.52 13399.47 15996.11 30299.01 21699.34 27296.20 15199.84 13497.88 19498.82 18299.39 176
RRT_MVS98.70 13598.66 12498.83 20698.90 28998.45 20199.89 299.28 26497.76 16298.94 22899.92 1096.98 12699.25 28199.28 4697.00 26598.80 224
bld_raw_dy_0_6498.69 13798.58 14098.99 16998.88 29298.96 14399.80 2499.41 19897.91 14699.32 15599.87 3195.70 17199.31 27399.09 6397.27 25898.71 241
XVG-OURS-SEG-HR98.69 13798.62 13298.89 19099.71 8697.74 23599.12 26599.54 7298.44 8299.42 12699.71 13794.20 22899.92 7998.54 14598.90 17699.00 210
131498.68 13998.54 14399.11 15598.89 29198.65 17899.27 23499.49 12996.89 24497.99 31099.56 20697.72 10599.83 14597.74 21099.27 14598.84 222
EI-MVSNet98.67 14098.67 12198.68 22099.35 20197.97 22399.50 14499.38 21596.93 24399.20 18499.83 5597.87 9999.36 26198.38 15697.56 23498.71 241
test_djsdf98.67 14098.57 14198.98 17198.70 31898.91 15599.88 499.46 16897.55 18399.22 17899.88 2595.73 16999.28 27699.03 6897.62 22998.75 233
QAPM98.67 14098.30 15799.80 3899.20 23999.67 5199.77 3399.72 1194.74 32798.73 25699.90 1595.78 16799.98 796.96 26899.88 3699.76 72
nrg03098.64 14398.42 14999.28 13799.05 27399.69 4799.81 2099.46 16898.04 13699.01 21699.82 6296.69 13699.38 25299.34 3894.59 31598.78 226
PAPR98.63 14498.34 15399.51 9899.40 19299.03 13198.80 32299.36 22496.33 28399.00 22099.12 30898.46 7699.84 13495.23 31499.37 14199.66 108
CVMVSNet98.57 14598.67 12198.30 26199.35 20195.59 31099.50 14499.55 6498.60 6899.39 13899.83 5594.48 22099.45 23898.75 10998.56 19499.85 21
iter_conf0598.55 14698.44 14798.87 19699.34 20598.60 18499.55 12299.42 19598.21 10799.37 14399.77 11293.55 24699.38 25299.30 4497.48 24598.63 282
MVSTER98.49 14798.32 15599.00 16799.35 20199.02 13299.54 12699.38 21597.41 20099.20 18499.73 13293.86 24099.36 26198.87 8897.56 23498.62 285
FE-MVS98.48 14898.17 16299.40 11599.54 14898.96 14399.68 5798.81 32395.54 31399.62 8399.70 14193.82 24199.93 6997.35 24499.46 12999.32 183
OpenMVScopyleft96.50 1698.47 14998.12 16899.52 9699.04 27499.53 7399.82 1799.72 1194.56 33098.08 30599.88 2594.73 20999.98 797.47 23799.76 9599.06 205
IterMVS-LS98.46 15098.42 14998.58 22799.59 13598.00 22199.37 20499.43 19396.94 24299.07 20799.59 19597.87 9999.03 31498.32 16495.62 29598.71 241
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
anonymousdsp98.44 15198.28 15898.94 17798.50 33398.96 14399.77 3399.50 12197.07 23098.87 24099.77 11294.76 20799.28 27698.66 12297.60 23098.57 300
jajsoiax98.43 15298.28 15898.88 19298.60 32898.43 20399.82 1799.53 8398.19 11098.63 27599.80 8893.22 25299.44 24399.22 5297.50 24198.77 229
tttt051798.42 15398.14 16599.28 13799.66 10798.38 20699.74 4296.85 36297.68 17199.79 2999.74 12691.39 29999.89 11098.83 10199.56 12399.57 137
BH-untuned98.42 15398.36 15198.59 22499.49 16696.70 28299.27 23499.13 28697.24 21498.80 24999.38 26095.75 16899.74 17997.07 26299.16 15199.33 182
test_fmvs1_n98.41 15598.14 16599.21 14599.82 3697.71 24099.74 4299.49 12999.32 399.99 299.95 285.32 34899.97 1399.82 299.84 6299.96 2
D2MVS98.41 15598.50 14598.15 27499.26 22696.62 28699.40 19399.61 3597.71 16898.98 22299.36 26696.04 15499.67 20898.70 11597.41 25298.15 331
BH-RMVSNet98.41 15598.08 17499.40 11599.41 18798.83 16599.30 22398.77 32697.70 16998.94 22899.65 16992.91 25899.74 17996.52 28799.55 12599.64 119
mvs_tets98.40 15898.23 16098.91 18598.67 32198.51 19599.66 6499.53 8398.19 11098.65 27399.81 7592.75 26099.44 24399.31 4197.48 24598.77 229
XXY-MVS98.38 15998.09 17399.24 14299.26 22699.32 9299.56 11399.55 6497.45 19498.71 25899.83 5593.23 25099.63 22498.88 8596.32 27798.76 231
ACMM97.58 598.37 16098.34 15398.48 23999.41 18797.10 25799.56 11399.45 17998.53 7399.04 21399.85 4193.00 25499.71 19598.74 11097.45 24798.64 274
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thisisatest053098.35 16198.03 18099.31 12899.63 11898.56 18699.54 12696.75 36497.53 18799.73 4799.65 16991.25 30299.89 11098.62 12699.56 12399.48 158
tpmrst98.33 16298.48 14697.90 28999.16 25294.78 32999.31 22199.11 28797.27 21099.45 11799.59 19595.33 18299.84 13498.48 14898.61 18899.09 198
baseline198.31 16397.95 18999.38 11999.50 16498.74 17199.59 9598.93 30798.41 8399.14 19499.60 19394.59 21599.79 16598.48 14893.29 33199.61 126
PatchmatchNetpermissive98.31 16398.36 15198.19 26999.16 25295.32 31999.27 23498.92 30997.37 20399.37 14399.58 19994.90 19699.70 20197.43 24199.21 14899.54 141
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Anonymous20240521198.30 16597.98 18599.26 13999.57 13998.16 21399.41 18598.55 34296.03 30799.19 18799.74 12691.87 28599.92 7999.16 5898.29 20699.70 96
VPA-MVSNet98.29 16697.95 18999.30 13299.16 25299.54 7099.50 14499.58 4898.27 9899.35 15099.37 26392.53 27299.65 21699.35 3494.46 31698.72 239
UniMVSNet (Re)98.29 16698.00 18399.13 15499.00 27899.36 9099.49 15499.51 10297.95 14298.97 22499.13 30596.30 14899.38 25298.36 16093.34 33098.66 270
HQP_MVS98.27 16898.22 16198.44 24899.29 21996.97 27299.39 19799.47 15998.97 3899.11 19999.61 19092.71 26599.69 20697.78 20497.63 22798.67 262
UniMVSNet_NR-MVSNet98.22 16997.97 18698.96 17498.92 28898.98 13699.48 15899.53 8397.76 16298.71 25899.46 24296.43 14599.22 28798.57 13892.87 33798.69 250
LPG-MVS_test98.22 16998.13 16798.49 23799.33 20797.05 26399.58 10399.55 6497.46 19199.24 17399.83 5592.58 27099.72 18998.09 17897.51 23998.68 255
RPSCF98.22 16998.62 13296.99 31999.82 3691.58 35699.72 4699.44 18796.61 26399.66 6899.89 1995.92 16199.82 15197.46 23899.10 16099.57 137
ADS-MVSNet98.20 17298.08 17498.56 23199.33 20796.48 29199.23 24799.15 28396.24 29099.10 20299.67 16394.11 23299.71 19596.81 27699.05 16499.48 158
OPM-MVS98.19 17398.10 17098.45 24598.88 29297.07 26199.28 22999.38 21598.57 6999.22 17899.81 7592.12 28199.66 21198.08 18297.54 23698.61 294
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
SCA98.19 17398.16 16398.27 26699.30 21595.55 31199.07 27598.97 30397.57 18199.43 12399.57 20392.72 26399.74 17997.58 22399.20 14999.52 147
miper_ehance_all_eth98.18 17598.10 17098.41 25099.23 23297.72 23798.72 33099.31 25496.60 26598.88 23799.29 28497.29 11599.13 30097.60 22195.99 28498.38 320
CR-MVSNet98.17 17697.93 19298.87 19699.18 24498.49 19799.22 25199.33 24096.96 23899.56 9799.38 26094.33 22499.00 31994.83 32098.58 19199.14 191
miper_enhance_ethall98.16 17798.08 17498.41 25098.96 28597.72 23798.45 34799.32 25096.95 24098.97 22499.17 30097.06 12399.22 28797.86 19795.99 28498.29 324
CLD-MVS98.16 17798.10 17098.33 25799.29 21996.82 27998.75 32799.44 18797.83 15499.13 19599.55 20992.92 25699.67 20898.32 16497.69 22698.48 306
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
thisisatest051598.14 17997.79 20399.19 14799.50 16498.50 19698.61 33896.82 36396.95 24099.54 10299.43 24691.66 29499.86 12298.08 18299.51 12799.22 189
pmmvs498.13 18097.90 19498.81 20998.61 32798.87 15898.99 29699.21 27696.44 27899.06 21199.58 19995.90 16399.11 30597.18 25696.11 28198.46 312
WR-MVS_H98.13 18097.87 19998.90 18799.02 27698.84 16299.70 4999.59 4397.27 21098.40 29199.19 29995.53 17599.23 28498.34 16193.78 32798.61 294
c3_l98.12 18298.04 17998.38 25499.30 21597.69 24198.81 32199.33 24096.67 25698.83 24599.34 27297.11 12098.99 32097.58 22395.34 30198.48 306
ACMH97.28 898.10 18397.99 18498.44 24899.41 18796.96 27499.60 8999.56 5698.09 12598.15 30399.91 1190.87 30699.70 20198.88 8597.45 24798.67 262
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052998.09 18497.68 21999.34 12199.66 10798.44 20299.40 19399.43 19393.67 33799.22 17899.89 1990.23 31499.93 6999.26 5098.33 20199.66 108
CP-MVSNet98.09 18497.78 20699.01 16598.97 28499.24 10399.67 6099.46 16897.25 21298.48 28799.64 17593.79 24299.06 31098.63 12594.10 32398.74 236
DU-MVS98.08 18697.79 20398.96 17498.87 29698.98 13699.41 18599.45 17997.87 14898.71 25899.50 22794.82 19999.22 28798.57 13892.87 33798.68 255
v2v48298.06 18797.77 20898.92 18198.90 28998.82 16699.57 10799.36 22496.65 25899.19 18799.35 26994.20 22899.25 28197.72 21394.97 30998.69 250
V4298.06 18797.79 20398.86 20098.98 28298.84 16299.69 5199.34 23396.53 26999.30 15999.37 26394.67 21299.32 27097.57 22794.66 31398.42 315
test-LLR98.06 18797.90 19498.55 23398.79 30497.10 25798.67 33397.75 35597.34 20498.61 27898.85 32894.45 22199.45 23897.25 24899.38 13499.10 194
WR-MVS98.06 18797.73 21599.06 15998.86 29999.25 10299.19 25499.35 22997.30 20898.66 26799.43 24693.94 23799.21 29298.58 13594.28 32098.71 241
ACMP97.20 1198.06 18797.94 19198.45 24599.37 19897.01 26899.44 17299.49 12997.54 18698.45 28899.79 9991.95 28499.72 18997.91 19297.49 24498.62 285
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
eth_miper_zixun_eth98.05 19297.96 18798.33 25799.26 22697.38 24798.56 34399.31 25496.65 25898.88 23799.52 22196.58 13899.12 30497.39 24395.53 29898.47 308
test111198.04 19398.11 16997.83 29399.74 7093.82 34099.58 10395.40 37099.12 1399.65 7499.93 690.73 30799.84 13499.43 2999.38 13499.82 39
ECVR-MVScopyleft98.04 19398.05 17898.00 28399.74 7094.37 33599.59 9594.98 37199.13 1199.66 6899.93 690.67 30899.84 13499.40 3099.38 13499.80 55
EPNet_dtu98.03 19597.96 18798.23 26798.27 33795.54 31399.23 24798.75 32799.02 2597.82 31699.71 13796.11 15299.48 23593.04 34099.65 11599.69 98
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FMVSNet398.03 19597.76 21298.84 20499.39 19598.98 13699.40 19399.38 21596.67 25699.07 20799.28 28692.93 25598.98 32197.10 25996.65 26898.56 301
ADS-MVSNet298.02 19798.07 17797.87 29099.33 20795.19 32299.23 24799.08 29196.24 29099.10 20299.67 16394.11 23298.93 33196.81 27699.05 16499.48 158
HQP-MVS98.02 19797.90 19498.37 25599.19 24196.83 27798.98 29999.39 20998.24 10198.66 26799.40 25592.47 27499.64 21997.19 25497.58 23298.64 274
LTVRE_ROB97.16 1298.02 19797.90 19498.40 25299.23 23296.80 28099.70 4999.60 4097.12 22498.18 30299.70 14191.73 29099.72 18998.39 15597.45 24798.68 255
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
cl____98.01 20097.84 20198.55 23399.25 23097.97 22398.71 33199.34 23396.47 27798.59 28199.54 21495.65 17399.21 29297.21 25095.77 29098.46 312
DIV-MVS_self_test98.01 20097.85 20098.48 23999.24 23197.95 22798.71 33199.35 22996.50 27098.60 28099.54 21495.72 17099.03 31497.21 25095.77 29098.46 312
miper_lstm_enhance98.00 20297.91 19398.28 26599.34 20597.43 24698.88 31499.36 22496.48 27598.80 24999.55 20995.98 15698.91 33297.27 24795.50 29998.51 304
BH-w/o98.00 20297.89 19898.32 25999.35 20196.20 30099.01 29498.90 31496.42 28098.38 29299.00 31895.26 18699.72 18996.06 29598.61 18899.03 207
v114497.98 20497.69 21898.85 20398.87 29698.66 17799.54 12699.35 22996.27 28899.23 17799.35 26994.67 21299.23 28496.73 27995.16 30598.68 255
EU-MVSNet97.98 20498.03 18097.81 29698.72 31596.65 28599.66 6499.66 2698.09 12598.35 29499.82 6295.25 18798.01 35197.41 24295.30 30298.78 226
tpmvs97.98 20498.02 18297.84 29299.04 27494.73 33099.31 22199.20 27796.10 30698.76 25499.42 24894.94 19299.81 15696.97 26798.45 19998.97 214
tt080597.97 20797.77 20898.57 22899.59 13596.61 28799.45 16799.08 29198.21 10798.88 23799.80 8888.66 32899.70 20198.58 13597.72 22599.39 176
NR-MVSNet97.97 20797.61 22699.02 16498.87 29699.26 10199.47 16399.42 19597.63 17697.08 33299.50 22795.07 19199.13 30097.86 19793.59 32898.68 255
v897.95 20997.63 22598.93 17998.95 28698.81 16899.80 2499.41 19896.03 30799.10 20299.42 24894.92 19599.30 27496.94 27094.08 32498.66 270
Patchmatch-test97.93 21097.65 22298.77 21499.18 24497.07 26199.03 28699.14 28596.16 29798.74 25599.57 20394.56 21799.72 18993.36 33699.11 15799.52 147
PS-CasMVS97.93 21097.59 22898.95 17698.99 27999.06 12899.68 5799.52 8897.13 22298.31 29699.68 15792.44 27899.05 31198.51 14694.08 32498.75 233
TranMVSNet+NR-MVSNet97.93 21097.66 22198.76 21598.78 30798.62 18199.65 7099.49 12997.76 16298.49 28699.60 19394.23 22798.97 32898.00 18792.90 33598.70 246
test_vis1_n97.92 21397.44 24799.34 12199.53 14998.08 21899.74 4299.49 12999.15 9100.00 199.94 479.51 36199.98 799.88 199.76 9599.97 1
v14419297.92 21397.60 22798.87 19698.83 30298.65 17899.55 12299.34 23396.20 29399.32 15599.40 25594.36 22399.26 28096.37 29295.03 30898.70 246
ACMH+97.24 1097.92 21397.78 20698.32 25999.46 17696.68 28499.56 11399.54 7298.41 8397.79 31899.87 3190.18 31599.66 21198.05 18697.18 26298.62 285
LFMVS97.90 21697.35 25999.54 8299.52 15399.01 13499.39 19798.24 34897.10 22899.65 7499.79 9984.79 35099.91 8999.28 4698.38 20099.69 98
Anonymous2023121197.88 21797.54 23298.90 18799.71 8698.53 18999.48 15899.57 5194.16 33398.81 24799.68 15793.23 25099.42 24898.84 9894.42 31898.76 231
OurMVSNet-221017-097.88 21797.77 20898.19 26998.71 31796.53 28999.88 499.00 30097.79 15998.78 25299.94 491.68 29199.35 26497.21 25096.99 26698.69 250
v7n97.87 21997.52 23398.92 18198.76 31198.58 18599.84 1399.46 16896.20 29398.91 23299.70 14194.89 19799.44 24396.03 29693.89 32698.75 233
baseline297.87 21997.55 22998.82 20799.18 24498.02 22099.41 18596.58 36796.97 23796.51 33799.17 30093.43 24799.57 22997.71 21499.03 16698.86 220
thres600view797.86 22197.51 23598.92 18199.72 8197.95 22799.59 9598.74 33097.94 14399.27 16798.62 33691.75 28899.86 12293.73 33298.19 21198.96 216
cl2297.85 22297.64 22498.48 23999.09 26497.87 23098.60 34099.33 24097.11 22798.87 24099.22 29592.38 27999.17 29698.21 16995.99 28498.42 315
v1097.85 22297.52 23398.86 20098.99 27998.67 17699.75 3999.41 19895.70 31198.98 22299.41 25294.75 20899.23 28496.01 29794.63 31498.67 262
GA-MVS97.85 22297.47 23999.00 16799.38 19697.99 22298.57 34199.15 28397.04 23398.90 23499.30 28289.83 31799.38 25296.70 28198.33 20199.62 124
tfpnnormal97.84 22597.47 23998.98 17199.20 23999.22 10599.64 7299.61 3596.32 28498.27 29999.70 14193.35 24999.44 24395.69 30495.40 30098.27 325
VPNet97.84 22597.44 24799.01 16599.21 23798.94 15199.48 15899.57 5198.38 8599.28 16399.73 13288.89 32599.39 25099.19 5493.27 33298.71 241
LCM-MVSNet-Re97.83 22798.15 16496.87 32499.30 21592.25 35399.59 9598.26 34697.43 19796.20 34099.13 30596.27 14998.73 33998.17 17498.99 16999.64 119
XVG-ACMP-BASELINE97.83 22797.71 21798.20 26899.11 25996.33 29699.41 18599.52 8898.06 13499.05 21299.50 22789.64 32099.73 18597.73 21197.38 25598.53 302
IterMVS97.83 22797.77 20898.02 28099.58 13796.27 29899.02 28999.48 14197.22 21698.71 25899.70 14192.75 26099.13 30097.46 23896.00 28398.67 262
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT97.82 23097.75 21398.06 27799.57 13996.36 29599.02 28999.49 12997.18 21898.71 25899.72 13692.72 26399.14 29797.44 24095.86 28998.67 262
EPMVS97.82 23097.65 22298.35 25698.88 29295.98 30399.49 15494.71 37397.57 18199.26 17199.48 23592.46 27799.71 19597.87 19699.08 16299.35 179
MVP-Stereo97.81 23297.75 21397.99 28497.53 34896.60 28898.96 30398.85 31997.22 21697.23 32799.36 26695.28 18399.46 23795.51 30899.78 8997.92 346
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v119297.81 23297.44 24798.91 18598.88 29298.68 17599.51 13899.34 23396.18 29599.20 18499.34 27294.03 23599.36 26195.32 31395.18 30498.69 250
v192192097.80 23497.45 24298.84 20498.80 30398.53 18999.52 13399.34 23396.15 29999.24 17399.47 23893.98 23699.29 27595.40 31195.13 30698.69 250
v14897.79 23597.55 22998.50 23698.74 31297.72 23799.54 12699.33 24096.26 28998.90 23499.51 22494.68 21199.14 29797.83 20093.15 33498.63 282
thres40097.77 23697.38 25598.92 18199.69 9497.96 22599.50 14498.73 33597.83 15499.17 19198.45 34191.67 29299.83 14593.22 33798.18 21298.96 216
thres100view90097.76 23797.45 24298.69 21999.72 8197.86 23299.59 9598.74 33097.93 14499.26 17198.62 33691.75 28899.83 14593.22 33798.18 21298.37 321
PEN-MVS97.76 23797.44 24798.72 21798.77 31098.54 18899.78 3199.51 10297.06 23298.29 29899.64 17592.63 26998.89 33498.09 17893.16 33398.72 239
Baseline_NR-MVSNet97.76 23797.45 24298.68 22099.09 26498.29 20899.41 18598.85 31995.65 31298.63 27599.67 16394.82 19999.10 30798.07 18592.89 33698.64 274
TR-MVS97.76 23797.41 25398.82 20799.06 27097.87 23098.87 31698.56 34196.63 26298.68 26699.22 29592.49 27399.65 21695.40 31197.79 22398.95 218
Patchmtry97.75 24197.40 25498.81 20999.10 26298.87 15899.11 27199.33 24094.83 32598.81 24799.38 26094.33 22499.02 31696.10 29495.57 29698.53 302
dp97.75 24197.80 20297.59 30499.10 26293.71 34399.32 21998.88 31696.48 27599.08 20699.55 20992.67 26899.82 15196.52 28798.58 19199.24 188
TAPA-MVS97.07 1597.74 24397.34 26298.94 17799.70 9197.53 24399.25 24499.51 10291.90 34999.30 15999.63 18198.78 4799.64 21988.09 36199.87 3999.65 112
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
VDD-MVS97.73 24497.35 25998.88 19299.47 17597.12 25699.34 21698.85 31998.19 11099.67 6399.85 4182.98 35499.92 7999.49 2398.32 20599.60 128
MIMVSNet97.73 24497.45 24298.57 22899.45 18197.50 24499.02 28998.98 30296.11 30299.41 13099.14 30490.28 31098.74 33895.74 30298.93 17299.47 164
tfpn200view997.72 24697.38 25598.72 21799.69 9497.96 22599.50 14498.73 33597.83 15499.17 19198.45 34191.67 29299.83 14593.22 33798.18 21298.37 321
CostFormer97.72 24697.73 21597.71 30099.15 25594.02 33999.54 12699.02 29894.67 32899.04 21399.35 26992.35 28099.77 17298.50 14797.94 22099.34 181
FMVSNet297.72 24697.36 25798.80 21199.51 15598.84 16299.45 16799.42 19596.49 27198.86 24499.29 28490.26 31198.98 32196.44 28996.56 27198.58 299
test0.0.03 197.71 24997.42 25298.56 23198.41 33697.82 23398.78 32498.63 33997.34 20498.05 30998.98 32294.45 22198.98 32195.04 31797.15 26398.89 219
h-mvs3397.70 25097.28 26998.97 17399.70 9197.27 25099.36 20899.45 17998.94 4199.66 6899.64 17594.93 19399.99 199.48 2484.36 36099.65 112
v124097.69 25197.32 26598.79 21298.85 30098.43 20399.48 15899.36 22496.11 30299.27 16799.36 26693.76 24499.24 28394.46 32395.23 30398.70 246
cascas97.69 25197.43 25198.48 23998.60 32897.30 24898.18 35999.39 20992.96 34598.41 29098.78 33293.77 24399.27 27998.16 17598.61 18898.86 220
pm-mvs197.68 25397.28 26998.88 19299.06 27098.62 18199.50 14499.45 17996.32 28497.87 31499.79 9992.47 27499.35 26497.54 23093.54 32998.67 262
GBi-Net97.68 25397.48 23798.29 26299.51 15597.26 25299.43 17699.48 14196.49 27199.07 20799.32 27990.26 31198.98 32197.10 25996.65 26898.62 285
test197.68 25397.48 23798.29 26299.51 15597.26 25299.43 17699.48 14196.49 27199.07 20799.32 27990.26 31198.98 32197.10 25996.65 26898.62 285
tpm97.67 25697.55 22998.03 27899.02 27695.01 32599.43 17698.54 34396.44 27899.12 19799.34 27291.83 28799.60 22797.75 20996.46 27399.48 158
PCF-MVS97.08 1497.66 25797.06 27899.47 10599.61 12899.09 12298.04 36199.25 26991.24 35298.51 28499.70 14194.55 21899.91 8992.76 34499.85 5499.42 171
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
our_test_397.65 25897.68 21997.55 30698.62 32594.97 32698.84 31899.30 25896.83 24998.19 30199.34 27297.01 12599.02 31695.00 31896.01 28298.64 274
testgi97.65 25897.50 23698.13 27599.36 20096.45 29299.42 18399.48 14197.76 16297.87 31499.45 24391.09 30398.81 33594.53 32298.52 19699.13 193
thres20097.61 26097.28 26998.62 22299.64 11598.03 21999.26 24298.74 33097.68 17199.09 20598.32 34591.66 29499.81 15692.88 34198.22 20798.03 337
PAPM97.59 26197.09 27799.07 15899.06 27098.26 21098.30 35599.10 28894.88 32498.08 30599.34 27296.27 14999.64 21989.87 35498.92 17499.31 184
VDDNet97.55 26297.02 27999.16 15099.49 16698.12 21799.38 20299.30 25895.35 31599.68 5999.90 1582.62 35699.93 6999.31 4198.13 21699.42 171
TESTMET0.1,197.55 26297.27 27298.40 25298.93 28796.53 28998.67 33397.61 35896.96 23898.64 27499.28 28688.63 33099.45 23897.30 24699.38 13499.21 190
pmmvs597.52 26497.30 26798.16 27198.57 33096.73 28199.27 23498.90 31496.14 30098.37 29399.53 21891.54 29799.14 29797.51 23295.87 28898.63 282
LF4IMVS97.52 26497.46 24197.70 30198.98 28295.55 31199.29 22798.82 32298.07 13098.66 26799.64 17589.97 31699.61 22697.01 26396.68 26797.94 344
DTE-MVSNet97.51 26697.19 27498.46 24498.63 32498.13 21699.84 1399.48 14196.68 25597.97 31299.67 16392.92 25698.56 34096.88 27592.60 34098.70 246
hse-mvs297.50 26797.14 27598.59 22499.49 16697.05 26399.28 22999.22 27398.94 4199.66 6899.42 24894.93 19399.65 21699.48 2483.80 36299.08 199
SixPastTwentyTwo97.50 26797.33 26498.03 27898.65 32296.23 29999.77 3398.68 33897.14 22197.90 31399.93 690.45 30999.18 29597.00 26496.43 27498.67 262
JIA-IIPM97.50 26797.02 27998.93 17998.73 31397.80 23499.30 22398.97 30391.73 35098.91 23294.86 36495.10 19099.71 19597.58 22397.98 21999.28 186
ppachtmachnet_test97.49 27097.45 24297.61 30398.62 32595.24 32098.80 32299.46 16896.11 30298.22 30099.62 18696.45 14398.97 32893.77 33195.97 28798.61 294
test-mter97.49 27097.13 27698.55 23398.79 30497.10 25798.67 33397.75 35596.65 25898.61 27898.85 32888.23 33499.45 23897.25 24899.38 13499.10 194
tpm297.44 27297.34 26297.74 29999.15 25594.36 33699.45 16798.94 30693.45 34298.90 23499.44 24491.35 30099.59 22897.31 24598.07 21899.29 185
tpm cat197.39 27397.36 25797.50 30899.17 25093.73 34299.43 17699.31 25491.27 35198.71 25899.08 30994.31 22699.77 17296.41 29198.50 19799.00 210
USDC97.34 27497.20 27397.75 29899.07 26795.20 32198.51 34599.04 29797.99 14098.31 29699.86 3689.02 32399.55 23295.67 30697.36 25698.49 305
UniMVSNet_ETH3D97.32 27596.81 28298.87 19699.40 19297.46 24599.51 13899.53 8395.86 31098.54 28399.77 11282.44 35799.66 21198.68 12097.52 23799.50 156
MVS97.28 27696.55 28699.48 10298.78 30798.95 14899.27 23499.39 20983.53 36498.08 30599.54 21496.97 12799.87 11994.23 32799.16 15199.63 122
test_fmvs297.25 27797.30 26797.09 31899.43 18293.31 34899.73 4598.87 31898.83 5199.28 16399.80 8884.45 35199.66 21197.88 19497.45 24798.30 323
DSMNet-mixed97.25 27797.35 25996.95 32297.84 34393.61 34699.57 10796.63 36696.13 30198.87 24098.61 33894.59 21597.70 35895.08 31698.86 17899.55 139
MS-PatchMatch97.24 27997.32 26596.99 31998.45 33593.51 34798.82 32099.32 25097.41 20098.13 30499.30 28288.99 32499.56 23095.68 30599.80 8297.90 347
TransMVSNet (Re)97.15 28096.58 28598.86 20099.12 25798.85 16199.49 15498.91 31295.48 31497.16 33099.80 8893.38 24899.11 30594.16 32991.73 34298.62 285
TinyColmap97.12 28196.89 28197.83 29399.07 26795.52 31498.57 34198.74 33097.58 18097.81 31799.79 9988.16 33599.56 23095.10 31597.21 26098.39 319
K. test v397.10 28296.79 28398.01 28198.72 31596.33 29699.87 997.05 36197.59 17896.16 34199.80 8888.71 32699.04 31296.69 28296.55 27298.65 272
PatchT97.03 28396.44 28998.79 21298.99 27998.34 20799.16 25799.07 29492.13 34899.52 10697.31 35794.54 21998.98 32188.54 35998.73 18799.03 207
AUN-MVS96.88 28496.31 29198.59 22499.48 17497.04 26699.27 23499.22 27397.44 19698.51 28499.41 25291.97 28399.66 21197.71 21483.83 36199.07 204
FMVSNet196.84 28596.36 29098.29 26299.32 21397.26 25299.43 17699.48 14195.11 31998.55 28299.32 27983.95 35398.98 32195.81 30096.26 27898.62 285
test250696.81 28696.65 28497.29 31399.74 7092.21 35499.60 8985.06 38199.13 1199.77 3799.93 687.82 34099.85 12899.38 3199.38 13499.80 55
MVS_030496.79 28796.52 28797.59 30499.22 23594.92 32899.04 28599.59 4396.49 27198.43 28998.99 31980.48 36099.39 25097.15 25899.27 14598.47 308
RPMNet96.72 28895.90 29999.19 14799.18 24498.49 19799.22 25199.52 8888.72 36099.56 9797.38 35494.08 23499.95 4786.87 36598.58 19199.14 191
test_040296.64 28996.24 29297.85 29198.85 30096.43 29399.44 17299.26 26793.52 33996.98 33499.52 22188.52 33199.20 29492.58 34697.50 24197.93 345
X-MVStestdata96.55 29095.45 30799.87 1199.85 2499.83 1699.69 5199.68 1998.98 3599.37 14364.01 37798.81 4499.94 5698.79 10699.86 4799.84 25
pmmvs696.53 29196.09 29597.82 29598.69 31995.47 31599.37 20499.47 15993.46 34197.41 32399.78 10587.06 34299.33 26796.92 27392.70 33998.65 272
ET-MVSNet_ETH3D96.49 29295.64 30599.05 16199.53 14998.82 16698.84 31897.51 35997.63 17684.77 36499.21 29892.09 28298.91 33298.98 7392.21 34199.41 173
UnsupCasMVSNet_eth96.44 29396.12 29497.40 31098.65 32295.65 30899.36 20899.51 10297.13 22296.04 34398.99 31988.40 33298.17 34796.71 28090.27 35098.40 318
FMVSNet596.43 29496.19 29397.15 31499.11 25995.89 30599.32 21999.52 8894.47 33298.34 29599.07 31087.54 34197.07 36292.61 34595.72 29398.47 308
new_pmnet96.38 29596.03 29697.41 30998.13 34095.16 32499.05 28099.20 27793.94 33497.39 32498.79 33191.61 29699.04 31290.43 35295.77 29098.05 336
Anonymous2023120696.22 29696.03 29696.79 32697.31 35394.14 33899.63 7699.08 29196.17 29697.04 33399.06 31293.94 23797.76 35786.96 36495.06 30798.47 308
IB-MVS95.67 1896.22 29695.44 30898.57 22899.21 23796.70 28298.65 33697.74 35796.71 25397.27 32698.54 33986.03 34499.92 7998.47 15186.30 35899.10 194
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Anonymous2024052196.20 29895.89 30097.13 31697.72 34794.96 32799.79 3099.29 26293.01 34497.20 32999.03 31589.69 31998.36 34491.16 35096.13 28098.07 334
gg-mvs-nofinetune96.17 29995.32 30998.73 21698.79 30498.14 21599.38 20294.09 37491.07 35498.07 30891.04 37089.62 32199.35 26496.75 27899.09 16198.68 255
test20.0396.12 30095.96 29896.63 32797.44 34995.45 31699.51 13899.38 21596.55 26896.16 34199.25 29293.76 24496.17 36787.35 36394.22 32198.27 325
PVSNet_094.43 1996.09 30195.47 30697.94 28699.31 21494.34 33797.81 36299.70 1597.12 22497.46 32298.75 33389.71 31899.79 16597.69 21781.69 36499.68 102
EG-PatchMatch MVS95.97 30295.69 30396.81 32597.78 34492.79 35199.16 25798.93 30796.16 29794.08 35399.22 29582.72 35599.47 23695.67 30697.50 24198.17 330
APD_test195.87 30396.49 28894.00 33799.53 14984.01 36499.54 12699.32 25095.91 30997.99 31099.85 4185.49 34799.88 11591.96 34798.84 18098.12 332
Patchmatch-RL test95.84 30495.81 30295.95 33395.61 36390.57 35898.24 35698.39 34595.10 32195.20 34798.67 33594.78 20397.77 35696.28 29390.02 35199.51 153
test_vis1_rt95.81 30595.65 30496.32 33199.67 9991.35 35799.49 15496.74 36598.25 10095.24 34698.10 34874.96 36299.90 10099.53 1598.85 17997.70 350
MVS-HIRNet95.75 30695.16 31097.51 30799.30 21593.69 34498.88 31495.78 36885.09 36398.78 25292.65 36691.29 30199.37 25794.85 31999.85 5499.46 166
MIMVSNet195.51 30795.04 31196.92 32397.38 35095.60 30999.52 13399.50 12193.65 33896.97 33599.17 30085.28 34996.56 36688.36 36095.55 29798.60 297
MDA-MVSNet_test_wron95.45 30894.60 31498.01 28198.16 33997.21 25599.11 27199.24 27193.49 34080.73 37098.98 32293.02 25398.18 34694.22 32894.45 31798.64 274
TDRefinement95.42 30994.57 31597.97 28589.83 37496.11 30299.48 15898.75 32796.74 25196.68 33699.88 2588.65 32999.71 19598.37 15882.74 36398.09 333
YYNet195.36 31094.51 31697.92 28797.89 34297.10 25799.10 27399.23 27293.26 34380.77 36999.04 31492.81 25998.02 35094.30 32494.18 32298.64 274
pmmvs-eth3d95.34 31194.73 31397.15 31495.53 36595.94 30499.35 21399.10 28895.13 31793.55 35597.54 35288.15 33697.91 35394.58 32189.69 35397.61 351
KD-MVS_self_test95.00 31294.34 31796.96 32197.07 35895.39 31899.56 11399.44 18795.11 31997.13 33197.32 35691.86 28697.27 36190.35 35381.23 36598.23 329
MDA-MVSNet-bldmvs94.96 31393.98 31997.92 28798.24 33897.27 25099.15 26099.33 24093.80 33680.09 37199.03 31588.31 33397.86 35593.49 33594.36 31998.62 285
N_pmnet94.95 31495.83 30192.31 34398.47 33479.33 37199.12 26592.81 37893.87 33597.68 31999.13 30593.87 23999.01 31891.38 34996.19 27998.59 298
KD-MVS_2432*160094.62 31593.72 32197.31 31197.19 35695.82 30698.34 35199.20 27795.00 32297.57 32098.35 34387.95 33798.10 34892.87 34277.00 36898.01 338
miper_refine_blended94.62 31593.72 32197.31 31197.19 35695.82 30698.34 35199.20 27795.00 32297.57 32098.35 34387.95 33798.10 34892.87 34277.00 36898.01 338
CL-MVSNet_self_test94.49 31793.97 32096.08 33296.16 36093.67 34598.33 35399.38 21595.13 31797.33 32598.15 34792.69 26796.57 36588.67 35879.87 36697.99 341
new-patchmatchnet94.48 31894.08 31895.67 33495.08 36792.41 35299.18 25599.28 26494.55 33193.49 35697.37 35587.86 33997.01 36391.57 34888.36 35497.61 351
OpenMVS_ROBcopyleft92.34 2094.38 31993.70 32396.41 33097.38 35093.17 34999.06 27898.75 32786.58 36194.84 35198.26 34681.53 35899.32 27089.01 35797.87 22296.76 358
CMPMVSbinary69.68 2394.13 32094.90 31291.84 34497.24 35480.01 37098.52 34499.48 14189.01 35891.99 35999.67 16385.67 34699.13 30095.44 30997.03 26496.39 360
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs394.09 32193.25 32596.60 32894.76 36894.49 33398.92 31098.18 35189.66 35596.48 33898.06 34986.28 34397.33 36089.68 35587.20 35797.97 343
mvsany_test393.77 32293.45 32494.74 33695.78 36288.01 36199.64 7298.25 34798.28 9694.31 35297.97 35068.89 36598.51 34297.50 23390.37 34997.71 348
UnsupCasMVSNet_bld93.53 32392.51 32696.58 32997.38 35093.82 34098.24 35699.48 14191.10 35393.10 35796.66 35974.89 36398.37 34394.03 33087.71 35697.56 353
PM-MVS92.96 32492.23 32795.14 33595.61 36389.98 36099.37 20498.21 34994.80 32695.04 35097.69 35165.06 36697.90 35494.30 32489.98 35297.54 354
test_fmvs392.10 32591.77 32893.08 34196.19 35986.25 36299.82 1798.62 34096.65 25895.19 34896.90 35855.05 37395.93 36996.63 28690.92 34897.06 357
test_f91.90 32691.26 33093.84 33895.52 36685.92 36399.69 5198.53 34495.31 31693.87 35496.37 36155.33 37298.27 34595.70 30390.98 34797.32 356
test_method91.10 32791.36 32990.31 34895.85 36173.72 37894.89 36799.25 26968.39 37095.82 34499.02 31780.50 35998.95 33093.64 33394.89 31298.25 327
Gipumacopyleft90.99 32890.15 33393.51 33998.73 31390.12 35993.98 36899.45 17979.32 36692.28 35894.91 36369.61 36497.98 35287.42 36295.67 29492.45 366
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf190.42 32990.68 33189.65 34997.78 34473.97 37699.13 26398.81 32389.62 35691.80 36098.93 32562.23 36998.80 33686.61 36691.17 34496.19 361
APD_test290.42 32990.68 33189.65 34997.78 34473.97 37699.13 26398.81 32389.62 35691.80 36098.93 32562.23 36998.80 33686.61 36691.17 34496.19 361
test_vis3_rt87.04 33185.81 33490.73 34793.99 36981.96 36899.76 3690.23 38092.81 34681.35 36891.56 36840.06 37799.07 30994.27 32688.23 35591.15 368
PMMVS286.87 33285.37 33691.35 34690.21 37383.80 36598.89 31397.45 36083.13 36591.67 36295.03 36248.49 37594.70 37085.86 36877.62 36795.54 363
LCM-MVSNet86.80 33385.22 33791.53 34587.81 37580.96 36998.23 35898.99 30171.05 36890.13 36396.51 36048.45 37696.88 36490.51 35185.30 35996.76 358
FPMVS84.93 33485.65 33582.75 35586.77 37663.39 38098.35 35098.92 30974.11 36783.39 36698.98 32250.85 37492.40 37284.54 36994.97 30992.46 365
EGC-MVSNET82.80 33577.86 34197.62 30297.91 34196.12 30199.33 21899.28 2648.40 37825.05 37999.27 28984.11 35299.33 26789.20 35698.22 20797.42 355
tmp_tt82.80 33581.52 33886.66 35166.61 38168.44 37992.79 37097.92 35368.96 36980.04 37299.85 4185.77 34596.15 36897.86 19743.89 37495.39 364
E-PMN80.61 33779.88 33982.81 35490.75 37276.38 37497.69 36395.76 36966.44 37283.52 36592.25 36762.54 36887.16 37468.53 37361.40 37184.89 372
EMVS80.02 33879.22 34082.43 35691.19 37176.40 37397.55 36592.49 37966.36 37383.01 36791.27 36964.63 36785.79 37565.82 37460.65 37285.08 371
ANet_high77.30 33974.86 34384.62 35375.88 37977.61 37297.63 36493.15 37788.81 35964.27 37489.29 37136.51 37883.93 37675.89 37152.31 37392.33 367
MVEpermissive76.82 2176.91 34074.31 34484.70 35285.38 37876.05 37596.88 36693.17 37667.39 37171.28 37389.01 37221.66 38387.69 37371.74 37272.29 37090.35 369
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft70.75 2275.98 34174.97 34279.01 35770.98 38055.18 38193.37 36998.21 34965.08 37461.78 37593.83 36521.74 38292.53 37178.59 37091.12 34689.34 370
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d40.18 34241.29 34736.84 35886.18 37749.12 38279.73 37122.81 38327.64 37525.46 37828.45 37821.98 38148.89 37755.80 37523.56 37712.51 375
testmvs39.17 34343.78 34525.37 36036.04 38316.84 38498.36 34926.56 38220.06 37638.51 37767.32 37329.64 38015.30 37937.59 37639.90 37543.98 374
test12339.01 34442.50 34628.53 35939.17 38220.91 38398.75 32719.17 38419.83 37738.57 37666.67 37433.16 37915.42 37837.50 37729.66 37649.26 373
cdsmvs_eth3d_5k24.64 34532.85 3480.00 3610.00 3840.00 3850.00 37299.51 1020.00 3790.00 38099.56 20696.58 1380.00 3800.00 3780.00 3780.00 376
ab-mvs-re8.30 34611.06 3490.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38099.58 1990.00 3840.00 3800.00 3780.00 3780.00 376
pcd_1.5k_mvsjas8.27 34711.03 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 38099.01 180.00 3800.00 3780.00 3780.00 376
test_blank0.13 3480.17 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3801.57 3790.00 3840.00 3800.00 3780.00 3780.00 376
uanet_test0.02 3490.03 3520.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 3800.00 3840.00 3800.00 3780.00 3780.00 376
DCPMVS0.02 3490.03 3520.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 3800.00 3840.00 3800.00 3780.00 3780.00 376
sosnet-low-res0.02 3490.03 3520.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 3800.00 3840.00 3800.00 3780.00 3780.00 376
sosnet0.02 3490.03 3520.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 3800.00 3840.00 3800.00 3780.00 3780.00 376
uncertanet0.02 3490.03 3520.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 3800.00 3840.00 3800.00 3780.00 3780.00 376
Regformer0.02 3490.03 3520.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 3800.00 3840.00 3800.00 3780.00 3780.00 376
uanet0.02 3490.03 3520.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 3800.00 3840.00 3800.00 3780.00 3780.00 376
FOURS199.91 199.93 199.87 999.56 5699.10 1599.81 24
MSC_two_6792asdad99.87 1199.51 15599.76 3799.33 24099.96 2198.87 8899.84 6299.89 5
PC_three_145298.18 11499.84 1799.70 14199.31 398.52 34198.30 16699.80 8299.81 46
No_MVS99.87 1199.51 15599.76 3799.33 24099.96 2198.87 8899.84 6299.89 5
test_one_060199.81 4099.88 899.49 12998.97 3899.65 7499.81 7599.09 14
eth-test20.00 384
eth-test0.00 384
ZD-MVS99.71 8699.79 3099.61 3596.84 24799.56 9799.54 21498.58 6799.96 2196.93 27199.75 97
RE-MVS-def99.34 2899.76 5599.82 2299.63 7699.52 8898.38 8599.76 4299.82 6298.75 5498.61 12999.81 7899.77 67
IU-MVS99.84 3099.88 899.32 25098.30 9599.84 1798.86 9399.85 5499.89 5
OPU-MVS99.64 6499.56 14399.72 4299.60 8999.70 14199.27 599.42 24898.24 16899.80 8299.79 59
test_241102_TWO99.48 14199.08 2099.88 1099.81 7598.94 2999.96 2198.91 8299.84 6299.88 11
test_241102_ONE99.84 3099.90 299.48 14199.07 2299.91 699.74 12699.20 799.76 176
9.1499.10 6699.72 8199.40 19399.51 10297.53 18799.64 7899.78 10598.84 4199.91 8997.63 21999.82 75
save fliter99.76 5599.59 6299.14 26299.40 20699.00 30
test_0728_THIRD98.99 3299.81 2499.80 8899.09 1499.96 2198.85 9599.90 2499.88 11
test_0728_SECOND99.91 299.84 3099.89 499.57 10799.51 10299.96 2198.93 7999.86 4799.88 11
test072699.85 2499.89 499.62 8299.50 12199.10 1599.86 1599.82 6298.94 29
GSMVS99.52 147
test_part299.81 4099.83 1699.77 37
sam_mvs194.86 19899.52 147
sam_mvs94.72 210
ambc93.06 34292.68 37082.36 36698.47 34698.73 33595.09 34997.41 35355.55 37199.10 30796.42 29091.32 34397.71 348
MTGPAbinary99.47 159
test_post199.23 24765.14 37694.18 23199.71 19597.58 223
test_post65.99 37594.65 21499.73 185
patchmatchnet-post98.70 33494.79 20299.74 179
GG-mvs-BLEND98.45 24598.55 33198.16 21399.43 17693.68 37597.23 32798.46 34089.30 32299.22 28795.43 31098.22 20797.98 342
MTMP99.54 12698.88 316
gm-plane-assit98.54 33292.96 35094.65 32999.15 30399.64 21997.56 228
test9_res97.49 23499.72 10399.75 73
TEST999.67 9999.65 5699.05 28099.41 19896.22 29298.95 22699.49 23098.77 5099.91 89
test_899.67 9999.61 6099.03 28699.41 19896.28 28698.93 23099.48 23598.76 5199.91 89
agg_prior297.21 25099.73 10299.75 73
agg_prior99.67 9999.62 5999.40 20698.87 24099.91 89
TestCases99.31 12899.86 2098.48 19999.61 3597.85 15199.36 14799.85 4195.95 15899.85 12896.66 28499.83 7199.59 132
test_prior499.56 6698.99 296
test_prior298.96 30398.34 9199.01 21699.52 22198.68 6197.96 18999.74 100
test_prior99.68 5499.67 9999.48 8099.56 5699.83 14599.74 77
旧先验298.96 30396.70 25499.47 11499.94 5698.19 171
新几何299.01 294
新几何199.75 4799.75 6399.59 6299.54 7296.76 25099.29 16299.64 17598.43 7899.94 5696.92 27399.66 11399.72 88
旧先验199.74 7099.59 6299.54 7299.69 15198.47 7599.68 11199.73 82
无先验98.99 29699.51 10296.89 24499.93 6997.53 23199.72 88
原ACMM298.95 306
原ACMM199.65 5999.73 7799.33 9199.47 15997.46 19199.12 19799.66 16898.67 6399.91 8997.70 21699.69 10899.71 95
test22299.75 6399.49 7898.91 31299.49 12996.42 28099.34 15399.65 16998.28 8799.69 10899.72 88
testdata299.95 4796.67 283
segment_acmp98.96 24
testdata99.54 8299.75 6398.95 14899.51 10297.07 23099.43 12399.70 14198.87 3799.94 5697.76 20799.64 11699.72 88
testdata198.85 31798.32 94
test1299.75 4799.64 11599.61 6099.29 26299.21 18198.38 8299.89 11099.74 10099.74 77
plane_prior799.29 21997.03 267
plane_prior699.27 22496.98 27192.71 265
plane_prior599.47 15999.69 20697.78 20497.63 22798.67 262
plane_prior499.61 190
plane_prior397.00 26998.69 6399.11 199
plane_prior299.39 19798.97 38
plane_prior199.26 226
plane_prior96.97 27299.21 25398.45 7997.60 230
n20.00 385
nn0.00 385
door-mid98.05 352
lessismore_v097.79 29798.69 31995.44 31794.75 37295.71 34599.87 3188.69 32799.32 27095.89 29894.93 31198.62 285
LGP-MVS_train98.49 23799.33 20797.05 26399.55 6497.46 19199.24 17399.83 5592.58 27099.72 18998.09 17897.51 23998.68 255
test1199.35 229
door97.92 353
HQP5-MVS96.83 277
HQP-NCC99.19 24198.98 29998.24 10198.66 267
ACMP_Plane99.19 24198.98 29998.24 10198.66 267
BP-MVS97.19 254
HQP4-MVS98.66 26799.64 21998.64 274
HQP3-MVS99.39 20997.58 232
HQP2-MVS92.47 274
NP-MVS99.23 23296.92 27599.40 255
MDTV_nov1_ep13_2view95.18 32399.35 21396.84 24799.58 9395.19 18997.82 20199.46 166
MDTV_nov1_ep1398.32 15599.11 25994.44 33499.27 23498.74 33097.51 18999.40 13599.62 18694.78 20399.76 17697.59 22298.81 184
ACMMP++_ref97.19 261
ACMMP++97.43 251
Test By Simon98.75 54
ITE_SJBPF98.08 27699.29 21996.37 29498.92 30998.34 9198.83 24599.75 12191.09 30399.62 22595.82 29997.40 25398.25 327
DeepMVS_CXcopyleft93.34 34099.29 21982.27 36799.22 27385.15 36296.33 33999.05 31390.97 30599.73 18593.57 33497.77 22498.01 338