PC_three_1452 | | | | | | | | | | 82.47 225 | 97.09 9 | 97.07 45 | 92.72 1 | 98.04 159 | 92.70 46 | 99.02 12 | 98.86 10 |
|
DVP-MVS++ | | | 95.98 1 | 96.36 1 | 94.82 34 | 97.78 57 | 86.00 55 | 98.29 1 | 97.49 5 | 90.75 22 | 97.62 5 | 98.06 6 | 92.59 2 | 99.61 3 | 95.64 6 | 99.02 12 | 98.86 10 |
|
OPU-MVS | | | | | 96.21 3 | 98.00 46 | 90.85 3 | 97.13 14 | | | | 97.08 43 | 92.59 2 | 98.94 87 | 92.25 54 | 98.99 14 | 98.84 13 |
|
SED-MVS | | | 95.91 2 | 96.28 2 | 94.80 36 | 98.77 5 | 85.99 57 | 97.13 14 | 97.44 14 | 90.31 31 | 97.71 1 | 98.07 4 | 92.31 4 | 99.58 8 | 95.66 4 | 99.13 3 | 98.84 13 |
|
test_241102_ONE | | | | | | 98.77 5 | 85.99 57 | | 97.44 14 | 90.26 35 | 97.71 1 | 97.96 10 | 92.31 4 | 99.38 32 | | | |
|
test_0728_THIRD | | | | | | | | | | 90.75 22 | 97.04 10 | 98.05 8 | 92.09 6 | 99.55 15 | 95.64 6 | 99.13 3 | 99.13 2 |
|
DPE-MVS |  | | 95.57 4 | 95.67 4 | 95.25 9 | 98.36 27 | 87.28 17 | 95.56 88 | 97.51 4 | 89.13 63 | 97.14 8 | 97.91 11 | 91.64 7 | 99.62 1 | 94.61 14 | 99.17 2 | 98.86 10 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
DVP-MVS |  | | 95.67 3 | 96.02 3 | 94.64 43 | 98.78 3 | 85.93 60 | 97.09 16 | 96.73 84 | 90.27 33 | 97.04 10 | 98.05 8 | 91.47 8 | 99.55 15 | 95.62 8 | 99.08 7 | 98.45 38 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 98.78 3 | 85.93 60 | 97.19 11 | 97.47 10 | 90.27 33 | 97.64 4 | 98.13 1 | 91.47 8 | | | | |
|
test_241102_TWO | | | | | | | | | 97.44 14 | 90.31 31 | 97.62 5 | 98.07 4 | 91.46 10 | 99.58 8 | 95.66 4 | 99.12 6 | 98.98 9 |
|
test_one_0601 | | | | | | 98.58 12 | 85.83 66 | | 97.44 14 | 91.05 17 | 96.78 13 | 98.06 6 | 91.45 11 | | | | |
|
MSP-MVS | | | 95.42 6 | 95.56 6 | 94.98 21 | 98.49 18 | 86.52 40 | 96.91 25 | 97.47 10 | 91.73 9 | 96.10 17 | 96.69 63 | 89.90 12 | 99.30 42 | 94.70 12 | 98.04 73 | 99.13 2 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DeepPCF-MVS | | 89.96 1 | 94.20 36 | 94.77 14 | 92.49 116 | 96.52 99 | 80.00 220 | 94.00 193 | 97.08 47 | 90.05 37 | 95.65 21 | 97.29 28 | 89.66 13 | 98.97 83 | 93.95 20 | 98.71 34 | 98.50 28 |
|
SD-MVS | | | 94.96 12 | 95.33 8 | 93.88 65 | 97.25 80 | 86.69 32 | 96.19 51 | 97.11 46 | 90.42 30 | 96.95 12 | 97.27 29 | 89.53 14 | 96.91 250 | 94.38 16 | 98.85 19 | 98.03 78 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
CNVR-MVS | | | 95.40 7 | 95.37 7 | 95.50 7 | 98.11 39 | 88.51 7 | 95.29 100 | 96.96 56 | 92.09 4 | 95.32 23 | 97.08 43 | 89.49 15 | 99.33 39 | 95.10 11 | 98.85 19 | 98.66 20 |
|
APDe-MVS | | | 95.46 5 | 95.64 5 | 94.91 24 | 98.26 30 | 86.29 51 | 97.46 6 | 97.40 20 | 89.03 67 | 96.20 16 | 98.10 2 | 89.39 16 | 99.34 36 | 95.88 3 | 99.03 11 | 99.10 4 |
|
MCST-MVS | | | 94.45 21 | 94.20 32 | 95.19 11 | 98.46 20 | 87.50 15 | 95.00 122 | 97.12 44 | 87.13 123 | 92.51 84 | 96.30 82 | 89.24 17 | 99.34 36 | 93.46 28 | 98.62 48 | 98.73 16 |
|
TSAR-MVS + MP. | | | 94.85 13 | 94.94 11 | 94.58 46 | 98.25 31 | 86.33 47 | 96.11 58 | 96.62 96 | 88.14 96 | 96.10 17 | 96.96 50 | 89.09 18 | 98.94 87 | 94.48 15 | 98.68 39 | 98.48 30 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
SteuartSystems-ACMMP | | | 95.20 8 | 95.32 9 | 94.85 29 | 96.99 83 | 86.33 47 | 97.33 7 | 97.30 29 | 91.38 13 | 95.39 22 | 97.46 19 | 88.98 19 | 99.40 31 | 94.12 18 | 98.89 18 | 98.82 15 |
Skip Steuart: Steuart Systems R&D Blog. |
SMA-MVS |  | | 95.20 8 | 95.07 10 | 95.59 5 | 98.14 38 | 88.48 8 | 96.26 47 | 97.28 31 | 85.90 152 | 97.67 3 | 98.10 2 | 88.41 20 | 99.56 10 | 94.66 13 | 99.19 1 | 98.71 18 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
patch_mono-2 | | | 93.74 49 | 94.32 22 | 92.01 133 | 97.54 64 | 78.37 257 | 93.40 216 | 97.19 38 | 88.02 98 | 94.99 28 | 97.21 34 | 88.35 21 | 98.44 123 | 94.07 19 | 98.09 70 | 99.23 1 |
|
9.14 | | | | 94.47 18 | | 97.79 54 | | 96.08 59 | 97.44 14 | 86.13 150 | 95.10 26 | 97.40 23 | 88.34 22 | 99.22 49 | 93.25 35 | 98.70 36 | |
|
xxxxxxxxxxxxxcwj | | | 94.65 16 | 94.70 15 | 94.48 50 | 97.85 50 | 85.63 71 | 95.21 106 | 95.47 177 | 89.44 52 | 95.71 19 | 97.70 13 | 88.28 23 | 99.35 34 | 93.89 22 | 98.78 25 | 98.48 30 |
|
SF-MVS | | | 94.97 11 | 94.90 13 | 95.20 10 | 97.84 52 | 87.76 10 | 96.65 34 | 97.48 9 | 87.76 109 | 95.71 19 | 97.70 13 | 88.28 23 | 99.35 34 | 93.89 22 | 98.78 25 | 98.48 30 |
|
HPM-MVS++ |  | | 95.14 10 | 94.91 12 | 95.83 4 | 98.25 31 | 89.65 4 | 95.92 70 | 96.96 56 | 91.75 8 | 94.02 41 | 96.83 56 | 88.12 25 | 99.55 15 | 93.41 31 | 98.94 16 | 98.28 54 |
|
dcpmvs_2 | | | 93.49 56 | 94.19 33 | 91.38 165 | 97.69 61 | 76.78 290 | 94.25 172 | 96.29 113 | 88.33 85 | 94.46 30 | 96.88 53 | 88.07 26 | 98.64 107 | 93.62 26 | 98.09 70 | 98.73 16 |
|
agg_prior1 | | | 93.29 63 | 92.97 67 | 94.26 58 | 97.38 71 | 85.92 62 | 93.92 197 | 96.72 86 | 81.96 237 | 92.16 89 | 96.23 86 | 87.85 27 | 98.97 83 | 91.95 68 | 98.55 54 | 97.90 87 |
|
CSCG | | | 93.23 66 | 93.05 64 | 93.76 72 | 98.04 44 | 84.07 102 | 96.22 50 | 97.37 21 | 84.15 188 | 90.05 125 | 95.66 111 | 87.77 28 | 99.15 56 | 89.91 102 | 98.27 63 | 98.07 74 |
|
NCCC | | | 94.81 14 | 94.69 16 | 95.17 12 | 97.83 53 | 87.46 16 | 95.66 83 | 96.93 60 | 92.34 2 | 93.94 42 | 96.58 73 | 87.74 29 | 99.44 30 | 92.83 41 | 98.40 58 | 98.62 22 |
|
ETH3D-3000-0.1 | | | 94.61 17 | 94.44 19 | 95.12 13 | 97.70 60 | 87.71 11 | 95.98 67 | 97.44 14 | 86.67 136 | 95.25 25 | 97.31 27 | 87.73 30 | 99.24 47 | 93.11 38 | 98.76 30 | 98.40 41 |
|
TEST9 | | | | | | 97.53 65 | 86.49 41 | 94.07 186 | 96.78 77 | 81.61 250 | 92.77 74 | 96.20 89 | 87.71 31 | 99.12 58 | | | |
|
train_agg | | | 93.44 58 | 93.08 63 | 94.52 48 | 97.53 65 | 86.49 41 | 94.07 186 | 96.78 77 | 81.86 243 | 92.77 74 | 96.20 89 | 87.63 32 | 99.12 58 | 92.14 59 | 98.69 37 | 97.94 83 |
|
test_8 | | | | | | 97.49 68 | 86.30 50 | 94.02 191 | 96.76 80 | 81.86 243 | 92.70 78 | 96.20 89 | 87.63 32 | 99.02 71 | | | |
|
ZD-MVS | | | | | | 98.15 37 | 86.62 37 | | 97.07 48 | 83.63 199 | 94.19 36 | 96.91 52 | 87.57 34 | 99.26 46 | 91.99 64 | 98.44 56 | |
|
TSAR-MVS + GP. | | | 93.66 52 | 93.41 57 | 94.41 55 | 96.59 94 | 86.78 28 | 94.40 162 | 93.93 248 | 89.77 46 | 94.21 35 | 95.59 114 | 87.35 35 | 98.61 111 | 92.72 44 | 96.15 114 | 97.83 92 |
|
APD-MVS |  | | 94.24 31 | 94.07 39 | 94.75 39 | 98.06 43 | 86.90 23 | 95.88 71 | 96.94 59 | 85.68 158 | 95.05 27 | 97.18 38 | 87.31 36 | 99.07 61 | 91.90 72 | 98.61 50 | 98.28 54 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ETH3 D test6400 | | | 93.64 53 | 93.22 60 | 94.92 22 | 97.79 54 | 86.84 24 | 95.31 95 | 97.26 32 | 82.67 223 | 93.81 45 | 96.29 83 | 87.29 37 | 99.27 45 | 89.87 103 | 98.67 41 | 98.65 21 |
|
ETH3D cwj APD-0.16 | | | 93.91 44 | 93.53 55 | 95.06 15 | 96.76 88 | 87.78 9 | 94.92 127 | 97.21 37 | 84.33 186 | 93.89 44 | 97.09 42 | 87.20 38 | 99.29 44 | 91.90 72 | 98.44 56 | 98.12 70 |
|
Regformer-2 | | | 94.33 28 | 94.22 29 | 94.68 41 | 95.54 135 | 86.75 31 | 94.57 150 | 96.70 89 | 91.84 7 | 94.41 31 | 96.56 75 | 87.19 39 | 99.13 57 | 93.50 27 | 97.65 86 | 98.16 65 |
|
segment_acmp | | | | | | | | | | | | | 87.16 40 | | | | |
|
Regformer-1 | | | 94.22 33 | 94.13 37 | 94.51 49 | 95.54 135 | 86.36 46 | 94.57 150 | 96.44 104 | 91.69 11 | 94.32 34 | 96.56 75 | 87.05 41 | 99.03 67 | 93.35 32 | 97.65 86 | 98.15 66 |
|
testtj | | | 94.39 26 | 94.18 34 | 95.00 18 | 98.24 33 | 86.77 30 | 96.16 52 | 97.23 35 | 87.28 121 | 94.85 29 | 97.04 46 | 86.99 42 | 99.52 23 | 91.54 78 | 98.33 61 | 98.71 18 |
|
旧先验1 | | | | | | 96.79 87 | 81.81 166 | | 95.67 161 | | | 96.81 58 | 86.69 43 | | | 97.66 85 | 96.97 126 |
|
test_prior3 | | | 93.60 54 | 93.53 55 | 93.82 67 | 97.29 76 | 84.49 89 | 94.12 179 | 96.88 65 | 87.67 112 | 92.63 79 | 96.39 80 | 86.62 44 | 98.87 91 | 91.50 79 | 98.67 41 | 98.11 72 |
|
test_prior2 | | | | | | | | 94.12 179 | | 87.67 112 | 92.63 79 | 96.39 80 | 86.62 44 | | 91.50 79 | 98.67 41 | |
|
CDPH-MVS | | | 92.83 70 | 92.30 76 | 94.44 51 | 97.79 54 | 86.11 54 | 94.06 188 | 96.66 93 | 80.09 269 | 92.77 74 | 96.63 70 | 86.62 44 | 99.04 66 | 87.40 131 | 98.66 44 | 98.17 64 |
|
DPM-MVS | | | 92.58 74 | 91.74 82 | 95.08 14 | 96.19 107 | 89.31 5 | 92.66 245 | 96.56 101 | 83.44 205 | 91.68 103 | 95.04 128 | 86.60 47 | 98.99 80 | 85.60 155 | 97.92 78 | 96.93 128 |
|
DELS-MVS | | | 93.43 60 | 93.25 59 | 93.97 62 | 95.42 139 | 85.04 78 | 93.06 235 | 97.13 43 | 90.74 24 | 91.84 97 | 95.09 127 | 86.32 48 | 99.21 50 | 91.22 83 | 98.45 55 | 97.65 97 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
ZNCC-MVS | | | 94.47 19 | 94.28 26 | 95.03 16 | 98.52 16 | 86.96 19 | 96.85 28 | 97.32 27 | 88.24 90 | 93.15 62 | 97.04 46 | 86.17 49 | 99.62 1 | 92.40 50 | 98.81 22 | 98.52 26 |
|
HFP-MVS | | | 94.52 18 | 94.40 21 | 94.86 27 | 98.61 10 | 86.81 26 | 96.94 20 | 97.34 22 | 88.63 77 | 93.65 49 | 97.21 34 | 86.10 50 | 99.49 26 | 92.35 52 | 98.77 28 | 98.30 50 |
|
#test# | | | 94.32 29 | 94.14 36 | 94.86 27 | 98.61 10 | 86.81 26 | 96.43 38 | 97.34 22 | 87.51 115 | 93.65 49 | 97.21 34 | 86.10 50 | 99.49 26 | 91.68 76 | 98.77 28 | 98.30 50 |
|
MVS_111021_HR | | | 93.45 57 | 93.31 58 | 93.84 66 | 96.99 83 | 84.84 79 | 93.24 228 | 97.24 33 | 88.76 74 | 91.60 104 | 95.85 103 | 86.07 52 | 98.66 105 | 91.91 69 | 98.16 66 | 98.03 78 |
|
Regformer-4 | | | 93.91 44 | 93.81 46 | 94.19 60 | 95.36 140 | 85.47 74 | 94.68 142 | 96.41 107 | 91.60 12 | 93.75 46 | 96.71 61 | 85.95 53 | 99.10 60 | 93.21 36 | 96.65 105 | 98.01 80 |
|
ACMMP_NAP | | | 94.74 15 | 94.56 17 | 95.28 8 | 98.02 45 | 87.70 12 | 95.68 81 | 97.34 22 | 88.28 89 | 95.30 24 | 97.67 15 | 85.90 54 | 99.54 19 | 93.91 21 | 98.95 15 | 98.60 23 |
|
Regformer-3 | | | 93.68 51 | 93.64 54 | 93.81 70 | 95.36 140 | 84.61 83 | 94.68 142 | 95.83 150 | 91.27 14 | 93.60 52 | 96.71 61 | 85.75 55 | 98.86 94 | 92.87 40 | 96.65 105 | 97.96 82 |
|
CS-MVS | | | 94.12 37 | 94.44 19 | 93.17 83 | 96.55 96 | 83.08 131 | 97.63 3 | 96.95 58 | 91.71 10 | 93.50 57 | 96.21 87 | 85.61 56 | 98.24 137 | 93.64 25 | 98.17 65 | 98.19 62 |
|
PHI-MVS | | | 93.89 46 | 93.65 53 | 94.62 45 | 96.84 86 | 86.43 43 | 96.69 32 | 97.49 5 | 85.15 172 | 93.56 55 | 96.28 84 | 85.60 57 | 99.31 41 | 92.45 47 | 98.79 23 | 98.12 70 |
|
MP-MVS-pluss | | | 94.21 34 | 94.00 42 | 94.85 29 | 98.17 36 | 86.65 35 | 94.82 134 | 97.17 42 | 86.26 144 | 92.83 72 | 97.87 12 | 85.57 58 | 99.56 10 | 94.37 17 | 98.92 17 | 98.34 45 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
GST-MVS | | | 94.21 34 | 93.97 43 | 94.90 26 | 98.41 24 | 86.82 25 | 96.54 36 | 97.19 38 | 88.24 90 | 93.26 58 | 96.83 56 | 85.48 59 | 99.59 7 | 91.43 82 | 98.40 58 | 98.30 50 |
|
MP-MVS |  | | 94.25 30 | 94.07 39 | 94.77 38 | 98.47 19 | 86.31 49 | 96.71 31 | 96.98 52 | 89.04 66 | 91.98 93 | 97.19 37 | 85.43 60 | 99.56 10 | 92.06 63 | 98.79 23 | 98.44 39 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
DeepC-MVS_fast | | 89.43 2 | 94.04 38 | 93.79 47 | 94.80 36 | 97.48 69 | 86.78 28 | 95.65 85 | 96.89 64 | 89.40 55 | 92.81 73 | 96.97 49 | 85.37 61 | 99.24 47 | 90.87 92 | 98.69 37 | 98.38 44 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
region2R | | | 94.43 23 | 94.27 28 | 94.92 22 | 98.65 8 | 86.67 34 | 96.92 24 | 97.23 35 | 88.60 79 | 93.58 53 | 97.27 29 | 85.22 62 | 99.54 19 | 92.21 55 | 98.74 33 | 98.56 25 |
|
CP-MVS | | | 94.34 27 | 94.21 31 | 94.74 40 | 98.39 25 | 86.64 36 | 97.60 4 | 97.24 33 | 88.53 81 | 92.73 77 | 97.23 32 | 85.20 63 | 99.32 40 | 92.15 58 | 98.83 21 | 98.25 59 |
|
test12 | | | | | 94.34 56 | 97.13 81 | 86.15 53 | | 96.29 113 | | 91.04 113 | | 85.08 64 | 99.01 73 | | 98.13 68 | 97.86 90 |
|
ACMMPR | | | 94.43 23 | 94.28 26 | 94.91 24 | 98.63 9 | 86.69 32 | 96.94 20 | 97.32 27 | 88.63 77 | 93.53 56 | 97.26 31 | 85.04 65 | 99.54 19 | 92.35 52 | 98.78 25 | 98.50 28 |
|
CS-MVS-test | | | 94.02 39 | 94.29 25 | 93.24 79 | 96.69 90 | 83.24 124 | 97.49 5 | 96.92 61 | 92.14 3 | 92.90 68 | 95.77 107 | 85.02 66 | 98.33 132 | 93.03 39 | 98.62 48 | 98.13 68 |
|
XVS | | | 94.45 21 | 94.32 22 | 94.85 29 | 98.54 14 | 86.60 38 | 96.93 22 | 97.19 38 | 90.66 27 | 92.85 70 | 97.16 40 | 85.02 66 | 99.49 26 | 91.99 64 | 98.56 52 | 98.47 34 |
|
X-MVStestdata | | | 88.31 175 | 86.13 218 | 94.85 29 | 98.54 14 | 86.60 38 | 96.93 22 | 97.19 38 | 90.66 27 | 92.85 70 | 23.41 376 | 85.02 66 | 99.49 26 | 91.99 64 | 98.56 52 | 98.47 34 |
|
MSLP-MVS++ | | | 93.72 50 | 94.08 38 | 92.65 108 | 97.31 74 | 83.43 120 | 95.79 75 | 97.33 25 | 90.03 38 | 93.58 53 | 96.96 50 | 84.87 69 | 97.76 175 | 92.19 57 | 98.66 44 | 96.76 132 |
|
HPM-MVS |  | | 94.02 39 | 93.88 44 | 94.43 53 | 98.39 25 | 85.78 68 | 97.25 10 | 97.07 48 | 86.90 131 | 92.62 81 | 96.80 60 | 84.85 70 | 99.17 53 | 92.43 48 | 98.65 46 | 98.33 46 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
SR-MVS | | | 94.23 32 | 94.17 35 | 94.43 53 | 98.21 35 | 85.78 68 | 96.40 41 | 96.90 63 | 88.20 94 | 94.33 33 | 97.40 23 | 84.75 71 | 99.03 67 | 93.35 32 | 97.99 74 | 98.48 30 |
|
PGM-MVS | | | 93.96 43 | 93.72 50 | 94.68 41 | 98.43 21 | 86.22 52 | 95.30 98 | 97.78 1 | 87.45 118 | 93.26 58 | 97.33 26 | 84.62 72 | 99.51 24 | 90.75 94 | 98.57 51 | 98.32 49 |
|
EI-MVSNet-Vis-set | | | 93.01 69 | 92.92 68 | 93.29 77 | 95.01 155 | 83.51 118 | 94.48 154 | 95.77 154 | 90.87 18 | 92.52 83 | 96.67 65 | 84.50 73 | 99.00 78 | 91.99 64 | 94.44 142 | 97.36 108 |
|
zzz-MVS | | | 94.47 19 | 94.30 24 | 95.00 18 | 98.42 22 | 86.95 20 | 95.06 120 | 96.97 53 | 91.07 15 | 93.14 63 | 97.56 16 | 84.30 74 | 99.56 10 | 93.43 29 | 98.75 31 | 98.47 34 |
|
MTAPA | | | 94.42 25 | 94.22 29 | 95.00 18 | 98.42 22 | 86.95 20 | 94.36 169 | 96.97 53 | 91.07 15 | 93.14 63 | 97.56 16 | 84.30 74 | 99.56 10 | 93.43 29 | 98.75 31 | 98.47 34 |
|
test1172 | | | 93.97 42 | 94.07 39 | 93.66 74 | 98.11 39 | 83.45 119 | 96.26 47 | 96.84 70 | 88.33 85 | 94.19 36 | 97.43 20 | 84.24 76 | 99.01 73 | 93.26 34 | 97.98 75 | 98.52 26 |
|
SR-MVS-dyc-post | | | 93.82 47 | 93.82 45 | 93.82 67 | 97.92 47 | 84.57 85 | 96.28 45 | 96.76 80 | 87.46 116 | 93.75 46 | 97.43 20 | 84.24 76 | 99.01 73 | 92.73 42 | 97.80 81 | 97.88 88 |
|
ETV-MVS | | | 92.74 72 | 92.66 71 | 92.97 93 | 95.20 149 | 84.04 104 | 95.07 117 | 96.51 102 | 90.73 25 | 92.96 67 | 91.19 267 | 84.06 78 | 98.34 130 | 91.72 75 | 96.54 108 | 96.54 141 |
|
EI-MVSNet-UG-set | | | 92.74 72 | 92.62 72 | 93.12 85 | 94.86 166 | 83.20 126 | 94.40 162 | 95.74 157 | 90.71 26 | 92.05 92 | 96.60 72 | 84.00 79 | 98.99 80 | 91.55 77 | 93.63 150 | 97.17 117 |
|
mPP-MVS | | | 93.99 41 | 93.78 48 | 94.63 44 | 98.50 17 | 85.90 65 | 96.87 26 | 96.91 62 | 88.70 75 | 91.83 99 | 97.17 39 | 83.96 80 | 99.55 15 | 91.44 81 | 98.64 47 | 98.43 40 |
|
APD-MVS_3200maxsize | | | 93.78 48 | 93.77 49 | 93.80 71 | 97.92 47 | 84.19 100 | 96.30 43 | 96.87 67 | 86.96 127 | 93.92 43 | 97.47 18 | 83.88 81 | 98.96 86 | 92.71 45 | 97.87 79 | 98.26 58 |
|
EIA-MVS | | | 91.95 81 | 91.94 79 | 91.98 137 | 95.16 150 | 80.01 219 | 95.36 92 | 96.73 84 | 88.44 82 | 89.34 132 | 92.16 234 | 83.82 82 | 98.45 122 | 89.35 107 | 97.06 94 | 97.48 105 |
|
EPP-MVSNet | | | 91.70 87 | 91.56 84 | 92.13 131 | 95.88 122 | 80.50 204 | 97.33 7 | 95.25 193 | 86.15 148 | 89.76 127 | 95.60 113 | 83.42 83 | 98.32 134 | 87.37 133 | 93.25 161 | 97.56 103 |
|
UA-Net | | | 92.83 70 | 92.54 73 | 93.68 73 | 96.10 112 | 84.71 82 | 95.66 83 | 96.39 109 | 91.92 5 | 93.22 60 | 96.49 77 | 83.16 84 | 98.87 91 | 84.47 168 | 95.47 122 | 97.45 107 |
|
UniMVSNet_NR-MVSNet | | | 89.92 125 | 89.29 127 | 91.81 150 | 93.39 223 | 83.72 111 | 94.43 160 | 97.12 44 | 89.80 42 | 86.46 182 | 93.32 196 | 83.16 84 | 97.23 230 | 84.92 161 | 81.02 307 | 94.49 220 |
|
DROMVSNet | | | 93.44 58 | 93.71 51 | 92.63 109 | 95.21 148 | 82.43 152 | 97.27 9 | 96.71 88 | 90.57 29 | 92.88 69 | 95.80 105 | 83.16 84 | 98.16 143 | 93.68 24 | 98.14 67 | 97.31 109 |
|
RE-MVS-def | | | | 93.68 52 | | 97.92 47 | 84.57 85 | 96.28 45 | 96.76 80 | 87.46 116 | 93.75 46 | 97.43 20 | 82.94 87 | | 92.73 42 | 97.80 81 | 97.88 88 |
|
1121 | | | 90.42 112 | 89.49 119 | 93.20 81 | 97.27 78 | 84.46 92 | 92.63 246 | 95.51 175 | 71.01 352 | 91.20 111 | 96.21 87 | 82.92 88 | 99.05 63 | 80.56 231 | 98.07 72 | 96.10 155 |
|
新几何1 | | | | | 93.10 86 | 97.30 75 | 84.35 98 | | 95.56 169 | 71.09 351 | 91.26 110 | 96.24 85 | 82.87 89 | 98.86 94 | 79.19 250 | 98.10 69 | 96.07 157 |
|
原ACMM1 | | | | | 92.01 133 | 97.34 73 | 81.05 188 | | 96.81 75 | 78.89 283 | 90.45 117 | 95.92 100 | 82.65 90 | 98.84 99 | 80.68 229 | 98.26 64 | 96.14 150 |
|
casdiffmvs | | | 92.51 75 | 92.43 75 | 92.74 103 | 94.41 187 | 81.98 162 | 94.54 152 | 96.23 120 | 89.57 50 | 91.96 94 | 96.17 93 | 82.58 91 | 98.01 162 | 90.95 90 | 95.45 124 | 98.23 60 |
|
DeepC-MVS | | 88.79 3 | 93.31 62 | 92.99 66 | 94.26 58 | 96.07 114 | 85.83 66 | 94.89 129 | 96.99 51 | 89.02 69 | 89.56 128 | 97.37 25 | 82.51 92 | 99.38 32 | 92.20 56 | 98.30 62 | 97.57 102 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
HPM-MVS_fast | | | 93.40 61 | 93.22 60 | 93.94 64 | 98.36 27 | 84.83 80 | 97.15 13 | 96.80 76 | 85.77 155 | 92.47 85 | 97.13 41 | 82.38 93 | 99.07 61 | 90.51 98 | 98.40 58 | 97.92 86 |
|
baseline | | | 92.39 78 | 92.29 77 | 92.69 107 | 94.46 184 | 81.77 167 | 94.14 178 | 96.27 115 | 89.22 59 | 91.88 95 | 96.00 97 | 82.35 94 | 97.99 164 | 91.05 85 | 95.27 129 | 98.30 50 |
|
canonicalmvs | | | 93.27 64 | 92.75 70 | 94.85 29 | 95.70 129 | 87.66 13 | 96.33 42 | 96.41 107 | 90.00 39 | 94.09 39 | 94.60 150 | 82.33 95 | 98.62 110 | 92.40 50 | 92.86 169 | 98.27 56 |
|
DP-MVS Recon | | | 91.95 81 | 91.28 87 | 93.96 63 | 98.33 29 | 85.92 62 | 94.66 145 | 96.66 93 | 82.69 222 | 90.03 126 | 95.82 104 | 82.30 96 | 99.03 67 | 84.57 167 | 96.48 111 | 96.91 129 |
|
PAPR | | | 90.02 119 | 89.27 129 | 92.29 127 | 95.78 125 | 80.95 192 | 92.68 244 | 96.22 121 | 81.91 240 | 86.66 180 | 93.75 188 | 82.23 97 | 98.44 123 | 79.40 249 | 94.79 132 | 97.48 105 |
|
MVS_Test | | | 91.31 93 | 91.11 90 | 91.93 141 | 94.37 188 | 80.14 211 | 93.46 215 | 95.80 152 | 86.46 139 | 91.35 109 | 93.77 186 | 82.21 98 | 98.09 154 | 87.57 129 | 94.95 131 | 97.55 104 |
|
nrg030 | | | 91.08 98 | 90.39 100 | 93.17 83 | 93.07 232 | 86.91 22 | 96.41 39 | 96.26 116 | 88.30 88 | 88.37 145 | 94.85 137 | 82.19 99 | 97.64 186 | 91.09 84 | 82.95 279 | 94.96 193 |
|
UniMVSNet (Re) | | | 89.80 128 | 89.07 132 | 92.01 133 | 93.60 218 | 84.52 88 | 94.78 137 | 97.47 10 | 89.26 58 | 86.44 185 | 92.32 229 | 82.10 100 | 97.39 216 | 84.81 164 | 80.84 311 | 94.12 236 |
|
testdata | | | | | 90.49 202 | 96.40 101 | 77.89 269 | | 95.37 189 | 72.51 344 | 93.63 51 | 96.69 63 | 82.08 101 | 97.65 183 | 83.08 183 | 97.39 89 | 95.94 161 |
|
PAPM_NR | | | 91.22 95 | 90.78 98 | 92.52 115 | 97.60 63 | 81.46 176 | 94.37 168 | 96.24 119 | 86.39 142 | 87.41 162 | 94.80 141 | 82.06 102 | 98.48 117 | 82.80 191 | 95.37 125 | 97.61 99 |
|
MG-MVS | | | 91.77 84 | 91.70 83 | 92.00 136 | 97.08 82 | 80.03 218 | 93.60 210 | 95.18 197 | 87.85 106 | 90.89 114 | 96.47 78 | 82.06 102 | 98.36 127 | 85.07 159 | 97.04 95 | 97.62 98 |
|
CANet | | | 93.54 55 | 93.20 62 | 94.55 47 | 95.65 130 | 85.73 70 | 94.94 125 | 96.69 91 | 91.89 6 | 90.69 115 | 95.88 102 | 81.99 104 | 99.54 19 | 93.14 37 | 97.95 77 | 98.39 42 |
|
FC-MVSNet-test | | | 90.27 114 | 90.18 105 | 90.53 198 | 93.71 214 | 79.85 224 | 95.77 76 | 97.59 2 | 89.31 57 | 86.27 189 | 94.67 147 | 81.93 105 | 97.01 244 | 84.26 170 | 88.09 236 | 94.71 204 |
|
FIs | | | 90.51 111 | 90.35 101 | 90.99 187 | 93.99 204 | 80.98 190 | 95.73 78 | 97.54 3 | 89.15 62 | 86.72 179 | 94.68 146 | 81.83 106 | 97.24 229 | 85.18 158 | 88.31 232 | 94.76 203 |
|
ACMMP |  | | 93.24 65 | 92.88 69 | 94.30 57 | 98.09 42 | 85.33 76 | 96.86 27 | 97.45 13 | 88.33 85 | 90.15 124 | 97.03 48 | 81.44 107 | 99.51 24 | 90.85 93 | 95.74 117 | 98.04 77 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
Effi-MVS+ | | | 91.59 89 | 91.11 90 | 93.01 91 | 94.35 191 | 83.39 122 | 94.60 147 | 95.10 201 | 87.10 124 | 90.57 116 | 93.10 207 | 81.43 108 | 98.07 157 | 89.29 109 | 94.48 140 | 97.59 101 |
|
MVS_111021_LR | | | 92.47 76 | 92.29 77 | 92.98 92 | 95.99 118 | 84.43 96 | 93.08 233 | 96.09 129 | 88.20 94 | 91.12 112 | 95.72 110 | 81.33 109 | 97.76 175 | 91.74 74 | 97.37 90 | 96.75 133 |
|
mvs_anonymous | | | 89.37 144 | 89.32 126 | 89.51 249 | 93.47 221 | 74.22 314 | 91.65 275 | 94.83 218 | 82.91 218 | 85.45 213 | 93.79 184 | 81.23 110 | 96.36 283 | 86.47 145 | 94.09 144 | 97.94 83 |
|
PVSNet_BlendedMVS | | | 89.98 120 | 89.70 115 | 90.82 191 | 96.12 109 | 81.25 181 | 93.92 197 | 96.83 72 | 83.49 204 | 89.10 135 | 92.26 232 | 81.04 111 | 98.85 97 | 86.72 143 | 87.86 240 | 92.35 310 |
|
PVSNet_Blended | | | 90.73 103 | 90.32 102 | 91.98 137 | 96.12 109 | 81.25 181 | 92.55 250 | 96.83 72 | 82.04 235 | 89.10 135 | 92.56 222 | 81.04 111 | 98.85 97 | 86.72 143 | 95.91 115 | 95.84 166 |
|
alignmvs | | | 93.08 68 | 92.50 74 | 94.81 35 | 95.62 132 | 87.61 14 | 95.99 65 | 96.07 131 | 89.77 46 | 94.12 38 | 94.87 134 | 80.56 113 | 98.66 105 | 92.42 49 | 93.10 164 | 98.15 66 |
|
abl_6 | | | 93.18 67 | 93.05 64 | 93.57 76 | 97.52 67 | 84.27 99 | 95.53 89 | 96.67 92 | 87.85 106 | 93.20 61 | 97.22 33 | 80.35 114 | 99.18 52 | 91.91 69 | 97.21 91 | 97.26 112 |
|
API-MVS | | | 90.66 106 | 90.07 108 | 92.45 118 | 96.36 103 | 84.57 85 | 96.06 63 | 95.22 196 | 82.39 226 | 89.13 134 | 94.27 163 | 80.32 115 | 98.46 119 | 80.16 238 | 96.71 103 | 94.33 227 |
|
PVSNet_Blended_VisFu | | | 91.38 91 | 90.91 95 | 92.80 99 | 96.39 102 | 83.17 127 | 94.87 131 | 96.66 93 | 83.29 209 | 89.27 133 | 94.46 154 | 80.29 116 | 99.17 53 | 87.57 129 | 95.37 125 | 96.05 159 |
|
test222 | | | | | | 96.55 96 | 81.70 168 | 92.22 260 | 95.01 204 | 68.36 357 | 90.20 121 | 96.14 94 | 80.26 117 | | | 97.80 81 | 96.05 159 |
|
diffmvs | | | 91.37 92 | 91.23 88 | 91.77 151 | 93.09 231 | 80.27 207 | 92.36 255 | 95.52 174 | 87.03 126 | 91.40 108 | 94.93 131 | 80.08 118 | 97.44 204 | 92.13 60 | 94.56 138 | 97.61 99 |
|
Test By Simon | | | | | | | | | | | | | 80.02 119 | | | | |
|
IterMVS-LS | | | 88.36 174 | 87.91 169 | 89.70 242 | 93.80 211 | 78.29 260 | 93.73 204 | 95.08 203 | 85.73 156 | 84.75 231 | 91.90 248 | 79.88 120 | 96.92 249 | 83.83 175 | 82.51 285 | 93.89 246 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EI-MVSNet | | | 89.10 149 | 88.86 139 | 89.80 238 | 91.84 266 | 78.30 259 | 93.70 207 | 95.01 204 | 85.73 156 | 87.15 167 | 95.28 119 | 79.87 121 | 97.21 232 | 83.81 176 | 87.36 246 | 93.88 248 |
|
TAPA-MVS | | 84.62 6 | 88.16 179 | 87.01 187 | 91.62 155 | 96.64 92 | 80.65 199 | 94.39 164 | 96.21 124 | 76.38 308 | 86.19 191 | 95.44 115 | 79.75 122 | 98.08 156 | 62.75 352 | 95.29 127 | 96.13 151 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
Fast-Effi-MVS+ | | | 89.41 141 | 88.64 142 | 91.71 153 | 94.74 170 | 80.81 196 | 93.54 211 | 95.10 201 | 83.11 212 | 86.82 178 | 90.67 284 | 79.74 123 | 97.75 178 | 80.51 233 | 93.55 152 | 96.57 139 |
|
pcd_1.5k_mvsjas | | | 6.64 350 | 8.86 353 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 79.70 124 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
PS-MVSNAJss | | | 89.97 121 | 89.62 116 | 91.02 184 | 91.90 264 | 80.85 195 | 95.26 103 | 95.98 137 | 86.26 144 | 86.21 190 | 94.29 160 | 79.70 124 | 97.65 183 | 88.87 114 | 88.10 234 | 94.57 211 |
|
PS-MVSNAJ | | | 91.18 96 | 90.92 94 | 91.96 139 | 95.26 146 | 82.60 151 | 92.09 265 | 95.70 159 | 86.27 143 | 91.84 97 | 92.46 224 | 79.70 124 | 98.99 80 | 89.08 111 | 95.86 116 | 94.29 230 |
|
xiu_mvs_v2_base | | | 91.13 97 | 90.89 96 | 91.86 145 | 94.97 158 | 82.42 153 | 92.24 259 | 95.64 166 | 86.11 151 | 91.74 102 | 93.14 205 | 79.67 127 | 98.89 90 | 89.06 112 | 95.46 123 | 94.28 231 |
|
WR-MVS_H | | | 87.80 188 | 87.37 178 | 89.10 257 | 93.23 227 | 78.12 263 | 95.61 86 | 97.30 29 | 87.90 102 | 83.72 258 | 92.01 245 | 79.65 128 | 96.01 296 | 76.36 274 | 80.54 315 | 93.16 284 |
|
EPNet | | | 91.79 83 | 91.02 93 | 94.10 61 | 90.10 325 | 85.25 77 | 96.03 64 | 92.05 292 | 92.83 1 | 87.39 165 | 95.78 106 | 79.39 129 | 99.01 73 | 88.13 122 | 97.48 88 | 98.05 76 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
miper_ehance_all_eth | | | 87.22 217 | 86.62 202 | 89.02 260 | 92.13 257 | 77.40 283 | 90.91 286 | 94.81 220 | 81.28 256 | 84.32 246 | 90.08 295 | 79.26 130 | 96.62 261 | 83.81 176 | 82.94 280 | 93.04 289 |
|
miper_enhance_ethall | | | 86.90 226 | 86.18 217 | 89.06 258 | 91.66 275 | 77.58 280 | 90.22 298 | 94.82 219 | 79.16 280 | 84.48 237 | 89.10 309 | 79.19 131 | 96.66 258 | 84.06 172 | 82.94 280 | 92.94 292 |
|
NR-MVSNet | | | 88.58 170 | 87.47 176 | 91.93 141 | 93.04 234 | 84.16 101 | 94.77 138 | 96.25 118 | 89.05 65 | 80.04 310 | 93.29 199 | 79.02 132 | 97.05 242 | 81.71 213 | 80.05 322 | 94.59 209 |
|
TAMVS | | | 89.21 146 | 88.29 158 | 91.96 139 | 93.71 214 | 82.62 150 | 93.30 222 | 94.19 240 | 82.22 230 | 87.78 156 | 93.94 176 | 78.83 133 | 96.95 247 | 77.70 262 | 92.98 167 | 96.32 144 |
|
c3_l | | | 87.14 222 | 86.50 207 | 89.04 259 | 92.20 254 | 77.26 284 | 91.22 282 | 94.70 224 | 82.01 236 | 84.34 245 | 90.43 288 | 78.81 134 | 96.61 264 | 83.70 178 | 81.09 304 | 93.25 279 |
|
1112_ss | | | 88.42 171 | 87.33 179 | 91.72 152 | 94.92 162 | 80.98 190 | 92.97 238 | 94.54 227 | 78.16 297 | 83.82 256 | 93.88 181 | 78.78 135 | 97.91 170 | 79.45 245 | 89.41 207 | 96.26 147 |
|
CDS-MVSNet | | | 89.45 137 | 88.51 149 | 92.29 127 | 93.62 217 | 83.61 116 | 93.01 236 | 94.68 225 | 81.95 238 | 87.82 155 | 93.24 201 | 78.69 136 | 96.99 245 | 80.34 235 | 93.23 162 | 96.28 146 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
WTY-MVS | | | 89.60 131 | 88.92 136 | 91.67 154 | 95.47 138 | 81.15 186 | 92.38 254 | 94.78 222 | 83.11 212 | 89.06 137 | 94.32 158 | 78.67 137 | 96.61 264 | 81.57 214 | 90.89 189 | 97.24 113 |
|
CPTT-MVS | | | 91.99 80 | 91.80 81 | 92.55 113 | 98.24 33 | 81.98 162 | 96.76 30 | 96.49 103 | 81.89 242 | 90.24 120 | 96.44 79 | 78.59 138 | 98.61 111 | 89.68 104 | 97.85 80 | 97.06 121 |
|
IS-MVSNet | | | 91.43 90 | 91.09 92 | 92.46 117 | 95.87 124 | 81.38 179 | 96.95 19 | 93.69 257 | 89.72 48 | 89.50 130 | 95.98 98 | 78.57 139 | 97.77 174 | 83.02 185 | 96.50 110 | 98.22 61 |
|
OMC-MVS | | | 91.23 94 | 90.62 99 | 93.08 87 | 96.27 105 | 84.07 102 | 93.52 212 | 95.93 140 | 86.95 128 | 89.51 129 | 96.13 95 | 78.50 140 | 98.35 129 | 85.84 152 | 92.90 168 | 96.83 131 |
|
PCF-MVS | | 84.11 10 | 87.74 190 | 86.08 222 | 92.70 106 | 94.02 199 | 84.43 96 | 89.27 312 | 95.87 147 | 73.62 335 | 84.43 240 | 94.33 157 | 78.48 141 | 98.86 94 | 70.27 312 | 94.45 141 | 94.81 201 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
LCM-MVSNet-Re | | | 88.30 176 | 88.32 157 | 88.27 276 | 94.71 173 | 72.41 334 | 93.15 229 | 90.98 322 | 87.77 108 | 79.25 318 | 91.96 246 | 78.35 142 | 95.75 308 | 83.04 184 | 95.62 118 | 96.65 136 |
|
HY-MVS | | 83.01 12 | 89.03 156 | 87.94 168 | 92.29 127 | 94.86 166 | 82.77 140 | 92.08 266 | 94.49 228 | 81.52 252 | 86.93 173 | 92.79 218 | 78.32 143 | 98.23 138 | 79.93 240 | 90.55 190 | 95.88 164 |
|
GeoE | | | 90.05 118 | 89.43 122 | 91.90 144 | 95.16 150 | 80.37 206 | 95.80 74 | 94.65 226 | 83.90 193 | 87.55 161 | 94.75 143 | 78.18 144 | 97.62 189 | 81.28 217 | 93.63 150 | 97.71 96 |
|
MVS | | | 87.44 207 | 86.10 221 | 91.44 163 | 92.61 247 | 83.62 115 | 92.63 246 | 95.66 163 | 67.26 358 | 81.47 288 | 92.15 235 | 77.95 145 | 98.22 140 | 79.71 242 | 95.48 121 | 92.47 305 |
|
MVSFormer | | | 91.68 88 | 91.30 86 | 92.80 99 | 93.86 208 | 83.88 107 | 95.96 68 | 95.90 144 | 84.66 182 | 91.76 100 | 94.91 132 | 77.92 146 | 97.30 221 | 89.64 105 | 97.11 92 | 97.24 113 |
|
lupinMVS | | | 90.92 99 | 90.21 103 | 93.03 90 | 93.86 208 | 83.88 107 | 92.81 242 | 93.86 252 | 79.84 272 | 91.76 100 | 94.29 160 | 77.92 146 | 98.04 159 | 90.48 99 | 97.11 92 | 97.17 117 |
|
Test_1112_low_res | | | 87.65 193 | 86.51 206 | 91.08 180 | 94.94 161 | 79.28 240 | 91.77 270 | 94.30 236 | 76.04 313 | 83.51 265 | 92.37 227 | 77.86 148 | 97.73 179 | 78.69 253 | 89.13 214 | 96.22 148 |
|
VNet | | | 92.24 79 | 91.91 80 | 93.24 79 | 96.59 94 | 83.43 120 | 94.84 133 | 96.44 104 | 89.19 61 | 94.08 40 | 95.90 101 | 77.85 149 | 98.17 142 | 88.90 113 | 93.38 158 | 98.13 68 |
|
DU-MVS | | | 89.34 145 | 88.50 150 | 91.85 147 | 93.04 234 | 83.72 111 | 94.47 157 | 96.59 98 | 89.50 51 | 86.46 182 | 93.29 199 | 77.25 150 | 97.23 230 | 84.92 161 | 81.02 307 | 94.59 209 |
|
Baseline_NR-MVSNet | | | 87.07 223 | 86.63 201 | 88.40 272 | 91.44 278 | 77.87 270 | 94.23 175 | 92.57 277 | 84.12 189 | 85.74 198 | 92.08 241 | 77.25 150 | 96.04 293 | 82.29 199 | 79.94 323 | 91.30 327 |
|
jason | | | 90.80 100 | 90.10 107 | 92.90 96 | 93.04 234 | 83.53 117 | 93.08 233 | 94.15 242 | 80.22 266 | 91.41 107 | 94.91 132 | 76.87 152 | 97.93 169 | 90.28 100 | 96.90 98 | 97.24 113 |
jason: jason. |
PAPM | | | 86.68 233 | 85.39 241 | 90.53 198 | 93.05 233 | 79.33 239 | 89.79 305 | 94.77 223 | 78.82 285 | 81.95 285 | 93.24 201 | 76.81 153 | 97.30 221 | 66.94 335 | 93.16 163 | 94.95 196 |
|
Vis-MVSNet (Re-imp) | | | 89.59 132 | 89.44 121 | 90.03 226 | 95.74 126 | 75.85 302 | 95.61 86 | 90.80 327 | 87.66 114 | 87.83 154 | 95.40 118 | 76.79 154 | 96.46 277 | 78.37 254 | 96.73 102 | 97.80 93 |
|
baseline1 | | | 88.10 180 | 87.28 181 | 90.57 196 | 94.96 159 | 80.07 214 | 94.27 171 | 91.29 314 | 86.74 133 | 87.41 162 | 94.00 173 | 76.77 155 | 96.20 288 | 80.77 226 | 79.31 330 | 95.44 178 |
|
114514_t | | | 89.51 134 | 88.50 150 | 92.54 114 | 98.11 39 | 81.99 161 | 95.16 112 | 96.36 111 | 70.19 354 | 85.81 196 | 95.25 121 | 76.70 156 | 98.63 109 | 82.07 202 | 96.86 101 | 97.00 125 |
|
PLC |  | 84.53 7 | 89.06 155 | 88.03 164 | 92.15 130 | 97.27 78 | 82.69 147 | 94.29 170 | 95.44 183 | 79.71 274 | 84.01 253 | 94.18 165 | 76.68 157 | 98.75 103 | 77.28 266 | 93.41 157 | 95.02 189 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
TranMVSNet+NR-MVSNet | | | 88.84 162 | 87.95 167 | 91.49 160 | 92.68 245 | 83.01 134 | 94.92 127 | 96.31 112 | 89.88 41 | 85.53 206 | 93.85 183 | 76.63 158 | 96.96 246 | 81.91 206 | 79.87 325 | 94.50 218 |
|
MAR-MVS | | | 90.30 113 | 89.37 124 | 93.07 89 | 96.61 93 | 84.48 91 | 95.68 81 | 95.67 161 | 82.36 228 | 87.85 153 | 92.85 212 | 76.63 158 | 98.80 101 | 80.01 239 | 96.68 104 | 95.91 162 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
WR-MVS | | | 88.38 172 | 87.67 172 | 90.52 200 | 93.30 226 | 80.18 209 | 93.26 225 | 95.96 139 | 88.57 80 | 85.47 212 | 92.81 216 | 76.12 160 | 96.91 250 | 81.24 218 | 82.29 287 | 94.47 223 |
|
v8 | | | 87.50 206 | 86.71 196 | 89.89 232 | 91.37 283 | 79.40 233 | 94.50 153 | 95.38 187 | 84.81 179 | 83.60 263 | 91.33 262 | 76.05 161 | 97.42 206 | 82.84 189 | 80.51 319 | 92.84 296 |
|
v148 | | | 87.04 224 | 86.32 212 | 89.21 253 | 90.94 301 | 77.26 284 | 93.71 206 | 94.43 230 | 84.84 178 | 84.36 244 | 90.80 281 | 76.04 162 | 97.05 242 | 82.12 201 | 79.60 327 | 93.31 276 |
|
eth_miper_zixun_eth | | | 86.50 239 | 85.77 234 | 88.68 267 | 91.94 263 | 75.81 303 | 90.47 292 | 94.89 212 | 82.05 233 | 84.05 251 | 90.46 287 | 75.96 163 | 96.77 254 | 82.76 192 | 79.36 329 | 93.46 273 |
|
3Dnovator+ | | 87.14 4 | 92.42 77 | 91.37 85 | 95.55 6 | 95.63 131 | 88.73 6 | 97.07 18 | 96.77 79 | 90.84 19 | 84.02 252 | 96.62 71 | 75.95 164 | 99.34 36 | 87.77 125 | 97.68 84 | 98.59 24 |
|
h-mvs33 | | | 90.80 100 | 90.15 106 | 92.75 102 | 96.01 116 | 82.66 148 | 95.43 91 | 95.53 173 | 89.80 42 | 93.08 65 | 95.64 112 | 75.77 165 | 99.00 78 | 92.07 61 | 78.05 334 | 96.60 137 |
|
hse-mvs2 | | | 89.88 127 | 89.34 125 | 91.51 159 | 94.83 168 | 81.12 187 | 93.94 196 | 93.91 251 | 89.80 42 | 93.08 65 | 93.60 191 | 75.77 165 | 97.66 181 | 92.07 61 | 77.07 341 | 95.74 171 |
|
BH-untuned | | | 88.60 169 | 88.13 162 | 90.01 229 | 95.24 147 | 78.50 253 | 93.29 223 | 94.15 242 | 84.75 180 | 84.46 238 | 93.40 193 | 75.76 167 | 97.40 213 | 77.59 263 | 94.52 139 | 94.12 236 |
|
DIV-MVS_self_test | | | 86.53 237 | 85.78 232 | 88.75 264 | 92.02 262 | 76.45 295 | 90.74 288 | 94.30 236 | 81.83 245 | 83.34 269 | 90.82 280 | 75.75 168 | 96.57 267 | 81.73 212 | 81.52 299 | 93.24 280 |
|
BH-w/o | | | 87.57 202 | 87.05 186 | 89.12 256 | 94.90 164 | 77.90 268 | 92.41 252 | 93.51 259 | 82.89 219 | 83.70 259 | 91.34 261 | 75.75 168 | 97.07 240 | 75.49 282 | 93.49 154 | 92.39 308 |
|
cl____ | | | 86.52 238 | 85.78 232 | 88.75 264 | 92.03 261 | 76.46 294 | 90.74 288 | 94.30 236 | 81.83 245 | 83.34 269 | 90.78 282 | 75.74 170 | 96.57 267 | 81.74 211 | 81.54 298 | 93.22 281 |
|
cdsmvs_eth3d_5k | | | 22.14 345 | 29.52 348 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 95.76 155 | 0.00 382 | 0.00 383 | 94.29 160 | 75.66 171 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
CNLPA | | | 89.07 153 | 87.98 166 | 92.34 123 | 96.87 85 | 84.78 81 | 94.08 185 | 93.24 262 | 81.41 253 | 84.46 238 | 95.13 126 | 75.57 172 | 96.62 261 | 77.21 267 | 93.84 148 | 95.61 175 |
|
CHOSEN 1792x2688 | | | 88.84 162 | 87.69 171 | 92.30 126 | 96.14 108 | 81.42 178 | 90.01 302 | 95.86 148 | 74.52 328 | 87.41 162 | 93.94 176 | 75.46 173 | 98.36 127 | 80.36 234 | 95.53 119 | 97.12 120 |
|
CP-MVSNet | | | 87.63 196 | 87.26 183 | 88.74 266 | 93.12 230 | 76.59 293 | 95.29 100 | 96.58 99 | 88.43 83 | 83.49 266 | 92.98 210 | 75.28 174 | 95.83 304 | 78.97 251 | 81.15 303 | 93.79 254 |
|
v10 | | | 87.25 214 | 86.38 208 | 89.85 233 | 91.19 289 | 79.50 230 | 94.48 154 | 95.45 181 | 83.79 196 | 83.62 262 | 91.19 267 | 75.13 175 | 97.42 206 | 81.94 205 | 80.60 313 | 92.63 301 |
|
Vis-MVSNet |  | | 91.75 85 | 91.23 88 | 93.29 77 | 95.32 143 | 83.78 110 | 96.14 55 | 95.98 137 | 89.89 40 | 90.45 117 | 96.58 73 | 75.09 176 | 98.31 135 | 84.75 165 | 96.90 98 | 97.78 95 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
sss | | | 88.93 160 | 88.26 160 | 90.94 190 | 94.05 198 | 80.78 197 | 91.71 272 | 95.38 187 | 81.55 251 | 88.63 140 | 93.91 180 | 75.04 177 | 95.47 319 | 82.47 195 | 91.61 180 | 96.57 139 |
|
v1144 | | | 87.61 199 | 86.79 193 | 90.06 225 | 91.01 296 | 79.34 236 | 93.95 195 | 95.42 186 | 83.36 208 | 85.66 201 | 91.31 265 | 74.98 178 | 97.42 206 | 83.37 180 | 82.06 289 | 93.42 274 |
|
miper_lstm_enhance | | | 85.27 261 | 84.59 259 | 87.31 297 | 91.28 287 | 74.63 309 | 87.69 333 | 94.09 246 | 81.20 260 | 81.36 291 | 89.85 301 | 74.97 179 | 94.30 333 | 81.03 222 | 79.84 326 | 93.01 290 |
|
test_yl | | | 90.69 104 | 90.02 112 | 92.71 104 | 95.72 127 | 82.41 155 | 94.11 181 | 95.12 199 | 85.63 160 | 91.49 105 | 94.70 144 | 74.75 180 | 98.42 125 | 86.13 148 | 92.53 173 | 97.31 109 |
|
DCV-MVSNet | | | 90.69 104 | 90.02 112 | 92.71 104 | 95.72 127 | 82.41 155 | 94.11 181 | 95.12 199 | 85.63 160 | 91.49 105 | 94.70 144 | 74.75 180 | 98.42 125 | 86.13 148 | 92.53 173 | 97.31 109 |
|
V42 | | | 87.68 191 | 86.86 189 | 90.15 220 | 90.58 316 | 80.14 211 | 94.24 174 | 95.28 192 | 83.66 198 | 85.67 200 | 91.33 262 | 74.73 182 | 97.41 211 | 84.43 169 | 81.83 293 | 92.89 294 |
|
XVG-OURS-SEG-HR | | | 89.95 123 | 89.45 120 | 91.47 162 | 94.00 203 | 81.21 184 | 91.87 268 | 96.06 133 | 85.78 154 | 88.55 141 | 95.73 109 | 74.67 183 | 97.27 225 | 88.71 115 | 89.64 205 | 95.91 162 |
|
v2v482 | | | 87.84 186 | 87.06 185 | 90.17 218 | 90.99 297 | 79.23 243 | 94.00 193 | 95.13 198 | 84.87 177 | 85.53 206 | 92.07 243 | 74.45 184 | 97.45 202 | 84.71 166 | 81.75 295 | 93.85 252 |
|
CLD-MVS | | | 89.47 136 | 88.90 137 | 91.18 173 | 94.22 193 | 82.07 160 | 92.13 263 | 96.09 129 | 87.90 102 | 85.37 222 | 92.45 225 | 74.38 185 | 97.56 192 | 87.15 136 | 90.43 191 | 93.93 245 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
XXY-MVS | | | 87.65 193 | 86.85 190 | 90.03 226 | 92.14 256 | 80.60 202 | 93.76 203 | 95.23 194 | 82.94 217 | 84.60 233 | 94.02 171 | 74.27 186 | 95.49 318 | 81.04 220 | 83.68 272 | 94.01 244 |
|
HQP_MVS | | | 90.60 110 | 90.19 104 | 91.82 148 | 94.70 174 | 82.73 144 | 95.85 72 | 96.22 121 | 90.81 20 | 86.91 175 | 94.86 135 | 74.23 187 | 98.12 144 | 88.15 120 | 89.99 196 | 94.63 206 |
|
plane_prior6 | | | | | | 94.52 180 | 82.75 141 | | | | | | 74.23 187 | | | | |
|
v144192 | | | 87.19 220 | 86.35 210 | 89.74 239 | 90.64 314 | 78.24 261 | 93.92 197 | 95.43 184 | 81.93 239 | 85.51 208 | 91.05 275 | 74.21 189 | 97.45 202 | 82.86 188 | 81.56 297 | 93.53 268 |
|
VPA-MVSNet | | | 89.62 130 | 88.96 134 | 91.60 156 | 93.86 208 | 82.89 139 | 95.46 90 | 97.33 25 | 87.91 101 | 88.43 144 | 93.31 197 | 74.17 190 | 97.40 213 | 87.32 134 | 82.86 284 | 94.52 214 |
|
ab-mvs | | | 89.41 141 | 88.35 154 | 92.60 110 | 95.15 152 | 82.65 149 | 92.20 261 | 95.60 168 | 83.97 192 | 88.55 141 | 93.70 190 | 74.16 191 | 98.21 141 | 82.46 196 | 89.37 208 | 96.94 127 |
|
1314 | | | 87.51 204 | 86.57 204 | 90.34 214 | 92.42 250 | 79.74 226 | 92.63 246 | 95.35 191 | 78.35 293 | 80.14 307 | 91.62 257 | 74.05 192 | 97.15 234 | 81.05 219 | 93.53 153 | 94.12 236 |
|
test_djsdf | | | 89.03 156 | 88.64 142 | 90.21 216 | 90.74 311 | 79.28 240 | 95.96 68 | 95.90 144 | 84.66 182 | 85.33 224 | 92.94 211 | 74.02 193 | 97.30 221 | 89.64 105 | 88.53 223 | 94.05 242 |
|
cl22 | | | 86.78 229 | 85.98 225 | 89.18 255 | 92.34 252 | 77.62 279 | 90.84 287 | 94.13 244 | 81.33 255 | 83.97 254 | 90.15 293 | 73.96 194 | 96.60 266 | 84.19 171 | 82.94 280 | 93.33 275 |
|
AdaColmap |  | | 89.89 126 | 89.07 132 | 92.37 122 | 97.41 70 | 83.03 132 | 94.42 161 | 95.92 141 | 82.81 220 | 86.34 187 | 94.65 148 | 73.89 195 | 99.02 71 | 80.69 228 | 95.51 120 | 95.05 188 |
|
HyFIR lowres test | | | 88.09 181 | 86.81 191 | 91.93 141 | 96.00 117 | 80.63 200 | 90.01 302 | 95.79 153 | 73.42 336 | 87.68 158 | 92.10 240 | 73.86 196 | 97.96 166 | 80.75 227 | 91.70 179 | 97.19 116 |
|
HQP2-MVS | | | | | | | | | | | | | 73.83 197 | | | | |
|
HQP-MVS | | | 89.80 128 | 89.28 128 | 91.34 167 | 94.17 194 | 81.56 170 | 94.39 164 | 96.04 135 | 88.81 71 | 85.43 216 | 93.97 175 | 73.83 197 | 97.96 166 | 87.11 138 | 89.77 203 | 94.50 218 |
|
3Dnovator | | 86.66 5 | 91.73 86 | 90.82 97 | 94.44 51 | 94.59 178 | 86.37 45 | 97.18 12 | 97.02 50 | 89.20 60 | 84.31 248 | 96.66 66 | 73.74 199 | 99.17 53 | 86.74 141 | 97.96 76 | 97.79 94 |
|
EPNet_dtu | | | 86.49 241 | 85.94 228 | 88.14 281 | 90.24 323 | 72.82 326 | 94.11 181 | 92.20 286 | 86.66 137 | 79.42 317 | 92.36 228 | 73.52 200 | 95.81 306 | 71.26 306 | 93.66 149 | 95.80 169 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
TransMVSNet (Re) | | | 84.43 273 | 83.06 276 | 88.54 270 | 91.72 270 | 78.44 254 | 95.18 109 | 92.82 271 | 82.73 221 | 79.67 314 | 92.12 237 | 73.49 201 | 95.96 298 | 71.10 311 | 68.73 359 | 91.21 330 |
|
Effi-MVS+-dtu | | | 88.65 167 | 88.35 154 | 89.54 246 | 93.33 224 | 76.39 296 | 94.47 157 | 94.36 233 | 87.70 110 | 85.43 216 | 89.56 306 | 73.45 202 | 97.26 227 | 85.57 156 | 91.28 182 | 94.97 190 |
|
mvs-test1 | | | 89.45 137 | 89.14 130 | 90.38 211 | 93.33 224 | 77.63 278 | 94.95 124 | 94.36 233 | 87.70 110 | 87.10 170 | 92.81 216 | 73.45 202 | 98.03 161 | 85.57 156 | 93.04 165 | 95.48 177 |
|
baseline2 | | | 86.50 239 | 85.39 241 | 89.84 234 | 91.12 293 | 76.70 291 | 91.88 267 | 88.58 351 | 82.35 229 | 79.95 311 | 90.95 277 | 73.42 204 | 97.63 187 | 80.27 237 | 89.95 199 | 95.19 185 |
|
PEN-MVS | | | 86.80 228 | 86.27 215 | 88.40 272 | 92.32 253 | 75.71 304 | 95.18 109 | 96.38 110 | 87.97 99 | 82.82 275 | 93.15 204 | 73.39 205 | 95.92 299 | 76.15 278 | 79.03 332 | 93.59 266 |
|
v1192 | | | 87.25 214 | 86.33 211 | 90.00 230 | 90.76 310 | 79.04 244 | 93.80 201 | 95.48 176 | 82.57 224 | 85.48 211 | 91.18 269 | 73.38 206 | 97.42 206 | 82.30 198 | 82.06 289 | 93.53 268 |
|
QAPM | | | 89.51 134 | 88.15 161 | 93.59 75 | 94.92 162 | 84.58 84 | 96.82 29 | 96.70 89 | 78.43 292 | 83.41 267 | 96.19 92 | 73.18 207 | 99.30 42 | 77.11 269 | 96.54 108 | 96.89 130 |
|
mvsmamba | | | 89.96 122 | 89.50 118 | 91.33 168 | 92.90 240 | 81.82 165 | 96.68 33 | 92.37 280 | 89.03 67 | 87.00 171 | 94.85 137 | 73.05 208 | 97.65 183 | 91.03 86 | 88.63 221 | 94.51 215 |
|
tpmrst | | | 85.35 258 | 84.99 248 | 86.43 314 | 90.88 306 | 67.88 358 | 88.71 321 | 91.43 311 | 80.13 268 | 86.08 194 | 88.80 315 | 73.05 208 | 96.02 295 | 82.48 194 | 83.40 278 | 95.40 180 |
|
PS-CasMVS | | | 87.32 211 | 86.88 188 | 88.63 269 | 92.99 237 | 76.33 298 | 95.33 94 | 96.61 97 | 88.22 92 | 83.30 271 | 93.07 208 | 73.03 210 | 95.79 307 | 78.36 255 | 81.00 309 | 93.75 260 |
|
DTE-MVSNet | | | 86.11 245 | 85.48 239 | 87.98 284 | 91.65 276 | 74.92 308 | 94.93 126 | 95.75 156 | 87.36 119 | 82.26 280 | 93.04 209 | 72.85 211 | 95.82 305 | 74.04 294 | 77.46 338 | 93.20 282 |
|
MVSTER | | | 88.84 162 | 88.29 158 | 90.51 201 | 92.95 238 | 80.44 205 | 93.73 204 | 95.01 204 | 84.66 182 | 87.15 167 | 93.12 206 | 72.79 212 | 97.21 232 | 87.86 124 | 87.36 246 | 93.87 249 |
|
v1921920 | | | 86.97 225 | 86.06 223 | 89.69 243 | 90.53 319 | 78.11 264 | 93.80 201 | 95.43 184 | 81.90 241 | 85.33 224 | 91.05 275 | 72.66 213 | 97.41 211 | 82.05 203 | 81.80 294 | 93.53 268 |
|
DP-MVS | | | 87.25 214 | 85.36 243 | 92.90 96 | 97.65 62 | 83.24 124 | 94.81 135 | 92.00 294 | 74.99 323 | 81.92 286 | 95.00 129 | 72.66 213 | 99.05 63 | 66.92 337 | 92.33 176 | 96.40 142 |
|
v7n | | | 86.81 227 | 85.76 235 | 89.95 231 | 90.72 312 | 79.25 242 | 95.07 117 | 95.92 141 | 84.45 185 | 82.29 279 | 90.86 278 | 72.60 215 | 97.53 196 | 79.42 248 | 80.52 318 | 93.08 288 |
|
OPM-MVS | | | 90.12 116 | 89.56 117 | 91.82 148 | 93.14 229 | 83.90 106 | 94.16 177 | 95.74 157 | 88.96 70 | 87.86 152 | 95.43 117 | 72.48 216 | 97.91 170 | 88.10 123 | 90.18 195 | 93.65 265 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
LS3D | | | 87.89 185 | 86.32 212 | 92.59 111 | 96.07 114 | 82.92 138 | 95.23 104 | 94.92 211 | 75.66 315 | 82.89 274 | 95.98 98 | 72.48 216 | 99.21 50 | 68.43 326 | 95.23 130 | 95.64 174 |
|
pm-mvs1 | | | 86.61 234 | 85.54 237 | 89.82 235 | 91.44 278 | 80.18 209 | 95.28 102 | 94.85 215 | 83.84 195 | 81.66 287 | 92.62 221 | 72.45 218 | 96.48 274 | 79.67 243 | 78.06 333 | 92.82 297 |
|
PMMVS | | | 85.71 253 | 84.96 250 | 87.95 285 | 88.90 339 | 77.09 286 | 88.68 322 | 90.06 337 | 72.32 345 | 86.47 181 | 90.76 283 | 72.15 219 | 94.40 330 | 81.78 210 | 93.49 154 | 92.36 309 |
|
PatchmatchNet |  | | 85.85 250 | 84.70 256 | 89.29 252 | 91.76 269 | 75.54 305 | 88.49 324 | 91.30 313 | 81.63 249 | 85.05 227 | 88.70 317 | 71.71 220 | 96.24 287 | 74.61 292 | 89.05 215 | 96.08 156 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
sam_mvs1 | | | | | | | | | | | | | 71.70 221 | | | | 96.12 152 |
|
test_part1 | | | 89.00 159 | 87.99 165 | 92.04 132 | 95.94 121 | 83.81 109 | 96.14 55 | 96.05 134 | 86.44 140 | 85.69 199 | 93.73 189 | 71.57 222 | 97.66 181 | 85.80 153 | 80.54 315 | 94.66 205 |
|
patchmatchnet-post | | | | | | | | | | | | 83.76 352 | 71.53 223 | 96.48 274 | | | |
|
v1240 | | | 86.78 229 | 85.85 230 | 89.56 245 | 90.45 320 | 77.79 273 | 93.61 209 | 95.37 189 | 81.65 247 | 85.43 216 | 91.15 271 | 71.50 224 | 97.43 205 | 81.47 216 | 82.05 291 | 93.47 272 |
|
anonymousdsp | | | 87.84 186 | 87.09 184 | 90.12 222 | 89.13 336 | 80.54 203 | 94.67 144 | 95.55 170 | 82.05 233 | 83.82 256 | 92.12 237 | 71.47 225 | 97.15 234 | 87.15 136 | 87.80 242 | 92.67 299 |
|
Patchmatch-test | | | 81.37 302 | 79.30 308 | 87.58 291 | 90.92 303 | 74.16 316 | 80.99 362 | 87.68 356 | 70.52 353 | 76.63 333 | 88.81 313 | 71.21 226 | 92.76 351 | 60.01 360 | 86.93 252 | 95.83 167 |
|
F-COLMAP | | | 87.95 184 | 86.80 192 | 91.40 164 | 96.35 104 | 80.88 194 | 94.73 140 | 95.45 181 | 79.65 275 | 82.04 284 | 94.61 149 | 71.13 227 | 98.50 116 | 76.24 277 | 91.05 187 | 94.80 202 |
|
pmmvs4 | | | 85.43 256 | 83.86 267 | 90.16 219 | 90.02 328 | 82.97 136 | 90.27 294 | 92.67 275 | 75.93 314 | 80.73 297 | 91.74 252 | 71.05 228 | 95.73 309 | 78.85 252 | 83.46 276 | 91.78 318 |
|
CR-MVSNet | | | 85.35 258 | 83.76 268 | 90.12 222 | 90.58 316 | 79.34 236 | 85.24 347 | 91.96 298 | 78.27 294 | 85.55 203 | 87.87 330 | 71.03 229 | 95.61 310 | 73.96 296 | 89.36 209 | 95.40 180 |
|
Patchmtry | | | 82.71 286 | 80.93 292 | 88.06 283 | 90.05 327 | 76.37 297 | 84.74 351 | 91.96 298 | 72.28 346 | 81.32 292 | 87.87 330 | 71.03 229 | 95.50 317 | 68.97 322 | 80.15 321 | 92.32 311 |
|
CL-MVSNet_self_test | | | 81.74 295 | 80.53 293 | 85.36 324 | 85.96 357 | 72.45 333 | 90.25 295 | 93.07 266 | 81.24 258 | 79.85 313 | 87.29 336 | 70.93 231 | 92.52 352 | 66.95 334 | 69.23 355 | 91.11 334 |
|
RPMNet | | | 83.95 277 | 81.53 287 | 91.21 171 | 90.58 316 | 79.34 236 | 85.24 347 | 96.76 80 | 71.44 349 | 85.55 203 | 82.97 356 | 70.87 232 | 98.91 89 | 61.01 356 | 89.36 209 | 95.40 180 |
|
Patchmatch-RL test | | | 81.67 296 | 79.96 302 | 86.81 312 | 85.42 361 | 71.23 340 | 82.17 360 | 87.50 357 | 78.47 291 | 77.19 329 | 82.50 357 | 70.81 233 | 93.48 343 | 82.66 193 | 72.89 349 | 95.71 173 |
|
CostFormer | | | 85.77 252 | 84.94 251 | 88.26 277 | 91.16 292 | 72.58 332 | 89.47 310 | 91.04 321 | 76.26 311 | 86.45 184 | 89.97 298 | 70.74 234 | 96.86 253 | 82.35 197 | 87.07 251 | 95.34 183 |
|
sam_mvs | | | | | | | | | | | | | 70.60 235 | | | | |
|
xiu_mvs_v1_base_debu | | | 90.64 107 | 90.05 109 | 92.40 119 | 93.97 205 | 84.46 92 | 93.32 218 | 95.46 178 | 85.17 169 | 92.25 86 | 94.03 168 | 70.59 236 | 98.57 113 | 90.97 87 | 94.67 133 | 94.18 232 |
|
xiu_mvs_v1_base | | | 90.64 107 | 90.05 109 | 92.40 119 | 93.97 205 | 84.46 92 | 93.32 218 | 95.46 178 | 85.17 169 | 92.25 86 | 94.03 168 | 70.59 236 | 98.57 113 | 90.97 87 | 94.67 133 | 94.18 232 |
|
xiu_mvs_v1_base_debi | | | 90.64 107 | 90.05 109 | 92.40 119 | 93.97 205 | 84.46 92 | 93.32 218 | 95.46 178 | 85.17 169 | 92.25 86 | 94.03 168 | 70.59 236 | 98.57 113 | 90.97 87 | 94.67 133 | 94.18 232 |
|
test_post | | | | | | | | | | | | 10.29 377 | 70.57 239 | 95.91 301 | | | |
|
CANet_DTU | | | 90.26 115 | 89.41 123 | 92.81 98 | 93.46 222 | 83.01 134 | 93.48 213 | 94.47 229 | 89.43 54 | 87.76 157 | 94.23 164 | 70.54 240 | 99.03 67 | 84.97 160 | 96.39 112 | 96.38 143 |
|
BH-RMVSNet | | | 88.37 173 | 87.48 175 | 91.02 184 | 95.28 144 | 79.45 232 | 92.89 240 | 93.07 266 | 85.45 165 | 86.91 175 | 94.84 139 | 70.35 241 | 97.76 175 | 73.97 295 | 94.59 137 | 95.85 165 |
|
Fast-Effi-MVS+-dtu | | | 87.44 207 | 86.72 195 | 89.63 244 | 92.04 260 | 77.68 277 | 94.03 190 | 93.94 247 | 85.81 153 | 82.42 278 | 91.32 264 | 70.33 242 | 97.06 241 | 80.33 236 | 90.23 194 | 94.14 235 |
|
MDTV_nov1_ep13_2view | | | | | | | 55.91 375 | 87.62 335 | | 73.32 337 | 84.59 234 | | 70.33 242 | | 74.65 291 | | 95.50 176 |
|
ACMM | | 84.12 9 | 89.14 148 | 88.48 153 | 91.12 175 | 94.65 177 | 81.22 183 | 95.31 95 | 96.12 128 | 85.31 168 | 85.92 195 | 94.34 156 | 70.19 244 | 98.06 158 | 85.65 154 | 88.86 219 | 94.08 240 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ET-MVSNet_ETH3D | | | 87.51 204 | 85.91 229 | 92.32 124 | 93.70 216 | 83.93 105 | 92.33 256 | 90.94 323 | 84.16 187 | 72.09 354 | 92.52 223 | 69.90 245 | 95.85 303 | 89.20 110 | 88.36 230 | 97.17 117 |
|
LPG-MVS_test | | | 89.45 137 | 88.90 137 | 91.12 175 | 94.47 182 | 81.49 174 | 95.30 98 | 96.14 126 | 86.73 134 | 85.45 213 | 95.16 124 | 69.89 246 | 98.10 146 | 87.70 127 | 89.23 212 | 93.77 258 |
|
LGP-MVS_train | | | | | 91.12 175 | 94.47 182 | 81.49 174 | | 96.14 126 | 86.73 134 | 85.45 213 | 95.16 124 | 69.89 246 | 98.10 146 | 87.70 127 | 89.23 212 | 93.77 258 |
|
CHOSEN 280x420 | | | 85.15 263 | 83.99 265 | 88.65 268 | 92.47 248 | 78.40 256 | 79.68 364 | 92.76 272 | 74.90 325 | 81.41 290 | 89.59 304 | 69.85 248 | 95.51 315 | 79.92 241 | 95.29 127 | 92.03 315 |
|
LTVRE_ROB | | 82.13 13 | 86.26 244 | 84.90 252 | 90.34 214 | 94.44 186 | 81.50 172 | 92.31 258 | 94.89 212 | 83.03 214 | 79.63 315 | 92.67 219 | 69.69 249 | 97.79 173 | 71.20 307 | 86.26 254 | 91.72 319 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
OpenMVS |  | 83.78 11 | 88.74 165 | 87.29 180 | 93.08 87 | 92.70 244 | 85.39 75 | 96.57 35 | 96.43 106 | 78.74 288 | 80.85 296 | 96.07 96 | 69.64 250 | 99.01 73 | 78.01 260 | 96.65 105 | 94.83 200 |
|
test_low_dy_conf_001 | | | 89.07 153 | 88.60 146 | 90.49 202 | 92.39 251 | 79.71 227 | 96.07 62 | 94.84 217 | 86.25 146 | 86.34 187 | 94.97 130 | 69.61 251 | 97.31 219 | 88.59 116 | 88.35 231 | 94.44 225 |
|
MDTV_nov1_ep13 | | | | 83.56 271 | | 91.69 274 | 69.93 351 | 87.75 332 | 91.54 307 | 78.60 290 | 84.86 230 | 88.90 312 | 69.54 252 | 96.03 294 | 70.25 313 | 88.93 218 | |
|
AUN-MVS | | | 87.78 189 | 86.54 205 | 91.48 161 | 94.82 169 | 81.05 188 | 93.91 200 | 93.93 248 | 83.00 215 | 86.93 173 | 93.53 192 | 69.50 253 | 97.67 180 | 86.14 146 | 77.12 340 | 95.73 172 |
|
PatchT | | | 82.68 287 | 81.27 289 | 86.89 310 | 90.09 326 | 70.94 345 | 84.06 353 | 90.15 334 | 74.91 324 | 85.63 202 | 83.57 353 | 69.37 254 | 94.87 328 | 65.19 342 | 88.50 225 | 94.84 199 |
|
RRT_MVS | | | 89.09 151 | 88.62 145 | 90.49 202 | 92.85 241 | 79.65 228 | 96.41 39 | 94.41 231 | 88.22 92 | 85.50 209 | 94.77 142 | 69.36 255 | 97.31 219 | 89.33 108 | 86.73 253 | 94.51 215 |
|
VPNet | | | 88.20 178 | 87.47 176 | 90.39 209 | 93.56 219 | 79.46 231 | 94.04 189 | 95.54 172 | 88.67 76 | 86.96 172 | 94.58 152 | 69.33 256 | 97.15 234 | 84.05 173 | 80.53 317 | 94.56 212 |
|
ACMP | | 84.23 8 | 89.01 158 | 88.35 154 | 90.99 187 | 94.73 171 | 81.27 180 | 95.07 117 | 95.89 146 | 86.48 138 | 83.67 260 | 94.30 159 | 69.33 256 | 97.99 164 | 87.10 140 | 88.55 222 | 93.72 262 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
test_post1 | | | | | | | | 88.00 329 | | | | 9.81 378 | 69.31 258 | 95.53 313 | 76.65 272 | | |
|
tpmvs | | | 83.35 284 | 82.07 282 | 87.20 304 | 91.07 295 | 71.00 344 | 88.31 327 | 91.70 302 | 78.91 282 | 80.49 302 | 87.18 338 | 69.30 259 | 97.08 239 | 68.12 330 | 83.56 274 | 93.51 271 |
|
thres200 | | | 87.21 218 | 86.24 216 | 90.12 222 | 95.36 140 | 78.53 251 | 93.26 225 | 92.10 290 | 86.42 141 | 88.00 151 | 91.11 273 | 69.24 260 | 98.00 163 | 69.58 320 | 91.04 188 | 93.83 253 |
|
tfpn200view9 | | | 87.58 201 | 86.64 199 | 90.41 208 | 95.99 118 | 78.64 248 | 94.58 148 | 91.98 296 | 86.94 129 | 88.09 146 | 91.77 250 | 69.18 261 | 98.10 146 | 70.13 316 | 91.10 183 | 94.48 221 |
|
thres400 | | | 87.62 198 | 86.64 199 | 90.57 196 | 95.99 118 | 78.64 248 | 94.58 148 | 91.98 296 | 86.94 129 | 88.09 146 | 91.77 250 | 69.18 261 | 98.10 146 | 70.13 316 | 91.10 183 | 94.96 193 |
|
tfpnnormal | | | 84.72 270 | 83.23 274 | 89.20 254 | 92.79 243 | 80.05 216 | 94.48 154 | 95.81 151 | 82.38 227 | 81.08 294 | 91.21 266 | 69.01 263 | 96.95 247 | 61.69 354 | 80.59 314 | 90.58 341 |
|
thres100view900 | | | 87.63 196 | 86.71 196 | 90.38 211 | 96.12 109 | 78.55 250 | 95.03 121 | 91.58 305 | 87.15 122 | 88.06 149 | 92.29 231 | 68.91 264 | 98.10 146 | 70.13 316 | 91.10 183 | 94.48 221 |
|
thres600view7 | | | 87.65 193 | 86.67 198 | 90.59 195 | 96.08 113 | 78.72 246 | 94.88 130 | 91.58 305 | 87.06 125 | 88.08 148 | 92.30 230 | 68.91 264 | 98.10 146 | 70.05 319 | 91.10 183 | 94.96 193 |
|
PatchMatch-RL | | | 86.77 232 | 85.54 237 | 90.47 207 | 95.88 122 | 82.71 146 | 90.54 291 | 92.31 283 | 79.82 273 | 84.32 246 | 91.57 260 | 68.77 266 | 96.39 280 | 73.16 300 | 93.48 156 | 92.32 311 |
|
XVG-OURS | | | 89.40 143 | 88.70 140 | 91.52 158 | 94.06 197 | 81.46 176 | 91.27 280 | 96.07 131 | 86.14 149 | 88.89 139 | 95.77 107 | 68.73 267 | 97.26 227 | 87.39 132 | 89.96 198 | 95.83 167 |
|
TR-MVS | | | 86.78 229 | 85.76 235 | 89.82 235 | 94.37 188 | 78.41 255 | 92.47 251 | 92.83 270 | 81.11 261 | 86.36 186 | 92.40 226 | 68.73 267 | 97.48 199 | 73.75 298 | 89.85 202 | 93.57 267 |
|
tpm | | | 84.73 269 | 84.02 264 | 86.87 311 | 90.33 321 | 68.90 354 | 89.06 317 | 89.94 340 | 80.85 263 | 85.75 197 | 89.86 300 | 68.54 269 | 95.97 297 | 77.76 261 | 84.05 268 | 95.75 170 |
|
FMVSNet3 | | | 87.40 209 | 86.11 220 | 91.30 169 | 93.79 213 | 83.64 114 | 94.20 176 | 94.81 220 | 83.89 194 | 84.37 241 | 91.87 249 | 68.45 270 | 96.56 269 | 78.23 257 | 85.36 258 | 93.70 264 |
|
MVP-Stereo | | | 85.97 247 | 84.86 253 | 89.32 251 | 90.92 303 | 82.19 158 | 92.11 264 | 94.19 240 | 78.76 287 | 78.77 320 | 91.63 256 | 68.38 271 | 96.56 269 | 75.01 289 | 93.95 145 | 89.20 350 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
tpm cat1 | | | 81.96 291 | 80.27 297 | 87.01 306 | 91.09 294 | 71.02 343 | 87.38 336 | 91.53 308 | 66.25 359 | 80.17 305 | 86.35 342 | 68.22 272 | 96.15 291 | 69.16 321 | 82.29 287 | 93.86 251 |
|
bld_raw_conf005 | | | 89.19 147 | 88.56 147 | 91.09 179 | 92.62 246 | 81.17 185 | 96.45 37 | 91.24 316 | 89.08 64 | 86.16 192 | 94.82 140 | 68.16 273 | 97.63 187 | 90.03 101 | 88.46 226 | 94.47 223 |
|
tpm2 | | | 84.08 275 | 82.94 277 | 87.48 295 | 91.39 282 | 71.27 339 | 89.23 314 | 90.37 331 | 71.95 347 | 84.64 232 | 89.33 307 | 67.30 274 | 96.55 271 | 75.17 286 | 87.09 250 | 94.63 206 |
|
test-LLR | | | 85.87 249 | 85.41 240 | 87.25 300 | 90.95 299 | 71.67 337 | 89.55 306 | 89.88 343 | 83.41 206 | 84.54 235 | 87.95 327 | 67.25 275 | 95.11 324 | 81.82 208 | 93.37 159 | 94.97 190 |
|
test0.0.03 1 | | | 82.41 289 | 81.69 285 | 84.59 330 | 88.23 346 | 72.89 325 | 90.24 296 | 87.83 354 | 83.41 206 | 79.86 312 | 89.78 302 | 67.25 275 | 88.99 365 | 65.18 343 | 83.42 277 | 91.90 317 |
|
CVMVSNet | | | 84.69 271 | 84.79 255 | 84.37 332 | 91.84 266 | 64.92 366 | 93.70 207 | 91.47 310 | 66.19 360 | 86.16 192 | 95.28 119 | 67.18 277 | 93.33 345 | 80.89 225 | 90.42 192 | 94.88 198 |
|
iter_conf_final | | | 89.42 140 | 88.69 141 | 91.60 156 | 95.12 153 | 82.93 137 | 95.75 77 | 92.14 289 | 87.32 120 | 87.12 169 | 94.07 166 | 67.09 278 | 97.55 193 | 90.61 96 | 89.01 216 | 94.32 228 |
|
thisisatest0515 | | | 87.33 210 | 85.99 224 | 91.37 166 | 93.49 220 | 79.55 229 | 90.63 290 | 89.56 348 | 80.17 267 | 87.56 160 | 90.86 278 | 67.07 279 | 98.28 136 | 81.50 215 | 93.02 166 | 96.29 145 |
|
tttt0517 | | | 88.61 168 | 87.78 170 | 91.11 178 | 94.96 159 | 77.81 272 | 95.35 93 | 89.69 345 | 85.09 174 | 88.05 150 | 94.59 151 | 66.93 280 | 98.48 117 | 83.27 182 | 92.13 178 | 97.03 123 |
|
our_test_3 | | | 81.93 292 | 80.46 295 | 86.33 316 | 88.46 343 | 73.48 321 | 88.46 325 | 91.11 317 | 76.46 306 | 76.69 332 | 88.25 323 | 66.89 281 | 94.36 331 | 68.75 323 | 79.08 331 | 91.14 332 |
|
thisisatest0530 | | | 88.67 166 | 87.61 173 | 91.86 145 | 94.87 165 | 80.07 214 | 94.63 146 | 89.90 342 | 84.00 191 | 88.46 143 | 93.78 185 | 66.88 282 | 98.46 119 | 83.30 181 | 92.65 171 | 97.06 121 |
|
IterMVS-SCA-FT | | | 85.45 255 | 84.53 260 | 88.18 280 | 91.71 272 | 76.87 289 | 90.19 299 | 92.65 276 | 85.40 166 | 81.44 289 | 90.54 285 | 66.79 283 | 95.00 327 | 81.04 220 | 81.05 305 | 92.66 300 |
|
SCA | | | 86.32 243 | 85.18 245 | 89.73 241 | 92.15 255 | 76.60 292 | 91.12 283 | 91.69 303 | 83.53 203 | 85.50 209 | 88.81 313 | 66.79 283 | 96.48 274 | 76.65 272 | 90.35 193 | 96.12 152 |
|
D2MVS | | | 85.90 248 | 85.09 247 | 88.35 274 | 90.79 308 | 77.42 282 | 91.83 269 | 95.70 159 | 80.77 264 | 80.08 309 | 90.02 296 | 66.74 285 | 96.37 281 | 81.88 207 | 87.97 238 | 91.26 328 |
|
IterMVS | | | 84.88 267 | 83.98 266 | 87.60 290 | 91.44 278 | 76.03 300 | 90.18 300 | 92.41 279 | 83.24 211 | 81.06 295 | 90.42 289 | 66.60 286 | 94.28 334 | 79.46 244 | 80.98 310 | 92.48 304 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
GBi-Net | | | 87.26 212 | 85.98 225 | 91.08 180 | 94.01 200 | 83.10 128 | 95.14 113 | 94.94 207 | 83.57 200 | 84.37 241 | 91.64 253 | 66.59 287 | 96.34 284 | 78.23 257 | 85.36 258 | 93.79 254 |
|
test1 | | | 87.26 212 | 85.98 225 | 91.08 180 | 94.01 200 | 83.10 128 | 95.14 113 | 94.94 207 | 83.57 200 | 84.37 241 | 91.64 253 | 66.59 287 | 96.34 284 | 78.23 257 | 85.36 258 | 93.79 254 |
|
FMVSNet2 | | | 87.19 220 | 85.82 231 | 91.30 169 | 94.01 200 | 83.67 113 | 94.79 136 | 94.94 207 | 83.57 200 | 83.88 255 | 92.05 244 | 66.59 287 | 96.51 272 | 77.56 264 | 85.01 261 | 93.73 261 |
|
EPMVS | | | 83.90 279 | 82.70 281 | 87.51 292 | 90.23 324 | 72.67 328 | 88.62 323 | 81.96 369 | 81.37 254 | 85.01 228 | 88.34 321 | 66.31 290 | 94.45 329 | 75.30 285 | 87.12 249 | 95.43 179 |
|
ppachtmachnet_test | | | 81.84 293 | 80.07 301 | 87.15 305 | 88.46 343 | 74.43 313 | 89.04 318 | 92.16 287 | 75.33 319 | 77.75 325 | 88.99 310 | 66.20 291 | 95.37 320 | 65.12 344 | 77.60 336 | 91.65 320 |
|
MDA-MVSNet_test_wron | | | 79.21 320 | 77.19 322 | 85.29 325 | 88.22 347 | 72.77 327 | 85.87 343 | 90.06 337 | 74.34 329 | 62.62 365 | 87.56 333 | 66.14 292 | 91.99 356 | 66.90 338 | 73.01 347 | 91.10 335 |
|
YYNet1 | | | 79.22 319 | 77.20 321 | 85.28 326 | 88.20 348 | 72.66 329 | 85.87 343 | 90.05 339 | 74.33 330 | 62.70 364 | 87.61 332 | 66.09 293 | 92.03 355 | 66.94 335 | 72.97 348 | 91.15 331 |
|
JIA-IIPM | | | 81.04 305 | 78.98 315 | 87.25 300 | 88.64 340 | 73.48 321 | 81.75 361 | 89.61 347 | 73.19 338 | 82.05 283 | 73.71 364 | 66.07 294 | 95.87 302 | 71.18 309 | 84.60 264 | 92.41 307 |
|
MSDG | | | 84.86 268 | 83.09 275 | 90.14 221 | 93.80 211 | 80.05 216 | 89.18 315 | 93.09 265 | 78.89 283 | 78.19 321 | 91.91 247 | 65.86 295 | 97.27 225 | 68.47 325 | 88.45 227 | 93.11 286 |
|
jajsoiax | | | 88.24 177 | 87.50 174 | 90.48 205 | 90.89 305 | 80.14 211 | 95.31 95 | 95.65 165 | 84.97 176 | 84.24 249 | 94.02 171 | 65.31 296 | 97.42 206 | 88.56 117 | 88.52 224 | 93.89 246 |
|
cascas | | | 86.43 242 | 84.98 249 | 90.80 192 | 92.10 259 | 80.92 193 | 90.24 296 | 95.91 143 | 73.10 339 | 83.57 264 | 88.39 320 | 65.15 297 | 97.46 201 | 84.90 163 | 91.43 181 | 94.03 243 |
|
ADS-MVSNet2 | | | 81.66 297 | 79.71 305 | 87.50 293 | 91.35 284 | 74.19 315 | 83.33 356 | 88.48 352 | 72.90 341 | 82.24 281 | 85.77 346 | 64.98 298 | 93.20 347 | 64.57 346 | 83.74 270 | 95.12 186 |
|
ADS-MVSNet | | | 81.56 299 | 79.78 303 | 86.90 309 | 91.35 284 | 71.82 336 | 83.33 356 | 89.16 349 | 72.90 341 | 82.24 281 | 85.77 346 | 64.98 298 | 93.76 340 | 64.57 346 | 83.74 270 | 95.12 186 |
|
pmmvs5 | | | 84.21 274 | 82.84 280 | 88.34 275 | 88.95 338 | 76.94 288 | 92.41 252 | 91.91 300 | 75.63 316 | 80.28 304 | 91.18 269 | 64.59 300 | 95.57 311 | 77.09 270 | 83.47 275 | 92.53 303 |
|
PVSNet | | 78.82 18 | 85.55 254 | 84.65 257 | 88.23 279 | 94.72 172 | 71.93 335 | 87.12 337 | 92.75 273 | 78.80 286 | 84.95 229 | 90.53 286 | 64.43 301 | 96.71 257 | 74.74 290 | 93.86 147 | 96.06 158 |
|
UGNet | | | 89.95 123 | 88.95 135 | 92.95 94 | 94.51 181 | 83.31 123 | 95.70 80 | 95.23 194 | 89.37 56 | 87.58 159 | 93.94 176 | 64.00 302 | 98.78 102 | 83.92 174 | 96.31 113 | 96.74 134 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
RPSCF | | | 85.07 264 | 84.27 261 | 87.48 295 | 92.91 239 | 70.62 347 | 91.69 274 | 92.46 278 | 76.20 312 | 82.67 277 | 95.22 122 | 63.94 303 | 97.29 224 | 77.51 265 | 85.80 256 | 94.53 213 |
|
bld_raw_dy_0_64 | | | 87.60 200 | 86.73 194 | 90.21 216 | 91.72 270 | 80.26 208 | 95.09 116 | 88.61 350 | 85.68 158 | 85.55 203 | 94.38 155 | 63.93 304 | 96.66 258 | 87.73 126 | 87.84 241 | 93.72 262 |
|
iter_conf05 | | | 88.85 161 | 88.08 163 | 91.17 174 | 94.27 192 | 81.64 169 | 95.18 109 | 92.15 288 | 86.23 147 | 87.28 166 | 94.07 166 | 63.89 305 | 97.55 193 | 90.63 95 | 89.00 217 | 94.32 228 |
|
mvs_tets | | | 88.06 183 | 87.28 181 | 90.38 211 | 90.94 301 | 79.88 222 | 95.22 105 | 95.66 163 | 85.10 173 | 84.21 250 | 93.94 176 | 63.53 306 | 97.40 213 | 88.50 118 | 88.40 229 | 93.87 249 |
|
test1111 | | | 89.10 149 | 88.64 142 | 90.48 205 | 95.53 137 | 74.97 307 | 96.08 59 | 84.89 362 | 88.13 97 | 90.16 123 | 96.65 67 | 63.29 307 | 98.10 146 | 86.14 146 | 96.90 98 | 98.39 42 |
|
Anonymous20231211 | | | 86.59 236 | 85.13 246 | 90.98 189 | 96.52 99 | 81.50 172 | 96.14 55 | 96.16 125 | 73.78 333 | 83.65 261 | 92.15 235 | 63.26 308 | 97.37 217 | 82.82 190 | 81.74 296 | 94.06 241 |
|
ECVR-MVS |  | | 89.09 151 | 88.53 148 | 90.77 193 | 95.62 132 | 75.89 301 | 96.16 52 | 84.22 364 | 87.89 104 | 90.20 121 | 96.65 67 | 63.19 309 | 98.10 146 | 85.90 151 | 96.94 96 | 98.33 46 |
|
dp | | | 81.47 301 | 80.23 298 | 85.17 327 | 89.92 330 | 65.49 364 | 86.74 338 | 90.10 336 | 76.30 310 | 81.10 293 | 87.12 339 | 62.81 310 | 95.92 299 | 68.13 329 | 79.88 324 | 94.09 239 |
|
LFMVS | | | 90.08 117 | 89.13 131 | 92.95 94 | 96.71 89 | 82.32 157 | 96.08 59 | 89.91 341 | 86.79 132 | 92.15 91 | 96.81 58 | 62.60 311 | 98.34 130 | 87.18 135 | 93.90 146 | 98.19 62 |
|
Anonymous20231206 | | | 81.03 306 | 79.77 304 | 84.82 329 | 87.85 351 | 70.26 349 | 91.42 278 | 92.08 291 | 73.67 334 | 77.75 325 | 89.25 308 | 62.43 312 | 93.08 348 | 61.50 355 | 82.00 292 | 91.12 333 |
|
VDD-MVS | | | 90.74 102 | 89.92 114 | 93.20 81 | 96.27 105 | 83.02 133 | 95.73 78 | 93.86 252 | 88.42 84 | 92.53 82 | 96.84 55 | 62.09 313 | 98.64 107 | 90.95 90 | 92.62 172 | 97.93 85 |
|
MS-PatchMatch | | | 85.05 265 | 84.16 262 | 87.73 288 | 91.42 281 | 78.51 252 | 91.25 281 | 93.53 258 | 77.50 299 | 80.15 306 | 91.58 258 | 61.99 314 | 95.51 315 | 75.69 281 | 94.35 143 | 89.16 351 |
|
OurMVSNet-221017-0 | | | 85.35 258 | 84.64 258 | 87.49 294 | 90.77 309 | 72.59 331 | 94.01 192 | 94.40 232 | 84.72 181 | 79.62 316 | 93.17 203 | 61.91 315 | 96.72 255 | 81.99 204 | 81.16 301 | 93.16 284 |
|
test20.03 | | | 79.95 314 | 79.08 313 | 82.55 340 | 85.79 358 | 67.74 359 | 91.09 284 | 91.08 318 | 81.23 259 | 74.48 346 | 89.96 299 | 61.63 316 | 90.15 362 | 60.08 358 | 76.38 342 | 89.76 344 |
|
DSMNet-mixed | | | 76.94 326 | 76.29 325 | 78.89 344 | 83.10 367 | 56.11 374 | 87.78 331 | 79.77 372 | 60.65 364 | 75.64 339 | 88.71 316 | 61.56 317 | 88.34 366 | 60.07 359 | 89.29 211 | 92.21 314 |
|
Anonymous20240529 | | | 88.09 181 | 86.59 203 | 92.58 112 | 96.53 98 | 81.92 164 | 95.99 65 | 95.84 149 | 74.11 331 | 89.06 137 | 95.21 123 | 61.44 318 | 98.81 100 | 83.67 179 | 87.47 243 | 97.01 124 |
|
IB-MVS | | 80.51 15 | 85.24 262 | 83.26 273 | 91.19 172 | 92.13 257 | 79.86 223 | 91.75 271 | 91.29 314 | 83.28 210 | 80.66 299 | 88.49 319 | 61.28 319 | 98.46 119 | 80.99 223 | 79.46 328 | 95.25 184 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
GA-MVS | | | 86.61 234 | 85.27 244 | 90.66 194 | 91.33 286 | 78.71 247 | 90.40 293 | 93.81 255 | 85.34 167 | 85.12 226 | 89.57 305 | 61.25 320 | 97.11 238 | 80.99 223 | 89.59 206 | 96.15 149 |
|
N_pmnet | | | 68.89 332 | 68.44 335 | 70.23 351 | 89.07 337 | 28.79 383 | 88.06 328 | 19.50 384 | 69.47 355 | 71.86 356 | 84.93 348 | 61.24 321 | 91.75 358 | 54.70 364 | 77.15 339 | 90.15 342 |
|
EU-MVSNet | | | 81.32 303 | 80.95 291 | 82.42 341 | 88.50 342 | 63.67 367 | 93.32 218 | 91.33 312 | 64.02 362 | 80.57 301 | 92.83 214 | 61.21 322 | 92.27 354 | 76.34 275 | 80.38 320 | 91.32 326 |
|
VDDNet | | | 89.56 133 | 88.49 152 | 92.76 101 | 95.07 154 | 82.09 159 | 96.30 43 | 93.19 264 | 81.05 262 | 91.88 95 | 96.86 54 | 61.16 323 | 98.33 132 | 88.43 119 | 92.49 175 | 97.84 91 |
|
PVSNet_0 | | 73.20 20 | 77.22 325 | 74.83 330 | 84.37 332 | 90.70 313 | 71.10 342 | 83.09 358 | 89.67 346 | 72.81 343 | 73.93 348 | 83.13 355 | 60.79 324 | 93.70 341 | 68.54 324 | 50.84 370 | 88.30 358 |
|
SixPastTwentyTwo | | | 83.91 278 | 82.90 278 | 86.92 308 | 90.99 297 | 70.67 346 | 93.48 213 | 91.99 295 | 85.54 163 | 77.62 327 | 92.11 239 | 60.59 325 | 96.87 252 | 76.05 279 | 77.75 335 | 93.20 282 |
|
gg-mvs-nofinetune | | | 81.77 294 | 79.37 307 | 88.99 261 | 90.85 307 | 77.73 276 | 86.29 341 | 79.63 373 | 74.88 326 | 83.19 272 | 69.05 367 | 60.34 326 | 96.11 292 | 75.46 283 | 94.64 136 | 93.11 286 |
|
MDA-MVSNet-bldmvs | | | 78.85 321 | 76.31 324 | 86.46 313 | 89.76 332 | 73.88 317 | 88.79 320 | 90.42 330 | 79.16 280 | 59.18 366 | 88.33 322 | 60.20 327 | 94.04 336 | 62.00 353 | 68.96 357 | 91.48 324 |
|
pmmvs6 | | | 83.42 282 | 81.60 286 | 88.87 262 | 88.01 349 | 77.87 270 | 94.96 123 | 94.24 239 | 74.67 327 | 78.80 319 | 91.09 274 | 60.17 328 | 96.49 273 | 77.06 271 | 75.40 345 | 92.23 313 |
|
ACMH | | 80.38 17 | 85.36 257 | 83.68 269 | 90.39 209 | 94.45 185 | 80.63 200 | 94.73 140 | 94.85 215 | 82.09 232 | 77.24 328 | 92.65 220 | 60.01 329 | 97.58 190 | 72.25 304 | 84.87 262 | 92.96 291 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
GG-mvs-BLEND | | | | | 87.94 286 | 89.73 333 | 77.91 267 | 87.80 330 | 78.23 375 | | 80.58 300 | 83.86 351 | 59.88 330 | 95.33 321 | 71.20 307 | 92.22 177 | 90.60 340 |
|
UniMVSNet_ETH3D | | | 87.53 203 | 86.37 209 | 91.00 186 | 92.44 249 | 78.96 245 | 94.74 139 | 95.61 167 | 84.07 190 | 85.36 223 | 94.52 153 | 59.78 331 | 97.34 218 | 82.93 186 | 87.88 239 | 96.71 135 |
|
pmmvs-eth3d | | | 80.97 307 | 78.72 316 | 87.74 287 | 84.99 363 | 79.97 221 | 90.11 301 | 91.65 304 | 75.36 318 | 73.51 349 | 86.03 343 | 59.45 332 | 93.96 339 | 75.17 286 | 72.21 350 | 89.29 349 |
|
test_0402 | | | 81.30 304 | 79.17 312 | 87.67 289 | 93.19 228 | 78.17 262 | 92.98 237 | 91.71 301 | 75.25 320 | 76.02 338 | 90.31 290 | 59.23 333 | 96.37 281 | 50.22 367 | 83.63 273 | 88.47 357 |
|
KD-MVS_self_test | | | 80.20 312 | 79.24 309 | 83.07 338 | 85.64 360 | 65.29 365 | 91.01 285 | 93.93 248 | 78.71 289 | 76.32 334 | 86.40 341 | 59.20 334 | 92.93 350 | 72.59 302 | 69.35 354 | 91.00 336 |
|
FMVSNet1 | | | 85.85 250 | 84.11 263 | 91.08 180 | 92.81 242 | 83.10 128 | 95.14 113 | 94.94 207 | 81.64 248 | 82.68 276 | 91.64 253 | 59.01 335 | 96.34 284 | 75.37 284 | 83.78 269 | 93.79 254 |
|
COLMAP_ROB |  | 80.39 16 | 83.96 276 | 82.04 283 | 89.74 239 | 95.28 144 | 79.75 225 | 94.25 172 | 92.28 284 | 75.17 321 | 78.02 324 | 93.77 186 | 58.60 336 | 97.84 172 | 65.06 345 | 85.92 255 | 91.63 321 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
ACMH+ | | 81.04 14 | 85.05 265 | 83.46 272 | 89.82 235 | 94.66 176 | 79.37 234 | 94.44 159 | 94.12 245 | 82.19 231 | 78.04 323 | 92.82 215 | 58.23 337 | 97.54 195 | 73.77 297 | 82.90 283 | 92.54 302 |
|
CMPMVS |  | 59.16 21 | 80.52 309 | 79.20 311 | 84.48 331 | 83.98 364 | 67.63 360 | 89.95 304 | 93.84 254 | 64.79 361 | 66.81 362 | 91.14 272 | 57.93 338 | 95.17 322 | 76.25 276 | 88.10 234 | 90.65 337 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
ITE_SJBPF | | | | | 88.24 278 | 91.88 265 | 77.05 287 | | 92.92 268 | 85.54 163 | 80.13 308 | 93.30 198 | 57.29 339 | 96.20 288 | 72.46 303 | 84.71 263 | 91.49 323 |
|
TESTMET0.1,1 | | | 83.74 280 | 82.85 279 | 86.42 315 | 89.96 329 | 71.21 341 | 89.55 306 | 87.88 353 | 77.41 300 | 83.37 268 | 87.31 335 | 56.71 340 | 93.65 342 | 80.62 230 | 92.85 170 | 94.40 226 |
|
UnsupCasMVSNet_eth | | | 80.07 313 | 78.27 317 | 85.46 323 | 85.24 362 | 72.63 330 | 88.45 326 | 94.87 214 | 82.99 216 | 71.64 357 | 88.07 326 | 56.34 341 | 91.75 358 | 73.48 299 | 63.36 364 | 92.01 316 |
|
K. test v3 | | | 81.59 298 | 80.15 300 | 85.91 321 | 89.89 331 | 69.42 353 | 92.57 249 | 87.71 355 | 85.56 162 | 73.44 350 | 89.71 303 | 55.58 342 | 95.52 314 | 77.17 268 | 69.76 353 | 92.78 298 |
|
test-mter | | | 84.54 272 | 83.64 270 | 87.25 300 | 90.95 299 | 71.67 337 | 89.55 306 | 89.88 343 | 79.17 279 | 84.54 235 | 87.95 327 | 55.56 343 | 95.11 324 | 81.82 208 | 93.37 159 | 94.97 190 |
|
lessismore_v0 | | | | | 86.04 317 | 88.46 343 | 68.78 355 | | 80.59 371 | | 73.01 352 | 90.11 294 | 55.39 344 | 96.43 279 | 75.06 288 | 65.06 361 | 92.90 293 |
|
MVS-HIRNet | | | 73.70 329 | 72.20 332 | 78.18 347 | 91.81 268 | 56.42 373 | 82.94 359 | 82.58 367 | 55.24 366 | 68.88 359 | 66.48 368 | 55.32 345 | 95.13 323 | 58.12 361 | 88.42 228 | 83.01 362 |
|
test2506 | | | 87.21 218 | 86.28 214 | 90.02 228 | 95.62 132 | 73.64 319 | 96.25 49 | 71.38 377 | 87.89 104 | 90.45 117 | 96.65 67 | 55.29 346 | 98.09 154 | 86.03 150 | 96.94 96 | 98.33 46 |
|
new-patchmatchnet | | | 76.41 327 | 75.17 329 | 80.13 343 | 82.65 369 | 59.61 369 | 87.66 334 | 91.08 318 | 78.23 296 | 69.85 358 | 83.22 354 | 54.76 347 | 91.63 360 | 64.14 348 | 64.89 362 | 89.16 351 |
|
Anonymous202405211 | | | 87.68 191 | 86.13 218 | 92.31 125 | 96.66 91 | 80.74 198 | 94.87 131 | 91.49 309 | 80.47 265 | 89.46 131 | 95.44 115 | 54.72 348 | 98.23 138 | 82.19 200 | 89.89 200 | 97.97 81 |
|
XVG-ACMP-BASELINE | | | 86.00 246 | 84.84 254 | 89.45 250 | 91.20 288 | 78.00 265 | 91.70 273 | 95.55 170 | 85.05 175 | 82.97 273 | 92.25 233 | 54.49 349 | 97.48 199 | 82.93 186 | 87.45 245 | 92.89 294 |
|
USDC | | | 82.76 285 | 81.26 290 | 87.26 299 | 91.17 290 | 74.55 310 | 89.27 312 | 93.39 261 | 78.26 295 | 75.30 341 | 92.08 241 | 54.43 350 | 96.63 260 | 71.64 305 | 85.79 257 | 90.61 338 |
|
AllTest | | | 83.42 282 | 81.39 288 | 89.52 247 | 95.01 155 | 77.79 273 | 93.12 230 | 90.89 325 | 77.41 300 | 76.12 336 | 93.34 194 | 54.08 351 | 97.51 197 | 68.31 327 | 84.27 266 | 93.26 277 |
|
TestCases | | | | | 89.52 247 | 95.01 155 | 77.79 273 | | 90.89 325 | 77.41 300 | 76.12 336 | 93.34 194 | 54.08 351 | 97.51 197 | 68.31 327 | 84.27 266 | 93.26 277 |
|
KD-MVS_2432*1600 | | | 78.50 322 | 76.02 327 | 85.93 319 | 86.22 355 | 74.47 311 | 84.80 349 | 92.33 281 | 79.29 277 | 76.98 330 | 85.92 344 | 53.81 353 | 93.97 337 | 67.39 332 | 57.42 367 | 89.36 346 |
|
miper_refine_blended | | | 78.50 322 | 76.02 327 | 85.93 319 | 86.22 355 | 74.47 311 | 84.80 349 | 92.33 281 | 79.29 277 | 76.98 330 | 85.92 344 | 53.81 353 | 93.97 337 | 67.39 332 | 57.42 367 | 89.36 346 |
|
MIMVSNet | | | 82.59 288 | 80.53 293 | 88.76 263 | 91.51 277 | 78.32 258 | 86.57 340 | 90.13 335 | 79.32 276 | 80.70 298 | 88.69 318 | 52.98 355 | 93.07 349 | 66.03 340 | 88.86 219 | 94.90 197 |
|
FMVSNet5 | | | 81.52 300 | 79.60 306 | 87.27 298 | 91.17 290 | 77.95 266 | 91.49 277 | 92.26 285 | 76.87 305 | 76.16 335 | 87.91 329 | 51.67 356 | 92.34 353 | 67.74 331 | 81.16 301 | 91.52 322 |
|
testgi | | | 80.94 308 | 80.20 299 | 83.18 337 | 87.96 350 | 66.29 361 | 91.28 279 | 90.70 329 | 83.70 197 | 78.12 322 | 92.84 213 | 51.37 357 | 90.82 361 | 63.34 349 | 82.46 286 | 92.43 306 |
|
Anonymous20240521 | | | 80.44 310 | 79.21 310 | 84.11 335 | 85.75 359 | 67.89 357 | 92.86 241 | 93.23 263 | 75.61 317 | 75.59 340 | 87.47 334 | 50.03 358 | 94.33 332 | 71.14 310 | 81.21 300 | 90.12 343 |
|
UnsupCasMVSNet_bld | | | 76.23 328 | 73.27 331 | 85.09 328 | 83.79 365 | 72.92 324 | 85.65 346 | 93.47 260 | 71.52 348 | 68.84 360 | 79.08 361 | 49.77 359 | 93.21 346 | 66.81 339 | 60.52 366 | 89.13 353 |
|
OpenMVS_ROB |  | 74.94 19 | 79.51 317 | 77.03 323 | 86.93 307 | 87.00 352 | 76.23 299 | 92.33 256 | 90.74 328 | 68.93 356 | 74.52 345 | 88.23 324 | 49.58 360 | 96.62 261 | 57.64 362 | 84.29 265 | 87.94 359 |
|
TDRefinement | | | 79.81 315 | 77.34 319 | 87.22 303 | 79.24 371 | 75.48 306 | 93.12 230 | 92.03 293 | 76.45 307 | 75.01 342 | 91.58 258 | 49.19 361 | 96.44 278 | 70.22 315 | 69.18 356 | 89.75 345 |
|
MIMVSNet1 | | | 79.38 318 | 77.28 320 | 85.69 322 | 86.35 354 | 73.67 318 | 91.61 276 | 92.75 273 | 78.11 298 | 72.64 353 | 88.12 325 | 48.16 362 | 91.97 357 | 60.32 357 | 77.49 337 | 91.43 325 |
|
MVS_0304 | | | 83.46 281 | 81.92 284 | 88.10 282 | 90.63 315 | 77.49 281 | 93.26 225 | 93.75 256 | 80.04 270 | 80.44 303 | 87.24 337 | 47.94 363 | 95.55 312 | 75.79 280 | 88.16 233 | 91.26 328 |
|
LF4IMVS | | | 80.37 311 | 79.07 314 | 84.27 334 | 86.64 353 | 69.87 352 | 89.39 311 | 91.05 320 | 76.38 308 | 74.97 343 | 90.00 297 | 47.85 364 | 94.25 335 | 74.55 293 | 80.82 312 | 88.69 355 |
|
EG-PatchMatch MVS | | | 82.37 290 | 80.34 296 | 88.46 271 | 90.27 322 | 79.35 235 | 92.80 243 | 94.33 235 | 77.14 304 | 73.26 351 | 90.18 292 | 47.47 365 | 96.72 255 | 70.25 313 | 87.32 248 | 89.30 348 |
|
TinyColmap | | | 79.76 316 | 77.69 318 | 85.97 318 | 91.71 272 | 73.12 323 | 89.55 306 | 90.36 332 | 75.03 322 | 72.03 355 | 90.19 291 | 46.22 366 | 96.19 290 | 63.11 350 | 81.03 306 | 88.59 356 |
|
tmp_tt | | | 35.64 344 | 39.24 346 | 24.84 360 | 14.87 384 | 23.90 384 | 62.71 370 | 51.51 383 | 6.58 378 | 36.66 374 | 62.08 371 | 44.37 367 | 30.34 380 | 52.40 366 | 22.00 377 | 20.27 375 |
|
new_pmnet | | | 72.15 330 | 70.13 333 | 78.20 346 | 82.95 368 | 65.68 362 | 83.91 354 | 82.40 368 | 62.94 363 | 64.47 363 | 79.82 360 | 42.85 368 | 86.26 368 | 57.41 363 | 74.44 346 | 82.65 364 |
|
EGC-MVSNET | | | 61.97 335 | 56.37 339 | 78.77 345 | 89.63 334 | 73.50 320 | 89.12 316 | 82.79 366 | 0.21 381 | 1.24 382 | 84.80 349 | 39.48 369 | 90.04 363 | 44.13 369 | 75.94 344 | 72.79 368 |
|
pmmvs3 | | | 71.81 331 | 68.71 334 | 81.11 342 | 75.86 372 | 70.42 348 | 86.74 338 | 83.66 365 | 58.95 365 | 68.64 361 | 80.89 359 | 36.93 370 | 89.52 364 | 63.10 351 | 63.59 363 | 83.39 361 |
|
PM-MVS | | | 78.11 324 | 76.12 326 | 84.09 336 | 83.54 366 | 70.08 350 | 88.97 319 | 85.27 361 | 79.93 271 | 74.73 344 | 86.43 340 | 34.70 371 | 93.48 343 | 79.43 247 | 72.06 351 | 88.72 354 |
|
ambc | | | | | 83.06 339 | 79.99 370 | 63.51 368 | 77.47 365 | 92.86 269 | | 74.34 347 | 84.45 350 | 28.74 372 | 95.06 326 | 73.06 301 | 68.89 358 | 90.61 338 |
|
test_method | | | 50.52 340 | 48.47 342 | 56.66 356 | 52.26 382 | 18.98 385 | 41.51 374 | 81.40 370 | 10.10 376 | 44.59 371 | 75.01 363 | 28.51 373 | 68.16 374 | 53.54 365 | 49.31 371 | 82.83 363 |
|
DeepMVS_CX |  | | | | 56.31 357 | 74.23 373 | 51.81 376 | | 56.67 382 | 44.85 370 | 48.54 370 | 75.16 362 | 27.87 374 | 58.74 378 | 40.92 371 | 52.22 369 | 58.39 371 |
|
FPMVS | | | 64.63 334 | 62.55 336 | 70.88 350 | 70.80 374 | 56.71 371 | 84.42 352 | 84.42 363 | 51.78 368 | 49.57 368 | 81.61 358 | 23.49 375 | 81.48 371 | 40.61 372 | 76.25 343 | 74.46 367 |
|
ANet_high | | | 58.88 337 | 54.22 341 | 72.86 349 | 56.50 381 | 56.67 372 | 80.75 363 | 86.00 358 | 73.09 340 | 37.39 373 | 64.63 370 | 22.17 376 | 79.49 373 | 43.51 370 | 23.96 375 | 82.43 365 |
|
EMVS | | | 42.07 343 | 41.12 345 | 44.92 359 | 63.45 379 | 35.56 382 | 73.65 366 | 63.48 379 | 33.05 374 | 26.88 378 | 45.45 375 | 21.27 377 | 67.14 376 | 19.80 377 | 23.02 376 | 32.06 374 |
|
Gipuma |  | | 57.99 338 | 54.91 340 | 67.24 353 | 88.51 341 | 65.59 363 | 52.21 372 | 90.33 333 | 43.58 371 | 42.84 372 | 51.18 373 | 20.29 378 | 85.07 369 | 34.77 373 | 70.45 352 | 51.05 372 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
E-PMN | | | 43.23 342 | 42.29 344 | 46.03 358 | 65.58 377 | 37.41 380 | 73.51 367 | 64.62 378 | 33.99 373 | 28.47 377 | 47.87 374 | 19.90 379 | 67.91 375 | 22.23 376 | 24.45 374 | 32.77 373 |
|
PMMVS2 | | | 59.60 336 | 56.40 338 | 69.21 352 | 68.83 375 | 46.58 378 | 73.02 369 | 77.48 376 | 55.07 367 | 49.21 369 | 72.95 366 | 17.43 380 | 80.04 372 | 49.32 368 | 44.33 372 | 80.99 366 |
|
LCM-MVSNet | | | 66.00 333 | 62.16 337 | 77.51 348 | 64.51 378 | 58.29 370 | 83.87 355 | 90.90 324 | 48.17 369 | 54.69 367 | 73.31 365 | 16.83 381 | 86.75 367 | 65.47 341 | 61.67 365 | 87.48 360 |
|
PMVS |  | 47.18 22 | 52.22 339 | 48.46 343 | 63.48 354 | 45.72 383 | 46.20 379 | 73.41 368 | 78.31 374 | 41.03 372 | 30.06 375 | 65.68 369 | 6.05 382 | 83.43 370 | 30.04 374 | 65.86 360 | 60.80 369 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MVE |  | 39.65 23 | 43.39 341 | 38.59 347 | 57.77 355 | 56.52 380 | 48.77 377 | 55.38 371 | 58.64 381 | 29.33 375 | 28.96 376 | 52.65 372 | 4.68 383 | 64.62 377 | 28.11 375 | 33.07 373 | 59.93 370 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
wuyk23d | | | 21.27 346 | 20.48 349 | 23.63 361 | 68.59 376 | 36.41 381 | 49.57 373 | 6.85 385 | 9.37 377 | 7.89 379 | 4.46 381 | 4.03 384 | 31.37 379 | 17.47 378 | 16.07 378 | 3.12 376 |
|
test123 | | | 8.76 348 | 11.22 351 | 1.39 362 | 0.85 386 | 0.97 386 | 85.76 345 | 0.35 387 | 0.54 380 | 2.45 381 | 8.14 380 | 0.60 385 | 0.48 381 | 2.16 380 | 0.17 380 | 2.71 377 |
|
testmvs | | | 8.92 347 | 11.52 350 | 1.12 363 | 1.06 385 | 0.46 387 | 86.02 342 | 0.65 386 | 0.62 379 | 2.74 380 | 9.52 379 | 0.31 386 | 0.45 382 | 2.38 379 | 0.39 379 | 2.46 378 |
|
test_blank | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uanet_test | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
DCPMVS | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
sosnet-low-res | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
sosnet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uncertanet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
Regformer | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
ab-mvs-re | | | 7.82 349 | 10.43 352 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 93.88 181 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uanet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
FOURS1 | | | | | | 98.86 1 | 85.54 73 | 98.29 1 | 97.49 5 | 89.79 45 | 96.29 15 | | | | | | |
|
MSC_two_6792asdad | | | | | 96.52 1 | 97.78 57 | 90.86 1 | | 96.85 68 | | | | | 99.61 3 | 96.03 1 | 99.06 9 | 99.07 5 |
|
No_MVS | | | | | 96.52 1 | 97.78 57 | 90.86 1 | | 96.85 68 | | | | | 99.61 3 | 96.03 1 | 99.06 9 | 99.07 5 |
|
eth-test2 | | | | | | 0.00 387 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 387 | | | | | | | | | | | |
|
IU-MVS | | | | | | 98.77 5 | 86.00 55 | | 96.84 70 | 81.26 257 | 97.26 7 | | | | 95.50 10 | 99.13 3 | 99.03 7 |
|
save fliter | | | | | | 97.85 50 | 85.63 71 | 95.21 106 | 96.82 74 | 89.44 52 | | | | | | | |
|
test_0728_SECOND | | | | | 95.01 17 | 98.79 2 | 86.43 43 | 97.09 16 | 97.49 5 | | | | | 99.61 3 | 95.62 8 | 99.08 7 | 98.99 8 |
|
GSMVS | | | | | | | | | | | | | | | | | 96.12 152 |
|
test_part2 | | | | | | 98.55 13 | 87.22 18 | | | | 96.40 14 | | | | | | |
|
MTGPA |  | | | | | | | | 96.97 53 | | | | | | | | |
|
MTMP | | | | | | | | 96.16 52 | 60.64 380 | | | | | | | | |
|
gm-plane-assit | | | | | | 89.60 335 | 68.00 356 | | | 77.28 303 | | 88.99 310 | | 97.57 191 | 79.44 246 | | |
|
test9_res | | | | | | | | | | | | | | | 91.91 69 | 98.71 34 | 98.07 74 |
|
agg_prior2 | | | | | | | | | | | | | | | 90.54 97 | 98.68 39 | 98.27 56 |
|
agg_prior | | | | | | 97.38 71 | 85.92 62 | | 96.72 86 | | 92.16 89 | | | 98.97 83 | | | |
|
test_prior4 | | | | | | | 85.96 59 | 94.11 181 | | | | | | | | | |
|
test_prior | | | | | 93.82 67 | 97.29 76 | 84.49 89 | | 96.88 65 | | | | | 98.87 91 | | | 98.11 72 |
|
旧先验2 | | | | | | | | 93.36 217 | | 71.25 350 | 94.37 32 | | | 97.13 237 | 86.74 141 | | |
|
新几何2 | | | | | | | | 93.11 232 | | | | | | | | | |
|
无先验 | | | | | | | | 93.28 224 | 96.26 116 | 73.95 332 | | | | 99.05 63 | 80.56 231 | | 96.59 138 |
|
原ACMM2 | | | | | | | | 92.94 239 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 98.75 103 | 78.30 256 | | |
|
testdata1 | | | | | | | | 92.15 262 | | 87.94 100 | | | | | | | |
|
plane_prior7 | | | | | | 94.70 174 | 82.74 143 | | | | | | | | | | |
|
plane_prior5 | | | | | | | | | 96.22 121 | | | | | 98.12 144 | 88.15 120 | 89.99 196 | 94.63 206 |
|
plane_prior4 | | | | | | | | | | | | 94.86 135 | | | | | |
|
plane_prior3 | | | | | | | 82.75 141 | | | 90.26 35 | 86.91 175 | | | | | | |
|
plane_prior2 | | | | | | | | 95.85 72 | | 90.81 20 | | | | | | | |
|
plane_prior1 | | | | | | 94.59 178 | | | | | | | | | | | |
|
plane_prior | | | | | | | 82.73 144 | 95.21 106 | | 89.66 49 | | | | | | 89.88 201 | |
|
n2 | | | | | | | | | 0.00 388 | | | | | | | | |
|
nn | | | | | | | | | 0.00 388 | | | | | | | | |
|
door-mid | | | | | | | | | 85.49 359 | | | | | | | | |
|
test11 | | | | | | | | | 96.57 100 | | | | | | | | |
|
door | | | | | | | | | 85.33 360 | | | | | | | | |
|
HQP5-MVS | | | | | | | 81.56 170 | | | | | | | | | | |
|
HQP-NCC | | | | | | 94.17 194 | | 94.39 164 | | 88.81 71 | 85.43 216 | | | | | | |
|
ACMP_Plane | | | | | | 94.17 194 | | 94.39 164 | | 88.81 71 | 85.43 216 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 87.11 138 | | |
|
HQP4-MVS | | | | | | | | | | | 85.43 216 | | | 97.96 166 | | | 94.51 215 |
|
HQP3-MVS | | | | | | | | | 96.04 135 | | | | | | | 89.77 203 | |
|
NP-MVS | | | | | | 94.37 188 | 82.42 153 | | | | | 93.98 174 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 87.47 243 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 88.01 237 | |
|