This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 7
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1499.34 1599.69 499.58 2899.90 299.86 799.78 599.58 399.95 1599.00 3499.95 1699.78 14
pmmvs699.67 399.70 399.60 1399.90 499.27 2199.53 799.76 899.64 1299.84 899.83 299.50 599.87 8799.36 1499.92 3499.64 41
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1399.11 5899.90 199.78 699.63 1499.78 1099.67 1699.48 699.81 16399.30 1799.97 1199.77 16
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs_tets99.63 599.67 599.49 4999.88 798.61 9199.34 1599.71 1199.27 4499.90 499.74 899.68 299.97 399.55 899.99 599.88 3
jajsoiax99.58 699.61 799.48 5199.87 1098.61 9199.28 2999.66 1999.09 6699.89 699.68 1499.53 499.97 399.50 1099.99 599.87 4
ANet_high99.57 799.67 599.28 8299.89 698.09 13399.14 4399.93 199.82 399.93 299.81 399.17 1299.94 2399.31 16100.00 199.82 9
v7n99.53 899.57 899.41 6199.88 798.54 9999.45 999.61 2499.66 1199.68 1999.66 1798.44 4099.95 1599.73 299.96 1499.75 22
test_djsdf99.52 999.51 999.53 3699.86 1198.74 8099.39 1399.56 4299.11 5799.70 1599.73 1099.00 1599.97 399.26 1899.98 999.89 2
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 6299.34 1599.69 1598.93 8199.65 2299.72 1198.93 1999.95 1599.11 27100.00 199.82 9
UA-Net99.47 1199.40 1499.70 299.49 8599.29 1899.80 399.72 1099.82 399.04 11499.81 398.05 6999.96 898.85 4299.99 599.86 6
PS-MVSNAJss99.46 1299.49 1099.35 7099.90 498.15 12999.20 3599.65 2099.48 2499.92 399.71 1298.07 6699.96 899.53 9100.00 199.93 1
pm-mvs199.44 1399.48 1199.33 7599.80 1798.63 8899.29 2599.63 2199.30 4299.65 2299.60 2599.16 1499.82 15099.07 2999.83 6299.56 73
TransMVSNet (Re)99.44 1399.47 1299.36 6599.80 1798.58 9499.27 3199.57 3599.39 3399.75 1299.62 2199.17 1299.83 13999.06 3099.62 15499.66 36
DTE-MVSNet99.43 1599.35 1799.66 499.71 3199.30 1799.31 2099.51 5899.64 1299.56 2899.46 4398.23 5299.97 398.78 4599.93 2599.72 25
TDRefinement99.42 1699.38 1599.55 2699.76 2299.33 1699.68 599.71 1199.38 3499.53 3399.61 2398.64 2999.80 17298.24 7599.84 5699.52 95
PEN-MVS99.41 1799.34 1999.62 699.73 2499.14 5199.29 2599.54 5099.62 1799.56 2899.42 4998.16 6299.96 898.78 4599.93 2599.77 16
nrg03099.40 1899.35 1799.54 2999.58 5299.13 5498.98 5899.48 7099.68 999.46 4399.26 6998.62 3099.73 22699.17 2699.92 3499.76 20
PS-CasMVS99.40 1899.33 2099.62 699.71 3199.10 5999.29 2599.53 5499.53 2399.46 4399.41 5198.23 5299.95 1598.89 4099.95 1699.81 11
MIMVSNet199.38 2099.32 2199.55 2699.86 1199.19 3699.41 1299.59 2699.59 2099.71 1499.57 2797.12 13999.90 4999.21 2399.87 5299.54 85
OurMVSNet-221017-099.37 2199.31 2299.53 3699.91 398.98 6499.63 699.58 2899.44 2999.78 1099.76 696.39 18199.92 3599.44 1399.92 3499.68 33
Vis-MVSNetpermissive99.34 2299.36 1699.27 8599.73 2498.26 11799.17 4099.78 699.11 5799.27 7499.48 4198.82 2199.95 1598.94 3699.93 2599.59 57
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
WR-MVS_H99.33 2399.22 2799.65 599.71 3199.24 2499.32 1799.55 4699.46 2799.50 3999.34 6097.30 12899.93 2898.90 3899.93 2599.77 16
VPA-MVSNet99.30 2499.30 2399.28 8299.49 8598.36 11399.00 5599.45 8199.63 1499.52 3599.44 4898.25 5099.88 7099.09 2899.84 5699.62 46
Anonymous2023121199.27 2599.27 2499.26 8899.29 12498.18 12699.49 899.51 5899.70 899.80 999.68 1496.84 15499.83 13999.21 2399.91 4099.77 16
FC-MVSNet-test99.27 2599.25 2599.34 7399.77 2098.37 11099.30 2499.57 3599.61 1999.40 5299.50 3697.12 13999.85 10899.02 3399.94 2199.80 12
DIV-MVS_2432*160099.25 2799.18 2899.44 5799.63 4999.06 6398.69 7699.54 5099.31 4099.62 2799.53 3397.36 12699.86 9499.24 2299.71 11899.39 154
ACMH96.65 799.25 2799.24 2699.26 8899.72 3098.38 10999.07 4999.55 4698.30 11399.65 2299.45 4799.22 999.76 21198.44 6599.77 9099.64 41
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CP-MVSNet99.21 2999.09 3499.56 2499.65 4498.96 6899.13 4499.34 12199.42 3199.33 6399.26 6997.01 14699.94 2398.74 5099.93 2599.79 13
TranMVSNet+NR-MVSNet99.17 3099.07 3699.46 5699.37 11298.87 7198.39 10899.42 9399.42 3199.36 5999.06 10198.38 4399.95 1598.34 7299.90 4499.57 68
FMVSNet199.17 3099.17 2999.17 9899.55 6698.24 11999.20 3599.44 8499.21 4699.43 4799.55 2997.82 8699.86 9498.42 6799.89 4899.41 145
FIs99.14 3299.09 3499.29 8099.70 3798.28 11699.13 4499.52 5799.48 2499.24 8399.41 5196.79 16099.82 15098.69 5399.88 4999.76 20
XXY-MVS99.14 3299.15 3299.10 11099.76 2297.74 17698.85 6799.62 2298.48 10599.37 5799.49 3998.75 2499.86 9498.20 7899.80 7799.71 26
DROMVSNet99.09 3499.05 3799.20 9599.28 12598.93 6999.24 3399.84 399.08 6898.12 22298.37 24298.72 2699.90 4999.05 3199.77 9098.77 279
ACMH+96.62 999.08 3599.00 4099.33 7599.71 3198.83 7498.60 8299.58 2899.11 5799.53 3399.18 8098.81 2299.67 25396.71 17699.77 9099.50 102
GeoE99.05 3698.99 4299.25 9099.44 10198.35 11498.73 7299.56 4298.42 10798.91 13998.81 17598.94 1899.91 4598.35 7199.73 10799.49 106
Gipumacopyleft99.03 3799.16 3098.64 17599.94 298.51 10199.32 1799.75 999.58 2298.60 18399.62 2198.22 5599.51 30997.70 10999.73 10797.89 320
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
v899.01 3899.16 3098.57 18899.47 9596.31 23598.90 6299.47 7699.03 7099.52 3599.57 2796.93 15099.81 16399.60 499.98 999.60 51
HPM-MVS_fast99.01 3898.82 5099.57 1899.71 3199.35 1299.00 5599.50 6097.33 19498.94 13698.86 16198.75 2499.82 15097.53 11599.71 11899.56 73
APDe-MVS98.99 4098.79 5399.60 1399.21 13999.15 4798.87 6499.48 7097.57 16799.35 6099.24 7297.83 8399.89 5997.88 9799.70 12399.75 22
abl_698.99 4098.78 5499.61 999.45 9999.46 498.60 8299.50 6098.59 9899.24 8399.04 11198.54 3599.89 5996.45 19899.62 15499.50 102
EG-PatchMatch MVS98.99 4099.01 3998.94 13899.50 7897.47 18998.04 14399.59 2698.15 13199.40 5299.36 5798.58 3399.76 21198.78 4599.68 13499.59 57
COLMAP_ROBcopyleft96.50 1098.99 4098.85 4899.41 6199.58 5299.10 5998.74 7099.56 4299.09 6699.33 6399.19 7898.40 4299.72 23495.98 22399.76 10099.42 142
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Baseline_NR-MVSNet98.98 4498.86 4799.36 6599.82 1698.55 9697.47 20599.57 3599.37 3599.21 8799.61 2396.76 16399.83 13998.06 8699.83 6299.71 26
v1098.97 4599.11 3398.55 19399.44 10196.21 23798.90 6299.55 4698.73 9099.48 4099.60 2596.63 17099.83 13999.70 399.99 599.61 50
DeepC-MVS97.60 498.97 4598.93 4399.10 11099.35 11797.98 14998.01 14999.46 7897.56 16999.54 3099.50 3698.97 1699.84 12598.06 8699.92 3499.49 106
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline98.96 4799.02 3898.76 16599.38 11097.26 20098.49 9799.50 6098.86 8499.19 8999.06 10198.23 5299.69 24198.71 5299.76 10099.33 182
casdiffmvs98.95 4899.00 4098.81 15599.38 11097.33 19597.82 16799.57 3599.17 5499.35 6099.17 8498.35 4799.69 24198.46 6499.73 10799.41 145
NR-MVSNet98.95 4898.82 5099.36 6599.16 15798.72 8599.22 3499.20 17399.10 6399.72 1398.76 18396.38 18399.86 9498.00 9199.82 6599.50 102
Anonymous2024052998.93 5098.87 4599.12 10699.19 14698.22 12499.01 5398.99 22899.25 4599.54 3099.37 5497.04 14299.80 17297.89 9499.52 19299.35 174
DP-MVS98.93 5098.81 5299.28 8299.21 13998.45 10598.46 10299.33 12699.63 1499.48 4099.15 9097.23 13699.75 21897.17 13099.66 14599.63 45
SED-MVS98.91 5298.72 6099.49 4999.49 8599.17 3898.10 13399.31 13498.03 13599.66 2099.02 11598.36 4499.88 7096.91 15299.62 15499.41 145
ACMM96.08 1298.91 5298.73 5899.48 5199.55 6699.14 5198.07 13799.37 10597.62 16299.04 11498.96 13698.84 2099.79 18697.43 11999.65 14699.49 106
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DVP-MVS++.98.90 5498.70 6599.51 4598.43 28999.15 4799.43 1099.32 12898.17 12899.26 7899.02 11598.18 5999.88 7097.07 14099.45 21099.49 106
tfpnnormal98.90 5498.90 4498.91 14299.67 4197.82 16899.00 5599.44 8499.45 2899.51 3899.24 7298.20 5899.86 9495.92 22599.69 12999.04 237
MTAPA98.88 5698.64 7399.61 999.67 4199.36 1098.43 10599.20 17398.83 8798.89 14398.90 14896.98 14899.92 3597.16 13199.70 12399.56 73
VPNet98.87 5798.83 4999.01 13199.70 3797.62 18498.43 10599.35 11599.47 2699.28 7299.05 10896.72 16699.82 15098.09 8499.36 22399.59 57
UniMVSNet (Re)98.87 5798.71 6299.35 7099.24 13298.73 8397.73 17799.38 10198.93 8199.12 9698.73 18696.77 16199.86 9498.63 5599.80 7799.46 126
UniMVSNet_NR-MVSNet98.86 5998.68 6899.40 6399.17 15598.74 8097.68 18199.40 9799.14 5599.06 10798.59 21696.71 16799.93 2898.57 5899.77 9099.53 91
APD-MVS_3200maxsize98.84 6098.61 7899.53 3699.19 14699.27 2198.49 9799.33 12698.64 9299.03 11798.98 13197.89 7999.85 10896.54 19299.42 21499.46 126
PM-MVS98.82 6198.72 6099.12 10699.64 4798.54 9997.98 15299.68 1697.62 16299.34 6299.18 8097.54 10899.77 20497.79 10199.74 10499.04 237
DU-MVS98.82 6198.63 7499.39 6499.16 15798.74 8097.54 19799.25 16298.84 8699.06 10798.76 18396.76 16399.93 2898.57 5899.77 9099.50 102
SR-MVS-dyc-post98.81 6398.55 8499.57 1899.20 14399.38 698.48 10099.30 14498.64 9298.95 13098.96 13697.49 11799.86 9496.56 18899.39 21899.45 130
3Dnovator98.27 298.81 6398.73 5899.05 12498.76 23997.81 17099.25 3299.30 14498.57 10298.55 19399.33 6297.95 7899.90 4997.16 13199.67 14099.44 135
zzz-MVS98.79 6598.52 8799.61 999.67 4199.36 1097.33 21499.20 17398.83 8798.89 14398.90 14896.98 14899.92 3597.16 13199.70 12399.56 73
HPM-MVScopyleft98.79 6598.53 8699.59 1799.65 4499.29 1899.16 4199.43 9096.74 23198.61 18198.38 24098.62 3099.87 8796.47 19699.67 14099.59 57
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SteuartSystems-ACMMP98.79 6598.54 8599.54 2999.73 2499.16 4298.23 11999.31 13497.92 14398.90 14098.90 14898.00 7299.88 7096.15 21799.72 11499.58 63
Skip Steuart: Steuart Systems R&D Blog.
V4298.78 6898.78 5498.76 16599.44 10197.04 21398.27 11699.19 17897.87 14799.25 8299.16 8696.84 15499.78 19899.21 2399.84 5699.46 126
test20.0398.78 6898.77 5698.78 16299.46 9697.20 20697.78 16999.24 16799.04 6999.41 4998.90 14897.65 9799.76 21197.70 10999.79 8299.39 154
DVP-MVScopyleft98.77 7098.52 8799.52 4199.50 7899.21 2798.02 14698.84 25397.97 13999.08 10499.02 11597.61 10399.88 7096.99 14699.63 15199.48 116
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test117298.76 7198.49 9499.57 1899.18 15399.37 998.39 10899.31 13498.43 10698.90 14098.88 15797.49 11799.86 9496.43 20099.37 22299.48 116
test_040298.76 7198.71 6298.93 13999.56 6398.14 13198.45 10499.34 12199.28 4398.95 13098.91 14598.34 4899.79 18695.63 24299.91 4098.86 265
ACMMP_NAP98.75 7398.48 9699.57 1899.58 5299.29 1897.82 16799.25 16296.94 22398.78 16199.12 9498.02 7099.84 12597.13 13799.67 14099.59 57
SixPastTwentyTwo98.75 7398.62 7599.16 10199.83 1597.96 15499.28 2998.20 29799.37 3599.70 1599.65 1992.65 27799.93 2899.04 3299.84 5699.60 51
ACMMPcopyleft98.75 7398.50 9199.52 4199.56 6399.16 4298.87 6499.37 10597.16 21498.82 15899.01 12497.71 9399.87 8796.29 20999.69 12999.54 85
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Regformer-498.73 7698.68 6898.89 14599.02 18897.22 20397.17 22999.06 20899.21 4699.17 9498.85 16497.45 12099.86 9498.48 6399.70 12399.60 51
XVS98.72 7798.45 10299.53 3699.46 9699.21 2798.65 7799.34 12198.62 9697.54 26298.63 20997.50 11499.83 13996.79 16599.53 18999.56 73
SR-MVS98.71 7898.43 10699.57 1899.18 15399.35 1298.36 11199.29 15198.29 11698.88 14798.85 16497.53 11099.87 8796.14 21899.31 23199.48 116
HFP-MVS98.71 7898.44 10499.51 4599.49 8599.16 4298.52 9199.31 13497.47 17698.58 18798.50 22797.97 7699.85 10896.57 18599.59 16799.53 91
LPG-MVS_test98.71 7898.46 10099.47 5499.57 5698.97 6598.23 11999.48 7096.60 23699.10 10199.06 10198.71 2799.83 13995.58 24599.78 8699.62 46
ACMMPR98.70 8198.42 10899.54 2999.52 7399.14 5198.52 9199.31 13497.47 17698.56 19198.54 22097.75 9099.88 7096.57 18599.59 16799.58 63
CP-MVS98.70 8198.42 10899.52 4199.36 11399.12 5698.72 7399.36 10997.54 17198.30 21198.40 23697.86 8199.89 5996.53 19399.72 11499.56 73
Anonymous2024052198.69 8398.87 4598.16 22899.77 2095.11 26899.08 4799.44 8499.34 3899.33 6399.55 2994.10 25599.94 2399.25 2099.96 1499.42 142
region2R98.69 8398.40 11099.54 2999.53 7199.17 3898.52 9199.31 13497.46 18198.44 20198.51 22497.83 8399.88 7096.46 19799.58 17399.58 63
EI-MVSNet-UG-set98.69 8398.71 6298.62 18099.10 16996.37 23297.23 22198.87 24499.20 4999.19 8998.99 12797.30 12899.85 10898.77 4899.79 8299.65 40
3Dnovator+97.89 398.69 8398.51 8999.24 9298.81 23498.40 10699.02 5299.19 17898.99 7398.07 22799.28 6597.11 14199.84 12596.84 16399.32 22999.47 124
ZNCC-MVS98.68 8798.40 11099.54 2999.57 5699.21 2798.46 10299.29 15197.28 20098.11 22498.39 23898.00 7299.87 8796.86 16299.64 14899.55 81
EI-MVSNet-Vis-set98.68 8798.70 6598.63 17899.09 17296.40 23197.23 22198.86 24999.20 4999.18 9398.97 13397.29 13099.85 10898.72 5199.78 8699.64 41
CSCG98.68 8798.50 9199.20 9599.45 9998.63 8898.56 8799.57 3597.87 14798.85 15198.04 27097.66 9699.84 12596.72 17499.81 6999.13 226
PGM-MVS98.66 9098.37 11699.55 2699.53 7199.18 3798.23 11999.49 6897.01 22198.69 17098.88 15798.00 7299.89 5995.87 22999.59 16799.58 63
GBi-Net98.65 9198.47 9899.17 9898.90 21298.24 11999.20 3599.44 8498.59 9898.95 13099.55 2994.14 25199.86 9497.77 10399.69 12999.41 145
test198.65 9198.47 9899.17 9898.90 21298.24 11999.20 3599.44 8498.59 9898.95 13099.55 2994.14 25199.86 9497.77 10399.69 12999.41 145
LCM-MVSNet-Re98.64 9398.48 9699.11 10898.85 22398.51 10198.49 9799.83 498.37 10899.69 1799.46 4398.21 5799.92 3594.13 28399.30 23498.91 260
mPP-MVS98.64 9398.34 12099.54 2999.54 6999.17 3898.63 7999.24 16797.47 17698.09 22698.68 19597.62 10299.89 5996.22 21299.62 15499.57 68
TSAR-MVS + MP.98.63 9598.49 9499.06 12299.64 4797.90 15998.51 9598.94 23196.96 22299.24 8398.89 15697.83 8399.81 16396.88 15999.49 20399.48 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
LS3D98.63 9598.38 11599.36 6597.25 34699.38 699.12 4699.32 12899.21 4698.44 20198.88 15797.31 12799.80 17296.58 18399.34 22798.92 257
RPSCF98.62 9798.36 11799.42 5899.65 4499.42 598.55 8899.57 3597.72 15698.90 14099.26 6996.12 19099.52 30595.72 23699.71 11899.32 184
GST-MVS98.61 9898.30 12599.52 4199.51 7599.20 3398.26 11799.25 16297.44 18598.67 17298.39 23897.68 9499.85 10896.00 22199.51 19599.52 95
Regformer-398.61 9898.61 7898.63 17899.02 18896.53 22997.17 22998.84 25399.13 5699.10 10198.85 16497.24 13599.79 18698.41 6899.70 12399.57 68
v119298.60 10098.66 7198.41 20899.27 12795.88 24497.52 19999.36 10997.41 18799.33 6399.20 7796.37 18499.82 15099.57 699.92 3499.55 81
v114498.60 10098.66 7198.41 20899.36 11395.90 24397.58 19399.34 12197.51 17299.27 7499.15 9096.34 18699.80 17299.47 1299.93 2599.51 98
Regformer-298.60 10098.46 10099.02 13098.85 22397.71 17896.91 24599.09 20498.98 7599.01 11898.64 20597.37 12599.84 12597.75 10899.57 17799.52 95
DPE-MVScopyleft98.59 10398.26 13099.57 1899.27 12799.15 4797.01 23699.39 9997.67 15899.44 4698.99 12797.53 11099.89 5995.40 24999.68 13499.66 36
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss98.57 10498.23 13499.60 1399.69 3999.35 1297.16 23199.38 10194.87 28498.97 12798.99 12798.01 7199.88 7097.29 12599.70 12399.58 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
OPM-MVS98.56 10598.32 12499.25 9099.41 10798.73 8397.13 23399.18 18297.10 21798.75 16698.92 14498.18 5999.65 26696.68 17899.56 18299.37 164
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
VDD-MVS98.56 10598.39 11399.07 11799.13 16498.07 13998.59 8497.01 32799.59 2099.11 9899.27 6794.82 23499.79 18698.34 7299.63 15199.34 176
v2v48298.56 10598.62 7598.37 21299.42 10695.81 24797.58 19399.16 19197.90 14599.28 7299.01 12495.98 19999.79 18699.33 1599.90 4499.51 98
XVG-ACMP-BASELINE98.56 10598.34 12099.22 9499.54 6998.59 9397.71 17899.46 7897.25 20398.98 12498.99 12797.54 10899.84 12595.88 22699.74 10499.23 206
Regformer-198.55 10998.44 10498.87 14798.85 22397.29 19796.91 24598.99 22898.97 7698.99 12298.64 20597.26 13499.81 16397.79 10199.57 17799.51 98
v124098.55 10998.62 7598.32 21599.22 13795.58 25097.51 20199.45 8197.16 21499.45 4599.24 7296.12 19099.85 10899.60 499.88 4999.55 81
IterMVS-LS98.55 10998.70 6598.09 23099.48 9394.73 27497.22 22499.39 9998.97 7699.38 5599.31 6496.00 19599.93 2898.58 5699.97 1199.60 51
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14419298.54 11298.57 8398.45 20599.21 13995.98 24197.63 18699.36 10997.15 21699.32 6999.18 8095.84 20699.84 12599.50 1099.91 4099.54 85
v192192098.54 11298.60 8098.38 21199.20 14395.76 24997.56 19599.36 10997.23 20999.38 5599.17 8496.02 19399.84 12599.57 699.90 4499.54 85
SF-MVS98.53 11498.27 12999.32 7799.31 12098.75 7998.19 12399.41 9496.77 23098.83 15498.90 14897.80 8799.82 15095.68 23999.52 19299.38 161
XVG-OURS98.53 11498.34 12099.11 10899.50 7898.82 7695.97 28999.50 6097.30 19899.05 11298.98 13199.35 799.32 33495.72 23699.68 13499.18 218
UGNet98.53 11498.45 10298.79 15997.94 31896.96 21799.08 4798.54 28299.10 6396.82 30299.47 4296.55 17399.84 12598.56 6199.94 2199.55 81
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
#test#98.50 11798.16 14499.51 4599.49 8599.16 4298.03 14499.31 13496.30 24898.58 18798.50 22797.97 7699.85 10895.68 23999.59 16799.53 91
XVG-OURS-SEG-HR98.49 11898.28 12899.14 10499.49 8598.83 7496.54 26399.48 7097.32 19699.11 9898.61 21499.33 899.30 33796.23 21198.38 30699.28 196
FMVSNet298.49 11898.40 11098.75 16798.90 21297.14 21298.61 8199.13 19898.59 9899.19 8999.28 6594.14 25199.82 15097.97 9299.80 7799.29 195
pmmvs-eth3d98.47 12098.34 12098.86 14999.30 12397.76 17397.16 23199.28 15395.54 26899.42 4899.19 7897.27 13199.63 27197.89 9499.97 1199.20 211
MP-MVScopyleft98.46 12198.09 15199.54 2999.57 5699.22 2698.50 9699.19 17897.61 16497.58 25898.66 20097.40 12399.88 7094.72 26399.60 16399.54 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
v14898.45 12298.60 8098.00 23999.44 10194.98 26997.44 20899.06 20898.30 11399.32 6998.97 13396.65 16999.62 27398.37 6999.85 5499.39 154
xxxxxxxxxxxxxcwj98.44 12398.24 13299.06 12299.11 16597.97 15096.53 26499.54 5098.24 11998.83 15498.90 14897.80 8799.82 15095.68 23999.52 19299.38 161
AllTest98.44 12398.20 13799.16 10199.50 7898.55 9698.25 11899.58 2896.80 22898.88 14799.06 10197.65 9799.57 29094.45 27099.61 16199.37 164
VNet98.42 12598.30 12598.79 15998.79 23897.29 19798.23 11998.66 27699.31 4098.85 15198.80 17694.80 23799.78 19898.13 8099.13 26299.31 188
CS-MVS-test98.41 12698.30 12598.73 17198.84 22698.39 10798.71 7599.79 597.98 13796.86 29997.38 31097.86 8199.83 13997.81 10099.46 20797.97 318
ab-mvs98.41 12698.36 11798.59 18499.19 14697.23 20199.32 1798.81 25997.66 15998.62 17999.40 5396.82 15799.80 17295.88 22699.51 19598.75 282
ACMP95.32 1598.41 12698.09 15199.36 6599.51 7598.79 7897.68 18199.38 10195.76 26598.81 16098.82 17398.36 4499.82 15094.75 26099.77 9099.48 116
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SMA-MVScopyleft98.40 12998.03 15899.51 4599.16 15799.21 2798.05 14199.22 17094.16 30098.98 12499.10 9897.52 11299.79 18696.45 19899.64 14899.53 91
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSP-MVS98.40 12998.00 16099.61 999.57 5699.25 2398.57 8699.35 11597.55 17099.31 7197.71 28994.61 24199.88 7096.14 21899.19 25299.70 31
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS98.40 12998.68 6897.54 26798.96 19997.99 14597.88 16099.36 10998.20 12599.63 2599.04 11198.76 2395.33 36996.56 18899.74 10499.31 188
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
EI-MVSNet98.40 12998.51 8998.04 23799.10 16994.73 27497.20 22598.87 24498.97 7699.06 10799.02 11596.00 19599.80 17298.58 5699.82 6599.60 51
WR-MVS98.40 12998.19 13999.03 12799.00 19197.65 18196.85 24898.94 23198.57 10298.89 14398.50 22795.60 21299.85 10897.54 11499.85 5499.59 57
new-patchmatchnet98.35 13498.74 5797.18 28299.24 13292.23 32796.42 27299.48 7098.30 11399.69 1799.53 3397.44 12199.82 15098.84 4399.77 9099.49 106
canonicalmvs98.34 13598.26 13098.58 18598.46 28697.82 16898.96 5999.46 7899.19 5397.46 26995.46 34998.59 3299.46 31898.08 8598.71 29598.46 297
testgi98.32 13698.39 11398.13 22999.57 5695.54 25197.78 16999.49 6897.37 19199.19 8997.65 29398.96 1799.49 31196.50 19598.99 28099.34 176
DeepPCF-MVS96.93 598.32 13698.01 15999.23 9398.39 29498.97 6595.03 32499.18 18296.88 22699.33 6398.78 17998.16 6299.28 34096.74 17199.62 15499.44 135
MVS_111021_LR98.30 13898.12 14998.83 15299.16 15798.03 14396.09 28699.30 14497.58 16698.10 22598.24 25398.25 5099.34 33196.69 17799.65 14699.12 227
EPP-MVSNet98.30 13898.04 15799.07 11799.56 6397.83 16599.29 2598.07 30399.03 7098.59 18599.13 9392.16 28199.90 4996.87 16099.68 13499.49 106
DeepC-MVS_fast96.85 698.30 13898.15 14698.75 16798.61 26897.23 20197.76 17499.09 20497.31 19798.75 16698.66 20097.56 10799.64 26896.10 22099.55 18499.39 154
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PHI-MVS98.29 14197.95 16399.34 7398.44 28899.16 4298.12 13099.38 10196.01 25798.06 22898.43 23497.80 8799.67 25395.69 23899.58 17399.20 211
Fast-Effi-MVS+-dtu98.27 14298.09 15198.81 15598.43 28998.11 13297.61 18999.50 6098.64 9297.39 27497.52 30198.12 6599.95 1596.90 15798.71 29598.38 303
DELS-MVS98.27 14298.20 13798.48 20298.86 22196.70 22695.60 30899.20 17397.73 15598.45 20098.71 18997.50 11499.82 15098.21 7799.59 16798.93 256
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+-dtu98.26 14497.90 16899.35 7098.02 31499.49 398.02 14699.16 19198.29 11697.64 25397.99 27296.44 17999.95 1596.66 17998.93 28598.60 292
MVSFormer98.26 14498.43 10697.77 24998.88 21893.89 30099.39 1399.56 4299.11 5798.16 21898.13 26093.81 25899.97 399.26 1899.57 17799.43 139
MVS_111021_HR98.25 14698.08 15498.75 16799.09 17297.46 19095.97 28999.27 15697.60 16597.99 23398.25 25298.15 6499.38 32896.87 16099.57 17799.42 142
TAMVS98.24 14798.05 15698.80 15799.07 17697.18 20897.88 16098.81 25996.66 23599.17 9499.21 7594.81 23699.77 20496.96 15099.88 4999.44 135
diffmvs98.22 14898.24 13298.17 22799.00 19195.44 25696.38 27499.58 2897.79 15398.53 19698.50 22796.76 16399.74 22297.95 9399.64 14899.34 176
Anonymous2023120698.21 14998.21 13698.20 22599.51 7595.43 25798.13 12899.32 12896.16 25198.93 13798.82 17396.00 19599.83 13997.32 12499.73 10799.36 170
VDDNet98.21 14997.95 16399.01 13199.58 5297.74 17699.01 5397.29 32399.67 1098.97 12799.50 3690.45 29099.80 17297.88 9799.20 24899.48 116
IS-MVSNet98.19 15197.90 16899.08 11499.57 5697.97 15099.31 2098.32 29299.01 7298.98 12499.03 11491.59 28599.79 18695.49 24799.80 7799.48 116
MVS_Test98.18 15298.36 11797.67 25498.48 28494.73 27498.18 12499.02 22197.69 15798.04 23199.11 9697.22 13799.56 29398.57 5898.90 28698.71 285
TSAR-MVS + GP.98.18 15297.98 16198.77 16498.71 24897.88 16096.32 27798.66 27696.33 24599.23 8698.51 22497.48 11999.40 32497.16 13199.46 20799.02 240
CNVR-MVS98.17 15497.87 17099.07 11798.67 26198.24 11997.01 23698.93 23397.25 20397.62 25498.34 24697.27 13199.57 29096.42 20199.33 22899.39 154
PVSNet_Blended_VisFu98.17 15498.15 14698.22 22499.73 2495.15 26597.36 21299.68 1694.45 29398.99 12299.27 6796.87 15399.94 2397.13 13799.91 4099.57 68
CS-MVS98.16 15698.22 13597.97 24198.56 27697.01 21698.10 13399.70 1497.45 18397.29 27797.19 31697.72 9299.80 17298.37 6999.62 15497.11 345
HPM-MVS++copyleft98.10 15797.64 18699.48 5199.09 17299.13 5497.52 19998.75 26997.46 18196.90 29697.83 28396.01 19499.84 12595.82 23399.35 22599.46 126
APD-MVScopyleft98.10 15797.67 18199.42 5899.11 16598.93 6997.76 17499.28 15394.97 28198.72 16998.77 18197.04 14299.85 10893.79 29499.54 18599.49 106
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVP-Stereo98.08 15997.92 16698.57 18898.96 19996.79 22297.90 15999.18 18296.41 24398.46 19998.95 14095.93 20299.60 28096.51 19498.98 28299.31 188
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PMMVS298.07 16098.08 15498.04 23799.41 10794.59 28094.59 33899.40 9797.50 17398.82 15898.83 17096.83 15699.84 12597.50 11799.81 6999.71 26
ETH3D-3000-0.198.03 16197.62 18899.29 8099.11 16598.80 7797.47 20599.32 12895.54 26898.43 20498.62 21196.61 17199.77 20493.95 28899.49 20399.30 191
ETV-MVS98.03 16197.86 17198.56 19298.69 25698.07 13997.51 20199.50 6098.10 13297.50 26695.51 34798.41 4199.88 7096.27 21099.24 24397.71 333
Effi-MVS+98.02 16397.82 17398.62 18098.53 28197.19 20797.33 21499.68 1697.30 19896.68 30597.46 30698.56 3499.80 17296.63 18198.20 31198.86 265
MSLP-MVS++98.02 16398.14 14897.64 25898.58 27395.19 26497.48 20399.23 16997.47 17697.90 23698.62 21197.04 14298.81 35997.55 11299.41 21598.94 255
EIA-MVS98.00 16597.74 17798.80 15798.72 24598.09 13398.05 14199.60 2597.39 18996.63 30795.55 34697.68 9499.80 17296.73 17399.27 23898.52 295
MCST-MVS98.00 16597.63 18799.10 11099.24 13298.17 12896.89 24798.73 27295.66 26697.92 23497.70 29197.17 13899.66 26196.18 21699.23 24499.47 124
K. test v398.00 16597.66 18499.03 12799.79 1997.56 18599.19 3992.47 36199.62 1799.52 3599.66 1789.61 29599.96 899.25 2099.81 6999.56 73
HQP_MVS97.99 16897.67 18198.93 13999.19 14697.65 18197.77 17299.27 15698.20 12597.79 24497.98 27394.90 23099.70 23794.42 27299.51 19599.45 130
MDA-MVSNet-bldmvs97.94 16997.91 16798.06 23599.44 10194.96 27096.63 26199.15 19798.35 10998.83 15499.11 9694.31 24899.85 10896.60 18298.72 29399.37 164
test_part197.91 17097.46 20099.27 8598.80 23698.18 12699.07 4999.36 10999.75 599.63 2599.49 3982.20 34599.89 5998.87 4199.95 1699.74 24
Anonymous20240521197.90 17197.50 19499.08 11498.90 21298.25 11898.53 9096.16 33998.87 8399.11 9898.86 16190.40 29199.78 19897.36 12299.31 23199.19 216
LF4IMVS97.90 17197.69 18098.52 19799.17 15597.66 18097.19 22899.47 7696.31 24797.85 24098.20 25796.71 16799.52 30594.62 26499.72 11498.38 303
UnsupCasMVSNet_eth97.89 17397.60 19098.75 16799.31 12097.17 20997.62 18799.35 11598.72 9198.76 16598.68 19592.57 27899.74 22297.76 10795.60 35599.34 176
TinyColmap97.89 17397.98 16197.60 26098.86 22194.35 28396.21 28299.44 8497.45 18399.06 10798.88 15797.99 7599.28 34094.38 27699.58 17399.18 218
OMC-MVS97.88 17597.49 19599.04 12698.89 21798.63 8896.94 24099.25 16295.02 27998.53 19698.51 22497.27 13199.47 31693.50 30299.51 19599.01 241
CANet97.87 17697.76 17598.19 22697.75 32695.51 25396.76 25499.05 21297.74 15496.93 29098.21 25695.59 21399.89 5997.86 9999.93 2599.19 216
xiu_mvs_v1_base_debu97.86 17798.17 14196.92 29398.98 19693.91 29796.45 26999.17 18897.85 14998.41 20597.14 32198.47 3799.92 3598.02 8899.05 26996.92 346
xiu_mvs_v1_base97.86 17798.17 14196.92 29398.98 19693.91 29796.45 26999.17 18897.85 14998.41 20597.14 32198.47 3799.92 3598.02 8899.05 26996.92 346
xiu_mvs_v1_base_debi97.86 17798.17 14196.92 29398.98 19693.91 29796.45 26999.17 18897.85 14998.41 20597.14 32198.47 3799.92 3598.02 8899.05 26996.92 346
NCCC97.86 17797.47 19999.05 12498.61 26898.07 13996.98 23898.90 23997.63 16197.04 28797.93 27895.99 19899.66 26195.31 25098.82 28999.43 139
PMVScopyleft91.26 2097.86 17797.94 16597.65 25699.71 3197.94 15798.52 9198.68 27598.99 7397.52 26499.35 5897.41 12298.18 36391.59 33199.67 14096.82 349
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
IterMVS-SCA-FT97.85 18298.18 14096.87 29699.27 12791.16 34295.53 31099.25 16299.10 6399.41 4999.35 5893.10 26899.96 898.65 5499.94 2199.49 106
D2MVS97.84 18397.84 17297.83 24699.14 16294.74 27396.94 24098.88 24295.84 26298.89 14398.96 13694.40 24699.69 24197.55 11299.95 1699.05 233
CPTT-MVS97.84 18397.36 20599.27 8599.31 12098.46 10498.29 11499.27 15694.90 28397.83 24198.37 24294.90 23099.84 12593.85 29399.54 18599.51 98
mvs-test197.83 18597.48 19898.89 14598.02 31499.20 3397.20 22599.16 19198.29 11696.46 31797.17 31896.44 17999.92 3596.66 17997.90 32497.54 339
mvs_anonymous97.83 18598.16 14496.87 29698.18 30691.89 32997.31 21698.90 23997.37 19198.83 15499.46 4396.28 18799.79 18698.90 3898.16 31498.95 251
testtj97.79 18797.25 21199.42 5899.03 18698.85 7297.78 16999.18 18295.83 26398.12 22298.50 22795.50 21799.86 9492.23 32499.07 26899.54 85
hse-mvs397.77 18897.33 20999.10 11099.21 13997.84 16498.35 11298.57 28199.11 5798.58 18799.02 11588.65 30499.96 898.11 8196.34 34899.49 106
IterMVS97.73 18998.11 15096.57 30399.24 13290.28 34395.52 31299.21 17198.86 8499.33 6399.33 6293.11 26799.94 2398.49 6299.94 2199.48 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG97.71 19097.52 19398.28 22098.91 21196.82 22194.42 34199.37 10597.65 16098.37 21098.29 25197.40 12399.33 33394.09 28499.22 24598.68 291
CDS-MVSNet97.69 19197.35 20698.69 17298.73 24397.02 21596.92 24498.75 26995.89 26198.59 18598.67 19792.08 28399.74 22296.72 17499.81 6999.32 184
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MS-PatchMatch97.68 19297.75 17697.45 27298.23 30493.78 30397.29 21798.84 25396.10 25398.64 17698.65 20296.04 19299.36 32996.84 16399.14 25999.20 211
Fast-Effi-MVS+97.67 19397.38 20398.57 18898.71 24897.43 19297.23 22199.45 8194.82 28596.13 32196.51 32998.52 3699.91 4596.19 21498.83 28898.37 305
EU-MVSNet97.66 19498.50 9195.13 33099.63 4985.84 35998.35 11298.21 29698.23 12199.54 3099.46 4395.02 22899.68 25098.24 7599.87 5299.87 4
MVS_030497.64 19597.35 20698.52 19797.87 32296.69 22798.59 8498.05 30597.44 18593.74 35898.85 16493.69 26299.88 7098.11 8199.81 6998.98 246
pmmvs597.64 19597.49 19598.08 23399.14 16295.12 26796.70 25899.05 21293.77 30698.62 17998.83 17093.23 26499.75 21898.33 7499.76 10099.36 170
N_pmnet97.63 19797.17 21698.99 13399.27 12797.86 16295.98 28893.41 35895.25 27799.47 4298.90 14895.63 21199.85 10896.91 15299.73 10799.27 198
YYNet197.60 19897.67 18197.39 27699.04 18393.04 31495.27 31798.38 29197.25 20398.92 13898.95 14095.48 21999.73 22696.99 14698.74 29199.41 145
MDA-MVSNet_test_wron97.60 19897.66 18497.41 27599.04 18393.09 31095.27 31798.42 28897.26 20298.88 14798.95 14095.43 22099.73 22697.02 14398.72 29399.41 145
pmmvs497.58 20097.28 21098.51 19998.84 22696.93 21995.40 31698.52 28493.60 30898.61 18198.65 20295.10 22799.60 28096.97 14999.79 8298.99 245
ETH3D cwj APD-0.1697.55 20197.00 22599.19 9798.51 28298.64 8796.85 24899.13 19894.19 29997.65 25298.40 23695.78 20799.81 16393.37 30599.16 25599.12 227
PVSNet_BlendedMVS97.55 20197.53 19297.60 26098.92 20893.77 30496.64 26099.43 9094.49 28997.62 25499.18 8096.82 15799.67 25394.73 26199.93 2599.36 170
ppachtmachnet_test97.50 20397.74 17796.78 30198.70 25291.23 34194.55 33999.05 21296.36 24499.21 8798.79 17896.39 18199.78 19896.74 17199.82 6599.34 176
FMVSNet397.50 20397.24 21398.29 21998.08 31295.83 24697.86 16398.91 23897.89 14698.95 13098.95 14087.06 30899.81 16397.77 10399.69 12999.23 206
CHOSEN 1792x268897.49 20597.14 22098.54 19699.68 4096.09 24096.50 26799.62 2291.58 33298.84 15398.97 13392.36 27999.88 7096.76 16999.95 1699.67 35
CLD-MVS97.49 20597.16 21798.48 20299.07 17697.03 21494.71 33199.21 17194.46 29198.06 22897.16 31997.57 10699.48 31494.46 26999.78 8698.95 251
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_prior397.48 20797.00 22598.95 13698.69 25697.95 15595.74 30399.03 21796.48 24096.11 32297.63 29595.92 20399.59 28494.16 27899.20 24899.30 191
hse-mvs297.46 20897.07 22198.64 17598.73 24397.33 19597.45 20797.64 31699.11 5798.58 18797.98 27388.65 30499.79 18698.11 8197.39 33298.81 271
Vis-MVSNet (Re-imp)97.46 20897.16 21798.34 21499.55 6696.10 23898.94 6098.44 28798.32 11298.16 21898.62 21188.76 30199.73 22693.88 29199.79 8299.18 218
jason97.45 21097.35 20697.76 25099.24 13293.93 29695.86 29798.42 28894.24 29798.50 19898.13 26094.82 23499.91 4597.22 12899.73 10799.43 139
jason: jason.
CL-MVSNet_2432*160097.44 21197.22 21498.08 23398.57 27595.78 24894.30 34498.79 26296.58 23898.60 18398.19 25894.74 24099.64 26896.41 20298.84 28798.82 268
DSMNet-mixed97.42 21297.60 19096.87 29699.15 16191.46 33398.54 8999.12 20092.87 31897.58 25899.63 2096.21 18899.90 4995.74 23599.54 18599.27 198
USDC97.41 21397.40 20197.44 27398.94 20293.67 30695.17 32099.53 5494.03 30398.97 12799.10 9895.29 22299.34 33195.84 23299.73 10799.30 191
our_test_397.39 21497.73 17996.34 30798.70 25289.78 34594.61 33798.97 23096.50 23999.04 11498.85 16495.98 19999.84 12597.26 12799.67 14099.41 145
cl_fuxian97.36 21597.37 20497.31 27798.09 31193.25 30995.01 32599.16 19197.05 21898.77 16498.72 18892.88 27399.64 26896.93 15199.76 10099.05 233
alignmvs97.35 21696.88 23398.78 16298.54 27998.09 13397.71 17897.69 31399.20 4997.59 25795.90 34188.12 30799.55 29698.18 7998.96 28398.70 287
Patchmtry97.35 21696.97 22798.50 20197.31 34596.47 23098.18 12498.92 23698.95 8098.78 16199.37 5485.44 32399.85 10895.96 22499.83 6299.17 222
DP-MVS Recon97.33 21896.92 23098.57 18899.09 17297.99 14596.79 25199.35 11593.18 31397.71 24898.07 26995.00 22999.31 33593.97 28699.13 26298.42 302
QAPM97.31 21996.81 23898.82 15398.80 23697.49 18899.06 5199.19 17890.22 34497.69 25099.16 8696.91 15199.90 4990.89 34299.41 21599.07 231
UnsupCasMVSNet_bld97.30 22096.92 23098.45 20599.28 12596.78 22596.20 28399.27 15695.42 27398.28 21398.30 25093.16 26699.71 23594.99 25597.37 33398.87 264
F-COLMAP97.30 22096.68 24599.14 10499.19 14698.39 10797.27 22099.30 14492.93 31696.62 30898.00 27195.73 20999.68 25092.62 31998.46 30599.35 174
1112_ss97.29 22296.86 23498.58 18599.34 11996.32 23496.75 25599.58 2893.14 31496.89 29797.48 30492.11 28299.86 9496.91 15299.54 18599.57 68
CANet_DTU97.26 22397.06 22297.84 24597.57 33394.65 27896.19 28498.79 26297.23 20995.14 34498.24 25393.22 26599.84 12597.34 12399.84 5699.04 237
Patchmatch-RL test97.26 22397.02 22497.99 24099.52 7395.53 25296.13 28599.71 1197.47 17699.27 7499.16 8684.30 33299.62 27397.89 9499.77 9098.81 271
CDPH-MVS97.26 22396.66 24899.07 11799.00 19198.15 12996.03 28799.01 22491.21 33897.79 24497.85 28296.89 15299.69 24192.75 31699.38 22199.39 154
PatchMatch-RL97.24 22696.78 23998.61 18299.03 18697.83 16596.36 27599.06 20893.49 31197.36 27697.78 28595.75 20899.49 31193.44 30398.77 29098.52 295
eth_miper_zixun_eth97.23 22797.25 21197.17 28398.00 31692.77 31894.71 33199.18 18297.27 20198.56 19198.74 18591.89 28499.69 24197.06 14299.81 6999.05 233
sss97.21 22896.93 22898.06 23598.83 22995.22 26396.75 25598.48 28694.49 28997.27 27897.90 27992.77 27599.80 17296.57 18599.32 22999.16 225
LFMVS97.20 22996.72 24298.64 17598.72 24596.95 21898.93 6194.14 35599.74 798.78 16199.01 12484.45 32999.73 22697.44 11899.27 23899.25 202
HyFIR lowres test97.19 23096.60 25198.96 13599.62 5197.28 19995.17 32099.50 6094.21 29899.01 11898.32 24986.61 31199.99 297.10 13999.84 5699.60 51
miper_lstm_enhance97.18 23197.16 21797.25 28198.16 30792.85 31695.15 32299.31 13497.25 20398.74 16898.78 17990.07 29299.78 19897.19 12999.80 7799.11 229
CNLPA97.17 23296.71 24398.55 19398.56 27698.05 14296.33 27698.93 23396.91 22597.06 28697.39 30994.38 24799.45 32091.66 32899.18 25498.14 311
xiu_mvs_v2_base97.16 23397.49 19596.17 31298.54 27992.46 32295.45 31498.84 25397.25 20397.48 26896.49 33098.31 4999.90 4996.34 20698.68 29796.15 357
AdaColmapbinary97.14 23496.71 24398.46 20498.34 29697.80 17196.95 23998.93 23395.58 26796.92 29197.66 29295.87 20599.53 30190.97 33999.14 25998.04 314
train_agg97.10 23596.45 25899.07 11798.71 24898.08 13795.96 29199.03 21791.64 33095.85 32897.53 29996.47 17799.76 21193.67 29699.16 25599.36 170
OpenMVScopyleft96.65 797.09 23696.68 24598.32 21598.32 29797.16 21098.86 6699.37 10589.48 34896.29 32099.15 9096.56 17299.90 4992.90 31099.20 24897.89 320
PS-MVSNAJ97.08 23797.39 20296.16 31498.56 27692.46 32295.24 31998.85 25297.25 20397.49 26795.99 33998.07 6699.90 4996.37 20398.67 29896.12 358
RRT_MVS97.07 23896.57 25398.58 18595.89 36696.33 23397.36 21298.77 26597.85 14999.08 10499.12 9482.30 34299.96 898.82 4499.90 4499.45 130
miper_ehance_all_eth97.06 23997.03 22397.16 28597.83 32393.06 31194.66 33499.09 20495.99 25898.69 17098.45 23392.73 27699.61 27996.79 16599.03 27398.82 268
agg_prior197.06 23996.40 25999.03 12798.68 25997.99 14595.76 30199.01 22491.73 32995.59 33197.50 30296.49 17699.77 20493.71 29599.14 25999.34 176
lupinMVS97.06 23996.86 23497.65 25698.88 21893.89 30095.48 31397.97 30693.53 30998.16 21897.58 29793.81 25899.91 4596.77 16899.57 17799.17 222
API-MVS97.04 24296.91 23297.42 27497.88 32198.23 12398.18 12498.50 28597.57 16797.39 27496.75 32696.77 16199.15 34990.16 34599.02 27694.88 363
cl-mvsnet____97.02 24396.83 23797.58 26297.82 32494.04 29094.66 33499.16 19197.04 21998.63 17798.71 18988.68 30399.69 24197.00 14499.81 6999.00 244
cl-mvsnet197.02 24396.84 23697.58 26297.82 32494.03 29194.66 33499.16 19197.04 21998.63 17798.71 18988.69 30299.69 24197.00 14499.81 6999.01 241
RPMNet97.02 24396.93 22897.30 27897.71 32894.22 28498.11 13199.30 14499.37 3596.91 29399.34 6086.72 31099.87 8797.53 11597.36 33597.81 326
HQP-MVS97.00 24696.49 25798.55 19398.67 26196.79 22296.29 27899.04 21596.05 25495.55 33596.84 32493.84 25699.54 29992.82 31399.26 24199.32 184
bset_n11_16_dypcd96.99 24796.56 25498.27 22199.00 19195.25 26092.18 36194.05 35698.75 8999.01 11898.38 24088.98 30099.93 2898.77 4899.92 3499.64 41
new_pmnet96.99 24796.76 24097.67 25498.72 24594.89 27195.95 29398.20 29792.62 32198.55 19398.54 22094.88 23399.52 30593.96 28799.44 21398.59 294
Test_1112_low_res96.99 24796.55 25598.31 21799.35 11795.47 25595.84 30099.53 5491.51 33496.80 30398.48 23291.36 28699.83 13996.58 18399.53 18999.62 46
PVSNet_Blended96.88 25096.68 24597.47 27198.92 20893.77 30494.71 33199.43 9090.98 34097.62 25497.36 31396.82 15799.67 25394.73 26199.56 18298.98 246
MVSTER96.86 25196.55 25597.79 24897.91 32094.21 28697.56 19598.87 24497.49 17599.06 10799.05 10880.72 34799.80 17298.44 6599.82 6599.37 164
BH-untuned96.83 25296.75 24197.08 28698.74 24293.33 30896.71 25798.26 29496.72 23298.44 20197.37 31295.20 22499.47 31691.89 32697.43 33198.44 300
BH-RMVSNet96.83 25296.58 25297.58 26298.47 28594.05 28996.67 25997.36 31996.70 23497.87 23897.98 27395.14 22699.44 32190.47 34498.58 30399.25 202
PAPM_NR96.82 25496.32 26298.30 21899.07 17696.69 22797.48 20398.76 26695.81 26496.61 30996.47 33294.12 25499.17 34790.82 34397.78 32599.06 232
MG-MVS96.77 25596.61 25097.26 28098.31 29893.06 31195.93 29498.12 30296.45 24297.92 23498.73 18693.77 26099.39 32691.19 33899.04 27299.33 182
112196.73 25696.00 26798.91 14298.95 20197.76 17398.07 13798.73 27287.65 35696.54 31098.13 26094.52 24399.73 22692.38 32299.02 27699.24 205
test_yl96.69 25796.29 26397.90 24298.28 29995.24 26197.29 21797.36 31998.21 12298.17 21697.86 28086.27 31399.55 29694.87 25898.32 30798.89 261
DCV-MVSNet96.69 25796.29 26397.90 24298.28 29995.24 26197.29 21797.36 31998.21 12298.17 21697.86 28086.27 31399.55 29694.87 25898.32 30798.89 261
WTY-MVS96.67 25996.27 26597.87 24498.81 23494.61 27996.77 25397.92 30894.94 28297.12 28197.74 28891.11 28799.82 15093.89 29098.15 31599.18 218
PatchT96.65 26096.35 26097.54 26797.40 34195.32 25997.98 15296.64 33599.33 3996.89 29799.42 4984.32 33199.81 16397.69 11197.49 32897.48 340
TAPA-MVS96.21 1196.63 26195.95 26998.65 17498.93 20498.09 13396.93 24299.28 15383.58 36398.13 22197.78 28596.13 18999.40 32493.52 30099.29 23698.45 299
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MIMVSNet96.62 26296.25 26697.71 25399.04 18394.66 27799.16 4196.92 33197.23 20997.87 23899.10 9886.11 31799.65 26691.65 32999.21 24798.82 268
Patchmatch-test96.55 26396.34 26197.17 28398.35 29593.06 31198.40 10797.79 30997.33 19498.41 20598.67 19783.68 33699.69 24195.16 25299.31 23198.77 279
PMMVS96.51 26495.98 26898.09 23097.53 33695.84 24594.92 32798.84 25391.58 33296.05 32695.58 34595.68 21099.66 26195.59 24498.09 31898.76 281
PLCcopyleft94.65 1696.51 26495.73 27398.85 15098.75 24197.91 15896.42 27299.06 20890.94 34195.59 33197.38 31094.41 24599.59 28490.93 34098.04 32299.05 233
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
114514_t96.50 26695.77 27198.69 17299.48 9397.43 19297.84 16599.55 4681.42 36596.51 31398.58 21795.53 21499.67 25393.41 30499.58 17398.98 246
MAR-MVS96.47 26795.70 27498.79 15997.92 31999.12 5698.28 11598.60 28092.16 32795.54 33896.17 33794.77 23999.52 30589.62 34798.23 30997.72 332
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ETH3 D test640096.46 26895.59 27999.08 11498.88 21898.21 12596.53 26499.18 18288.87 35297.08 28497.79 28493.64 26399.77 20488.92 34999.40 21799.28 196
SCA96.41 26996.66 24895.67 32098.24 30288.35 35095.85 29996.88 33296.11 25297.67 25198.67 19793.10 26899.85 10894.16 27899.22 24598.81 271
DPM-MVS96.32 27095.59 27998.51 19998.76 23997.21 20594.54 34098.26 29491.94 32896.37 31897.25 31593.06 27099.43 32291.42 33498.74 29198.89 261
CMPMVSbinary75.91 2396.29 27195.44 28498.84 15196.25 36298.69 8697.02 23599.12 20088.90 35197.83 24198.86 16189.51 29698.90 35791.92 32599.51 19598.92 257
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CR-MVSNet96.28 27295.95 26997.28 27997.71 32894.22 28498.11 13198.92 23692.31 32496.91 29399.37 5485.44 32399.81 16397.39 12197.36 33597.81 326
CVMVSNet96.25 27397.21 21593.38 34699.10 16980.56 37297.20 22598.19 29996.94 22399.00 12199.02 11589.50 29799.80 17296.36 20599.59 16799.78 14
AUN-MVS96.24 27495.45 28398.60 18398.70 25297.22 20397.38 21097.65 31495.95 25995.53 33997.96 27782.11 34699.79 18696.31 20797.44 33098.80 276
EPNet96.14 27595.44 28498.25 22290.76 37395.50 25497.92 15694.65 34898.97 7692.98 35998.85 16489.12 29999.87 8795.99 22299.68 13499.39 154
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
wuyk23d96.06 27697.62 18891.38 34998.65 26798.57 9598.85 6796.95 32996.86 22799.90 499.16 8699.18 1198.40 36289.23 34899.77 9077.18 367
miper_enhance_ethall96.01 27795.74 27296.81 30096.41 36092.27 32693.69 35398.89 24191.14 33998.30 21197.35 31490.58 28999.58 28996.31 20799.03 27398.60 292
FMVSNet596.01 27795.20 29298.41 20897.53 33696.10 23898.74 7099.50 6097.22 21298.03 23299.04 11169.80 36799.88 7097.27 12699.71 11899.25 202
baseline195.96 27995.44 28497.52 26998.51 28293.99 29498.39 10896.09 34198.21 12298.40 20997.76 28786.88 30999.63 27195.42 24889.27 36798.95 251
HY-MVS95.94 1395.90 28095.35 28897.55 26697.95 31794.79 27298.81 6996.94 33092.28 32595.17 34398.57 21889.90 29499.75 21891.20 33797.33 33798.10 312
GA-MVS95.86 28195.32 28997.49 27098.60 27094.15 28893.83 35197.93 30795.49 27196.68 30597.42 30883.21 33799.30 33796.22 21298.55 30499.01 241
OpenMVS_ROBcopyleft95.38 1495.84 28295.18 29397.81 24798.41 29397.15 21197.37 21198.62 27983.86 36298.65 17598.37 24294.29 24999.68 25088.41 35098.62 30196.60 352
cl-mvsnet295.79 28395.39 28796.98 29096.77 35492.79 31794.40 34298.53 28394.59 28897.89 23798.17 25982.82 34199.24 34296.37 20399.03 27398.92 257
131495.74 28495.60 27896.17 31297.53 33692.75 31998.07 13798.31 29391.22 33794.25 35096.68 32795.53 21499.03 35191.64 33097.18 33896.74 350
PVSNet93.40 1795.67 28595.70 27495.57 32398.83 22988.57 34892.50 35897.72 31192.69 32096.49 31696.44 33393.72 26199.43 32293.61 29799.28 23798.71 285
tttt051795.64 28694.98 29797.64 25899.36 11393.81 30298.72 7390.47 36798.08 13398.67 17298.34 24673.88 36499.92 3597.77 10399.51 19599.20 211
PatchmatchNetpermissive95.58 28795.67 27695.30 32997.34 34387.32 35497.65 18596.65 33495.30 27697.07 28598.69 19384.77 32699.75 21894.97 25698.64 29998.83 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TR-MVS95.55 28895.12 29596.86 29997.54 33593.94 29596.49 26896.53 33694.36 29697.03 28896.61 32894.26 25099.16 34886.91 35496.31 34997.47 341
JIA-IIPM95.52 28995.03 29697.00 28896.85 35294.03 29196.93 24295.82 34399.20 4994.63 34899.71 1283.09 33899.60 28094.42 27294.64 35997.36 342
CHOSEN 280x42095.51 29095.47 28195.65 32298.25 30188.27 35193.25 35598.88 24293.53 30994.65 34797.15 32086.17 31599.93 2897.41 12099.93 2598.73 284
ADS-MVSNet295.43 29194.98 29796.76 30298.14 30891.74 33097.92 15697.76 31090.23 34296.51 31398.91 14585.61 32099.85 10892.88 31196.90 34198.69 288
PAPR95.29 29294.47 30297.75 25197.50 34095.14 26694.89 32898.71 27491.39 33695.35 34295.48 34894.57 24299.14 35084.95 35797.37 33398.97 250
thisisatest053095.27 29394.45 30397.74 25299.19 14694.37 28297.86 16390.20 36897.17 21398.22 21597.65 29373.53 36599.90 4996.90 15799.35 22598.95 251
ADS-MVSNet95.24 29494.93 29996.18 31198.14 30890.10 34497.92 15697.32 32290.23 34296.51 31398.91 14585.61 32099.74 22292.88 31196.90 34198.69 288
RRT_test8_iter0595.24 29495.13 29495.57 32397.32 34487.02 35697.99 15099.41 9498.06 13499.12 9699.05 10866.85 37299.85 10898.93 3799.47 20699.84 8
BH-w/o95.13 29694.89 30095.86 31698.20 30591.31 33795.65 30697.37 31893.64 30796.52 31295.70 34493.04 27199.02 35288.10 35195.82 35497.24 343
tpmrst95.07 29795.46 28293.91 34097.11 34884.36 36697.62 18796.96 32894.98 28096.35 31998.80 17685.46 32299.59 28495.60 24396.23 35097.79 329
pmmvs395.03 29894.40 30496.93 29297.70 33092.53 32195.08 32397.71 31288.57 35397.71 24898.08 26879.39 35499.82 15096.19 21499.11 26698.43 301
tpmvs95.02 29995.25 29094.33 33696.39 36185.87 35898.08 13696.83 33395.46 27295.51 34098.69 19385.91 31899.53 30194.16 27896.23 35097.58 337
EPNet_dtu94.93 30094.78 30195.38 32893.58 37087.68 35396.78 25295.69 34597.35 19389.14 36798.09 26788.15 30699.49 31194.95 25799.30 23498.98 246
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
cascas94.79 30194.33 30796.15 31596.02 36592.36 32592.34 36099.26 16185.34 36195.08 34594.96 35692.96 27298.53 36194.41 27598.59 30297.56 338
tpm94.67 30294.34 30695.66 32197.68 33288.42 34997.88 16094.90 34794.46 29196.03 32798.56 21978.66 35699.79 18695.88 22695.01 35898.78 278
test0.0.03 194.51 30393.69 31296.99 28996.05 36393.61 30794.97 32693.49 35796.17 24997.57 26094.88 35782.30 34299.01 35493.60 29894.17 36398.37 305
thres600view794.45 30493.83 31096.29 30899.06 18091.53 33297.99 15094.24 35398.34 11097.44 27195.01 35379.84 35099.67 25384.33 35898.23 30997.66 334
PCF-MVS92.86 1894.36 30593.00 32298.42 20798.70 25297.56 18593.16 35699.11 20279.59 36697.55 26197.43 30792.19 28099.73 22679.85 36699.45 21097.97 318
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
X-MVStestdata94.32 30692.59 32499.53 3699.46 9699.21 2798.65 7799.34 12198.62 9697.54 26245.85 36897.50 11499.83 13996.79 16599.53 18999.56 73
MVS-HIRNet94.32 30695.62 27790.42 35098.46 28675.36 37396.29 27889.13 37095.25 27795.38 34199.75 792.88 27399.19 34694.07 28599.39 21896.72 351
ET-MVSNet_ETH3D94.30 30893.21 31897.58 26298.14 30894.47 28194.78 33093.24 36094.72 28689.56 36695.87 34278.57 35899.81 16396.91 15297.11 34098.46 297
thres100view90094.19 30993.67 31395.75 31999.06 18091.35 33698.03 14494.24 35398.33 11197.40 27394.98 35579.84 35099.62 27383.05 36098.08 31996.29 353
E-PMN94.17 31094.37 30593.58 34396.86 35185.71 36190.11 36397.07 32698.17 12897.82 24397.19 31684.62 32898.94 35589.77 34697.68 32796.09 359
thres40094.14 31193.44 31596.24 31098.93 20491.44 33497.60 19094.29 35197.94 14197.10 28294.31 36179.67 35299.62 27383.05 36098.08 31997.66 334
thisisatest051594.12 31293.16 31996.97 29198.60 27092.90 31593.77 35290.61 36694.10 30196.91 29395.87 34274.99 36399.80 17294.52 26799.12 26598.20 308
tfpn200view994.03 31393.44 31595.78 31898.93 20491.44 33497.60 19094.29 35197.94 14197.10 28294.31 36179.67 35299.62 27383.05 36098.08 31996.29 353
CostFormer93.97 31493.78 31194.51 33597.53 33685.83 36097.98 15295.96 34289.29 35094.99 34698.63 20978.63 35799.62 27394.54 26696.50 34698.09 313
test-LLR93.90 31593.85 30994.04 33896.53 35684.62 36494.05 34892.39 36296.17 24994.12 35295.07 35182.30 34299.67 25395.87 22998.18 31297.82 324
EMVS93.83 31694.02 30893.23 34796.83 35384.96 36289.77 36496.32 33897.92 14397.43 27296.36 33686.17 31598.93 35687.68 35297.73 32695.81 360
baseline293.73 31792.83 32396.42 30697.70 33091.28 33996.84 25089.77 36993.96 30592.44 36195.93 34079.14 35599.77 20492.94 30996.76 34598.21 307
thres20093.72 31893.14 32095.46 32798.66 26691.29 33896.61 26294.63 34997.39 18996.83 30193.71 36479.88 34999.56 29382.40 36398.13 31695.54 362
EPMVS93.72 31893.27 31795.09 33196.04 36487.76 35298.13 12885.01 37294.69 28796.92 29198.64 20578.47 36099.31 33595.04 25396.46 34798.20 308
dp93.47 32093.59 31493.13 34896.64 35581.62 37197.66 18396.42 33792.80 31996.11 32298.64 20578.55 35999.59 28493.31 30692.18 36698.16 310
FPMVS93.44 32192.23 32697.08 28699.25 13197.86 16295.61 30797.16 32592.90 31793.76 35798.65 20275.94 36295.66 36779.30 36797.49 32897.73 331
tpm cat193.29 32293.13 32193.75 34197.39 34284.74 36397.39 20997.65 31483.39 36494.16 35198.41 23582.86 34099.39 32691.56 33295.35 35797.14 344
MVS93.19 32392.09 32796.50 30596.91 35094.03 29198.07 13798.06 30468.01 36794.56 34996.48 33195.96 20199.30 33783.84 35996.89 34396.17 355
tpm293.09 32492.58 32594.62 33497.56 33486.53 35797.66 18395.79 34486.15 35994.07 35498.23 25575.95 36199.53 30190.91 34196.86 34497.81 326
KD-MVS_2432*160092.87 32591.99 32995.51 32591.37 37189.27 34694.07 34698.14 30095.42 27397.25 27996.44 33367.86 36999.24 34291.28 33596.08 35298.02 315
miper_refine_blended92.87 32591.99 32995.51 32591.37 37189.27 34694.07 34698.14 30095.42 27397.25 27996.44 33367.86 36999.24 34291.28 33596.08 35298.02 315
DWT-MVSNet_test92.75 32792.05 32894.85 33296.48 35887.21 35597.83 16694.99 34692.22 32692.72 36094.11 36370.75 36699.46 31895.01 25494.33 36297.87 322
MVEpermissive83.40 2292.50 32891.92 33194.25 33798.83 22991.64 33192.71 35783.52 37395.92 26086.46 37095.46 34995.20 22495.40 36880.51 36598.64 29995.73 361
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
gg-mvs-nofinetune92.37 32991.20 33495.85 31795.80 36792.38 32499.31 2081.84 37499.75 591.83 36399.74 868.29 36899.02 35287.15 35397.12 33996.16 356
test-mter92.33 33091.76 33394.04 33896.53 35684.62 36494.05 34892.39 36294.00 30494.12 35295.07 35165.63 37599.67 25395.87 22998.18 31297.82 324
IB-MVS91.63 1992.24 33190.90 33596.27 30997.22 34791.24 34094.36 34393.33 35992.37 32392.24 36294.58 36066.20 37499.89 5993.16 30894.63 36097.66 334
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TESTMET0.1,192.19 33291.77 33293.46 34496.48 35882.80 36994.05 34891.52 36594.45 29394.00 35594.88 35766.65 37399.56 29395.78 23498.11 31798.02 315
PAPM91.88 33390.34 33696.51 30498.06 31392.56 32092.44 35997.17 32486.35 35890.38 36596.01 33886.61 31199.21 34570.65 36995.43 35697.75 330
PVSNet_089.98 2191.15 33490.30 33793.70 34297.72 32784.34 36790.24 36297.42 31790.20 34593.79 35693.09 36590.90 28898.89 35886.57 35572.76 36997.87 322
test_method79.78 33579.50 33880.62 35180.21 37445.76 37670.82 36598.41 29031.08 37080.89 37197.71 28984.85 32597.37 36591.51 33380.03 36898.75 282
tmp_tt78.77 33678.73 33978.90 35258.45 37574.76 37594.20 34578.26 37639.16 36986.71 36992.82 36680.50 34875.19 37186.16 35692.29 36586.74 366
cdsmvs_eth3d_5k24.66 33732.88 3400.00 3550.00 3780.00 3790.00 36699.10 2030.00 3730.00 37497.58 29799.21 100.00 3740.00 3720.00 3720.00 370
testmvs17.12 33820.53 3416.87 35412.05 3764.20 37893.62 3546.73 3774.62 37210.41 37224.33 3698.28 3773.56 3739.69 37115.07 37012.86 369
test12317.04 33920.11 3427.82 35310.25 3774.91 37794.80 3294.47 3784.93 37110.00 37324.28 3709.69 3763.64 37210.14 37012.43 37114.92 368
pcd_1.5k_mvsjas8.17 34010.90 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 37398.07 660.00 3740.00 3720.00 3720.00 370
ab-mvs-re8.12 34110.83 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37497.48 3040.00 3780.00 3740.00 3720.00 3720.00 370
uanet_test0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet-low-res0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
Regformer0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
FOURS199.73 2499.67 299.43 1099.54 5099.43 3099.26 78
MSC_two_6792asdad99.32 7798.43 28998.37 11098.86 24999.89 5997.14 13599.60 16399.71 26
PC_three_145293.27 31299.40 5298.54 22098.22 5597.00 36695.17 25199.45 21099.49 106
No_MVS99.32 7798.43 28998.37 11098.86 24999.89 5997.14 13599.60 16399.71 26
test_one_060199.39 10999.20 3399.31 13498.49 10498.66 17499.02 11597.64 100
eth-test20.00 378
eth-test0.00 378
ZD-MVS99.01 19098.84 7399.07 20794.10 30198.05 23098.12 26396.36 18599.86 9492.70 31899.19 252
RE-MVS-def98.58 8299.20 14399.38 698.48 10099.30 14498.64 9298.95 13098.96 13697.75 9096.56 18899.39 21899.45 130
IU-MVS99.49 8599.15 4798.87 24492.97 31599.41 4996.76 16999.62 15499.66 36
OPU-MVS98.82 15398.59 27298.30 11598.10 13398.52 22398.18 5998.75 36094.62 26499.48 20599.41 145
test_241102_TWO99.30 14498.03 13599.26 7899.02 11597.51 11399.88 7096.91 15299.60 16399.66 36
test_241102_ONE99.49 8599.17 3899.31 13497.98 13799.66 2098.90 14898.36 4499.48 314
9.1497.78 17499.07 17697.53 19899.32 12895.53 27098.54 19598.70 19297.58 10599.76 21194.32 27799.46 207
save fliter99.11 16597.97 15096.53 26499.02 22198.24 119
test_0728_THIRD98.17 12899.08 10499.02 11597.89 7999.88 7097.07 14099.71 11899.70 31
test_0728_SECOND99.60 1399.50 7899.23 2598.02 14699.32 12899.88 7096.99 14699.63 15199.68 33
test072699.50 7899.21 2798.17 12799.35 11597.97 13999.26 7899.06 10197.61 103
GSMVS98.81 271
test_part299.36 11399.10 5999.05 112
sam_mvs184.74 32798.81 271
sam_mvs84.29 333
ambc98.24 22398.82 23295.97 24298.62 8099.00 22799.27 7499.21 7596.99 14799.50 31096.55 19199.50 20299.26 201
MTGPAbinary99.20 173
test_post197.59 19220.48 37283.07 33999.66 26194.16 278
test_post21.25 37183.86 33599.70 237
patchmatchnet-post98.77 18184.37 33099.85 108
GG-mvs-BLEND94.76 33394.54 36992.13 32899.31 2080.47 37588.73 36891.01 36767.59 37198.16 36482.30 36494.53 36193.98 364
MTMP97.93 15591.91 364
gm-plane-assit94.83 36881.97 37088.07 35594.99 35499.60 28091.76 327
test9_res93.28 30799.15 25899.38 161
TEST998.71 24898.08 13795.96 29199.03 21791.40 33595.85 32897.53 29996.52 17499.76 211
test_898.67 26198.01 14495.91 29699.02 22191.64 33095.79 33097.50 30296.47 17799.76 211
agg_prior292.50 32199.16 25599.37 164
agg_prior98.68 25997.99 14599.01 22495.59 33199.77 204
TestCases99.16 10199.50 7898.55 9699.58 2896.80 22898.88 14799.06 10197.65 9799.57 29094.45 27099.61 16199.37 164
test_prior497.97 15095.86 297
test_prior295.74 30396.48 24096.11 32297.63 29595.92 20394.16 27899.20 248
test_prior98.95 13698.69 25697.95 15599.03 21799.59 28499.30 191
旧先验295.76 30188.56 35497.52 26499.66 26194.48 268
新几何295.93 294
新几何198.91 14298.94 20297.76 17398.76 26687.58 35796.75 30498.10 26594.80 23799.78 19892.73 31799.00 27999.20 211
旧先验198.82 23297.45 19198.76 26698.34 24695.50 21799.01 27899.23 206
无先验95.74 30398.74 27189.38 34999.73 22692.38 32299.22 210
原ACMM295.53 310
原ACMM198.35 21398.90 21296.25 23698.83 25892.48 32296.07 32598.10 26595.39 22199.71 23592.61 32098.99 28099.08 230
test22298.92 20896.93 21995.54 30998.78 26485.72 36096.86 29998.11 26494.43 24499.10 26799.23 206
testdata299.79 18692.80 315
segment_acmp97.02 145
testdata98.09 23098.93 20495.40 25898.80 26190.08 34697.45 27098.37 24295.26 22399.70 23793.58 29998.95 28499.17 222
testdata195.44 31596.32 246
test1298.93 13998.58 27397.83 16598.66 27696.53 31195.51 21699.69 24199.13 26299.27 198
plane_prior799.19 14697.87 161
plane_prior698.99 19597.70 17994.90 230
plane_prior599.27 15699.70 23794.42 27299.51 19599.45 130
plane_prior497.98 273
plane_prior397.78 17297.41 18797.79 244
plane_prior297.77 17298.20 125
plane_prior199.05 182
plane_prior97.65 18197.07 23496.72 23299.36 223
n20.00 379
nn0.00 379
door-mid99.57 35
lessismore_v098.97 13499.73 2497.53 18786.71 37199.37 5799.52 3589.93 29399.92 3598.99 3599.72 11499.44 135
LGP-MVS_train99.47 5499.57 5698.97 6599.48 7096.60 23699.10 10199.06 10198.71 2799.83 13995.58 24599.78 8699.62 46
test1198.87 244
door99.41 94
HQP5-MVS96.79 222
HQP-NCC98.67 26196.29 27896.05 25495.55 335
ACMP_Plane98.67 26196.29 27896.05 25495.55 335
BP-MVS92.82 313
HQP4-MVS95.56 33499.54 29999.32 184
HQP3-MVS99.04 21599.26 241
HQP2-MVS93.84 256
NP-MVS98.84 22697.39 19496.84 324
MDTV_nov1_ep13_2view74.92 37497.69 18090.06 34797.75 24785.78 31993.52 30098.69 288
MDTV_nov1_ep1395.22 29197.06 34983.20 36897.74 17696.16 33994.37 29596.99 28998.83 17083.95 33499.53 30193.90 28997.95 323
ACMMP++_ref99.77 90
ACMMP++99.68 134
Test By Simon96.52 174
ITE_SJBPF98.87 14799.22 13798.48 10399.35 11597.50 17398.28 21398.60 21597.64 10099.35 33093.86 29299.27 23898.79 277
DeepMVS_CXcopyleft93.44 34598.24 30294.21 28694.34 35064.28 36891.34 36494.87 35989.45 29892.77 37077.54 36893.14 36493.35 365