This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
PC_three_145282.47 22597.09 997.07 4592.72 198.04 15992.70 4699.02 1298.86 10
DVP-MVS++95.98 196.36 194.82 3497.78 5786.00 5598.29 197.49 590.75 2297.62 598.06 692.59 299.61 395.64 699.02 1298.86 10
OPU-MVS96.21 398.00 4690.85 397.13 1497.08 4392.59 298.94 8792.25 5498.99 1498.84 13
SED-MVS95.91 296.28 294.80 3698.77 585.99 5797.13 1497.44 1490.31 3197.71 198.07 492.31 499.58 895.66 499.13 398.84 13
test_241102_ONE98.77 585.99 5797.44 1490.26 3597.71 197.96 1092.31 499.38 32
test_0728_THIRD90.75 2297.04 1098.05 892.09 699.55 1595.64 699.13 399.13 2
DPE-MVScopyleft95.57 495.67 495.25 998.36 2787.28 1795.56 8897.51 489.13 6397.14 897.91 1191.64 799.62 194.61 1499.17 298.86 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft95.67 396.02 394.64 4398.78 385.93 6097.09 1696.73 8490.27 3397.04 1098.05 891.47 899.55 1595.62 899.08 798.45 38
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.78 385.93 6097.19 1197.47 1090.27 3397.64 498.13 191.47 8
test_241102_TWO97.44 1490.31 3197.62 598.07 491.46 1099.58 895.66 499.12 698.98 9
test_one_060198.58 1285.83 6697.44 1491.05 1796.78 1398.06 691.45 11
MSP-MVS95.42 695.56 694.98 2198.49 1886.52 4096.91 2597.47 1091.73 996.10 1796.69 6389.90 1299.30 4294.70 1298.04 7399.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepPCF-MVS89.96 194.20 3694.77 1492.49 11696.52 9980.00 22094.00 19397.08 4790.05 3795.65 2197.29 2889.66 1398.97 8393.95 2098.71 3498.50 28
SD-MVS94.96 1295.33 893.88 6597.25 8086.69 3296.19 5197.11 4690.42 3096.95 1297.27 2989.53 1496.91 25094.38 1698.85 1998.03 78
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS95.40 795.37 795.50 798.11 3988.51 795.29 10096.96 5692.09 495.32 2397.08 4389.49 1599.33 3995.10 1198.85 1998.66 20
APDe-MVS95.46 595.64 594.91 2498.26 3086.29 5197.46 697.40 2089.03 6796.20 1698.10 289.39 1699.34 3695.88 399.03 1199.10 4
MCST-MVS94.45 2194.20 3295.19 1198.46 2087.50 1595.00 12297.12 4487.13 12392.51 8496.30 8289.24 1799.34 3693.46 2898.62 4898.73 16
TSAR-MVS + MP.94.85 1394.94 1194.58 4698.25 3186.33 4796.11 5896.62 9688.14 9696.10 1796.96 5089.09 1898.94 8794.48 1598.68 3998.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP95.20 895.32 994.85 2996.99 8386.33 4797.33 797.30 2991.38 1395.39 2297.46 1988.98 1999.40 3194.12 1898.89 1898.82 15
Skip Steuart: Steuart Systems R&D Blog.
SMA-MVScopyleft95.20 895.07 1095.59 598.14 3888.48 896.26 4797.28 3185.90 15297.67 398.10 288.41 2099.56 1094.66 1399.19 198.71 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
patch_mono-293.74 4994.32 2292.01 13397.54 6478.37 25793.40 21697.19 3888.02 9894.99 2897.21 3488.35 2198.44 12394.07 1998.09 7099.23 1
9.1494.47 1897.79 5496.08 5997.44 1486.13 15095.10 2697.40 2388.34 2299.22 4993.25 3598.70 36
xxxxxxxxxxxxxcwj94.65 1694.70 1594.48 5097.85 5085.63 7195.21 10695.47 17789.44 5295.71 1997.70 1388.28 2399.35 3493.89 2298.78 2598.48 30
SF-MVS94.97 1194.90 1395.20 1097.84 5287.76 1096.65 3497.48 987.76 10995.71 1997.70 1388.28 2399.35 3493.89 2298.78 2598.48 30
HPM-MVS++copyleft95.14 1094.91 1295.83 498.25 3189.65 495.92 7096.96 5691.75 894.02 4196.83 5688.12 2599.55 1593.41 3198.94 1698.28 54
dcpmvs_293.49 5694.19 3391.38 16597.69 6176.78 29094.25 17296.29 11388.33 8594.46 3096.88 5388.07 2698.64 10793.62 2698.09 7098.73 16
agg_prior193.29 6392.97 6794.26 5897.38 7185.92 6293.92 19796.72 8681.96 23792.16 8996.23 8687.85 2798.97 8391.95 6898.55 5497.90 87
CSCG93.23 6693.05 6493.76 7298.04 4484.07 10296.22 5097.37 2184.15 18890.05 12595.66 11187.77 2899.15 5689.91 10298.27 6398.07 74
NCCC94.81 1494.69 1695.17 1297.83 5387.46 1695.66 8396.93 6092.34 293.94 4296.58 7387.74 2999.44 3092.83 4198.40 5898.62 22
ETH3D-3000-0.194.61 1794.44 1995.12 1397.70 6087.71 1195.98 6797.44 1486.67 13695.25 2597.31 2787.73 3099.24 4793.11 3898.76 3098.40 41
TEST997.53 6586.49 4194.07 18696.78 7781.61 25092.77 7496.20 8987.71 3199.12 58
train_agg93.44 5893.08 6394.52 4897.53 6586.49 4194.07 18696.78 7781.86 24392.77 7496.20 8987.63 3299.12 5892.14 5998.69 3797.94 83
test_897.49 6886.30 5094.02 19196.76 8081.86 24392.70 7896.20 8987.63 3299.02 71
ZD-MVS98.15 3786.62 3797.07 4883.63 19994.19 3696.91 5287.57 3499.26 4691.99 6498.44 56
TSAR-MVS + GP.93.66 5293.41 5794.41 5596.59 9486.78 2894.40 16293.93 24889.77 4694.21 3595.59 11487.35 3598.61 11192.72 4496.15 11497.83 92
APD-MVScopyleft94.24 3194.07 3994.75 3998.06 4386.90 2395.88 7196.94 5985.68 15895.05 2797.18 3887.31 3699.07 6191.90 7298.61 5098.28 54
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ETH3 D test640093.64 5393.22 6094.92 2297.79 5486.84 2495.31 9597.26 3282.67 22393.81 4596.29 8387.29 3799.27 4589.87 10398.67 4198.65 21
ETH3D cwj APD-0.1693.91 4493.53 5595.06 1596.76 8887.78 994.92 12797.21 3784.33 18693.89 4497.09 4287.20 3899.29 4491.90 7298.44 5698.12 70
Regformer-294.33 2894.22 2994.68 4195.54 13586.75 3194.57 15096.70 8991.84 794.41 3196.56 7587.19 3999.13 5793.50 2797.65 8698.16 65
segment_acmp87.16 40
Regformer-194.22 3394.13 3794.51 4995.54 13586.36 4694.57 15096.44 10491.69 1194.32 3496.56 7587.05 4199.03 6793.35 3297.65 8698.15 66
testtj94.39 2694.18 3495.00 1898.24 3386.77 3096.16 5297.23 3587.28 12194.85 2997.04 4686.99 4299.52 2391.54 7898.33 6198.71 18
旧先验196.79 8781.81 16695.67 16196.81 5886.69 4397.66 8596.97 126
test_prior393.60 5493.53 5593.82 6797.29 7684.49 8994.12 17996.88 6587.67 11292.63 7996.39 8086.62 4498.87 9191.50 7998.67 4198.11 72
test_prior294.12 17987.67 11292.63 7996.39 8086.62 4491.50 7998.67 41
CDPH-MVS92.83 7092.30 7694.44 5197.79 5486.11 5494.06 18896.66 9380.09 26992.77 7496.63 7086.62 4499.04 6687.40 13198.66 4498.17 64
DPM-MVS92.58 7491.74 8295.08 1496.19 10789.31 592.66 24596.56 10183.44 20591.68 10395.04 12886.60 4798.99 8085.60 15597.92 7896.93 128
DELS-MVS93.43 6093.25 5993.97 6295.42 13985.04 7893.06 23597.13 4390.74 2491.84 9795.09 12786.32 4899.21 5091.22 8398.45 5597.65 97
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ZNCC-MVS94.47 1994.28 2695.03 1698.52 1686.96 1996.85 2897.32 2788.24 9093.15 6297.04 4686.17 4999.62 192.40 5098.81 2298.52 26
HFP-MVS94.52 1894.40 2194.86 2798.61 1086.81 2696.94 2097.34 2288.63 7793.65 4997.21 3486.10 5099.49 2692.35 5298.77 2898.30 50
#test#94.32 2994.14 3694.86 2798.61 1086.81 2696.43 3897.34 2287.51 11593.65 4997.21 3486.10 5099.49 2691.68 7698.77 2898.30 50
MVS_111021_HR93.45 5793.31 5893.84 6696.99 8384.84 7993.24 22897.24 3388.76 7491.60 10495.85 10386.07 5298.66 10591.91 6998.16 6698.03 78
Regformer-493.91 4493.81 4694.19 6095.36 14085.47 7494.68 14296.41 10791.60 1293.75 4696.71 6185.95 5399.10 6093.21 3696.65 10598.01 80
ACMMP_NAP94.74 1594.56 1795.28 898.02 4587.70 1295.68 8197.34 2288.28 8995.30 2497.67 1585.90 5499.54 1993.91 2198.95 1598.60 23
Regformer-393.68 5193.64 5493.81 7095.36 14084.61 8394.68 14295.83 15091.27 1493.60 5296.71 6185.75 5598.86 9492.87 4096.65 10597.96 82
CS-MVS94.12 3794.44 1993.17 8396.55 9683.08 13197.63 396.95 5891.71 1093.50 5796.21 8785.61 5698.24 13793.64 2598.17 6598.19 62
PHI-MVS93.89 4693.65 5394.62 4596.84 8686.43 4396.69 3297.49 585.15 17293.56 5596.28 8485.60 5799.31 4192.45 4798.79 2398.12 70
MP-MVS-pluss94.21 3494.00 4294.85 2998.17 3686.65 3594.82 13497.17 4286.26 14492.83 7297.87 1285.57 5899.56 1094.37 1798.92 1798.34 45
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
GST-MVS94.21 3493.97 4394.90 2698.41 2486.82 2596.54 3697.19 3888.24 9093.26 5896.83 5685.48 5999.59 791.43 8298.40 5898.30 50
MP-MVScopyleft94.25 3094.07 3994.77 3898.47 1986.31 4996.71 3196.98 5289.04 6691.98 9397.19 3785.43 6099.56 1092.06 6398.79 2398.44 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS_fast89.43 294.04 3893.79 4794.80 3697.48 6986.78 2895.65 8596.89 6489.40 5592.81 7396.97 4985.37 6199.24 4790.87 9298.69 3798.38 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
region2R94.43 2394.27 2894.92 2298.65 886.67 3496.92 2497.23 3588.60 7993.58 5397.27 2985.22 6299.54 1992.21 5598.74 3398.56 25
CP-MVS94.34 2794.21 3194.74 4098.39 2586.64 3697.60 497.24 3388.53 8192.73 7797.23 3285.20 6399.32 4092.15 5898.83 2198.25 59
test1294.34 5697.13 8186.15 5396.29 11391.04 11385.08 6499.01 7398.13 6897.86 90
ACMMPR94.43 2394.28 2694.91 2498.63 986.69 3296.94 2097.32 2788.63 7793.53 5697.26 3185.04 6599.54 1992.35 5298.78 2598.50 28
CS-MVS-test94.02 3994.29 2593.24 7996.69 9083.24 12497.49 596.92 6192.14 392.90 6895.77 10785.02 6698.33 13293.03 3998.62 4898.13 68
XVS94.45 2194.32 2294.85 2998.54 1486.60 3896.93 2297.19 3890.66 2792.85 7097.16 4085.02 6699.49 2691.99 6498.56 5298.47 34
X-MVStestdata88.31 17586.13 21894.85 2998.54 1486.60 3896.93 2297.19 3890.66 2792.85 7023.41 37685.02 6699.49 2691.99 6498.56 5298.47 34
MSLP-MVS++93.72 5094.08 3892.65 10897.31 7483.43 12095.79 7597.33 2590.03 3893.58 5396.96 5084.87 6997.76 17592.19 5798.66 4496.76 132
HPM-MVScopyleft94.02 3993.88 4494.43 5398.39 2585.78 6897.25 1097.07 4886.90 13192.62 8196.80 6084.85 7099.17 5392.43 4898.65 4698.33 46
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SR-MVS94.23 3294.17 3594.43 5398.21 3585.78 6896.40 4196.90 6388.20 9494.33 3397.40 2384.75 7199.03 6793.35 3297.99 7498.48 30
PGM-MVS93.96 4393.72 5094.68 4198.43 2186.22 5295.30 9897.78 187.45 11893.26 5897.33 2684.62 7299.51 2490.75 9498.57 5198.32 49
EI-MVSNet-Vis-set93.01 6992.92 6893.29 7795.01 15583.51 11894.48 15495.77 15490.87 1892.52 8396.67 6584.50 7399.00 7891.99 6494.44 14297.36 108
zzz-MVS94.47 1994.30 2495.00 1898.42 2286.95 2095.06 12096.97 5391.07 1593.14 6397.56 1684.30 7499.56 1093.43 2998.75 3198.47 34
MTAPA94.42 2594.22 2995.00 1898.42 2286.95 2094.36 16996.97 5391.07 1593.14 6397.56 1684.30 7499.56 1093.43 2998.75 3198.47 34
test117293.97 4294.07 3993.66 7498.11 3983.45 11996.26 4796.84 7088.33 8594.19 3697.43 2084.24 7699.01 7393.26 3497.98 7598.52 26
SR-MVS-dyc-post93.82 4793.82 4593.82 6797.92 4784.57 8596.28 4596.76 8087.46 11693.75 4697.43 2084.24 7699.01 7392.73 4297.80 8197.88 88
ETV-MVS92.74 7292.66 7192.97 9395.20 14984.04 10495.07 11796.51 10290.73 2592.96 6791.19 26784.06 7898.34 13091.72 7596.54 10896.54 141
EI-MVSNet-UG-set92.74 7292.62 7293.12 8594.86 16683.20 12694.40 16295.74 15790.71 2692.05 9296.60 7284.00 7998.99 8091.55 7793.63 15097.17 117
mPP-MVS93.99 4193.78 4894.63 4498.50 1785.90 6596.87 2696.91 6288.70 7591.83 9997.17 3983.96 8099.55 1591.44 8198.64 4798.43 40
APD-MVS_3200maxsize93.78 4893.77 4993.80 7197.92 4784.19 10096.30 4396.87 6786.96 12793.92 4397.47 1883.88 8198.96 8692.71 4597.87 7998.26 58
EIA-MVS91.95 8191.94 7991.98 13795.16 15080.01 21995.36 9296.73 8488.44 8289.34 13292.16 23483.82 8298.45 12289.35 10797.06 9497.48 105
EPP-MVSNet91.70 8791.56 8492.13 13195.88 12280.50 20497.33 795.25 19386.15 14889.76 12795.60 11383.42 8398.32 13487.37 13393.25 16197.56 103
UA-Net92.83 7092.54 7393.68 7396.10 11284.71 8295.66 8396.39 10991.92 593.22 6096.49 7783.16 8498.87 9184.47 16895.47 12297.45 107
UniMVSNet_NR-MVSNet89.92 12589.29 12791.81 15093.39 22383.72 11194.43 16097.12 4489.80 4286.46 18293.32 19683.16 8497.23 23084.92 16181.02 30794.49 220
DROMVSNet93.44 5893.71 5192.63 10995.21 14882.43 15297.27 996.71 8890.57 2992.88 6995.80 10583.16 8498.16 14393.68 2498.14 6797.31 109
RE-MVS-def93.68 5297.92 4784.57 8596.28 4596.76 8087.46 11693.75 4697.43 2082.94 8792.73 4297.80 8197.88 88
112190.42 11289.49 11993.20 8197.27 7884.46 9292.63 24695.51 17571.01 35291.20 11196.21 8782.92 8899.05 6380.56 23198.07 7296.10 155
新几何193.10 8697.30 7584.35 9895.56 16971.09 35191.26 11096.24 8582.87 8998.86 9479.19 25098.10 6996.07 157
原ACMM192.01 13397.34 7381.05 18896.81 7578.89 28390.45 11795.92 10082.65 9098.84 9980.68 22998.26 6496.14 150
casdiffmvs92.51 7592.43 7592.74 10394.41 18781.98 16294.54 15296.23 12089.57 5091.96 9496.17 9382.58 9198.01 16290.95 9095.45 12498.23 60
DeepC-MVS88.79 393.31 6292.99 6694.26 5896.07 11485.83 6694.89 12996.99 5189.02 6989.56 12897.37 2582.51 9299.38 3292.20 5698.30 6297.57 102
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS_fast93.40 6193.22 6093.94 6498.36 2784.83 8097.15 1396.80 7685.77 15592.47 8597.13 4182.38 9399.07 6190.51 9898.40 5897.92 86
baseline92.39 7892.29 7792.69 10794.46 18481.77 16794.14 17896.27 11589.22 5991.88 9596.00 9782.35 9497.99 16491.05 8595.27 12998.30 50
canonicalmvs93.27 6492.75 7094.85 2995.70 12987.66 1396.33 4296.41 10790.00 3994.09 3994.60 15082.33 9598.62 11092.40 5092.86 16998.27 56
DP-MVS Recon91.95 8191.28 8793.96 6398.33 2985.92 6294.66 14596.66 9382.69 22290.03 12695.82 10482.30 9699.03 6784.57 16796.48 11196.91 129
PAPR90.02 11989.27 12992.29 12795.78 12580.95 19292.68 24496.22 12181.91 24086.66 18093.75 18882.23 9798.44 12379.40 24994.79 13297.48 105
MVS_Test91.31 9391.11 9091.93 14194.37 18880.14 21193.46 21595.80 15286.46 13991.35 10993.77 18682.21 9898.09 15487.57 12994.95 13197.55 104
nrg03091.08 9890.39 10093.17 8393.07 23286.91 2296.41 3996.26 11688.30 8888.37 14594.85 13782.19 9997.64 18691.09 8482.95 27994.96 193
UniMVSNet (Re)89.80 12889.07 13292.01 13393.60 21884.52 8894.78 13797.47 1089.26 5886.44 18592.32 22982.10 10097.39 21684.81 16480.84 31194.12 236
testdata90.49 20296.40 10177.89 26995.37 18972.51 34493.63 5196.69 6382.08 10197.65 18383.08 18397.39 8995.94 161
PAPM_NR91.22 9590.78 9892.52 11597.60 6381.46 17694.37 16896.24 11986.39 14287.41 16294.80 14182.06 10298.48 11782.80 19195.37 12597.61 99
MG-MVS91.77 8491.70 8392.00 13697.08 8280.03 21893.60 21095.18 19787.85 10690.89 11496.47 7882.06 10298.36 12785.07 15997.04 9597.62 98
CANet93.54 5593.20 6294.55 4795.65 13085.73 7094.94 12596.69 9191.89 690.69 11595.88 10281.99 10499.54 1993.14 3797.95 7798.39 42
FC-MVSNet-test90.27 11490.18 10590.53 19893.71 21479.85 22495.77 7697.59 289.31 5786.27 18994.67 14781.93 10597.01 24484.26 17088.09 23694.71 204
FIs90.51 11190.35 10190.99 18793.99 20480.98 19095.73 7897.54 389.15 6286.72 17994.68 14681.83 10697.24 22985.18 15888.31 23294.76 203
ACMMPcopyleft93.24 6592.88 6994.30 5798.09 4285.33 7696.86 2797.45 1388.33 8590.15 12497.03 4881.44 10799.51 2490.85 9395.74 11798.04 77
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Effi-MVS+91.59 8991.11 9093.01 9194.35 19183.39 12294.60 14795.10 20187.10 12490.57 11693.10 20781.43 10898.07 15789.29 10994.48 14097.59 101
MVS_111021_LR92.47 7692.29 7792.98 9295.99 11884.43 9693.08 23396.09 12988.20 9491.12 11295.72 11081.33 10997.76 17591.74 7497.37 9096.75 133
mvs_anonymous89.37 14489.32 12689.51 24993.47 22174.22 31491.65 27594.83 21882.91 21885.45 21393.79 18481.23 11096.36 28386.47 14594.09 14497.94 83
PVSNet_BlendedMVS89.98 12089.70 11590.82 19196.12 10981.25 18193.92 19796.83 7283.49 20489.10 13592.26 23281.04 11198.85 9786.72 14387.86 24092.35 310
PVSNet_Blended90.73 10390.32 10291.98 13796.12 10981.25 18192.55 25096.83 7282.04 23589.10 13592.56 22281.04 11198.85 9786.72 14395.91 11595.84 166
alignmvs93.08 6892.50 7494.81 3595.62 13287.61 1495.99 6596.07 13189.77 4694.12 3894.87 13480.56 11398.66 10592.42 4993.10 16498.15 66
abl_693.18 6793.05 6493.57 7697.52 6784.27 9995.53 8996.67 9287.85 10693.20 6197.22 3380.35 11499.18 5291.91 6997.21 9197.26 112
API-MVS90.66 10690.07 10892.45 11896.36 10384.57 8596.06 6395.22 19682.39 22689.13 13494.27 16380.32 11598.46 11980.16 23896.71 10394.33 227
PVSNet_Blended_VisFu91.38 9190.91 9592.80 9996.39 10283.17 12794.87 13196.66 9383.29 20989.27 13394.46 15480.29 11699.17 5387.57 12995.37 12596.05 159
test22296.55 9681.70 16892.22 26095.01 20468.36 35790.20 12196.14 9480.26 11797.80 8196.05 159
diffmvs91.37 9291.23 8891.77 15193.09 23180.27 20792.36 25595.52 17487.03 12691.40 10894.93 13180.08 11897.44 20492.13 6094.56 13897.61 99
Test By Simon80.02 119
IterMVS-LS88.36 17487.91 16989.70 24293.80 21178.29 26093.73 20495.08 20385.73 15684.75 23191.90 24879.88 12096.92 24983.83 17582.51 28593.89 246
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet89.10 14988.86 13989.80 23891.84 26678.30 25993.70 20795.01 20485.73 15687.15 16795.28 11979.87 12197.21 23283.81 17687.36 24693.88 248
TAPA-MVS84.62 688.16 17987.01 18791.62 15596.64 9280.65 19994.39 16496.21 12476.38 30886.19 19195.44 11579.75 12298.08 15662.75 35295.29 12796.13 151
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Fast-Effi-MVS+89.41 14188.64 14291.71 15394.74 17080.81 19693.54 21195.10 20183.11 21286.82 17890.67 28479.74 12397.75 17880.51 23393.55 15296.57 139
pcd_1.5k_mvsjas6.64 3508.86 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38279.70 1240.00 3830.00 3810.00 3810.00 379
PS-MVSNAJss89.97 12189.62 11691.02 18491.90 26480.85 19595.26 10395.98 13786.26 14486.21 19094.29 16079.70 12497.65 18388.87 11488.10 23494.57 211
PS-MVSNAJ91.18 9690.92 9491.96 13995.26 14682.60 15192.09 26595.70 15986.27 14391.84 9792.46 22479.70 12498.99 8089.08 11195.86 11694.29 230
xiu_mvs_v2_base91.13 9790.89 9691.86 14594.97 15882.42 15392.24 25995.64 16686.11 15191.74 10293.14 20579.67 12798.89 9089.06 11295.46 12394.28 231
WR-MVS_H87.80 18887.37 17889.10 25793.23 22778.12 26395.61 8697.30 2987.90 10283.72 25892.01 24579.65 12896.01 29676.36 27480.54 31593.16 284
EPNet91.79 8391.02 9394.10 6190.10 32585.25 7796.03 6492.05 29292.83 187.39 16595.78 10679.39 12999.01 7388.13 12297.48 8898.05 76
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth87.22 21786.62 20289.02 26092.13 25777.40 28390.91 28694.81 22081.28 25684.32 24690.08 29579.26 13096.62 26183.81 17682.94 28093.04 289
miper_enhance_ethall86.90 22686.18 21789.06 25891.66 27577.58 28090.22 29894.82 21979.16 28084.48 23789.10 30979.19 13196.66 25884.06 17282.94 28092.94 292
NR-MVSNet88.58 17087.47 17691.93 14193.04 23484.16 10194.77 13896.25 11889.05 6580.04 31093.29 19979.02 13297.05 24281.71 21380.05 32294.59 209
TAMVS89.21 14688.29 15891.96 13993.71 21482.62 15093.30 22294.19 24082.22 23087.78 15693.94 17678.83 13396.95 24777.70 26292.98 16796.32 144
c3_l87.14 22286.50 20789.04 25992.20 25477.26 28491.22 28294.70 22482.01 23684.34 24590.43 28878.81 13496.61 26483.70 17881.09 30493.25 279
1112_ss88.42 17187.33 17991.72 15294.92 16280.98 19092.97 23894.54 22778.16 29783.82 25693.88 18178.78 13597.91 17079.45 24589.41 20796.26 147
CDS-MVSNet89.45 13788.51 14992.29 12793.62 21783.61 11693.01 23694.68 22581.95 23887.82 15593.24 20178.69 13696.99 24580.34 23593.23 16296.28 146
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
WTY-MVS89.60 13188.92 13691.67 15495.47 13881.15 18692.38 25494.78 22283.11 21289.06 13794.32 15878.67 13796.61 26481.57 21490.89 18997.24 113
CPTT-MVS91.99 8091.80 8192.55 11398.24 3381.98 16296.76 3096.49 10381.89 24290.24 12096.44 7978.59 13898.61 11189.68 10497.85 8097.06 121
IS-MVSNet91.43 9091.09 9292.46 11795.87 12481.38 17996.95 1993.69 25789.72 4889.50 13095.98 9878.57 13997.77 17483.02 18596.50 11098.22 61
OMC-MVS91.23 9490.62 9993.08 8796.27 10584.07 10293.52 21295.93 14086.95 12889.51 12996.13 9578.50 14098.35 12985.84 15292.90 16896.83 131
PCF-MVS84.11 1087.74 19086.08 22292.70 10694.02 19984.43 9689.27 31295.87 14773.62 33584.43 24094.33 15778.48 14198.86 9470.27 31294.45 14194.81 201
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
LCM-MVSNet-Re88.30 17688.32 15788.27 27694.71 17372.41 33493.15 22990.98 32287.77 10879.25 31891.96 24678.35 14295.75 30883.04 18495.62 11896.65 136
HY-MVS83.01 1289.03 15687.94 16892.29 12794.86 16682.77 14092.08 26694.49 22881.52 25286.93 17392.79 21878.32 14398.23 13879.93 24090.55 19095.88 164
GeoE90.05 11889.43 12291.90 14495.16 15080.37 20695.80 7494.65 22683.90 19387.55 16194.75 14378.18 14497.62 18981.28 21793.63 15097.71 96
MVS87.44 20786.10 22191.44 16392.61 24783.62 11592.63 24695.66 16367.26 35881.47 28892.15 23577.95 14598.22 14079.71 24295.48 12192.47 305
MVSFormer91.68 8891.30 8692.80 9993.86 20883.88 10795.96 6895.90 14484.66 18291.76 10094.91 13277.92 14697.30 22189.64 10597.11 9297.24 113
lupinMVS90.92 9990.21 10393.03 9093.86 20883.88 10792.81 24293.86 25279.84 27291.76 10094.29 16077.92 14698.04 15990.48 9997.11 9297.17 117
Test_1112_low_res87.65 19386.51 20691.08 18094.94 16179.28 24091.77 27094.30 23676.04 31383.51 26592.37 22777.86 14897.73 17978.69 25389.13 21496.22 148
VNet92.24 7991.91 8093.24 7996.59 9483.43 12094.84 13396.44 10489.19 6194.08 4095.90 10177.85 14998.17 14288.90 11393.38 15898.13 68
DU-MVS89.34 14588.50 15091.85 14793.04 23483.72 11194.47 15796.59 9889.50 5186.46 18293.29 19977.25 15097.23 23084.92 16181.02 30794.59 209
Baseline_NR-MVSNet87.07 22386.63 20188.40 27291.44 27877.87 27094.23 17592.57 27784.12 18985.74 19892.08 24177.25 15096.04 29382.29 19979.94 32391.30 327
jason90.80 10090.10 10792.90 9693.04 23483.53 11793.08 23394.15 24280.22 26691.41 10794.91 13276.87 15297.93 16990.28 10096.90 9897.24 113
jason: jason.
PAPM86.68 23385.39 24190.53 19893.05 23379.33 23989.79 30594.77 22378.82 28581.95 28593.24 20176.81 15397.30 22166.94 33593.16 16394.95 196
Vis-MVSNet (Re-imp)89.59 13289.44 12190.03 22695.74 12675.85 30295.61 8690.80 32787.66 11487.83 15495.40 11876.79 15496.46 27778.37 25496.73 10297.80 93
baseline188.10 18087.28 18190.57 19694.96 15980.07 21494.27 17191.29 31486.74 13387.41 16294.00 17376.77 15596.20 28880.77 22679.31 33095.44 178
114514_t89.51 13488.50 15092.54 11498.11 3981.99 16195.16 11296.36 11170.19 35485.81 19695.25 12176.70 15698.63 10982.07 20296.86 10197.00 125
PLCcopyleft84.53 789.06 15588.03 16492.15 13097.27 7882.69 14794.29 17095.44 18379.71 27484.01 25394.18 16576.68 15798.75 10377.28 26693.41 15795.02 189
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TranMVSNet+NR-MVSNet88.84 16287.95 16791.49 16092.68 24583.01 13494.92 12796.31 11289.88 4185.53 20693.85 18376.63 15896.96 24681.91 20679.87 32594.50 218
MAR-MVS90.30 11389.37 12493.07 8996.61 9384.48 9195.68 8195.67 16182.36 22887.85 15392.85 21276.63 15898.80 10180.01 23996.68 10495.91 162
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
WR-MVS88.38 17287.67 17290.52 20093.30 22680.18 20993.26 22595.96 13988.57 8085.47 21292.81 21676.12 16096.91 25081.24 21882.29 28794.47 223
v887.50 20686.71 19689.89 23291.37 28379.40 23394.50 15395.38 18784.81 17983.60 26391.33 26276.05 16197.42 20682.84 18980.51 31992.84 296
v14887.04 22486.32 21289.21 25390.94 30177.26 28493.71 20694.43 23084.84 17884.36 24490.80 28176.04 16297.05 24282.12 20179.60 32793.31 276
eth_miper_zixun_eth86.50 23985.77 23488.68 26791.94 26375.81 30390.47 29294.89 21282.05 23384.05 25190.46 28775.96 16396.77 25482.76 19279.36 32993.46 273
3Dnovator+87.14 492.42 7791.37 8595.55 695.63 13188.73 697.07 1896.77 7990.84 1984.02 25296.62 7175.95 16499.34 3687.77 12597.68 8498.59 24
h-mvs3390.80 10090.15 10692.75 10296.01 11682.66 14895.43 9195.53 17389.80 4293.08 6595.64 11275.77 16599.00 7892.07 6178.05 33496.60 137
hse-mvs289.88 12789.34 12591.51 15994.83 16881.12 18793.94 19693.91 25189.80 4293.08 6593.60 19175.77 16597.66 18192.07 6177.07 34195.74 171
BH-untuned88.60 16988.13 16290.01 22995.24 14778.50 25393.29 22394.15 24284.75 18084.46 23893.40 19375.76 16797.40 21377.59 26394.52 13994.12 236
DIV-MVS_self_test86.53 23785.78 23288.75 26492.02 26276.45 29590.74 28894.30 23681.83 24583.34 26990.82 28075.75 16896.57 26781.73 21281.52 29993.24 280
BH-w/o87.57 20287.05 18689.12 25694.90 16477.90 26892.41 25293.51 25982.89 21983.70 25991.34 26175.75 16897.07 24075.49 28293.49 15492.39 308
cl____86.52 23885.78 23288.75 26492.03 26176.46 29490.74 28894.30 23681.83 24583.34 26990.78 28275.74 17096.57 26781.74 21181.54 29893.22 281
cdsmvs_eth3d_5k22.14 34529.52 3480.00 3640.00 3870.00 3880.00 37595.76 1550.00 3820.00 38394.29 16075.66 1710.00 3830.00 3810.00 3810.00 379
CNLPA89.07 15387.98 16692.34 12396.87 8584.78 8194.08 18593.24 26281.41 25384.46 23895.13 12675.57 17296.62 26177.21 26793.84 14895.61 175
CHOSEN 1792x268888.84 16287.69 17192.30 12696.14 10881.42 17890.01 30295.86 14874.52 32887.41 16293.94 17675.46 17398.36 12780.36 23495.53 11997.12 120
CP-MVSNet87.63 19687.26 18388.74 26693.12 23076.59 29395.29 10096.58 9988.43 8383.49 26692.98 21075.28 17495.83 30478.97 25181.15 30393.79 254
v1087.25 21486.38 20889.85 23391.19 28979.50 23094.48 15495.45 18183.79 19683.62 26291.19 26775.13 17597.42 20681.94 20580.60 31392.63 301
Vis-MVSNetpermissive91.75 8591.23 8893.29 7795.32 14383.78 11096.14 5595.98 13789.89 4090.45 11796.58 7375.09 17698.31 13584.75 16596.90 9897.78 95
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
sss88.93 16088.26 16090.94 19094.05 19880.78 19791.71 27295.38 18781.55 25188.63 14093.91 18075.04 17795.47 31982.47 19591.61 18096.57 139
v114487.61 19986.79 19390.06 22591.01 29679.34 23693.95 19595.42 18683.36 20885.66 20191.31 26574.98 17897.42 20683.37 18082.06 28993.42 274
miper_lstm_enhance85.27 26184.59 25987.31 29791.28 28774.63 30987.69 33394.09 24681.20 26081.36 29189.85 30174.97 17994.30 33381.03 22279.84 32693.01 290
test_yl90.69 10490.02 11292.71 10495.72 12782.41 15594.11 18195.12 19985.63 16091.49 10594.70 14474.75 18098.42 12586.13 14892.53 17397.31 109
DCV-MVSNet90.69 10490.02 11292.71 10495.72 12782.41 15594.11 18195.12 19985.63 16091.49 10594.70 14474.75 18098.42 12586.13 14892.53 17397.31 109
V4287.68 19186.86 18990.15 22090.58 31680.14 21194.24 17495.28 19283.66 19885.67 20091.33 26274.73 18297.41 21184.43 16981.83 29392.89 294
XVG-OURS-SEG-HR89.95 12389.45 12091.47 16294.00 20381.21 18491.87 26896.06 13385.78 15488.55 14195.73 10974.67 18397.27 22588.71 11589.64 20595.91 162
v2v48287.84 18687.06 18590.17 21890.99 29779.23 24394.00 19395.13 19884.87 17785.53 20692.07 24374.45 18497.45 20284.71 16681.75 29593.85 252
CLD-MVS89.47 13688.90 13791.18 17394.22 19382.07 16092.13 26396.09 12987.90 10285.37 22292.45 22574.38 18597.56 19287.15 13690.43 19193.93 245
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XXY-MVS87.65 19386.85 19090.03 22692.14 25680.60 20293.76 20395.23 19482.94 21784.60 23394.02 17174.27 18695.49 31881.04 22083.68 27294.01 244
HQP_MVS90.60 11090.19 10491.82 14894.70 17482.73 14495.85 7296.22 12190.81 2086.91 17594.86 13574.23 18798.12 14488.15 12089.99 19694.63 206
plane_prior694.52 18082.75 14174.23 187
v14419287.19 22086.35 21089.74 23990.64 31478.24 26193.92 19795.43 18481.93 23985.51 20891.05 27574.21 18997.45 20282.86 18881.56 29793.53 268
VPA-MVSNet89.62 13088.96 13491.60 15693.86 20882.89 13995.46 9097.33 2587.91 10188.43 14493.31 19774.17 19097.40 21387.32 13482.86 28494.52 214
ab-mvs89.41 14188.35 15492.60 11095.15 15282.65 14992.20 26195.60 16883.97 19288.55 14193.70 19074.16 19198.21 14182.46 19689.37 20896.94 127
131487.51 20486.57 20490.34 21492.42 25079.74 22692.63 24695.35 19178.35 29380.14 30791.62 25774.05 19297.15 23481.05 21993.53 15394.12 236
test_djsdf89.03 15688.64 14290.21 21690.74 31179.28 24095.96 6895.90 14484.66 18285.33 22492.94 21174.02 19397.30 22189.64 10588.53 22394.05 242
cl2286.78 22985.98 22589.18 25592.34 25277.62 27990.84 28794.13 24481.33 25583.97 25490.15 29373.96 19496.60 26684.19 17182.94 28093.33 275
AdaColmapbinary89.89 12689.07 13292.37 12297.41 7083.03 13294.42 16195.92 14182.81 22086.34 18794.65 14873.89 19599.02 7180.69 22895.51 12095.05 188
HyFIR lowres test88.09 18186.81 19191.93 14196.00 11780.63 20090.01 30295.79 15373.42 33687.68 15892.10 24073.86 19697.96 16680.75 22791.70 17997.19 116
HQP2-MVS73.83 197
HQP-MVS89.80 12889.28 12891.34 16794.17 19481.56 17094.39 16496.04 13588.81 7185.43 21693.97 17573.83 19797.96 16687.11 13889.77 20394.50 218
3Dnovator86.66 591.73 8690.82 9794.44 5194.59 17886.37 4597.18 1297.02 5089.20 6084.31 24896.66 6673.74 19999.17 5386.74 14197.96 7697.79 94
EPNet_dtu86.49 24185.94 22888.14 28190.24 32372.82 32694.11 18192.20 28686.66 13779.42 31792.36 22873.52 20095.81 30671.26 30693.66 14995.80 169
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TransMVSNet (Re)84.43 27383.06 27688.54 27091.72 27078.44 25495.18 10992.82 27182.73 22179.67 31492.12 23773.49 20195.96 29871.10 31168.73 35991.21 330
Effi-MVS+-dtu88.65 16788.35 15489.54 24693.33 22476.39 29694.47 15794.36 23387.70 11085.43 21689.56 30673.45 20297.26 22785.57 15691.28 18294.97 190
mvs-test189.45 13789.14 13090.38 21193.33 22477.63 27894.95 12494.36 23387.70 11087.10 17092.81 21673.45 20298.03 16185.57 15693.04 16595.48 177
baseline286.50 23985.39 24189.84 23491.12 29376.70 29191.88 26788.58 35182.35 22979.95 31190.95 27773.42 20497.63 18780.27 23789.95 19995.19 185
PEN-MVS86.80 22886.27 21588.40 27292.32 25375.71 30495.18 10996.38 11087.97 9982.82 27593.15 20473.39 20595.92 29976.15 27879.03 33293.59 266
v119287.25 21486.33 21190.00 23090.76 31079.04 24493.80 20195.48 17682.57 22485.48 21191.18 26973.38 20697.42 20682.30 19882.06 28993.53 268
QAPM89.51 13488.15 16193.59 7594.92 16284.58 8496.82 2996.70 8978.43 29283.41 26796.19 9273.18 20799.30 4277.11 26996.54 10896.89 130
mvsmamba89.96 12289.50 11891.33 16892.90 24081.82 16596.68 3392.37 28089.03 6787.00 17194.85 13773.05 20897.65 18391.03 8688.63 22194.51 215
tpmrst85.35 25884.99 24886.43 31490.88 30667.88 35888.71 32191.43 31180.13 26886.08 19488.80 31573.05 20896.02 29582.48 19483.40 27895.40 180
PS-CasMVS87.32 21186.88 18888.63 26992.99 23776.33 29895.33 9496.61 9788.22 9283.30 27193.07 20873.03 21095.79 30778.36 25581.00 30993.75 260
DTE-MVSNet86.11 24585.48 23987.98 28491.65 27674.92 30894.93 12695.75 15687.36 11982.26 28093.04 20972.85 21195.82 30574.04 29477.46 33893.20 282
MVSTER88.84 16288.29 15890.51 20192.95 23880.44 20593.73 20495.01 20484.66 18287.15 16793.12 20672.79 21297.21 23287.86 12487.36 24693.87 249
v192192086.97 22586.06 22389.69 24390.53 31978.11 26493.80 20195.43 18481.90 24185.33 22491.05 27572.66 21397.41 21182.05 20381.80 29493.53 268
DP-MVS87.25 21485.36 24392.90 9697.65 6283.24 12494.81 13592.00 29474.99 32381.92 28695.00 12972.66 21399.05 6366.92 33792.33 17696.40 142
v7n86.81 22785.76 23589.95 23190.72 31279.25 24295.07 11795.92 14184.45 18582.29 27990.86 27872.60 21597.53 19679.42 24880.52 31893.08 288
OPM-MVS90.12 11689.56 11791.82 14893.14 22983.90 10694.16 17795.74 15788.96 7087.86 15295.43 11772.48 21697.91 17088.10 12390.18 19593.65 265
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LS3D87.89 18586.32 21292.59 11196.07 11482.92 13895.23 10494.92 21175.66 31582.89 27495.98 9872.48 21699.21 5068.43 32695.23 13095.64 174
pm-mvs186.61 23485.54 23789.82 23591.44 27880.18 20995.28 10294.85 21583.84 19581.66 28792.62 22172.45 21896.48 27479.67 24378.06 33392.82 297
PMMVS85.71 25384.96 25087.95 28588.90 33977.09 28688.68 32290.06 33772.32 34586.47 18190.76 28372.15 21994.40 33081.78 21093.49 15492.36 309
PatchmatchNetpermissive85.85 25084.70 25689.29 25291.76 26975.54 30588.49 32491.30 31381.63 24985.05 22788.70 31771.71 22096.24 28774.61 29289.05 21596.08 156
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sam_mvs171.70 22196.12 152
test_part189.00 15987.99 16592.04 13295.94 12183.81 10996.14 5596.05 13486.44 14085.69 19993.73 18971.57 22297.66 18185.80 15380.54 31594.66 205
patchmatchnet-post83.76 35271.53 22396.48 274
v124086.78 22985.85 23089.56 24590.45 32077.79 27393.61 20995.37 18981.65 24785.43 21691.15 27171.50 22497.43 20581.47 21682.05 29193.47 272
anonymousdsp87.84 18687.09 18490.12 22289.13 33680.54 20394.67 14495.55 17082.05 23383.82 25692.12 23771.47 22597.15 23487.15 13687.80 24292.67 299
Patchmatch-test81.37 30279.30 30887.58 29190.92 30374.16 31680.99 36287.68 35670.52 35376.63 33388.81 31371.21 22692.76 35160.01 36086.93 25295.83 167
F-COLMAP87.95 18486.80 19291.40 16496.35 10480.88 19494.73 14095.45 18179.65 27582.04 28494.61 14971.13 22798.50 11676.24 27791.05 18794.80 202
pmmvs485.43 25683.86 26790.16 21990.02 32882.97 13690.27 29492.67 27575.93 31480.73 29791.74 25271.05 22895.73 30978.85 25283.46 27691.78 318
CR-MVSNet85.35 25883.76 26890.12 22290.58 31679.34 23685.24 34791.96 29878.27 29485.55 20387.87 33071.03 22995.61 31073.96 29689.36 20995.40 180
Patchmtry82.71 28680.93 29288.06 28390.05 32776.37 29784.74 35191.96 29872.28 34681.32 29287.87 33071.03 22995.50 31768.97 32280.15 32192.32 311
CL-MVSNet_self_test81.74 29580.53 29385.36 32485.96 35772.45 33390.25 29593.07 26681.24 25879.85 31387.29 33670.93 23192.52 35266.95 33469.23 35591.11 334
RPMNet83.95 27781.53 28791.21 17190.58 31679.34 23685.24 34796.76 8071.44 34985.55 20382.97 35670.87 23298.91 8961.01 35689.36 20995.40 180
Patchmatch-RL test81.67 29679.96 30286.81 31285.42 36171.23 34082.17 36087.50 35778.47 29177.19 32982.50 35770.81 23393.48 34382.66 19372.89 34995.71 173
CostFormer85.77 25284.94 25188.26 27791.16 29272.58 33289.47 31091.04 32176.26 31186.45 18489.97 29870.74 23496.86 25382.35 19787.07 25195.34 183
sam_mvs70.60 235
xiu_mvs_v1_base_debu90.64 10790.05 10992.40 11993.97 20584.46 9293.32 21895.46 17885.17 16992.25 8694.03 16870.59 23698.57 11390.97 8794.67 13394.18 232
xiu_mvs_v1_base90.64 10790.05 10992.40 11993.97 20584.46 9293.32 21895.46 17885.17 16992.25 8694.03 16870.59 23698.57 11390.97 8794.67 13394.18 232
xiu_mvs_v1_base_debi90.64 10790.05 10992.40 11993.97 20584.46 9293.32 21895.46 17885.17 16992.25 8694.03 16870.59 23698.57 11390.97 8794.67 13394.18 232
test_post10.29 37770.57 23995.91 301
CANet_DTU90.26 11589.41 12392.81 9893.46 22283.01 13493.48 21394.47 22989.43 5487.76 15794.23 16470.54 24099.03 6784.97 16096.39 11296.38 143
BH-RMVSNet88.37 17387.48 17591.02 18495.28 14479.45 23292.89 24093.07 26685.45 16586.91 17594.84 13970.35 24197.76 17573.97 29594.59 13795.85 165
Fast-Effi-MVS+-dtu87.44 20786.72 19589.63 24492.04 26077.68 27794.03 19093.94 24785.81 15382.42 27891.32 26470.33 24297.06 24180.33 23690.23 19494.14 235
MDTV_nov1_ep13_2view55.91 37587.62 33573.32 33784.59 23470.33 24274.65 29195.50 176
ACMM84.12 989.14 14888.48 15391.12 17594.65 17781.22 18395.31 9596.12 12885.31 16885.92 19594.34 15670.19 24498.06 15885.65 15488.86 21994.08 240
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ET-MVSNet_ETH3D87.51 20485.91 22992.32 12493.70 21683.93 10592.33 25690.94 32384.16 18772.09 35492.52 22369.90 24595.85 30389.20 11088.36 23097.17 117
LPG-MVS_test89.45 13788.90 13791.12 17594.47 18281.49 17495.30 9896.14 12686.73 13485.45 21395.16 12469.89 24698.10 14687.70 12789.23 21293.77 258
LGP-MVS_train91.12 17594.47 18281.49 17496.14 12686.73 13485.45 21395.16 12469.89 24698.10 14687.70 12789.23 21293.77 258
CHOSEN 280x42085.15 26383.99 26588.65 26892.47 24878.40 25679.68 36492.76 27274.90 32581.41 29089.59 30469.85 24895.51 31579.92 24195.29 12792.03 315
LTVRE_ROB82.13 1386.26 24484.90 25290.34 21494.44 18681.50 17292.31 25894.89 21283.03 21479.63 31592.67 21969.69 24997.79 17371.20 30786.26 25491.72 319
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OpenMVScopyleft83.78 1188.74 16587.29 18093.08 8792.70 24485.39 7596.57 3596.43 10678.74 28880.85 29696.07 9669.64 25099.01 7378.01 26096.65 10594.83 200
test_low_dy_conf_00189.07 15388.60 14690.49 20292.39 25179.71 22796.07 6294.84 21786.25 14686.34 18794.97 13069.61 25197.31 21988.59 11688.35 23194.44 225
MDTV_nov1_ep1383.56 27191.69 27469.93 35187.75 33291.54 30778.60 29084.86 23088.90 31269.54 25296.03 29470.25 31388.93 218
AUN-MVS87.78 18986.54 20591.48 16194.82 16981.05 18893.91 20093.93 24883.00 21586.93 17393.53 19269.50 25397.67 18086.14 14677.12 34095.73 172
PatchT82.68 28781.27 28986.89 31090.09 32670.94 34584.06 35390.15 33474.91 32485.63 20283.57 35369.37 25494.87 32865.19 34288.50 22594.84 199
RRT_MVS89.09 15188.62 14590.49 20292.85 24179.65 22896.41 3994.41 23188.22 9285.50 20994.77 14269.36 25597.31 21989.33 10886.73 25394.51 215
VPNet88.20 17887.47 17690.39 20993.56 21979.46 23194.04 18995.54 17288.67 7686.96 17294.58 15269.33 25697.15 23484.05 17380.53 31794.56 212
ACMP84.23 889.01 15888.35 15490.99 18794.73 17181.27 18095.07 11795.89 14686.48 13883.67 26094.30 15969.33 25697.99 16487.10 14088.55 22293.72 262
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_post188.00 3299.81 37869.31 25895.53 31376.65 272
tpmvs83.35 28482.07 28287.20 30491.07 29571.00 34488.31 32791.70 30278.91 28280.49 30287.18 33869.30 25997.08 23968.12 33083.56 27493.51 271
thres20087.21 21886.24 21690.12 22295.36 14078.53 25193.26 22592.10 29086.42 14188.00 15191.11 27369.24 26098.00 16369.58 32091.04 18893.83 253
tfpn200view987.58 20186.64 19990.41 20895.99 11878.64 24894.58 14891.98 29686.94 12988.09 14691.77 25069.18 26198.10 14670.13 31691.10 18394.48 221
thres40087.62 19886.64 19990.57 19695.99 11878.64 24894.58 14891.98 29686.94 12988.09 14691.77 25069.18 26198.10 14670.13 31691.10 18394.96 193
tfpnnormal84.72 27083.23 27489.20 25492.79 24380.05 21694.48 15495.81 15182.38 22781.08 29491.21 26669.01 26396.95 24761.69 35480.59 31490.58 341
thres100view90087.63 19686.71 19690.38 21196.12 10978.55 25095.03 12191.58 30587.15 12288.06 14992.29 23168.91 26498.10 14670.13 31691.10 18394.48 221
thres600view787.65 19386.67 19890.59 19596.08 11378.72 24694.88 13091.58 30587.06 12588.08 14892.30 23068.91 26498.10 14670.05 31991.10 18394.96 193
PatchMatch-RL86.77 23285.54 23790.47 20795.88 12282.71 14690.54 29192.31 28379.82 27384.32 24691.57 26068.77 26696.39 28073.16 30093.48 15692.32 311
XVG-OURS89.40 14388.70 14091.52 15894.06 19781.46 17691.27 28096.07 13186.14 14988.89 13995.77 10768.73 26797.26 22787.39 13289.96 19895.83 167
TR-MVS86.78 22985.76 23589.82 23594.37 18878.41 25592.47 25192.83 27081.11 26186.36 18692.40 22668.73 26797.48 19973.75 29889.85 20293.57 267
tpm84.73 26984.02 26486.87 31190.33 32168.90 35489.06 31789.94 34080.85 26385.75 19789.86 30068.54 26995.97 29777.76 26184.05 26895.75 170
FMVSNet387.40 20986.11 22091.30 16993.79 21383.64 11494.20 17694.81 22083.89 19484.37 24191.87 24968.45 27096.56 26978.23 25785.36 25893.70 264
MVP-Stereo85.97 24784.86 25389.32 25190.92 30382.19 15892.11 26494.19 24078.76 28778.77 32091.63 25668.38 27196.56 26975.01 28993.95 14589.20 350
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tpm cat181.96 29180.27 29787.01 30691.09 29471.02 34387.38 33691.53 30866.25 35980.17 30586.35 34268.22 27296.15 29169.16 32182.29 28793.86 251
bld_raw_conf00589.19 14788.56 14791.09 17992.62 24681.17 18596.45 3791.24 31689.08 6486.16 19294.82 14068.16 27397.63 18790.03 10188.46 22694.47 223
tpm284.08 27582.94 27787.48 29591.39 28271.27 33989.23 31490.37 33171.95 34784.64 23289.33 30767.30 27496.55 27175.17 28687.09 25094.63 206
test-LLR85.87 24985.41 24087.25 30090.95 29971.67 33789.55 30689.88 34383.41 20684.54 23587.95 32767.25 27595.11 32481.82 20893.37 15994.97 190
test0.0.03 182.41 28981.69 28584.59 33088.23 34672.89 32590.24 29687.83 35483.41 20679.86 31289.78 30267.25 27588.99 36565.18 34383.42 27791.90 317
CVMVSNet84.69 27184.79 25584.37 33291.84 26664.92 36693.70 20791.47 31066.19 36086.16 19295.28 11967.18 27793.33 34580.89 22590.42 19294.88 198
iter_conf_final89.42 14088.69 14191.60 15695.12 15382.93 13795.75 7792.14 28987.32 12087.12 16994.07 16667.09 27897.55 19390.61 9689.01 21694.32 228
thisisatest051587.33 21085.99 22491.37 16693.49 22079.55 22990.63 29089.56 34880.17 26787.56 16090.86 27867.07 27998.28 13681.50 21593.02 16696.29 145
tttt051788.61 16887.78 17091.11 17894.96 15977.81 27295.35 9389.69 34585.09 17488.05 15094.59 15166.93 28098.48 11783.27 18292.13 17897.03 123
our_test_381.93 29280.46 29586.33 31688.46 34373.48 32188.46 32591.11 31776.46 30676.69 33288.25 32366.89 28194.36 33168.75 32379.08 33191.14 332
thisisatest053088.67 16687.61 17391.86 14594.87 16580.07 21494.63 14689.90 34284.00 19188.46 14393.78 18566.88 28298.46 11983.30 18192.65 17197.06 121
IterMVS-SCA-FT85.45 25584.53 26088.18 28091.71 27276.87 28990.19 29992.65 27685.40 16681.44 28990.54 28566.79 28395.00 32781.04 22081.05 30592.66 300
SCA86.32 24385.18 24589.73 24192.15 25576.60 29291.12 28391.69 30383.53 20385.50 20988.81 31366.79 28396.48 27476.65 27290.35 19396.12 152
D2MVS85.90 24885.09 24788.35 27490.79 30877.42 28291.83 26995.70 15980.77 26480.08 30990.02 29666.74 28596.37 28181.88 20787.97 23891.26 328
IterMVS84.88 26783.98 26687.60 29091.44 27876.03 30090.18 30092.41 27983.24 21181.06 29590.42 28966.60 28694.28 33479.46 24480.98 31092.48 304
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GBi-Net87.26 21285.98 22591.08 18094.01 20083.10 12895.14 11394.94 20783.57 20084.37 24191.64 25366.59 28796.34 28478.23 25785.36 25893.79 254
test187.26 21285.98 22591.08 18094.01 20083.10 12895.14 11394.94 20783.57 20084.37 24191.64 25366.59 28796.34 28478.23 25785.36 25893.79 254
FMVSNet287.19 22085.82 23191.30 16994.01 20083.67 11394.79 13694.94 20783.57 20083.88 25592.05 24466.59 28796.51 27277.56 26485.01 26193.73 261
EPMVS83.90 27982.70 28187.51 29290.23 32472.67 32888.62 32381.96 36981.37 25485.01 22888.34 32166.31 29094.45 32975.30 28587.12 24995.43 179
ppachtmachnet_test81.84 29380.07 30187.15 30588.46 34374.43 31389.04 31892.16 28775.33 31977.75 32588.99 31066.20 29195.37 32065.12 34477.60 33691.65 320
MDA-MVSNet_test_wron79.21 32077.19 32285.29 32588.22 34772.77 32785.87 34390.06 33774.34 32962.62 36587.56 33366.14 29291.99 35666.90 33873.01 34791.10 335
YYNet179.22 31977.20 32185.28 32688.20 34872.66 32985.87 34390.05 33974.33 33062.70 36487.61 33266.09 29392.03 35566.94 33572.97 34891.15 331
JIA-IIPM81.04 30578.98 31587.25 30088.64 34073.48 32181.75 36189.61 34773.19 33882.05 28373.71 36466.07 29495.87 30271.18 30984.60 26492.41 307
MSDG84.86 26883.09 27590.14 22193.80 21180.05 21689.18 31593.09 26578.89 28378.19 32191.91 24765.86 29597.27 22568.47 32588.45 22793.11 286
jajsoiax88.24 17787.50 17490.48 20590.89 30580.14 21195.31 9595.65 16584.97 17684.24 24994.02 17165.31 29697.42 20688.56 11788.52 22493.89 246
cascas86.43 24284.98 24990.80 19292.10 25980.92 19390.24 29695.91 14373.10 33983.57 26488.39 32065.15 29797.46 20184.90 16391.43 18194.03 243
ADS-MVSNet281.66 29779.71 30587.50 29391.35 28474.19 31583.33 35688.48 35272.90 34182.24 28185.77 34664.98 29893.20 34764.57 34683.74 27095.12 186
ADS-MVSNet81.56 29979.78 30386.90 30991.35 28471.82 33683.33 35689.16 34972.90 34182.24 28185.77 34664.98 29893.76 34064.57 34683.74 27095.12 186
pmmvs584.21 27482.84 28088.34 27588.95 33876.94 28892.41 25291.91 30075.63 31680.28 30491.18 26964.59 30095.57 31177.09 27083.47 27592.53 303
PVSNet78.82 1885.55 25484.65 25788.23 27994.72 17271.93 33587.12 33792.75 27378.80 28684.95 22990.53 28664.43 30196.71 25774.74 29093.86 14796.06 158
UGNet89.95 12388.95 13592.95 9494.51 18183.31 12395.70 8095.23 19489.37 5687.58 15993.94 17664.00 30298.78 10283.92 17496.31 11396.74 134
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
RPSCF85.07 26484.27 26187.48 29592.91 23970.62 34791.69 27492.46 27876.20 31282.67 27795.22 12263.94 30397.29 22477.51 26585.80 25694.53 213
bld_raw_dy_0_6487.60 20086.73 19490.21 21691.72 27080.26 20895.09 11688.61 35085.68 15885.55 20394.38 15563.93 30496.66 25887.73 12687.84 24193.72 262
iter_conf0588.85 16188.08 16391.17 17494.27 19281.64 16995.18 10992.15 28886.23 14787.28 16694.07 16663.89 30597.55 19390.63 9589.00 21794.32 228
mvs_tets88.06 18387.28 18190.38 21190.94 30179.88 22295.22 10595.66 16385.10 17384.21 25093.94 17663.53 30697.40 21388.50 11888.40 22993.87 249
test111189.10 14988.64 14290.48 20595.53 13774.97 30796.08 5984.89 36288.13 9790.16 12396.65 6763.29 30798.10 14686.14 14696.90 9898.39 42
Anonymous2023121186.59 23685.13 24690.98 18996.52 9981.50 17296.14 5596.16 12573.78 33383.65 26192.15 23563.26 30897.37 21782.82 19081.74 29694.06 241
ECVR-MVScopyleft89.09 15188.53 14890.77 19395.62 13275.89 30196.16 5284.22 36487.89 10490.20 12196.65 6763.19 30998.10 14685.90 15196.94 9698.33 46
dp81.47 30180.23 29885.17 32789.92 33065.49 36486.74 33890.10 33676.30 31081.10 29387.12 33962.81 31095.92 29968.13 32979.88 32494.09 239
LFMVS90.08 11789.13 13192.95 9496.71 8982.32 15796.08 5989.91 34186.79 13292.15 9196.81 5862.60 31198.34 13087.18 13593.90 14698.19 62
Anonymous2023120681.03 30679.77 30484.82 32987.85 35170.26 34991.42 27892.08 29173.67 33477.75 32589.25 30862.43 31293.08 34861.50 35582.00 29291.12 333
VDD-MVS90.74 10289.92 11493.20 8196.27 10583.02 13395.73 7893.86 25288.42 8492.53 8296.84 5562.09 31398.64 10790.95 9092.62 17297.93 85
MS-PatchMatch85.05 26584.16 26287.73 28891.42 28178.51 25291.25 28193.53 25877.50 29980.15 30691.58 25861.99 31495.51 31575.69 28194.35 14389.16 351
OurMVSNet-221017-085.35 25884.64 25887.49 29490.77 30972.59 33194.01 19294.40 23284.72 18179.62 31693.17 20361.91 31596.72 25581.99 20481.16 30193.16 284
test20.0379.95 31479.08 31382.55 34085.79 35867.74 35991.09 28491.08 31881.23 25974.48 34689.96 29961.63 31690.15 36260.08 35876.38 34289.76 344
DSMNet-mixed76.94 32676.29 32578.89 34483.10 36756.11 37487.78 33179.77 37260.65 36475.64 33988.71 31661.56 31788.34 36660.07 35989.29 21192.21 314
Anonymous2024052988.09 18186.59 20392.58 11296.53 9881.92 16495.99 6595.84 14974.11 33189.06 13795.21 12361.44 31898.81 10083.67 17987.47 24397.01 124
IB-MVS80.51 1585.24 26283.26 27391.19 17292.13 25779.86 22391.75 27191.29 31483.28 21080.66 29988.49 31961.28 31998.46 11980.99 22379.46 32895.25 184
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GA-MVS86.61 23485.27 24490.66 19491.33 28678.71 24790.40 29393.81 25585.34 16785.12 22689.57 30561.25 32097.11 23880.99 22389.59 20696.15 149
N_pmnet68.89 33268.44 33570.23 35189.07 33728.79 38388.06 32819.50 38469.47 35571.86 35684.93 34861.24 32191.75 35854.70 36477.15 33990.15 342
EU-MVSNet81.32 30380.95 29182.42 34188.50 34263.67 36793.32 21891.33 31264.02 36280.57 30192.83 21461.21 32292.27 35476.34 27580.38 32091.32 326
VDDNet89.56 13388.49 15292.76 10195.07 15482.09 15996.30 4393.19 26481.05 26291.88 9596.86 5461.16 32398.33 13288.43 11992.49 17597.84 91
PVSNet_073.20 2077.22 32574.83 33084.37 33290.70 31371.10 34283.09 35889.67 34672.81 34373.93 34883.13 35560.79 32493.70 34168.54 32450.84 37088.30 358
SixPastTwentyTwo83.91 27882.90 27886.92 30890.99 29770.67 34693.48 21391.99 29585.54 16377.62 32792.11 23960.59 32596.87 25276.05 27977.75 33593.20 282
gg-mvs-nofinetune81.77 29479.37 30788.99 26190.85 30777.73 27686.29 34179.63 37374.88 32683.19 27269.05 36760.34 32696.11 29275.46 28394.64 13693.11 286
MDA-MVSNet-bldmvs78.85 32176.31 32486.46 31389.76 33273.88 31788.79 32090.42 33079.16 28059.18 36688.33 32260.20 32794.04 33662.00 35368.96 35791.48 324
pmmvs683.42 28281.60 28688.87 26288.01 34977.87 27094.96 12394.24 23974.67 32778.80 31991.09 27460.17 32896.49 27377.06 27175.40 34592.23 313
ACMH80.38 1785.36 25783.68 26990.39 20994.45 18580.63 20094.73 14094.85 21582.09 23277.24 32892.65 22060.01 32997.58 19072.25 30484.87 26292.96 291
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GG-mvs-BLEND87.94 28689.73 33377.91 26787.80 33078.23 37580.58 30083.86 35159.88 33095.33 32171.20 30792.22 17790.60 340
UniMVSNet_ETH3D87.53 20386.37 20991.00 18692.44 24978.96 24594.74 13995.61 16784.07 19085.36 22394.52 15359.78 33197.34 21882.93 18687.88 23996.71 135
pmmvs-eth3d80.97 30778.72 31687.74 28784.99 36379.97 22190.11 30191.65 30475.36 31873.51 34986.03 34359.45 33293.96 33975.17 28672.21 35089.29 349
test_040281.30 30479.17 31287.67 28993.19 22878.17 26292.98 23791.71 30175.25 32076.02 33890.31 29059.23 33396.37 28150.22 36783.63 27388.47 357
KD-MVS_self_test80.20 31279.24 30983.07 33885.64 36065.29 36591.01 28593.93 24878.71 28976.32 33486.40 34159.20 33492.93 35072.59 30269.35 35491.00 336
FMVSNet185.85 25084.11 26391.08 18092.81 24283.10 12895.14 11394.94 20781.64 24882.68 27691.64 25359.01 33596.34 28475.37 28483.78 26993.79 254
COLMAP_ROBcopyleft80.39 1683.96 27682.04 28389.74 23995.28 14479.75 22594.25 17292.28 28475.17 32178.02 32493.77 18658.60 33697.84 17265.06 34585.92 25591.63 321
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+81.04 1485.05 26583.46 27289.82 23594.66 17679.37 23494.44 15994.12 24582.19 23178.04 32392.82 21558.23 33797.54 19573.77 29782.90 28392.54 302
CMPMVSbinary59.16 2180.52 30979.20 31184.48 33183.98 36467.63 36089.95 30493.84 25464.79 36166.81 36291.14 27257.93 33895.17 32276.25 27688.10 23490.65 337
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ITE_SJBPF88.24 27891.88 26577.05 28792.92 26885.54 16380.13 30893.30 19857.29 33996.20 28872.46 30384.71 26391.49 323
TESTMET0.1,183.74 28082.85 27986.42 31589.96 32971.21 34189.55 30687.88 35377.41 30083.37 26887.31 33556.71 34093.65 34280.62 23092.85 17094.40 226
UnsupCasMVSNet_eth80.07 31378.27 31785.46 32385.24 36272.63 33088.45 32694.87 21482.99 21671.64 35788.07 32656.34 34191.75 35873.48 29963.36 36492.01 316
K. test v381.59 29880.15 30085.91 32189.89 33169.42 35392.57 24987.71 35585.56 16273.44 35089.71 30355.58 34295.52 31477.17 26869.76 35392.78 298
test-mter84.54 27283.64 27087.25 30090.95 29971.67 33789.55 30689.88 34379.17 27984.54 23587.95 32755.56 34395.11 32481.82 20893.37 15994.97 190
lessismore_v086.04 31788.46 34368.78 35580.59 37173.01 35290.11 29455.39 34496.43 27975.06 28865.06 36192.90 293
MVS-HIRNet73.70 32972.20 33278.18 34791.81 26856.42 37382.94 35982.58 36755.24 36668.88 35966.48 36855.32 34595.13 32358.12 36188.42 22883.01 362
test250687.21 21886.28 21490.02 22895.62 13273.64 31996.25 4971.38 37787.89 10490.45 11796.65 6755.29 34698.09 15486.03 15096.94 9698.33 46
new-patchmatchnet76.41 32775.17 32980.13 34382.65 36959.61 36987.66 33491.08 31878.23 29669.85 35883.22 35454.76 34791.63 36064.14 34864.89 36289.16 351
Anonymous20240521187.68 19186.13 21892.31 12596.66 9180.74 19894.87 13191.49 30980.47 26589.46 13195.44 11554.72 34898.23 13882.19 20089.89 20097.97 81
XVG-ACMP-BASELINE86.00 24684.84 25489.45 25091.20 28878.00 26591.70 27395.55 17085.05 17582.97 27392.25 23354.49 34997.48 19982.93 18687.45 24592.89 294
USDC82.76 28581.26 29087.26 29991.17 29074.55 31089.27 31293.39 26178.26 29575.30 34192.08 24154.43 35096.63 26071.64 30585.79 25790.61 338
AllTest83.42 28281.39 28889.52 24795.01 15577.79 27393.12 23090.89 32577.41 30076.12 33693.34 19454.08 35197.51 19768.31 32784.27 26693.26 277
TestCases89.52 24795.01 15577.79 27390.89 32577.41 30076.12 33693.34 19454.08 35197.51 19768.31 32784.27 26693.26 277
KD-MVS_2432*160078.50 32276.02 32785.93 31986.22 35574.47 31184.80 34992.33 28179.29 27776.98 33085.92 34453.81 35393.97 33767.39 33257.42 36789.36 346
miper_refine_blended78.50 32276.02 32785.93 31986.22 35574.47 31184.80 34992.33 28179.29 27776.98 33085.92 34453.81 35393.97 33767.39 33257.42 36789.36 346
MIMVSNet82.59 28880.53 29388.76 26391.51 27778.32 25886.57 34090.13 33579.32 27680.70 29888.69 31852.98 35593.07 34966.03 34088.86 21994.90 197
FMVSNet581.52 30079.60 30687.27 29891.17 29077.95 26691.49 27792.26 28576.87 30576.16 33587.91 32951.67 35692.34 35367.74 33181.16 30191.52 322
testgi80.94 30880.20 29983.18 33787.96 35066.29 36191.28 27990.70 32983.70 19778.12 32292.84 21351.37 35790.82 36163.34 34982.46 28692.43 306
Anonymous2024052180.44 31079.21 31084.11 33585.75 35967.89 35792.86 24193.23 26375.61 31775.59 34087.47 33450.03 35894.33 33271.14 31081.21 30090.12 343
UnsupCasMVSNet_bld76.23 32873.27 33185.09 32883.79 36572.92 32485.65 34693.47 26071.52 34868.84 36079.08 36149.77 35993.21 34666.81 33960.52 36689.13 353
OpenMVS_ROBcopyleft74.94 1979.51 31777.03 32386.93 30787.00 35276.23 29992.33 25690.74 32868.93 35674.52 34588.23 32449.58 36096.62 26157.64 36284.29 26587.94 359
TDRefinement79.81 31577.34 31987.22 30379.24 37175.48 30693.12 23092.03 29376.45 30775.01 34291.58 25849.19 36196.44 27870.22 31569.18 35689.75 345
MIMVSNet179.38 31877.28 32085.69 32286.35 35473.67 31891.61 27692.75 27378.11 29872.64 35388.12 32548.16 36291.97 35760.32 35777.49 33791.43 325
MVS_030483.46 28181.92 28488.10 28290.63 31577.49 28193.26 22593.75 25680.04 27080.44 30387.24 33747.94 36395.55 31275.79 28088.16 23391.26 328
LF4IMVS80.37 31179.07 31484.27 33486.64 35369.87 35289.39 31191.05 32076.38 30874.97 34390.00 29747.85 36494.25 33574.55 29380.82 31288.69 355
EG-PatchMatch MVS82.37 29080.34 29688.46 27190.27 32279.35 23592.80 24394.33 23577.14 30473.26 35190.18 29247.47 36596.72 25570.25 31387.32 24889.30 348
TinyColmap79.76 31677.69 31885.97 31891.71 27273.12 32389.55 30690.36 33275.03 32272.03 35590.19 29146.22 36696.19 29063.11 35081.03 30688.59 356
tmp_tt35.64 34439.24 34624.84 36014.87 38423.90 38462.71 37051.51 3836.58 37836.66 37462.08 37144.37 36730.34 38052.40 36622.00 37720.27 375
new_pmnet72.15 33070.13 33378.20 34682.95 36865.68 36283.91 35482.40 36862.94 36364.47 36379.82 36042.85 36886.26 36857.41 36374.44 34682.65 364
EGC-MVSNET61.97 33556.37 33978.77 34589.63 33473.50 32089.12 31682.79 3660.21 3811.24 38284.80 34939.48 36990.04 36344.13 36975.94 34472.79 368
pmmvs371.81 33168.71 33481.11 34275.86 37270.42 34886.74 33883.66 36558.95 36568.64 36180.89 35936.93 37089.52 36463.10 35163.59 36383.39 361
PM-MVS78.11 32476.12 32684.09 33683.54 36670.08 35088.97 31985.27 36179.93 27174.73 34486.43 34034.70 37193.48 34379.43 24772.06 35188.72 354
ambc83.06 33979.99 37063.51 36877.47 36592.86 26974.34 34784.45 35028.74 37295.06 32673.06 30168.89 35890.61 338
test_method50.52 34048.47 34256.66 35652.26 38218.98 38541.51 37481.40 37010.10 37644.59 37175.01 36328.51 37368.16 37453.54 36549.31 37182.83 363
DeepMVS_CXcopyleft56.31 35774.23 37351.81 37656.67 38244.85 37048.54 37075.16 36227.87 37458.74 37840.92 37152.22 36958.39 371
FPMVS64.63 33462.55 33670.88 35070.80 37456.71 37184.42 35284.42 36351.78 36849.57 36881.61 35823.49 37581.48 37140.61 37276.25 34374.46 367
ANet_high58.88 33754.22 34172.86 34956.50 38156.67 37280.75 36386.00 35873.09 34037.39 37364.63 37022.17 37679.49 37343.51 37023.96 37582.43 365
EMVS42.07 34341.12 34544.92 35963.45 37935.56 38273.65 36663.48 37933.05 37426.88 37845.45 37521.27 37767.14 37619.80 37723.02 37632.06 374
Gipumacopyleft57.99 33854.91 34067.24 35388.51 34165.59 36352.21 37290.33 33343.58 37142.84 37251.18 37320.29 37885.07 36934.77 37370.45 35251.05 372
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN43.23 34242.29 34446.03 35865.58 37737.41 38073.51 36764.62 37833.99 37328.47 37747.87 37419.90 37967.91 37522.23 37624.45 37432.77 373
PMMVS259.60 33656.40 33869.21 35268.83 37546.58 37873.02 36977.48 37655.07 36749.21 36972.95 36617.43 38080.04 37249.32 36844.33 37280.99 366
LCM-MVSNet66.00 33362.16 33777.51 34864.51 37858.29 37083.87 35590.90 32448.17 36954.69 36773.31 36516.83 38186.75 36765.47 34161.67 36587.48 360
PMVScopyleft47.18 2252.22 33948.46 34363.48 35445.72 38346.20 37973.41 36878.31 37441.03 37230.06 37565.68 3696.05 38283.43 37030.04 37465.86 36060.80 369
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.65 2343.39 34138.59 34757.77 35556.52 38048.77 37755.38 37158.64 38129.33 37528.96 37652.65 3724.68 38364.62 37728.11 37533.07 37359.93 370
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d21.27 34620.48 34923.63 36168.59 37636.41 38149.57 3736.85 3859.37 3777.89 3794.46 3814.03 38431.37 37917.47 37816.07 3783.12 376
test1238.76 34811.22 3511.39 3620.85 3860.97 38685.76 3450.35 3870.54 3802.45 3818.14 3800.60 3850.48 3812.16 3800.17 3802.71 377
testmvs8.92 34711.52 3501.12 3631.06 3850.46 38786.02 3420.65 3860.62 3792.74 3809.52 3790.31 3860.45 3822.38 3790.39 3792.46 378
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re7.82 34910.43 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38393.88 1810.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
FOURS198.86 185.54 7398.29 197.49 589.79 4596.29 15
MSC_two_6792asdad96.52 197.78 5790.86 196.85 6899.61 396.03 199.06 999.07 5
No_MVS96.52 197.78 5790.86 196.85 6899.61 396.03 199.06 999.07 5
eth-test20.00 387
eth-test0.00 387
IU-MVS98.77 586.00 5596.84 7081.26 25797.26 795.50 1099.13 399.03 7
save fliter97.85 5085.63 7195.21 10696.82 7489.44 52
test_0728_SECOND95.01 1798.79 286.43 4397.09 1697.49 599.61 395.62 899.08 798.99 8
GSMVS96.12 152
test_part298.55 1387.22 1896.40 14
MTGPAbinary96.97 53
MTMP96.16 5260.64 380
gm-plane-assit89.60 33568.00 35677.28 30388.99 31097.57 19179.44 246
test9_res91.91 6998.71 3498.07 74
agg_prior290.54 9798.68 3998.27 56
agg_prior97.38 7185.92 6296.72 8692.16 8998.97 83
test_prior485.96 5994.11 181
test_prior93.82 6797.29 7684.49 8996.88 6598.87 9198.11 72
旧先验293.36 21771.25 35094.37 3297.13 23786.74 141
新几何293.11 232
无先验93.28 22496.26 11673.95 33299.05 6380.56 23196.59 138
原ACMM292.94 239
testdata298.75 10378.30 256
testdata192.15 26287.94 100
plane_prior794.70 17482.74 143
plane_prior596.22 12198.12 14488.15 12089.99 19694.63 206
plane_prior494.86 135
plane_prior382.75 14190.26 3586.91 175
plane_prior295.85 7290.81 20
plane_prior194.59 178
plane_prior82.73 14495.21 10689.66 4989.88 201
n20.00 388
nn0.00 388
door-mid85.49 359
test1196.57 100
door85.33 360
HQP5-MVS81.56 170
HQP-NCC94.17 19494.39 16488.81 7185.43 216
ACMP_Plane94.17 19494.39 16488.81 7185.43 216
BP-MVS87.11 138
HQP4-MVS85.43 21697.96 16694.51 215
HQP3-MVS96.04 13589.77 203
NP-MVS94.37 18882.42 15393.98 174
ACMMP++_ref87.47 243
ACMMP++88.01 237